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Abstract

Although discriminative approaches like the support vector machine or lo-
gistic regression have had great success in many pattern recognition appli-
cation, they have only achieved limited success in speech recognition. Two
of the difficulties often encountered include 1) speech signals typically have
variable lengths, and 2) speech recognition is a sequence labeling problem,
where each spoken utterance corresponds to a sequence of words or phones.

In this thesis, we present a framework for automatic speech recogni-
tion using logistic regression. We solve the difficulty of variable length
speech signals by including a mapping in the logistic regression framework
that transforms each speech signal into a fixed-dimensional vector. The
mapping is defined either explicitly with a set of hidden Markov models
(HMMs) for the use in penalized logistic regression (PLR), or implicitly
through a sequence kernel to be used with kernel logistic regression (KLR).
Unlike previous work that has used HMMs in combination with a discrim-
inative classification approach, we jointly optimize the logistic regression
parameters and the HMM parameters using a penalized likelihood crite-
rion. Experiments show that joint optimization improves the recognition
accuracy significantly. The sequence kernel we present is motivated by
the dynamic time warping (DTW) distance between two feature vector se-
quences. Instead of considering only the optimal alignment path, we sum
up the contributions from all alignment paths. Preliminary experiments
with the sequence kernel show promising results.

A two-step approach is used for handling the sequence labeling prob-
lem. In the first step, a set of HMMs is used to generate an N-best list
of sentence hypotheses for a spoken utterance. In the second step, these
sentence hypotheses are rescored using logistic regression on the segments
in the N-best list. A garbage class is introduced in the logistic regression
framework in order to get reliable probability estimates for the segments in
the N-best lists. We present results on both a connected digit recognition
task and a continuous phone recognition task.
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Notation and Symbols

x Scalars are typeset in non-bold lowercase

x Vectors are typeset in bold lowercase

X Vector sequences and matrices are typeset in bold upper-
case (in Chapters 1 and 2, X is more general and is taken
to mean an object of any type)

WT The transpose of W

|W | The determinant of W

‖W ‖ The Euclidean norm of W

traceW The trace of square matrix W , which is the sum of the
diagonal elements

vecW or ~W The columns of matrix W stacked into a vector

diagw A diagonal matrix containing the elements of vector w

∇W The gradient matrix of partial derivatives wrt. W

∇2
W The Hessian matrix of second partial derivatives wrt. W

⊗ The Kronecker product

∝ Proportional to

R The set of real numbers

N The set of natural numbers
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Chapter 1

Introduction

Automatic speech recognition is the task of automatically converting speech
into text. It has applications in many areas, including dictation, com-
mand and control, and automatic telephone services, just to name a few.
The problem is far from trivial, a statement that is supported by the vast
amount of research publications within the area of speech recognition over
the last few decades.

The most popular approach to speech recognition is the hidden Markov
model (HMM) framework [Rabiner, 1989]. Although the HMM framework
has a range of attractive features for speech recognition, it also has some
shortcomings that limit the achievable recognition performance. First, the
HMM makes some incorrect assumptions about the speech signal and is
therefore not the true model for speech. Second, the HMM parameters
are typically estimated using the maximum likelihood (ML) criterion. This
means that the parameters for each class are estimated independently of
the other classes so as to best describe the generation of the observations.
This is different from minimizing the probability of recognition error, which
is the ultimate goal of speech recognition, and ML is therefore suboptimal.
Moreover, there is no straightforward way of obtaining a confidence measure
for the recognition decision.

Penalized logistic regression (PLR) [Hoerl and Kennard, 1970; Anderson
and Blair, 1982] and kernel logistic regression (KLR) [Green and Yandell,
1985; Jaakkola and Haussler, 1999b], collectively referred to as logistic re-
gression, are statistically well-founded classification approaches. Although
the methods have been around for a while, they have not been particularly
popular for pattern recognition applications lately, partly due to the success
of the support vector machine (SVM) [Vapnik, 1995; Schölkopf and Smola,
2002]. Recent work [Jaakkola and Haussler, 1999b; Zhu and Hastie, 2001,
2005] has shown that logistic regression has many similar theoretical prop-
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2 Chapter 1: Introduction

erties as SVM, and it is comparable to SVM when it comes to classification
accuracy. Unlike SVM, however, logistic regression outputs the conditional
probability of a class given an observation, and has a natural generalization
to the multi-class case. These additional features are important in many
practical pattern recognition problems, including speech recognition.

If we attempt to design a speech recognizer with logistic regression (or
SVM), we face two major difficulties. First, speech signals typically have
variable lengths, even repeating utterances of the same word from the same
speaker, while logistic regression is a static classifier, meaning that the ob-
servations are assumed to be fixed-dimensional vectors. Second, a speech
signal corresponds to a sequence of words, and each word corresponds to
an unknown portion of the speech signal. Thus, speech recognition is a
sequence labeling problem, with unknown segmentation, while logistic re-
gression is designed to predict a single label only.

In this thesis we present a framework for automatic speech recogni-
tion using logistic regression. We solve the problem with variable-length
speech signals by including a mapping in the logistic regression framework.
The mapping maps a variable-length speech signal into a fixed-dimensional
vector and is defined either explicitly with the use of a set of HMMs, or
implicitly through a kernel function. A two-step approach is chosen for
handling the sequence labeling problem. In the first step, a set of HMMs
is used to generate an N-best list of sentence hypotheses for a spoken ut-
terance. In the second step, these sentence hypotheses are rescored using
logistic regression on the segments in the N-best list. A series of experi-
ments demonstrate the power and show the potential of the framework.

We start this introductory chapter by giving a short review of pattern
recognition and classification. Then, in Section 1.2 we list the major con-
tributions of this thesis, and in Section 1.3 we compare the contributions
with related work. Finally, in Section 1.4 we give an overview of the outline
of the rest of the thesis.

1.1 Pattern Recognition and Classification

Automatic speech recognition is essentially a pattern recognition problem,
where the goal is to recognize patterns in speech as words. In general,
pattern recognition involves preprocessing, feature extraction and classi-
fication [Devroye et al., 1996; Duda et al., 2001]. In this thesis, we will
rely on existing preprocessing and feature extraction methods for speech
recognition, and focus our attention only on the classification step.

In statistical classification, we assume that (X, y) ∈ X ×Y is a random
pair drawn according to a probability distribution p(X, y). We consider
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X ∈ X to be a suitable representation of an observable pattern, and y ∈
{1, . . . , C} to be an unobservable label describing which class the pattern
belongs to. For example, X can be a sequence of Mel-frequency cepstral
coefficients (MFCC) and y can represent the word label of X. The goal in
classification is to construct a decision rule h from the input space X to
the set of class labels Y which is optimal in some sense. Mathematically, a
decision rule can be written as

h :X → Y (1.1)
X 7→ ŷ, (1.2)

where ŷ = h(X) for any X ∈ X . Usually we are interested in the decision
rule which gives the least probability of misclassification.

If the true distribution p(X, y) were known, the optimal decision rule
would be the Bayes decision rule [Berger, 1985], which is

ŷ = arg max
y∈Y

p(y|X) (1.3)

= arg max
y∈Y

p(X|y)p(y). (1.4)

In the second equality above, we have used Bayes rule and omitted the
denominator p(X) since it is independent of y and does not contribute to
the decision.

In practical problems we do not know the true distribution p(X, y),
so other decision rules are called for. In this thesis we will focus on
the construction of a decision rule by the use of a finite set D =
{(X(1), y(1)), . . . , (X(N), y(N))} of samples assumed to be drawn indepen-
dently according to p(X, y). These samples are called the training data
and the approach taken to infer a decision rule from training data is known
as supervised learning.

Within the framework of supervised learning there are two main ap-
proaches. The first approach, known as the generative approach, aims at
modeling the joint generative model p(X, y) of observations X and classes
y. This is usually done through modeling of the class-conditional distri-
butions p(X|y) and the class prior p(y). The estimated distributions are
substituted for the true distributions in (1.4). Conventional speech recog-
nition is done using this approach, where each observation X is a sequence
of feature vectors extracted from a speech signal. The class-conditional
distributions p(X|y) are then typically obtained from HMMs.

The other main approach to supervised learning is called the discrim-
inative approach. In this approach, the conditional distribution p(y|X) of
class labels given an observation is modeled and substituted for the true one
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in (1.3). Logistic regression is an example of this approach. Other discrimi-
native approaches include kernel methods such as SVM, which approximate
the decision rule in (1.3) in a discriminative way without explicitly provid-
ing the conditional probabilities p(y|X).

Both the generative approach and the discriminative approach to learn-
ing classifiers have their strengths and weaknesses [Ng and Jordan, 2002;
Ulusoy and Bishop, 2005]. The generative approach can handle missing or
partially labeled data, and can make use of a combination of small amounts
of expensive labeled training data with large quantities of cheap unlabeled
training data. Moreover, generative models can readily handle compo-
sitionality, which in speech recognition terms means that long linguistic
units such as words can be modeled by concatenating a set of models for
short linguistic units such as phones. On the other hand, in the discrim-
inative approach the decision rule is learnt in a more direct way than in
the generative approach, without making assumptions on the distribution
of the observations. Modeling effort is spent in the confusable regions of
the observation space that are important for classification, whereas in the
generative approach an attempt is made to accurately model regions in the
observation space that may be irrelevant for the outcome of the resulting
decision rule.

Since the generative approach and the discriminative approach have
complementary strengths and weaknesses, it seems natural to attempt to
combine them. Discriminative training is one such approach, where a gen-
erative model is trained using a discriminative criterion function. Examples
of discriminative training approaches that have been successfully applied
to speech recognition include maximum mutual information (MMI) [Bahl
et al., 1986] and minimum classification error (MCE) [Juang et al., 1997].
Another combination approach is to use a discriminative classifier such as
logistic regression or SVM that incorporates a generative model [Jaakkola
and Haussler, 1999a; Smith and Gales, 2002]. The latter is the approach
taken in this thesis.

1.2 Contributions of this Thesis

This thesis provides a study of logistic regression and its use in automatic
speech recognition. Both penalized logistic regression (PLR) and kernel
logistic regression (KLR) are considered. Contributions are made in the
logistic regression framework, as well as in the application to isolated-word
speech recognition and N-best rescoring for continuous speech recognition.
Parts of the work has been published in [Birkenes et al., 2005, 2006a,b,
2007; Cuturi et al., 2007].
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1.2.1 Contributions to the Logistic Regression Framework

While most presentations of logistic regression in the literature assume the
observations to be fixed-dimensional vectors (e.g., [Jaakkola and Haussler,
1999b; Tanabe, 2001a,b; Zhu and Hastie, 2001, 2005]), we present a more
general logistic regression framework that allows observations to be objects
of arbitrary type. The generalization is trivial, however, since we simply
redefine a nonlinear mapping such that it maps an observation of any par-
ticular type into a fixed-dimensional vector. The motivation for this simple
generalization is that we would like to use logistic regression for speech
recognition, where each observation is a sequence of feature vectors or a
time series.

In this thesis, we also provide necessary proofs of derivatives in the
logistic regression framework, many of which are missing in the literature.
In addition, we provide derivations of the formulas for the determination of
the regularization parameter in PLR with the use of a Bayesian information
criterion (ABIC) [Akaike, 1980].

The two major contributions to the logistic regression framework, how-
ever, are 1) adaptive regressor parameters, which allows for more flexible
decision boundaries for PLR, and 2) a garbage class, to ensure proper be-
haviour for the prediction of atypical observations for both PLR and KLR.

1.2.2 Isolated-Word Speech Recognition using Logistic Re-
gression

The major difficulty in applying logistic regression to isolated-word speech
recognition is that speech signals typically have variable lengths. We
present solutions to this problem in the form of several mappings from
variable-length time series into fixed-dimensional vectors. The mappings
are either defined explicitly, as in PLR, or implicitly through a kernel to be
used with KLR. The mappings for PLR are based on a set of HMMs. They
include a mapping of a time series into a vector of the likelihoods of each
HMM, and a mapping into a vector of likelihood-ratios of each model and
its corresponding anti-model. With the use of adaptive regressor param-
eters, which in this case are the HMM parameters, we obtain a powerful
discriminative classifier for speech signals that combines the advantages of
the generative learning approach and the discriminative learning approach.

We present two families of kernels to be used with KLR. The first family
consists of vector kernels (e.g., Gaussian or polynomial) that operate on
pairs of time series via the fixed-dimensional vectors obtained from either
of the explicit mappings. The second family are sequence kernels that
operate directly on pairs of time series. A particular member of this family
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is the global alignment (GA) kernel [Cuturi et al., 2007], which we recently
proposed. With the latter family of kernels, KLR is a purely discriminative
approach for isolated-word speech recognition.

Experiments on the E-set of the TI46 database compare the various
approaches. Also, a phone classification experiment on the TIMIT database
[Lamel et al., 1986] using PLR with adaptive regressor parameters is done.

1.2.3 N-Best Rescoring using Logistic Regression on Seg-
ments

We choose a two-step approach to continuous speech recognition. In the
first step, a set of HMMs is used to generate an N-best list of sentence
hypotheses for a spoken utterance. In the second step, these sentence hy-
potheses are rescored using logistic regression on the segments in the N-best
list. The new sentence scores are either used directly to reorder the sen-
tence hypotheses in the N-best list, or they are interpolated with the HMM
likelihoods of the corresponding sentence hypotheses before reordering. We
argue that logistic regression with a garbage class is necessary in this ap-
proach.

The N-best rescoring approach is tested on the Aurora2 database
[Pearce and Hirsch, 2000] for connected digit recognition. We also per-
form continuous phone recognition using the TIMIT database [Lamel et al.,
1986].

1.3 Related Work

In this section, we mention various papers that are related to the work
presented in this thesis. We start with papers that use a set of HMMs as
a preprocessor for logistic regression or SVM in order to perform isolated-
word speech recognition. Then we cite two papers that use sequence kernels
that operate directly on pairs of time series. Finally, we mention a paper
that resembles the way we do continuous speech recognition.

Perhaps the first paper to use HMMs in order to map time series into
fixed-dimensional vectors for the use in logistic regression and SVM was
[Jaakkola and Haussler, 1999a]. Their presentation was general, however, in
the sense that they targeted a range of pattern recognition applications, and
not only speech recognition with HMMs. They proposed the Fisher score
mapping, which maps a time series into the gradient space of a single HMM.
Furthermore, they constructed a kernel from the Fisher score mapping,
known as the Fisher kernel. The kernel was used in binary SVM and two-
class KLR. In their approach, the HMM and the discriminative classifier
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were trained separately with the use of two different criteria. This is also
the case for the other methods presented in this section.

In [Smith and Gales, 2002], the authors considered the use of the Fisher
score in speech recognition. They used binary SVM and considered the
use of two HMMs instead of only one HMM as in [Jaakkola and Haus-
sler, 1999a]. Moreover, they proposed to append the Fisher score with the
likelihood, likelihood-ratio, or even higher order derivatives of the HMM
parameters.

In [Layton and Gales, 2006] the authors built on the work in [Smith and
Gales, 2002] and introduced the conditional augmented (C-Aug) model. The
C-Aug model resembles to a high degree the multinomial logistic regression
model presented in this thesis. A set of one HMM for each class is used
in the mapping, but unlike our approach, where the model for each class
probability depends on all HMMs, the C-Aug model for a class probability
depends only on the HMM for that particular class. Moreover, training of
the C-Aug model is done using the maximum likelihood criterion without
a penalty term.

In [Abou-Moustafa et al., 2004], the authors presented a class-
independent mapping that makes use of the HMMs of all the classes. In
their approach, each element of the mapped observation is the log-likelihood
of a HMM. The authors used SVM as the discriminative classifier, and pre-
sented results on a handwriting recognition task.

For the purely discriminative approach of using a sequence kernel for
speech recognition, there is not much to find in the literature. Notable
papers include [Shimodaira et al., 2002] and [Bahlmann et al., 2002]. The
former paper introduced the dynamic time alignment kernel (DTAK) for
applications in speech recognition, while the latter paper introduced a ker-
nel for the use in handwriting recognition. In both papers, they introduced
a sequence kernel directly operating on pairs of time series. The kernels
are motivated by the dynamic time warping (DTW) [Rabiner and Juang,
1993] algorithm. Both kernels are defined as the alignment score along the
optimal alignment path, and they are not positive definite in general. In
this thesis we present the global alignment (GA) kernel [Cuturi et al., 2007].
The GA kernel sums up the contributions for all the alignment paths, and
it can be shown to be positive definite under mild conditions.

In [Ganapathiraju et al., 2004], the authors presented a hybrid
HMM/SVM approach for continuous speech recognition using the N-best
rescoring paradigm. Their method addressed both the issue of variable-
length sequences and the issue of sequence labeling with unknown seg-
mentation, but it had several weaknesses. Since the problem of segments
(phones) with varying lengths was solved by discarding all but a fixed num-
ber of feature vectors, much information in the speech signals was lost.
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Moreover, in the rescoring of the N-best lists, sentences with deletion and
insertion errors could not be corrected. In this thesis we introduce the con-
cept of a garbage class in order to rescore all hypotheses in an N-best lists,
which implies that substitution errors, insertion errors and deletion errors
may be corrected.

1.4 Outline

The outline of the thesis is as follows. In Chapter 2 we present logistic
regression, including PLR and KLR. Chapter 3 is a review of HMMs and
the conventional way of doing automatic speech recognition. In Chapter
4 we consider the application of logistic regression to isolated-word speech
recognition. Chapter 5 is devoted to the application of logistic regression to
N-best rescoring. Finally, Chapter 6 contains the conclusions and a section
about future work.



Chapter 2

Logistic Regression

We use the term logistic regression to refer to both penalized logistic regres-
sion (PLR) and its dual formulation which is called dual penalized logistic
regression (dPLR), or more commonly kernel logistic regression (KLR).
Many authors have presented the framework of logistic regression in the
context of multiclass classification [Jaakkola and Haussler, 1999b; Tanabe,
2001a,b; Zhu and Hastie, 2001, 2005]. The various authors use different
approaches to explain the theory. In this chapter we present the theory of
both PLR and KLR using mostly the approach taken in [Tanabe, 2001a,b].
Our presentation is somewhat more general, however, in that we allow the
inputs to be of arbitrary form, and not only fixed-dimensional vectors which
is often assumed. We do this in order to prepare for the following chapters,
where the inputs are sequences of feature vectors extracted from speech
signals.

We start by explaining the PLR in Section 2.1. In Section 2.1.1 we
consider a method for determining the regularization parameter, and in
sections 2.1.2 and 2.1.3 we introduce the concepts of a garbage class and
adaptive regressor parameters, respectively. We present KLR in Section
2.2. Finally, Section 2.3 contains a short summary.

2.1 Penalized Logistic Regression

In this section we will see how penalized logistic regression (PLR) can be
used to estimate the conditional probability distribution p(y|X) of a class
label y ∈ Y given an observation X ∈ X . Classification is accomplished by
selecting the class label ŷ giving the largest conditional probability, that is,

ŷ = arg max
y∈Y

p(y|X). (2.1)

9
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Figure 2.1: The logistic function.

In the following, we introduce a parametric model for p(y|X). Then we
define the criterion function which we will use in order to estimate the
parameters of the model, followed by an optimization algorithm specifically
designed for this purpose.

Before presenting the general form of the logistic regression model that
we will use in this thesis as a model for p(y|X), let us start by considering
the simple case of C = 2 classes and real D-dimensional feature vectors
x ∈ X = RD. A popular model for the conditional probability of class
y = 1 given x is

p(y = 1|x) =
ef

1 + ef
, (2.2)

where the discriminant function f = w1 + w2x1 + · · · + wD+1xD is a lin-
ear combination (plus a bias term) of the elements of x with parameters
w1, . . . , wD+1. Usually, the discriminant function is written as the inner
product f = wTx̄, where x̄ is the vector x augmented with a “1” be-
fore the first element, and w is a weight vector that serves as the pa-
rameter vector of the model. Since the conditional probability of the two
classes must sum to one, the conditional probability for the other class is
p(y = 2|x) = 1 − p(y = 1|x). The function in (2.2) is known as the lo-
gistic function, or binomial logistic regressor, and, apart from being just
a squashing function that maps f into the interval [0, 1], it also has good
probabilistic properties in the context of classification [Jordan, 1995]. The
graphic representation of the logistic function is shown in Figure 2.1.

The natural extension to classification problems with more than two
classes is to model the conditional probabilities with the softmax function
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or multinomial logistic regressor defined by

p(y = i|x) =
efi∑C
j=1 e

fj
for i = 1, . . . , C, (2.3)

where fi = wT
i x̄ is the discriminant function for class i parameterized by

the weight vector wi. Due to the probability constraint
∑C

i=1 p(y = i|x) =
1, the weight vector for one of the classes, say wC , need not be estimated
and can be set to all zeros. In this thesis however, we follow the convention
in [Tanabe, 2001a] and keep the redundant representation with C non-zero
weight vectors. As explained in [Tanabe, 2001a], this is done for numerical
stability reasons, and in order to treat all the classes equally. We let each
weight vector be a column of the matrix

W =

 | |
w1 · · · wC

| |

 , (2.4)

which is the parameter matrix of the model in (2.3).
With discriminant functions that are linear in the feature vectors, only

linear decision boundaries between the classes in the feature space X = RD

can be found. A simple way to achieve nonlinear decision boundaries is to
first map the features into an M + 1-dimensional Euclidean space using a
nonlinear mapping

φ :RD → RM+1 (2.5)
x 7→ φ(x), (2.6)

where we let the first element of the mapping be a “1” in order to accom-
modate a bias term. Then, we define the nonlinear discriminant functions
to be used in (2.3) as

fi = wT
i φ(x;λ) for i = 1, . . . , C, (2.7)

where λ is a hyperparameter vector of the mapping φ. Each element of
the vector φ(x;λ) is a function of x. These functions are called regressors
and they play an important role in the logistic regression framework.

A straightforward generalization to the logistic regression framework
can be obtained by redefining the mapping in (2.5) to

φ :X → RM+1 (2.8)
X 7→ φ(X), (2.9)

where X is the set of observations of arbitrary type. We have written X in
the above equation in place of x in order to emphasize that we are no longer
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W

X

f1

f2

fC p(y = C|X)

p(y = 2|X)

p(y = 1|X)

7→ 7→

1

φM (X;λ)

φ2(X;λ)

φ1(X;λ)

Figure 2.2: The logistic regression model.

restricted to real-valued feature vectors. In fact, as long as a mapping φ
can be found, X can be any nonempty set.

To summarize, we have introduced the following model for the condi-
tional probability of class y = i given X:

p(y = i|X,W ) =
ew

T
i φ(X;λ)∑C

j=1 e
wT
j φ(X;λ)

for i = 1, . . . , C, (2.10)

where W is an (M + 1) × C parameter matrix with columns wi, and
φ(X;λ) is a vector of M + 1 regressors with hyperparameter λ, with the
first regressor being the constant “1”. We will refer to this model as the
multinomial logistic regression model, or simply as the logistic regression
model. Figure 2.2 illustrates the model.

