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Ever’body says words different ...
Arkansas folks says ’em different,
and Oklahomy folks says ’em
different. And we seen a lady from
Massachusetts, an’ she said ’em
differentest of all. Couldn’ hardly

make out what she was sayin’.

John Steinbeck
The Grapes of Wrath (1939)






Abstract

In this dissertation a complete data-driven approach to rule-based lexicon
adaptation is presented, where the effect of the acoustic models is incorporated
in the rule pruning metric.

Robust speech recognition is an important research topic, which can con-
tribute to make systems based on automatic speech technology more user-
friendly. To achieve a robust system the variation seen for different speaking
styles must be handled. In this dissertation we have therefore investigated
how to model pronunciation variation for different speaking styles.

The method presented in this dissertation consists of data-driven solutions
to all the steps in rule-based pronunciation modelling;:

First an alternative transcription is generated from phone recognition
of each utterance, using the acoustic models in order to observe the
variation without the restriction of the recognizer’s lexicon. We use the
same acoustic models as we later will use in the recognition phase for a
consistent rule derivation and assessment.

Alignment of the transcriptions is performed by the traditional dynamic
programming approach or by a time synchronous approach. For the
dynamic programming a data-driven method to deriving phone-to-phone
substitution costs based on the statistical co-occurrence of phones, asso-
ciation strength, is introduced.

Rules for pronunciation variation are derived from this alignment. The
rules are pruned using a new metric based on the acoustic log like-
lihood. Well trained acoustic models are capable of modelling much
of the variation seen, using the acoustic log likelihood to assess the
pronunciation rules prevents the lexical modelling from adding variation
already accounted for.

The pruned rules are then used to generate pronunciation variants and
the lexicon is modified.
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ABSTRACT

e Adding variants to the lexicon not only corrects errors, but may also
introduce new errors. Controlling the added confusability is therefore
important. A framework for confusability measures based on decision
theory is introduced.

The experiments start with a general investigation of standard automatic
speech recognition techniques for different speaking styles. The speaking
styles investigated are read speech and spontaneous dictation from native
speakers and read non-native speech. A general purpose pronunciation lexicon
containing variants and marked canonical pronunciations is used to compare
acoustic modelling and lexical modelling of pronunciation variation. Perfor-
mance of acoustic models of different levels of complexity is also compared.
The results show that the lexical modelling using the general purpose variants
gave small improvements, but the errors differed compared with using only one
canonical pronunciation per word. Modelling the variation using the acoustic
models (using context dependency and/or speaker dependent adaptation) gave
a significant improvement, but the resulting performance for non-native and
spontaneous speech was still far from read speech. Data-driven pronunciation
variation modelling is therefore investigated for these two speaking styles.

For the non-native task data-driven pronunciation modelling by learning
pronunciation rules gave a significant performance gain. Acoustic log likeli-
hood rule pruning performed better than rule probability pruning. The largest
improvement was seen when incorporating the variation for all the speakers
in one lexicon, making it possible to use the same lexicon and acoustic models
for all speakers.

For spontaneous dictation the pronunciation variation experiments did not
improve the performance. The answer to how to better model the variation
for spontaneous speech seems to lie neither in the acoustical nor the lexical
modelling. One of the main differences between read and spontaneous speech
is the grammar used as well as disfluencies like restarts and long pauses. The
language model may therefore be the best choice for more research to achieve
better performance for this speaking style.

Finally, alignment methods are compared. The association strength scheme
for deriving substitution costs is shown to give better performing rules than
other dynamic programming methods. The usual dynamic programming ap-
proach has difficulties: 1) for transcription errors and disfluencies (usual in
spontaneous speech) and 2) when aligning different words (for confusability
measures). We also show examples of alignments where a time synchronous
alignment may be beneficial to ensure that we compare the same acoustic
segments.
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Chapter 1

Introduction

Applications using speech technology have for long been a natural part of
many futuristic descriptions in books, films, T'V-series, and commercials. The
technology has over the last years reached a state where we see speech tech-
nology based products also being used in the real world. The acceptance
by the public increases as the technology improves, but we are still far from
the conversational interfaces encountered in fiction. The speech technology
applications in real use are limited in one way or the other to give acceptable
performance. Limitations often used are e.g. restricted vocabulary, restricted
environments, and systems tailored to one or a few users.

Among the most popular type of applications used by the general public are
travel information, call centres, and ordering phones. Many different ways of
speaking must be tolerated, and the dialogues are usually kept quite restricted
to simplify the task for the system. Another use of speech technology is
automatic dictation e.g. for medical personnel, where the system is tailored to
one person and thus can manage a larger vocabulary.

1.1 Background

A speech technology based system consists of a speech recognition system
for speech input, a speech synthesizer for speech output, and a dialogue
manager to handle the dialogue. In this dissertation, only the automatic
speech recognition (ASR) system will be considered.

Speech input is preferable when the users need to have their hands and eyes
free to do other tasks, as in a car or control room environment, or when the
device to be controlled is out of reach. Complex actions like asking for several
information items at the same time are easier using speech than a graphical
interface. Compared to a graphical interface a speech based system can easily
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refer to invisible objects. On the other hand there may be ambiguities in
referring to the objects. (If a users says “this” the system must interpret
what object “this” refers to.) The advantages by using speech rely on a
well functioning speech recognition system. With many recognition errors the
disadvantage for the user who must perform error-corrections will outweigh
the advantages. The advantages of interaction through speech can best be
utilized in a multimodal setting. Multimodal user interfaces give the user the
opportunity to choose the most suitable mode depending on the situation.

The goal of all research on ASR is to improve the performance. Improved
ASR will help make systems based on speech technology more user-friendly
and also increase the number of applications that can be speech-enabled. For
languages where the ASR research effort has been large, (e.g. US and UK
English, Japanese, German) the current technology has reached such a state
that useful applications based on speech recognition are possible, e.g. products
for controlled tasks like dictation [130]. In the future more and more advanced
speech and language based services are expected [16].

With the promising performance of state-of-the-art ASR systems it is
possible to strive for further improvements that will handle more speaker and
environmental variation. To make a speech recognition product a success there
must be few restrictions on the customer’s behaviour and environment. If ASR
systems can cope with conversational dialogues it is possible to use mixed
initiative, not only machine-driven dialogues [132]. This development calls for
a deeper understanding of the underlying principles of spoken language [42].
It also calls for an understanding of the recognizer to ensure that variation in
speech is addressed correctly. Changes in one part of the recognition system
will influence other parts of the system.

Current ASR systems have difficulties with spontaneous speech encoun-
tered in conversational dialogues, as well as accent and dialect variability.
The substantial differences between non-native speech and native speech will
also challenge a “native” ASR system. More subtle differences that are eas-
ily handled by humans (e.g. Australian versus US English) may still cause
problems for ASR. The speaker dependent variations will mainly be caused
by inter-speaker variability, but we will also encounter intra-speaker variabil-
ity, i.e. the same speaker may behave differently depending on the context
(e.g. environment and task) and over time when getting used to a system. In
this dissertation we concentrate on the variability that is not on the acoustic
level (e.g. the variability due to the differences in the vocal apparatus between
individuals), but on the variation on the lexical level that will be similar for
groups of speakers. We call this variation different speaking styles.

Our objective is to investigate both the similarities and differences among
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the different speaking styles and how to best model the variation seen. Even
if there are different types of variation, the methods for treating them may be
similar.

1.2 Robust automatic speech recognition

All ASR systems must handle variation. The same word spoken several times
by the same speaker will vary both in length and acoustical content. For
speaker independent speech recognition the voice quality and characteristics
will vary even more. The term robust automatic speech recognition is used
when we consider variation beyond the inter- and intra-speaker acoustic dif-
ferences we see even for read speech.

The variation in speech input to a speech technology based service may be
divided into three groups:

1. Pronunciation variation
2. Grammar and vocabulary variation
3. Channel and noise variation

Pronunciation, grammar and vocabulary variation will be speaker dependent
whereas channel and noise variation will depend on the environment. Trying
to make ASR handle both speaker and environment variation is crucial in
robust modelling. The research groups interested in one of these two issues
are often interested in the other one as well, as both areas must be handled
for example in public telephone services based on speech recognition.
Different speakers using different speaking styles will use different pronun-
ciations. Spontaneous speech and different dialects or accents are examples
of speaking styles with pronunciations that differ from the canonical ones
often found in pronunciation dictionaries. The population of most countries
becomes more and more multinational, and non-native users will increase the
observed variability in pronunciation even more. There will also be differences
between expert and novice users of a speech based service (e.g. fast versus
over-articulated speech). User-friendly systems should be able to recognize the
pronunciations judged appropriate by the user. One of the eight golden rules
in user interface design is to “Support internal locus of control” [102]. The
user should be spared surprising system actions when using “non-surprising”
speech. This will help the user to keep a consistent mental model of the
system, which is of great importance for a well-designed dialogue system. If the
recognizer makes errors when the user is using rare words or pronunciations,
this will be understandable for the user. To make dialogue systems using
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speech recognition more user-friendly, robustness to common pronunciation
variation is needed.

The task that the speech based application is intended for gives require-
ments for the recognizer’s vocabulary and grammar, and presents another
source of variation. The vocabulary and grammar preferred by the user
may vary dependent on e.g. non-nativeness, dialect and sociolect, as well as
differences between expert and novice users. One cannot assume that the
users of a speech technology application will stick to a well-defined grammar
(as perhaps for dictation systems). Users may be unwilling to normalize both
pronunciation and grammar. They may also be unaware of their own pecu-
liarities. Many perceive their own speaking style as normalized but all these
“normalized” variants differ. There was for example an unexpected amount
of variation in pronunciation among professional speakers when searching
for “model” speakers for Austrian German [83]. Hesitations, restarts, and
other disfluencies are also characteristics of spoken language that vary among
speakers and must be handled by the language model in a speaker-independent
system. Robustness is therefore also needed in modelling grammar variability.

The third main variable that needs to be addressed in speech recognition-
based applications is non-speech variation, e.g. noise and channel variation.
Both pronunciation and grammar variation are dependent on the user and
therefore quite different from this last type of variation that is dependent
on the environment. To control how we model the observed variation, we
should treat the environment and speaker variation separately. Acoustic model
adaptation techniques can model both speaker and environment variations.
Explicitly separating these two effects is recognized as an important area for
future research [125].

1.3 Pronunciation modelling

It is desirable for speech recognition systems to manage diverse speaking styles,
(e.g. spontaneous speech, accents and dialects, and speech from users with
different mother tongues), but such variation in user input is difficult for the
current state-of-the-art recognizers. One way of improving this is better mod-
elling of pronunciation variation. The pronunciation dictionary is therefore an
important part of the ASR. In this dissertation it is called a lexicon, a familiar
term in the speech community. A lexicon defines the transcription of the words
in terms of the acoustic model units of the recognizer. This transcription
will not necessarily look like an entry in a pronunciation dictionary made for
humans and not machines. This will be treated in more detail in section 2.2.3.

Pronunciation modelling is by no means a new issue in the ASR community,
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early efforts are reported in e.g. [8] and [95]. Pronunciation variation modelling
is still an important issue in ASR research, and overviews are for example given
in [113] and [114]. More recently multilingual ASR has become an interest [1],
which introduces new challenges for pronunciation modelling.

Pronunciation variation can be captured using linguistic knowledge, i.e. spe-
cific knowledge about how people with different accents pronounce words, but
this knowledge is not always sufficient for pronunciation modelling. As an
example, a transcription of spontaneous US English speech (Switchboard)
revealed at least 80 variants of the word “and” [43]. Non-native speech
varies even more, and the phonological rules governing the variation will
probably be different for speakers with different mother tongues. In such
cases a data-driven approach may be more suitable where we try to extract
information from a database containing the speech we want to model. The
resulting pronunciation rules will depend on the database and thus on the
language, as well as the task and speaking style. This may be favourable for
a tailored system as we then only model the variation seen for this specific
task. Nevertheless, a method that is independent of the specific database
and language is preferable, as it can be reused for other tasks without major
modifications.

Linguistic knowledge does not give sufficient information to optimize an
automatic speech recognizer. The knowledge varies from language to lan-
guage, but even for the most studied languages pronunciations are constantly
changing and the number of different speaking styles with their characteristics
makes it infeasible to have a complete picture. The speech recognition models
used today are therefore based on statistical representation and analysis, which
must be kept in mind when optimizing the system. A handbook in dialogue
design for speech technology by Balentine and Morgan [12] says (page 70):

“Such models contain statistical-processing artifacts that bear no
direct relations to human hearing, and consequently speech recog-
nition often makes mistakes humans would not make.”

All parts of the recognizer except the lexicon are usually optimized with
respect to objective criteria. A data-driven approach will enable us to use the
same criteria for the lexicon as for the other parts of the recognizer, allowing
a unified optimization of the whole system. We therefore believe a data-
driven approach to pronunciation modelling should be preferred. There is no
reason to ignore linguistic knowledge, but the effects of the pronunciation rules
derived using either method should be verified on representative speech data.

The statistically based acoustic models of current ASR systems are capable
of handling much of the variation seen in speech, also pronunciation variation.
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More complex acoustic models will for example handle many allophonic vari-
ations in a suitable way. Adaptation of the acoustic models is a successful
method to further improve individual recognizers.

Some pronunciation variation can be described as phonological, e.g dele-
tions, insertions, and larger changes (larger both in length and acoustic vari-
ation.) This kind of variation may be better handled at the lexical level.
Modelling of a group of very different speakers by adapting the acoustic models
may result in diffuse models, and in these cases pronunciation modelling
by changing the lexicon may give better performance. The two techniques
for capturing variation should be combined using the method that gives the
best result; acoustic model adaptation for the pronunciation variation at the
allophonic level, and lexicon adaptation for the more phonological variation.

Since large vocabulary recognizers always include a language model, the
effect of this model should be incorporated in the pronunciation modelling
techniques.

One of the main problems in pronunciation modelling is to make sure that
we know which variation we are modelling. The effect of the acoustic models,
the lexicon, and the language model will interact. The possibility of adding
superfluous complexity by modelling the same variation several times, or even
worse, adding contradicting changes, must be avoided.

1.4 This dissertation

In this dissertation the focus is on using the lexicon to capture speaker vari-
ation, using the same lexicon and the same acoustic models for all speakers.
Experiments on individual lexicon adaptation as well as acoustic model adap-
tation are also presented.

We believe all parts of the system should be optimized in a consistent
way. The training of the acoustic and language parts of an ASR system is
based on objective criteria, objective criteria should be used for optimizing the
lexicon also. This calls for data-driven methods in pronunciation modelling.
Knowledge about human perception and production of speech, as well as
linguistics and phonetics, is important, but must be formalized for building
the ASR system.

Different measures can be used in data-driven pronunciation modelling.
We believe the acoustic likelihood should be utilized as a measure in pro-
nunciation modelling. We then take into consideration the variation already
modelled by the acoustic models and thereby give a measure consistent with
the optimization of the whole ASR system.

One of the major drawbacks with data-driven modelling is that we are
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restricted to variation present in the lexicon adaptation data. Direct modelling
of pronunciation variation by deriving alternative pronunciations for words
present in sufficient numbers in the adaptation data, has been shown to give
improvement, e.g. in [49]. To model pronunciations for words not present in
the lexicon adaptation data (“unseen words”), it is necessary to extend the
method to modelling pronunciation rules, and thereby generalize the variation
seen in the adaptation data. This gives many new challenges on how to derive
the rules and how to generate and assess pronunciation variants from them.

One reason for the modest improvements achieved in pronunciation mod-
elling is the lack of a way to control the confusability between pronunciations.
To make lexica tailored to a person or group we cannot rely on just adding
extra pronunciations, we must also remove confusable ones. The use of dis-
criminative methods in choosing which pronunciations to add to the lexicon
is one way of solving this problem.

Pronunciation modelling consists of several steps, including alignment of
the reference and alternative transcriptions. Although this is a small part of
pronunciation modelling (and therefore the whole system), we have investi-
gated alignment methods based on objective criteria in order to be consistent
in all parts of the pronunciation modelling.

Last, but not least, it is important to gain knowledge on the effect of
the different variation modelling techniques for different speaking styles. The
impact of various standard ASR techniques on different speaking styles has
been therefore investigated.

1.4.1 Contributions of the dissertation

e Data-driven pronunciation rule assessment using acoustic like-
lihood:
In this dissertation the acoustic likelihood derivation and selection of
pronunciation variants presented in [49] is expanded to derivation and
selection of pronunciation rules. The advantage of consistent optimiza-
tion when using an acoustic likelihood based metric is combined with
the possibility to model pronunciations for unseen words.

¢ Data-driven alignment using dynamic programming with phone
to-phone substitution costs derived using the data:
Current alignment methods use costs for phone-to-phone substitutions
based on phonetic knowledge or phone identity only. In this dissertation
we present a data-driven approach to derive the costs. This method is in-
spired by the grapheme-to-phoneme conversion in [68]. These costs may
be more suitable than phonologically based costs when the alternative
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transcription to be aligned is automatically derived without phonological
constraints. This method also gives the possibility of non-symmetric
mappings.

¢ Data-driven pronunciation rule derivation using time synchronous

alignment:

Another alignment alternative using the time information provided by
the ASR system is presented in this dissertation. Using this alignment
method we assure we compare the transcriptions of the same acoustic
segments. This method also provides pronunciation rules without the
need for an extra rule derivation step. Corresponding acoustic likelihood
scores are also derived as a by-product.

e Comparisons of standard variation modelling techniques for
different speaking styles:
State-of-the art variation modelling techniques are evaluated in this
dissertation for different speaking styles. The study is focused on the
comparison of acoustic and lexical modelling.

e A framework for decision theory applied to pronunciation mod-
elling:
An assessment method for confusability is important. In this dissertation
known decision theory methods, e.g. from [61] and [67], are used to
derive confusability measures given a lexicon and an appropriate lexicon
adaptation set.

1.4.2 Outline of the dissertation

Chapter 2 describes the basics of the automatic speech recognition system
at the level necessary to understand the experiments in this dissertation.
The description starts with a short explanation of elements from phonetics
and phonology that are relevant for ASR systems. Three ways of modelling
pronunciation variation in different parts of the recognizer are outlined. A
section on statistical considerations is also included in this chapter. The
kinds of variation in spoken language that can be addressed by pronuncia-
tion modelling, in this dissertation called “speaking styles”, are described in
chapter 3. Language modelling topics concerning speaking style variation are
also described. Modelling pronunciation variation is also closely related to
the adaptation of the acoustic models; this subject is described in chapter 4.
Lexicon adaptation is the main subject of this dissertation and is described in
chapter 5. Chapters 3, 4, and 5 give an overview of previous work in the field.
The theory underlying the experiments in this dissertation is given in chapter
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6. Experiments are described in the result chapters 7, 8, 9, and 10. These
4 result chapters conclude with discussions and short summaries. Finally, a
concluding summary is given in chapter 11.

1.4.3 List of publications

Parts of the results presented in this dissertation are published in the following
publications:

e [. Amdal and T. Svendsen, “Evaluation of pronunciation variants in the
ASR lexicon for different speaking styles,” in Proc. LREC-2002, (Las
Palmas de Gran Canaria, Spain), pp. 12901295, 2002.

e I. Amdal, F. Korkmazskiy, and A. C. Surendran, “Joint pronunciation
modelling of non-native speakers using data-driven methods,” in Proc.
ICSLP-2000, (Beijing, China), pp. I11:622-625, 2000.

e [. Amdal, F. Korkmazskiy, and A. C. Surendran, “Data-driven pro-
nunciation modelling for non-native speakers using association strength
between phones,” in Proc. ISCA ITRW ASR2000, (Paris, France),
pp. 85-90, 2000.

The results on maximum likelihood variants in section 8.3.2 are based on
similar experiments published in:

e [. Amdal, T. Holter, and T. Svendsen, “Modellering av uttalevariasjon
for automatisk talegjenkjenning” in Nordlyd (Tromsg University working
papers on language € linguistics), vol. 28, pp. 74-87, 2000.

e I. Amdal, T. Holter, and T. Svendsen, “Maximum likelihood pronun-
ciation modelling of Norwegian natural numbers for automatic speech
recognition,” in Proc. Norwegian Signal Processing Symposium (NOR-
SIG), (Asker, Norway), pp. 145-150, 1999.

Further work on confusability metrics is presented in:

e E. Fosler-Lussier, I. Amdal, and H.-K. J. Kuo, “On the road to improved
lexical confusability metrics,” in Proc. ISCA ITRW Pronunciation Mod-
eling and Lexicon Adaptation (PMLA), (Estes Park (CO), USA), pp. 53—
58, 2002.
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Earlier work with relevance to pronunciation modelling is presented in:

e K. Kvale and I. Amdal, “Improved automatic recognition of Norwe-
gian natural numbers by incorporating phonetic knowledge,” in Proc.
ICASSP-97, (Munich, Germany), pp. 1763-1766, 1997.

e K. Kvale and I. Amdal, Automatic recognition of Norwegian natural
numbers over telephone lines, Telenor R&D report 19/97, 1997.



Chapter 2

The automatic speech
recognition system

Speech technology relies on contributions from many different sciences. There
are components from acoustics, auditory perception, signal processing, statis-
tics, mathematics, phonetics and phonology, linguistics, and computer science.
This chapter gives a brief introduction to the some of the theory that automatic
speech recognition is based on.

2.1 Phonetics and phonology

This section will give a brief introduction to parts of phonetics and phonology
needed for the explanation of the automatic speech recognition (ASR) system.
For a more thorough description of the subject, refer to for example [72], [71],
or [24] (in Norwegian).

The set of distinctive sounds that convey meaning are the building blocks
used to describe the pronunciation of a language. The smallest unit that can
be used to differentiate between words is called a phoneme. Quoting Ladefoged
in [71] (page 296):

“Phoneme One of a set of abstract units that can be used for
writing a language down in a systematic and unambiguous way.”

Phoneme transcriptions are shown using “/ ... /” as delimiters. To identify a

unit as a phoneme we must be able to find a pair of words whose pronunciations
differ only in this unit, a so-called minimal pair. An example is the English
words “pit” and “bit”, where the only difference is the first unit which we will
describe as the phonemes /p/ and /b/, respectively.

11
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The variants of a phoneme are called allophones, again quoting Ladefoged
in [71] (page 291):

“Allophone A variant of a phoneme. The allophones of a phoneme
form a set of sounds that (1) do not change the meaning of a word,
(2) are all very similar to one another, and (3) occur in phonetic
contexts different from one another — for example, syllable initial
as opposed to syllable final. The differences among allophones can
be stated in terms of phonological rules.”

Different accents of the same language will often contain small variations,
e.g. in vowel quality, that may be described as allophonic variation. We call
this variation allophonic even if this is not strictly correct according to (3)
above. This is in line with the use in the speech technology community, e.g. in
[63].

A phone is a speech unit as it is pronounced, i.e. the realization of the
abstract phoneme, quoting Laver in [72] (page 29):

“Phone A speech event capable of displaying phonetic equivalence
between speakers”

Phone transcriptions are shown using “[ ... |7 as delimiters to separate them

from phoneme transcriptions. In a phone transcription we can add descriptions
of the phonetic features of a sound by using diacritics, i.e. small marks that
show modifications of the value of a phone symbol or increase the precision,
e.g. rounding and aspiration.

A transcription using a simple set of symbols without diacritics is called
a broad phonetic transcription and shows the symbolic form of the pronun-
ciations. A transcription showing more phonetic detail, e.g. using diacritics,
is called a narrow phonetic transcription and shows the surface form. As an
example of a narrow phonetic transcription we use the English words “pit”
and “spit”: In the first case the [p] will be aspirated and we may want to
transcribe this as [p" ih t] with a diacritic h on the [p] representing aspiration.
The word “spit” has no aspiration and will therefore be transcribed [s p ih t]'.

To classify phones we use phonetic (also called acoustic) features. De-
pending on your field of study, phones may be classified according to dif-
ferent criteria. In addition, certain phonetic features are more prominent in
some languages than others, giving yet more different groupings of phones.
One standard set of phonetic features with accompanying symbols is defined
by the “International Phonetic Alphabet” (IPA) [57]. Another widely used

'The CMU phonetic alphabet defined in appendix A is used in the transcription.



2.1 Phonetics and phonology

13

classification is defined in the “Speech Assessment Methods Phonetic Alpha-
bet” (SAMPA), [97], which has the nice additional feature of being computer
friendly. i.e. using the ASCII-characters. We have mainly used the Carnegie
Mellon University (CMU) phonetic alphabet for the transcriptions [15]. This
is an alphabet often used for US English and is described in appendix A.

For English the main phonetic features used in phone classification are:

1. Voiced or unvoiced

2. Manner of articulation
3. Place of articulation.
4. Lip-rounding

At the highest level, phones are separated into consonants and vowels, where
the vowels are the nucleus (centre) in syllables. (This is a rule with exceptions.)
Consonants are usually described using the first three features, and they are
often grouped according to the manner of articulation. The main groups
used in IPA are: plosives, nasals, trills, tap/flaps, fricatives, laterals, and
approximants. For US English pronunciations these are often, e.g. by SAMPA
[97], reduced to four broad classes:

1. Plosives
2. Fricatives

3. Affricates; a plosive followed by a fricative (will sometimes be grouped
together with fricatives)

4. Sonorants (including nasals, laterals, and approximants).

Vowels are voiced and have the same manner of articulation, so they are
classified by the place of articulation, lip-rounding, and in many languages
also length (quantity). For a broad classification they may be treated as
one group, possibly distinguishing diphthongs from monophthongs. In En-
glish the quantity difference is not always pronounced in such a way that a
phonologically short vowel is shorter in the actual acoustic segment than a
phonologically long vowel. The difference is therefore often only described as
a quality difference. SAMPA uses the terms “checked vowels” for short vowels
and “free” for long vowels. When we need a more detailed classification of
vowels we use the lip-rounding and describe the place of articulation using
a matrix. The horizontal classes (matrix rows) for the place of articulation
are front, central, and back, whereas the vertical classes (matrix columns) are
close, close-mid, open-mid, and open.
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A vowel is fairly stationary and is often modelled as a fundamental fre-
quency (pitch) transmitted through a filter describing the vocal tract. This
filter can be approximated using an all-pole filter, the basic assumption of
linear prediction. Linear prediction is an important model and is used both in
speech analysis (e.g. ASR) and speech coding. The frequency response of the
vocal tract filter will have distinct peaks called formants which characterize
the vowels. A plot of the centroid positions of the two first formants (F; and
F,), shows how the vowels can be classified according to the formants, see
figure 2.1. The first formant is related to the close/open dimension, since a
low Fy corresponds to a “close” articulation. The second formant (or more
precisely the difference between the second and first formants) is related to
the front/back dimension, since a low F corresponds to a back articulation.
This figure also shows the vowel triangle which gives borders of the place of
articulation of vowels. The lower right corner is [aa], which is back open, the
upper corner is [iy], which is close front, the last corner is [uw], which is back
close. A fourth corner may be defined at [ae], which is front open. This is
of course a simplified view since we only consider centroids; if we looked at
many realizations of the different vowels we would still see a grouping, but not
disjoint classes.

Different phone classes have very different acoustic properties. For ASR
purposes we consider the speech signal to be slowly varying with time and
approximated by a stationary random process for a given (short) time window
[91]. This assumption is acceptable for vowels, but does not hold for many
of the consonants. The waveform of a speech signal is shown in figure 2.2 to
illustrate the differences. We see the characteristic closure and release phases
of the plosive [t], which look like a silence (the closure) and a burst (the release
phase, which will be influenced by the following phone). The fricatives, such as
[f], behave like high frequency “noise”-like signals. The sonorants, such as as
[m] and [n], are similar to vowels, but the nasals are special since the air then
flows through the nasal tract and the resonant frequencies of the oral cavity
will appear as anti-resonances, which gives zeros in the resulting transmission
filter. We also note that vowels have more energy than consonants.

An automatic segmentation algorithm based on acoustic similarity of speech
segments and a phone recognition system was presented in [70]. The acoustic
segments were defined as either transient or steady. A segment was classified
as transient when the spectral change exceeded a threshold. A steady segment
was defined as a sequence of frames between transient segments. It was
shown that when the number of acoustic segments was twice the number
of phonemes in a sentence, most of the acoustic segments could be given a
phonetic interpretation. This supports the assumption that speech can be
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divided into acoustically fairly stationary segments.

Suprasegmental phonetic features like syllable effects and prosody have an
impact on human perception, but are currently not considered in most speech
recognizers.

2.1.1 Sub-word units for automatic speech recognition

The phoneme inventory of a language is the smallest set of units that is
sufficient to define the pronunciations of the words in the language. Since
these basic sounds convey difference in meaning, they represent the sounds a
recognizer ideally should be able to distinguish from each other. The phonemes
are therefore often used as the basis for defining the sub-word speech units for
ASR. Depending on the language, the phoneme inventory contains about 30-50
units. The phoneme inventory of one language will usually differ for different
dialects (or even accents). Still, it is more convenient to have only one set
of units for the speech recognizer even for a system designed to cover several
dialects. The variation will then have to be modelled in the acoustic models
or the lexicon.