The classical way to estimate the parameter matrix W from a set of
training data D = {(X(1), y(1)), . . . , (X(N), y(N))} is to maximize the like-
lihood

L(W ;D) =
N∏
n=1

p(y = y(n)|X(n),W ). (2.11)

However, the maximum likelihood estimate does not always exist [Albert,
A. and Anderson, J. A., 1984]. This happens, for example, when the
mapped data set {(φ(X(1);λ), y(1)), . . . , (φ(X(N);λ), y(N))} is linearly sep-
arable. Moreover, even though the maximum likelihood estimate exists,
overfitting to the training data may occur, which in turn leads to poor
generalization performance. For that reason, we introduce a penalty π(W )
on the parameters and find an estimate Ŵ by maximizing the penalized
likelihood

Pδ(W ;D) = L(W ;D)πδ(W ), (2.12)

where δ ≥ 0 is a hyperparameter used to balance the likelihood and the
penalty factor. There are many ways to define the penalty factor. In this
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thesis we follow [Tanabe, 2001a] and use a penalty of the form

π(W ) =
C∏
i=1

e−
γi
2
wT
i Σwi (2.13)

= e−
1
2

PC
i=1 γiw

T
i Σwi (2.14)

= e−
1
2

trace ΓWTΣW , (2.15)

where Σ is an (M + 1)× (M + 1) positive definite matrix, and Γ is a C×C
diagonal matrix with elements γ1, . . . , γC , that is,

Γ =

γ1 0
. . .

0 γC

 . (2.16)

In [Tanabe, 2001a], the author discusses various choices for the matrices Γ
and Σ. One such choice that we will adopt in this thesis is explained in the
following. The Γ matrix should compensate for differences in the number
of training examples from each class, as well as include prior probabilities
for the various classes. If we let Ni denote the number of training examples
from class i, and p(y = i) denote our belief in the prior probability for class
i, we let the ith element of Γ be

γi =
Ni

Np(y = i)
. (2.17)

We let Σ be the sample moment matrix of the transformed observations
φ(X(n);λ) for n = 1, . . . , N , that is,

Σ =
1
N

N∑
n=1

φ(X(n);λ)φT(X(n);λ) (2.18)

=
1
N

ΦΦT, (2.19)

where

Φ =

 | |
φ(1) · · · φ(N)

| |

 (2.20)

is the (M + 1)×N -matrix whose nth column is φ(n) = φ(X(n);λ).
It is insightful to note that the above penalized likelihood parameter

estimation procedure can also be interpreted in a Bayesian way, as max-
imum a posteriori (MAP) estimation. This is the preferred method for
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some authors (e.g., [Krishnapuram et al., 2005]). In the Bayesian formal-
ism, the parameter matrix W is considered to be a random quantity, with
a prior distribution p(W ). If we choose p(W ) ∝ πδ(W ), we can see from
(2.13) that our choice of prior over the matrix parameter W is the prod-
uct of priors over the vectors wi, where each vector wi has a multivari-
ate normal distribution with zero mean and precision matrix δγiΣ. The
variance-covariance matrix is the inverse of the precision matrix and is
thus 1/(δγi)Σ−1. In MAP estimation, the prior p(W ) is multiplied with
the likelihood L(W ;D) to form a quantity which is proportional to the
posterior. This is the quantity which is to be maximized, and since it is the
same as the penalized likelihood in (2.12), MAP estimation and maximum
penalized likelihood estimation give the same result.

Maximizing the penalized likelihood in (2.12) is mathematically equiva-
lent to minimizing the negative logarithm of the penalized likelihood, which
can be written

P log
δ (W ;D) = − logPδ(W ;D) (2.21)

= − logL(W ;D)− δ log π(W ) (2.22)

= −
N∑
n=1

log p(y = y(n)|X(n),W ) +
δ

2
trace ΓWTΣW . (2.23)

In the following, we will be concerned with the minimization of the above
criterion function. Let us start with two lemmas that give expressions for
the gradient and the Hessian of (2.23). These expressions will be used to
design an optimization algorithm in order to find an estimate of W .

Lemma 2.1.1 The gradient of (2.23) is the (M + 1)× C matrix

∇WP log
δ (W ;D) = Φ(P (W )T − Y T) + δΣWΓ, (2.24)

where

P (W ) =

 | |
p(1) · · · p(N)

| |

 (2.25)

is a C × N matrix whose nth column is a vector of the condi-
tional probabilities for all classes given X(n), i.e., p(n) = [p(y(n) =
1|X(n),W ), . . . , p(y(n) = C|X(n),W )]T, and

Y =

 | |
ey(1) · · · ey(N)

| |

 (2.26)

is a C×N matrix where the nth column ey(n) is a unit vector with all zeros
except for element y(n) which is 1.
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Proof See App. A

Lemma 2.1.2 The Hessian of (2.23) is

∇2
WP log

δ (W ;D) =
N∑
n=1

(diag p(n)−p(n)p(n)T)⊗φ(n)φ(n)T +δΓ⊗Σ, (2.27)

where ⊗ is the Kronecker product.

Proof See App. A

It can be shown [Tanabe, 2001a] that the Hessian ∇2
WP log

δ (W ;D) is a
positive definite matrix. This means that P log

δ (W ,D) is a convex function
whose unique minimizer W ∗ satisfies

W ∗ =
1
δ
Σ−1Φ(Y T − P (W ∗)T)Γ−1. (2.28)

The above equation can be found by setting the gradient in (2.24) to zero.
Note that the minimizerW ∗ appears on both sides of the equation, with the
one on the right appearing within the nonlinear term P (W ∗)T. Thus, the
minimizer W ∗ cannot be found analytically, and we must rely on numerical
methods to obtain an estimate.

We will here present an optimization algorithm for estimating the weight
matrix W that makes use of both the gradient in (2.24) and the Hessian
in (2.27). The algorithm was introduced in [Tanabe, 2001a] where it was
called the penalized logistic regression machine (PLRM). In this algorithm,
the weight matrix is updated iteratively using Newton’s method, where
each step is

W i+1 = W i − αi∆W i, (2.29)

where ∆W i is defined in

vec ∆W i = [∇2
WP log

δ (W i;D)]−1 vec∇WP log
δ (W i;D). (2.30)

The factor αi is a stepsize. In order to find the update matrix ∆W i,
the inverse of the Hessian needs to be computed, and this has to be done
at every step i. Computing the inverse of the Hessian is very costly, so
in [Tanabe, 2001a] the author suggested to compute an approximation to
∆W i using the conjugate gradient (CG) method [Hestenes and Stiefel,
1952; Luenberger, 1989]. This amounts to solving for ∆W i in the equation

∇2
WP log

δ (W i;D) vec ∆W i = vec∇WP log
δ (W i;D), (2.31)
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which after substitution of (2.24) and (2.27) reduces to

N∑
n=1

(φ(n)φ(n)T)∆W i(diag p(n) − p(n)p(n)T) + δΣ∆W iΓ

= Φ(P (W iT)− Y T) + δΣW iΓ. (2.32)

The CG method for solving this equation is summarized in the following
algorithm, which computes an estimate of the weight matrix that minimizes
the criterion function in (2.23).

Algorithm 2.1.3 (The penalized logistic regression machine [Tanabe,
2003]) Start with an initial weight matrix W 0 and generate a sequence
of matrices according to

W i+1 = W i − αi∆W i, (2.33)

where ∆W i is computed using the following conjugate gradient method:

1. Initialize: Start with an initial matrix ∆W i
0 and compute the matrices

R0 and Q0:

R0 = Φ(P (W iT)− Y T) + δΣW iΓ

−
N∑
n=1

φ(n)φ(n)T∆W i
0(diag p(n) − p(n)p(n)T)− δΣ∆W i

0Γ, (2.34)

Q0 =
N∑
n=1

φ(n)φ(n)TR0(diag p(n) − p(n)p(n)T) + δΣR0Γ. (2.35)

2. Iterate: Generate a sequence (∆W i
1,∆W

i
2, . . . ) according to

αj =
‖∑N

n=1φ
(n)φ(n)TRj(diag p(n) − p(n)p(n)T) + δΣRjΓ‖2

‖∑N
n=1φ

(n)φ(n)TQj(diag p(n) − p(n)p(n)T) + δΣQjΓ‖2
,

(2.36)

∆W i
j+1 = ∆W i

j + αjQj , (2.37)
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Rj+1 = Φ(P (W iT)− Y T) + δΣW iΓ

−
N∑
n=1

φ(n)φ(n)T∆W i
j+1(diag p(n) − p(n)p(n)T)− δΣ∆W i

j+1Γ,

(2.38)

βj+1 =
‖∑N

n=1φ
(n)φ(n)TRj+1(diag p(n) − p(n)p(n)T) + δΣRj+1Γ‖2

‖∑N
n=1φ

(n)φ(n)TRj(diag p(n) − p(n)p(n)T) + δΣRjΓ‖2
,

(2.39)

Qj+1 =
N∑
n=1

φ(n)φ(n)TRj+1(diag p(n)−p(n)p(n)T)+δΣRj+1Γ+βj+1Qj .

(2.40)

2.1.1 Determining the Regularization Parameter δ

An important issue in the penalized logistic regression framework is to de-
termine the optimal value of the regularization parameter δ. This will pre-
vent overfitting to the training data, thereby ensuring good generalization
performance of the logistic regression model. In the following, we present
two methods of how to estimate the optimal value of δ. The first method
is to minimize the average cross-validation error, and the second method is
to minimize a Bayesian information criterion (ABIC).

Minimization of the average cross-validation error

A relatively straightforward way to obtain an estimate of δ is through K-
fold cross-validation [Duda et al., 2001]. In this method, the training set is
first partitioned into K subsets, e.g., K = 10. Then, training of the logistic
regression model is performed on the first K − 1 parts for various values of
δ. The remaining part is used for testing or validation. The procedure is
repeated K times, such that every subset is used once for validation. In the
end, the K error rates obtained for each δ are averaged, and the δ giving
the lowest average error rate is chosen as the estimate.
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Minimization of a Bayesian information criterion (ABIC)

An arguably more elegant way to estimate the regularization parameter
δ is to minimize a Bayesian information criterion (ABIC) [Akaike, 1980;
Tanabe, 2001a]. The idea is to find the value of δ that maximizes the
probability of the training data, without assuming any particular parameter
matrix W . The ABIC criterion is

ABIC(δ) = −2 log p(D|δ), (2.41)

where p(D|δ) is the marginal likelihood defined by

p(D|δ) =
∫
p(D|W , δ)p(W |δ)dW . (2.42)

Thus, we can see that minimizing the ABIC criterion is equivalent to maxi-
mizing the marginal likelihood, which is the probability of the training data
given δ.

The integrand in (2.42) is the posterior distribution of the model with
likelihood p(D|W , δ) = L(W ;D) and prior p(W |δ). The prior distribution
can be written

p(W |δ) ∝ δC(M+1)/2πδ(W ), (2.43)

where π(W ) is the penalty factor introduced in (2.12). The normalization
constants that are independent ofW and δ are omitted from the right hand
side above since they are irrelevant in the minimization of ABIC(δ). We
now have

p(D|δ) ∝ δC(M+1)/2

∫
L(W ;D)πδ(W )dW (2.44)

= δC(M+1)/2

∫
Pδ(W )dW (2.45)

= δC(M+1)/2

∫
e−P

log
δ (W )dW , (2.46)

where Pδ(W ) = Pδ(W ;D) is the penalized likelihood in (2.12) and
P log
δ (W ) = − logPδ(W ) is the negative logarithm of the penalized like-

lihood. The integral in (2.46) does not have an analytic solution [Tanabe,
2001a]. An approximation to the integral is considered next.

In the following, we use the notation ~W = vecW to denote the vector-
ized version of the matrix W . Furthermore, let P̃ log

δ (W ) be the quadratic
approximation of P log

δ (W ) about its maximizing argument W ∗, i.e.,

P̃ log
δ (W ) = P log

δ (W ∗) +
1
2

( ~W − ~W ∗)T∇2
WP log

δ (W ∗)( ~W − ~W ∗) (2.47)

= P log
δ (W ∗) + q(W ), (2.48)
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where q(W ) is the quadratic form defined in (2.47). The above approxima-
tion is good if P log

δ (W ) has a shape which is close to a quadratic form, in
which case P̃ log

δ (W ) ≈ P log
δ (W ). With this in mind, we write the integral

in (2.46) as∫
e−P

log
δ (W )dW =

∫
e−P

log
δ (W )e

eP log
δ (W )e−

eP log
δ (W )dW (2.49)

=
∫
e

eP log
δ (W )−P log

δ (W )e−
eP log
δ (W )dW (2.50)

=
∫
e

eP log
δ (W )−P log

δ (W )e−P
log
δ (W ∗)−q(W )dW (2.51)

= e−P
log
δ (W ∗)

∫
e

eP log
δ (W )−P log

δ (W )e−q(W )dW (2.52)

= e−P
log
δ (W ∗)Z

∫
e

eP log
δ (W )−P log

δ (W )f(W )dW , (2.53)

where
f(W ) =

1
Z
e−q(W ) (2.54)

is a Gaussian distribution with mean W ∗, covariance matrix
∇2
WP log

δ (W ∗)−1, and normalization constant

Z = (2π)C(M+1)/2|∇2
WP log

δ (W ∗)|−1/2, (2.55)

with |·| denoting the determinant of a matrix. Now, the marginal likelihood
can be written

p(D|δ) ∝ δC(M+1)/2|∇2
WP log

δ (W ∗)|−1/2e−P
log
δ (W ∗)

·
∫
e

eP log
δ (W )−P log

δ (W )f(W )dW . (2.56)

Furthermore, we can write the ABIC criterion as

ABIC(δ) = −2 log p(D|δ) (2.57)

∝ 2P log
δ (W ∗) + log |∇2

WP log
δ (W ∗)| − C(M + 1) log δ + correction,

(2.58)

where the correction term is

correction = −2 log
∫
e

eP log
δ (W )−P log

δ (W )f(W )dW . (2.59)

If P̃ log
δ (W ) is a good approximation to P log

δ (W ), the correction term is
close to zero, and an approximate criterion can be taken to be right hand
side of (2.57) without the correction term.
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We can approximate the correction term by generating a set of indepen-
dent samples {Wj}Jj=1 from f(W ) which we substitute into the following
expression:

correction ≈ −2 log
1
J

J∑
j=1

e
eP log
δ (Wj)−P log

δ (Wj) (2.60)

The samples {Wj}Jj=1 can be generated by first generating a set of inde-
pendent samples {Uj}Jj=1 from a standard normal distribution, and then
substituting these samples into

~Wj = ~W ∗ +∇2
WP log

δ (W ∗)−1/2 ~Uj , (2.61)

where ∇2
WP log

δ (W ∗)−1/2 is defined from the Cholesky decomposition of the
covariance matrix as in

∇2
WP log

δ (W ∗)−1 = ∇2
WP log

δ (W ∗)−1/2∇2
WP log

δ (W ∗)−T/2. (2.62)

To summarize, we can estimate δ by minimizing the ABIC criterion
in (2.57). In practice, this is done by calculating the criterion for various
values of δ, followed by selecting the δ value giving the lowest criterion.

2.1.2 Garbage Class

In some applications, the classifier will be presented with observations X
that do not correspond to any of the classes in the label set Y. As an
example, consider a classifier designed for classifying handwritten digits
which is presented with a letter from the English alphabet. In this situation,
the classifier should return a small probability for every class in Y. However,
this is made impossible by the fact that the total probability should sum to
1, that is,

∑
y∈Y p(y|X) = 1. The solution to this problem is to introduce

a new class y = C + 1 ∈ Y0 = Y ∪ {K + 1}, called a garbage class, that
should get high conditional probability given observations that are unlikely
for the classes in Y, and small probability otherwise [Birkenes et al., 2007].

In order to train the parameters of the logistic regression model with
such a garbage class, a set of observations labeled with a garbage label, or
garbage observations, are needed. For applications with a low-dimensional
observation set X , these garbage observations can be drawn from a uniform
distribution over X . For many practical applications however, X has a very
high dimensionality, so an unreasonably high number of samples must be
drawn from the uniform distribution in order to achieve good performance.
In such cases, prior knowledge of the nature or the generation of the possible
garbage observations that the classifier will see during prediction is of great
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value. For the example with handwritten digits, the garbage observations
may be extracted from handwritten letters of the English alphabet. In
Chapter 5 we will see how we can use N-best lists to generate garbage
observations for continuous speech recognition.

2.1.3 Adaptive Regressor Parameters

To gain additional discriminative power it was proposed in [Birkenes et al.,
2006a] to treat λ as a free parameter of the logistic regression model instead
of a preset fixed hyperparameter. In this setting, the criterion function can
be written

P log
δ (W ,λ;D) = −

N∑
n=1

log p(y = y(n)|X(n),W ,λ)

+
δ

2
trace ΓWTΣW , (2.63)

which is the same as the criterion in (2.23), but with the dependency on
λ shown explicitly. Note that also Σ depends on λ according to (2.18).
The goal of parameter estimation is now to find the pair (W ∗,λ∗) that
minimizes the criterion in (2.63). This can be written mathematically as

(W ∗,λ∗) = arg min
(W ,λ)

P log
δ (W ,λ;D). (2.64)

As already mentioned, the function in (2.63) is convex with respect to
W if λ is held fixed. It is not guaranteed, however, that it is convex with
respect to λ if W is held fixed. Therefore, the best we can hope for is to
find a local minimum that gives good classification performance.

A local minimum can be obtained by using a coordinate descent ap-
proach with coordinates W and λ. The algorithm is initialized with λ0.
Then the initial weight matrix can be found as

W0 = arg min
W
P log
δ (W ,λ0;D). (2.65)

The iteration step is as follows:

λi+1 = arg min
λ
P log
δ (Wi,λ;D), (2.66a)

Wi+1 = arg min
W
P log
δ (W ,λi+1;D). (2.66b)

The coordinate descent method is illustrated in Figure 2.3.
For the convex minimization with respect to W , we can use the pe-

nalized logistic regression machine (PLRM) in Algorithm 2.1.3. As for the
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W
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W0 W1 W2

λ0

λ1
λ2

Figure 2.3: The coordinate descent method used to find the pair (W ∗,λ∗)
that minimizes the criterion function P log

δ (W ,λ;D).

minimization with respect to λ, there are many possibilities, two of which
are the steepest descent method and the RProp method [Riedmiller and
Braun, 1993]. Both these optimization methods make use of the partial
derivatives of the criterion function with respect to each of the elements of
the L-dimensional vector λ. The partial derivative of the criterion function
with respect to λl is given in the following lemma.

Lemma 2.1.4 The partial derivative of (2.63) with respect to the lth ele-
ment of λ is

∂

∂λl
P log
δ (W ;λ;D) = trace

{( δ
N

ΦTWΓ + PT(W )− Y T
)
WT ∂

∂λl
Φ
}
.

(2.67)

Proof See App. A

When the regressor parameters are updated by minimizing the criterion
function in (2.63), overfitting to the training data may occur. This typically
happens when the number of free parameters in the regressor functions
is large compared to the available training data. This issue is known as
the curse of dimensionality. By keeping the number of free parameters in
accordance with the number of training examples, the effect of overfitting
may be reduced.

Another method to reduce the effect of overfitting is early stopping. In
this method, a part of the training set, known as a validation set, is used to
monitor the generalization performance, i.e., the recognition accuracy on
data not seen by the training algorithm, as the training algorithm iterates.
Training is stopped when the generalization performance reaches a maxi-
mum. Early stopping reduces the effect of overfitting by ensuring that the
parameters do not deviate too much from their initial values.
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A third way to reduce the effect of overfitting is to add a penalty term
for the regressor parameters to the criterion function in (2.63). Let us
assume that each element λi of the L-dimensional vector λ has a Gaussian
prior with mean µi and variance σ2

i that are known. Then, a penalty term
for the whole vector can be written

π′(λ) =
L∏
i=1

e−
1

2σ2 (λi−µi)2 (2.68)

= e
− 1

2

PL
i=1

1

σ2
i

(λi−µi)2
(2.69)

= e−
1
2

(λ−µ)TΣ′(λ−µ), (2.70)

where µ is a vector of all means µi, and Σ′ is a diagonal matrix with
elements 1/σ2

i . The criterion function including a penalty for the regressor
parameters is then

P log
δ,δ′(W ,λ;D) = −

N∑
n=1

log p(y = y(n)|X(n),W ,λ)

+
δ

2
trace ΓWTΣW +

δ′

2
(λ− µ)TΣ′(λ− µ), (2.71)

where δ′ is a regularization parameter for the regressor parameters.

2.2 Kernel Logistic Regression

Kernel logistic regression (KLR) is a generalization of penalized logistic
regression. It allows for more flexible decision boundaries by letting the
number of regressors grow to a very large number, or even infinite, without
much increase in computational cost. Moreover, in KLR, we are not re-
quired to make specific choices of the mapping φ and the matrix Σ. These
quantities are implicitly defined through the kernel, which is a function that
can be thought of as a similarity measure between pairs of observations,
and which plays an important role in any kernel method. The following
presentation of KLR is largely based on [Tanabe, 2001a,b] and [Tanabe,
2003].

In the previous section we saw that the minimizer W ∗ of the negative
logarithm of the penalized likelihood satisfies

W ∗ = Σ−1ΦV ∗, (2.72)

where V ∗ = 1/δ(Y T − P (W ∗)T)Γ−1. The N × C matrix V defined in
W = Σ−1ΦV is called the dual parameter matrix. Substituting this into
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the criterion function in (2.23) gives

P̌ log
δ (V ;D) = P log

δ (W ;D) (2.73)

= P log
δ (Σ−1ΦV ;D) (2.74)

= −
N∑
n=1

log p(y = y(n)|X(n),V ) +
δ

2
trace ΓV TKV , (2.75)

with

p(y = y(n)|X(n),V ) =
e
vT

y(n)
k(X(n))∑C

j=1 e
vT
j k(X(n))

, (2.76)

where the kernel matrix K = ΦTΣ−1Φ is an (N ×N)-dimensional matrix
with columns k(X(n)) = ΦTΣ−1φ(X(n);λ), and vi denotes the columns
of V . The kernel matrix can be written as

K =

 | | |
k(X(1)) k(X(2)) . . . k(X(N))
| | |

 (2.77)

=


k(X(1),X(1)) k(X(1),X(2)) . . . k(X(1),X(N))
k(X(2),X(1)) k(X(2),X(2))

...
. . .

k(X(N),X(1)) k(X(N),X(N))

 , (2.78)

where each element has the quadratic form

k(X,X ′) = φT(X;λ)Σ−1φ(X ′;λ) (2.79)

for some X,X ′ ∈ X . The function k : X × X → R is called a kernel and
computes a real number k(X,X ′) from two features X and X ′. The kernel
is of central importance in kernel logistic regression and will be discussed
in more detail later.

Similar to (2.76), the conditional probability of y given a new feature
X using the kernel logistic regression model can be expressed in terms of
the dual parameters and kernels as

p(y = i|X,V ) =
ev

T
i k(X)∑C

j=1 e
vT
j k(X)

for i = 1, . . . , C, (2.80)

where k(X) = [k(X(1),X), . . . , k(X(N),X)]T is an N -dimensional vector
consisting of the kernels computed between X and each training feature
X(n). The kernel logistic regression model is illustrated in Figure 2.4.



2.2 Kernel Logistic Regression 25

V

X

f1

f2

fC p(y = C|X)

p(y = 2|X)

p(y = 1|X)

7→ 7→

k(X(1),X)

k(X(N),X)

k(X(3),X)

k(X(2),X)

Figure 2.4: The kernel logistic regression model.

From equations (2.75), (2.76) and (2.80) above, we note that there are
no explicit reference neither to the map φ nor the positive definite matrix Σ.
The training of the kernel logistic regression model through minimization of
the criterion P̌ log

δ (V ;D) in (2.75) can be carried out only with the quantities
K, Γ, δ, and the training set labels {y(1), . . . , y(N)}. In the prediction of
a new feature X, the weight matrix V and the vector k(X) of computed
kernels between X and each training feature are needed. Note that the
dimension that dominates the quantities needed in kernel logistic regression
is the number of training examples N , irrespective of the dimension of the
underlying mapping φ. In practice, this allows for a very large dimension
of the image of φ as long as the kernel k can be efficiently computed. We
will see in the next subsection that many such kernels and corresponding
mappings exist.