We have in this dissertation chosen to use the term for a realization of
the sound, phone, to describe the acoustic models. Thereby we have reserved
the term phoneme for abstract units as used in phonology. All transcriptions
are shown using the phone delimiters “[ ... ]”. In the ASR community the
acoustic models are called phonemes or phones (or even phone-like units) inter-
changeably. The reason to prefer phone is that the mapping from phonemes
to acoustic speech units is not a one-to-one relationship. Some allophones
belonging to the same phoneme may be easier to model separately, while other
phonemes are better modelled as a joint model. We need a certain number of
examples to train a speech unit in the recognizer properly, and lack of coverage
for a phoneme may force us to group it with another phoneme.

2.2 Basics of automatic speech recognition (ASR)

In the following, we give a general overview of automatic speech recognition
and introduce important terms and results that will be referred to in this
dissertation. The presentation given here will focus on the statistically based
hidden Markov model (HMM) approach, since this is the most popular tech-
nique for ASR systems today. For a more comprehensive treatment of both
HMMs and other techniques, see [90], [76] or [52].

The process of automatic speech recognition can be divided into two phases:
the training phase and the operational phase. The recognition system is first
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Figure 2.3: Automatic speech recognition system.

trained statistically on sufficient amounts of relevant data and then used to
translate input speech into text utterances.

The recognition system may be divided into three main elements as shown
in the three lines of figure 2.3:

1. From speech via acoustic features to sub-word units: acoustic models
2. From sub-word units to words: lexicon
3. From words to sentences: language model

The three modules shown in figure 2.3 constitute an automatic speech recog-
nizer. Each part will be explained in more detail in the following sections. A
fourth step is the translation from sentences to meaning, but such semantic
parsing is not considered in this dissertation.

For a recognizer operating in a real speech-based application, the user
input will replace the “test speech” in figure 2.3. The decoder computes a
score for the possible sentences consisting of a combination of probabilities for
the corresponding acoustic model units, lexicon entries (pronunciations), and
language model. We get a hypothesized recognized string as output, possibly
several strings ordered in an N-best list or a word lattice and possibly including
a confidence measure. In figure 2.3 the “test speech” input is used to show
that the performance of a recognizer is evaluated on a well defined test set
that makes it possible to compare different recognizers.
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Mathematically the system can be described as a classifier. We observe a
sequence (i.e. a feature vector representing speech) O = (01,09,...07) and
want to find the word (sequence) W that maximizes the a posteriori probability
(MAP) which will give us the Bayes classifier:

p(O|W)P(W)
»(O)

The observation O is fixed and p(O) is independent of W so we get the
equation:

W = argmax P(W]0O) = argmax (2.1)
w w

W= argmax p(O|W)P(W) (2.2)

P(W) is generally called the probability of the language model, while p(O|W)
is the probability density of the acoustic model. P(W) and p(O|W) are
estimated from the training set and we get a plug-in maximum a posteriori
decision rule. Usually parametric estimation is used, i.e. we assume the form
of the distributions and estimate the parameters of these distributions instead
of estimating the distributions directly.

2.2.1 Speech pre-processing

The first part of the recognition process is the translation of the speech signal
into acoustic features that efficiently represent the information needed by the
recognizer. Knowledge about human speech production and perception has
been important in finding the best techniques for deriving the features from the
speech waveform. For pronunciation modelling it is important to understand
the limitations of the speech pre-processing.

Mel-frequency cepstral coefficients (MFCC) are the most widely used acous-
tic features at present. Other popular features are linear prediction coefficients
(LPC) and perceptually weighted linear prediction coefficients (PLP). The
process of converting the speech waveform into cepstral based acoustic features
can be divided into the following steps:

1. Windowing and pre-emphasizing

2. Converting to a spectral envelope representation

3. Converting to a cepstral representation including cepstral liftering
4. Adding dynamic features

The waveform is often sent through a simple high-pass filter to emphasize
the high frequency portion of the signal since the low frequency part has much
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more energy. This is called pre-emphasizing. The signal is then divided into
segments using windowing, such a segment of speech is often called a frame.
The window size is chosen to give fairly stationary segments.

For the spectral envelope representation in MFCC we use a filter bank
with bands divided according to a Mel scale. Division into bands of equal
number of Mels corresponds to division into critical bands which are designed
according to partial loudness. The critical bands correspond approximately to
articulation bands which are based on speech perception, see e.g. [2]. These
types of filter banks have been shown to correspond to spatial distances along
the basilar membrane in the human ear.

The cepstrum is the inverse Fourier transform of the logarithm of the
speech spectral representation. It was originally used in order to separate
the source (the glottal excitation) and the filter (the vocal tract) as additive
elements. The convolutional distortion from the transmission channel will
be additive in the cepstral domain. A popular way of removing channel de-
pendency is therefore to normalize the cepstral coefficients, so-called Cepstral
Mean Normalization (CMN) or Subtraction (CMS). This technique was first
proposed in [7] but did not gain popularity until in the early 1990s, according
to [52]. The low- and high-order cepstral coefficients have been shown to have
higher sensitivity due to sources of variability not essential in representing the
phonetic content of a sound. Liftering of cepstral coefficients (i.e. emphasizing
the middle-order coefficients) is therefore used to give more reliable estimates.

The temporal change of speech has been shown to be important, and
the static parameters extracted using MFCC are augmented using dynamic
parameters. These are usually the first and second order time-derivatives and
are often called delta and delta-delta parameters, respectively.

The resulting feature vector of coefficients is then a representation of the
information in one speech frame that is believed to be relevant for ASR. A
recognizer front-end will typically be described by the window size, frame rate,
filter bank type, the number of (static) coefficients, type of energy, and the
use of deltas and delta-deltas.

Limitations

The search for better features is an important subject for the ASR community,
especially finding features that are more robust to environmental variation
(e.g. noise and reverberation). Transcriptions of spontaneous speech show
the limitations of current speech pre-processing also regarding variation in
pronunciation. Current speech pre-processors treat all segments in the same
way, although we know that the stationarity assumption is not valid for other
units than vowels, while the window length is either too short or too long to
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capture all speech effects. The different phones have very different properties,
see section 2.1, so to model e.g. plosives we may need shorter windows, while
modelling syllable effects demands longer windows.

Using features more closely related to the auditory properties of human
perception is interesting, especially for improved performance in noisy and
reverberant environments. The problem is that auditory model methods
usually are computationally expensive. A related approach with complexity
comparable to conventional front-ends was presented in [34].

2.2.2 Acoustic models

The acoustic models constitute the main part of the recognizer. Much of the
variability in the realization of a speech unit is here modelled in a statistical
framework that combines and quantifies the variation using probabilities. The
variation that the acoustic models handle can be as different as environmental
variation and variation between speakers. The same unit uttered by the same
speaker on different occasions will also vary in a way that we conveniently
can model by statistics; e.g. duration and timbre. Traditionally, much of the
pronunciation variation is modelled in the acoustic models.

Acoustic models are trained on acoustic features derived from recorded
speech with accompanying transcriptions, telling the recognizer which acoustic
segment corresponds to which unit. These models represent units of speech,
usually words or sub-word units, as mentioned in section 2.1. In a sub-word
based recognizer we need a pronunciation lexicon to state the correspondence
between the sub-word units and the words we wish to recognize.

The phone-like units are often context-dependent, i.e. different models
are used for the same unit depending on its neighbours. A set of context-
independent phones for the acoustic model inventory is often called mono-
phones. A context-dependent phone called triphone is a phone given its
immediate left and right neighbours. This is perhaps the most popular acoustic
model unit because it can handle allophonic variation and coarticulation effects
better than context-independent models. Longer contexts like quintphones
have also been tried, e.g. in [25], showing especially advantageous results for
spontaneous speech. Not all possible triphones will be present in the training
data and we need tying of parameters between the models to account for the
unseen triphones.

The most popular acoustic models are the statistically based Hidden Markov
Models (HMMs) and artificial neural networks (ANNs). Both models have
their advantages and disadvantages. A system for combining several ASR out-
puts called ROVER [27] has shown that combinations sometimes can achieve
better results than the best individual system.
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Hidden Markov Models

The use of hidden Markov processes in ASR was first reported in [11] and
[59]. The introduction of HMMs was a revolution in the ASR history. Many
limitations and inherently non-valid assumptions about the speech signal have
been addressed, see e.g. [120], but no competing model has had the same
impact, yet. Given sufficient relevant training data this statistically based
model has made more and more sophisticated ASR applications possible.

The description of HMMs given here uses notation and inspiration from
Rabiner and Juang in [90]. For each acoustic frame we will have an observation
o;. We describe an HMM by its states q and parameters 0 = (A, B, 7):

e The state at time ¢ is denoted ¢;. An observation sequence O = (01,09, ..
will correspond to a state sequence q = (q1,¢q2, - .- qr)

e The transition probabilities are A = {a;;}, where a;; = Plgi+1 = j|q: = 1]

e The observation probability distributions are B = {b;(0;)}, where
bj(or) = p(otlqr = j)

e The initial state distribution is 7 = {m;}, where m; = P[q; = i

The basis of a Markov model is a finite state machine where the probability
of being in a given state depends only on a fixed number of previous states. For
ASR we usually use first order Markov models where the probability depends
only on the previous state:

Plgiy1 = jla = 1, qe—1 =01, ...] = Plges1 = jlar = i] (2.3)

The model is called hidden because the state sequence q in the Markov
model is linked to the observation through a stochastic process, i.e. “hidden”.
We therefore have a double stochastic process, first the stochastic Markov state
model and then the stochastic process from the states to the observations.
The observation stochastic process is described by the observation probability
densities b;(0;). If we have a discrete alphabet of observation symbols vy,
corresponding to discrete observation densities, we have bj(k) = Plo; =
Vi|g: = 7]. In many ASR systems the observation density is continuous and
consists of a mixture of Gaussian components. Usually diagonal covariance
matrices with several mixtures are used rather than full covariance matrices
with fewer mixtures.

The realization of a speech unit (e.g. word or phone) will vary in duration
from utterance to utterance. It is virtually impossible for a speaker to utter the
same pronunciation several times with each segment having exactly the same

. OT)
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length. The statistical framework of transition probabilities a;; takes care of
this variability. For normal speech sounds we often only allow transitions to
higher numbered states, and skipping states may be prohibited. The transition
matrix therefore usually has some elements set to zero.

The number of states in the HMM and the connection between them are
called topology decisions. A phone HMM will often consist of three states,
allowing state transitions to higher numbered states or a loop to the same
state only. This is called a left-right topology and the start, the middle, and
the end of the phone can then be modelled differently. We will often chose
other topologies for silence, noise, and filler models than for ordinary phones.
For non-speech units like these it is reasonable to add more transitions to allow
more variation in length and in the order of the states.

The HMMs are usually trained in a maximum likelihood (ML) framework,
i.e. the parameters § = (A, B, 1) are unknown constants:

0 = argmax p(O|0) (2.4)
0

Assuming statistical independence of observations we can express the prob-
ability of the observation sequence O given the model as a joint probability
over all possible state sequences:

p(016) = Y p(Olq,0)P(qlf) (2.5)
all q

The two stochastic processes of the model are given by P(q|f) and p(O|q, ).
The probability of the observation given the state sequence p(O|q, #) will be a
function of the observation probabilities b;(0;), while P(q|f) will be a function
of the transition probabilities a;; and the initial state distribution m;:

p(0[q,0) = by, (01) - bg,(02) - - - byr(07) (2.6)

P(qlf) = g, - agiqs - Ogaqs " Ggr_rr (2.7)
Log likelihood is used instead of likelihood since the probabilities will be

small numbers. This also conveniently gives summing of the observation
probabilities p(o¢|q:, 8) = by, (0;) instead of multiplication:

T T
log p(Olq,0) = log [ [ p(orlg:,0) = log p(oslg:, 0) (2.8)
t=1 t=1

To estimate the parameters of the model we use a training set of speech
signals with accompanying transcriptions. There are several well known esti-
mation strategies for this that will not be described here. The most popular
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methods are segmental K-means and reestimation with Baum-Welch (the EM
algorithm). These two methods may be used alone or in combination. Further
details can be found in e.g. [90].

For decoding, i.e. finding the output symbol that best represents the ut-
terance, we find the HMM that best explains the observation. This is done by
computing the log likelihood for each HMM and selecting the one that gives
the highest value. The HMM is represented by its set of parameters 6:

f = argmax p(0O|f) = argmax Zp(0|q, 0)P(ql|0) (2.9)
8 all g

This corresponds to the acoustic model part of equation (2.2). For isolated
word recognition using word HMMs a maximum likelihood for HMM 6; will
correspond to recognizing a word W;. For continuous speech recognition
(or when using sub-word units) the recognized output will correspond to a
sequence of HMMs.

In practice the Viterbi algorithm, which is an efficient way of finding the
best path of a network, is used instead of this maximum likelihood approach.
Instead of summing the likelihoods for all sequences we use the likelihood of
the best path to represent the likelihood of the model:

= argznaxp(0|9) ~ arggnax (mczlxx p(O|q, 0)P(q|9)]> (2.10)

The Viterbi algorithm is more efficient because we only need to keep track of
one path at each state. Even this will require many computations, and usually
some kind of pruning is performed. The Viterbi solution will in this case be
suboptimal. With pruning, we either keep only the paths with likelihoods
better than a likelihood offset relative the best path, or we limit the compu-
tations to a fixed number of best paths. Even if we maintain all paths, the
solution will not necessarily be the ML solution. In [60] a “forward” decoding
using total likelihood score performed significantly better than Viterbi for
discriminatively trained models. The same effect was presented in [98], where
using all pronunciations in decoding instead of only the best gave increased
performance.

Limitations

An HMM based speech recognition system consists of a large number of
parameters to make sure that all variabilities are represented. For large
vocabulary continuous speech recognition in the order of a few million HMM
parameters are needed [74]. To train all these parameters large amounts of
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speech are needed. The best performance is obtained with speech recorded
in the same type of environment in which the recognizer will operate. This
may include background noise like car noise, music, or the extra variation
introduced by hands-free microphones. Collection of environment specific
databases is a tedious task (see e.g. [48]), as illustrated by the pricing of such
databases. The SpeechDat-Car database is recorded by using subjects in real
car environments and in various situations. This database costs about four
times as much as the ordinary SpeechDat database which is recorded over a
fixed telephone network where the subjects mostly call from home or an office,
[23]. Human speech recognition does not suffer from the same demand of
relevance in training. Learning a new language from clean speech is actually
preferred even when later hearing this language in noisy environments.

2.2.3 Lexicon

If other units than words are used for the acoustic models, we need a corre-
spondence between the acoustic model units and the words in the vocabulary.
When phones form the basic acoustic model units, this corresponds to, but is
not necessarily equal to, a pronunciation dictionary. In the ASR community
the term lezicon is often used instead of dictionary for this link. The middle
line in figure 2.3 shows that the lexicon is often based on knowledge contrasting
the optimization based on speech data and objective criteria that is used in
the other parts of the recognizer.

We use the word baseform for the connection between acoustic models and
a lexicon entry. The baseform describes a word as a sequence of acoustic mod-
els which is not necessarily equal to the form that we find in a pronunciation
dictionary made for humans and not machines. The baseform is the lexical
item representation and we reserve the word pronunciation for the realization.
Up till now most ASR systems use only one canonical or a few baseforms
per word, and these baseforms have typically been hand-made using phonetic
knowledge.

Some examples of entries in the CMU lexicon are given in table 2.1. A
number after the word indicates a non-canonical baseform. The numbers
after the vowels indicate stress, not all ASR lexica provide this. Syllable
information is also given in some ASR lexica. First of all we note that the
word class is usually not indicated. A consequence of this is that there is no
distinction between homographs (words with the same spelling but different
meanings) with different pronunciations, such as the two tenses of “read”
in table 2.1. Often an ASR lexicon will have only one entry in such cases.
For ASR lexica with multiple entries, several baseforms can be given for one
word, e.g. “realize”. There is usually only one entry for words with different
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‘ Word ‘ Baseform

READ r ehl d

READ (2) r iyl 4
READABILITY | r iy2 4 ah0 b ih1 1 ih0 t iy0
READABLE r iyl 4 ahO b ah0 1
READER r iyl d er0O
READER’S r iyl d er0 z
REALIZE r iyl 1 ay2 z
REALIZE (2) r iyl ah0 1 ay2 z
RIGHT r ayl t

TOO t uwl

TWO t uwl

Table 2.1: Examples of ASR lexicon entries

senses, but with identical spelling and pronunciation. An example of this
is “right” which can mean both a direction and a notion of correctness in
addition to other senses?. This is called homonymi and can be a problem
because information that could be useful for language modelling and semantic
parsing is hidden. Homophones are words that have different meanings (and
usually different spellings), but that have the same pronunciations. These
words will have separate entries, as shown for “two” and “too”, but the ASR
system must rely on the language model to resolve which word is recognized.
This is the same as for human speech recognition, except that we usually
have more contextual information available, such as the setting and theme
for the spoken utterance and the identity of the speaker (this is a topic
of pragmatics). In ASR such knowledge is incorporated by using task and
dialogue state dependent language models.

When multiple baseforms are used for each word, pronunciation probabili-
ties may be used to inhibit confusions due to rare pronunciations. Pronuncia-
tion probabilities are often defined as part of the language model instead of the
lexicon. From a hand-labelled part of Switchboard 36 different pronunciations
were found for “the” in the test set, and 38 different pronunciations in the
training set. Only half of the variants found in the training set were also
observed in the test set. The confusability by adding all observed variants can
also be illustrated by the 35 different words that had the pronunciation [ax]
(schwa) [82].

2The Concise Oxford Dictionary lists 6 adjectives, 3 adverbs, 4 nouns, and 2 verbs for
the word “right”.
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2.2.4 Language model

The last module in the recognizer comprises the combination of words into
sentences as shown in line three of figure 2.3. The language model used in
ASR may be linguistically derived, but usually statistical grammars trained
on large text corpora are used.

N-gram is a statistical grammar where the probability of a word given the
N previous words, the word history, is calculated from the training material.

count (w;, Wi—1, - .. Wi—N41)

P(wi|lwi 1, ... win41) = (2.11)

count(w;—1, ... wWi—N+1)

Unigram (1-gram) uses no word history and is the same as word frequency.
Bigrams or trigrams are used in most medium and large vocabulary recog-
nizers. Perplexity is a measure of the predictability in the language model.
The perplexity is related to the entropy of the grammar and can roughly be
explained as the average number of possible words that can follow a given
word. If no language model is present, the perplexity will equal the number
of words in the vocabulary. Lower perplexity means that the move from word
to sentence level in the recognition process will be less complex.

Huge amounts of data are needed to train a statistical language model, and
even then all word combinations will not be found. The problem of sparsity is
even more explicit for language modelling than for acoustic modelling because
there are many more words than phones. Normally, smoothing techniques
have to be used for the unobserved N-grams. In the backoff strategy the
corresponding probabilities are computed from probabilities in lower order
models.

A recognition network is made by combining the acoustic models into a
network defined by the language model and the lexicon. The larger the lan-
guage model, the larger the recognition network, and the more important are
efficient search algorithms. A static decoder (generating the entire recognition
network before decoding) is infeasible when using large language models. In
this case dynamic decoders are necessary, since they are faster and need less
memory during decoding. Often a first pass with a simpler language model
(and acoustic models) is used to make a word lattice that can be rescored
using more advanced models in a second pass (possibly after local adaptation
of acoustic models.)

2.3 Discriminative methods in ASR

For a speech recognizer the most important evaluation measure is the error
rate or corresponding continuous measures [61]. Minimum error rate is a more



2.3 Discriminative methods in ASR

27

important goodness criterion for the performance of a recognizer than correct
class modelling, and it should also be the metric used in the training of the
recognizer. This calls for the use of decision theory in optimizing the ASR
system, i.e. discriminative modelling.

Discriminative methods in ASR have mainly been utilized in optimization
of the acoustic models. One important advantage with ANN acoustic models
is that discriminatively trained models are easy to implement, but HMMs or
a combination may also be used. Minimizing classification error (MCE) using
the generalized probabilistic descent (GPD) method was introduced in [61] and
[64]. A conditional maximum likelihood (CML) for discriminative modelling of
the acoustic models was introduced in [60]. This is similar to maximum mutual
information (MMI) but does not assume a fixed language model. The main
difference between GPD and MMI type modelling is that GPD uses a smoothed
error count instead of a linear function of a misclassification measure. Other
optimization techniques directly related to the error rate include corrective
training and minimum empirical error.

Discriminative training can give better or comparable performance with
less complex acoustic models. The popularity of discriminative training in
ASR systems has however been modest. For high complexity systems, maxi-
mum likelihood training methods are unbeaten, while discriminative approaches
are useful in real-time applications, since the system requires fewer parameters.

The basis of discriminative methods is an optimizing criterion that is
directly linked to error rate. We model not only according to the right class
(word), but also the competing classes. In this way we put more emphasis on
the estimation of the borders between classes than on modelling the typical
sample.

Two basic problems generally arise when training a speech recognizer:

1. Unseen data: We need sufficient data to achieve sufficiently dense sam-
pling of the model we want to build.

2. Systematic errors: We need relevant data that represents the speech we
want to recognize to avoid systematic errors.

We will usually not have sufficient amounts of data for all cases that we want
to model, and it is therefore important that the chosen estimation method
generalizes well. For a discriminative approach we use each data sample
to estimate several parameters, because the sample will appear not only in
the training material for the correct utterance but also for the competing
(incorrect) utterances. On the other hand, the relations between the classes
are important, and shortage of training samples for one class will have a bad
effect not only on that class, but also the other classes. Lack of data can be
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alleviated using model assumptions which decrease the number of parameters
that need to be estimated (or tying of parameters). The crucial point is then
whether the model assumptions are correct or at least reasonable.

The second problem is best solved with carefully chosen training data.
Systematic mismatches between the training data and the data on which the
classifier will be used are difficult to handle even with well-designed training
methods. If a smaller set of more relevant data is available, speaker or
environment adaptation is one solution.

2.4 How to model pronunciation variation in ASR

Pronunciation variation modelling can be implemented in different parts of the
speech recognizer. Different kinds of pronunciation variation can be modelled
in the three parts shown in figure 2.3, but the same variation can also be
modelled differently in different parts. Different pronunciations of phonemes
(allophonic variation) can e.g. be handled using either more acoustic units,
more complex models (but less units), or more baseforms. The allophonic
variation can also be handled by adapting the models to one speaker or a
more homogeneous subset of speakers.

Adaptation of the acoustic models is a successful method to make speaker-
dependent recognizers with improved performance compared with speaker
independent recognizers. Task adaptation or adaptation to a group of speakers
(e.g. dialect adaptation) is possible, but the adaptation target should be
kept homogeneous. Modelling large variations within the same model by
broadening the distributions or adding more components in the Gaussian
mixture will give more diffuse models which may be more overlapping, [119].
The success of this type of speaker adaptation also depends on the match
between the actual pronunciations and the transcription.

Some of the pronunciation variation is caused by speaking style (including
dialects, non-native mother tongue etc.), and may be better handled by careful
design of the pronunciation dictionary, i.e. pronunciation modelling, [62]. The
most common way of dealing with pronunciation variation is to put several
baseforms in the ASR lexicon. These baseforms are also often used to retran-
scribe the speech corpus before a retraining of the acoustic models. Using
the lexicon to capture speaker variation makes it possible to model several
speakers simultaneously, thus using the same lexicon and the same acoustic
models for all speakers. A multiple baseform lexicon will affect the language
model. We can introduce pronunciation probabilities in addition to the word
probabilities given by the language model, but we must take care not to change
word probabilities depending on the number of baseforms.
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High quality recognizers always include a language model, and it should
therefore be incorporated in the pronunciation modelling techniques. For large
vocabulary speech recognition a well designed language model may lessen the
negative impact of a mismatch between the speaker and the acoustic models
and explicit pronunciation modelling may be less important. If the speaking
style we try to model has special language model characteristics, they may be
incorporated directly into the language model, e.g. the hesitations and restarts
of spontaneous speech.

One of the main challenges in pronunciation modelling is to make sure
that we know which variation we model. The effects of the acoustic models,
the lexicon, and the language model will interact. Even the choices at the
speech pre-processing stage will influence the variation modelling. Superfluous
complexity may result from modelling the same variation several times or, even
worse, adding contradicting changes.

The two main techniques for capturing variation, acoustic model adapta-
tion and lexicon adaptation, should be combined using the method that gives
the best result: Acoustic model adaptation for the pronunciation variation
that can be described as allophonic and lexicon adaptation for the more
phonological variation like deletions and insertions.

Although not in widespread use, some experiments using discriminative
modelling of pronunciation variation have been reported, see [67] and [99]. In
section 6.1 we give a framework for decision theory applied to pronunciation
modelling.

2.5 Statistical considerations

The standard evaluation metric for an automatic speech recognition system is
the word error rate (WER). The word error rate is computed by aligning the
reference and hypothesized utterances and counting substitutions, deletions,
and insertions. All these are counted as errors and we get:

Substitutions + Deletions 4+ Insertions
WER = 100 2.12
Total number of words % % ( )

Note that the WER may be larger than 100%. Sometimes the word accuracy
is used, this is 100% — WER. The result may also be given as percentage
correct, which is used when insertions are not counted.

The size of the test set will influence the significance of the increase or
decrease in word error rate. This subject has been addressed in the speech
community in several publications, e.g. [39], [47], and [115].

In this dissertation, confidence intervals for word error rates are computed
using hypothesis testing assuming that word errors are independent. This
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is a standard statistical method described in e.g. [56] and translated to a
speech recognition framework in [47]. For tests using a language model the
assumption is not true and these confidence intervals will give a too small
region. The confidence intervals for the test sets used in this dissertation are
given in appendix C.

Other tests more suitable when a language model is in use are available
from NIST [85] and in methods proposed in [115]. The NIST methods are
based on sentence error rate since sentences can be considered to be inde-
pendent, even when using a language model. The test sets reported in this
dissertation contain too few sentences to use sentence error rate as a useful
measure.

Looking at the errors corrected versus the errors introduced is also useful
[123], and this kind of error analysis has been utilized for many of the exper-
iments reported. Comparing the errors that differ between two systems, the
McNemar test can be used to assess the significance of the differences in word
error rate, [39]. The McNemar test requires that errors are independent, which
is not the case in our setups since we have applied a bigram. Still, the test
give more information than only word error rate comparisons, and we have
chosen to use the term “significant” when the McNemar test gives a p-value
less than 0.01.
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In this dissertation the term speaking style is interpreted widely. We do
not only cover read versus conversational speech but include descriptions of
dialects and accented speech as well as non-native speech. The reason is
that all these different “speaking styles” deviate from a canonical lexicon
and language model and are therefore parts of the variation that a robust
ASR system must handle. In [1] Adda-Decker gives an overview, although
focused towards multilinguality, that also covers the evolution of ASR systems
to capture variability. She divides the main challenges for ASR in the four
axes shown in figure 3.1, where speaking style is one of the axes. Using the
wider definition of speaking styles as in this dissertation we also include some
of the challenges on the “speaker” axis.

The first ASR systems only considered restricted speaking styles, i.e. care-
ful articulation of isolated or connected words. The increased modelling
capacities of current ASR systems also manage the looser articulation of
continuous speech. The continuous speech can be divided further into read,
prepared, and spontaneous speech (with increasing degree of variation encoun-
tered). The DARPA and NIST evaluations [85] mirror the progress in the ASR
community as the evaluation tests have evolved from constrained tasks and
read speech to broadcast news transcriptions which include both prepared and
spontaneous conversational speech, as well as non-native speech and a variety
of environment challenges (noise, music, background talk etc.)

Making speech technology based applications more widespread has several
consequences for demands on ASR systems regarding speaking styles:

e When ASR systems are used in new domains, we need new and larger
vocabularies and grammars.

e When more natural language dialogues are used, the ASR must handle
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Figure 3.1: The ASR Big Bang, after [1] (page 9).

more conversational speech.

e Non-trained (non-expert) users may increase the use of dialects and
accented speech in speech technology applications.

e A more international community increases the portion of non-native
speakers in the general public and therefore in the “pool” of potential
users of speech technology applications.

One example of the last issue is name-dialling applications that are gaining
more and more popularity. For most larger companies the employees come
from different countries. They will not always know the pronunciation of the
native names and in addition they introduce non-native names that natives
are unfamiliar with.

3.1 Dialects and accented speech (including non-

native speech)

In [119] Van Compernolle has given a review of the problems when recognizing
speech from non-natives as well as accents and dialects. This section is mainly
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based on Van Compernolle’s article, but is also inspired by Mayfield Tomokiyo,
[81].

Accents will only show minor differences at the phonemic (abstract) level.
Most of the variation will be (small) phonetic variations, like changes in
vowel realizations. Accented speech may therefore be described as a shift of
classes maintaining the separability between classes. It is thus an information
preserving transformation. Usually accent variation will be similar for rather
large groups of speakers, making it possible to train speaker independent, but
accent dependent models in the same way as making different acoustic models
for different languages. Experiments with the number of different models for
Dutch and Flemish are referred in [119]. The conclusion was that too refined
regional clustering is difficult because of lack of data, while three to four
accent models were optimal. The main accent variation can be interpreted as
allophonic, and acoustic model adaptation should therefore be a good way to
take care of the variation. Experiments on dialects [20] and accented speech
[53] have confirmed that acoustic model adaptation will handle some of the
mismatch. The results are still not as good as for non-accented speech.