In the following we will be concerned with the minimization of the
criterion P̌ log

δ (V ;D) in (2.75) with respect to the dual parameter matrix
V . An optimization algorithm will be presented that makes use of both
the gradient and the Hessian of the criterion function, whose expressions
are given in the following two lemmas.

Lemma 2.2.1 The gradient of (2.75) is the N × C matrix

∇V P̌ log
δ (V ;D) = K(P̌ (V )T − Y T + δV Γ), (2.81)

where P̌ (V ) = P (W ) = P (Σ−1ΦV ).

Proof See App. A

Lemma 2.2.2 The Hessian of (2.75) is

∇2
V P̌ log

δ (V ;D) =
N∑
n=1

(diag p(n)− p(n)p(n)T)⊗ k(X(n))kT(X(n)) + δΓ⊗K.

(2.82)
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Proof See App. A

Since P log
δ is convex with respect toW , and V is a linear transformation

of W , the criterion function P̌ log
δ is convex with respect to V with a unique

minimum that occurs for the minimizer

V ∗ =
1
δ

(Y T − P̌ (V ∗)T)Γ−1. (2.83)

The above equation is the result of setting the gradient in (2.81) to zero.
Note that V ∗ in the equation above is the same as the one in (2.72), and
hence the minimum obtained with V ∗ is exactly the same as the minimum
obtained with W ∗. This means that we can obtain the same result by
optimizing the criterion function with respect to the dual parameter matrix
V instead of the primal parameter matrix W .

We will here present an optimization algorithm for estimating the weight
matrix V that was introduced in [Tanabe, 2001a] where it was called the
dual penalized logistic regression machine (dPLRM). In this algorithm, the
weight matrix is updated iteratively using Newton’s method, where each
step is

V i+1 = V i − αi∆V i, (2.84)

where ∆V i is defined in

vec ∆V i = [∇2
V P̌ log

δ (V i;D)]−1 vec∇V P̌ log
δ (V i;D). (2.85)

As for the optimization of the penalized likelihood that was presented in the
previous section, we compute an approximation to ∆V i using the conjugate
gradient (CG) method, since the inverse of the Hessian matrix is costly to
obtain. This amounts to solving for ∆V i in the equation

∇2
V P̌ log

δ (V i;D) vec ∆V i = vec∇V P̌ log
δ (V i;D), (2.86)

which after substitution of (2.81) and (2.82) reduces to

N∑
n=1

k(X(n))kT(X(n))∆V i(diag p(n) − p(n)p(n)T) + δK∆V iΓ

= K(P̌ (V iT)− Y T + δV iΓ). (2.87)

If K is non-singular, we can pre-multiply both sides of the above equation
with K−1, which yields

N∑
n=1

enk
T(X(n))∆V i(diag p(n) − p(n)p(n)T) + δ∆V iΓ

= P̌ (V iT)− Y T + δV iΓ (2.88)
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since K−1k(X(n)) = en, where en is the unit vector with all zeros except
for the nth element which is 1.

The CG method for solving this equation is summarized in the follow-
ing algorithm, which computes an estimate of the weight matrix V that
minimizes the criterion P̌ log

δ (V ;D) in (2.75).

Algorithm 2.2.3 (The dual penalized logistic regression machine [Tan-
abe, 2003]) Start with an initial weight matrix V0 and generate a sequence
of matrices according to

V i+1 = V i − αi∆V i, (2.89)

where ∆V i is computed using the following conjugate gradient method:

1. Initialize: Start with an initial matrix ∆V i
0 and compute the matrices

R0 and Q0:

R0 = P̌ (V iT)− Y T + δV iΓ

−
N∑
n=1

enk
T(X(n))∆V i

0 (diag p(n) − p(n)p(n)T)− δ∆V i
0 Γ, (2.90)

Q0 = k(X(n))eT
nR0(diag p(n) − p(n)p(n)T)−R0Γ. (2.91)

2. Iterate: Generate a sequence (∆V i
1 ,∆V

i
2 , . . . ) according to

αj =
‖k(X(n))eT

nRj(diag p(n) − p(n)p(n)T) +RjΓ‖2
‖enk(X(n))TQj(diag p(n) − p(n)p(n)T) +QjΓ‖2

, (2.92)

∆V i
j+1 = ∆V i

j + αjQj , (2.93)

Rj+1 = P̌ (V iT)− Y T + δV iΓ

−
N∑
n=1

enk
T(X(n))∆V i

j+1(diag p(n) − p(n)p(n)T)− δ∆V i
j+1Γ, (2.94)

βj+1 =
‖k(X(n))eT

nRj+1(diag p(n) − p(n)p(n)T) +Rj+1Γ‖2
‖k(X(n))eT

nRj(diag p(n) − p(n)p(n)T) +RjΓ‖2
, (2.95)

Qj+1 = k(X(n))eT
nRj+1(diag p(n) − p(n)p(n)T)−Rj+1Γ + βj+1Qj .

(2.96)
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2.2.1 The Kernel

A kernel is a symmetric function k : X × X → R. In kernel logistic
regression and other kernel methods, not all kernels are interesting. We
focus our attention on kernels that are positive definite or conditionally
positive definite, as given in the following definition.

Definition [Schölkopf and Smola, 2002] Let X be a nonempty set. A real-
valued symmetric function k : X × X → R is called a positive definite
kernel if for all N ∈ N and all X(1), . . . ,X(N) ∈ X the induced N × N
kernel matrix K with elements k(X(m),X(n)) satisfies aTKa ≥ 0 given
any vector a ∈ RN . The function k is called a conditionally positive definite
kernel if K satisfies the above inequality for any vector a ∈ RN with∑N

n=1 an = 0.

The following lemma relates the set of positive definite kernels and the set
of conditionally positive definite kernels. We will be needing the lemma in
Chapter 4 when we introduce a kernel for time series.

Lemma 2.2.4 ([Schölkopf and Smola, 2002])

(i) Any positive definite kernel is also a conditionally positive definite
kernel.

(ii) eβk is positive definite for all β > 0 if and only if k is conditionally
positive definite.

Proof See [Schölkopf and Smola, 2002].

The kernel defined in (2.79) is positive definite since we require Σ, and
thereby Σ−1, to be a positive definite matrix. Note that this kernel can
be written as an inner product between two vectors ψ(X) and ψ(X ′) by
letting ψ(X) = Σ−1/2φ(X;λ). That is,

k(X,X ′) = ψT(X)ψ(X ′), (2.97)

where the mapping ψ : X → RM+1 is defined in terms of the mapping φ
and the positive definite matrix Σ. Now, it follows from Mercer’s Theo-
rem [Mercer, 1909; Schölkopf and Smola, 2002] that any positive definite
kernel admits the form of an inner product ψT(X)ψ(X ′) for some map-
ping ψ. Therefore, instead of choosing ψ explicitly through choices of φ
and Σ, we could choose a positive definite kernel k that implicitly defines
a mapping ψ, which in turn implicitly defines φ and Σ. Then, with the
choice of a kernel k, the dual parameter matrix V can be estimated by
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minimizing the criterion P̌ log
δ (V ;D) in (2.75), and the conditional proba-

bility p(y = i|X,V ) in (2.80) can be computed, without explicitly defining
φ and Σ. Herein lays the elegance and power of kernel logistic regression,
and more generally kernel methods. By choosing a positive definite kernel
k, there exists a mapping ψ that maps the features into a possible infi-
nite dimensional space, where linear prediction is performed. Moreover,
depending on the choice of kernel, learning algorithms can run on a com-
puter in a small amount of time and generate complex nonlinear classifiers
that would be extremely difficult or even impossible using only the primal
method of logistic regression.

As an example, let the observation space be X = RD and consider the
polynomial kernel

k(x,x′) = (xTx′ + 1)d, (2.98)

where x,x′ ∈ RD and d is a positive integer. The corresponding mapping
ψ maps each vector x into the space of all monomials up to degree d of its
elements. This is the space where linear prediction is performed. The inner
product of two mapped vectors is efficiently computed through the kernel
in (2.98).

Another example of a kernel for X = RD is the Gaussian kernel

k(x,x′) = e−
||x−x′||2

2σ2 , (2.99)

where x,x′ ∈ RD and σ > 0. The image of the associated mapping ψ has
infinite dimension.

The design of kernels for more complex sets X is an important research
topic. Two general design methodologies are 1) to construct a kernel from
generative models (e.g., [Jaakkola and Haussler, 1999a]), and 2) to con-
struct a kernel from a similarity measure (e.g., [Vert et al., 2004]). In
Chapter 4 we will present various kernels for time series extracted from
speech signals using both of the above design methodologies.

2.2.2 Sparse Approximations

In KLR, we need to store all the N inputs X(1), . . . ,X(N), since they are
needed in the classification of a new example X according to (2.80). We
also need to store the (N ×C)-dimensional dual parameter matrix V . If N
is large, which is the case for many practical problems, the memory require-
ments and computational complexity may become impractically large. In
many applications in automatic speech recognition, for example, the num-
ber of training examples can be several hundreds of thousands.

A way to overcome the above problem is to select only a small repre-
sentative subset S of the training data for inclusion in the kernel logistic



30 Chapter 2: Logistic Regression

regression model. In [Zhu and Hastie, 2001, 2005; Myrvoll and Matsui,
2006], the authors presented a greedy training algorithm for KLR. The
algorithm is greedy in the sense that it starts with an empty set S, and
incrementally adds additional training examples to S based on which ex-
amples improve the criterion function the most. The subset is increased
until convergence. The size of the obtained subset is typically smaller than
the number of support vectors in the support vector machine (SVM) [Zhu
and Hastie, 2001, 2005].

The approach taken in [Krishnapuram et al., 2005] is to use a sparse-
promoting Laplacian prior instead of a Gaussian prior typically assumed
for KLR. The price we have to pay for using a Laplace prior instead of a
Gaussian prior, is a criterion function that is no longer differentiable. The
authors in [Krishnapuram et al., 2005] propose to optimize a smooth bound
on the criterion function instead of the original criterion function, in a
similar fashion as the celebrated expectation maximization (EM) algorithm
[Dempster et al., 1977]. The result is that many of the training examples
will have zero weights and can therefore be omitted in the KLR model.

2.3 Summary

In this chapter, we presented the framework of logistic regression in the con-
text of multiclass classification. Both penalized logistic regression (PLR)
and kernel logistic regression (KLR) were considered. The logistic regres-
sion framework we presented is general in the sense that it can be applied
to any kind of data. In particular, in the rest of this thesis we will consider
the application of logistic regression to speech recognition, where the in-
puts are sequences of vectors. Two new concepts that we introduced were
adaptive regressor parameters and garbage class. We will have more to say
about these concepts in the context of speech recognition in the following
chapters.

As a final note, we would like to make clear that KLR is very similar to
Gaussian process (GP) classification [Williams and Barber, 1998; Jaakkola
and Haussler, 1999b; Rasmussen and Williams, 2006]. The difference lies in
that GP classification is a fully Bayesian approach, meaning that the pos-
terior distribution of the parameters is used in prediction, while KLR only
uses the MAP estimate of the parameters. The fully Bayesian approach
has to deal with an analytically intractable integral that can only be eval-
uated numerically. Several methods exist, one of which uses the Laplace
approximation [Williams and Barber, 1998].



Chapter 3

Speech Recognition and
Hidden Markov Models

The hidden Markov model (HMM) is a powerful model for sequences of
variable lengths. It has been well studied over the last few decades for
automatic speech recognition applications. This chapter gives an overview
of the HMM and its use in automatic speech recognition. We will make
use of the HMM in subsequent chapters due to its strengths in sequence
modeling.

There are generally two ways to explain the HMM. The first approach
explains the HMM as a model for generating sequences of observations. The
most prominent example of this approach is [Rabiner, 1989], which explains
the HMM using a simple example concerning the generation of a sequence
of colored balls from a set of urns each containing a different distribution of
colored balls. The second approach is more probabilistic in the sense that it
explains the HMM as a probability distribution over sequences. Examples
of the latter approach are [Bilmes, 2006; Jordan, 2007]. The presentation
in this chapter uses the latter approach.

We start by presenting the usual way of extracting a sequence of feature
vectors from a speech signal. Then, in Section 3.2 we explain the HMM.
Sections 3.3 and 3.4 concern the typical application of HMMs to isolated-
word speech recognition and continuous speech recognition, respectively.
Finally, Section 3.5 contains a short summary of the chapter.

3.1 Feature Extraction

In automatic speech recognition, it is common to extract a set of features
from each speech signal. Classification is carried out on the set of features
instead of the speech signals themselves. A good set of features should
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Figure 3.1: Feature extraction from a speech signal.

include discriminative information and exclude information that is irrele-
vant for classification (e.g., speaker dependent information such as pitch).
Moreover, the feature set should be small enough to allow fast processing
and robust.

A speech signal can be considered to be a realization of a short-time
stationary stochastic process. This means that although the statistical
characteristics of a speech signal change over time, they can be considered
to be stationary within small time intervals (20-30 ms). This observation,
together with the observation that the most prominent discriminative in-
formation between speech signals appear in the frequency domain, has lead
to the common approach of extracting a time series which is a sequence of
short time spectral feature vectors from each speech signal.

Figure 3.1 illustrates the extraction of a time series X = (x1, . . . ,xT )
from a speech signal. A window function of fixed width (often a Hamming
window of width 20-30 ms) is used to confine processing to a short-time
segment of the speech signal in order to generate a spectral feature vector.
The window function is shifted a fixed length in time (typically 5-10 ms)
to the right for further extraction of feature vectors until the end of the
speech signal is reached.

Note that since different speech signals have different durations, feature
extraction with a fixed window shift leads to time series with different
number of vectors. This is one of the reasons why classification of speech
signals is a more challenging task than classification of data whose features
are merely fixed-dimensional vectors, which is the main concern of most
classification methods in the literature.
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Figure 3.2: The hidden Markov model.

Popular feature vectors include linear prediction coefficients (LPC) and
Mel-frequency cepstral coefficients (MFCC) [Davis and Mermelstein, 1980].
Often, the energy of the windowed speech signal is appended to the LPC
or MFCC feature vectors. The dimension of these feature vectors is then
typically 13.

It is well known that the inclusion of the delta and acceleration coeffi-
cients in the feature vectors can improve recognition performance consid-
erably [Furui, 1986], especially when HMMs are used to model the feature
vector sequences. Delta coefficients can be thought of as approximations
to the first order time derivatives of a feature vector sequence, and contain
information on the rate of change of the vectors in the sequence. Similarly,
acceleration coefficients can be thought of as approximations to the second
order time derivatives, and contain information on the rate of the rate of
change. One delta and one acceleration coefficient are usually computed
for each of the spectral coefficients and for the possibly appended energy
feature. The typical dimension of a feature vector after appending the delta
and acceleration coefficients is thus 39.

3.2 Hidden Markov Models

A hidden Markov model (HMM) is a model of the joint probability distribu-
tion p(X, q), where X = (x1, . . . ,xT ) is a time series and q = (q1, . . . , qT )
is a sequence of state variables qt taking values in a finite set {1, . . . , Q} of
states. Usually, the HMM is used to model time series X, in which case
the state variables qt are latent or hidden variables. The probability dis-
tribution over time series can be found by summing the joint distribution
p(X, q) over q, i.e.,

p(X) =
∑
q

p(X, q) (3.1)

=
∑
q1

· · ·
∑
qT

p(X, q). (3.2)
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This computation seems at first daunting, especially for large T , but we will
see shortly how it can be efficiently computed using the forward algorithm
by exploiting the conditional independencies encoded in the HMM.

Figure 3.2 illustrates the HMM as a graphical model [Jordan, 2007].
From this graph, the main conditional independencies of interest can be
identified as:

1. Conditioned on an arbitrary state variable, any preceding state vari-
able is independent of any state variable that comes after, i.e.,

p(qs, qu|qt) = p(qs|qt)p(qu|qt), for s < t < u. (3.3)

2. Conditioned on an arbitrary state variable, any preceding vector is
independent of the current vector or any vector that comes after, i.e.,

p(xs,xu|qt) = p(xs|qt)p(xu|qt), for s < t ≤ u. (3.4)

Also, from the graph in 3.2, we can see that the joint distribution can be
factored as

p(X, q) = p(q1)
T∏
t=2

p(qt|qt−1)
T∏
t=1

p(xt|qt) (3.5)

= πq1

T∏
t=2

aqt−1,qt

T∏
t=1

p(xt|qt), (3.6)

where πq1 = p(q1) is the initial state probability and aqt−1,qt = p(qt|qt−1) is
the state transition probability from state qt−1 to state qt. Since the number
of states Q is finite, all initial state probabilities can be represented in a
Q-dimensional vector

π =

π1
...
πQ

 (3.7)

where πq = p(q1 = q) for q ∈ {1, . . . , Q}. Similarly, all state transition
probabilities can be represented in a Q×Q matrix

A =


a11 a12 . . . a1Q

a21 a22
...

. . .
aQ1 aQQ

 , (3.8)

where aqr = p(qt = r|qt−1 = q) for q, r ∈ {1, . . . , Q} and t ∈ 2, . . . , T .
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Now that we have factored the joint distribution p(X, q) according to
the conditional independencies encoded in the HMM, we are ready to see
how the likelihood in (3.2) can be efficiently computed. The likelihood of
a time series X with respect to an HMM is

p(X) =
∑
q1

· · ·
∑
qT

πq1

T∏
t=2

aqt−1,qt

T∏
t=1

p(xt|qt). (3.9)

By observing that each factor depends only on one or two state variables,
we can write

p(X) =
∑
qT

p(xT |qT )
∑
qT−1

aqT−1,qT p(xT−1|qT−1) . . .

· · ·
∑
q2

aq2,q3p(x2|q2)
∑
q1

aq1,q2p(x1|q1)πq1 .
(3.10)

This equation is the basis for the Forward Algorithm.

Algorithm 3.2.1 (The Forward Algorithm) Computes the likelihood p(X)
of a time series X with respect to an HMM.

1. Initialize:
α(q1) = p(x1|q1)πq1 , q1 = 1, . . . , Q (3.11)

2. Iterate: for t = 2, . . . , T

α(qt) = p(xt|qt)
∑
qt−1

aqt−1,qtα(qt−1), qt = 1, . . . , Q (3.12)

3. Terminate:
p(X) =

∑
qT

α(qT ) (3.13)

For each time t, the forward variable α(qt) is the joint probability of
the partial time series (x1, . . . ,xt) and the state variable qt, i.e.,

α(qt) = p(x1, . . . ,xt, qt), qt = 1, . . . , Q. (3.14)

The Forward Algorithm has its name because it proceeds forward in time.
This means that the computation of the likelihood can start once the first
vector x1 has been observed, and can continue in steps each time a new
vector is observed. This is an important property in real-time processing
of speech.
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In many applications, such as segmentation of speech signals, it is im-
portant to find the most likely state sequence given a time series. This
can be done with the Viterbi algorithm [Viterbi, 1983], which computes the
maximum likelihood estimate of the state sequence, i.e.,

q̂ = arg max
q

p(X, q) (3.15)

= arg max
q1

. . . arg max
qT

p(X, q). (3.16)

As a byproduct, the Viterbi algorithm also computes an approximation to
the likelihood of a time series with respect to an HMM, namely

p̂(X) = max
q

p(X, q) (3.17)

= max
q1

. . .max
qT

p(X, q), (3.18)

which is obtained from (3.2) by replacing the sum operators with max
operators. The Viterbi algorithm is as follows.

Algorithm 3.2.2 (The Viterbi Algorithm) Computes the maximum like-
lihood state sequence q̂ as well as an approximation p̂(X) to the likelihood
p(X) of a time series X with respect to an HMM.

1. Initialize:
δ(q1) = p(x1|q1)πq1 , q1 = 1, . . . , Q (3.19)

2. Iterate: for t = 2, . . . , T

δ(qt) = p(xt|qt) max
qt−1

aqt−1,qtδ(qt−1), qt = 1, . . . , Q (3.20)

ψ(qt) = arg max
qt−1

aqt−1,qtδ(qt−1), qt = 1, . . . , Q (3.21)

3. Terminate:

p̂(X) = max
qT

δ(qT ) (3.22)

q̂T = arg max
qT

δ(qT ) (3.23)

4. Backtrack: for t = T − 1, . . . , 1

q̂t = ψ(q̂t+1) (3.24)
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In the HMM framework, we are free to choose the form of the state-
conditional distributions p(xt|qt = q) for q ∈ 1, . . . , Q. These Q conditional
distributions are usually chosen to be members of the same parametric fam-
ily with parameters ηq for q ∈ 1, . . . , Q. In automatic speech recognition,
it is popular to use Gaussian mixture models (GMM) as state-conditional
distributions. A Gaussian mixture model is a weighted sum of Gaussian
probability distributions, i.e.,

p(xt|qt = q,ηq) =
H∑
h=1

cqhN (µqh,Σqh), (3.25)

where cqh is the mixture weight for state q and mixture h with
∑H

h=1 cqh =
1, and H is the number of mixture components. Each state q and mix-
ture h is associated with a Gaussian distribution N (µqh,Σqh) with mean
vector µqh and variance-covariance matrix Σqh. The parameter set of
the above state-conditional distribution is ηq = {(cqh,µqh,Σqh)}Hh=1. If
η = (η1, . . . ,ηQ) denote the parameters of all the state-conditional distri-
butions, we see that the HMM is parameterized as p(X, q) = p(X, q;λ)
with parameter set λ = (π,A,η).

The maximum likelihood estimate of the HMM parameters can be
found by maximizing the likelihood, or equivalently, by maximizing the
log-likelihood with respect to the HMM parameters. Mathematically, the
maximum likelihood estimate using a single observation X is

λ̂ = arg max
λ∈Λ

log p(X;λ) (3.26)

= arg max
λ∈Λ

log
∑
q

p(X, q;λ), (3.27)

where Λ denotes the parameter space of the HMM, i.e., the set of all al-
lowable values for λ. The above maximization is difficult since the log-
likelihood is the logarithm of a sum. Fortunately, there is a simple and ele-
gant iterative procedure for the estimation of the HMM parameters known
as the EM algorithm [Dempster et al., 1977; Bilmes, 1997; Jordan, 2007].
The interested reader is referred to Appendix B for the details.

3.2.1 Hidden Markov Models for Speech

In real applications of HMMs, decisions must be made on the number of
states, the allowed state transitions, and the form of the state-conditional
probability distributions. In the following, we consider the application of
HMMs to model time series extracted from speech signals.

A speech signal can be considered to consist of small units called phones.
A phone is an utterance of a phoneme, which in turn is defined as the
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Figure 3.3: A left-to-right hidden Markov model with three states.

smallest linguistic unit that can carry meaning. In English, there are about
40 phonemes. Every word can be decomposed into a sequence of phonemes.
As an example, the word “India” has the phoneme sequence “/ih/ /n/ /d/
/ih/ /ah/”, where /ih/, /n/, /d/, /ih/ and /ah/ are phonemes from the
English language. When HMMs are used to model speech, it is popular
to use three HMM states for each phoneme in the phoneme sequence of a
word; one state for the beginning of the phoneme, one state for the middle
part, and one state for the end. Hence, the word “India”, which consists of
5 consecutive phonemes would be modeled using 15 states.1

The order of the phonemes of a particular word is a feature that dis-
tinguishes it from other words. Therefore, it is common to order the states
according to the phoneme order, start in the first state and allow only
state transitions to the same state or the next state in the sequence. This
is known as a left-to-right HMM and is realized by setting the initial state
probability for the first state to one and the others to zero, and setting
disallowed state-transition probabilities to zero. For example, for an HMM
with three states, the initial state probability vector and the transition
probability matrix are

π =

1
0
0

 and A =

a11 a12 0
0 a22 a23

0 0 a33

 , (3.28)

respectively. Figure 3.3 illustrates a left-to-right HMM with three states.
Note that this figure depicts the states and transition probabilities between
states, in contrast to Figure 3.2, which depicts the state variables, the
feature vectors, and their interdependencies.