For non-native speech one of the big problems is that non-natives often
project sounds onto a subspace of the native sounds [119]. The reasons are
both that some native sounds can be difficult to pronounce, and that some
sounds are hard to distinguish for a non-native. One example of the latter
is the different feature dimensions for vowels for the different European lan-
guages. Quality differences may be difficult to perceive for a non-native whose
mother tongue does not discriminate with respect to this feature. Non-native
speech may still not be too hard to understand for a native as both vocabulary
selection and grammar often will be simpler. For the ASR system this potential
advantage becomes a disadvantage since it will result in a mismatch to the
language model trained on native speech. The progress in acoustic modelling
for native speech is based on more detailed modelling using more data which
creates sharper distributions. The performance gain by using e.g. context-
dependent modelling is often not present for non-natives as the more specified
models have less tolerance for the non-native variation. Speaker adaptation
will improve the modelling but even after adaptation the recognizer usually
performs significantly worse on non-native speech than the native speech. In
addition to the loss of information due to the lower dimension of the sound
space, words unknown to the non-native may cause “random” pronunciation
errors in speaker adaptation systems. [107] reported approximately the same
gain for unsupervised as for supervised adaptation for non-native speech,
which may be due to this effect. (The supervised adaptation contained many
out-of-vocabulary words that also may explain the result.)
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Mayfield Tomokiyo reported in [81] an extensive study on Chinese and
Japanese speaking English. As expected the speaking rate was lower for the
non-natives, mostly due to more frequent pauses. Coarticulation effects across
word boundaries as modelled by a native ASR system, may therefore not
be suitable for non-natives. For the lexical distribution she found that the
native speakers used contracted forms more often. The non-native speech
could not be described as more “restricted” as is often the case. Although the
grammar was poor, unconventional word choices and unique ways of asking
the same question can explain why the vocabulary growth was higher for
non-natives in tourist information queries. As expected the perplexity was
lower for non-native speech. Disfluencies were more frequent in non-native
speech than native speech, but the Chinese speakers had substantial fewer
disfluencies than the Japanese.

3.2 Spontaneous speech

The number of studies on spontaneous speech aiming to improve recognition
of conversational speech has increased over the last years. One example is
the recent interest in Broadcast News encouraged by the NIST evaluations
[85]. Switchboard is an US English database especially created for research
on robust ASR [40]. It was collected by Texas Instruments in the early
nineties and sponsored by DARPA (Defence Advanced Research Projects
Agency). Switchboard contains telephone conversations with the usual hesi-
tations, restarts, etc. found in spontaneous speech. This makes Switchboard
suitable for studies and experiments on spontaneous speech, see [44] and [58].

Spontaneous speech of this kind is difficult for the current state-of-the-art
recognizers. An indication of the less structured speech encountered is that
we usually talk about utterances instead of sentences for spoken language
compared with written language. When speaking spontaneously people give
even less attention to structure. It might be argued that “Switchboard”-type
of human-human dialogue is too difficult, but surely this database contains
features of spoken language that a recognizer should be able to deal with to
make ASR systems really user-friendly. Many other available databases consist
of read speech that has too little variation compared with real life for an ASR
service. The ASR performance in lab versions is always better than in “real
life”, and we believe that some of this deterioration is caused by pronunciation
variation.

In [121]) Weintraub et al. investigated the effects of spontaneous speech
on speech recognition performance. A three-way test using conversational
speech, “acted” conversational speech, and read conversational speech gave
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higher word error rates the more casual the speaking style. The results showed
that the speaking style is a dominant factor in determining the performance.
Apparently the acoustic realizations of word sequences were not modelled
satisfactory by current ASR systems.

3.3 Language modelling and pronunciation varia-
tion

In pronunciation modelling the influence from the language model is mostly
considered using pronunciation probabilities. A language model consists of
the word probabilities, usually given some word history. When adding more
pronunciations for each word, we can make the word probability dependent
on the pronunciation probability. The ASR classifier equation (2.2) can then
be decomposed to include the baseforms B! for the word W:

p(OIW)P(W) = p(O|B,W)P(B|W)P(W)
BB (3.1)
~ max[p(O|B, W)P(B|W)P(W)]

The last line is the Viterbi approximation of using only the best baseform as
we do when using only the best path in equation (2.10). The pronunciation
probability P(B|W) can be defined as a part of the language model and we
get the language model probability P(B|W)P(W).

Different speaking styles will give different pronunciation probabilities. As
shown for “ordinary” (considering words only) language modelling, the statis-
tically based methods are most successful and therefore most popular in order
to model pronunciation probabilities in the language model. When reliable
estimates of the pronunciation probabilities are available, incorporating them
has been shown to give improvements, see e.g. [66] and [129]. The importance
of pronunciation probabilities increased when the number of pronunciations
per word was high. In section 5.4.5 we give a short description of techniques
to estimate pronunciation probabilities for pronunciation variant pruning.

In a review of large vocabulary speech recognition by Young [130], there
is a section on spontaneous speech, focusing on how to modify the language
models used in current ASR. The language modelling for spontaneous speech
is in an early stage according to [130], referring to one of the oldest studies
on spontaneous speech for ASR by O’Shaughnessy [86]. The big problem of
making a spontaneous speech language model is that transcribed spontaneous

! A baseform is the entry in the ASR lexicon for a pronunciation.
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speech in sufficient quantities is not easy to obtain. Most work on language
modelling for spontaneous speech has therefore been concentrated on mod-
elling of disfluencies.

3.3.1 Spontaneous speech characteristics in human-human ver-
sus human-machine dialogues

Studies on the differences between human-human and human-machine dia-
logues are important when making language models for ASR. systems. Much
of the theory on language modelling is based on written or spoken language
between humans. To be able to use this knowledge we must understand
the differences in human behaviour when speaking to a machine instead of
a human.

Shriberg [103] has studied disfluencies in the human-human dialogues of
Switchboard compared with other human-human dialogues (the database AMEX)
and human-machine dialogues (the database ATIS). Both ATIS and AMEX
belong to the air travel domain, which is more restricted than Switchboard. A
more elaborate analysis of disfluencies in ATIS was performed by Nakatani
and Hirschberg [84]. Shriberg grouped the disfluencies in “filled pauses”
(e.g. “uhmm”), repetition, substitution, insertion, deletion and speech error.
The human-human dialogues showed a lot more filled pauses, repetitions and
deletions, probably because these disfluencies have a turn-taking function
between humans. The probability of a sentence being fluent was found to be
decaying roughly exponentially as a function of sentence length. The average
number of words affected by each disfluency was surprisingly low (1-2 words)
and constant over the corpora. Shriberg inferred from these results that there
is a universal constraint regarding how many words that can be produced or
understood during disfluent speech.

3.3.2 Language modelling and disfluencies

In [87] Oviatt found a correlation between disfluencies and both utterance
length and structure in the task. The data were collected during empirical
studies resulting in a total of forty-four subjects. The author concluded that
the user-interface should be designed to elicit structure and short sentences to
give less recognition errors. The users preferred a more structured form-filling
type of dialogue over the more user-driven “unstructured” type.

Verbmobil is a German project for automatic translation between German,
English, Japanese and Spanish. As a part of this project Schultz and Rogina
[100] reported experiments on different “noises”, e.g. breathing and paper
rustle during spontaneous speech. Usually, such noises are deleted before
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training the language model, but Schultz and Rogina showed that the per-
plexity decreased when the noises were treated as ordinary words. This means
that some words are more likely to occur after such noises than others.

Shriberg and Stolcke have done work on statistical language modelling
for spontaneous speech with the Switchboard database. They found that
the usual scheme of removing disfluencies prior to language modelling gave
lower perplexity, but no improvement in recognition rate [112]. The lack of
recognition improvement was due to the very low baseline performance causing
too few correct words to make the language modelling work properly. Removal
of deletions and repetitions had the largest effect to lower the perplexity. This
is therefore not a contradiction to the results in [100] that were concerned
with noise. Shriberg and Stolcke warned against totally “cleaning up” the
transcription, because in another study [104], they found a connection between
hesitations and word predictability.

Removing the filled pauses gave no reduction in perplexity [112]. The
authors explained this as caused by the acoustic segmentation of the speech
at turns and pauses. Filled pauses often mark linguistic boundaries and
these may come in the middle of the acoustic segments. If the filled pauses
were present they might help to reveal the linguistic boundaries. This was
investigated further by Shriberg and Stolcke in yet another study [111]. The
ASR system gave too unreliable transcriptions so hand-labelled material was
used instead. A trained bigram and trigram model on this hand-labelled
transcription found about 70% of the linguistic boundaries. When includ-
ing turn-taking information and part-of-speech labels, results were improved
further. To the authors’ surprise, using only part-of-speech labels and no word
identity gave worse results than only word identity.

Another continuation of the studies on human-human dialogues was done
by Siu and Ostendorf [108], who did language modelling using disfluencies
as speech markers. Treating these speech markers like special words in the
N-gram modelling gave reduced perplexity.
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Chapter 4

Acoustic model adaptation

The acoustic models used in ASR systems today are capable of handling
a lot of variation, as long as the variation is present in the training data.
The most popular models are the statistically based HMMs, described in
section 2.2.2. Using a mixture of Gaussians (or another suitable distribution)
for the observation probability we can model both intra- and inter-speaker
variation as well as environmental variation. With context-dependent models
we can model allophonic pronunciation variation and many coarticulation
effects. For pronunciation modelling purposes it is important to understand
the capabilities of the acoustic models to take care of the variation.

The problem is the “curse of dimension” [74]. Models that can handle
more variation require more parameters and training data. One solution is
acoustic model adaptation. Usually this is performed on a speaker-by-speaker
basis, but groups of speakers or specific environments can also be the objects
of adaptation.

Speaker specific ASR with adapted acoustic models will encounter less
variation in pronunciation and may need fewer variants. We should therefore
be able to gain extra performance by speaker dependent lexical adaptation,
i.e. chosing the optimal baseforms given the speaker dependent acoustic mod-
els. The performance of the adaptation depends on the quality of the tran-
scriptions (given or obtained automatically). Lexicon adaptation before the
acoustic model adaptation may therefore also be beneficial.

The description given in this chapter is mainly taken from two recent
reviews on adaptation for ASR: Lee and Huo in [74] and Woodland in [125].
As in these two articles we only consider adaptation of HMM based systems.

There are several ways to group the various acoustic model adaptation
techniques. [125] defines three families:

1. MAP adaptation (direct adaptation)

39



40

Acoustic model adaptation

2. Linear transformation (indirect adaptation)

3. Speaker clustering/speaker space

Another division can be made based on how the adaptation is performed.
If we have a transcription for the adaptation data, we call this supervised
adaptation. If no transcription is known, usually the recognizer’s output
(often with some confidence checking) is used and we have an unsupervised
adaptation. A further division can be made between static and dynamic
adaptation. In static (or block) adaptation all the adaptation data available is
used at once. In dynamic (or incremental) adaptation, we feed the system one
utterance at the time and we have an intermediate adapted system available
at any time.

Usually only the means of the (Gaussian) observation densities are adapted.
Some experiments also report adaptation of the variance of the observation
densities.

4.1 Linear transformation (MLLR)

Transform based adaptation is also called indirect adaptation. The most
popular linear transformation is the maximum likelihood linear regression
(MLLR) adaptation method introduced in [79]. The parameters (e.g. the
vector of means p of the observation densities) are updated according to an
affine transform:

Byiir = Ap+b=W¢ (4.1)
Where W is an n x (n + 1) matrix and £ is the extended mean vector
=111 p2 ... o] (4.2)

The transformation matrix W is estimated using the adaptation data. The
transformation is tied over a cluster of parameters. For adaptation of the mean
of the observation densities the clusters are usually derived from a tree built
on acoustical similarity.

For small amounts of data MLLR perform better than many other adap-
tation techniques, but as the amounts of data increase it is not guaranteed to
reach the ML estimate. Over-training is a problem that can be overcome by
careful selection of the number of transforms.

4.2 MAP adaptation

Maximum a posteriori (MAP) adaptation is the most popular form of direct
adaptation of the acoustic models. It was first presented in [75] and later
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expanded to cover Gaussian mixtures in [36] and [37].

To estimate the parameters of the recognizer the traditional maximum
likelihood (ML) approach in equation (2.4) is substituted by a maximum a
posteriori probability approach:

p(O[0) P (6)

0] (4.3)

= argmax p(#|O) = argmax
0 0

The observation O is fixed and P(O) is independent of § and we get the
equation:

= argmax p(0|6)Py(6) (4.4)

The a priori distribution of the parameters P, () is called the parameter prior.
MAP is a Bayesian approach to parameter estimation where we combine the
information in the adaptation data with prior knowledge.

The three key issues in MAP estimation are [74]:

1. Definition of prior densities
2. Estimation of the prior density parameters, often called hyperparameters
3. MAP estimation solution

A convenient choice of prior distribution is conjugate priors [75] which gives
the same distribution family of the prior density as the posterior distribution.
The hyperparameters are estimated from the data giving an empirical Bayesian
approach (for a true Bayesian approach the hyperparameters are known.)
The choice of prior densities and the estimation of the hyperparameters are
therefore strongly related.

One example to illustrate the combination of information from the data
and the prior is the estimation of the mean x of a single Gaussian (observation)
density using conjugate priors [75]. The variance o2 of the Gaussian is assumed
known and fixed. The prior distribution Py(x) is defined by its mean v and
variance 72 (which in this case are the hyperparameters). We then get the
estimate for u:

77/7'2 O'2

n = T 4.5
HMAP a2+n72$+02+n72y (4.5)

The sample mean is given by Z, and n is the total number of training samples.
The influence from the data is given in the first term while the influence of
the prior mean v is given in the last term. We see that the contribution from
the two terms is controlled by the number of samples n and the prior variance

2.
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The MAP approach is well defined mathematically and converges to the
ML estimate. In the original formulation only observed parameters in the
adaptation data are updated and the performance gain for small amounts of
data is therefore limited.

4.3 Other methods

An extension of MAP to update unobserved parameters is the structural
MAP (SMAP) approach proposed in [101]. We want to adapt as small clus-
ters of parameters as possible dependent on the amount of adaptation data.
The HMM parameters (Gaussian densities) are therefore organized in a tree
structure. For each cluster the Gaussian components are summarized in one
Gaussian density that can be updated using MAP adaptation. We then
have adaptation information for a cluster of Gaussian components. If we
have sufficient adaptation data for all parameters, SMAP will be the same as
ordinary MAP. This is generally not the case and we use hierarchical priors
to control the adaptation of the parameters where we have insufficient data.

According to [125] a recent trend is to combine the strengths of different
methods. The most popular adaptation methods MLLR and MAP are best
for smaller and larger amounts of data, respectively. A combination trying to
get the best of both methods is therefore desirable. A promising approach
is the SMAPLR adaptation presented in [107]. This is a combination of
MAPLR (which uses MAP to update the affine transforms in MLLR) and
SMAP, i.e. using hierarchical priors.

Speaker clustering/speaker space

Traditionally ASR systems have been made using gender specific models, this
can be expanded to more speaker types. Two recent techniques are Eigenvoices
and cluster adaptive training (CAT). More about these and other techniques
including references can be found in [125].

Speaker normalization

Cepstral mean normalization (CMN) has been a standard feature normaliza-
tion technique for many years. The main motivation is to remove the effect of
the channel but it will also give a speaker normalization effect. More recently
speaker normalization using vocal tract length normalization (VTLN) has been
proposed in [77] and [78]. The frequency axis is re-scaled using a warping
factor that is derived for each speaker. The warping factor is estimated using
the mismatch between the input utterance and the speech recognition models.
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Histograms show that the average warping factor is higher (corresponding to
frequency expansion) for males than females.

4.4 Acoustic models and pronunciation variation

4.4.1 Speaker adaptation of acoustic models

Mayfield Tomokiyo reported in [80] experiments on Japanese reading English
news. All transcriptions used in rule derivation were made using speaker
adapted models. Pronunciation variants were obtained by an unrestricted
phone recognition pass and later filtered using both knowledge and data-driven
measures. Knowledge-based variants were also added. During testing a word
lattice was made and the pronunciation variants were added to the lattice
before rescoring. As the lexical modelling was performed on pre-made lattices,
the joined effect of acoustic model and lexicon adaptation can not be derived.

Another experiment using speaker adaptation before pronunciation mod-
elling was reported by Goronzy et al. in [41]. The task was native English
speakers speaking German. For each of the 44 speakers in the adaptation set
an average of 180 utterances was available. Unsupervised speaker adaptation
using MLLR as well as speaker dependent pronunciation rules showed an
improvement. Speaker independent pronunciation rules gave a deterioration
compared with the baseline due to added confusability. The combination of
speaker dependent pronunciation rules and MLLR showed the best perfor-
mance on average. For five out of eight speakers the combination of pronun-
ciation modelling and MLLR gave better results than MLLR alone.

4.4.2 Accent and dialect adaptation of acoustic models

Accent adaptation using a combination of lexical and acoustic model adap-
tation was investigated by Humphries and Woodland in [53] (also referred
in chapter 5). The authors investigated adaptation of British English to US
English using relatively small amounts of data (500 utterances). Both data-
driven rule based pronunciation modelling and speaker independent MLLR
was performed. The results showed improvement both using lexicon adapta-
tion and acoustic model adaptation alone as well as an increased improvement
when using a combination by applying the adapted lexicon prior to the MLLR
adaptation.

Adaptation of the acoustic models from one dialect to another was explored
in a study by Diakoloukas et al. [20]. The database used for the experiments
contains Swedish speech. The original models were trained on speech from the
Stockholm area, while speech from Skane (an area in the south of Sweden)
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was the target dialect. The approach was to use small amounts of Skane data
and speaker adaptation techniques published earlier by one of the authors
[21]. The number of speakers seemed to have less effect than the (total)
number of sentences. The Skane adapted models gave a much lower error
rate than the original Stockholm models using only 200 adaptation sentences.
Increasing the number of adaptation sentences to more than 500 gave only
small improvements. Adaptation performed better than training for small
amounts of data, while for more than 1000 sentences training performed better.

4.4.3 Choice of speech recognition units

Using other units than phones as the acoustic model inventory has been an
interest for a long time and has been investigated for example in [116] and [9].
Holter and Svendsen did a study described in [50] on optimal acoustically
based units (i.e. shorter than phones). The motivation was that the recognition
systems are neither truly phonetically nor acoustically consistent and that
a joint optimisation of both units and pronunciation would be wise. The
main problem with acoustically based units is that there is no one-to-one
correspondence to any linguistic unit, making it difficult to find the base-
forms to put in the lexicon. The resulting units should be robust to both
inter- and intra-speaker variations. The algorithm for finding the units was
therefore constrained to assign similar label-sequences to the same utterance,
independent of speaker. This also solved the problem of finding the baseform.
The vocabulary used for the experiments consisted of 20 US English words
(digits and computer-related words). Recognition using the acoustically based
units gave the same performance compared with whole-word models and phone
models. The same effect was also observed for a larger vocabulary [49].

Another more recent approach for automatically finding an optimal phone
set, used the phone based HMMs as a starting point. Monte Carlo simulations
were used to compute the distance between phones by Singh et al. in [106]. An
earlier work tried to generate the phone set based on the maximum likelihood
of word segmentation [105]. In the same line Printz and Olsen presented a
method of computing acoustic perplexity directly from the HMMs in [88].
The acoustic perplexity was used to compute a synthetic acoustic word error
rate that measures the capabilities of the acoustic channel giving a better way
to evaluate language models.

A compromise between word and phone models is to use syllables as the
unit, giving longer contexts than phones, but fewer models than words. The
use of syllables as the speech recognition unit can also be advantageous from
a linguistic point of view [43]. The choice of recognition unit can also be
language dependent. Chinese (Mandarin) has 1200 (tone-dependent) syllables



4.4 Acoustic models and pronunciation variation

45

and Japanese only 50 [52]. For these and related languages the syllable is
therefore a very interesting unit. Syllables are not so popular recognition units
for English since it is believed that the syllabic structure is too complex. The
many different syllable structures in English give a large number of different
syllables; e.g. for the Switchboard corpus 47406 different syllables were found
[43]. But all these syllables are not equally frequent: in the lexicon 75% of the
syllable types were of the form consonant-vowel, vowel-consonant, vowel, or
consonant-vowel-consonant. Investigating the transcriptions this percentage
was even higher: 84% of the syllable types in the Switchboard corpus had one
of these “simple” structures.

The use of syllables, and more specific syllable onsets, in speech recognition
was explored by Wu et al. [128]. A number corpus collected over telephone
lines with a vocabulary of 32 words was chosen for the recognition experiments.
An automatic syllabification algorithm was used to find the syllables, 30 for
a single-pronunciation lexicon and 118 for a multi-pronunciation lexicon. The
multi-pronunciation lexicon was derived by data-driven methods based on a
(hand-made) phonetic transcription. This multi-pronunciation lexicon im-
proved the performance by itself. Syllabic models were derived from the basic
phone units using a syllable-grammar. During the combination of syllables to
words, the recognizer was restricted to linking the start of the syllabic models
to marked syllabic onsets. In this way the temporal properties of the syllables
were forced upon the recognizer, although the basic units were not strictly
syllabic but syllables made up of phones. First the syllabic onsets were found
artificially from the text, this increased the recognition greatly. Secondly these
onsets were found by training a neural network, the increase in the recognition
performance was now “not quite reaching statistical significance”. Wu et
al. still found the results promising and anticipated possible improvements
of the segmentation algorithm responsible for finding the onsets. A more
recent syllable approach was reported in [35] with promising experiments on
Switchboard and Alphadigit tasks.

4.4.4 Dynamic HMMs

An approach on the border between acoustic and lexical modelling of pro-
nunciation variation was presented by Hain and Woodland in [45] and [46]. A
new layer of statistics was introduced for the link between acoustic models and
baseforms. The stochastic relation between the HMMs and the lexical units
was called Hidden Model Sequence (HMS). In the first approach the length
of the sequence was restricted by the original baseform, later experiments
investigated the possibility of deletions and insertions. The HMS-HMMs were
tested on RM and Switchboard and gave increased performance, the addition
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of deletions and insertions gave only small additional improvements. One
of the problems with the insertion models was that they became too broad,
further work is needed to make more compact distributions.



Chapter 5

Lexicon adaptation

Lexicon modification is the most popular way of modelling phonological pro-
nunciation variation. Segmental variation, such as allophonic variation, can
be handled by the acoustic models using training or adaptation on the tar-
get speech. Other types of variation may be better handled at the lexical
level, e.g. insertions, deletions, and variation that is present for a group of
speakers (e.g. dialects), or is typical for a speaking style. Lexical modelling
accommodates longer contexts than acoustic modelling, permitting modelling
of syllables and even entire words or phrases [62]. This chapter will give an
overview of the current status of pronunciation variation modelling by lexicon
adaptation. Our approach is given in chapter 6.

There are two main directions in finding pronunciation variations, each
involving different problems:

1. Knowledge based methods where we try to find the best pronunci-
ation rules by applying phonetic and linguistic knowledge. The main
problem occurs if the knowledge does not cover the variation we want to
model. We may then have too many or too few variations and we may
not know how frequent they are.

2. Data-driven methods where we use databases of real speech to find
the variations present. The problem is that the variations based on a
given database may give a result too specific for that database. One of
the advantages is that we may compute probabilities for the variants, as
opposed to the knowledge based methods.

For both these methods we can distinguish between direct and indirect
modelling. The pronunciation variants can either be derived directly for each
word or indirectly by deriving pronunciation rules and using these rules to
generate new pronunciations. Data-driven direct modelling limits us to model

47
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only words observed sufficiently many times in the adaptation set, whereas for
indirect modelling (both for data-driven and knowledge based) care must be
taken in the generalization from the observed variation. If a certain variation
appears in very different contexts in the adaptation data compared with the
test data the generalization may not be valid. An example of this is that
variation observed in function words in the adaptation data is not necessarily
a variation appropriate for content words in the test data even if the phone
context is the same. One example of this is the function word “for” with
the canonical baseform [f ao r] and the alternative baseform [f er]. This
transformation is not equally probable for the noun “forest” with the canonical
baseform [f ao r ah s t].

The main reasons to use indirect modelling in a data-driven approach are:

e The vocabulary of the data used for rule derivation can be different from
that of the test data. Rules help us generalize the variation seen in the
adaptation data to words not present (“unseen words”).

e Rules depend on smaller segments than words and will occur more often,
giving more reliable estimates.

e A possible extension to cross-word rules will be easier.

Some of the pronunciation variation will be present across word boundaries
[38]. Using rules makes the extension to cross-word pronunciation modelling
easier, although multi-words makes it possible to model cross-word effects also
when dealing directly with baseform variants [32]. Multi-words are new lexical
items formed of several words, e.g. “going to” can be treated as one word to
account for the baseform variant [g aa n ax].

Decision tree modelling, also called CART modelling (Classification and
regression trees) is a popular method for deriving pronunciation rules. It is
described in some of the earliest pronunciation modelling approaches e.g. [10]
and [95]. Usually one tree is built for each phone. The number of rules
is controlled by limiting the number of mappings in each leaf and the leaf
probabilities can be used as rule probabilities.

There has been a migration from knowledge based methods to data-driven
methods. In [31] and [33] it was shown that general purpose lexica do not
model spontaneous speech sufficiently well. Only 33% of the pronunciations
found in the hand-labelled part of Switchboard were present in the Pronlex
dictionary. The non-canonical pronunciations showed an 11% increase in word
error rate over canonically pronounced words. Another observation was that
frequent segments showed more variation. Data-driven methods will model
frequently occurring segments better. This might be an advantage, as frequent
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words will have a larger influence on the WER. Besides, ASR is based on
statistics, and the differences and similarities perceived by humans might not
be the most useful for ASR. A combination is thus usual, using some kind of
data-driven method to verify the rules and find probabilities for them.

Most experiments report the need for several iterations. When new pro-
nunciations are found, retraining of the acoustic models using the new pro-
nunciations, by retranscription of the training set, will usually give increased
performance. Another iteration using the retrained models for a new transcrip-
tion to derive yet another set of pronunciations may give further increase in
performance. Modelling pronunciation variation in the lexicon should reduce
the need for modelling variation in the acoustic models, and a retraining after
lexicon modification should give better performance because the models will
be more focused.

In the presentations of previous work we will focus on the characteristics
of the different methods used for modelling pronunciation variation. Im-
provements in error rate compared with a baseline system is the usual way
of assessing the performance of a method. Comparing the performances of
the different methods is difficult as different complexity, different languages
(although mostly English), and different corpora are used. The amount of
training data should also be taken into account when comparing. This makes
it difficult to do a fair comparison, and we have therefore chosen to cite no
error rate numbers.

The effect of workshops on the subject is apparent. Much of the work
reported here has connections to workshops dedicated to pronunciation mod-
elling. The focus on one topic helps to get people interested and is an arena
to exchange new ideas and advance cooperation between different research
groups. Many of the experiments cited here were presented at the workshop
“Modeling Pronunciation Variation for ASR” organized in Rolduc (the Nether-
lands) in 1998 or the workshop “Adaptation Methods for Speech Recognition”
organized in Sophia-Antipolis (France) in 2001. The two reviews from these
workshops have been useful for this overview, [113] and [114].

5.1 Knowledge based pronunciation modelling

The use of linguistically based transformation rules to generate decision trees
for alternate pronunciations was described by Finke and Waibel in [26]. Forced
alignment was used to choose among the rules in the training corpus, which
was the Switchboard database (using a speaker adapted recognizer). These
data-verified rules were modelled in a decision tree, taking into account the
context dependency of phonetic neighbours, word type, speaking rate, average
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word/phone duration, vowel stress, pitch, and computed probabilities. A rule
probability was estimated from the relative frequency of the use of each rule.
The resulting transformation rules were interpreted as speaking mode depen-
dent. The lexicon was expanded using baseforms found by forced alignment,
i.e. direct modelling, but with indirect modelling as an intermediate step. The
variants found using the derived rules did not increase the performance as
much as when selecting variants from the baseline dictionary. The authors
interpreted this as due to added confusability. Baseform weighting using
the speaking mode dependent decision trees increased the performance. The
starting point for this experiment was knowledge based, but data were used
for verification.

Using hand-labelled data is also a kind of knowledge based method, but if
the pronunciations found are used in retranscriptions, the categorizing is less
clear cut. One example of this is experiments performed during the Johns
Hopkins summer workshop in 1997 described by Byrne et al. in [13] and
Riley et al. in [94]. The results show that pronunciation modelling techniques
using automatically labelled data performed better than hand-labelled. The
experiments first used indirect pronunciation modelling using the rules to
generate variants for unseen words. Decision trees were used to model the
phonological rules seen in hand-labelled speech material, i.e. which phones can
be neighbours dependent on lexical stress and distance from word boundary.
From these decision trees a small network of possible alternate transcription
was made for each word. Using all of these alternative pronunciations for
recognition decreased the performance. This is the same effect as was shown in
[26] and shows the need for some way to choose which pronunciations to accept
in the lexicon. The alternative pronunciations from the decision trees were
then used in a forced alignment to retranscribe the corpus. Using new decision
trees based on this automatic transcription the performance increased. The
authors’ interpretation was that there was a mismatch between transcription
by human perception and machine perception. Another reason may be that the
hand-labelled material was much smaller than the automatically transcribed
since the process of hand-labelling is time consuming and expensive.

Direct modelling with hand-labelled data as boot-strap was also investi-
gated in the experiments of the Johns Hopkins summer workshop in 1997
using an “explicit dictionary expansion”, [94] and [13]. Pronunciations found
sufficiently often in the hand-labelled or the automatically transcribed corpus
were put in the lexicon with weights based on relative frequency. This means
fewer variations for the recognizer, and the performance increased, as expected.
Multi-words were used to model coarticulation effects between some of the
words. The conclusion of the experiments was that cross-word context is
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not necessary except for some words. Using the initial decision tree rules
to retranscribe the training set and train new acoustic models increased the
performance. Using these new models for a new retranscription making new
decision trees and new explicit lexicon expansions, improved the performance
even more. These experiments also showed the need for care when deriving
the weights for the alternate pronunciations (i.e. pronunciation probabilities).

Five known pronunciation rules for Dutch were investigated by Kessens
et al. in [66] and Wester et al. in [123] (4 deletion rules and 1 insertion
rule). Improvements were shown by incorporating them in known contexts.
Modifying the acoustic models by retranscribing the training data using the
variants, gave increased improvement. Language model modification was done
by incorporating pronunciation probabilities (computed from forced alignment
of training data) and gave further improvement. Cross-word rules were investi-
gated by both including “border” versions of pronunciations and multi-words.
In both cases this was limited to frequently occurring variations. A data-driven
approach was compared with this knowledge based approach by Kessens et
al. in [65]. Deletion rules were found by allowing deletions in an alternative
transcription, in order to let the acoustic models decide where to delete phones.
The knowledge based approach and the data-driven approach gave about the
same performance, but the data-driven approach resulted in a smaller lexicon.
As the data-driven rule derivation was controlled by frequency counts, the
most frequently occurring variations (the most important ones) were favoured.
There was a 96% overlap in transcriptions by the two approaches. The data-
driven rule context was phone identity, whereas the knowledge rule context
contained broader groups of phones. The knowledge based rules will therefore
be applied more often, even if the same transformation (in this case deletion)
is described.

5.2 Direct data-driven pronunciation modelling

One of the major challenges in pronunciation modelling is to decide which
baseforms to include in the lexicon to get the best ASR performance. Most
ASR lexica in use today are based on linguistic knowledge only and are
not optimized with respect to ASR performance. Data-driven pronunciation
modelling focuses on finding the “best” baseforms given an objective criterion.

An overview of the recognition system with adapted lexicon based on data-
driven methods is shown in figure 5.1. The new lexicon is affected by both the
adaptation data and the acoustic models, and for most approaches also the
knowledge based reference lexicon. For a consistent approach the language
model should also be considered. This is shown by a dashed arrow. The
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Figure 5.1: Recognition system with adapted lexicon.

acoustic models may also be adapted by the new data, possibly using the
new lexicon. The new lexicon may also influence the language model. For
an optimal system the influence between all parts of the system should be
considered giving a joint optimization.

Pronunciation variation modelling can be described in two steps:

1. Find pronunciation variants
2. Assess the variants and modify the lexicon

A truly data-driven method was reported by Holter and Svendsen in [51],
using some of the methods derived for finding optimal baseforms presented in
[50]. For the experiments an US English database with a 991 word vocabulary
was used. No rules or hand-labelled data were used, only a baseline recognizer.
This recognizer was used to make an N-best list of pronunciations without any
prior knowledge of the vocabulary other than the number of words and the
boundaries of each word, which is usually present in an orthographic tran-
scription. A subset of these pronunciations was chosen through a maximum
likelihood algorithm doing joint optimization for all the utterances of each
word. A clustering procedure chose which variants to add in the lexicon to
ensure distinct baseforms, still using the maximum likelihood metric. The
appeal of this idea is that it uses objective criteria for the optimization of all
parts of the recognizer.
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Another approach to finding variants using data-driven methods was pre-
sented by Fosler-Lussier in [29] and [32]. First an alternative transcription
based on a bigram phone grammar was used to derive rules using decision trees.
Then the training set was retranscribed using these rules to get a “smoothed
transcription” and the pronunciation variants that occurred frequently enough
were added to the lexicon. An added feature in this approach is the use of
“dynamic” lexica, including word frequency, word trigram probability, word
length, and speaking rate measures in the pronunciation modelling.

A similar approach was described for the Verbmobil project by Wolff et
al. in [124]. A phone recognizer generated alternative hypotheses that were
aligned with a transcription based on the canonical lexicon entries. Baseforms
occurring 8 times or more were included in the lexicon and gave an increased
performance. A measure of confusability called “consolidation” showed that
words occurring 15 times or more had reached a “stable” set of pronunciations.
This threshold excluded 85% of the lexicon adaptation material. The algo-
rithm was therefore expanded to incorporate generalization by using frequent
sequences instead of words only.

5.3 Indirect data-driven pronunciation modelling

Generating pronunciation variants using rules that are automatically derived
from data, is frequently used. These rules should ideally capture the difference
between the reference pronunciation of a word and the actual pronunciation
used by the speakers. This approach is similar to the first step in the variant
generation of [32] and [124], as well as the approach based on hand-labelled
transcriptions in [94].

Humphries and Woodland did experiments on British English accent mod-
elling in [55]. This is an example of indirect modelling, deriving pronunciation
rules from data. No hand-labelled transcription was used, so this is an entirely
data-driven approach. Alternate transcriptions were found by allowing all vow-
els to be substituted and then using a forced alignment. Vowel transformations
are an important difference between British English accents. The three best
transcriptions were used to derive rules using context dependent decision trees
including leaf probabilities. A new pronunciation dictionary was then made
for the new accent. Typically an average of 4 pronunciations per word were
found to be effective. The test was performed on a 2000 word vocabulary, and
adding pronunciations increased the performance.

Humphries and Woodland have also done experiments on British versus US
English in [53] and [54]. The recognizer was here used to perform a free (and
erroneous) transcription. An acoustic confidence measure was used to filter the
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transcribed data before rule derivation. This transcription was aligned with
the canonical baseforms in the British English lexicon. A list of possible phone
transformations (substitutions, insertions and deletions) was generated and
incorporated in a decision tree. Examination revealed interesting correlations
with linguistic analysis of the differences between British and US English,
e.g. transformation of [t] to [d] in certain contexts. The British-trained
recognizer was tested on US English speech using US-adapted pronunciations,
and this gave an increased performance compared with using British pronunci-
ations [54]. There was no difference between using British pronunciations and
adapted US pronunciations when training new acoustic models on US English
speech [53]. The performance was worse but comparable to US models trained
on “real” US pronunciations. In the case of sufficient training material, the
extra phonological information was of less value. The authors suggested that
in this case the pronunciation variation was taken care of by the acoustic
models.

An example of the migration from knowledge based to data-driven mod-
elling, is the work of Cremelie et al. Their first work was based on hand-
labelled data [17]. Later work in [18], and [129] was based on automatically
derived “expert” transcriptions where a constrained speech recognizer was
used. In the improved version [18] more linguistic constraints were put into
the automatic transcription, a wider context was used, and negative rules were
allowed. Negative rules means that variation is prohibited. In [129] further
improvements gave a significant performance gain. Pronunciation rules were
derived from alignment of the reference and “expert” transcriptions, and each
acoustic segment was only allowed to count for one rule. Rule probabilities
were found by frequency counts and the rules were ordered in a rule hierar-
chy which favoured more specific rules. The most important rules were the
coarticulation rules between words, most other experiments do only consider
intra-word variations. These coarticulation rules were incorporated in the
language model (since cross-word rules cannot simply be added to the lexicon).
For the experiments they used two databases with different vocabularies for
both English and Flemish, i.e. four databases in total. Cross-checking between
the two databases for the same language was done to investigate possible
corpus-specific rules. The results showed improvement for both languages and
about the same level of improvement for rules based on either automatically
or hand-made transcription. The automatic transcription version was best in
some tests, the same effect as observed by Byrne et al. [13]. According to
the authors, the reason could be that the automatic transcription caught the
peculiarities of the recognizer and therefore gave rules better suited for this
particular recognizer.
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5.4 Step-by-step data-driven rule derivation

Data-driven pronunciation rule derivation is the technique used in this disser-
tation and the standard steps are therefore described in more detail referring
to previous work. The same steps will be used when describing our own work
in section 6.3. We have chosen some of the approaches referred in sections
5.1-5.3 to give examples of previous work in data-driven pronunciation rule
modelling. The approaches chosen to illustrate rule derivation are: Cremelie
et al. [18], Fosler-Lussier et al. [32], Humphries et al. [54], and Riley et al. [94].

Pronunciation variant generation by using data-driven rule derivation can
be described in five steps:

1. Automatically generate alternative transcriptions
2. Align the reference and alternative transcriptions
3. Derive rules from the alignment

4. Assess and prune the rules

5. Generate baseform variants from the rules, assess the variants, prune or
assign weights, and modify the lexicon

As we can see the first step in direct pronunciation variant modelling is
replaced by a 4-step rule derivation and a step 5 to generate variants from
the rules. Step 4 is not trivial, rules may interact and one rule may change
the context affecting another rule. The rule pruning will control the number
of variants indirectly, but we need a step 5 to assess the variants. We may also
add a step 6 performing retranscription of the lexicon adaptation material and
iterate the process.

The 4 (3) first steps may be replaced by phonological rules if we have
knowledge about the variants we want to describe. Step 5 (and 4) should be
performed anyway to ensure that we control the performance of the recognizer
in a consistent way.

5.4.1 Reference and alternative transcriptions

The first step in rule generation is finding an alternative transcription that can
reveal the true pronunciations of the speakers. We can also use knowledge: if
we have hand-labelled data, pronunciation rules can be derived from compar-
ing this transcription with the reference. The alternative transcriptions may
contain two types of errors. Either they can be too similar to the reference
transcription and hide the differences really existing in the data, or they may
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contain transcription errors. The reference transcription will also often be
derived semi-automatically. Usually only a word transcription exists and if the
reference lexicon contains several baseforms, the recognizer is used to choose
baseform by forced alignment.

There are two dominant ways of finding the alternative transcriptions
automatically [114]. A phone recognizer is used employing either:

e A phone loop (no grammar) [54], or
e A restricted phone grammar [18], [32]

Another way to generate alternative transcriptions is to bootstrap using hand-
labelled data as in [94].

For the experiments in [54] a phone loop approach was used since a re-
stricted phone grammar without the possibility of deletions and insertions
performed worse. In [18] the alternative transcription was found by allowing
each phone in the reference transcription to be deleted or substituted by a
phone of the same class. Insertions were also allowed and probabilities were
assigned to both deletions, insertions, and substitutions. In [32] a phone bi-
gram was used. All these approaches use the recognizer, i.e. apply data-driven
generation of the alternative transcription.

As an example, the two transcriptions for the utterance
“Paramount pictures expected eight ...” are:

Reference transcription (canonical baseforms):
[pehrahmawntpihkcher zih ks pehkt ahd ey t]
Alternative transcription (phone loop on spontaneous dictation):
[pehrmaampih k cher z ahk s peh kt ih t ey iy tl

5.4.2 Alignment

The usual approach when aligning the two transcriptions is to use dynamic
programming. The difference between the methods lies in how the costs for
the phone-to-phone mappings are assigned. For the experiments we refer to,
three different kinds of costs were used:

e Uniform [54]
e Phonetic feature vector [94], [32]
e Four phone groups (and silence) [18]

The two last methods used phonetically based costs. In [94] and [32] each
phone was classified according to a set of phonetic features. The cost for a
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phone-to-phone mapping was derived by comparing the phonetic feature vec-
tors for the two phones. In [18] this was simplified to classify the phones in four
groups (vowels, sonorants, fricatives, and plosives). Both these methods rely
on knowledge about phone similarity and the assumption that the probability
of phone-to-phone mappings due to pronunciation variation will follow phone
similarities. We can observe a correspondence between the chosen methods
for transcription and alignment as no a priori assumptions are made neither
in deriving the alternative transcription nor in performing the alignment in
[54].

The example transcriptions for “Paramount pictures expected eight ...”
can be aligned as follows:
[pehrahmawntpihkcher zihkspehkt ahd ey t]
[p eh r maam pihkcher zahkspehktiht ey iy tl

5.4.3 Rule derivation

Rules representing the pronunciation variation can be extracted from the
alignment of the two transcriptions. A usual approach in rule based pro-
nunciation modelling is to let the rules express phone-to-phone mappings
(allowing deletions and insertion). It has been shown [18], that deletion rules
are frequent, especially in spontaneous speech [31]. The rules are usually
defined as dependent on a specified context. The width of the context has to
be decided as well as which other information to include. The most frequently
used context is one phone neighbour to each side of the phone(s) affected by
the rule. Other contexts that are shown to have effect include word frequency
[32], lexical stress, and syllabic information [94]. Using more complex contexts
demands either more data to estimate the rules properly or a generalization
of the contexts. CART trees can be used to generalize the context of a rule in
an automatic way. For cross-word rules the word boundary information must
be included in the context.

From the example transcriptions for “Paramount pictures ...” we can
derive several rules. Examples of word internal phone-to-phone-mappings with
context given by phone identity are:

[r ah m] maps to [r m] (a deletion)

and

[m aw n] maps to [m aa m] (two substitutions)

In the last case a word-external rule may be more appropriate ($ marks the
word border):

[mawn t $ pl] mapsto [m aa m $ p]

To derive and cluster rules from the aligned transcriptions, both [54], [94]
and [32] used decision trees. All three approaches started modelling only word
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internal rules. To account for cross-word context, multi-words were added in
[94] and [32].

In [18] both word internal and external rules were derived. The algorithm
also included negative rules that prohibit variation to be applied. For the
cross-word rules, the index of the rule was attached to the variant to ensure
compatibility with the previous or next word affected by the rule.

5.4.4 Rule assessment and pruning

Most rule based pronunciation modelling techniques need some kind of pruning
to control which of the alternative pronunciations that should be included in
the lexicon. Rarely used pronunciations may introduce more errors than they
correct. We can use a threshold based either on the rule probability or the pro-
nunciation probabilities or both to control the number of new pronunciations
to add.

In [54], [18], and [94] the rules were pruned using rule probability based
thresholds. The rule probabilities were found from the decision trees (i.e. a
kind of entropy measure) in [54] and [94], or frequency counts in [18].

5.4.5 Pronunciation variant generation, assessment and prun-
ing

From the resulting set of selected rules new pronunciations are derived. Using
several rules for each baseform will result in a huge number of new baseforms:

# baseforms = (# rules for phone 1) - (# rules for phone 2) - - - (5.1)

The resulting pronunciation probability derived from the rule probabilities
would be very low for most of the multi-rule derived baseforms. One way
around this is to use estimated pronunciation probabilities as a threshold to
limit the number of variants instead of, or in addition to, the rule probability
threshold.

When we have little data to derive pronunciation from, it may also be
necessary to merge the reference lexicon and the new baseforms [54]. In [32]
merging was found beneficial even if a 100-hour adaptation set was used, be-
cause the pronunciations were modelled directly and the infrequently occurring
words got too “noisy” pronunciations.

The pronunciation probabilities can be estimated directly by counting
the different pronunciations chosen when retranscribing the adaptation data
by forced alignment (restricted by the initial rules). This was described as
“smoothed transcription” in [32] and “explicit” dictionary expansion in [94].
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Estimating pronunciation probabilities is not trivial for unseen words. Rule
probabilities make it possible to estimate the probability for unseen words and
pronunciations, but care must be taken to not generalize too much. In [54]
the pruning threshold for the pronunciation probabilities was derived from the
rule probabilities that were given by the leaf probabilities of the decision tree.
In [117] the problem of combining the rule probabilities to word probabilities
was discussed. Pronunciation probabilities derived from the decision trees were
compared with pronunciation probabilities estimated by frequency counts in
[94]. These two ways of estimating the pronunciation probability did not give
the same result.

5.4.6 Retranscription

The rule derivation can be done iteratively by retranscribing the adaptation
data using a grammar restricted by the initial rules. Retranscription, realign-
ment, and new rule derivation can be done iteratively until only small changes
are observed in the resulting rule set. This will be similar to the “smoothed”
transcription and “explicit” dictionary expansion referred to earlier, [32] and
[94], where only variants seen sufficiently often in the training data were used.

Retranscription will give fewer transcription errors, but at the expense of
restricting the alternative transcription to be more similar to the reference
transcription. The limitation imposed on the transcription will ensure more
instances of each rule. We will not get any new rules from this approach, but
we may have more confidence in the rules we get.

5.5 Confusability reduction

Confusability reduction is closely linked to the pruning of rules and pronunci-
ation variants. As shown the assessment of pronunciations is usually done by
one or a combination of these methods:

e Assess pronunciation rules (the resulting variants will then be assessed
indirectly)

e Assessing each pronunciation variant directly

The rule hierarchy used in [18] and [129] is an indirect way of reducing con-
fusability by restricting confusable rules. The consistency and consolidation
measures in [124] could also be used to control the confusability.

Modelling pronunciation variation by adding several baseforms for each
word in the lexicon should be done with care. More variants, and probably
more similar variants, will increase the lexical confusability and the error
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rate. A method of balancing the “old” errors corrected and the “new” errors
introduced should be included in the algorithm. Rule and variant assessment
only considers the “goodness” of each pronunciation alone and how it performs
on the word which the baseform belongs to. The pronunciations will interact
and a more global approach to assess the total set of pronunciations also taking
into account the effect on the other words in the vocabulary, should be ben-
eficial. This calls for discriminative techniques incorporating misclassification
measures.

Torre et al. explored in [118] measures of word confusability by first es-
timating a phone confusion matrix. The phone confusions were combined
with word confusions that were used in vocabulary selection. If we have
several synonyms, this algorithm can be used to choose the best pronunciations
among synonyms. With basis in the same algorithms, automatic alternative
transcription generation was also examined with promising preliminary tests.
Phone confusion matrices were also used by Sloboda and Waibel in [109].
First the confusion matrix was used to smooth a phone bigram that was used
to automatically find variants for frequently misrecognized words. For the
variants found, homophones as well as variants that only differed in confusing
phones were eliminated.

Discriminative model combination was used for pronunciation modelling
experiments by Schramm and Beyerlein in [99]. An expression for the word
error count including the pronunciation weights was derived. Minimizing this
function with respect to these weights gave an iteration formula for updating
the weights. The update function depends on the frequency of occurrence of
the baseform in the true word as well as for competing words. The technique
presented is similar to the one presented by Korkmazskiy and Juang in [67],
where GPD adaptation of pronunciation weights were used.

A confusability measure based on substring matching was presented by
Wester and Fosler-Lussier in [122]. All possible word pronunciations that
matched substrings in the reference transcription were used to make a lattice
of confusable words. The confusability metric was calculated by considering
the number of words that corresponded to each phone. Baseforms with high
confusion counts were then removed. This method was later extended to
incorporate acoustic confusability by Fosler-Lussier et al. in [30].

The suggestions for confusability measures mentioned above have shown
modest improvement in WER. The final criterion for selecting which pronun-
ciation variations (or rules) to use in the recognition system should ideally
be consistent with the optimization on the rest of the system, i.e. considering
both acoustic models, the lexicon, and the language model.



Chapter 6

Acoustic log likelihood based
pronunciation modelling

We believe that in addition to knowledge based methods we should incorporate
data-driven methods, at least to assess the baseforms. The acoustic models
used in a recognizer do not necessarily correspond to the abstract linguistic
units used to describe the pronunciation of a language [12]. There may also be
a mismatch between the speaker independent acoustic models and the speaker.
For a consistent approach to automatic speech recognition all parts of the
recognizer including the lexicon should be optimized using objective criteria.

The focus of this dissertation is lexicon adaptation, i.e. pronunciation
modelling by changing the baseforms in the ASR lexicon. It is then important
not to add baseforms for the variation that is already modelled by the acoustic
models. We believe that this can be achieved using acoustic log likelihood as
a pruning measure both for variants and rules. It is crucial that the acoustic
models used in pronunciation modelling are the same as the ones used for the
ASR system in operation.

Rule probability estimation from an automatic transcription is sometimes
referred to as maximum likelihood pronunciation modelling. Since the fre-
quency counts are obtained from a maximum likelihood transcription this is
a fair use of the term, but in this dissertation we reserve the term “maximum
likelihood” for optimization with respect to acoustic log likelihood.

This chapter starts with a formulation of the pronunciation modelling
problem using decision theory. Then our approach to both direct and in-
direct pronunciation modelling is described using the same outline as in the
description of previous work in chapter 5. The last section is devoted to the
important issue of confusability reduction.

61
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6.1 Decision theory applied to pronunciation mod-
elling

Translating the decision theory elements to ASR, the classifier is the recognizer
and the classes are the words, sentences, or meanings that we can extract
from an utterance. The classifier/recognizer consists of acoustic models, the
pronunciation lexicon, and the language model, see section 2.2. All three
(high-level) parts of the recognizer may be optimized discriminatively. In
this dissertation the pronunciation lexicon is the main issue and we therefore
translate the general decision theory equations to incorporate the parts of the
ASR system that depend on the pronunciation lexicon. The notation is the
same as in the description of general decision theory in appendix D.
We use the following notation for the classification system:

e The classifier C(-)
o A set of M different words (classes) W; € {Wy, Wy,..., Wy}

o A set of baseforms {B}d} for each word where id shows the identity of
the baseform.

e A set of N training samples o(n) € {o(1),0(2),...,0(N)} where each
o(n) is an array of feature vectors representing an acoustic segment
belonging to a word !.

When we need to distinguish between several baseforms B; this will be
indicated with a superscript. The baseform Bj** will for instance be the
pronunciation with highest log likelihood for word Wj.

When the index of a sample is not important, we omit the n and write
o. Indicating which word an acoustic segment belongs to will be shown using
subscript ?: observation o; belongs to word W;. The number of samples for
one word W; is N;. N is the total number of training samples irrespective of
word, i.e. Z]]Vil N; = N. The set of all samples belonging to one word is then:

{oj(n)} ={o; 0e W;}, n=1,...,N; (6.1)

In the following equations we also need an indicator function defined as:

1) = {1, if ¢ is true 62)

0, otherwise

!The length of the array will depend on the length of the acoustic segment and will vary
both within words and between words. For simplicity and readability we will omit the length.

2This is different from equation (2.2.2) where the subscript on o was used to show time
dependency. Since we no longer keep track of the length we reuse the subscript.
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Discriminant function

First of all we define a discriminant function g which measures how well
an acoustic segment o matches a given baseform B; and the recognizer’s
parameters #. Discriminant functions are explained in more detail in appendix
D. Here we use the log likelihood as discriminant function:

4.(0l0) = log p(o] B;,0) (6.3)

For an ASR system the parameter set € will correspond to the acoustic model
parameters, such as HMM parameters in the observation densities and tran-
sition probabilities (and pronunciation and language probabilities). For sim-
plicity and readability we will ignore the parameters 6 in the discriminant
notation in later equations. In the case of pronunciation modelling we want
to optimize with respect to the baseform B; and not #. (Which is “usual”
in discriminative training since the acoustic models then are the targets for
optimization.) Normally we will use log likelihood per frame to be able to
compare log likelihood for segments of different lengths.

For a true Bayesian approach we should use the a posteriori probability as
the discriminant function:

p(o,Bj) _ p(o|B;)P(Bj)

P(Bjlo) = =1 2(0)

(6.4)

We want to find an objective measure consistent with the error rate of the
system. This measure can then be used in a minimization with respect to
the baseforms we want to assess to bring the system towards a minimum
error rate. The measure should be consistent with the recognizer and we have
therefore chosen to use the the acoustic log likelihood. In both the training
phase and recognition phase (classifier operation) log likelihood is used. Using
log likelihood instead of the a posteriori probability means that we ignore the
probability P(Bj).

A misclassification measure for introducing a new baseform B;*lt for another
word W; may then be expressed as:

log p(0;|B2'") — log p(o;| B{"™) (6.5)

This can be used to assess the performance of a new baseform B;-ﬂt by combin-
ing the improvements (a positive misclassification means that B;“lt is preferred)
for all instances of the word W; in an adaptation set. We then get a measure
of how much better B;“lt models the variation given the adaptation set. When
using indirect modelling by deriving pronunciation rules we must take into
account that each rule probably will be applicable to several words. A way to
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use this measure to evaluate a pronunciation rule is to consider all the words
for which the rule in question is applicable. This is used in section 6.3.4.

To estimate the errors introduced, we need to combine the loss for all
instances of all words in the vocabulary. One problem with this measure
is that some errors will be new while others are not. We should therefore
include all the baseforms BT for the word W; in the expressions. We redefine
the discriminant function to be the log likelihood using the baseform that gives
the highest score:

g;(0) = log p(o| Bj*™) = log p(o|W}) (6.6)

Note that the true logp(o|WW;) would be a sum of the likelihoods for all
baseforms for the word W;, but we have chosen to let logp(o|WW;) denote
the Viterbi approximation using only the best baseform B;***.

6.1.1 Misclassification measures for one baseform

Using the same formalism as in equation (D.10) we define the difference
between the discriminant functions for two baseforms as a misclassification
measure. In equation (D.10) the difference was defined with respect to the best
competitor, here we define the difference with respect to any competitor. The
misclassification measure in equation (6.5) using the word based discriminant
function in equation (6.6) is then:

djji(0i) = gj(0i) — gi(0:) (6.7)

If this measure is positive for at least one of the competing vocabulary words
W, we have a classification error. In the case of an error the discriminant
function of the true word W; gives a lower value than the competing word W
for the segment o;,

One possible loss function is to count all errors making no assumptions
on how well the absolute value of the misclassification measure represents
the “amount” of error. This is the same zero-one loss function as shown in
equation (D.11), repeated here:

N0, d~‘i(0i)§0
ljji(0i) = {1’ 07< 4y(00) (6.8)

To express the expected loss as a function of the correct class Wy we
combine the loss with respect to all classes. Summing over competing classes
is equivalent to summing over all classes since the loss [ is zero for the correct
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class:

R(C Zzﬂk )P{C(0) = W;|Wi} (6.9)

To estimate this value we use the Nj training samples og(n) of word Wy:

Lijk(0)P{C(0) = W;|Wy} = Zzﬂk o (n)) - 1 [gj(0x (1)) > gr(og(n))]

1
= Fknzlljk(ok(”))
(6.10)

If we use a different loss function /;;(0), the last equality does not hold unless
the loss for the correct class is zero. The estimate of the expected loss for
word W}, corresponding to equation (6.9) is then:

M

N
RCO.W) = Y 3 D bnlow() (6.11)
j=1 n=1

We estimate the total expected loss by summing over all classes:

. M M I N,
C()) = ZP(Wk) Z Fk Zlﬂk(ok(n))
M
= Z (W) — ZZl]‘k or(n

k=1 nljl

(6.12)

This is an estimate of the upper bound on the average probability of error
because we sum errors from all the competing classes. If there are many
overlapping errors, we will not estimate the true error rate, but the measure
can still be useful.

Counting only the true errors will mean that we only consider the best
competitor and thereby may hide useful information. Improving the perfor-
mance with respect to other competitors may give better results, since the
best competitor in the training set may not represent unseen data well. A
slightly different training set may give a completely different result. Alterna-
tive measures based on estimating the error rate that takes better care of this
problem will be presented in the next section.

The word probability P(W}) can be computed from the language model
training text, giving a language model dependency. For a unigram language
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model this is a constant, but higher order N-grams require word history which
complicates the matter.

The expression in equation (6.12) gets impractical when we introduce
several new baseforms simultaneously. If we compute the measure for each
new baseform, it is not clear how the numbers should be combined. Besides,
the triple sum requires a lot of computation. Using pronunciation rules, each
rule will probably bring up several new baseforms which must be evaluated.
We will therefore present several redefinitions of the misclassification measure
in equation (6.7) that better handle sets of baseforms.

6.1.2 Misclassification measures for sets of baseforms

Baseforms will interact, and we should therefore optimize on sets of baseforms
(or rules). Besides, one pronunciation rule can give many baseforms, and
assessing one rule may therefore mean assessing several baseforms. FErrors
may be both corrected and introduced, and we should consider the combined
effect. We also want to reduce the complexity in the computation of the
estimated error by combining the distances between the correct word and
all competing candidates. The misclassification measure in equation (6.7)
is therefore modified in several variants. This will give other estimates of
expected loss than the upper bound shown in equation (6.12).

We introduce a misclassification measure where all competitors are taken
into account through a function of all discriminant functions:

di(0;) = f(g1(0i),92(0i), ... gnm(0:)) (6.13)

The first possibility is to expand equation (6.7) to consider the best com-
petitor among all other words (this is the misclassification measure used in
appendix D):

d; (0;) = max g;(0i) — gi(0i) (6.14)

Using a zero-one loss function corresponding to equation (6.8):

N )0, d%(oi)go
I (o)) = {1, 0< d' (o) (6.15)

we get an estimate of the average probability of error:

e M 1 Ny
Ri(C() =) P(Wi) 3 > li(or(n)) (6.16)
k=1 n=1

This estimate will only count one error per acoustic segment, whereas the
estimated risk in equation (6.12) will count several errors per sample if several
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classes have better score than the correct one. In speech recognition we will
often see that if the correct word does not get the highest score, several other
words will have higher score. Equation (6.16) will therefore give a better
estimate than (6.12).