As already mentioned, the class-conditional probability distributions
are usually Gaussian mixture models as in (3.25). Often the variance-
covariance matrices are assumed to be diagonal. This is a weak assumption
when Mel-frequency cepstral coefficients (MFCC) are used as feature vec-
tors because the different coefficients are uncorrelated by construction. The

1To be correct, we model the time series extracted from utterances of the word, and
not the word itself.
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main motivation for using diagonal variance-covariance matrices however,
is to reduce the number of free parameters.

3.3 Isolated-Word Speech Recognition

Isolated-word speech recognition is the process of assigning a word to a
given speech signal. The assigned word is an element of a fixed vocabulary
and the speech signal is assumed to be an utterance of a word from the
same vocabulary spoken in isolation. Although we use the term word in
the present discussion, the theory is directly applicable to other linguis-
tic units such as phonemes or sentences. Examples of isolated-word speech
recognition include the classification of letters in the English alphabet, clas-
sification of phonemes, and classification of commands such as “yes”, “no”,
“enter”, etc.

In mathematical terms, let X ∈ X denote a time series extracted from
a speech signal, where X is the set of all such time series. Furthermore, let
y ∈ Y denote a word label and Y = {1, . . . , C} the set of word labels, where
each word label corresponds to a word in the vocabulary. For example, in
the recognition of letters in the English alphabet, C = 26, and y = 1 is
the label for “A”, y = 2 is the label for “B”, etc. Speech recognition is a
special case of classification, where the goal is to construct a decision rule
h : X → Y that maps a time series X ∈ X into a word label ŷ ∈ Y.

The most popular approach to speech recognition is the generative ap-
proach that was presented in Chapter 1. Recall that the generative ap-
proach to classification amounts to estimating the distributions p(X|y) and
p(y), and substituting these estimates into the Bayes decision rule which is

ŷ = arg max
y∈Y

p(X|y)p(y). (3.29)

A substitute for the class-conditional distribution p(X|y) for each word
label y ∈ {1, . . . , C} is obtained from an HMM p(X, q;λi) with parameter
set λi as in

p(X|y = i) = p(X;λi) =
∑
q

p(X, q;λi), i = 1, . . . , C. (3.30)

The parameters are typically estimated from a set of training exam-
ples D = {(X(1), y(1)), . . . , (X(N), y(N))} using the maximum likelihood
method. For the prior probabilities p(y), we can simply take the fraction of
the training examples having the various word labels, or we can incorporate
prior knowledge based on the speech recognition task at hand.

In recognizing a new speech signal with feature X, we need to com-
pute the likelihood with respect to each HMM, and decide on the word
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label which gives the highest product of the HMM likelihood and the prior.
For the likelihood computations, we can use for example the forward algo-
rithm, or we can use the approximate likelihood computed by the Viterbi
algorithm.

3.3.1 Discriminative Training of the HMM Parameters

It is well known that the HMM is not the correct model for time series ex-
tracted from speech signals. To see this, consider the conditional indepen-
dence assumption in (3.4), which says that a feature vector is independent
of the previous feature vector given the current state, i.e.,

p(xt−1,xt|qt) = p(xt−1|qt)p(xt|qt). (3.31)

This is obviously a false assumption since the feature vectors xt−1 and xt
are extracted from windowed speech segments that are either overlapping
or at most some milliseconds apart. Nevertheless, the HMM is still the
most popular model used in speech recognition.

Due to incorrect model assumptions and a finite amount of training
data, the class-conditional probability distributions estimated using the
maximum likelihood criterion may be far from the true unknown distri-
butions. This will in turn lead to an error rate of the classifier that is
considerably worse than the optimal error.

Instead of using the maximum likelihood criterion to estimate the HMM
parameters, which optimizes each model independently of the others so as
to best describe the training data, better recognition performance can be
achieved by using a different criterion which optimizes all the models jointly
and is more related to the goal of automatic speech recognition, namely
the classification error rate. Such methods are called discriminative train-
ing methods and include both the maximum mutual information (MMI)
method [Bahl et al., 1986] and the minimum classification error (MCE)
method [Juang et al., 1997].

3.4 Continuous Speech Recognition

In the isolated-word speech recognition approach presented above, we are
required to have at least one training example from each class since a dis-
tinct HMM has to be estimated for each class. This can be done without
too much cost for systems involving a small number of classes such as the
recognition of isolated digits. On the other hand, to collect training data for
systems having a large number of classes would be either very expensive
or practically infeasible. Consider for example the recognition of 8-digit
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numbers, in which case the number of classes is C = 108. Or consider
the recognition of freely spoken sentences, where the number of classes ap-
proaches infinity. It is clear that for such a large number of classes, we
cannot take the isolated-word speech recognition approach in Section 3.3.

In the example above for the recognition of 8-digit numbers, an impor-
tant observation to make is that every digit sequence is composed of only
10 subwords, namely the digits. Thus, by having one HMM per digit, we
can form a model for any 8-digit number, i.e., any class, by concatenating
the corresponding digit models. To take this a step further, we should note
the fact that any spoken word or sentence is composed of a small number of
subword units called phonemes. In English, there are about 40 phonemes,
so with only about 40 HMMs, one for each phoneme, we can form a model
for any English word or sentence. For the training of the phoneme HMMs,
we only need to have one example of each phone, in principle. Of course,
for good performance, this number should be much greater than one. The
training is done with the Baum-Welch re-estimating formulae [Baum et al.,
1970] on concatenated HMMs instead of word HMMs as in isolated-word
speech recognition.

Once a set of subword models have been trained, a new utterance can
be recognized by doing a Viterbi search for the most likely subword se-
quence weighted by the value of a language model. The search can be
very computationally expensive, so various approximations have been pro-
posed [Aubert, 2002]. The language model can be designed to the speech
recognition problem at hand using expert human knowledge, or it can be
a statistical N-gram model computed from a large text corpora [Rosenfeld,
2000]. In this thesis, a flat language model will be used. This means that
all subword sequences are equally likely.

3.4.1 N-Best Lists and Lattices

Instead of generating only the most likely subword sequence, or sentence
hypothesis, for an utterance, it is sometimes desirable to generate several
competing hypotheses to be used in further processing. In this way, addi-
tional knowledge can be introduced before making a final decision. Two
ways of representing a set of competing sentence hypotheses are N-best lists
and lattices.

An N-best list [Schwartz and Chow, 1990] is a list of the N most likely
sentence hypotheses of a given utterance, and can be efficiently generated
from a set of HMMs. The sentence hypotheses are ordered by their HMM
likelihood, and each hypothesis is accompanied by a segmentation, which
is the most likely segment boundaries given the sentence.

A lattice can be generated from an N-best list by creating a directed
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Figure 3.4: Top: An example of a 5-best list. The numbers under the nodes
are frame numbers (in tens of milliseconds). Bottom: The lattice generated
from the 5-best list above.

acyclic graph where each node corresponds to a time and each edge is a
segment with corresponding labels. Each path from left to right in the
lattice corresponds to a sentence hypothesis. It is easy to see that a lattice
encodes more sentence hypotheses than the N-best list it was generated
from.

Figure 3.4 shows an example of a 5-best list (top) obtained from an
utterance containing a digit string, and the lattice (bottom) generated from
the 5-best list. The numbers under the nodes are frame numbers (in tens
of milliseconds). The lattice contains a total of 9 sentence hypotheses.

3.5 Summary

In this chapter we have given a brief introduction to the hidden Markov
model (HMM) and its use in automatic speech recognition. We have cho-
sen to present the HMM as a probability distribution over sequences, in
the same manner as in [Bilmes, 2006; Jordan, 2007]. The HMM plays an
important role in the subsequent chapters.



Chapter 4

Isolated-Word Speech
Recognition using Logistic
Regression

Isolated-word speech recognition is the task of recognizing words spoken
in isolation. One of the main difficulties of this task is that speech signals
typically have variable durations. In this chapter we present various map-
pings from variable length feature vector sequences into fixed-dimensional
vectors. The mappings are either defined explicitly from a set of hidden
Markov models (HMMs) to be used in penalized logistic regression (PLR),
or implicitly through a kernel function to be used in kernel logistic re-
gression (KLR). Notable examples of mappings and kernels that we will
present are the likelihood mapping, the likelihood-ratio mapping, and the
global alignment (GA) kernel. The mappings and kernels that we present
can be used directly in the logistic regression framework to perform classi-
fication of speech signals containing words spoken in isolation.

For simplicity, we consider only the classification of a speech signal into
a word. It should be clear, however, that the methods presented in this
chapter are equally applicable to classification into other linguistic units
such as phones. In Chapter 5 we will use one of the methods introduced in
this chapter to perform classification of phone segments for the purpose of
rescoring N-best lists for continuous speech recognition.

The outline of the chapter is as follows. First, we present mappings to
be used with PLR and discuss the use of adaptive regressor parameters.
Then, in Section 4.2 we present various kernels that can be used in KLR.
Section 4.3 contains experimental results, and Section 4.4 contains a short
summary and a discussion.

Part of the work presented in this chapter is based on [Birkenes et al.,

43



44 Chapter 4: Isolated-Word Speech Recognition using Logistic Regression

2005, 2006a; Cuturi et al., 2007].

4.1 Penalized Logistic Regression

In this section we will be concerned with the modeling of the conditional
distribution p(y|X) using the logistic regression model, where each obser-
vation X = (x1, . . . ,xT ) is a sequence of feature vectors extracted from a
speech signal and y is a word label. Recall from Chapter 2 that the logistic
regression model with parameter matrix W with columns wc is

p(y = i|X) =
ew

T
i φ(X;λ)∑C

j=1 e
wT
j φ(X;λ)

for i = 1, . . . , C. (4.1)

Since the observation X is here a sequence of feature vectors that can vary
in length, the mapping φ : X → RM+1 is a map from the set X of all such
observations into the Euclidean space RM+1. The hyperparameter of the
mapping is λ. Once a mapping φ is specified, PLR for speech signals can be
performed as in Chapter 2. In particular, classification of an observation
X is accomplished by selecting the word having the largest conditional
probability, that is,

ŷ = arg max
y∈Y

p(y|X), (4.2)

where Y is the set of all allowable words known as the vocabulary.
The mapping should be able to map observations of varying lengths into

fixed dimensional vectors while preserving the discriminative information
embedded in the observations. There are many proposed methods on how
to do this. Some methods select a fixed number of representative vectors
from each feature vector sequence [Bazzi and Katabi, 2000; Ganapathiraju
et al., 2004]. Other methods make use of one or more hidden Markov
models (HMMs) to construct mappings, since the HMM framework is a
principled way to handle variable length time series and have been well
studied in the context of speech for a long time. With these mappings,
the HMM parameters must be estimated before the parameter matrix W
can be found. The HMM parameters can be estimated, for example, by
using the maximum likelihood criterion or through discriminative training
as explained in Chapter 3. After the weight matrix has been estimated,
classification of a new observation X can be done as in (4.2).

In [Jaakkola and Haussler, 1999a], the authors suggested to map a fea-
ture vector sequence into the gradient space of the log-likelihood of a single
HMM with respect to its parameters. This mapping is known as the Fisher
mapping and can be written

φFisher(X;λ) = ∇λ log p(X;λ), (4.3)
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where p(X;λ) is the likelihood of a HMM with parameter λ. The Fisher
mapping is used to define the Fisher kernel that we will present in the next
section.

In [Smith and Gales, 2002], the authors considered two-class classifi-
cation problems with support vector machines (SVMs) using one or two
HMMs for the mapping. In particular, they suggested a mapping from a
sequence into a vector consisting of the log-likelihood-ratio with respect to
two HMMs as well as the gradient of the log-likelihood ratio. If λ(1) and
λ(2) denote the HMM parameters of the two models, their mapping, which
we call the generative mapping, can be expressed as

φGen(X;λ) =

 log p̃(X;λ(1))

p̃(X;λ(2))

∇λ(1) log p̃(X;λ(1))
−∇λ(2) log p̃(X;λ(2))

 , (4.4)

where p̃(X;λ(1)) denotes a HMM likelihood which is normalized with re-
spect to the sequence length according to [Smith and Gales, 2002]. The
hyperparameter of the generative mapping is the pair λ = (λ(1),λ(2)) con-
sisting of all the parameters of the two HMMs.

In the conditional augmented (C-Aug) models introduced in [Layton
and Gales, 2006], there is one HMM with parameter λ(i) for each class i.
Each C-Aug model p(y = i|X) incorporates the mapping

φ
(i)
C−Aug(X;λ) =

[
log p̃(X;λ(i))

∇(1,ρ)

λ(i) log p̃(X;λ(i))

]
for i = 1, . . . , C, (4.5)

where the last element is a vector of the derivatives of order 1 to ρ of the log-
likelihood with respect to the ith HMM. The hyperparameter of the class-
conditional mappings in the C-Aug model is the set λ = (λ(1), . . . ,λ(C))

The authors in [Abou-Moustafa et al., 2004] presented a mapping that
makes use of M = C HMMs, one for each word in the vocabulary. The
ith element of the mapped vector is the log-likelihood of the observation
X with respect to the ith HMM, i.e.,

φAbou(X;λ) =

 log p(X;λ(1))
...

log p(X;λ(M))

 . (4.6)

Two mappings that are of particular interest in this thesis are presented
next.
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Figure 4.1: The logistic regression model with the likelihood mapping.

The likelihood mapping

We make some minor modifications to the mapping in (4.6) and present
the likelihood mapping [Birkenes et al., 2006a]

φL(X;λ) =


1

1
T log p̂(X;λ(1))

...
1
T log p̂(X;λ(M))

 , (4.7)

where T is the frame length (i.e., the number of vectors in the sequence X),
and p̂(X;λ(m)) is the Viterbi-approximated likelihood (i.e., the likelihood
computed along the Viterbi path) of the mth HMM with parameter vector
λ(m).

To be more specific, let λ(m) = (π(m),A(m),η(m)) be the set of param-
eters for the mth HMM. Then

p̂(X;λ(m)) = max
q

p(X, q;λ(m)) (4.8)

= max
q

π(m)
q1

T∏
t=2

a(m)
qt−1,qt

T∏
t=1

p(xt|qt;η(m)
qt ). (4.9)

Furthermore, we let each state-conditional probability density function be
a Gaussian mixture model (GMM) with a diagonal covariance matrix, i.e.,

p(xt|qt;η(m)
qt ) =

H∑
h=1

c
(m)
qh N (µ(m)

qh ,Σ(m)
qh ) (4.10)

=
H∑
h=1

c
(m)
qh (2π)−D/2

( D∏
d=1

σ
(m)
qhd

)−1

e
− 1

2

PD
d=1

(
xtd−µ

(m)
qhd

σ
(m)
qhd

)2

.

(4.11)
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Figure 4.2: The logistic regression model with the likelihood-ratio mapping.

The hyperparameter vector of the likelihood mapping consists of all the
parameters of all the HMMs, i.e., λ = (λ(1), . . . ,λ(M)).

We have chosen to normalize the log-likelihood values with respect to
the length T of the sequence X. The elements of the likelihood mapping
are thus the average log-likelihood per frame for each model. The reason for
performing this normalization is that we want utterances of the same word
spoken at different speaking rates to map into the same region of space.
Moreover, the reason that we use the Viterbi-approximated likelihood in-
stead of the true one is to make it easier to compute its derivatives with
respect to the various HMM parameters. These derivatives are needed when
we allow the parameters to adapt during training of the logistic regression
model.

Figure 4.1 illustrates the logistic regression model with the likelihood
mapping. For an observation X, the model converts frame-normalized log-
likelihoods into posterior probabilities for each class.

Although the likelihood mapping was defined with exactly one HMM
per class, this is not a restriction. We may have M models and C classes,
where M 6= C. Some examples of this will be given in the next chapter.

The likelihood-ratio mapping

The second new mapping we present in this thesis is the likelihood-ratio
mapping defined as

φLR(X;λ) =


1

1
T log p̂(X;λ(1))

p̂(X;λ
(1)
a )

...
1
T log p̂(X;λ(M))

p̂(X;λ
(M)
a )

 , (4.12)
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where p̂(x;λ(m)) and p̂(x;λ(m)
a ) denote the Viterbi-approximated likelihood

of the model and the anti-model, respectively, for the mth class. The anti-
model for a class should return high likelihood for observations that are
unlikely with respect to the class and low likelihood otherwise. It can be
trained, for example, by using all the training data except for the data
that are labeled with that particular class. The hyperparameter vector for
the likelihood-ratio mapping consists of all the HMM parameters of both
models and anti-models, i.e., λ = (λ(1), . . . ,λ(M),λ

(1)
a , . . . ,λ

(M)
a ).

Figure 4.2 illustrates the logistic regression model with the likelihood-
ratio mapping. In this model, a vector of frame-normalized log-likelihood
ratios are converted into posterior probabilities for each word.

In comparison with the likelihood-mapping, the likelihood-ratio map-
ping involves twice as many models, and has therefore about twice the com-
putational complexity. On the other hand, the likelihood-ratio is expected
to be more robust to variations in acoustic conditions than the likelihood
[Smith and Gales, 2002].

As with the likelihood mapping, we are not restricted to have the same
number of models as the number of classes. In the next chapter, we present
experimental results on a phone recognition task where we use M = 15
likelihood-ratio detectors as regressors and C = 39 phonetic classes.

4.1.1 Adaptive Regressor Parameters

As we saw in Chapter 2, additional discriminative power can be achieved by
updating the regressor parameters λ in addition to the weight matrix W .
To this end we need the gradient of the criterion function P log

δ (W ,λ;D) in
(2.63) with respect to λ. We saw in Lemma 2.1.4 that the partial derivative
of P log

δ (W ,λ;D) with respect to λl satisfies

∂

∂λl
P log
δ (W ;λ;D) = trace

{( δ
N

ΦTWΓ + PT(W )− Y T
)
WT ∂

∂λl
Φ
}
,

(4.13)
where

Φ =

 | |
φ(X(1);λ) · · · φ(X(N);λ)

| |

 . (4.14)

Thus, what remains in order to compute the partial derivative in (4.13)
is the expression for the partial derivatives of the elements of the vectors
φ(X(n);λ) with respect to each parameter λl.

For the likelihood mapping and the likelihood-ratio mapping, the regres-
sor parameters are the HMM parameters, which have certain constraints on
which values they can take on. For example, all variances must be greater
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than zero. In order to use unconstrained optimization methods such as
the steepest descent method or the RProp method [Riedmiller and Braun,
1993], we choose to first transform the parameters to a space where any
value is valid. Then we can apply the unconstrained optimization method
with these transformed parameters, and finally transform the parameters
back to the original space. We use the same transformations as in [Juang
et al., 1997], e.g., σ 7→ σ̃ = log σ and µ 7→ µ̃ = µ/σ for variances and means,
respectively. Thus, after choosing an initial parameter vector λ0, we use
the mapping λ0 7→ λ̃0 to transform the parameters to a space where any
value is valid and iterate according to

λ̃il = λ̃i−1
l + ∆λ̃i−1

l for l = 1, . . . , L, (4.15)

where the step ∆λ̃i−1
l is defined in either the steepest descent method or

the RProp method. Finally, the resulting vector λ̃∗ is mapped back to the
original parameter space, i.e., λ̃∗ 7→ λ∗.

For both the likelihood mapping and the likelihood-ratio mapping, we
need the partial derivative of the Viterbi-approximated log-likelihood with
respect to each transformed HMM parameter. This is given in the following
two lemmas for the means and the standard deviations, respectively.

Lemma 4.1.1 The partial derivative of the Viterbi-approximated log-
likelihood with respect to a mean value is

∂ log p̂(X(n);λm)

∂µ̃
(m)
qhd

=
T∑
t=1

δ(q−q̂t)
c

(m)
qh N (µ(m)

qh ,Σ(m)
qh )

p(x(n)
t |q,η(m)

q )
· (x

(n)
td − µ(m)

qhd)

σ
(m)
qhd

. (4.16)

Proof See App. A

Lemma 4.1.2 The partial derivative of the Viterbi-approximated log-
likelihood with respect to a standard deviation value is

∂ log p̂(X(n);λm)

∂σ̃
(m)
qhd

=
T∑
t=1

δ(q−q̂t)
c

(m)
qh N (µ(m)

qh ,Σ(m)
qh )

p(x(n)
t |q,η(m)

q )
·
((

x
(n)
td − µ(m)

qhd

σ
(m)
qhd

)2

−1
)
.

(4.17)

Proof See App. A
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4.2 Kernel Logistic Regression

In kernel logistic regression the mapping φ : X → RM+1 is defined through
a symmetric and positive definite kernel k : X × X → R. Here, we are
concerned with the application of kernel logistic regression to automatic
speech recognition, so we let X be the space of all time series extracted
from speech signals. The kernel is thus a function that maps a pair of time
series into a real number.

We will in the following consider two approaches for designing a kernel
for speech signals. In the first approach, the mapping φ is defined explicitly,
and a vector kernel is chosen that operates on two mapped vectors φ(X)
and φ(X ′). We use the term vector kernel to mean a kernel that operates
on two fixed-dimensional vectors, that is, k : RM+1×RM+1 7→ R. Standard
vector kernels such as linear, polynomial and Gaussian kernels may be used.

In the second approach, the kernel is designed from a similarity mea-
sure between two time series. We will call such a kernel a sequence kernel
since it directly operates on two time series which are sequences of vectors.
Note that in this case, the mapping φ : X → RM+1 is implicitly defined
through the kernel. There is no need to know what this mapping is, only
its existence, and that is guaranteed by Mercer’s Theorem.

4.2.1 Vector Kernels

In the previous section, we saw some examples of how we can map a time
series X into a fixed dimension vector φ(X). Once such a mapping is
defined, training and prediction using PLR are straightforward. Alterna-
tively, as we saw in Chapter 2, with φ and Σ defined, the same result can
be obtained using KLR with the kernel

k(X,X ′) = φT(X)Σ−1φ(X ′). (4.18)

Perhaps the most well-known example of such a kernel is the Fisher
kernel ([Jaakkola and Haussler, 1999a]), where the mapping from a time
series X to a vector is φFisher(X) = ∇λ logP (X;λ) as given in (4.3), and
Σ = E{φ(X)φT(X)} is the Fisher information matrix. The Fisher infor-
mation matrix can be approximated by the sample moment matrix given
in (2.18), or it can be omitted altogether for which case the Fisher kernel is
simply the inner product kFisher(X,X ′) = ∇λ logP (X;λ)∇T

λ logP (X ′;λ).
The use of a kernel on the inner product form in (4.18) with an explicitly

defined mapping φ amounts to finding a linear separating hyperplane in
the transformed observation space. Higher order decision boundaries can
be obtained by using a non-linear vector kernel on the vectors ψ(X) =
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Σ−1/2φ(X;λ). For example, using the polynomial kernel in (2.98) yields
a new kernel

k̃(X,X ′) = (φT(X)Σ−1φ(X ′) + 1)d (4.19)

= (k(X,X ′) + 1)d, (4.20)

that can be used in the KLR model.

4.2.2 Sequence Kernels

Another approach to design a kernel for speech signals is to construct a
similarity measure between two speech signals. In the following, we will
present kernels that compute a similarity between pairs of time series ex-
tracted from speech signals. In this way of specifying a kernel, there is
no need to explicitly define the mapping φ. We only need to know that
such a mapping exists, and that is guaranteed as long as the kernel is sym-
metric and positive definite. A kernel that operates on two sequences is
called a sequence kernel and can be directly used in KLR or any other
kernel method such as the support vector machine (SVM). The sequence
kernels we will present in the following are all motivated by the dynamic
time warping (DTW) distortion measure between two time series that has
been extensively studied for speech applications [Rabiner and Juang, 1993].
We will therefore start by giving a brief review of DTW before we proceed
to the various kernels.