One problem when using error counts as in equation (6.14) is that we do
not take into account the unseen errors as we optimize on the training set. The
classifier performance on the borders between classes is more interesting for
optimization than the best competitor, which may be an outlier. We want to
express the amount of error as a function of the discriminant functions. One
solution is to choose a discriminant function with an output that represents
the amount of correctness.

The next suggestion for a misclassification measure is therefore to combine
the distances from one word W; to all the other words W;, normalized with
the number of other words M — 1:

1 M
d: (0;) = > [g;(0i) = gi(0s)]

M —1 4~
NIVE

(6.17)

1 M
=—gi(0i) + 7 Z.gj(oi)
JiF

The problem with the measure in equation (6.17) is that large (negative) values
of g;(0;) will dominate the sum. Large negative values of the log likelihood
mean that the competing baseforms are far from W;, and we do not want a
too large influence from these competitors.

One possibility is to restrict the sum to the words M that give errors
according to equation (6.7), i.e. gj(0;) > gi(0;). This will also reduce the
computational complexity.

(o) = ——— 3 [g;(01) — gs(03)] (6.18)

M —1
JEM

The disadvantage of this measure is that it may give problems with conver-
gence as the set we sum over can be different for each baseform introduced.
The third measure we introduce is the smoothed misclassification measure
used in GPD (Generalized Probabilistic Descent) [64]:
. M 1/n
d(0;) = —gi(07) + log D esiton (6.19)

M -1 &~
JgFi

For large 7 the last term will be dominated by the best competitor and this
measure will be equal to the misclassification measure in equation (6.14).
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Large negative values of g;(0;), i.e. word baseforms far from W, will give minor
contributions. The largest contributions to this misclassification measure will
come from the words (baseforms) with best log likelihood score on the acoustic
segment o;. This measure as well as only looking at the best competitor,
equation (6.14), are used in section 8.3.7 to compare lexica derived by different
rule derivation methods.

A new baseform introduced will belong to the baseforms of W;, and to
assess the performance we combine the misclassification measures for all words
Wy, in the vocabulary in a loss function. To find an estimate of the average
probability of error we use the expected value of the loss function. We may
introduce a doubt decision in the loss function to make the results more
consistent with unseen events as shown in equation (D.12). A loss function
often used in combination with the misclassification measure in equation (6.19)
is a sigmoid function which gives a smoothed zero-one cost:

1
i )=
i (0:) 1 + e—¢di(0i) (6.20)
The advantage of this loss function is that it quantifies the amount of error
without putting to much emphasis on classifications far from the border be-
tween the classes. The constant ¢ controls the region around the border. Both
equations (6.19) and (6.20) are differentiable. An alternative loss function that

emphasizes the border behaviour even more is a double sigmoid function:

1 1
= 1 + e*fdi(oi) o ]_+ e*f(di(oi)*C)

1%(0;) (6.21)

Here, we ignore not only correct classifications, but also misclassifications far
from the border. The motivation is that these cases are difficult to handle
anyway so we might as well ignore them. However, using this kind of loss
function we need to be very careful that we do not optimize on the wrong
borders. We found no difference in performance between the two loss functions
in preliminary experiments and have therefore only used the “single” sigmoid
loss function /7 (0;).

To estimate the probability of misclassification pmc(Wy), we sum over
all segments belonging to word W) and normalize by the number of sam-
ples/segments:

L
pre(We) = 5= Yl ox(n) (6.22)
n=1

To get an estimate of the total expected loss we take the expectation over
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Figure 6.1: Sigmoid loss function.
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Figure 6.2: Double sigmoid loss function.
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all words as in (D.15):

"“; N (6.23)
= ZP(Wk)F > li(ok(n))
k=1 k=i

This loss function gives us a method of assessing a lexicon given the
recognizer’s acoustic models and the acoustic training data. We may then
compare a lexicon made using a combination of alternative baseforms or
pronunciation rules to another baseline lexicon. The measure will not tell
us which rules, or even baseforms, to keep or discard. Ideally, we should
search for all possible combinations of baseforms. Data-mining algorithms
like greedy search or evolutionary algorithms can be used to make a directed
search instead of an exhaustive one.

6.1.3 Maximum mutual information

An alternative to minimum error rate as an objective function for optimization
is maximal mutual information (MMI). Baseform assessment using MMI is
presented for comparison.

In the maximum mutual information scheme we want to find the baseform
B that maximizes the mutual information between an acoustic segment o and
a baseform B in the set of baseforms 5. The parameters of the recognition
system are given by 6.

B = argmax I (o, B; 0)
BeB
plogio), (629

B;0
= argmax FE{log p(o, B; ) (0.0) }
p\O;

——— 1 — gremax F{lo
s P(B)plo; )] ~ g Filos

For instantaneous mutual information we assume that the samples are repre-
sentative and omit the expectation operator. The MMI can then be used as a
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misclassification measure?:
-p(0k|Bk)]
I Ok,Bk =lo —
( ) & p(ok)
~log p(ok|By) (6.25)
| >3 p(ok| By) P(By) '
— log - pr(0k)
| 321 pi(ok) P(B))
Combining the scores for all classes gives the total mutual information:
= Pi(0k)
I(0,B) = log [ AN (6.26)
lczzl Y7L, pi(or) P(Bj)

This gives a normalization of the baseform B against all other baseforms
applied to the acoustic segments that belong to the word we want to model.

In [64] the connection between MMI and the smoothed error count used in
GPD is shown. Maximizing the mutual information is the same as minimizing
its negative value:

[ M ilO .
—I(og, By) = log Ej:lzi((ol,i))P(Bj)
| 3521 Pi(0k) P(B;)
= log _P(Bk) + =2 o
> lo _ij#kpj(ok)P(Bj) (6.27)
= L pr(ok)
M
J.J#k

This equation is similar to the misclassification defined in equation (6.19). The
main difference between MMI and the GPD-inspired discriminative techniques
is therefore the smoothed error count used in GPD, equation (6.20). The MMI
uses a linear function of the misclassification measure similar to equation (6.17)
with the problems of optimizing directly on the sum of the log likelihoods. The
MMI formulation has no loss function which gives an optimization function
less comparable with WER. MMI therefore relies on the assumption that log
likelihood is a good measure to assess the discriminative power of the lexicon.

*Here we switch to using class distributions p;(ox) for the conditional distributions
p(or|B;) and omit 0 for readability
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6.1.4 Limitations and practical considerations

One problem when using an adaptation set to measure the performance of an
ASR system is that we will generally not have all the baseforms needed in
operational mode for the system available (in sufficient numbers.) Care must
be taken when generalizing from the misclassifications in an adaptation set,
especially when we model variation by rules.

For speech recognition we will always have some model assumptions (e.g.
HMMs). We have to decide how much trust we have in the log likelihood as a
measure of the amount of correct classification when choosing the form of and
the connection between the misclassification measure and the loss function.
An alternative is to use error counts directly, but then we will only optimize
with respect to the best competitor. Considering all competitors in a smoothed
error count can be done by using a smoothed misclassification as in equation
(6.19) and a loss function as in equation (6.20).

Computing the distance between all words in the vocabulary is very com-
putationally intensive, and for many words the distance will be so large that
it is of no interest. A less computationally intensive method is to restrict the
total loss to include only the confusable words. If all words for which we do not
compute the distance in equation (6.19), have a negative distance, a zero-one
loss function will give the same result with this simplification as without.
Using some of the correct classifications (the ones closest to the border) and
a sigmoid loss function may give a better performance since we then include
“almost” misclassifications. The drawback is that we need a threshold to
decide which correct classifications to include. Another possibility is to use
an N-best list to represent the competing hypotheses, this is used in sentence
based discriminative training [14] and discriminative language modelling [69].
Another approach may be to look at the N competitors closest to the correct
word. This will ignore misclassifications far from the border and have similar
effect as the double sigmoid function shown in figure 6.2.

In the outline of measuring confusability of a lexicon the language model is
included by P(W}) in equation (6.23). If we only consider unigram language
modelling a simplified version of this equation can be found by using the usual
estimate for the word probability:

P(W,) = % (6.28)

This estimate will give the unigram probabilities from the acoustic training
set and will not necessarily be the same as a unigram computed on a language
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model training set. Using this estimate the average error rate becomes:

R M 1 Ny
R(C(")) = ZP(WI@)E > li(or(n))
k=1 n=1

M N, 1 Nj, \
= N > i (ok(n)) (6.29)
k=1 n=1

Mo N
=> N > li(ok(n))
k=1 n=1

The total number of samples N will be the same for all lexica and can be
ignored. The resulting estimate of the total number of errors for a lexicon is:

o M Ny
Error(Lexicon) = Z Z li(ox(n)) (6.30)
k=1n=1

This simplified estimate depends on comparable word distributions in the
training and test sets.

6.2 Direct modelling of pronunciation variants

We have used a data-driven approach which utilizes the same Maximum
Likelihood (ML) criterion for the lexicon design as for the training of the
recognizer presented in [51]. The optimal baseform for each word is defined
as the baseform B;- that maximizes the acoustic likelihood of a set of sample
utterances 7; = {0;(n)} of the word W;, given a set of valid baseforms B and
an HMM set defined by its parameters 6:

B = argmax{p(T;|B,0)} (6.31)
BeB

The grammar defining B in [51] was a monophone loop grammar independent
of the word Wj. Other ways of deriving candidate baseforms include defining
a word-specific set B; with information from the canonical baseform. The
method includes a clustering procedure also using the ML criterion to add
several baseforms for each word to the lexicon.

Instead of allowing all possible candidate baseforms (i.e. all possible phone
sequences of any length), we have restricted the search space to candidate
baseforms obtained by an N-best phone loop transcription of the word exam-
ples. The same method using a 10-best phone loop has been shown to give
improvements for pronunciation modelling of Norwegian natural numbers [3].
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One problem with this direct approach is that we are restricted to mod-
elling the variants seen in the training data (in sufficient numbers) as discussed
in chapter 5. We have therefore expanded this theory to maximum likelihood
based rule modelling.

6.3 Indirect modelling using pronunciation rules

Baseform variant generation by using data-driven rule derivation can be de-
scribed in five steps, see section 5.4.

6.3.1 Reference and alternative transcriptions

For most experiments we have chosen to use a phone loop grammar as in [54] to
make the alternative transcriptions. This will give many transcription errors,
but the transcription will contain less influence from the canonical baseforms,
and the lexicon will restrict the alternative transcription only via the acoustic
models. The “best” baseforms do not always follow known phonological rules
and systematic “errors” may be variation that we want to model. It is therefore
important not to exclude possible rules before they are evaluated by the final
assessment criterion. In our case the association based alignment will discard
chance errors. The influence from the reference lexicon can be increased by
using phone grammars trained on the lexicon, and we have performed some
experiments with phone bigrams. This technique will still be completely data-
driven.

For the word based transcriptions we have used an N-best phone loop.
Usually the difference in log likelihood between the top words in an N-best
list is not very large, so the second best transcription may also contain useful
information. The most confident part will not change and will get a higher
weight (count). For sentences an N-best transcription is of less use since
usually only a few phones will change and the effect will almost be the same
as repeating the sentence N times.

We have used both triphone and monophone models, this is described
in the corresponding result chapters. Monophones are believed to better
show pronunciation variation since triphones will contain, and therefore hide,
some of the variation. On the other hand, triphones will usually give less
transcription errors. For acoustic log likelihood based modelling the same
acoustic models should be used to control the transcription as the ones that
will be used in test.

Phone error rate is used to adjust the insertion rate in the automatic
transcriptions. This is not consistent with the belief that these transcriptions
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convey a truer transcription, some of the “errors” counted are the variation
we want to model. As we have found no better measure, phone error rate
(PER), is used (usually measured on the adaptation set). Phone error rate is
computed in the same way as word error rate, see equation (2.12), counting
both substitutions, deletions, and insertions as errors.

6.3.2 Alignment

We have used several alignment methods, first of all dynamic programming
approaches with different ways of defining the substitution costs, but also a
time synchronous alignment. Usually the substitution costs of the dynamic
programming are either uniform or based on phonology. The deletion and
insertion costs are usually set in advance to “reasonable” values.

The reference transcription will often be obtained automatically and will
therefore contain errors. Manually obtained transcriptions will usually also
contain labelling errors. Often only canonical pronunciations are used in the
reference transcriptions and variation in pronunciation that deviates from this
will also be “errors”. The alignment based on such reference transcriptions is
a challenge for the alignment algorithm. In our case the alternative transcrip-
tions based on a phone loop will not follow normal phonotactical rules. For
this “non-phonological” transcription errors a phonologically based alignment
may not be appropriate. Still, some mappings are obviously more probable
than others (e.g. a vowel mapped to another vowel instead of a plosive) so
a uniform cost may not be the best, [19]. One important aspect is that
the phone-to-phone mappings of pronunciation variations are not necessarily
symmetric. (It is highly probable that a [t] is flapped, but less probable that
a flap becomes a [t].)

We want to estimate the mapping probabilities using the information in
the data to govern the estimation. We therefore propose a new method called
association strength based on statistical co-occurrences of phones. This data-
driven alignment approach contributes to making the entire rule derivation
data-driven.

The problems of alignment can be illustrated with the word “litter” with
the reference transcription [1 ih t er]. One of the (non-native) alternative
transcriptions obtained using a phone loop was [uw d iy jh er]. Dynamic

programming using phone group based costs gave the alignment:
[1 ih ¢ er]

[ uw d iy jh er]

whereas the association based costs gave the alignment:
[ 1ih t er]

[uw d iy jh erl]
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Inspection of the timing of the alignments suggests that the second was a more
reasonable alignment. The reason for the difference is that the mappings [1 ->
dl, [ih -> iy], and [t -> jh] all were assigned high association strengths
(low costs). The mapping [iy -> uw ] which may seem more phonetically
likely than [1 -> d], did not appear frequently enough in the transcriptions
to be assigned any association strength and was therefore given the default
substitution cost. Even if the start of the word in this example may look like
a transcription error that we do not want to model, the last part of the word
may contain a useful rule. It should be noted that the alignment also will
depend on the chosen insertion and deletion penalties.

It is important to align the same acoustic segments when deriving pro-
nunciation variation. Irrespective of the substitution costs in the dynamic
programming there will be “misalignments”. One way to reduce this problem
it to use word boundary information to avoid that a misalignment will be
propagated to the next word. We have also investigated an alternative time
synchronous alignment method where we align the reference and alternative
transcriptions for each sentence using the time information given from the
acoustic models. Using the log likelihood information from the transcriptions
we can then automatically derive rules.

Association strength

A data-driven alternative to finding the phone-to-phone mapping costs is an
hypothesis based estimate for phone-to-phone mappings called association
strength based on statistical co-occurrences of phones introduced in [4].

The association method was first applied in [68] to generate grapheme-to-
phoneme rules. We now apply it to find probabilities of phone-to-phone map-
pings by comparing two sets of phone transcriptions and finding systematic
relations. The cost of a phone-to-phone mapping is set inversely proportional
to the probabilities given by the association strength.

The differences between the reference transcription and the alternative
transcription can be divided into systematic and unsystematic differences. The
differences that are due to transcription and segmentation errors will not be
systematic, but the differences due to baseform variation will be systematic.
We want an algorithm that can capture all the systematic differences and filter
out the random ones. If, for example, a speaker often substitutes [s] with
[z], we will often see an occurrence of [z] in the alternative transcription
when [s] is present in the reference transcription. We want the algorithm to
assign a high association value to the relation between these two phones. We
would like to point out that these mappings are not necessarily symmetric, the
probability of a mapping from phone A to phone B is estimated independently



6.3 Indirect modelling using pronunciation rules

7

of the mapping from phone B to phone A.

The method can be explained in a statistical framework as hypothesis
testing of the mean of a binomial distribution [28]. If the occurrences of a
specific phone (event A) in the reference transcription and a specific phone
(event B) in the alternative transcription are independent, the events are
subjects to the binomial distribution. The transcription was segmented and
several occurrences of the same phone in each segment were counted as one
occurrence. The segments can be words, phone groups, or if we have an initial
alignment (as for the iterated version), one reference phone. We can estimate
the probability of event B by dividing the number of alternative transcriptions
that contain B by the total number of transcriptions. We call this estimate
p. The number of occurrences of event A in the reference transcription is n,
and k is the number of occurrences of event B in the alternative transcription
given event A in the reference transcription. The probability of the number of
occurrences of B given A can then be computed using a binomial distribution:

P(K = k) = b(kin,p) = (”) Db (1= ), (6.32)

k

When the observed value of k£ is much higher than the expected value n - p,
the independence assumption is wrong. The probability of the number of
occurrences of B given A using the binomial distribution formula will then be
small:

kE>n-p and P(K=k)=>0b(k;n,p) <e (6.33)

In the implementation we chose to use the negative logarithm of this proba-
bility as the association strength between event A and B:

S(A = B) = —loglb(k; n,p)]. (6.34)

In order to avoid a high association strength when there is a negative corre-
lation between phones, we chose the restriction £ > n - p. Another option is
to use the positive logarithm, in this case to get a low (negative) association
strength.

Finally the algorithm may be iterated. Information from the alignment by
applying the association based costs can be used to estimate the co-occurrences.

Which phones that are substituted because of baseform variation, may
depend on both the language and the individual speakers. When capturing
the phone-to-phone relations from the data we can easily find different sets for
different speakers or groups of speakers.

To ensure that we find phone-to-phone mappings that are statistically
significant, we choose to have a threshold on the association strength. If
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the association strength is low this means k£ is close to n-p. The probability in
the binomial distribution is dependent on n, and we will get high strength for
low probability mappings for large n. The threshold is therefore set according
to the association strength for the mean n - p for the phone-to-phone mapping
with the highest number of occurrences. Using the same threshold for all
mappings will lead to that phones with low n need more occurrences to get a
high strength. As we have lower confidence in phones with low n this will not
be a severe problem.

One limitation is that the association strength relies on an estimate of the
mean in a binomial distribution. The significance of the measure will be low
when we have few samples n to estimate this mean from.

Time synchronous alignment

One reason for introducing a new time based alignment is that we want to
ensure that we align transcriptions occurring approximately at the same time.
Spontaneous speech often contains long pauses where the alternative tran-
scription inserts spurious phones that should be discarded. An automatically
derived reference transcription may contain errors compared with what is
really said, especially in the case of restarts and incomplete words. Using
the time information a misalignment for one segment does not effect the next
segment.

We start with comparing the end times of the first phones in the two
transcriptions. If the end times are equal (one frame deviation is allowed),
this is counted as a substitution (or correct if the phones are identical) and we
proceed to the next phones. If the end of the alternative transcription comes
before the reference transcription, we investigate the neighbouring segments
closer to decide if this is an insertion. If the end of the alternative transcription
comes after the reference transcription, we investigate the neighbouring seg-
ments closer to decide if this is a deletion. When we observe equal end times
and identical phones in the two transcriptions, this is marked as a possible
rule border. In the reference transcription word boundaries are marked so the
resulting time alignment also contains word boundaries.

An example of a case where time alignment gives useful information is the
name “Clinton” with the canonical baseform [k 1 ih n t ah n] where we
in the spontaneous dictation observed the phone loop transcription [k 1 ah
n]. A dynamic programming using phone groups gave the alignment:

[k 1 ih n t ah n]
[k 1 ah n]

whereas the time alignment gave:
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[k 1 ih n t ah n]
[k 1ahn ]

which means that the second syllable is deleted, and not the first, even if the
vowel of the alternative transcription is the same as the vowel in the canonical
second syllable.

Another benefit is that we get initial rules directly by observing the seg-
ments where the two transcriptions differ. The combined alignment and rule
derivation makes it easy to identify segments of no variation that can serve
as borders for rules. We have defined segments with identical phones and
time as “border” phones that give the context of the rule. For the example
above the time segments differed for the [1] phones so it should not be used
as a border phone, the rule should therefore be [k 1 ih n t ah n] -> [k 1
ah n] and not [1 ih n t ah n] -> [1 ah n]. Deriving rules across word
borders using this method is straightforward. We have chosen to treat the
variants occurring across word boundaries without silence in the same way as
word internal rules. This is because we assume they will behave in the same
way except for phone combinations not found inside words (in which case they
make non-applicable rules that do not hurt the performance).

Last but not least, from the alignment we can also compare the log likeli-
hood score for the reference and alternative transcriptions. From each instance
of each initial rule we can compute an associated log likelihood ratio as ex-
plained in section 6.3.4. The major difference is that we use the acoustic
segment for the rule and not the entire word. The derived log likelihood
measure can be used directly in rule pruning or to discard low score rules
before continuing with word based log likelihood pruning as in equation (6.36).

6.3.3 Rule derivation

We have adopted a rule notation similar to [18]: If a phone string F in
the reference transcription is transformed to another phone string T in the
alternative transcription, we write this as: F — T. F is called the focus of the
rule. The transformation is dependent on the context surrounding the focus.
A rule is therefore defined as a transformation F — T given left context L and
right context R:

Rule r: L-F+R — T (6.35)

The reference transcription part of the rule, L-F+R is called the rule condition.
All parts of the rule may include one or more phones. If the rule describes a
deletion, the transformed phone is “empty”, symbolized with DELETED.

We illustrate the derivation of rules from an alignment with two examples:
1) If the reference lexicon baseform of the word “states” is [s t ey t s,
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while the alternative [s d ey t s] is observed in the alternative transcrip-
tion, we identify this variation as the rule: s-t+ey — d.
2) The word “bands” has the reference baseform [b ae n d z] and we ob-
served alternative [b ae n z]. The rule in this case is: n-d+z — DELETED.
For the rules derived by the time synchronous alignment we may have
a longer rule focus and there is no one-to-one correspondence between the
phones in the reference and alternative pronunciation. Instead of a deletion
symbol, we write this as the phones-to-phones mapping where the numbers of
symbols in the focus and transformations are not necessarily the same. One
example of this is the word “December” with the reference lexicon entry [d
ih s eh m b er]. In the alternative transcription we observed [dh iy s ah
m er] and the timing of the [s] was equal in the two transcriptions. This will
give two rules: d-ih+s — iy and s-eh m b+er — ah m.
This last rule will be a combination of substitution and deletion.

6.3.4 Rule assessment and pruning
Log likelihood

We propose to use log likelihood improvements as a rule pruning measure,
because this is more consistent with training of the rest of the recognizer. The
acoustic models are trained using a maximum likelihood formulation and we
have therefore chosen to use the same metric for rule pruning. The capability
of the acoustic models to model the variation will then be incorporated. We
compare the log likelihood of the baseforms affected by each rule with the log
likelihood of the corresponding reference transcription using the misclassifica-
tion measure from equation (6.5). The measure will thus be a log likelihood
ratio, giving a normalization that makes rule comparison easier. The rule
pruning measure LL for an acoustic segment o; affected by a rule using log
likelihood improvement is:

LL(0;) = loglp(0;| B}, )] — log[p(o;| B}, 0)]

-t 2] (6.30)
p(o;| B!, 0)

Here, Bfef is the reference baseform for the word W; belonging to o;, and Bflt
is the alternative baseform for the same word after modification according to
the rule we want to assess. 6 is the set of parameters of the recognizer used
in computing the log likelihoods.

To assess each rule we use an improvement measure similar to the error
estimate in equation (6.30). The most important difference is that we only
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use the word in question and not the competing words, thereby removing the
outer sum. The other difference is that instead of summing over the loss for
each instance of the word we now sum over the improvement. For each rule
several words will be affected and the improvement is computed as a sum of
the positive improvements for each word. This gives the total improvement
measure for rule k:

LLH(rule k) =" Y LL(og) (6.37)
Wj k(j)EK ()

Here, 0y(;) is an acoustic segment for a word W; affected by rule k. For each
word W; we sum over all acoustic segments K (j) where LL(0;)) > 0. We do
not include negative log likelihood contributions because we always keep the
reference transcription in the lexicon, and LL(o(;)) < 0 will mean that the
reference baseform will be chosen. To get the total measure for each rule we
sum over all affected words. All positive contributions are added, favouring the
rules that are applied more frequently. This is deliberate, because we assume
that the rule conditions which are most frequent in the adaptation also are
most useful in testing. If this is not the case, a weighting factor should be
applied. This will be a rough approximation of including word unigrams as
explained in section 6.1.4.

The rules are sorted according to the LLH criterion and we can indirectly
control the number of baseforms added by restricting the number of rules
we apply. Because of the word unigram factor, frequently occurring rule
conditions will be favoured and we will get more variants per rule on average
than other methods where the language effect is not considered.

We will have no pronunciation probabilities directly from this measure.

Pronunciation rule probability

Estimated rule probability by frequency counts is a popular pruning measure.
We have used two kinds of estimated rule probabilities as a sorting criterion
comparing different thresholds governing the selection of the rules.

From the alignment we count the occurrences of all rules as well as the
occurrences of all rule conditions. An estimate of the rule probability (RPR1)
is the ratio between these counts:

ﬁ( 1-A+x2 = B) = count(x1-A+x2 — B)
* * ~ count(x1-A+x2)

(6.38)

As a phone loop transcription contains errors, it can be advantageous to
apply some kind of confidence measure to the alignment [54]. One possibility is
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to limit the rule extraction to the segments with identical contexts in reference
and alternative transcriptions. In this case the estimated rule probability
(RPR2) is:

Plxi-A+x2 — B) = count(x1-A+x2 — x1-B+x2)
* * B count(x1-A+x2)

(6.39)

The advantage is that we are more confident that we do not count alignment
“errors” as rules, but on the other hand we have fewer occurrences of each
rule. An “error” in x1 or x2 will wrongly inhibit the rule being counted.

Using this kind of estimation of the rule probability we will have probabil-
ities for all segments present in the adaptation data. The sorting criteria
before choosing which rules to use will be a combination of absolute and
relative thresholds as well as a threshold for pronunciation probability derived
by combining the effects of rules applied.

We have also tried sorting by occurrences of rule condition segment in the
test lexicon, as well as word frequency estimated from the language model
training text. This will include the language model in the optimization.

6.3.5 Pronunciation variant generation, assessment and prun-
ing

There are two approaches to pruning that are often combined:
e Rule pruning before variant generation

e Variant pruning after variant generation

In the previous sections we have shown how rules can be pruned according
to a log likelihood measure or a rule probability estimate. The resulting rules
will then be used to derive variants. Multiple rules in each variant will give
many variants, thereby increasing the confusability as discussed in section
5.4.5. We have chosen to use only one rule at the time. This is a suboptimal
solution, but we assume the variants with only one rule applied are the most
important ones and should contribute most. For the time synchronous rule
derivation we consider a longer rule focus, and one rule may consist of several
transformations. Another possibility is to use all rules to make a phone
network for each word and assess the possible variants using equation (6.31).

Variant assessment is closely related to confusability reduction and will be
treated in section 6.4.
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6.3.6 Retranscription

Retranscribing the adaptation data using the derived rules as a restriction, is
one way of obtaining an alternative transcription with less transcription errors.
When using rule probability as the major sorting criterion the confidence in
the transcription and alignment is important. This is because the estimate of
the rule probability is based on counting occurrences in the alignment or on
using the alignment for training CARTs. For acoustic log likelihood based rule
pruning the usefulness of a rule is assessed by the rule pruning measure and
not by the alignment. The importance of the alignment in the log likelihood
rule pruning scheme is therefore first of all to find all possible good rules.
Reducing the number of bad rules in the transcription and alignment phase
speeds up the computation, but it is not crucial.

The procedure for retranscription can be illustrated for the word “numer-
ous” with the reference baseform [n uw m er ax s]. From a 5-best phone
loop transcription for one of the speakers we observed a transform from [uw]
to [ow], transforms from [er] to [aa r] or [er r], and a deletion of the
[ax]. The transform from [er] to [aa r] was discarded in the rule pruning.
In addition, other rules concerning the phones in this word were found in
other words. This gave a total of 2 possible transforms for [uw] ([uw] and
low]), 8 for [m], 2 for [er], and 3 for [ax]. All rules were used to make a
word lattice for this word. A forced alignment was used to choose from these
2-8-2-3 = 96 possibilities. The 5-best retranscription for the speaker gave only
the transforms [uw] to [ow] and [ax] to [ah] or [z], i.e. one transform that
occurred in the phone loop transcription and two new transforms. Compared
with the phone loop transcription 2 transforms were discarded (in addition to
the one discarded in the rule pruning).

6.4 Confusability reduction

Confusability reduction techniques are often independent of how the variants
are obtained, whereas they are found using knowledge or by direct or indirect
data-driven modelling. The most usual confusability reduction method is
to use variant probabilities to either reduce the number of variants or give
a lower weight to less likely ones. When we assess pronunciation rules by
acoustic log likelihood the variation already modelled by the acoustic models
is included in the assessment. This should prevent adding superfluous variants
and confusability.

These approaches only consider the quality of the baseforms for one word.
We should ensure that the confusability measure used to assess the variants
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corresponds to the WER in some way. To achieve this we must consider the
baseforms of the entire lexicon. In section 6.1 we have used decision theory
for pronunciation modelling to find an expression for the estimated total loss
that can be used as a confusability measure. One problem with this approach
is that we loose the unified optimization as we use different measures in the
rule selection compared with the final rule or variant pruning.