An important concept in DTW is the notion of an alignment between
two time series. The alignment π of length p between two time series
X = (x1, . . . ,xT ) and X ′ = (x′1, . . . ,x

′
T ′) is defined as a sequence of tuples

π =
(
π(1), . . . , π(p)

)
with π(i) =

(
πX(i), πX′(i)

) ∈ {1, . . . , T}×{1, . . . , T ′}.
Given such an alignment π and a local distance measure d, e.g., d(xi,x′j) =
‖xi − x′j‖2, the alignment distance along π is defined as

Dπ(X,X ′) =
1
Mπ

p∑
i=1

m(i)d(xπX(i),x
′
πX′ (i)

), (4.21)

where m(i) is a non-negative path weight, and Mπ is a path normal-
ization factor. The path normalization factor is usually taken to be
Mπ =

∑p
i=1m(i), and m(i) is chosen such that Mπ is independent of π

for reasons that will become clear later. The DTW distance D(X,X ′) is
defined as the minimum alignment distance over a set A(X,X ′) of possible
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alignments, that is,

D(X,X ′) = min
π∈A(X,X′)

Dπ(X,X ′) (4.22)

= min
π∈A(X,X′)

1
Mπ

p∑
i=1

m(i)d(xπX(i),x
′
πX′ (i)

). (4.23)

We will here restrict ourselves to the set A(X,X ′) of alignments satis-
fying

1 = πX(1) ≤ · · · ≤ πX(p) = T (4.24)
1 = πX′(1) ≤ · · · ≤ πX′(p) = T ′, (4.25)

with unitary increments and no simultaneous repetitions. This means that
each alignment starts in π(1) = (1, 1) and ends in π(p) = (T, T ′), with each
step satisfying

π(i)− π(i− 1) ∈ {(0, 1), (1, 0), (1, 1)}. (4.26)

Such alignments are known as global alignments, as opposed to local align-
ments that can start and end at arbitrary pairs of indexes as long as each
step satisfies (4.26).

If the path weights m(i) are chosen such that the path normalizing
factor Mπ is independent of π, we can move 1/Mπ outside the minimization
operator in (4.23) and the DTW distance can be efficiently computed using
dynamic programming. An example of such a choice is m(1) = 2 and

m(i) =

{
1, if π(i)− π(i− 1) ∈ {(0, 1), (1, 0)}
2, if π(i)− π(i− 1) = (1, 1)

for i = 2, . . . , p. (4.27)

Then Mπ =
∑p

i=1m(i) = T+T ′ is independent of the particular alignment,
and the dynamic programming algorithm for computing D(X,X ′) is given
in the following algorithm.

Algorithm 4.2.1 (The dynamic programming algorithm for computing
the DTW distance) Computes the DTW distance D(X,X ′) of two time
series X = (x1, . . . ,xT ) and X ′ = (x′1, . . . ,x

′
T ′).

1. Initialize: for i = 0, . . . , T and j = 0, . . . , T ′:

Di,0 = D0,j = 0 (4.28)
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2. Iterate: for i = 1, . . . , T and j = 1, . . . , T ′:

Di,j = min


Di−1,j + d(xi,x′j),

Di−1,j−1 + 2d(xi,x′j),
Di,j−1 + d(xi,x′j)

 (4.29)

3. Terminate:
D(X,X ′) =

DT,T ′

T + T ′
(4.30)

The alignment distance along an alignment path π was defined in (4.21)
as a weighted sum of local distances computed from a local distance mea-
sure d. If we substitute the local distance measure d in (4.21) with a local
similarity measure κ, we can construct a similarity measure between two
time series in the same fashion as we constructed a distance measure be-
tween two time series in the above discussion. Thus, we define the alignment
score of the alignment π as

Sπ(X,X ′) =
1
Mπ

p∑
i=1

m(i)κ(xπX(i),x
′
πX′ (i)

), (4.31)

where κ is a conditionally positive definite kernel (see the definition in
Section 2.2.1).

A natural first choice for a kernel between two time series is then the
dynamic time-alignment kernel (DTAK) introduced in [Shimodaira et al.,
2002]:

kDTAK(X,X ′) = max
π∈A(X,X′)

Sπ(X,X ′) (4.32)

= max
π∈A(X,X′)

1
Mπ

p∑
i=1

m(i)κ(xπX(i),x
′
πX′ (i)

). (4.33)

Since the only differences from the DTW distance is that a local kernel κ
is used instead of a local distance d, and a max operator is used instead of
a min operator, the computation of the DTAK kernel can be done using
Algorithm 4.2.1 with only minor modifications. It should be made clear
however, that the DTAK kernel is not guaranteed to be a positive definite
kernel [Vert et al., 2004]. Nevertheless, a modification can be made to the
kernel matrix so that it becomes positive definite. We will see later how
this can be done.

A similar kernel can be made by maximizing the exponent of the align-
ment score instead of maximizing the alignment score itself. This is the



54 Chapter 4: Isolated-Word Speech Recognition using Logistic Regression

same as exponentiating the DTAK kernel, i.e.,

kDTW(X,X ′) = max
π∈A(X,X′)

exp{Sπ(X,X ′)} (4.34)

= max
π∈A(X,X′)

exp
{ 1
Mπ

p∑
i=1

m(i)κ(xπX(i),x
′
πX′ (i)

)
}

(4.35)

= exp
{

max
π∈A(X,X′)

1
Mπ

p∑
i=1

m(i)κ(xπX(i),x
′
πX′ (i)

)
}
. (4.36)

Also this kernel lacks guarantees of the positive definiteness property. If we
let κ be the conditionally positive definite kernel κ(xi,x′j) = −‖xi − x′j‖2
and m(i) = 1, we get the Gaussian dynamic time warping (GDTW) kernel
introduced in [Bahlmann et al., 2002].

In both kernels presented up to this point, the similarity measure
between two time series is found by maximizing the alignment score
Sπ(X,X ′) among all alignment paths π ∈ A(X,X ′). One might argue
that a better similarity measure is one that adds up the scores of all align-
ment paths. In this sense, not only the largest score contributes to the
overall similarity measure, but the scores of all alignment paths. A kernel
that has this property is

kDTW∗(X,X ′) =
∑

π∈A(X,X′)

exp{Sπ(X,X ′)} (4.37)

=
∑

π∈A(X,X′)

exp
{ 1
Mπ

p∑
i=1

m(i)κ(xπX(i),x
′
πX′ (i)

)
}

(4.38)

= exp
{

max*
π∈A(X,X′)

1
Mπ

p∑
i=1

m(i)κ(xπX(i),x
′
πX′ (i)

)
}
, (4.39)

where, given positive scalars z1, . . . , zL, we define max* zi = log
∑

exp zi.
This kernel can be shown to be positive definite under mild conditions on
the conditional positive definite kernel κ for specific choices of the path
weights m(i) and the path normalization factor Mπ. For example, if we
set m(i) = 1 and Mπ = 1 we obtain the global alignment (GA) kernel
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introduced in [Cuturi et al., 2007]:

kGA(X,X ′) =
∑

π∈A(X,X′)

exp
{ p∑
i=1

κ(xπX(i),x
′
πX′ (i)

)
}

(4.40)

=
∑

π∈A(X,X′)

p∏
i=1

exp
{
κ(xπX(i),x

′
πX′ (i)

)
}

(4.41)

=
∑

π∈A(X,X′)

p∏
i=1

k(xπX(i),x
′
πX′ (i)

), (4.42)

where we have written k = expκ. From Lemma 2.2.4 we know that the
kernel k is positive definite since κ is conditionally positive definite. The
following theorem states that the GA kernel kGA is positive definite under
mild conditions on the kernel k.

Theorem 4.2.2 Let k be a positive definite kernel such that k
1+k is positive

definite. Then kGA is positive definite.

Proof See [Cuturi et al., 2007].

Remark A positive definite kernel k such that k
1+k is positive definite can

be trivially computed by starting with a positive definite kernel k̃ with
|k̃| < 1, and defining k =

∑∞
i=1 k̃

i = k̃
1−k̃ . Then k is positive definite and

k
1+k = k̃ is positive definite by assumption. An example of such a kernel is

k(x,x′) =
1
2 exp{−‖x−x′‖2

σ2 }
1− 1

2 exp{−‖x−x′‖2
σ2 }

, (4.43)

where k̃ = 1
2 exp{−‖x−x′‖2

σ2 } is half the Gaussian kernel. In practice, most
popular kernels, including the Gaussian kernel and the exponential of the
Gaussian kernel, have the property that k

1+k yields a positive definite kernel
matrix, which in an experimental context will be sufficient [Cuturi et al.,
2007].

The following dynamic programming algorithm can be used to compute
the value of the global alignment kernel for a pair of time series. The
computational efficiency is nearly as good as Algorithm 4.2.1.

Algorithm 4.2.3 (The dynamic programming algorithm for comput-
ing the global alignment kernel) Computes the global alignment kernel
kGA(X,X ′) of two time series X = (x1, . . . ,xT ) and X ′ = (x′1, . . . ,x

′
T ′).
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1. Initialize: for i = 0, . . . , T and j = 0, . . . , T ′:

Si,0 = S0,j = 0 (4.44)

2. Iterate: for i = 1, . . . , T and j = 1, . . . , T ′:

Si,j = (Si−1,j + Si−1,j−1 + Si,j−1)k(xi,x′j) (4.45)

3. Terminate:
kGA(X,X ′) = ST,T ′ (4.46)

In many cases of practical interest, the kernel in (4.39) suffers from the
diagonal dominance issue, meaning that kDTW∗(X,X) is orders of magni-
tude larger than kDTW∗(X,X ′) for two different sequences X and X ′. It
has been observed in practice that many kernel methods perform poorly in
this situation [Vert et al., 2004]. A possible solution is take the logarithm
of the kernel in (4.39), giving

log kDTW∗(X,X ′) = max*
π∈A(X,X′)

1
Mπ

p∑
i=1

m(i)κ(xπX(i),x
′
πX′ (i)

). (4.47)

By doing this however, the kernel is no longer positive definite, even for
m(i) = 1 and Mπ = 1. Nevertheless, the kernel matrix can be made posi-
tive definite by adding to the diagonal the magnitude of the most negative
eigenvalue. The new kernel matrix will then have only non-negative eigen-
values, meaning that it is positive definite. The same trick can also be
applied to the other sequence kernels presented in this section that are not
positive definite.

4.3 Experiments

Experiments on two different speech recognition tasks were performed; 1)
recognition of the English letters {B,C,D,E,G,P,T,V,Z}, known as the E-
set, spoken in isolation, and 2) recognition of phones with known segment
boundaries, also known as phone classification. For the former set of ex-
periments, the E-set of the TI46 database was used. A thorough analysis
of the various approaches to isolated-word speech recognition using logistic
regression was performed. The latter experiment on phone classification
was performed using the TIMIT database [Lamel et al., 1986].
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4.3.1 A Thorough Analysis on the TI46 E-set

In this section we give a thorough analysis on the use of logistic regression
for recognition of the letters in the TI46 E-set spoken in isolation. We start
by giving a description of the TI46 database before we explain our base-
line HMM system. Then, we present results from experiments using PLR
with fixed regressor parameters followed by PLR with adaptive regressor
parameters. Finally, we present results using KLR with vector kernels and
sequence kernels.

The TI46 database and the baseline system

The E-set of the TI46 database consists of utterances from 16 different
speakers (8 male and 8 female) of the letters in the highly confusable E-set
{B,C,D,E,G,P,T,V,Z} spoken in isolation. There are 26 utterances of each
letter from each speaker, of which 10 utterances are designated for training
and 16 for test. This would give a total of 16 ∗ 9 ∗ 10 = 1440 utterances
for training and 16 ∗ 9 ∗ 16 = 2304 for test. In the experiments presented
here however, some utterances were missing, so 1433 utterances were used
for training and 2291 were used for test.

From each speech signal, a sequence of feature vectors were extracted
using a 25 ms Hamming window and a window shift of 10 ms. Each feature
vector consisted of 13 Mel-frequency cepstral coefficients (MFCC), includ-
ing the 0th cepstral coefficient, augmented with their delta and acceleration
coefficients. This resulted in 39-dimensional vectors.

As a baseline system, we estimated one HMM for each of the 9 letters
in the E-set. Each model was a left-to-right HMM with 6 states, and with
a Gaussian mixture model (GMM) with 5 mixtures in each state having
diagonal covariance matrices. The models were trained using the maximum
likelihood (ML) criterion. Using the standard generative classification ap-
proach to do recognition on the test set, that is, choosing the letter whose
model has the highest likelihood for each test utterance, an accuracy of
88.3% was obtained. Equal prior probabilities for the letters were used.

Penalized logistic regression with fixed regressor parameters

A series of experiments using PLR with fixed regressor parameters were
conducted. In the first experiment, the likelihood mapping was compared
with the likelihood-ratio mapping. The 9 baseline HMMs, one for each let-
ter in the E-set, were used in the likelihood mapping. The likelihood-ratio
mapping used in addition one antimodel for each of the 9 letters. Each an-
timodel was trained using maximum likelihood estimation by leaving out
only the training data belonging to the particular class of the antimodel
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Figure 4.3: Accuracy on the TI46 E-set for various values of δ using the like-
lihood mapping (top) and likelihood-ratio mapping (bottom) with fixed re-
gressor parameters. The red line represents the baseline accuracy of 88.3%.
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being trained. With both mappings, the weight matrix W of the logistic
regression model was trained using the penalized logistic regression ma-
chine (PLRM). We used 50 Newton iterations with an adaptive stepsize αi,
and 500 iterations in the conjugate gradient (CG) method. At each New-
ton step, the stepsize was initialized to αi = 1/‖K‖, where K is the Gram
matrix, and divided by 2 until a decrease in the criterion function occurred.
Figure 4.3 shows the accuracy of PLR with the likelihood mapping (top)
and the likelihood-ratio mapping (bottom) for various values of the regular-
ization parameter δ. It can be seen that the best accuracy for the likelihood
mapping on the test set is 90.0%, while it is 89.8% for the likelihood-ratio
mapping. Both approaches achieve maximum accuracy for δ = 1.0. Al-
though the best accuracy of the likelihood-ratio mapping is not as good as
the best accuracy of the likelihood mapping, the likelihood-ratio mapping
demonstrates better robustness against δ. Nevertheless, when also taking
into account the computational complexity, we chose to perform the rest of
the experiments presented in this chapter using the likelihood mapping.

Let us consider the results obtained with the likelihood mapping in
more detail. As δ decreases below 1.0, the training accuracy increases and
converges to about 98.0%, while the test accuracy decreases and converges
to about 87% accuracy. These are the accuracies resulting from the maxi-
mum likelihood estimate (without penalty) of the weight matrix W , since
in this case the penalty term in the criterion function goes to zero. For such
small values of δ, the low accuracy on the test set are caused by overfitting
to the training data. In the other end, increasing δ beyond 1.0 results in
a dramatic decrease in both the training accuracy and the test accuracy
for both mappings. This happens because the penalty term increasingly
dominates over the criterion function causing the training data to be less
important for the optimization procedure.

An important issue in PLR is to determine the value of the regulariza-
tion parameter δ which results in the highest accuracy on the test set. Only
the training set may be used for this, while the test set is assumed to be
unseen during training and development. We compared two approaches: 1)
maximization of the average 10-fold cross-validation accuracy on the train-
ing set, and 2) minimization of an information criterion (ABIC) presented
in Chapter 2. Figure 4.4 shows the average 10-fold cross-validation accu-
racy (top) and ABIC (bottom) computed on the training set for the same
range of delta values as in 4.3. The likelihood mapping was used. It can
be seen that the best δ value according to the cross-validation method is
δ = 0.01, while it is δ = 0.1 for the ABIC method. Since the best test
accuracy occurs for δ = 1.0 (see the top plot of Figure 4.3), the ABIC
method performs better in estimating δ than the cross-validation method
in this particular experiment.
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Figure 4.4: Top: Average 10-fold cross-validation accuracy on the training
data for various values of δ. The maximum occurs for δ = 0.01. Bottom:
The ABIC criterion for various values of δ. The minimum occurs for δ = 0.1.
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Figure 4.5: Histogram of the highest posterior probabilities for all of the test
utterances for δ = 1.0 (top left), δ = 10.0 (top right), δ = 100.0 (bottom
left), and δ = 1000.0 (bottom right). All histograms were generated using
the likelihood mapping with fixed regressor parameters.

We have plotted ABIC with and without correction term. The correc-
tion term was approximated using importance sampling with J = 1000000
samples. From the figure, it can be seen that the correction term is negligi-
ble and does not influence the minimization of the criterion. This suggests
that the quadratic approximation of the criterion function may be sufficient.

A major advantage of logistic regression compared to many other clas-
sification methods is that we obtain conditional probabilities of each class
given an observation. Figure 4.5 shows four histograms, one for each
δ ∈ {1, 10, 100, 1000}, of the highest conditional probabilities (i.e., the prob-
abilities of the recognition decisions) for all of the test utterances. Each bar
in the histograms shows the number of utterances resulting in a recognition
decision probability within an interval defined by the left and right edges
of the bar. Each bar has two colors, light green and dark red, where green
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Figure 4.6: Accuracy on the test set of the TI46 E-set after 1000 coordinate
descent (CD) iterations. The steepest descent method with 1 iteration was
used to update the HMM means in every CD iteration.

represents the portion of these probabilities which resulted in a correct de-
cision, and red represents the portion of probabilities which resulted in an
incorrect decision. The main observation from studying these plots is that
the effective dynamic range of the probabilities is strongly dependent on
δ. For small values of δ, the highest conditional probability for each ob-
servation is close to 1, which forces the other classes to have probabilities
close to 0. Large values of δ result in probabilities that are close to 1/C,
i.e., around 0.11 for the E-set since there are C = 9 classes. It can also
be seen from Figure 4.5 that probabilities resulting in an incorrect decision
are generally lower than probabilities resulting in a correct decision. This
suggests that the probability of the decision may be used as a confidence
measure or for verification purposes.

Penalized logistic regression with adaptive regressor parameters

Next we did experiments with adaptive regressor parameters. Again the
likelihood mapping was used and the associated HMMs were initially
trained using the maximum likelihood criterion. Only the mean values
of the HMMs were adapted, while the other parameters remained fixed.
First, the weight matrix W0 was estimated using PLRM with 10 Newton
iterations each having 200 CG iterations. Then, a coordinate descent (CD)
approach was used, where each (CD) iteration consisted of first a step in
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Figure 4.7: Criterion (top) and accuracy on the test set (bottom) of the
TI46 E-set with δ = 1000. The steepest descent method with 1 iteration
was used to update the HMM means in every CD iteration.

λ space and then a step in W space. As a preliminary experiment, we
decided to try the steepest descent (SD) method for the minimization in
the λ space with one iteration and stepsize 0.1. The successive steps in
the W space were computed using PLRM with three Newton iterations
each having 200 CG iterations, with the initial weight matrix being the
weight matrix from the last coordinate descent iteration. Figure 4.6 shows
the accuracy on the test set after 1000 coordinate descent iterations for
δ ∈ {1, 10, 100, 1000, 10000, 100000}. The best accuracy obtained is 96.4%
which was achieved for δ = 100.

The above results were compared with the results obtained with the
minimum classification error (MCE) approach in [Juang et al., 1997]. The
best accuracy achieved with MCE was found to be 95.0% and was achieved
with the parameters (using the notation in [Juang et al., 1997]) η = 100,
γ = 150 and θ = 6. The steepest descent method with a fixed stepsize
and 500 iterations was used for the optimization. Table 4.1 summarizes
the best accuracy obtained with the PLR approach described above with
δ = 100 and after 1000 iterations, along with the baseline and the MCE
approach. Note that the PLR parameter δ and the MCE parameters η,
γ and θ were adjusted so as to give the highest test accuracy. The table
shows that the combined generative-discriminative approaches (the MCE
and the PLR approach) outperformed the generative baseline approach
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considerably. Moreover, the PLR approach achieved better accuracy than
the MCE approach.

Table 4.1: Best accuracy on the test set of the TI46 E-set
Baseline MCE PLR with adaptive regressors (SD)
88.3% 95.0% 96.4%

Let us now examine how the criterion function for PLR and the test
accuracy vary as functions of the number of CD iterations. These are shown
in Figure 4.7 for δ = 1000, where the evolution of the criterion function is
at the top and the evolution of the test accuracy is at the bottom. The
accuracy on the training set converged to 100% after about 100 iterations
and is not shown. It can be seen from the figure that the accuracy on the
test set increased relatively fast the first few iterations, and then increased
more slowly as the number of iterations got larger. After 1000 iterations an
accuracy of 95.9% was reached. The erratic behaviour of the accuracy in
Figure 4.7 is believed to be caused by the fixed stepsize of 0.1 in the steepest
descent method. With this, the optimization algorithm never converged to
a local minimum, but rather took large steps around it. Of course, with
a smaller stepsize this behaviour will be reduced, but then at the expense
of slower convergence. Another approach would be to use a larger number
of SD iterations for each CD iteration with an adaptive stepsize. We tried
several alternative SD approaches, but soon decided to switch to a different
optimization algorithm due to slow convergence and the difficulties with the
setting of the stepsize.

We decided to substitute the SD method with the RProp algorithm
[Riedmiller and Braun, 1993]. We used 100 iterations in the RProp method
for each coordinate descent iteration, with the initial stepsize set to 0.01.
Figure 4.8 shows the criterion function (top) and the accuracy on the test
set (bottom) as functions of the number of coordinate descent iterations for
δ = 1000. If we compare these plots with the similar plots for the steepest
descent method in Figure 4.7, we can see that the RProp method achieves a
lower value of the criterion function than the lowest value obtained with the
steepest descent method after only 4 CD iterations, or 400 RProp iterations.
Moreover, the criterion function continues to decrease to a value just above
2400 after 100 CD iterations, while the SD method did not get lower in the
criterion function than about 2440. However, the accuracy on the test set
climbs to 96.7% after the 4th CD iteration, and then radically decreases at
the following iterations, ending up at only 90.7% after 100 CD iterations
and still decreasing. The decrease in test set accuracy as the number of
CD iterations increases is the effect of overfitting to the training data. This
effect was not observed with the above SD method, possibly due to the
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Figure 4.8: Criterion (top) and accuracy on the test set (bottom) of the
TI46 E-set using RProp and δ = 1000.

large, fixed stepsize which prevented convergence.
In order to reduce the effect of overfitting to the training data, we

attempted the following three approaches: 1) reduce the number of free
parameters, 2) train with a penalty term for the regressor parameters,
and 3) early stopping. First, we did experiments with reduced number
of free parameters. Figure 4.9 shows the criterion function (top) and the
accuracy on the test set (bottom) as functions of the number of coordinate
descent iterations when HMMs with 2, 3, 4 and 5 mixture components per
state were used as regressors. The training accuracy converged to 100%
after 70, 4, 3, and 2 CD iterations for 2, 3, 4, and 5 mixtures, respectively.
Although reduction in the number of mixture components reduces the effect
of overfitting, the problem is still severe. The best accuracy after 100 CD
iterations occurred with 2 mixture components and was 93.5%.

Next we considered the use of a penalty term for the regressor parame-
ters. We considered values of the regularization parameter δ′ ∈ {0, 0.1, 1.0},
where δ′ = 0 implies that there is no penalty on the regressor parameters.
The criterion function and the accuracy on the test set as functions of the
number of CD iterations are shown in Figure 4.10 for each δ′. The train-
ing accuracy converged to 100% after 3 and 2 iterations for δ′ = 0.1 and
δ′ = 0, respectively. For δ′ = 1.0, the training accuracy did not converge to
100%, but ended up at 98.8% after 100 CD iterations. Again, the amount
of overfitting to the training data has been reduced, but is still severe. It
is only δ′ = 1.0 that avoids overshooting in the test accuracy, but then at
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Figure 4.9: Criterion (top) and accuracy on the test set (bottom) of the
TI46 E-set using RProp and δ = 1000 using 2, 3, 4, and 5 mixture compo-
nents in the GMM of each HMM state.
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Figure 4.10: Criterion (top) and accuracy on the test set (bottom) of the
TI46 E-set using RProp and δ = 1000 using a penalty term for the HMM
parameters with parameter δ′ ∈ {0, 0.1, 10}.
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Figure 4.11: Accuracy on the test set of the TI46 E-set using the RProp
method with 100 iterations to update the HMM means in every CD itera-
tion. Early stopping was used, where the stop iterations were found using
maximum average 10-fold cross validation accuracy on the training set.

the expense of low accuracy. The best accuracy after 100 CD iterations
occurred for δ′ = 0.1 and was 93.1%.

The last approach we attempted in order to reduce the effect of over-
fitting to the training data was early stopping. For this, we used 10-fold
cross-validation on the training set, and selected the CD iteration number
resulting in the largest average cross-validation accuracy. For δ = 1000, the
largest average cross-validation accuracy occurred at CD iteration 8 which
had a test accuracy of 96.3%. We used the same approach for all the val-
ues of δ in the set {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000}. The
results are shown in Figure 4.11. In addition to using the cross-validation
method for finding the best stop iteration, it can also be used to determine
the best value for δ. Among the δ values in the above set, δ = 1000 resulted
in the best average cross validation accuracy.

Kernel logistic regression with vector kernels

In the following we present results on the TI46 E-set using KLR with vector
kernels. Two vector kernels were considered; the linear kernel and the
Gaussian kernel. Both kernels were defined with the likelihood mapping,
with Σ set to the identity matrix. Thus, the linear kernel is klin(X,X ′) =
φL(X)φT

L (X ′), and the Gaussian kernel is kGauss(X,X ′) = exp(‖φL(X)−
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φL(X ′)‖2/(2σ2)). Training for KLR was done with a nonlinear conjugate
gradient (CG) method provided by the authors of [Myrvoll and Matsui,
2006]. We also compared the results with the support vector machine
(SVM), which was trained using the LIBSVM library [Chang and Lin,
2001]. Multiclass classification with SVM was done using the one-vs-one
approach followed by majority voting. First we considered the linear kernel.
The regularization parameters δ ∈ {10−4, 10−3, . . . , 102} for KLR and C ∈
{2−5, 2−3, . . . , 221} for SVM, respectively, were optimized so as to obtain
the best accuracy on the test set. This happened for δ = 0.1 for KLR and
C = 8 for SVM. Table 4.2 shows the accuracy on the test set obtained
with the linear kernel in KLR and SVM. The baseline result and the best
PLR result without updating the regressor parameters are also included
for comparison. The table shows that KLR with the linear kernel did not
perform as well as PLR. The difference in performance may be explained
by the difference in Σ for the two approaches, which is the only theoretical
difference. In PLR, Σ was the sample moment matrix of the transformed
observations, while for KLR, Σ was chosen to be the identity matrix. There
may also be numerical differences between the two optimization algorithms
and their implementation. The best result with linear kernel was obtained
with SVM.

Table 4.2: Best accuracies on the test set of the TI46 E-set using KLR and
SVM with linear kernel compared with PLR and the baseline.

Baseline PLR KLR SVM
88.3% 90.0% 89.1% 91.1%

Next we considered the Gaussian kernel. We let γ = 1/(2σ2) in order to
conform with the definition of the Gaussian kernel in the software packages.
For KLR, the parameters γ ∈ {0.1, 1, 10} and δ ∈ {0.01, 0.1, 1, 10} were
optimized so as to obtain the best accuracy on the test set. The best
values were γ = 1 and δ = 1. Similarly for SVM, we chose the best γ ∈
{2−25, 2−23, . . . , 23} and C ∈ {2−5, 2−3, . . . , 229}. The best accuracy was
obtained for γ = 2−19 and C = 221. Table 4.3 presents the results obtained
using KLR and SVM with the Gaussian kernel compared with the baseline.
Surprisingly, KLR with the Gaussian kernel performed considerably worse
than the baseline. The reason for this in unclear, and should receive further
study. The performance of SVM improved only slightly relative to the case
with the linear kernel. This indicates that the transformed observation
space is not rich enough for improved performance with the use of nonlinear
decision boundaries.
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Table 4.3: Best accuracies on the test set of the TI46 E-set using KLR and
SVM with the Gaussian kernel compared with the baseline.

Baseline KLR SVM
88.3% 83.5% 91.3%

Kernel logistic regression with sequence kernels

We now present experimental results on the TI46 E-set with the use of
the GA kernel for KLR, as well as the GA kernel and the DTAK ker-
nel for SVM. Unlike in the experiments presented in the preceding sec-
tions, we used here feature vector sequences of only 13-dimensional MFCC,
without the inclusion of delta and acceleration coefficients. We present
results with the log of the GA kernel as well as the DTAK kernel, both
with a Gaussian local kernel κ = exp(‖x − x′‖2)/(2σ2) defined for two
vectors x and x′. In all the obtained kernel matrices we needed to sub-
tract from the diagonal the most negative eigenvalue in order to make
them positive definite, as this is an assumption of the training proce-
dures. As before, we used the nonlinear CG method provided by the au-
thors in [Myrvoll and Matsui, 2006] for KLR training, and the LIBSVM
library [Chang and Lin, 2001] for the SVM training. The kernel parame-
ter γ = 1/(2σ2) ∈ {10−2, 15−2, . . . , 40−2}, and the regularization parame-
ters δ ∈ {0.01, 0.1, 1, 10, 100} and C ∈ {10−2, 10−1, . . . , 106}, for KLR and
SVM, respectively, were optimized so as to obtain the best test accuracy.
The optimal values were δ = 1 and γ = 30−2 for KLR with the GA ker-
nel, C = 1000 and γ = 25−2 for SVM with the GA kernel, and C = 1000
and γ = 15−2 for SVM with the DTAK kernel. Table 4.4 summarizes the
results. We make the following observations. Both KLR and SVM with
the GA kernel outperform SVM with the DTAK kernel. SVM with the GA
kernel outperforms KLR with the GA kernel.

Table 4.4: Best accuracies on the test set of the TI46 E-set using KLR and
SVM with the GA kernel as well as SVM with DTAK compared with the
baseline.

Baseline KLR (GA kernel) SVM (GA kernel) SVM (DTAK)
88.3% 93.2% 94.6% 88.5%

4.3.2 Phone Classification on the TIMIT Database

In the following we present results on phone classification on the TIMIT
database. We used PLR with adaptive regressor parameters, since this
approach resulted in the best performance on the TI46 E-set.
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The TIMIT database and the baseline system

The TIMIT database [Lamel et al., 1986] consists of 6300 sentences spoken
by 630 speakers from 8 major dialect regions of the United States. There are
10 sentences per speaker; 2 dialect sentences (SA), 5 phonetically compact
sentences (SX), and 3 phonetically diverse sentences (SI). The database has
a predefined portion for training consisting of all the SX and SI sentences
from 462 speakers giving a total of 3696 sentences. The sentences from the
remaining 168 speakers are meant for development and testing purposes.
We will follow [Halberstadt and Glass, 1997] and use the core test set
spoken by 24 speakers for testing and the MIT development set spoken
by 50 speakers for validation. Only the SX and SI sentences are included.
Thus, the core test set consists of 192 utterances and the MIT development
set consists of 400 utterances. Each utterance is accompanied with a time-
aligned phonetic transcription.

We mapped the 64 phonetic labels in the transcription into 39 phones
as in [Lee and Hon, 1989]. From each utterance we extracted a sequence
of feature vectors using a 25 ms Hamming window and a window shift of
10 ms. Each feature vector consisted of 13 Mel-frequency cepstral coeffi-
cients, including the 0th cepstral coefficient, augmented with their delta
and acceleration coefficients. This resulted in 39-dimensional vectors.

One HMM was estimated for each of the 39 phones. Each model was
a left-to-right HMM with 3 states, and with a Gaussian mixture model
(GMM) with 10 mixture components in each state having diagonal co-
variance matrices. The models were trained using the maximum likelihood
(ML) criterion on all segments in the TIMIT labels having at least 3 feature
vectors. This was the case for 128806 segments. Also in the development
set and the test set, only the segments with at least 3 feature vectors were
used. The development set consisted of 13918 segments and the test set
of 6587 segments. The ML trained generative models resulted in 70.6%
accuracy on the TIMIT core test set.

Penalized logistic regression with adaptive regressor parameters

Logistic regression using the likelihood mapping with adaptive regressor
parameters was used. Only the mean values of the HMMs were updated.
The initial weight matrix W was estimated using the penalized logistic
regression machine (PLRM) with 10 Newton iterations, each having 2000
conjugate gradient iterations. The RProp method with 100 iterations was
used to update the HMM mean values. The update ofW in each coordinate
descent iteration was done using PLRM with 2 Newton iterations, each
having 2000 conjugate gradient iterations. The MIT development set was
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used to select a CD iteration for which to stop the training algorithm, and
to select a value for the regularization parameter δ. The values found were
3 CD iterations and δ = 1000, which resulted in a test accuracy of 79.9%.
Table 4.5 summarizes the results. It can be seen that PLR with adaptive
regressor parameters clearly outperforms the baseline system.

Table 4.5: Accuracy on the TIMIT core test set using PLR with the likeli-
hood mapping and adaptive regressor parameters.

Baseline PLR
70.6% 79.9%

We would like to compare our results using PLR with the results ob-
tained with hidden conditional random fields (HCRF) in [Gunawardana
et al., 2005], and the conditional augmented (C-Aug) models in [Layton
and Gales, 2006]. However, in those papers, the authors didn’t use the
segmentation provided with the TIMIT database, but rather estimated the
phone boundaries using forced alignment segmentation. In this way, they
could make use of all the segments in the labellings. These account for
140225 training segments, 15057 development segments, and 7215 test seg-
ments, which are 11419, 1139, and 628 fewer segments, respectively, than
our approach. Nevertheless, we present their results in Table 4.6. The
baseline system and the HCRF consisted of HMMs with 10 mixture com-
ponents, and their accuracies were reported in [Gunawardana et al., 2005].
Later, they improved their optimization algorithm and obtained an accu-
racy of 78.7% with 20 mixture components [Mahajan et al., 2006]. The
C-Aug models referred to in Table 4.6 contained HMMs with 10 mixture
components, and the accuracy of this system was reported in [Layton and
Gales, 2006]. Although the results in tables 4.5 and 4.6 cannot be directly
compared, one observation that may favor the PLR classifier over the other
two, is that PLR has a larger improvement from its baseline than HCRF
and the C-Aug model.

Table 4.6: Accuracy on the TIMIT core test set using HCRF and C-Aug
models.

Baseline HCRF The C-Aug model
71.9% 78.2% 76.6%
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4.4 Summary and Discussion

This chapter has presented methods for isolated-word speech recognition
using logistic regression. An essential element of this approach is the map-
ping function from variable length vector sequences into fixed-dimensional
vectors. Various explicit mappings were presented, including the likelihood
mapping and the likelihood-ratio mapping. Mappings that are implicitly
defined through kernel functions were also presented. Of particular interest
is the global alignment (GA) kernel which is a sequence kernel that operates
directly on pairs of feature vector sequences extracted from speech signals.
These mappings and kernels can be used directly in the logistic regression
framework, thereby allowing classification of words spoken in isolation. The
approach is not restricted to words only, but can be used for classification
of speech segments into other linguistic units such as phones. This is an
important feature, since it allows us to extend the approach to continuous
speech recognition. This is the topic of the next chapter.

A thorough analysis was presented on the task of recognizing the En-
glish letters in the E-set spoken in isolation. Penalized logistic regression
with the likelihood mapping and adaptive regressor parameters was found
to achieve the highest accuracy. Also, preliminary experiments with the
GA kernel showed promising performance and deserves further study. An
experiment on the task of phone classification was also presented. The
approach with the likelihood mapping and adaptive regressor parameters
achieved an accuracy which is comparable with the performance of today’s
state-of-the-art methods on this particular problem.



Chapter 5

N-best Rescoring using
Logistic Regression on
Segments

In the previous chapter we explored ways of using logistic regression in
isolated-word speech recognition. The conditional probability of a word
given a speech segment was obtained. Although we only considered prob-
abilistic prediction of words given a speech segment, the theory is directly
applicable to subword units such as phones. In this chapter, we consider
the continuous speech recognition problem, which amounts to finding the
best sequence of subwords, or sentence hypothesis, given a whole utterance
of a sentence. A problem we have to deal with in this context is that
the segment boundaries are not known. We propose a two step approach:
1) generate an N-best list using a set of hidden Markov models and the
Viterbi algorithm, and 2) rescore the N-best list and select the sentence
hypothesis with the highest score. Rescoring of a sentence hypothesis is
done by obtaining probabilities of each subword using logistic regression,
and combining the subword probabilities into a new sentence score using
a geometric mean. These sentence scores can either be used directly to
reorder the sentence hypotheses in the N-best list, or they can be interpo-
lated with the HMM likelihood of the corresponding sentence hypotheses
before reordering. The recognized sentence hypothesis of an utterance is
then taken to be the first one in the N-best list, i.e., the sentence hypothesis
with the highest score.

The outline of the chapter is as follows. In the next section, we introduce
some notation, and consider an approach to continuous speech recognition
that uses only the segmentation information provided by the Viterbi algo-
rithm to relabel and rescore a sentence hypothesis (1-best list). In Section

73
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5.2 we present our way of rescoring N-best lists. Experimental results on
connected digits recognition using the Aurora2 database, and continuous
phone recognition using the TIMIT database are presented in Section 5.3.
Finally, Section 5.4 contains a short summary and a discussion.

Part of the work presented in this chapter is based on [Birkenes et al.,
2006b, 2007].

5.1 Relabeling and Rescoring Sentence Hypothe-
ses

In the following, let us assume that we have a set of hidden Markov models
(HMMs), one for each subword (e.g., a digit in a spoken digit string, or
a phone). We will refer to these HMMs as the baseline models and they
will play an important role in both the training phase and the test phase
of our proposed approach for connected speech recognition using logistic
regression. For convenience, we let Z denote a sequence of feature vec-
tors extracted from a spoken utterance of a sentence s = (y(1), . . . , y(Ls))
with Ls subwords. Each subword label y(l) is one of {1, . . . , C}, where
C denotes the number of different subwords. Given a feature vector se-
quence Z extracted from a spoken utterance s, the baseline models can
be used in conjunction with the Viterbi algorithm in order to generate a
sentence hypothesis ŝ = (ŷ(1), . . . , ŷ(Lŝ)), which is a hypothesized sequence
of subwords. Additional information provided by the Viterbi algorithm are
the maximum likelihood (ML) segmentation on the subword level, and ap-
proximations to the subword likelihoods. We write the ML segmentation
as Z = (X(1), . . . ,X(Lŝ)), where X(l) denotes a sequence of feature vec-
tors associated with the lth subword ŷ(l) of the sentence hypothesis. To
summarize, there are three types of information provided by the Viterbi
algorithm; the sentence hypothesis, its ML segmentation, and the Viterbi-
approximated subword likelihoods. These pieces of information can be used
in various ways in our system for connected speech recognition using logistic
regression.

Perhaps the simplest way is to make use of only the segmentation infor-
mation, and use logistic regression on each segment X(l) in order to obtain
a new subword label ŷ(l), possibly different from the one in the sentence
hypothesis, along with its estimated conditional probability p̂ŷ(l) . The con-
catenation of the new subword labels gives rise to a new sentence hypothesis
ŝ = (ŷ(1), . . . , ŷ(Lŝ)). Moreover, the geometric mean of the subword proba-
bilities may serve as a confidence measure pŝ for the sentence hypothesis,
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that is,

pŝ =
( Lŝ∏
l=1

pŷ(l)

)1/Lŝ

. (5.1)

In order to do the above relabeling and rescoring of a sentence hypoth-
esis, the logistic regression model must be trained on the segments of the
training data. If the training utterances were segmented on the subword
level, i.e., if we knew the segment boundaries of each subword, we could
simply use these subword-labeled segments as the training set for the lo-
gistic regression model. In most training databases for speech however,
the segment boundaries are not known, only the orthographic transcrip-
tion, i.e., the correct subword sequence. Then, the most straightforward
thing to do would be to estimate the segment boundaries. For this, we
will make use of the baseline models to perform Viterbi forced alignment
(FA) segmentation on the training data. From a pair (Z, s) in the training
database, FA segmentation gives us a set {(X(1), y(1)), . . . , (X(Ls), y(Ls))}
of subword labeled segments. Doing this for all the pairs (Z, s) in the
training database yields a set

DFA = {(X(l), y(l))}l=1,...,LFA
(5.2)

of all FA-labeled segments. This set can then be used in the training of the
logistic regression model using one of the methods in Chapter 4.

In the testing phase, the above procedure may work well if the segmen-
tation of each test utterance provided by the Viterbi algorithm is close to
the true unknown segmentation. However, the procedure is likely to fail
if the segmentation contains segments that are incorrect, since such incor-
rect segments have not been seen by the training algorithm. Their domain
typically lies outside the domain for correct segments, and the logistic re-
gression model therefore tends to give very high probability to one subword
(often incorrect) and correspondingly low probability to the others. In the
next section, we generate a set of sentence hypotheses with corresponding
segmentation in the form of an N-best list, in the hope that at least one
of the hypotheses and its corresponding segmentation is correct or nearly
correct. Our approach will be to rescore each sentence hypothesis using
subword probabilities obtained from logistic regression and select the sen-
tence hypothesis with the highest score as the recognition output.

5.2 Rescoring N-Best Lists

For a given utterance we can use the baseline models to generate an N-best
list of the N most likely sentence hypotheses. An example of a 5-best list is
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sil
1

2

3

4

5

seven seven nine two sil

sil seven seven eight two sil

sil seven seven two sil

sil seven seven oh two sil

sil seven oh nine two sil

-1531.1 -2393.6 -1312.2 -1670.5 -2710.4 -793.0 -10410.8

-10579.8

-10580.4

-10614.2

-10643.2

-1531.1 -2393.6 -1631.1 -1520.6 -2710.4 -793.0

-1531.1 -2393.6 -3152.2 -2710.4 -793.0

-1531.1 -2393.6 -1631.1 -1554.9 -2710.4 -793.0

-1531.1 -2306.4 -1631.8 -1670.5 -2710.4 -793.0

Figure 5.1: A 5-best list where the numbers below the arcs are Viterbi-
approximated log-likelihood values corresponding to the segments. The
total log-likelihood for each sentence hypothesis is shown at the right. The
list is sorted after decreasing log-likelihood values for the sentences.

shown in Figure 5.1. The list is generated for an utterance of the sentence
“seven, seven, eight, two”, with leading and trailing silence. The most likely
sentence hypothesis according to the HMMs appears at the top of the list
and is the sentence “seven, seven, nine, two”. This sentence differs from
the correct sentence, which is the second most likely sentence hypothesis,
by one subword. The segmentation of each sentence hypothesis in the list is
the most likely segmentation given the sentence hypothesis. Each segment
is accompanied with the Viterbi-approximated log-likelihood.

The reason for generating N-best lists is to obtain a set of sentence
hypotheses with different labeling and corresponding segmentation, from
which the best sentence hypothesis can be chosen based on additional
knowledge. In the following we will first consider how we can obtain reli-
able subword probabilities given speech segments appearing in N-best lists.
We suggest to use a garbage class for this purpose. Then, we introduce a
method for rescoring N-best lists using these estimated subword probabili-
ties.

5.2.1 Logistic Regression on Segments in N-best Lists

Provided that the baseline models are reasonably good, many of the seg-
ments in the N-best lists are correct in the sense that they correspond to a
complete utterance of exactly one subword. However, it is inherent that N-
best lists frequently contain segments that do not correspond to a complete
utterance of exactly one subword. Some segments, for example, correspond
to only a part of an utterance of a subword, or even an utterance of sev-
eral subwords together. Consider again the 5-best list in Figure 5.1, where
the correct sentence hypothesis appears in position 2. Let us assume that
the correct unknown segmentation coincides with the ML segmentation in
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position 2. Then, the third segment in sentence hypothesis 3 actually cor-
responds to an utterance of the two connected digits “seven” and “eight”
spoken in a sequence. Moreover, for hypotheses 1 and 5, the third segment
may not correspond to a complete utterance of “seven”, while the fourth
segment corresponds to an utterance of the last part of “seven” and the
whole of “eight”. Thus, the segments of an N-best list can be roughly
divided into two parts: correct segments and garbage segments.

The role of logistic regression in our N-best rescoring approach is to
provide conditional probabilities of subword labels given a segment. Obvi-
ously, we want a correct subword label to get high conditional probability
given a correct segment. This implies that incorrect subword labels will get
low probabilities for correct segments since the total probability should sum
to one. Furthermore, garbage segments should result in low probabilities
for all subword labels. As was noted in the previous section, the latter is
likely to fail if such garbage segments have not been used in the training
phase.

For this reason we introduce a garbage class, whose role is to aggregate
large probability for garbage segments and low probability otherwise. In
the training of the logistic regression model, we therefore need two sets of
training examples; 1) a set of correct segments each labeled with the correct
subword label, and 2) a set of garbage segments labeled with the garbage
label. The former set is taken to be the set DFA in (5.2). Extracting garbage
segments to be used in the training of the logistic regression model is more
difficult. In the rescoring phase, segments that differ somehow from the
true unknown segments should give small probability to any class in the
vocabulary, and therefore high probability to the garbage class. In order
to achieve this, we generate an N-best list for each training utterance,
and compare all segments within the list with the corresponding forced
alignment generated segments, or the true segments if they are known.
The segments from the N-best list that have at least ε number of frames
not in common with any of the forced alignment segments, are labeled with
the garbage label C + 1 and used as garbage segments for training. This
gives us a set

Dgar = {(X(l), C + 1)}l=1,...,Lgar (5.3)

of all garbage-labeled segments. The full training data used to train the
logistic regression model is therefore

D = DFA ∪ Dgar. (5.4)

The training is done using one of the methods presented in Chapter 4.
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Figure 5.2: The 5-best list in Figure 5.1 after rescoring using penalized
logistic regression with HMM likelihoods as regressors and adaptive regres-
sor parameters. The hypotheses have been reordered according to sentence
probabilities computed from geometric means of the segment probabilities.

5.2.2 The Rescoring Procedure

Now that we have seen how logistic regression can be used to obtain the
conditional probability of a subword given a segment, we will see how we can
use these probability estimates to rescore and reorder sentence hypotheses
of an N-best list. Two approaches are presented. First we present our
method for rescoring N-best lists when a garbage class is used. Then, we
briefly review the rescoring approach taken in [Ganapathiraju et al., 2004;
Birkenes et al., 2006b] where no garbage class was used.