An obvious measure for misclassification is the word error rate. This
can be computed by recognition tests on adaptation data. The drawback,
however, is that we only optimize with respect to the best competitor. An
alternative is the smoothed error count explained in section 6.1 where we take
into account the amount of correctness for all competitors. Different lexica for
the same task can then be compared. The search for the best baseforms will
be computationally expensive. Data-mining algorithms like greedy search or
evolutionary algorithms can be used to make a directed search instead of an
exhaustive one.

We would also like to evaluate the baseforms for the words not present
in the adaptation set. This task can be solved if we are able to estimate the
confusability for unseen words. One way to do this is using a phone confusion
matrix. A distance measure for confusing the phone p; with p; is:

E{log p(o;|pi, ) — log p(o;]p;,0)} (6.40)

Here o; is an acoustic segment belonging to phone p;.

To use this measure we have to decide how to combine the phone confusions
to find the misclassification measure comparing two words. Summing up
the distances of each phone will only be an approximation to the “true”
misclassification. One way to reduce the error introduced by this is to use
the phone confusions only to compute the distance for the phones that differ
in the words we want to compare. The phone distance measure will in this
way serve as a correction term for the difference introduced by for example
a pronunciation rule. Note that to find the correction term, the phones of
the two transcriptions must be aligned and deletions and insertions must be
treated specially.

Another problem with the phone distance estimation is that the reference
transcription will contain errors due to the mismatch we try to reveal through
pronunciation modelling. Estimating the phone confusions from this tran-
scription we find the distance between a reference transcription phone and an
alternative transcription phone. In the same way as for pronunciation rule
derivation, the context should be included in the phone confusion matrix.



Chapter 7

Comparison of ASR
performance for different
speaking styles

The main motivation for the experiments reported in this chapter was to
investigate how standard ASR techniques perform for different speaking styles.
Our focus is on the effect of pronunciation variants, but when using a general
purpose lexicon. In the experiments we compare the use of one canonical
baseform for each word with the use of baseform variants found in a standard
ASR lexicon, as well as different levels of acoustic modelling.

Pronunciation variation may be handled in different parts of the ASR
system, usually by acoustic or lexical modelling. The question of how to
model the pronunciation variation has been addressed in e.g. [62] and [123].
The choice of method may depend on speaking style. In [82] investigations on
acoustic model performance for read and conversational speech were presented.
We present results on both acoustic and lexical modelling of pronunciation
variation for read, spontaneous, and non-native speech. Our comparisons of
different levels of acoustic modelling are especially interesting for spontaneous
dictation and non-native speech and may contribute to better understanding
of ASR performance for these speaking styles.

A second motivation for the experiments in this chapter was to find the
optimal setting for a baseline for experiments on spontaneous dictation. We
have therefore done extensive tests for the system used in chapter 9.
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7.1 Introduction

Adequate handling of various speaking styles is one of the main challenges
for ASR [1]. Expanding from the domain of read native speech, ASR systems
will encounter more variability in the speech, e.g. more pronunciation variants.
How we should model the pronunciation variation may depend on the speaking
style. One of the important questions in pronunciation modelling is to decide
which variation to model at the lexical level and what can be handled by the
acoustic models [113].

Two main reasons for the improvement in performance of state-of-the-art
ASR systems are more relevant training data and fast speaker adaptation
methods. More complex acoustic models need more training data to get
reliable estimates for the larger number of parameters. The acoustic models
can be made more detailed by using more components in the observation prob-
ability density mixtures. Context-dependent acoustic models like triphones
and quintphones are capable of modelling allophonic pronunciation variation.
Usually the same canonical transcription is used in training irrespective of the
speaking style, and we rely on the acoustic models to handle the deviation
in pronunciations. The drawback of using more complex acoustic models to
model the variation is that these models will be specific to the training data,
and the ASR system may encounter problems in recognizing new speakers that
do not fit into the same category as the training data.

For heavy accents, e.g. non-native speakers, the performance gain when
introducing context dependency in the acoustic models has been small [119].
Speaker dependent adaptation of the acoustic models has given large improve-
ments in recognition performance, but for non-native speakers the performance
after adaptation is still far from comparable with native speech. Speaker varia-
tion among natives (accents) is usually more systematic, and model adaptation
may give the needed shift in classes. For non-native speech there may be no
systematic shift and the distributions are smeared out [119]. This kind of
variation may be better handled in other ways, e.g. lexicon modelling.

A handcrafted lexicon will generally outperform general purpose lexica
on the task for which it is optimized. However, the production of a manually
optimized lexicon is costly and in many cases not feasible. It is therefore inter-
esting to evaluate pronunciation variation issues using only publicly available
resources. This is particularly interesting regarding portability issues and for
languages where available handcrafted resources are limited.

We have investigated the use of pronunciation variants both in the training

of the acoustic models and in testing for the different speaking styles. In this
way we can compare acoustic and lexical modelling of the variation.
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Acoustic model training

We have trained two sets of acoustic models:
1. “Canonical”: trained using transcriptions based on a canonical lexicon
2. “Variant”: trained using transcriptions based on a lexicon with variants

The “Canonical” set will model all the variation in the acoustic models. The
“Variant” set will have less variation in the acoustic models, leaving more
to lexical modelling. This scheme should in theory give more consistent
training data for the recognizer and better acoustic models. Both monophone
(context-independent) and cross-word triphone (context-dependent) models
were trained.

Acoustic model adaptation

Acoustic model adaptation is one way to handle variation; this technique may
also depend on speaking style, since the seed models we use for adaptation
will fit the speaking styles differently. This is especially true for unsupervised
adaptation where we rely on the transcription given by the original acoustic
models. The performance of acoustic model adaptation is also dependent on
the amount of available adaptation data. We have looked at adaptation using
both one sentence, which is suitable for on-line adaptation, and 20 sentences,
enough to achieve a substantial improvement for most adaptation methods.

Lexical task adaptation

Including pronunciation probabilities has given increased performance in many
experiments, e.g. [123]. One way to derive the probabilities of pronunciation
variants is to perform a forced alignment on a development set and use fre-
quency counts to estimate the probability. For the non-native speakers we
have an adaptation set available, and we have therefore used this speaking
style to investigate the effect of using pronunciation probabilities.

7.2 Experimental procedure

7.2.1 Speaking styles

The task was chosen from the Wall Street Journal (WSJ) corpus available
from LDC [127]. WSJ consists of several test sets with different speaking styles
represented. The two “hub” tests hl and h2 consist of read speech of the same
type as the training set. In addition we have the “spoke” tests where we have
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Grammar and
Speaking style Code | Vocabulary
Read, native hi 20k, open (nvp)
Spontaneous dictation, native | s9 20k, open (vp)
Read, non-native s3 5k, closed
Read, native h2 5k, closed

Table 7.1: Speaking styles tested

used the tests s3 with non-native speech and s9 with spontaneous dictation,
see table 7.1. The hl and s9 tests both have a 20k open vocabulary. The
s9 test has verbal punctuation, which is not the case for h1. This is denoted
by (vp) and (nvp) respectively in table 7.1. For each test we have used the
corresponding test specific bigram supplied with the WSJ distribution.

The test sets consist of approximately 200 sentences from 10 speakers,
except for the non-native test set which consists of 400 sentences (still 10
speakers).

7.2.2 Lexica

The CMU lexicon is a popular pronunciation lexicon for US English and avail-
able for free [15]. Alternate baseforms are marked so the lexicon can be used
both as a “surface” lexicon with baseform variants and as a canonical lexicon
by removing the alternatives. The basis of the lexicon is 20k words extensively
proofed and used by the Carnegie Mellon University (CMU). Additional words
and baseforms are added from several unproofed sources, but only words or
baseforms that are found in two or more sources have been used, see a more
detailed description in appendix B. In the subset used for the 20k vocabulary,
3174 of the words have baseform variants. The maximum number of variants
for one word is 6; see table 7.2. In the subset of the lexicon used for the 5k
vocabulary 1060 words have multiple baseform variants. On average there are
1.2 variants per word.

We also did some comparative tests using Pronlex available from LDC
[89]. This lexicon is also widely used and it is claimed to be more consistent,
but is not free. Pronlex is based on more phones than the CMU lexicon; 42
versus 39. The average number of baseform variants per word in Pronlex is 1.1
and the canonical baseforms are not marked. Because of this we trained only
context-dependent models with baseform variants when using Pronlex. The
results showed hardly any difference in performance between the two lexica.
This indicates that the CMU lexicon is a state-of-the-art non-adapted lexicon.
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Number of | Number of

baseforms words
6 13
5 4
4 107
3 228
2 2822
1 16826

Table 7.2: Number of baseforms per word in the CMU lexicon for the 20k
WSJ vocabulary

7.2.3 The HTK reference recognizer

We have trained a baseline recognizer using the HTK toolkit [131], using fairly
standard methods [126]. We have used the standard WSJ training set consist-
ing of read speech from 284 speakers (SI-284), a total of 37500 utterances. We
used MFCC feature vectors with 13 elements, including normalized energy,
and added the first and second derivatives giving a total of 39 elements. Each
feature vector was derived from a speech frame with a Hamming window of
length 25 ms and a 10 ms frame rate.

The RM-models supplied with HTK were used as seed models. The CMU
phone set has 39 phone models and we used two silence models, giving a
total of 41 monophone models. The two silence models were one context-
independent for word ends with longer pauses and one context-free for word
ends without long pauses. The two HMM sets, the canonical version and the
variant version, were trained separately using Baum-Welch reestimation. For
the context-dependent models, different decision trees for clustering triphone
states were built for the variant and canonically trained HMMs. The set of
41 monophone models (one context-independent and one context-free) gives a
total of 62441 logical cross-word triphones to cover all possibilities. The train-
ing data contained 18814 different triphones for the variant setup and 17893
for the canonical setup giving a total of 56442 and 53673 states respectively.
The decision tree based clustering was done using state tying and the number
of states after clustering was approximately 10000. The number of distinct
(physical) triphones was approximately 28000 after tying.
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Training of canonical and variant models

When training acoustic models using baseform variants, the acoustic models
are used to choose which baseform variant to use for training. This is done by
retranscribing the training data with forced alignment using a variant lexicon.
Then this transcription, believed to better represent the variation seen in the
data, is used for further training. The most common scheme is to retranscribe
the training data once using monophone models and then use this transcription
for the rest of the training. We did some preliminary experiments with this
type of variant trained models using 4 iterations at each mixture increase.

To make sure that the baseform variants affect the models we also tried a
scheme where we retranscribed the data for every increase in the number of
Gaussians in the observation probability mixture. For every level of mixture
components we used 4 iterations of Baum-Welch reestimation using the tran-
scription from the previous level. Then the reiterated models were used to
retranscribe the data by choosing baseform variants. This transcription was
then used to iterate 4 more times. The two different retranscription schemes
were performed both for the monophone and triphone models.

For the canonically trained HMMs we used 4 iterations for every level of
mixture components both for monophone and triphone models. To be sure
that the number of iterations did not favour the variant trained models, we
also trained canonical models using 8 iterations.

For the tests we used 10 Gaussians in the mixture for triphone models.
For the monophone models, increasing the number of Gaussians from 16 to 32
did not give substantial improvement, so we decided to use 16. For the two
silence models we used twice as many Gaussians as the other phone models as
in [126].

Acoustic model adaptation

For acoustic model adaptation we used unsupervised adaptation and the Max-
imum Likelihood Linear Regression (MLLR) adaptation method [79]. The
adaptation tests were performed using triphone models only, but for both the
canonical and variant trained versions. We tried two adaptation schemes:

1. One-sentence adaptation where each sentence was used to find one global
MLLR transform. The sentence was then re-recognized using this trans-
formation. This is a reasonable adaptation scheme for telecommunica-
tion services where each speaker is active for a short amount of time and
we have no information about speaker identity.

2. Incremental adaptation on 20 sentences from each speaker. In this way
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each sentence from a speaker will update the transform that is used
to recognize the next sentence. For this adaptation scheme we used
regression classes in a tree structure so the number of transformations
was chosen according to the amount and type of data available.

Lexical task adaptation

Using the adaptation set and the training set it is possible to derive speak-
ing style dependent pronunciation probabilities from forced alignment. WSJ
includes an adaptation set with the same speakers as in the test set for the
non-native task. The adaptation set consists of 40 sentences per speaker and
the speakers read the same sentences. This means that the adaptation set has
a very limited vocabulary, only 349 different words, but all words are repeated
at least 10 times (once by each speaker).

7.3 Results

Some of the results reported here were presented in [6].

For all the tables in this section the “Training” column shows the lex-
icon used in training of the acoustic models and the “Test” column shows
the lexicon used in test. The last line shows a “mismatch” test where we
used variants in acoustic model training but not in the test lexicon. The
figures show relative improvement in WER to make a comparison between the
speaking styles easier. The term “significant” is used when the McNemar test
gives a p-value less than 0.01, although the errors can not be claimed to be
independent when using a bigram language model, see section 2.5 for more
details on statistical considerations.

Details on experiments performed to choose the number of iterations for
every mixture update are given in appendix E. The chosen setting for the
canonical models is 4 iterations of retraining for every mixture update. For
the variant setup the choice is 8 iterations where a retranscription is performed
after the 4th iteration and 4 more iterations are performed with the new tran-
scription. All the results presented in the next section, both for monophone
and triphone acoustic models, are derived using this setup.

7.3.1 Context-independent models

For the monophone models we observed small improvements by including
lexical variants in the test, see table 7.3. The improvements relative to the
canonical setup are shown in figure 7.1. Using the McNemar test the improve-
ments using variants in test were only significant for h1 and h2. The further
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‘ Training ‘ Test H hi ‘ s9 ‘ s3 ‘ h2 ‘
Canonical | Canonical || 34.7 | 40.4 | 27.6 | 22.2
Canonical | Variant 32.9 | 39.3 | 27.2 | 21.1
Variant Variant 32.0 | 38.2 | 26.7 | 20.1
Variant Canonical || 35.8 | 40.8 | 28.2 | 22.2

Table 7.3: WER in [%)] for monophone acoustic models
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Figure 7.1: Relative WER improvement from canonical pronunciations in both

training and test using monophones

improvement using variants both in training and test was not significant.
For s9 we had to use variants in both training and test to get significant
improvement. For s3 the improvement was small, there were no significant
differences other than the deterioration of the mismatch test. The mismatch
test (using variants in training, but not in test) gave significant deterioration
compared with using variants in both training and test for all speaking styles.

7.3.2 Context-dependent models

The improvement seen using variants for the monophone situation was not
as uniform for triphones, see table 7.4 for WER results and figure 7.2 for
improvements relative to the canonical setup. We actually see a deterioration
for the two speaking styles s9 and s3. The deterioration when using variants
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‘ Training ‘ Test H hi ‘ s9 ‘ s3 ‘ h2 ‘
Canonical | Canonical || 15.9 | 23.7 | 27.7 | 8.0
Canonical | Variant 152 |1 23.5 | 284 | 84
Variant Variant 154|244 289 | 74
Variant Canonical || 20.5 | 29.4 | 31.0 | 11.6

Table 7.4: WER in [%)] for triphone acoustic models
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Figure 7.2: Relative WER improvement from canonical pronunciations in both
training and test using triphones

in both training and test for s3 is significant. For h2 we see a significant
improvement when using variants in both training and test. When using
variants only in test we see a deterioration for h2 that is not consistent with
the other read native task hl. There was a significant difference between the
mismatch test (using variants in training, but not in test) for all speech types
compared with both the canonical setup and using variants only in test.

7.3.3 Comparison of context-independent and dependent mod-
els

The improvement from context-independent to context-dependent modelling
gave the largest difference for h2, see figure 7.3. Again s9 behaved more
similar to h1l than s3 to h2. For s3 there was no significant change for the
canonical setup, and for the variant setup there was a significant deterioration.
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Figure 7.5: Relative improvement in WER using 20 sentence adaptation on
triphone models

One reason for this is that the variant triphones performed worse than the
canonical triphones. The increased modelling capability of the triphones does
not help for non-natives on average. As seen in figure 7.4 the performance for
the non-native speakers was very variable.

7.3.4 Acoustic model speaker adaptation

Using 20 sentences for MLLR speaker adaptation of the acoustic models gave
as expected a significant performance gain, see table 7.5. Adaptation using
variant models gave no or small improvement compared with the canonical
models, see figure 7.5. The largest adaptation gain was seen for the non-native
speakers, whereas the spontaneous dictation gave the smallest gain.

For the hl task we see the same increased performance by using variant
models over canonical models with adaptation as we saw without adaptation.
For the other tasks it was no surprise to see that adding variants did not give
any increased performance over acoustic model adaptation only, as they gave
no improvement for unadapted models. The smaller increase using variant
adaptation over variant models seen for the task h2 is due to the fact that
using variants without adaptation gave a better performance. The resulting
performance is equal, so we here see the effect of modelling the same variation
either by general purpose variants in the lexicon or acoustic model speaker
adaptation.

MLLR adaptation using one sentence gave no improvement, see table 7.5.
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HMMs | nt] s9] s3] n2]
Unadapted canon 15.9 | 23.7 | 27.7 | 8.0
1 sent. canon adap 16.2 |1 23.3 | 27.3 | 8.0
20 sent. canon adap 13.4 ] 21.0 | 20.8 | 6.6
Unadapted variant 15.4 | 24.4 | 28.9 | 7.4
20 sent. variant adap || 13.0 | 21.3 | 20.9 | 6.6

Table 7.5: WER in [%)] for triphone setup and adaptation
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Figure 7.6: Relative improvement in WER using pronunciation variants and
speaker adaptation for s3, results per speaker

No difference was observed between using one global transform approach and
a regression tree where the number of transforms is given by type and amount
of data. Omne sentence adaptation calls for more sophisticated adaptation
methods than MLLR [107].

In figure 7.6 we compare the improvement per speaker in the non-native s3
set for the 20 sentence and the 1 sentence acoustic model adaptation and the
lexical modelling of variation by including pronunciation variants in training
and test. The acoustic model adaptation gain was more uniformly distributed
over the speakers compared with using baseform variants in the lexicon.

We saw the largest improvement by using variants in training and test for
the read speech 5k vocabulary task h2. The performance increase was more
uniform, but still less than the adaptation using 20 sentences, see figure 7.7.

Since the monophone acoustic models performed similar to triphones for
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Figure 7.7: Relative improvement in WER using pronunciation variants and
speaker adaptation for h2, results per speaker

non-native speech, we also tried adaptation on monophone models for this
speaking style. For the canonical monophone models and 20 sentence adaption
the result was 24.1% WER. This is better than without adaptation (27.6%
WER) but worse than the triphone adaptation (20.8%). This shows that the
increased modelling capacity of the triphones is utilized in speaker adaptation
even if this was not the case for the speaker independent models.

7.3.5 Error analysis

Even if we got similar recognition rates using canonically and variant trained
HMMs, this does not mean that the recognition results were identical. There
are both errors corrected and errors introduced, see tables 7.6 and 7.7. The
insertions are counted as errors according to the WER formula in equation
(2.12). The total number of “correct” and “error” will therefore be larger
than the total number of words, which is 3446 for hl and 7435 for s3. For
h1 25.3% of the errors for the variant system were different from those in the
canonical system. This was similar for all speaking styles; 23.9% for s9, 29.0%
for s3, and 27.4% for h2. The differences between the canonical system and
the system with canonically trained HMMs, but variant lexicon used in test,
were not that large: 6.5% for h1, 9.8% for s9, 12.9% for s3 and 9.3% for h2.
Even if the variants in these experiments do not help recognition perfor-
mance, they do make a difference. Our results are similar to the ones shown
in [123] and indicate that improving the recognition performance could be
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Canonical Training + Test

Correct | Error
Variant Correct || 2888 153 (27.9%)
Training + Test | Error 134 (25.3%) | 396

Table 7.6: Error analysis on word level for hi

Canonical Training + Test
Correct | Error
Variant Correct || 5708 533 (25.9%)
Training + Test | Error 623 (29.0%) | 1524

Table 7.7: Error analysis on word level for s3

possible by careful selection of baseform variants.

7.3.6 Pronunciation probabilities

Using an adaptation set it is possible to derive speaking style dependent
pronunciation probabilities from forced alignment and use these to select which
variants to include in an adapted lexicon. This is a simple way of incorporating
speaking style dependent lexical adaptation.

As the non-native speakers potentially would gain more from pronuncia-
tion modelling we chose this task for some preliminary experiments. In an
adaptation set with the same speakers as in the test set all speakers read the
same 10 sentences 40 times. The vocabulary size of this set is only 349, and
256 of the words were present in the 5k test vocabulary. Only 92 of these
words had baseform variants in the CMU lexicon. This is a small number of
words compared to the total number of words in the vocabulary (5000), but
we assume that these are frequent words that are most important to model,
since frequent words incorporate more pronunciation variation [31]. The error

distribution of function words (which are frequent), like “a”, “an”, “and”,

“are”, “as”, in this 92-word list showed that these words were involved in
many errors and confirms that they are important to model. The baseforms
never selected were left out, and 71 words were left with variants. We did
experiments both with and without pronunciation probabilities added, in both
cases removing the baseforms not seen in the adaptation set.

The experiments did not show any improvement, even with different values

of the pronunciation probability scaling factor. In fact, we saw a small deteri-
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‘ Speaking style | HMMs H Acc. score | LM. score
hi monophones 97.5 2.6
s9 monophones 97.6 2.4
s3 monophones 97.85 2.15
h2 monophones 97.6 2.4
hi triphones 96.9 3.1
s9 triphones 97.1 2.9
s3 triphones 97.4 2.6
h2 triphones 97.25 2.75

Table 7.8: Contribution from acoustic score and language model score in [%]

oration. The reason may be either that this approach calls for larger amounts
of adaptation data than we had available, or that the variants present in the
CMU lexicon were not representative for the non-native speakers. Collecting
sufficient speaking style dependent baseforms “by hand” is infeasible. There is
a need for methods for deriving and assessing baseform variants that are more
automatic and more consistent with WER. Data-driven baseform variation
modelling is one answer, but requires sufficient amounts of representative
language resources.

7.3.7 Language model effect

To assess the impact of the language model on the different speaking styles
we compared the contributions from the acoustic score and the language score
in the recognized output, see table 7.8. The most striking result is that the
distribution of the scores was very similar for the different speaking styles and
that the acoustic score was by far the major factor in the overall score. We
note, however, that the read native 20k vocabulary had the highest influence
from the language model, whereas the read non-native 5k vocabulary had the
lowest.

Another approach is to test without a language model, i.e. a word-loop.
This was infeasible for the 20k vocabulary. For the two 5k tests the word-loop
tests gave a very high error rate: 70.6% for s3 and 32.8% for h2 with the
variant setup and triphone acoustic models. This means that the non-native
speech gave about twice the word error rate of the native speech on the same
task when the language model effect was removed. When using a bigram
language model, the non-native speech had more than three times the error
rate of the native speech. We should however be careful with the conclusions
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‘ Lezicon ‘ Model type Language model H h1 ‘ h2 ‘
CMU lexicon | Gender independent bigram 154 | 74
Dragon/HTK | Gender dependent bigram 14.5 | 6.9
Dragon/HTK | Gender dependent trigram 12.7 | 5.0

Table 7.9: Comparison of WER in [%] between results in this chapter and
experiments in [126] for SI-284 trained systems

from this experiment as the word error rates for the word-loop were very high.
They indicate, however, that the language model effect is more beneficial for
the native speech, which is also an intuitive result.

7.4 Comparisons with other systems

The h2 and h1l results for context-dependent models can be compared with
the results reported in [126] shown in table 7.9. The results were used as the
CUED-HTK contribution to the ARPA November 1993 WSJ evaluation and
gave the second best result for the hi trigram test and the best result for the
h2 trigram and the h1l bigram. One major difference is the lexicon used in
[126] which is the Dragon WSJ pronunciation lexicon version 2.0 with locally
generated additions and corrections. Another difference is that HTK version
1.5 was used, but this should not have any great impact on the recognition
results.

The “CMU lexicon” line is the variant versions from table 7.4. Since
variants were used in the CUED-HTK setup this gives the most appropriate
comparison. For the SI-284 set no gender independent results were reported,
which makes comparison with the CMU lexicon setup reported in this chapter
difficult. For both the hl and the h2 task the results from this chapter are
comparable with the gender dependent results. We also note that a trigram
language model gave a substantial increase in performance.

In chapter 8 we have used the Bell Labs automatic speech recognizer
(BLASR). This system was only trained on a smaller training set, SI-84 (84
speakers). A comparison of this system with the CUED-HTK system is given
in table 7.10. As we can see, the baseline is also in this case comparable with
the CUED-HTK result. No trigram results for models trained on the SI-84
set were given in [126].
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‘ Lezicon ‘ Model type Language model H h2 ‘
BLASR Gender independent bigram 10.9
BLASR Gender independent trigram 7.8
Dragon/HTK | Gender independent bigram 8.7

Table 7.10: Comparison of WER in [%] between results in chapter 8 and
experiments in [126] for SI-84 trained systems

7.5 Discussion

For pronunciation variation depending on speaking style, the question of lexi-
con versus acoustic model adaptation has no clear-cut answer. The results
presented here, using variants present in a general purpose lexicon, show
a discouraging performance when lexical variants were included, only small
gains. We observe that it seems more important not to include variants in
the training when we are uncertain which variants will be used in the test.
Models trained without variants were able to use a lexicon with variants
with equal or better performance. The models trained on variants showed
a significant decrease in performance when using a canonical lexicon in test.
This is probably because these models are less diffuse and therefore more
tailored to the lexicon they are trained on.

The variants in the standard purpose lexicon tested gave modest im-
provements. The largest improvements were seen for context-independent
models where all speaking styles except non-native speech had a significant
improvement. We observed the expected increase in performance when adding
variants in the lexicon, and a further increase when also including the variants
in training. For the context-dependent models the variants did only help for
read speech, which is the speaking style of the acoustic model training set. The
increased modelling capacity of context-dependent models could apparently
handle the observed variation just as well as the variants in the CMU lexicon.

We observed, however, that the errors differed: About 20% of the errors
were different when using variants compared with using only canonical pronun-
ciations. This suggests that there is a potential in selecting variants. To learn
more about the contribution of the variants in the lexicon a more thorough
error analysis is needed.

The use of context-dependent models gave a large gain compared with
context-independent models for all speaking styles except non-native speech.
The lack of improvement for non-native speech is also observed in [119].
Context-dependent models trained on native speech are apparently not very
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good for modelling non-native speech, and more sophisticated methods for
this difficult task are necessary.

Acoustic model adaptation gave the largest gain for non-native speakers,
while the spontaneous dictation had the least improvement. It is reasonable
to assume that the acoustic model mismatch is highest for non-natives, and
speaker adaptation therefore will be most beneficial in this case.

Even if the spontaneous dictation encounters less variation than conversa-
tional speech, we saw a large degradation compared with read speech. Even
with speaker adapted models, the performance was much worse than read
speech, and the gain for adaptation was also less than for read speech. Why
the adaptation gain was lower is difficult to explain. One reason may be that
as we have used unsupervised adaptation in the experiments, the artifacts of
spontaneous speech may give automatic transcription with lower quality.

Language modelling by including pronunciation probabilities did not give
better performance. The pronunciation probabilities were derived using forced
alignment on an adaptation set. Since the errors with and without pronun-
ciation variants differ, it is reasonable to assume that filtering out non-useful
variants should be beneficial. For the experiments reported here, this was not
the case. One reason may be that the number of variants was low. Looking
at the distribution of the language model part of the total score compared
with the acoustic model part, showed no big difference between the speaking
styles. Experiments using word-loop grammars indicate that the language
model helps more for native speakers than for non-native speakers even for
read speech.

7.6 Summary of the main results

e Pronunciation variants in the general purpose CMU lexicon gave only
modest improvements over using one canonical baseform.

e The improvement seen was largest when using context-independent acous-
tic models and for read native speech.

e Error analysis of the canonical system compared with the variant system
revealed that about 25% of the errors differed, although the resulting
word error rates of the two systems were similar.

e The improvements of context-independent acoustic models over context-
dependent acoustic models were largest for native speech and substantial
for spontaneous speech. For non-native speech there was no improve-
ment.
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e Speaker dependent acoustic model adaptation gave largest gain for non-
native speakers. The improvement was larger using context-dependent
acoustic models than context-independent acoustic models, although the
baseline performances of the two models were similar.

e The improvement for spontaneous dictation when using speaker depen-
dent acoustic model adaptation was significant, but smaller than for read
speech.

e Non-native speech and spontaneous dictation performed much worse
than read native speech even after speaker adaptation.

The poor gain when using variants may be interpreted as a demand for
more care in generation and selection of pronunciation variant candidates.
Data-driven variant generation and lexicon optimization using an objective
criterion [51] is one such approach.