For a given sentence hypothesis ŝ = (ŷ(1), . . . , ŷ(Lŝ)) in an N-best list
with corresponding segmentation Z = (X(1), . . . ,X(Lŝ)), we can use lo-
gistic regression to compute the conditional probabilities pŷ(l) = p(y =
ŷ(l)|X(l),W ). A score for the sentence hypothesis can then be taken as
the geometric mean of these probabilities as in (5.1). In order to avoid
underflow errors caused by multiplying a large number of small numbers,
the log of the score above is usually computed instead, that is,

log pŝ =
1
Lŝ

Lŝ∑
l=1

log pŷ(l) . (5.5)

When all hypotheses in the N-best list have been rescored with the
probabilistic score above, they can be reordered in descending order based
on their new score. Figure 5.2 shows the 5-best list in 5.1 after rescoring
and reordering. Now, the correct sentence hypothesis ”seven, seven, eight,
two” has the highest score and is on top of the list.

Alternatively, for a given sentence hypothesis ŝ, the score in (5.1) can
be interpolated with the log-likelihood value for the sentence hypothesis
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provided by the Viterbi algorithm. Let p̃(ŝ|Z) denote the posterior sen-
tence probability that can in theory be obtained from the sentence HMM
likelihood p̃(Z|ŝ). The log of the weighted geometric mean with weight
0 ≤ α ≤ 1 between the two sentence scores can then be written as

Sŝ = (1− α) log p̂ŝ + α log p̃(ŝ|Z) (5.6)
∝ (1− α) log p̂ŝ + α(log p̃(Z|ŝ) + log p̃(ŝ)), (5.7)

since p̃(Z) is constant for all hypotheses in an N-best list. Furthermore,
since we have assumed that p̃(ŝ) is constant we can write

Sŝ ∝ (1− α) log p̂ŝ + α log p̃(Z|ŝ). (5.8)

The right-hand side of the above equation is taken as the interpolated score.
Note that if α = 0, only the logistic regression score is used for rescoring,
while if α = 1, only the HMM score is used.

Rescoring without a garbage class

If the logistic regression model is trained without a garbage class and with-
out seeing garbage segments, rescoring of N-best lists is likely to produce
unreliable results. One way to alleviate this problem is to try to limit
rescoring to only those sentence hypotheses that are likely not to contain
garbage segments that differ significantly from the true unknown segments.

The approach taken in [Ganapathiraju et al., 2004; Birkenes et al.,
2006b] was to limit rescoring to only those sentence hypotheses that have
the same number of subwords as the first sentence hypothesis in the N-best
list. In this way, the correct sentence cannot be found if the first hypothesis
in the N-best list does not contain the correct number of subwords. Nev-
ertheless, the approach has the potential of correcting substitution errors
generated by the baseline system, in particular hypotheses that have cor-
rect or approximately correct segmentation, but incorrect subword labels.
For the 5-best list in Figure 5.1, only sentence hypotheses number 1, 2,
4, and 5 would be rescored using this approach, with sentence hypothesis
number 3 being omitted since it has one less segment than the hypothesis
at the top of the list.

5.3 Experiments

In this section we present experimental results on continuous speech recog-
nition. First we present results on connected digit recognition using the
Aurora2 database. Then, we present results on continuous phone recogni-
tion using the TIMIT database.
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5.3.1 Connected Digit Recognition using the Aurora2
Database

Various experiments were conducted. First, we tried the relabeling ap-
proach which amounts to recognizing spoken digit strings using logistic re-
gression on the segments provided by the baseline HMM recognizer. Only
the segmentation information from the baseline recognizer was used in this
approach. Next, we performed rescoring of 5-best lists generated by the
baseline recognizer. We tried both rescoring without a garbage class (the
approach in [Ganapathiraju et al., 2004; Birkenes et al., 2006b]) and with a
garbage class. In these experiments we used information of both segmenta-
tion and the corresponding subword labels. Finally, we did one experiment
where we interpolated the logistic regression score and the HMM score, and
thereby used all the information in the 5-best lists provided by the baseline
recognizer.

The Aurora2 database and the baseline system

The Aurora2 connected digits database [Pearce and Hirsch, 2000] contains
utterances, from different speakers, of digit strings with lengths 1–7 digits.
We used only the clean data in both training and testing. The clean data
corresponds to the data in the TI-digits database [Leonard, 1984] down-
sampled to 8 kHz and filtered with a G712 characteristic. There are 8440
training utterances and 4004 test utterances in the training set and the
test set, respectively. The speakers in the test set are different from the
speakers in the training set.

From each speech signal, a sequence of feature vectors were extracted
using a 25 ms Hamming window and a window shift of 10 ms. Each feature
vector consisted of 13 Mel-frequency cepstral coefficients (MFCC) and the
frame energy, augmented with their delta and acceleration coefficients. This
resulted in 39-dimensional vectors.

Each of the digits 1–9 was associated with one class, while 0 was asso-
ciated with two classes reflecting the pronunciations “zero” and “oh”. The
number of digit classes was thus C = 11. For each of the 11 digit classes,
we used an HMM with 16 states and 3 mixtures per state. In addition,
we used a silence (sil) model with 3 states and 6 mixtures per state, and a
short pause (sp) model with 1 state and 6 mixtures. These HMM topologies
are the same as the ones defined in the training script distributed with the
database. We refer to these models as the baseline models, or collectively
as the baseline recognition system. The sentence accuracy on the test set
using the baseline system was 96.85%.
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Relabeling sentence hypotheses

We used penalized logistic regression (PLR) with the likelihood mapping
and adaptive regressor parameters. For the regressors we used one HMM
for each digit, with the same topology as the baseline models. There were
C = 11 digit classes in the logistic regression model.

Before training the logistic regression model, the training data was seg-
mented using the baseline models with forced alignment. The segmentation
resulted in 27727 segments. We updated only the mean values of the HMMs
while keeping the other HMM parameters fixed. For each coordinate de-
scent iteration we iterated 5 times in the steepest descent method and 3
times in the Newton method. At each step in the steepest descent method,
the stepsize was either doubled or halved, depending on whether the pre-
vious step resulted in a decreased or an increased value of the criterion.

In the testing phase, we first used the baseline system to recognize each
utterance in the test set. Then, logistic regression was used to classify each
of the segments of each sentence hypothesis. Finally, for each utterance,
the new digit labels were concatenated to form a new sentence label. The
resulting sentence accuracy was 97.20%, only a slight improvement from
the baseline system which achieved 96.85% sentence accuracy.

Rescoring 5-best lists without a garbage class

Next we used the already trained logistic regression model to rescore 5-
best lists that were generated on the test set by the baseline recognition
system. The upper bound on the sentence accuracy inherent in the 5-best
lists, i.e., the sentence accuracy obtainable with a perfect rescoring method,
was 99.18%. We chose to rescore only those sentence hypotheses in each
5-best list that had the same number of digits as the first hypothesis in
the list. The same approach was taken in [Ganapathiraju et al., 2004],
where the authors rescored N-best lists using the support vector machine
(SVM), and in [Birkenes et al., 2006b]. The resulting sentence accuracy
was 97.20%, which is the same as the sentence accuracy achieved by the
relabeling approach. Table 5.1 summarizes the results.

Table 5.1: Sentence accuracy of the baseline system, the relabeling ap-
proach, and the 5-best rescoring approach without a garbage class.

Baseline 5-best upper bound 1-best relabeling 5-best rescoring
96.85% 99.18% 97.20% 97.20%
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Figure 5.3: Sentence accuracy on the test set for various δ.

Rescoring 5-best lists with a garbage class

In the following, we present results that we achieved with 5-best rescoring
with the use of a garbage class in the logistic regression model. We also
used an extra class for silence, as well as two extra regressors (HMMs)
for garbage and silence, respectively. For the garbage and silence HMMs
we used 16 states and 3 mixtures per state. The 5-best lists used in the
rescoring phase were the same as above. Training was done using two sets
of segments; correct segments with the correct class label, and garbage
segments with the garbage label. The former set was generated using the
baseline recognition system with forced alignment on the training data.
This resulted in 44607 segments. The garbage segments were generated
from 5-best lists on the training data, with ε = 10. This method resulted
in 22380 garbage segments. In total, there were 66987 training segments.
Again, we updated only the mean values of the HMMs while keeping the
other HMM parameters fixed. For each coordinate descent iteration we
used the RProp method [Riedmiller and Braun, 1993] with 100 iterations
and initial stepsize 0.01, as well as 4 Newton iterations. After 30 coordinate
descent iterations, the optimization was stopped due to time limitations.

The sentence accuracies for δ ∈ {103, 104, 105, 106} are shown in Figure
5.3. The baseline accuracy and the accuracy of the 5-best rescoring ap-
proach without a garbage class are also shown. We see that our approach
with a garbage class gives the best accuracy for the four values of the reg-
ularization parameter δ we used in our experiments. For lower values of δ,
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Figure 5.4: Sentence accuracy using interpolated scores.

we expect a somewhat lower sentence accuracy due to over-fitting. Very
large δ values are expected to degrade the accuracy since the regression
likelihood will be gradually negligible compared to the penalty term.

Figure 5.4 shows the effect of interpolating the HMM sentence likelihood
with the logistic regression score. Note that with α = 0, only the logistic
regression score is used in the rescoring, and when α = 1, only the HMM
likelihood is used. The large gain in performance when taking both scores
into account can be explained by the observation that the HMM score and
the logistic regression score made very different sets of errors.

5.3.2 Continuous Phone Recognition on the TIMIT
Database

We did experiments on continuous phone recognition on TIMIT [Lamel
et al., 1986]. A two-step approach was taken: 1) generate N-best lists using
a high performance baseline speech recognizer, and 2) rescore the N-best
lists using logistic regression with a garbage class. Each regressor was a
HMM-based detector for 15 broad classes of manner and place of artic-
ulation, namely fricative, vowel, stop, nasal, semi-vowel, low, mid, high,
labial, coronal, dental, velar, glottal, retroflex, and silence. The output
of each detector was the frame-normalized log-likelihood ratio between a
model and an antimodel. Thus, the mapping used in logistic regression was
the likelihood-ratio mapping with the 15 articulatory classes. The purpose
for the experiment was twofold. First, in order to test our rescoring ap-
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proach on phones, and second to investigate the use of penalized logistic
regression in the new paradigm of knowledge-based speech recognition [Lee,
2004; Siniscalchi et al., 2006].

The TIMIT database and the baseline system

Information on the TIMIT database can be found in Section 4.3.2. We
mapped the 64 phonetic labels in the TIMIT transcriptions into 39 phones
[Lee and Hon, 1989], and ignored the glottal stop [Halberstadt and Glass,
1997]. As a baseline system we used a high performance phone recognizer
developed at the Brno University of Technology (BUT) [Schwarz et al.,
2006]. The BUT recognizer is a hybrid ANN/HMM system, where each
HMM has three states with a single Gaussian mixture component in each
state. For more details about the BUT system, the reader is referred to
[Schwarz et al., 2006]. The BUT recognizer was used in order to generate
forced alignment segmentation of the training set, as well as for generation
of N-best lists for both training and testing.

Rescoring of 5-best and 20-best lists on TIMIT

Forced alignment segmentation on the phone level of the training set was
performed with the baseline recognizer. Each of the 124931 phone segments
was then labeled with one or more articulatory classes and used in the ML
training of the 15 target HMMs and their corresponding anti-models. We
used 3 states with 16 mixtures components per state for each of the 30
HMMs. The phone segments generated with forced alignment were also
used in order to train the logistic regression model with adaptive parame-
ters. In addition, we used a set of garbage segments that were generated
from a 100-best list on the training data using the baseline recognizer. We
used ε = 3, which provided us with 36016 garbage segments. In total there
were thus 160947 segments in the training data. Only the mean values
of the target HMMs were updated, while all the other HMM parameters
were kept fixed. For each of the coordinate descent iteration, we used the
RProp method [Riedmiller and Braun, 1993] with 100 iterations to update
the HMM means λ and the Newton method with 4 iterations to update the
weight matrix W . After 6 coordinate descent iterations, the optimization
was stopped due to time limitations.

Rescoring was done on both 5-best lists and 20-best lists, both generated
on the TIMIT core test set by the BUT baseline system. Table 5.2 lists
the baseline performance and the upper bounds for the 5-best lists and the
20-best lists in terms of phone accuracy.

Tables 5.3 and 5.4 summarize the experimental results for several values
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Table 5.2: Phone accuracy and upper bounds with 5-best lists and 20-best
lists using the BUT baseline recognition system.

Baseline 5-best upper bound 20-best upper bound
74.42 77.00 79.14

of the regularization parameter δ for the 5-best lists and the 20-best lists,
respectively. Only the logistic regression scores are displayed, i.e., with the
interpolation weight set to α = 0.

Table 5.3: Phone accuracy of the 5-best rescoring approach.
δ = 10−1 δ = 10 δ = 103

74.66 74.66 74.62

Table 5.4: Phone accuracy of the 20-best rescoring approach.
δ = 10−1 δ = 10 δ = 103

75.21 74.57 74.90

By comparing the last rows of Tables 5.3 and 5.4 with the baseline
performance, we can see that PLRM achieves better performance for all
three values of δ. For the rescoring of the 20-best list with δ = 10−1, we
achieve a relative improvement in accuracy of 16.74%.

Figures 5.5 and 5.6 show the effect of interpolating the HMM score with
the logistic regression score for the 5-best lists and 20-best lists, respectively,
for δ ∈ {10−1, 10, 103}. Note that with α = 0.1, we obtain accuracies that
are close to the results presented in Tables 5.3 and 5.4 for the logistic
regression score only, while with α = 1, only the HMM baseline score is
used, so the baseline performance of 74.42% is obtained.

The following observations are worth noting. First, an increment in
the phone accuracy is observed when passing from 5-best lists to 20-best
lists, so we expect the performance to improve by increasing the number of
competing hypotheses. Second, by combining logistic regression scores and
baseline scores there is only a small improvement, which might mean that
the two systems make the same type of errors.

A final important observation is that rescoring with PLRM generates
more deletion errors than the baseline. The improved accuracies are caused
by a decrease in substitution and insertion errors.
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Figure 5.5: Phone accuracy using interpolated scores for the 5-best list.
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Figure 5.6: Phone accuracy using interpolated scores for the 20-best list.
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5.4 Summary and Discussion

A two-step approach to continuous speech recognition using logistic regres-
sion on speech segments has been presented. In the first step, a set of hidden
Markov models (HMMs) is used in conjunction with the Viterbi algorithm
in order to generate an N-best list of sentence hypotheses for the utterance
to be recognized. In the second step, each sentence hypothesis is rescored
by interpolating the HMM sentence score with a new sentence score ob-
tained by combining subword probabilities provided by a logistic regression
model. We argued that a logistic regression model with a garbage class is
necessary in this approach.

Results from two sets of experiments were presented. The first set of
experiments concerned connected digit recognition. Among the methods
we tried, the approach with a garbage class achieved the highest sentence
accuracy. Moreover, combining the HMM sentence score with the logistic
regression score showed significant improvements in accuracy. A likely rea-
son for the large improvement is that the HMM baseline approach and the
logistic regression approach generated different sets of errors.

The second set of experiments were conducted on the TIMIT continuous
phone recognition task. A high performance discriminative baseline system
was used to generate 5-best lists and 20-best lists. A set of 15 HMM
likelihood-ratio detectors for place and manner of articulation were used
as regressors. We achieved improvements in phone accuracy for all three
values of the regularization parameter δ that we tried, for both the 5-best
lists and the 20-best lists. The interpolation with the HMM scores did not
result in significant improvements. The reason for this may be that both
the baseline system and the logistic regression approach made the same
types of errors. Moreover, in going from 5-best lists to 20-best lists the
overall accuracy was increased, suggesting that a larger hypothesis space
will result in even higher performance.

In both sets of experiments, the improved overall accuracies were due
to a decrease in the number of substitution errors and insertion errors
compared to the baseline system. The number of deletion errors, however,
increased compared to the baseline system. A possible reason for this may
be the difficulty of sufficiently covering the space of long garbage segments
in the training phase of the logistic regression model. This is an issue that
needs further study.





Chapter 6

Conclusions and Future
Work

We have presented a framework for automatic speech recognition using
logistic regression. First, we gave a thorough overview of the logistic re-
gression framework, including penalized logistic regression (PLR) and its
dual formulation which is known as kernel logistic regression (KLR). Then,
we explored ways of using logistic regression for isolated-word speech recog-
nition, followed by extensions to the more difficult problem of continuous
speech recognition.

For isolated-word speech recognition we dealt with the difficulty of
variable-length speech signals by introducing a mapping from feature vector
sequences (time series) to fixed-dimensional vectors in the logistic regres-
sion framework. Two explicit mappings constructed from a set of hidden
Markov models (HMMs) were used, namely the likelihood mapping and the
likelihood-ratio mapping. The two mappings were shown to have similar
performance on an isolated-word speech recognition task. Joint optimiza-
tion of the logistic regression weights and the HMM (regressor) parame-
ters was proposed. A penalized logistic likelihood was used as the crite-
rion for the joint optimization. Experiments on the English E-set of the
TI46 database improved the accuracy from 88.3% obtained on the base-
line conventional generative approach to 96.3% obtained on the proposed
combined generative-discriminative approach. Moreover, on phone classifi-
cation using the TIMIT database, the phone accuracy increased from 70.6%
to 79.9%.

We also presented the global alignment (GA) kernel, which is a se-
quence kernel that operates directly on pairs of time series. The use of
such a kernel in KLR implies an implicitly defined mapping from time
series to fixed-dimensional vectors. Unlike previous sequence kernels for

89
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speech recognition, which has been defined as the score along the optimal
alignment path between two time series, the GA kernel is defined as the
sum of the scores of all alignment paths. Preliminary results on the TI46
E-set achieved an accuracy of 93.2%. The approach with sequence kernels
is a purely discriminative approach, since there are no generative models
(HMMs) involved. Although the results are not as good as the combined
generative-discriminative approach, we believe that the GA kernel still has
room for improvement.

For continuous speech recognition using logistic regression, we dealt
with the sequence labeling problem by using a two-step approach. In the
first step, a set of HMMs is used to generate an N-best list of sentence
hypotheses for a spoken utterance. In the second step, these sentence hy-
potheses are rescored with the use of logistic regression to obtain a subword
probability for each segment. The subword probabilities are then combined
to form new sentence scores. These sentence scores are either used directly
to reorder the sentence hypotheses in the N-best list, or they are interpo-
lated with the HMM likelihood of the corresponding sentence hypotheses
before reordering. We argued that a garbage class is necessary in this
approach in order to get reliable probability estimates. The two-step ap-
proach was first tested on a connected-digit recognition task. The baseline
conventional approach achieved a sentence accuracy of 96.9%. Rescoring
5-best lists with logistic regression achieved a slight improvement to 97.5%
without interpolation with the HMM likelihood, and a more significant
improvement to 98.3% when interpolation was done. These results were
obtained using optimal values of the regularization parameter δ and in-
terpolation weight α. The upper bound on the rescoring accuracy of the
5-best list was 99.2%. The approach was also tested on a continuous phone
recognition task. A high-performance baseline system was used, with a
phone accuracy of 74.4%. Rescoring 20-best lists using logistic regression
resulted in a phone accuracy of 75.2% with optimal δ and α. The upper
bound on the rescoring accuracy of the 20-best lists was 79.1%.

6.1 Future Work

In this section we give some suggestions for future work. We start with a
discussion on future work for PLR with adaptive regressors, then KLR with
a sequence kernel, and finally continuous speech recognition using logistic
regression.
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Penalized logistic regression with adaptive regressor parameters

We presented two mappings to be used for speech recognition, the like-
lihood mapping and the likelihood-ratio mapping. They both contained
average log-likelihood per frame, with the length of the speech segments
normalized out. This was done to ensure that two utterances of the same
subword spoken with different speaking rate would map to the same region
in regressor space. There is no doubt, however, that segment lengths also
contain important discriminative information. Consider for example the
discrimination between utterances of the digits “oh” and “seven”, which
typically have very different durations. This is an issue that needs further
attention.

In this thesis, we did not consider the use of gradients of the HMMs
with respect to the parameters as regressors. This is an interesting re-
search direction since it has been shown [Jaakkola and Haussler, 1999b;
Smith and Gales, 2002] that the gradient contains important discrimina-
tive information. One of the difficulties with this approach, however, is the
large dimension of the regressor (gradient) space.

The HMMs are important in our combined generative-discriminative
approach. In this thesis, the HMM parameters were initially trained us-
ing the maximum likelihood (ML) criterion. Then they were updated by
maximizing a penalized logistic regression criterion, which contains many
local maxima. It would be interesting to see in what degree a different set
of initial HMM parameters would affect the recognition error. In particu-
lar, models trained with maximum mutual information (MMI) [Bahl et al.,
1986] or minimum classification error (MCE) [Juang et al., 1997] could be
attempted.

The logistic regression framework is flexible in the sense that the re-
gressors may contain arbitrary information about the speech segment to be
classified. In this thesis, we only used HMM-based likelihoods, where all
HMMs were trained using the same feature extraction method. A direction
for future work is to search for other segment-based features that can be
added to the set of regressors for improved performance.

The approach with adaptive regressor parameters lead to problems with
overfitting to the training data. A penalty on the regressor parameters was
proposed, but experiments showed that it did not work well. If a better
penalty can be found such that overfitting is avoided, we could use a more
efficient optimization method for estimating the weight matrix W and the
regressor parameters λ.

Determining the regularization parameter δ is an important issue in
the logistic regression framework. We presented the use of a Bayesian
information criterion (ABIC) [Akaike, 1980] to estimate δ for penalized
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logistic regression with fixed regressor parameters. This approach could also
be attempted for use with KLR or PLR with adaptive regressor parameters.

A major issue in speech recognition that we did not consider in this
thesis is the robustness to mismatched conditions (e.g., noise). This is a
very important issue for practical applications of speech recognition. The
likelihood mapping is not suited for mismatched conditions. This was
pointed out in [Smith and Gales, 2002], and our preliminary experiments
also showed that it did not work well in noise. The likelihood-ratio mapping
is believed to be more robust. Experiments should be conducted in order
to verify this. Future research related to robustness include the search for
other robust regressors, and adaptation of the parameters W and λ to the
new conditions.

Kernel logistic regression with sequence kernels

We presented a new sequence kernel for speech which we call the global
alignment (GA) kernel. We believe that KLR with the GA kernel has
good potential for further improvements. In the preliminary experiments
presented in this thesis, only 13-dimensional MFCC feature vectors were
used. It would be interesting to see whether the inclusion of delta and
acceleration coefficients would improve the performance

An important feature that is missing in the GA kernel is sequence length
normalization. This was not included due to difficulties in proving positive
definiteness, and needs further study.

It can also be attempted to experiment with other constraints on the
allowable alignments and other path weights. A good review of various
alternatives of these quantities can be found in [Rabiner and Juang, 1993]
for the use in dynamic time warping (DTW).

An important issue with the use of KLR is how to handle large amounts
of training data. Recent papers [Krishnapuram et al., 2005; Zhu and Hastie,
2001, 2005; Myrvoll and Matsui, 2006] have presented sparse approximation
methods for KLR. It would be interesting to try these methods for KLR
with the GA kernel for speech applications.

It remains to be seen how well the GA kernel works in mismatched
conditions. A recent paper [Solera-Ureña et al., 2007] demonstrates that the
dynamic time-alignment kernel (DTAK) [Shimodaira et al., 2002] performs
very well in mismatched conditions. Since the GA kernel shares many
similarities with the DTAK, this may indicate that also the GA kernel
would work well in mismatched conditions. This should be verified through
experiments.
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Continuous speech recognition using logistic regression

In our two-step approach to continuous speech recognition, the garbage
class plays an important role. For good rescoring performance, it is impor-
tant to use a representative set of garbage features in the training phase.
We attempted this with the use of N-best lists that were generated on
the training set. In the rescoring phase, we reported problems with a large
number of deletion errors. The reason for this is not fully clear, but it might
be caused by the difficulty of covering the large input space of segments
that are “too long”. This issue needs further study, and other methods for
generating garbage segments should be sought for.