Two issues are important in pronunciation modelling: 1) candidate pro-
nunciations, and 2) a way to assess these pronunciation variants. To assess
pronunciation variants we need representative data. Methods based on pro-
nunciation rules instead of directly on variants can generalize to pronunciations
not present in the training data, and will make it possible to assess these unseen
pronunciation variants. This is treated in chapters 8 and 9.
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Chapter 8

Data-driven pronunciation
modelling for non-native
speech

8.1 Introduction

Automatic speech recognition of non-native speakers with different mother
tongues is a difficult task due to the large variation between the speakers.
Modelling speaker variation can be done in several ways, the most usual is
making the acoustic models more detailed or adapting them to each speaker.
For large vocabulary speech recognition a well designed language model will
also help, as a possible mismatch between the speaker and the acoustic models
may be overruled by the language model. In chapter 7 we saw that the
ASR system performed substantially worse for non-native than for native
speech. Speaker dependent acoustic model adaptation improved the system,
but the performance was still far from the native speech recognition rate.
Some of the variation in pronunciation caused by a non-native mother tongue
may be better handled by careful design of the pronunciation dictionary,
i.e. pronunciation modelling. In this chapter we use some of the methods
presented in chapter 6 to perform lexicon adaptation. Using the lexicon to
capture the speaker variation makes it possible to model several speakers
simultaneously, thus using the same lexicon and the same acoustic models
for all speakers. The experiments include both joint and speaker dependent
lexicon adaptation.

105
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Identity H Native country ‘ Gender ‘

4nd Argentina male
4ne France male
4nf France male
4nh Israel/Argentina | female
(Spanish)
4ni Denmark male
4nj Israel female
4nk Japan female
4nl Germany/Spain | female
(German)
4nm Nicaragua female
4nn New Zealand male

Table 8.1: Native country and gender for the speakers in the database.

‘ Segment type H Adaptation ‘ Test ‘

Sentences 400 | 416
Words 5229 | 7435
Phones 22749

Table 8.2: Distribution of adaptation and test set for non-native speech.

8.2 Experimental procedure

8.2.1 The database

We have applied our pronunciation modelling methods to the Wall Street
Journal (WSJ) adaptation and test sets for non-native speakers of US English
(s3). More information on WSJ is given in section 7.2.1. The s3 part of
the test consists of 10 speakers reading 40 sentences for adaptation and 40-43
sentences for testing, see table 8.1. The test set consists of 1401 different
words. The 10 speakers read the same adaptation sentences, giving a total of
349 different words in the adaptation set, 256 of which were found in the test
vocabulary (i.e. in the WSJ 5k language model). In the lexicon adaptation we
needed transcriptions for all words and for the missing baseforms we used the
lexicon generated for a 64k WSJ vocabulary. The size of the adaptation set is
5229 words, thus each word is repeated 15 times on average, see table 8.2.
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Speaker WER

identity || bigram ‘ trigram
4nd 36.4% 34.7%
4ne 37.9% 35.7%
4nf 38.6% 32.3%
4nh 43.9% 38.3%
4ni 14.9% 11.4%
4nj 29.2% 24.7%
4nk 32.9% 30.6%
4nl 25.0% 22.7%
4nm 37.6% 36.9%
4nn 28.1% 24.2%

Average || 32.5% | 29.2% |

Table 8.3: BLASR baseline WER. for the s3 speakers, triphone acoustic
models.

8.2.2 The BLASR reference recognizer

The vocabulary of the test sentences was the 5k closed WSJ vocabulary. The
reference 5k lexicon was generated with the Bell Labs Text-to-Speech system
[110]. This lexicon has one canonical baseform for each word. Including
general purpose variants was not considered important since results in chapter
7 showed that the variants in the general purpose CMU lexicon gave no benefit
for non-native speech. For the test set a closed trigram language model for
the bk vocabulary was used. A reference recognizer with 12 Mel frequency
cepstral coefficients plus log-energy term and their first and second derivatives
was trained on 84 native speakers (WSJO SI-84). Phonetic decision tree state
tying was used to build cross-word triphone HMMs with an average of 11
Gaussian pdfs per state [92]. This recognizer gave the baseline result of 29.2%
word error rate (WER), see table 8.3 for individual WER. A 95% confidence
interval for the test on all 10 speakers is [28.2%, 30.3%)], see section 2.5.

In table 8.3 we have also included the bigram baseline results for compari-
son with the results in chapter 7. The performance using cross-word triphones
and canonical baseforms for the HTK trained system and CMU lexicon was
27.7% WER (table 7.4). This result was obtained using HMMs trained on
SI-284, i.e. about 66 hours of training data compared with the about 14 hours
from SI-84 used in this chapter. We also note that for this read non-native
speech the more complex trigram language model was beneficial.



108

Data-driven pronunciation modelling for non-native speech

The acoustic models were not retrained, i.e. the same models were used
for both segmenting the adaptation sentences by forced alignment, phone loop
transcription, and testing. This is done deliberately, because the pronunciation
modelling will tailor the lexicon to the present acoustic models. If for any
reason the acoustic models are retrained, we may have to regenerate the rules.

8.2.3 Rule derivation
Alternative transcriptions

We have used word segments for the transcription and alignment used to derive
rules. The reason is that we want to maintain timing information to compare
transcriptions belonging to the same acoustic data. The drawback is that
our experiments then are restricted to word internal rules. However, studies
of non-native speech imply that non-native speakers have less coarticulation
between words [81] and there should be less need for cross-word rules. The
reference recognizer was used to segment the adaptation sentences in word
segments by forced alignment. The segmentation was manually inspected for
some samples and perceived to be quite accurate in spite of the mismatch
between the acoustic models and the non-native speech.

The reference lexicon had only one baseform per word so the reference
transcription could be made without using the recognizer. For the alternative
transcription we have chosen to use a phone loop grammar as in [54]. This will
give many transcription “errors”, but will not be restricted by the reference
transcription, except via the acoustic models. Some of the differences between
the reference and alternative transcriptions, i.e. the “errors”, are actually the
variation we want to model. As the alignment was based on association
strength, see section 6.3.2, this will help us filter out non-systematic errors
and reveal the systematic differences that we believe are due to pronunciation
variation.

The phone-loop based alternative transcription was performed with the
same triphone acoustic models as used in recognition (testing) later. To control
the phone loop performance we experimented with the insertion and duration
penalties at the HMM level. We chose the settings that gave the lowest phone
error rate (PER). This might not be the best measure as we assume there
will be mismatch between the reference and alternative transcriptions due
to pronunciation variation, but we found no better alternative as discussed
in section 6.3.1. As we can see from table 8.4 we have more deletions than
insertions. This is consistent with other results, for example the experiments
referred in [18], where the rules introduced 1.86% insertions, 4.85% deletions
and 10.13% substitutions. We also note that the performance is worse for
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| PER | Sub. | Del. | Ins. |

Non-native

sentences 47.0 | 31.0 | 12.7 3.3
Non-native
words 55.8 | 36.8 | 15.7 | 3.3

Non-native
words adapted || 39.4 | 23.5 | 7.1 | 8.8
Native
words 45.5 | 18.9 | 13.5 | 13.1

Table 8.4: Phone error rate (PER) on the non-native adaptation set and a
native set for the chosen parameter setting.

words than sentences. This may be due to the acoustic models being trained
as cross-word triphones and that the transcription of isolated word segments
therefore suffers from the lack of context in the words. Less confidence should
be given to the changes in the border phones, and they are therefore not used
as the focus of the rules reported.

Using speaker adapted models we should be able to capture more lexical
pronunciation variations, since the allophonic mismatch between the recog-
nizer and the non-native speech will be smaller and the quality of the al-
ternative transcription better. For speaker dependent lexica this could be
a useful approach, end re-adapting the models using the new transcriptions
could also be beneficial. One pitfall is that in this way we may hide variation
better modelled in the lexicon. The best way to avoid this is to modify the
lexicon first, then adapt models according to the more suitable transcription
and hopefully achieve more consistent models. Using speaker adapted models
to adapt a speaker independent lexicon will give a mismatch between the
models used for rule generation and for recognition using the new lexicon.
No speaker adaptation was performed for the experiments reported in this
chapter.

The phone loop transcription was performed with 5-best recognition to get
more transcriptions. As we have a limited amount of data this is favourable.
The phones that are different in the N-best transcriptions will be the ones with
lower likelihood and we would like to put less emphasis on them. An example
of this is the 5-best phone loop transcriptions for the word “numerous”:!
[n ow m aa r eh z].

[n ow m aa r ih z]

!We have used the CMU phonetic alphabet for the transcriptions, see appendix A
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[n ow m aa r z]

[n ow m er z]

[n ow m eh r Z]

We can be more confident about the first part of this word than the last (the
reference transcription is [n uw m er ax s]). The difference between two
N-best transcriptions is typically a change in only one or a few phones. This
is independent of the total number of phones in the segment so a set of N-best
transcriptions of sentence segments will also differ in only a few phones. A
sentence level N-best transcription will give little extra information compared
with one (first-best) transcription since most word transcriptions probably will
not change. This is also one reason to use word segments rather than sentences
when generating alternative transcriptions.

Alignment

We experimented with several dynamic programming based schemes. The
differences lie in the way the costs for phone-to-phone mappings are derived,
as explained in section 6.3.2. The results for the different alignment methods
are presented in chapter 10. The three costs investigated were: uniform cost,
phonological cost, and the novel method based on statistical co-occurrence of
phones, the association strength. The association strength based costs gave
most promising results, see chapter 10, and all the results in this chapter were
derived using this method.

The threshold in the association algorithm (as explained in section 6.3.2)
was set according to the association strength for the phone-to-phone mapping
with the highest number of occurrences. In this experiment this was the
identity mapping of the phone [ax].

Context-dependent phone-to-phone mappings: Rules

From the alignment we derive context-dependent phone-to-phone mappings,
i.e. rules. As we have more deletions than insertions (i.e. the reference tran-
scription contains more phones than the alternative), see table 8.4, the cost
in the dynamic programming is set higher for an insertion than for a deletion.
According to our rule notation, see section 6.3.3, a typical rule is x1-A+x2 —
B where (A, B) is the transformation with A as the focus and B as the output
of the rule. In this notation x1-A+x2 is called the rule condition. A, x1, and
x2 are all one phone, whereas B can be a single phone (substitution of A with
B), several phones (insertion/substitution), or DELETED (deletion of A).

Since we have small amounts of data in our experiments, we have chosen
to use only one preceding and one succeeding phone as context for the phone-
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to-phone rules. This is discussed in section 5.4.3. In [94] the immediate phone
neighbours are shown to be most important in pronunciation modelling. A rule
condition then consists of 3 phones. The different 3-phone segments present in
the adaptation set will tell us which variation we can model. The BLASR. test
lexicon contains 4376 different such segments, whereas the baseforms for the
words in the adaptation set only contain 871 3-phone segments. This means
that we are unable to model the majority of the possible 3-phone segments.
The situation is not as bad as these figures indicate; the distribution of the
3-phone segments is far from uniform. 3467 of the words in the 5k word test
lexicon contain at least one of the 3-phone segments present in the adaptation
set.

Rule pruning

For the non-native task we tried several of the methods for assessing rules
described in section 6.3.4. The most usual way to assess pronunciation rules
is an estimation of rule probability. This estimate is based on counting
occurrences. The equations are repeated here for the convenience of the reader:

count(x1-A+x2 — B)

RPR1 = P(x1-A+x2 — B) = (8.1)
count(x1-A+x2)
o t(x1-A+x2 — x1-B+x2
RPR2 — Plxi-A+x2 — p) — Cunt(xiA+x2 = x1-B+x2) (8.2)

count(x1-A+x2)

The phone error rate comparing the reference and alternative transcriptions
is about 50%. Not all this difference will be variation in pronunciation, but
the alternative transcriptions will contain many transcription errors. This may
favour RPR2 over RPR1. On the other hand RPR2 will give fewer occurrences
that survive the filtering.

Our main results were achieved with a log likelihood based rule pruning
as described in section 6.3.4. The equations for log likelihood rule pruning are
repeated here:

LL(w) = log [w]

p(zi| Bi*', 0)
= log[p(il B{", 0)] — log[p(xi| B]*', 0)]

(8.3)

Here, B{ef is the reference baseform for the word belonging to x;, and Bf“lt
is the alternative baseform for the same word after modification according
to the rule we want to assess. 6 is the set of parameters of the recognizer
used in computing the log likelihoods. For each rule, we combine the positive
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contributions from the words affected to compute an improvement measure

LLH:

LLH(rule k) = Z Z LL(wp(5) (8.4)
Wj k(j)€K(j)

Here, ;) is an acoustic segment for a word W; affected by rule k. For each
word W; we sum over all acoustic segments K (j) where LL(zy(;)) > 0. For
each rule we sum over all affected words.

We have also done some experiments with log likelihood assessment of the
baseform variants as described in section 6.2.

Combining pronunciation rules to derive pronunciation variants

We have chosen to use only one rule at a time when generating the new
pronunciations to test only the most important variants. Applying several
rules simultaneously without an additional selection algorithm, will give many
pronunciation variants for long words and increase the confusability, see section
5.4.5. The rule hierarchy used in [18] and [129] is one way of treating this that
also incorporates a method to choose among rules with the same rule condition.
The use of a rule hierarchy was is not investigated in this dissertation.

For all pronunciation rule experiments the canonical reference baseform is
kept, since the amount of data used in rule derivation is limited as discussed
in section 5.4.5.

Confusability reduction

Many pronunciation variants in the lexicon may increase the confusability
and thereby the error rate. Adding variants also slows down recognition, and
similar rules may model the same pronunciation variation and thereby add
superfluous complexity. Rule pruning using probability estimates limits the
number of pronunciation variants and control the confusability implicitly.

Because rule conditions that occur often will get a relatively higher score in
our improvement measure LLH, equation (8.4), we may get a lot of confusable
rules, i.e. rules with the same rule condition, but transformation into different
phone(s). These rules may be modelling the same variation and add superflu-
ous complexity and confusability. An example is the rules sh-ax+n — ah and
sh-ax+n — eh, where the actual baseform often seems to be somewhere in-
between [ah] and [eh]. We have applied a confusability reduction approach
by restricting the rule set to consist of at most one rule per rule condition.
We retained the rule with highest log likelihood improvement LLH. (In the
example this is [ah].)
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As a lower WER is the final goal, confusability reduction should be in-
corporated more explicitly in the rule pruning measure. This means that
we need an assessment of the number of errors corrected compared to the
new errors introduced, see section 6.4. One obvious confusability measure is
therefore recognition results on the adaptation set. Both the error rate and
the smoothed error count described in section 6.4 were investigated.

As we have quite different vocabularies in the adaptation and test sets for
the WSJ non-native task we cannot use the same language model for the two
tests. Without a language model the tests will not be completely comparable.
We therefore tried a log likelihood measure that was not dependent on the
language model, but still considering the sentence level. This was done by
using forced alignment of the known word string and adding log likelihood
increases over baseline. In all the experiments reported the reference baseform
was kept and we will therefore never encounter a decrease in log likelihood.

8.3 Results

Some of the experiments reported in this section were also presented in [4] and
[5]. All results shown are obtained on the test set. The baseline result on the
test set was 29.2% WER on average, see table 8.3. As the different speakers
have very different WER, the results in the figures are shown as improvement
relative to the baseline WER.

8.3.1 Individual pronunciation rules

We first derived individual lexica, since the speakers have different mother
tongues we wanted to investigate individual lexicon adaptation.

In figure 8.1 the results for different thresholds for RPR1 are shown. For
the best result, RPR1 > 30%, the average WER was 28.2%. The three speak-
ers with deterioration had French (4ne and 4nf) and British (New Zealand)
(4nn) origin. The speaker with no improvement (4ni) had the lowest baseline
WER, 11.4% and was Danish. We saw an improvement for all the 5 female
speakers. A lower threshold on the rule probability resulted in more rules. We
observed that the improvements as well as the deteriorations increase when
we use more rules. The average result was not affected by the increase of the
number of rules, but the best result was obtained with a modest number of
rules. For RPR1 > 30% the number of rules varied from 107 to 147 for each
speaker.

Using equation (8.2) and threshold RPR2 > 20% gave an overall error
rate of 28.5%. In figure 8.2 the results for RPR1 are compared with RPR2.
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Figure 8.1: Relative improvement in WER for different RPR1.

As we can see the rules that were derived from both sorting criteria gave no
deterioration for any speaker?.

Sorting by rule condition occurrence in the test lexicon and retaining the
top 30 rules for each speaker gave a WER of 28.6%. Sorting by word frequency
computed from the language model training text gave similar results.

8.3.2 Individual maximum likelihood baseforms for words

For frequently occurring words it may be beneficial to model the baseform for
the whole word. One of the arguments favouring rules over direct modelling
is that the rules depend on smaller segments than words and will occur more
often, giving more reliable estimates. For frequently occurring words, e.g. func-
tion words, this argument is not longer valid. The generalization argument
favouring rules is still true, but we will only be able to model pronunciation
variation for seen words. One possibility is to use both techniques to model
different effects.

The few repetitions of each word per speaker means that a ML optimization
on the word level as described in [51] and section 6.2, was infeasible for
most words. In an initial experiment we used this technique for one of the
speakers (4nd), with the baseline result of 34.7% WER, see table 8.3. The
95% confidence interval for this WER is [31.3%, 38.0%)]%.

We found speaker dependent baseforms for the 23 words that occurred

2This was only tested without iterating the association algorithm.



8.3 Results

115

Hll RPR1 >50%
Il RPR2 >20%
6k [ ] intersection [

|| I‘ I IID I

N
T

relative improvement in WER [%]

O,U
I||

i i i i i i i i i i i
4nd 4ne 4nf 4nh 4ni  4nj 4nk 4nl 4nm 4nn total
speakers

Figure 8.2: Relative improvement in WER for RPR1 and RPR2.

more than 3 times for this speaker. Since we used a 5-best loop, this means
we had at least 5 different candidates for each acoustic segment. For 7 of the
words the ML baseform was the same as in the reference lexicon. For the
remaining 16 words we substituted the reference baseform with the best ML
baseform. This gave a WER of 36.1%. We then added the best ML baseform
keeping the reference baseform for these 16 words. This gave a WER of 31.9%.
We also tried adding several ML baseforms. This gave only minor differences
when we kept the reference baseform.

The results for all speakers were not encouraging: A WER of 28.9% when
adding the best ML baseform for each speaker. In figure 8.3 we see, however,
that for most speakers the ML baseforms gave a better performance. The
average is highly affected by the deterioration seen for one speaker (4nj). In
this figure we also observe that the distribution of errors and corrections was
different for the speakers compared with the rule based lexicon modifications.
This indicates that we model different variation with the two approaches and
that a combination can be beneficial.

Combining rules and ML baseforms

The 23 frequent words for which we derive ML baseforms are short, and we
might see a joint effect in that they are frequent enough to be reasonably
modelled and that these short segments give a more reliable phone loop tran-
scription. Since the ML baseforms are short, many of the corresponding words
are not affected by our word internal rules that demand at least three phones
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Figure 8.3: Relative improvement in WER for RPR1 and ML.

in the rule condition. We therefore tried to add the ML baseforms to one of
the rule modified lexica to see if the two pronunciation modelling approaches
together gave increased performance. For speaker 4nd the ML baseforms gave
a WER of 31.9% compared with the baseline of 34.7%, whereas the rule based
lexicon with estimated rule probability RPR1 >50% gave a WER of 33.1%.
Combining the two lexica gave a WER of 30.1%.

We did not achieve the same improvement for the rest of the speakers, only
28.2% WER. compared with the RPR1-result of 28.7% on average®. There was
still an improvement for most speakers and the effects seem to be additive.
Even for the speaker (4nj) where we observed a large deterioration using the
ML baseforms, the combined effect was better since the rule based variants
gave an improvement. The problem is how to combine the ML rules for
the different speakers. Computing the true ML baseforms for all speakers
combined will be computationally quite heavy. We did therefore not perform
such experiments and do not know if the effect will be the same as the
individual ML baseform results.

8.3.3 Common pronunciation rules for all speakers

We have examined three approaches for deriving rules in order to make a
common lexicon for all speakers:

1. Derive association strength and alignment for each speaker individually

3This was only tested without iterating the association algorithm.
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to derive individual rules. Then we merge these rules to a common rule
set (merged rule probability, called MRPR)

2. Derive association strength and alignment for each speaker individually,
but derive rules for all speakers simultaneously (combined rule probabil-
ity, called CRPR)

3. Derive association strength, alignment, and rules for all speakers simul-
taneously (joint rule probability, called JRPR)

The variation between speakers is large since the speakers have different
mother tongues, and it seems reasonable to find rules for each speaker sep-
arately and later merge them to make a common lexicon. We wanted to
examine the effect of using the association algorithm both on the individual
speakers and on all speakers simultaneously. All the experiments for common
rule derivations use association strengths after 4 iterations.

To merge the individual rules according to approach 1, we added the counts
from each speaker to find a joint rule probability. We used individual rules with
RPR1 > 50% and retained the rules with estimated merged rule probability
over a certain threshold. MRPR computed according to equation (8.1) is called
MRPRI1. For the lexicon with merged rule probability MRPR1 > 50%, 1559
of the 4986 words in the reference lexicon were affected by the rules, and the
average number of baseforms per word (BPW) was 1.44. In table 8.5 results
for the different joint rule probability thresholds are shown. We see that the
best merged lexicon gave the same improvement over baseline as the individual
lexica. A lower threshold on individual RPR1 gave less improvement. Using
the RPR2 scheme did not give the same improvement for the common lexica
compared with individual lexica. The best performance in this case was 28.6%
WER.

‘ MRPR1 H No. rules ‘ BPW‘ WER ‘ Rel. improvement ‘

> 30% 169 1.61 | 28.4% 2.7%
> 40% 137 1.49 | 28.2% 3.4%
> 50% 114 1.44 | 28.6% 2.1%

Table 8.5: Results for merged rules using different thresholds on the estimated
merged rule probability MRPRI1.

Simultaneously generating rules for all of the speakers from individual as-
sociation strength derivation and alignment resulted in mostly low probability
rules. As the rules are derived using more data, it is reasonable to used a
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lower threshold for the rule probability than when deriving rules individually.
Using a lower threshold gave an insignificantly increased performance over the
merged rules, see table 8.6. Setting the threshold for the combined rule prob-
ability CRPR1 to > 20% the lexicon became quite large and the recognition
was slow.

‘ CRPR1 H No. rules ‘ BPW‘ WER ‘ Rel. improvement ‘

> 20% 413 1.84 | 28.1% 3.8%
> 30% 152 1.30 | 28.5% 2.4%

Table 8.6: Results for rules derived for all speakers simultaneously, but with
individual association strength derivation, using different thresholds on the
estimated joint rule probability CRPRI1.

Approach 3, generating rules for all of the speakers simultaneously, and
also deriving association strength for all speakers simultaneously, gave results
similar to approach 2, see table 8.7. The results were slightly better than the
individual lexica and the merged lexicon. As the association derivation relies
on statistical methods, the individual association derivation may suffer from
scarce data. This can explain why the association performed for all speakers
simultaneously gave better result. Using the RPR2 scheme gave a WER of
29.0% when generating the rules simultaneously, i.e. hardly any improvement
over baseline.

‘ JRPR1 H No. rules ‘ BPW‘ WER ‘ Rel. improvement ‘

> 20% 423 1.85 | 28.0% 4.1%
> 30% 168 1.34 | 28.4% 2.7"%

Table 8.7: Results for rules derived for all speakers simultaneously using
different thresholds on the estimated joint rule probability JRPRI.

Relative improvements in WER. per speaker for the best lexicon for all
three schemes are shown in figure 8.4. We get more deterioration for one of the
speakers using lexica based on common rule derivation than merging individual
rules. One other advantage with the merged lexicon is that the performance
was similar using fewer rules, 137 compared with 423, which is favourable
for recognition speed. Testing on native speakers we get a deterioration from
7.8% to 8.3% WER for the merged lexicon shown in figure 8.4. For both lexica
based on simultaneous modelling of all speakers, the native result was 8.5%
WER. The merged lexicon is thus not only smaller but has less confusability
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Figure 8.4: Relative improvement in WER for common lexica using different
rule pruning schemes.

when measured on native speakers.

A modified rule probability scheme was tried using the top 30 rules for each
speaker after sorting the rules by rule condition probability. These 40 - 30 =
1200 rules were then merged by adding the counts. Using a joint RPR1>
50% we got 82 rules, a BPW of 1.41, and WER 28.4%. We achieved equal
performance with a smaller lexicon, showing that sorting by rule condition
probability retained the most useful rules?.

8.3.4 Retranscription

To perform retranscription we used the rules to form a grammar for each word
in the adaptation set and performed a 5-best forced alignment. The border
phones were not changed since we do not have border phone rules. In these
experiments several rules could be used in the same baseform (i.e. a huge
number of alternatives for long words). This approach was chosen because we
did not want to place tight restrictions on the choice of rules to use in the
retranscription in order to let the acoustic models still have large influence.
All the rules with individual RPR1 > 20 as well as the simultaneously derived
rules with RPR1 > 20 were used in the retranscription®. We also included rules

“This was only tested without iterating the association algorithm.

®Since we have a tighter restriction on which 3-phone segments that we are able to model
using individual rule derivation, some rules can only be derived from simultaneous rule
derivation.
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Figure 8.5: Relative improvement in WER with and without retranscription.

from alignment both with and without iterations in the association strength.
This gave a total of 1883 rules used in the retranscription.

In figure 8.5 we compare results using lexica derived for all speakers simul-
taneously with and without retranscription. The number of rules for the two
retranscription experiments were 411 for JRPR1 > 20% and 237 for JRPR1
> 30%. The corresponding BPWs were 1.93 and 1.39. As shown in the figure
we got a deterioration compared with the non-retranscription experiments in
this case. We did not observe major improvements for any setup compared
to the non-retranscription experiments. Retranscription gives no new rules,
the purpose of retranscription is rather to get better alternative transcriptions
used for alignment and rule derivation. We have no good explanation why
there is no increased performance in this case. One explanation may be that
by using the association strength alignment we have already discarded random
errors in the transcriptions, and that no additional information is gained by
retranscription.

8.3.5 Log likelihood based rule pruning

In the first experiment using log likelihood we removed the rules that gave
no improvement on the adaptation set, i.e. LLH (rule k) = 0. The number of
rules was reduced, but we observed no reduction in WER. Setting the threshold
LLH(rule k) = 1 in the same experiment resulted in even fewer rules and still
unchanged WER.

We then selected a subset of rules first using rule probability pruning and
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then sorted by log likelihood afterwards. This gave equivalent or better results
than using only rule probability based selection.

Further, we used only the log likelihood improvement measure to find the
best combined rules from the complete set of initial rules. Considering the
performance of the log likelihood measure only we selected all the rules with
individual RPR1 > 20 as well as the simultaneously derived rules with RPR1
> 20 (1883 rules in total, the same rules as used in the retranscription).
Results from different selection of top rules sorted by the threshold LLH are
shown in table 8.8. When including low probability rules like this, we get more
rules to choose from and more confusable rules among the top rules sorted by
LLH than when combining the rule probability and log likelihood pruning.

‘ No. rules H BPW‘ WER ‘ Rel. improvement ‘

100 1.50 | 28.7% 1.7%
150 1.66 | 28.6% 2.1%
200 1.82 | 28.3% 3.1%

Table 8.8: Results for top rules sorted by log likelihood without any
confusability reduction.

8.3.6 Simple log likelihood based confusability reduction

To reduce the confusability we restricted the rule set to contain at most one
rule per rule condition selected by the log likelihood improvement measure
LLH. Low probability rules now perform equally well as higher probability
rules, showing that for rule pruning the log likelihood improvement measure
can be used without the added restriction of rule probability. Results for
confusability reduction are shown in figure 8.6. The best result was obtained
using 150 rules giving a WER of 27.3%. The confusability reduced rule set
of 50 rules corresponds approximately to 100 non-reduced rules and the rule
set of 100 corresponds to approximately 250 non-reduced rules®. In figure 8.7
the results for the confusability reduced lexica are shown as a function of
baseforms per word. The complexity of the recognizer (i.e. recognition time
and memory needed) will depend strongly on BPW.

Equivalent or better results were achieved using fewer rules compared to
the rule probability approach. In table 8.9 we have compared different lexica
tested on the usual non-native speakers as well as on native speakers (WSJ

6Correspond = Inspecting which “unique” rules that are still present when removing the
confusable ones.
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Figure 8.6: Relative improvement in WER for different number of rules using
log likelihood rule pruning and confusability reduction
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Figure 8.7: WER for log likelihood lexica as a function of BPW
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h2). The baseline for the native test was 7.8% WER, see section 7.4. As we
can see there is a large gap in the performance between the native and the
non-native speakers. This is due to the diversity among the speakers, which
affect both the acoustic models and the lexicon. The log likelihood based
lexica gave slightly less deterioration than rule probability based lexica on the
native speech.

Rule pruning | No. rules | BPW || Non-native | Native
method WER WER
JRPR> 20% | 423 1.85 28.0% 8.5%
JRPR> 30% | 168 1.34 28.4% 8.0%
MRPR> 40% | 137 1.49 28.2% 8.3%
LLH 50 1.21 28.3% 7.9%
LLH 100 1.37 27.7% 8.0%
LLH 150 1.51 27.3% 8.1%
LLH 200 1.68 27.5% 8.3%

Table 8.9: Results for comparison of rule pruning methods. JRPR = joint
rule probability and MRPR = merged rule probability

8.3.7 Other confusability reduction experiments

A recognition based measure to assess complete lexica was difficult to use
because the adaptation set contained several words not present in the test
set and therefore not in the language model. For recognition tests on the
adaptation set we therefore used a word-loop. The word insertion penalty was
adjusted to get the best baseline WER on the adaptation set. In this way we
could test continuous speech and not only isolated words. Recognition on the
adaptation data was not consistent with tests on the test set, probably because
of the lack of language model. To avoid the need for a language model, we used
forced alignment in the next experiment. These results were not consistent
with test on the test set either.