Interpolation of the logistic regression score and the HMM sentence
score was shown to increase performance. We used linear interpolation
for this. Perhaps a nonlinear interpolation would result in even better
performance.

Only rescoring of N-best lists were considered in this thesis. A natural
extension is to attempt rescoring of lattices instead of N-best lists.

The two-step approach to continuous speech recognition is dependent
on a good set of baseline models that can generate good segmentations.
If the N-best lists do not contain good segmentations, the performance
cannot be expected to be good. An arguably more elegant solution to
the continuous speech recognition problem would be to avoid the rescoring
paradigm altogether and rather perform the recognition in one step. This
is a topic for future research.





Appendix A

Proofs of Lemmas

A.1 Proof of Lemma 2.1.1

Before giving the proof of Lemma 2.1.1, we will introduce a lemma that we
will need.

Lemma A.1.1 The gradient of pc = p(y = c|X,W ) in eq. (2.10) with
respect to the parameter for class d is

∇wdpc = pc([c = d]− pd)φ, (A.1)

where [c = d] is 1 if c = d and 0 otherwise, and φ = φ(X;λ).

Proof (Lemma A.1.1) Using the product rule and the chain rule gives us

∇wdpc = ∇wd
ew

T
c φ∑C

i=1 e
wT
i φ

= − 1

(
∑C

i=1 e
wT
i φ)2

( C∑
j=1

ew
T
j φ∇wdwT

j φ

)
ew

T
c φ

+
1∑C

i=1 e
wT
i φ
ew

T
c φ∇wdwT

c φ

= −pc
C∑
j=1

pj∇wdwT
j φ+ pc∇wdwT

c φ.

(A.2)

Then, since ∇wdwT
j φ = φ when j = d and 0 otherwise, we get

∇wdpc = −pcpdφ+ pc[c = d]φ (A.3)
= pc([c = d]− pd)φ. (A.4)
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Proof (Lemma 2.1.1) Let p(n)

y(n) = p(y = y(n)|X(n),W ). The gradient of
(2.23) satisfies

∇WP log
δ (W ;D) = −

N∑
n=1

∇W log p(n)

y(n) +
δ

2
∇W trace ΓWTΣW . (A.5)

For the first gradient in (A.5), we can apply the chain rule to get

∇W log p(n)

y(n) =
1

p
(n)

y(n)

∇W p
(n)

y(n) . (A.6)

Furthermore, since ∇W p
(n)

y(n) = [∇w1p
(n)

y(n) , . . . ,∇wCp(n)

y(n) ], we can use
Lemma A.1.1 which gives us

∇W p
(n)

y(n) =
[
p

(n)

y(n)([y
(n) = 1]− p(n)

1 )φ(n), . . . , p
(n)

y(n)([y
(n) = C]− p(n)

C )φ(n)
]

(A.7)

= p
(n)

y(n)φ
(n)(eT

y(n) − p(n)T). (A.8)

Substituting this into (A.6) leads to

∇W log p(n)

y(n) = φ(n)(eT
y(n) − p(n)T). (A.9)

For the second gradient in (A.5) we get

∇W trace ΓWTΣW =
C∑
c=1

γc∇WwT
c Σwc (A.10)

=
C∑
c=1

γc

 | | |
0 · · · 2Σwc · · · 0
| | |

 (A.11)

= 2ΣWΓ. (A.12)

Finally, substituting (A.9) and (A.12) into (A.5) yields

∇WP log
δ (W ;D) = −

N∑
n=1

φ(n)(eT
y(n) − p(n)T) +

δ

2
2ΣWΓ (A.13)

= Φ(P (W )T − Y T) + δΣWΓ. (A.14)
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A.2 Proof of Lemma 2.1.2

Proof (Lemma 2.1.2) Let g denote the vectorization of the gradient (2.24),
i.e.,

g = vec∇WP log
δ (W ;D) (A.15)

= vec Φ(P (W )T − Y T) + δ vec ΣWΓ (A.16)

= vec
N∑
n=1

φ(n)(p(n)T − eT
y(n)) + δ(Γ⊗Σ) vecW (A.17)

=
N∑
n=1

vecφ(n)(p(n)T − eT
y(n)) + δ(Γ⊗Σ) vecW (A.18)

=
N∑
n=1

(p(n) − ey(n))⊗ φ(n) + δ(Γ⊗Σ) vecW . (A.19)

The transpose of the gradient is needed in order to find the Hessian. It is

gT =
N∑
n=1

(p(n)T − eT
y(n))⊗ φ(n)T + δ vecWT(Γ⊗Σ). (A.20)

Let the gradient operator with respect to vecW be denoted ∇ ~W
. Then,

the Hessian of (2.23) satisfies

∇2
WP log

δ (W ;D) = ∇ ~W
gT (A.21)

=
N∑
n=1

∇ ~W
(p(n)T ⊗ φ(n)T) + δ∇ ~W

vecWT(Γ⊗Σ)

(A.22)

=
N∑
n=1

(∇ ~W
p(n)T)⊗ φ(n)T + δΓ⊗Σ. (A.23)

Furthermore, we have

∇ ~W
p(n)T =

∇w1p
(n)
1 · · · ∇w1p

(n)
C

...
...

∇wCp(n)
1 · · · ∇wCp(n)

C

 (A.24)

=

p
(n)
1 (1− p(n)

1 )φ(n) · · · −p(n)
C p

(n)
1 φ(n)

...
...

p
(n)
1 p

(n)
C φ(n) · · · p

(n)
C (1− p(n)

C )φ(n)

 (A.25)

= (diag p(n) − p(n)p(n)T)⊗ φ(n). (A.26)
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Substituting this expression into (A.23) leads to

∇2
WP log

δ (W ;D) =
N∑
n=1

((diag p(n) − p(n)p(n)T)⊗ φ(n))⊗ φ(n)T + δΓ⊗Σ

(A.27)

=
N∑
n=1

(diag p(n) − p(n)p(n)T)⊗ φ(n)φ(n)T + δΓ⊗Σ.

(A.28)

A.3 Proof of Lemma 2.1.4

Before giving the proof of Lemma 2.1.4, we will introduce a lemma that we
will need.

Lemma A.3.1 The gradient of pc = p(y = c|X,W ,λ) in eq. (2.10) with
respect to the lth element of λ is

∂

∂λl
pc = pc(wT

c − pTW T )
∂

∂λl
φ(X;λ). (A.29)

Proof (Lemma A.3.1) Using the product rule and the chain rule gives us

∂

∂λl
pc =

∂

∂λl

ew
T
c φ(X;λ)∑C

i=1 e
wT
i φ(X;λ)

= − 1

(
∑C

i=1 e
wT
i φ(X;λ))2

( C∑
j=1

ew
T
j φ(X;λ) ∂

∂λl
wT
j φ(X;λ)

)
ew

T
c φ(X;λ)

+
1∑C

i=1 e
wT
i φ(X;λ)

ew
T
c φ(X;λ) ∂

∂λl
wT
c φ(X;λ)

= −pc
C∑
j=1

pj
∂

∂λl
wT
j φ(X;λ) + pc

∂

∂λl
wT
c φ(X;λ)

= pc

(
wT
c −

C∑
j=1

pjw
T
j

)
∂

∂λl
φ(X;λ)

= pc(wT
c − pTW T )

∂

∂λl
φ(X;λ).

(A.30)
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Proof (Lemma 2.1.4) Let p(n)

y(n) = p(y = y(n)|X(n),W ,λ). The partial
derivative of (2.63) satisfies

∂

∂λl
P log
δ (W ,λ,D) = −

N∑
n=1

∂

∂λl
log p(n)

y(n)

+
δ

2
∂

∂λl
trace ΓWTΣ(λ)W .

(A.31)

For the first part of (A.31), we can apply the chain rule to get

−
N∑
n=1

∂

∂λl
log p(n)

y(n) = −
N∑
n=1

1

p
(n)

y(n)

∂

∂λl
p

(n)

y(n) (A.32)

Furthermore, we can use Lemma 2.1.4 which gives us

∂

∂λl
p

(n)

y(n) = p
(n)

y(n)

(
wT
y(n) − p(n)TWT

)
∂

∂λl
φ(X(n);λ) (A.33)

Substituting this into (A.32) leads to

−
N∑
n=1

∂

∂λl
log p(n)

y(n) = −
N∑
n=1

(
wT
y(n) − p(n)TWT

)
∂

∂λl
φ(X(n);λ) (A.34)

= −
N∑
n=1

(
eT
y(n)W

T − p(n)TWT

)
∂

∂λl
φ(X(n);λ)

(A.35)

= −
N∑
n=1

(
eT
y(n) − p(n)T

)
WT ∂

∂λl
φ(X(n);λ) (A.36)

= − trace
{(
Y T − PT(W )

)
WT ∂

∂λl
Φ
}

(A.37)

= trace
{(
PT(W )− Y T

)
WT ∂

∂λl
Φ
}
. (A.38)
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For the second partial derivative in (A.31) we get

∂

∂λl
trace ΓWTΣ(λ)W =

∂

∂λl
traceWΓWT 1

N
ΦΦT (A.39)

=
∂

∂λl
traceWΓWT 1

N

N∑
n=1

φ(X(n);λ)φT(X(n);λ)

(A.40)

=
1
N

N∑
n=1

∂

∂λl
traceφT(X(n);λ)WΓWTφ(X(n);λ)

(A.41)

=
2
N

N∑
n=1

φT(X(n);λ)WΓWT ∂

∂λl
φ(X(n);λ)

(A.42)

=
2
N

trace ΦTWΓWT ∂

∂λl
Φ, (A.43)

where the second last equality stems from use of the chain rule and the fact
that WΓWT is symmetric.

Finally, substituting (A.34) and (A.43) into (A.31) yields

∂

∂λl
P log
δ (W ,λ;D) = trace

{(
PT(W )− Y T

)
WT ∂

∂λl
Φ
}

+
δ

N
trace ΦTWΓWT ∂

∂λl
Φ

= trace
{( δ

N
ΦTWΓ + PT(W )− Y T

)
WT ∂

∂λl
Φ
}
.

(A.44)

A.4 Proof of Lemma 2.2.1

Proof Since we know the gradient of P log
δ (W ;D) with respect to W and

since W = Σ−1ΦV , we can use the chain rule to find the gradient of
P̌ log
δ (V ;D). The chain rule can be written

vec∇V P̌ log
δ (V ;D) =

dW
dV

vec∇WP log
δ (W ;D), (A.45)
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where dW /dV is the NC × (M + 1)C Jacobian matrix containing the
partial derivatives of all elements of W with respect to all elements of V ,
and can be found to be

dW
dV

= IC ⊗ΦTΣ−1. (A.46)

Substituting dW /dV and P log
δ (W ;D) into (A.45) leads to

vec∇V P̌ log
δ (V ;D) = IC ⊗ΦTΣ−1 vec{Φ(P (W )T − Y T) + δΣWΓ}

(A.47)

= vec{ΦTΣ−1Φ(P (W )T − Y T) + δΦTWΓ}. (A.48)

Then

∇V P̌ log
δ (V ;D) = ΦTΣ−1Φ(P (W )T − Y T) + δΦTWΓ, (A.49)

and after substitution of W = Σ−1ΦV and P (W ) = P̌ (V ) we get

∇V P̌ log
δ (V ;D) = ΦTΣ−1Φ(P̌ (V )T − Y T) + δΦTΣ−1ΦV Γ. (A.50)

Finally we use the definition of the kernel matrix K = ΦTΣ−1Φ and get

∇V P̌ log
δ (V ;D) = K(P̌ (V )T − Y T + δV Γ). (A.51)

A.5 Proof of Lemma 2.2.2

Proof Using the chain rule and the product rule we can obtain the follow-
ing formula for calculating the Hessian matrix:

∇2
V P̌ log

δ (V ;D) =
dW
dV
∇2
WP log

δ (W ;D)
(

dW
dV

)T

+ vec∇WP log
δ (W ;D)⊗ d2W

dV 2
, (A.52)

where dW /dV is the Jacobian in (A.46) and d2W /dV 2 denotes the deriva-
tive of the Jacobian with respect to V . Since the Jacobian is not a function
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of V , we have that d2W /dV 2 = 0 and we can write

∇2
V P̌ log

δ (V ;D) =
dW
dV
∇2
WP log

δ (W ;D)
(

dW
dV

)T

= IC ⊗ΦTΣ−1

·
( N∑
n=1

(diag p(n) − p(n)p(n)T)⊗ φ(n)φ(n)T + δΓ⊗Σ
)

· IC ⊗Σ−1Φ

=
N∑
n=1

(diag p(n) − p(n)p(n)T)⊗ΦTΣ−1φ(n)φ(n)TΣ−1Φ

+ δΓ⊗ΦTΣ−1Φ

=
N∑
n=1

(diag p(n) − p(n)p(n)T)⊗ k(X(n))kT(X(n)) + δΓ⊗K,

(A.53)

where in the last step we have substituted K = ΦTΣ−1Φ and k(X(n)) =
ΦTΣ−1φ(n)T.

A.6 Proof of Lemma 4.1.1

Proof Let us for simplicity omit the indexes m and n. The partial deriva-
tive is

∂ log p̂(X;λ)
∂µ̃qhd

=
T∑
t=1

∂

∂µ̃qhd
log p(xt|q̂t,ηq̂t). (A.54)

In the sum over t, only the terms that satisfy q̂t = q will be nonzero. Thus

∂ log p̂(X;λ)
∂µ̃qhd

=
T∑
t=1

δ(q̂t − q) ∂

∂µ̃qhd
log p(xt|q,ηq) (A.55)

=
T∑
t=1

δ(q̂t − q) 1
p(xt|q,ηq)

∂

∂µ̃qhd
p(xt|q,ηq). (A.56)

Furthermore, in the GMM, only mixture component h will be nonzero
giving

∂p(xt|q,ηq)
∂µ̃qhd

= cqh(2π)−D/2
( D∏
d=1

σqhd

)−1 ∂

∂µ̃qhd
e
− 1

2

PD
i=1

(
xti−µ̃qhiσqhi

σqhi

)2
(A.57)



A.7 Proof of Lemma 4.1.2 103

Using the chain rule we get

∂p(xt|q,ηq)
∂µ̃qhd

= cqh(2π)−D/2
( D∏
d=1

σqhd

)−1

e
− 1

2

PD
i=1

(
xti−µ̃qhiσqhi

σqhi

)2
(
− 1

2
2

σ2
qhd

(xtd − µ̃qhdσqhd) · (−σqhd)
)
, (A.58)

which reduces to

∂p(xt|q,ηq)
∂µ̃qhd

= cqhN (µqh,Σqh)
(
xtd
σqhd

− µ̃qhd
)

(A.59)

= cqhN (µqh,Σqh)
(
xtd − µqhd
σqhd

)
. (A.60)

Substituting this into (A.56) yields

∂ log p̂(X;λ)
∂µ̃qhd

= δ(q̂t − q)cqhN (µqh,Σqh)
p(xt|q,ηq)

(
xtd − µqhd
σqhd

)
. (A.61)

A.7 Proof of Lemma 4.1.2

Proof Let us for simplicity omit the indexes m and n. Similar to (A.56)
we get

∂ log p̂(X;λ)
∂σ̃qhd

=
T∑
t=1

δ(q̂t − q) 1
p(xt|q,ηq)

∂

∂σ̃qhd
p(xt|q,ηq). (A.62)

Furthermore

∂p(xt|q,ηq)
∂σ̃qhd

= cqh(2π)−D/2
∂

∂σ̃qhd

( D∏
i=1

σqhi

)−1

e
− 1

2

PD
j=1

(
xtj−µqhjσqhi

e
σqhj

)2
(A.63)

= cqh(2π)−D/2
∂

∂σ̃qhd

(
e−

PD
i=1

(
σ̃qhi+

1
2

(xti−µqhi)2e
−2σ̃qhi

))
.

(A.64)

Using the chain rule yields

cqh(2π)−D/2
( D∏
d=1

σqhd

)−1

e
− 1

2

PD
i=1

(
xti−µ̃qhiσqhi

σqhi

)2(
(xtd−µqhd)2e−2σ̃qhd−1

)
,

(A.65)
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which reduces to

∂p(xt|q,ηq)
∂σ̃qhd

= cqhN (µqh,Σqh)
(

(xtd − µqhd)2e−2σ̃qhd − 1
)

(A.66)

= cqhN (µqh,Σqh)
((

xtd − µqhd
σqhd

)2

− 1
)
. (A.67)

Substituting this into (A.62) yields

∂ log p̂(X;λ)
∂σ̃qhd

= δ(q̂t − q)cqhN (µqh,Σqh)
p(xt|q,ηq)

((
xtd − µqhd
σqhd

)2

− 1
)
. (A.68)



Appendix B

Estimation of Hidden
Markov Model Parameters

We start this appendix with the definition of two variables that are needed
for efficient computation of the update equations for the HMM parameters.
The variables are known as the forward variable and the backward variable.

In Chapter 3 we presented an algorithm for computing the likelihood
p(X) that proceeds forward in time. The algorithm is called the forward
algorithm, and at each time t it computes the forward variable

α(qt) = p(x1, . . . ,xt, qt), qt = 1, . . . , Q. (B.1)

There is also an algorithm for computing the likelihood that proceeds
backwards in time which is based on the following equation:

p(X) =
∑
q1

πq1p(x1|q1)
∑
q2

aq1,q2p(x2|q2) . . .

· · ·
∑
qT−1

aqT−2,qT−1p(xT−1|qT−1)
∑
qT

aqT−1,qT p(xT |qT ).
(B.2)

This is the basis for the backward algorithm.

Algorithm B.0.1 (The Backward Algorithm) Computes the likelihood
p(X) of a time series X with respect to a hidden Markov model.

1. Initialize:
β(qT ) = 1, q1 = 1, . . . , Q (B.3)

2. Iterate: for t = T − 1, . . . , 1

β(qt) =
∑
qt+1

aqt,qt+1p(xt+1|qt+1)β(qt+1), qt = 1, . . . , Q (B.4)
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3. Terminate:
p(X) =

∑
q1

πq1p(x1|q1)β(q1) (B.5)

For each time t, the backward variable β(qt) is the conditional proba-
bility of the partial time series (xt+1, . . . ,xT ) given the state variable qt,
i.e.,

β(qt) = p(xt+1, . . . ,xT |qt), qt = 1, . . . , Q. (B.6)

Thus, it can be easily seen from (B.1) and (B.6) that the likelihood of the
whole time series X can also be computed as

p(X) =
∑
qt

α(qt)β(qt) (B.7)

at any time t.
The maximum likelihood estimate of the HMM parameters can be

found by maximizing the likelihood, or equivalently, by maximizing the
log-likelihood with respect to the HMM parameters. Mathematically, the
maximum likelihood estimate using a single observation X is

λ̂ = arg max
λ∈Λ

log p(X;λ) (B.8)

= arg max
λ∈Λ

log
∑
q

p(X, q;λ), (B.9)

where Λ denotes the parameter space of the HMM, i.e., the set of all
allowable values for λ. The above maximization is difficult since the
log-likelihood is the logarithm of a sum. Instead of maximizing the log-
likelihood itself, we can maximize a lower bound B on the log-likelihood
obtained by an application of Jensen’s inequality as follows:

log p(X;λ) = log
∑
q

p(X, q;λ) (B.10)

= log
∑
q

f(q|X)
p(X, q;λ)
f(q|X)

(B.11)

≥
∑
q

f(q|X) log
p(X, q;λ)
f(q|X)

= B(f,λ), (B.12)

where f(q|X) is a probability distribution over q. The expectation max-
imization (EM) algorithm [Dempster et al., 1977; Bilmes, 1997; Jordan,
2007] maximizes the bound B(f,λ) using coordinate ascent with coordi-
nates f and λ. Mathematically speaking, the EM algorithm alternately
calculates

f (i+1) = arg max
f

B(f,λ(i)), (B.13)
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and
λ(i+1) = arg max

λ
B(f (i+1),λ). (B.14)

The latter maximization can be simplified by noting that the bound can
be written

B(f,λ) =
∑
q

f(q|X) log p(X, q;λ)−
∑
q

f(q|X) log f(q|X) (B.15)

= Ef log p(X, q;λ)−
∑
q

f(q|X) log f(q|X), (B.16)

where Ef denotes the expectation with respect to the conditional distribu-
tion f(q|X). Thus, since only the first term is dependent on λ, (B.14) can
be written

λ(i+1) = arg max
λ

Ef (i+1) log p(X, q;λ). (B.17)

The maximum of B(f,λ(i)) with respect to f occurs when f =
p(q|X;λ(i)). This can be seen from

B(p(q|X;λ(i)),λ(i)) =
∑
q

p(q|X;λ(i)) log
p(X, q;λ(i))
p(q|X;λ(i))

(B.18)

=
∑
q

p(q|X;λ(i)) log p(X;λ(i)) (B.19)

= log p(X;λ(i)), (B.20)

since for this choice, B achieves its maximum which is the log-likelihood
function. Thus, the maximization in (B.13) can be written f (i+1) =
p(q|X;λ(i)) and the EM algorithm consists of the following two steps:

E step L(λ,λ(i)) = Ep(q|X;λ(i)) log p(X, q;λ)

M step λ(i+1) = arg max
λ
L(λ,λ(i)).

The E-step amounts to computing the expectation of the complete
log-likelihood log p(X, q;λ) with respect to the conditional distribution
p(q|X;λ(i)). For a hidden Markov model with parameter λ = (π,A,η)
the complete log-likelihood is

log p(X, q;λ) = log πq1 +
T∑
t=2

log aqt−1,qt +
T∑
t=1

log p(xt|qt;ηqt). (B.21)
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Then, taking the expectation with respect to p(q|X;λ(i)) yields

L(λ,λ(i)) = Ep(q|X;λ(i)) log p(X, q;λ) =
∑
q

p(q|X;λ(i)) log πq1

+
∑
q

p(q|X;λ(i))
T∑
t=2

log aqt−1,qt

+
∑
q

p(q|X;λ(i))
T∑
t=1

log p(xt|qt,η).

(B.22)

In the expression above π, A and η occur in different terms, which has the
nice property that the three components of λ = (π,A,η) can be optimized
independently. Doing so results in the following update equations for the
elements of π and the elements of A:

π(i+1)
q = p(q1 = q|X;λ(i)), q = 1, . . . , Q, (B.23)

a(i+1)
qr =

∑T
t=1 p(qt−1 = q, qt = r|X;λ(i))∑T

t=1 p(qt−1 = q|X;λ(i))
, q, r = 1, . . . , Q. (B.24)

The probabilities in the above update equations can be efficiently computed
using the forward and backward algorithm. From (B.1) and (B.6) we get

p(qt|X) =
α(qt)β(qt)
p(X)

, (B.25)

and

p(qt, qt+1|X) = ξ(qt, qt+1) =
α(qt)p(xt+1|qt+1)β(qt+1)aqt,qt+1

p(X)
. (B.26)

The update equations for the GMM parameters are

c
(i+1)
qh =

∑T
t=1 p(qt = q, hqt,t = h|X,λ(i))∑T

t=1

∑H
h=1 p(qt = q, hqt,t = h|X,λ(i))

, (B.27)

µ
(i+1)
qh =

∑T
t=1 xtp(qt = q, hqt,t = h|X,λ(i))∑T
t=1 p(qt = q, hqt,t = h|X,λ(i))

(B.28)

and

Σ(i+1)
qh =

∑T
t=1(xt − µ(i+1)

qh )(xt − µ(i+1)
qh )Tp(qt = q, hqt,t = h|X,λ(i))∑T

t=1 p(qt = q, hqt,t = h|X,λ(i))
.

(B.29)
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