To assess each rule from the log likelihood pruned rule list, we performed

experiments based on error counting. The results were counterintuitive, i.e. tests

on adaptation and test set were not consistent. We looked closer at a subset
of rules that occurred in words that were corrected in the test set. Since we
are working with continuous speech the interpretation of the results must be
done with care. The differences will not affect one word isolated. Some of
the rules investigated resulted in baseforms that gave higher error rates on
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the adaptation set because they introduced more errors than they corrected.
Our test and adaptation set contain quite different vocabularies and this
may be one of the reasons, since an error counting based measure will not
take into account the unseen words. More study is warranted for a deeper
understanding.

Four lexica were chosen for further evaluation using the confusability mea-
sures from section 6.1, see table 8.10. A “smoothed error” was computed using
equation (6.19) with n = 2. This gives a comparison of the log likelihood of
the correct word with a smoothed average instead of the worst competitor as
in ordinary WER computations. An “estimated loss” was computed using a
sigmoid as in equation (6.20) with £ = 2. Preliminary testing to adjust the
values of  and &, gave no large differences in relative loss.

The results for the chosen confusability measures are given in table 8.11.
Even if the MRPR-lexicon had similar WER on the test set compared with
the “LLH-50"-lexicon, it gave a much lower relative score on the smoothed
error count and the estimated loss. For the log likelihood based lexica the
comparison of the confusability measures gave too high score (relative im-
provement) compared with the “LLH-50"-lexicon. Comparison between the
LLH-lexica gave results consistent with WER in the test set. Apparently the
confusability measures gave too high punishment on the many rules in the
MRPR scheme compared with the true performance on the test set.

Lexicon No. rules | BPW WER
Absolute ‘ Relative
Reference | - 1.00 29.2% -
MRPR 137 1.49 28.2% 3.4%
LLH 50 1.21 28.3% 3.2%
LLH 150 1.51 27.3% 6.5%
LLH 250 1.77 27.9% 4.6%

Table 8.10: Results on test set for the lexica to be compared by confusability
measures

8.4 Discussion

For individual lexicon adaptation adding variants from a rule probability
pruning scheme gave a modest improvement, on average a WER of 28.2%
compared with the baseline result of 29.2%. The improvement was very
variable for the different speakers, but we observed an improvement for most
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Lexicon WER Smoothed error Estimated loss
Absolute ‘ Relative | Absolute ‘ Relative | Absolute ‘ Relative
Reference || 27.1% - 7.5% - 8.3% -
MRPR 26.9% 0.9% 7.4% 1.3% 8.2% 0.8%
LLH 26.4% 2.6% 7.2% 4.8% 7.9% 4.1%
LLH 26.0% 4.1% 7.2% 4.8% 7.9% 4.4%
LLH 26.1% 3.7% 7.3% 3.3% 8.0% 3.1%

Table 8.11: Results on adaptation set for confusability measures

speakers.

Individual maximum likelihood pronunciation variants were derived to the
23 words that occurred sufficiently often in the adaptation set. The effect on
the performance varied even more between the speakers than the rule based
pronunciation modelling. Combining the two approaches gave better results
than using each method separately.

We observed that common lexica generated by merging individual rules
performed similar to generating rules for all speakers at the same time, with
a WER of 28.2% compared with the baseline result of 29.2%. The merged
lexicon scheme gave fewer rules and thus fewer baseform per word on average
and faster recognition than generating rules for all speakers simultaneously.
Testing on native speakers revealed a lower confusability in the merged lexicon.

It was somewhat surprising that the joint pronunciation modelling of the
non-native speakers gave results similar to individual pronunciation modelling.
Other experiments have shown that individual lexica outperform one common
lexicon even for non-native speakers with the same mother tongue [41]. In
our experiments the increased confusability using rules from several speakers
in the same lexicon was probably outweighed by the higher confidence in the
rule selection as we use more data. Even if the speakers have different mother
tongues, similar variation may be present, and this may be the reason why we
get improvements by modelling all speakers in the same lexicon. Speaker
dependent pronunciation modelling using only 40 utterances was reported
in [54]. For the joint speaker pronunciation modelling in this experiment
about 500 utterances were sufficient when the new baseforms were merged
with the reference baseforms. All were US English speakers and thus a more
homogeneous set, and not surprisingly the joint modelling of all speakers gave
a better result.

We have compared a new log likelihood based rule pruning measure with
more traditional rule probability based measures. Using acoustic log likelihood
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as a rule pruning measure we achieved equivalent or better performance with
fewer rules. We also achieved less deterioration for native speakers using the
same lexicon, i.e. less confusability. Lexica with fewer rules are favourable,
as more rules give more baseforms in the lexicon and slows down recognition.
Thus log likelihood based rule pruning is a better way of combining individual
rules to generate a joint lexicon. Adding a confusability reduction, we achieved
the same result with even fewer rules. We achieved the best result using a 150
rule lexicon which gave a WER of 27.3% compared with the baseline WER of
29.2%.

Controlling the confusability when adding baseform variants to the ASR
lexicon is important. In addition to the confusability reduction at rule level, we
wanted to test confusability measures to compare entire lexica. The measures
gave results inconsistent with tests on the test set. One reason may be that the
vocabulary of the adaptation set was very limited and different from the test
set. The confusability measure based on performance on the word level without
incorporating a language model, may also be a reason for the inconsistency.

8.5 Summary of the main results

In this chapter we have presented several completely data-driven approaches
to modelling both individual and common lexica for a group of non-native
speakers with different mother tongues.

e For individual lexicon adaptation we observed a combined effect of using
maximum likelihood pronunciation variant modelling and pronunciation
rule modelling.

e For common lexica a scheme merging the rule probabilities derived for
each speaker performed better than a joint rule probability derivation.
The common lexica performed better on average than individually de-
rived lexica.

e Acoustic log likelihood based rule pruning performed better than rule
probability based pruning.

e Confusability measures for comparing lexica is a difficult task when the
adaptation and test set differ strongly in vocabulary.



Chapter 9

Data-driven pronunciation
modelling for spontaneous
speech

9.1 Introduction

Spontaneous speech is a difficult task for ASR systems, but must be handled to
achieve more natural user interfaces based on speech technology. In chapter
7 we saw that the performance for spontaneous dictation was substantially
worse than for read speech, even if dictation is a rather restricted form of
spontaneous speech compared with conversational speech. Speaker dependent
acoustic model adaptation gave some improvement, but relatively less than for
read speech. In this chapter we therefore investigate some of the data-driven
pronunciation modelling techniques presented in chapter 6 for the spontaneous
dictation task.

9.2 Experimental procedure

9.2.1 The database

The pronunciation modelling methods were applied to the spontaneous dicta-
tion part s9 of the Wall Street Journal (WSJ). More information on the WSJ
database is given in section 7.2.1. We have used the spontaneous dictation
training set for lexicon adaptation. This set consists of 4000 utterances spoken
by 20 journalists, see table 9.1. All speakers of both the adaptation and test
sets were native US English speakers, and there was no overlap in speakers
between the adaptation and test set. 15 of the adaptation utterances had

127
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‘ H Adaptation ‘ Test ‘

Speakers 20 10
Utterances 3483 200
Words 71732 | 4633

Table 9.1: Distribution of adaptation and test set for spontaneous dictation.

no transcription and were removed, while 502 other utterances were removed
because they contained words not present in the CMU lexicon. The remaining
3483 adaptation utterances contained about 300000 phones.

9.2.2 The HTK reference recognizer

The vocabulary of the test set for s9 was the 20k open WSJ vocabulary with
verbal punctuation (vp). We have trained a SI-284 baseline recognizer using
fairly standard methods [126], but using the CMU lexicon. The baseline is
described in chapter 7. We chose to use the canonical CMU lexicon and
canonically trained triphone models, table 7.4, since the CMU variants gave
no improvement and it was detrimental to include more variants in training
than in test. For all the experiments reported we added variants derived
during the pronunciation modelling so the reference canonical baseform was
always retained. The reference recognizer gave the baseline result of 23.7%
WER, results per speaker are shown in table 9.2. The reference recognizer was
also tested on a subset of the adaptation set. 400 utterances were extracted
randomly from the adaptation set and gave a result of 19.5% WER.

We used the same acoustic models in test and to find the alternative
transcriptions, the same approach as for the experiments on non-native speech
in chapter 8.

9.2.3 Rule derivation
Alternative transcriptions

The rule derivation was performed on the sentence level using 1-best only.
One reason for this is that the size of the adaptation set available for this task
was sufficient to avoid the need for N-best transcriptions, and we did not need
the shorter segments to get variation between the N-best transcriptions.
Manual inspection of the transcription revealed very long silences between
the words for some utterances. In the reference transcription we therefore
used two kinds of word boundaries dependent on the silence model (context-
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Speaker

identity WER
4p0 19.9%
4pl 26.8%
Ap2 25.4%
4p3 14.0%
4p4 42.0%
4p5 26.3%
4p6 15.9%
4p7 24.0%
4p8 35.6%
4p9 23.4%

Average || 23.7% |

Table 9.2: Baseline WER for the s9 speakers, triphone acoustic models and
bigram language model.

| PER [ Sub. | Del. | Ins. |

Phone loop 2791162 | 83| 34
Phone bigram || 27.3 | 16.0 | 7.1 | 4.2

Table 9.3: Phone error rate (PER) on the adaptation set for the chosen
parameter setting.

independent or context-free) chosen by the recognizer. The pause duration
can then be used to decide whether we should model a coarticulation effect on
the rule border. The pauses where the context-independent silence model was
chosen should be ineligible for cross-word rules whereas the pauses were the
context-free short pause model was chosen should be eligible for cross-word
effects.

The alternative transcription was made by a phone loop transcription, as
in chapter 8, but also using a phone bigram trained on the reference lexicon.
This last approach will give a more restricted transcription and hopefully less
transcription errors. Since the spontaneous dictation task had native speakers
we assumed that the variation would follow the native phonotactical rules
found in the lexicon. The insertion penalty was adjusted to give the lowest
phone error rate (PER), see table 9.3.

We note that the PER is much lower than for the non-native task although
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the baseline recognition WER result is similar. One reason is that we in
the present experiment use sentence transcriptions. Preliminary tests using
segmented words for the spontaneous task gave in the order of 40% PER. This
was also one reason to chose sentence level transcriptions for the spontaneous
dictation. We also note that the phone bigram and phone loop transcriptions
obtained similar PER. About 5% of the phones differed between the two
transcription types, half of them substitutions. One of the reasons may be
that a phone bigram trained on the reference lexicon not will cover cross-word
combinations.

Alignment

For the alignment we have used the association algorithm, as in chapter 8, but
also the time synchronous alignment introduced in section 6.3.2.

The first association algorithm was based on a word segmentation. We
modified the association algorithm to base the first mapping costs on a uniform
alignment. This is an extension of the iterated version of the association
strength where we based the iterated association strength on the previous
association alignment. In this modified version we also included the possibility
of learning mappings from phones to deletions and from insertions to deletions.
Manual inspection of preliminary experiments using this alignment showed no
improvement and we therefore continued using phone-independent costs for
deletions and insertions.

Many of the sentences contain long pauses and restarts. There are two
reasons why this is challenging for the alignment: 1) This kind of speech is
difficult to label confidently and the reference transcription is more likely to
contain errors compared with the acoustic content of the utterance. 2) The
alternative transcriptions will often introduce spurious phones in long pauses.
If we encounter a misalignment due to transcription errors, an alignment based
on dynamic programming may propagate the error and no longer align labels
belonging to the same acoustic segments. This problem is discussed in more
detail in chapter 10.

Rule derivation

From the association strength alignment and time synchronous alignment we
derived context-dependent phone-to-phone mappings as in chapter 8, i.e. rules
with a rule condition length of 3 and a rule focus length of 1. From the time
synchronous alignment we were also able to derive rules with longer focus.
The context for these expanded rules was chosen to be one “stable” phone to
each side. “Stable” means that the phone was identical in both the reference
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and alternative transcription, and that the time borders were the same (one
frame deviation was allowed). The minimum rule condition length was set
to 3, and the maximum rule condition length was set to 7. There were no
restrictions on the number of word borders as long as they were eligible for
cross-word rules.

Rule pruning

We performed comparative tests using the rule probability pruning, using
both the association based alignment and the time synchronous alignment, as
well as the pruning based on acoustic log likelihood. Details on the pruning
methods are given in section 6.3.4.

The time synchronous rule derivation also include a log likelihood measure
for the rules. We used this measure to perform an initial pruning before
assessing the rules using the log likelihood. For this assessment we used a
word segmented version of the adaptation set.

Combining pronunciation rules to derive pronunciation variants

For the experiments we chose to use only word internal rules to validate the
rules before proceeding to cross-word rules. Many of the rules that appeared
across word borders contained phone combinations not present within words
and were therefore discarded. Some rules may occur both within words and
at word borders. For these rules we assume that the coarticulation effects will
be similar across word border and within words, and we found it reasonable
to use the variation observed across words also as word internal rules.

As for the pronunciation variant derivation in chapter 8 we used only one
rule at the time to assess the most important variants.

9.3 Results

The association based alignment of the phone loop transcription and the
reference transcription were used to derive context-dependent phone-to-phone
mappings. These rules were then pruned using rule probability (a similar
approach as for non-native speakers in chapter 8). The results on the test set
are shown in table 9.4. The results were almost identical to the baseline. An
error analysis revealed that the errors were approximately the same for the
two systems. Even for the largest dictionary, RPR> 20%, only about 6% of
the errors differed.

Using the time synchronous alignment to derive the same type of rules,
i.e. context-dependent phone-to-phone mappings, gave similar rules. In table
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RPR thres. | No. rules | BPW || WER |

RPR > 60% 67 | 1.03 | 23.7"%
RPR > 40% 221 | 1.13 || 23.5%
RPR > 20% 710 | 1.70 | 23.5%

Table 9.4: Results in WER for rule probability pruning on association based,
phone loop transcription alignment

9.5 the top ten rules for the rule probability pruning of association based
alignment are shown with corresponding rank, both for the association based
alignment and the time synchronous alignment. The rank was computed
for all rules, but only rules that can be used as word internal rules for the
20k vocabulary are shown. The rule probability pruned rules from the time

RPR-rank
Rule Assoc loop | Time loop | Time phbig
hh-ah+w — ow 1 1 1
s—-k+t — DELETED 2 23 16
ng-g+l — DELETED 3 13 28
ch-ah+w — DELETED 4 174 159
n-d+z — DELETED 6 4 6
f-t+s — DELETED 9 11 8
n-d+sh — DELETED 11 14 29
k-t+s — DELETED 12 16 23
f-t+w — DELETED 13 195 178
m-aa+t — ah 16 53 11

Table 9.5: Top rules for rule probability pruning based on association strength
and time synchronous alignment on a phone loop transcription and time
synchronous alignment on a phone bigram transcription

synchronous alignment gave also results similar to the baseline, see table 9.6.
The phone bigram alternative transcription did not deviate much from the
phone loop transcription. We performed a time synchronous alignment also
for the phone bigram transcription, and in table 9.5 we see that the ranks
were similar to the ranks from the phone loop transcription. As expected the
results when testing on the test set were similar to the phone loop approach.
There were 706 rules from the time alignment with RPR > 20%. These
rules were sorted by the acoustic log likelihood measure. 106 of the rules were
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RPR thres. | No. rules | BPW || WER |

RPR > 60% | 69 1.03 || 23.7%
RPR > 40% | 228 1.13 || 23.6%
RPR > 20% | 677 1.63 || 23.5%

Table 9.6: Results in WER for rule probability pruning on time synchronous
alignment, phone loop transcription

only applicable across word borders and were therefore discarded. 233 rules
had a log likelihood measure of zero, i.e. LLH(rule k) = 0, and these rules
were also discarded. Further we applied the confusability reduction by only
retaining the best rule for each rule condition. This left 358 rules for testing.
The sorting by log likelihood was quite different from rule probability sorting,
see table 9.7 for the top ten log likelihood pruned rules. We note that the
deletion rules still are most frequent. A scatter-plot of the two rule pruning

Rule H LLH-rank ‘

f-ao+tr — DELETED 1
t-ah+d — ih
t-ah+n — DELETED
n-t+iy — DELETED
dh-ih+s — ah
w-ih+l — DELETED
y-ao+r — DELETED
n-t+ah — DELETED
dh-ae+n — ah
hh-ae+d — eh

O 00 ~J O Ui W N
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Table 9.7: Top rules for acoustic log likelihood pruning of rule based time
synchronous alignment, phone loop transcription

measures shown in figure 9.1 also shows the low correlation between the top
rules for the two measures. The results in table 9.8 showed again neither
improvement nor deterioration compared with the baseline result. In this case
the error analysis showed that only 4% of the errors differed from the baseline.

Using rules derived directly from the time synchronous alignment allowed
longer rule focus. Sorting by the acoustic log likelihood measure the majority
of the high likelihood rules had 3-phone rule conditions as the rules we derived
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Figure 9.1: Scatter plot for the two rule pruning measures: rule probability
and acoustic log likelihood.

‘ No. rules ‘ BPW H WER ‘

100 1.27 || 23.8%
200 1.43 || 23.7%
300 1.54 || 23.6%
358 1.58 || 23.6%

Table 9.8: Results in WER for time synchronous alignment and log likelihood
rule pruning, phone loop transcription

from the alignment. Since the log likelihood measure rewards frequently
occurring segments this will favour short rules. Sorting by a relative log
likelihood measure gave different top rules, but still a majority of 3-phone
rule conditions. Preliminary tests using these rules gave no improvement.

No confusability measures were evaluated on this task as the lexica tested
gave similar results and the error analysis showed only small differences in the
recognized strings compared with the baseline system.

9.4 Discussion

The improvements seen using data-driven pronunciation rule modelling for the
non-native task in chapter 8 did not occur for the spontaneous dictation task.
Including variants based on the derived rules gave no improvement compared
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with the baseline WER and only minor differences in the type of errors. In
chapter 7 the variants from the CMU lexicon gave no improvement, but the
errors differed. The rules we observed from the alignment of a reference and an
alternative transcription were mostly deletion rules and allophonic variation.
For this native task the variation was apparently already sufficiently modelled
by the acoustic models. Other results on the same set using CART based
pronunciation modelling showed only minor improvements [93].

For this task we have an adaptation set with the same vocabulary as
the test set available in the WSJ corpus. A direct pronunciation modelling
approach could therefore be beneficial for the “seen” words, possibly using the
rules to generate candidate variants. Of the 7868 words in the adaptation set
also in the 20k vocabulary, 1972 different words occurred at least 5 times.

In chapter 7 we saw that speaker dependent acoustic model adaptation
gave a significant improvement, but the improvement was less than for the
read speech case. Recognition of spontaneous speech is still a problem.

One of the major differences in spontaneous speech compared with read
speech is that it contains many pauses, both silent and filled, restarts and
other disfluencies. These types of speech segments as well as partial words
may be better handled by specific disfluency modelling. The rate-of-speech
varies both between speakers and within utterances, so a special rate-of-speech
modelling may also be beneficial. Last, but not least, the language model of
read speech is not appropriate for spontaneous speech with its many restarts
and hesitations. An adaptation of the language model to spontaneous speech
is one way of increasing the performance for this task.

9.5 Summary of the main results

e The data-driven pronunciation rule modelling gave neither improvement
nor deterioration on the native spontaneous dictation task.

e The variation captured by the rules consisted of deletions and allophonic
variation apparently sufficiently modelled by the acoustic models.

e The different rule pruning measures resulted in different rules, and no
correlation was seen for the top rules. We observed, however, no differ-
ence in recognition performance.

e More sophisticated pronunciation modelling techniques may help more
than the methods presented here. For the disfluencies and changes in
rate-of-speech that are characteristic for spontaneous speech, pronunci-
ation modelling may not be the right answer.
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Chapter 10

Comparison of alignment
methods

10.1 Introduction

In pronunciation rule derivation the most common method is to start with
an alignment of two transcriptions, one symbolic and one surface form, where
the latter is assumed to better represent the variation we want to model.
Alignment of two transcriptions may also be used for other tasks like phone
confusion matrix derivation. Some substitutions are more probable than oth-
ers, and a uniform substitution cost for phone-to-phone mappings will give
misalignments compared with an alignment by a phonetician. Using phoneti-
cally based substation costs is a way to achieve an automatic alignment more
similar to a hand-made one, this is addressed in e.g. [19]. For pronunciation
modelling purposes the alignment errors made by using a uniform cost scheme
may not be severe as these errors probably will be random. We will, however,
discard data that could give useful information if the alignment was better.

In the previous chapters we have identified a number of problems with the
usual dynamic programming approach using either uniformly or phonetically
based substitution costs:

1. A phone loop transcription will often contain transcription errors that
violate phonotactical rules, and a phonetically based substitution cost
may give misalignments in these cases.

2. The phone-to-phone mappings in pronunciation variation are not sym-
metric. For example, a [t] or [d] in some contexts get flapped, but the
flapped version does not become a [t] or [d] in the same context. This
is also observed in [72] for consonants (without pronunciation variation).
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3. Disfluencies may give errors both in reference and alternative transcrip-
tions that lead to misalignments for larger segments. A dynamic pro-
gramming scheme may propagate these errors.

10.2 Individual rules for non-native speakers

It is difficult to assess alignments directly. We have used indirect testing by
using different alignment methods to derive pronunciation rules and pronun-
ciation variants. The resulting modified lexica were then tested.

To compare the association strength with other alignment methods, we
performed experiments using different substitution cost schemes. We per-
formed alignment using only uniform costs by assigning high association (low
cost) to identity mappings only. All non-identity mappings were assigned the
same higher cost. We also used a simple phonological grouping described in
e.g. [18], with 4 phone groups; vowels, sonorants, plosives and fricatives.

10.2.1 Experimental procedure

The experiments were performed using the non-native setup described in
section 8.2.

Sorting the phone-to-phone mappings by association strength, we observe
that many of the strongest mappings are intuitive. The top three mappings
for one of the speakers (4nd) are:

s — z,

z — s, and

p — b.

In this case it seems that the place of articulation is a more important sim-
ilarity measure than the manner of articulation. For another speaker a high
association strength is achieved for the mapping: 1 — ow

Although this may seem like an error, a closer look at the alignments revealed
that 1 after ow often was deleted, making this a useful mapping. An example
alignment of the reference transcription [ao 1 s ow] and the alternative
transcription [ow z ow] for the word “also” is:

(a0 = ow) (1 — ow)(s — z)(ow — ow).

In this alignment we observe deletion of 1 and two substitutions; (aoc — ow)
and (s — z). Without any similarity measure it would be equally probable
to get the alignment

(a0 —» ow) (1 — z)(s — ow)(ow — ow),

giving a deletion of s and the substitutions (a0 — ow) and (1 — =z).



10.3 Alignment of spontaneous dictation

139

o T ||u I a

I S
Il identity
_ol Il phonological i
[
[

relative improvement in WER [%]

assoc.
iterated assoc.

i i i i i i i i
4nd 4ne 4nf 4nh 4ni  4nj 4nk 4nl 4nm 4nn total
speakers

Figure 10.1: Relative improvement in WER for the different alignment schemes
for non-native speakers, RPR1 > 50%.

10.2.2 Results

For each speaker we performed alignment using identity, phonological, and
association based costs and made individual rules from these alignments.
Sorting by estimated rule probability RPR1 > 50% according to equation
(8.1) gave an overall error rate of 28.7% for the association based lexica. After
four iterations of association strength computation, the resulting lexica gave
an overall error rate of 28.6% WER. In figure 10.1 the results for the different
alignment schemes are shown for RPR1 > 50%. The improvements (deteriora-
tion for some speakers) varied, but the association based alignment performed
best on average. From figure 10.1 we also notice that the pronunciation rules
that perform best for each speaker are based on one of the association based
alignments, except for speaker 4nl.

Using equation (8.2) and threshold RPR2 > 20% gave an overall error rate
of 28.5%. Using the RPR2 threshold the identity mapping alignment based
rules were similar to the association strength alignment.

10.3 Alignment of spontaneous dictation

Inspection of the lexicon adaptation set for spontaneous dictation revealed
many pauses and other disfluencies. One example of a restart is given in
figure 10.2. The restart was not present in the reference transcription in this
case, so the phone loop transcription corresponds better to the acoustic signal.
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COMPLETED TREATMENT FOR
kahm| p |I|iy|t|ah/d t r| iy t mahin| t | f lao| r
kahm| p |1 |iy|d| ah t rley| t |sil| t r|iy |p|ih|n f Fo r ey
3.45 5.1
Time (s)

Figure 10.2: Spontaneous dictation with a restart. Word transcription is
shown at the top, then forced alignment of reference transcription, and at the
bottom phone loop transcription.

Dynamic programming using uniform phone-to-phone mapping costs gave
the alignment:
kahmp 1l iy t ah d triytmahntfaor
kahmpliydahtreyt siltriy pihn f aor ey

We see that the restart in “treatment” is misaligned as the end of the previous
word “completed” hiding the variation [iy t ah d $ t] — [iy d ah $ t]
($ marks the word border).

A phonetically based cost gave the alignment:
kahmpl iy t ahd triytmahntf aor
kahmpliydahtreytsiltriyp ihn f aor ey

We see that we have an alignment more phonetically appealing, but the
misalignment of the end of the word before the restart is still present.

Using association strength based cost gave the alignment:
kahmpliyt ah d triytmahntfaor
kahmpliydahtreytsiltriyp ihn f aor ey

The alignment of [d] in the phone loop to the [t] in “completed” is now
better because this mapping has a high association strength, but the context
for this mapping is not correct.



10.4 Alignment of error transcriptions

141

sil colorfast sil
sil Kk ah | er f ae s t sil
sil | noise | e | ax f ax n|t s sihoise
sil K aa | ax f ih sil s sihoise
(0] 1
Time (s)

Figure 10.3: Alignment of correct word “colorfast”, forced alignment of
correct word, transcription of recognized word “elephants”, and phone loop
transcription.

Using the time synchronous alignment introduced in section 6.3.2 we get
the following alignment:
kahmpliytahdtriyt mahntf aor
kahmpliydah treytsiltr iyp 1ihn f aor ey

We see that for the time synchronous alignment the word “completed” was
aligned according to the acoustic segments and we observe the deletion of the
[d] as well as the transformation from [t] to [d].

10.4 Alignment of error transcriptions

One way to learn acoustic confusability for later error prediction, is to align
the correct word and the errors of the recognizer output [30]. This sometimes
leads to alignment of very different words that is a challenge for the usual
dynamic programming algorithms. One example of this is shown in figure
10.3. The phone loop transcription is also included in the figure as this is
an alternative way of learning the acoustic confusability. We observe that the
segments with the same phone in the correct and recognized word also contain
the same phone in the phone loop transcription.
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The phonetically based alignment was in this case:
kah 1l er f ae s t
e lax f axnts

whereas a more appropriate alignment using time information could be:
kah 1 er f ae st
e lax f axnts

10.5 Discussion

In section 6.3.2 we introduced a new metric in the alignment based on sta-
tistical co-occurrence called association strength, which has been evaluated
in this chapter. Using the association strength method we can easily find
phone relations for individuals or groups of speakers and in this way make the
alignments used in the rule generation more consistent.

Lexica modified by rules made from alignments using the association strength
measure gave an improvement over baseline that was not present when using
uniform phone-to-phone mapping costs in the alignment. This indicates that
the proposed method is able to automatically capture the relations in phone
variation due to pronunciation variation from comparison of reference and
alternative phone loop based alternative transcriptions. The improvement
over rules based on phonological alignment was not as high as expected; for
a more restricted rule selection scheme even identity mapping gave the same
result. It is still an interesting approach and it reveals some phone-to-phone
mapping properties. These properties may also be useful in other parts of the
pronunciation modelling task or for entirely different applications.

We have shown examples of problems that arise when aligning transcrip-
tions with disfluencies and with correct and recognized words. A solution
using time synchronous alignment is proposed.

10.6 Summary of the main results

e The association based cost scheme for dynamic programming was shown
to give better alignments for rule derivation. The association based cost
scheme is one way of automatically learning the mappings from the data
dependent on speaker or other partitionings. The resulting costs will
normally by non-symmetric.

e A time synchronous alignment scheme was presented for examples of
difficult alignments.



Chapter 11

Concluding summary

In this dissertation pronunciation variation modelling for different speaking
styles has been investigated. We have interpreted the term “speaking styles”
widely, we have included not only read and spontaneous speech, but also
non-native speech. A goal for the research on ASR is to make applications
based on speech technology more user-friendly. To achieve this it is important
that the system can accept pronunciations that are perceived as normal by
the user. Spontaneous and non-native speech that is “normal” in the sense
that humans recognize it without problems, causes problems for current ASR
systems. We believe that a better modelling of pronunciation variation will
give a more robust system for different speaking styles.

Pronunciation variation can be modelled in different parts of the ASR
system: the acoustic models, the lexicon, or the language model. This dis-
sertation is focused on lexical modelling, but the pronunciation modelling
technique presented utilizes assessment metrics incorporating both acoustic
models and implicitly the language model. A joint optimization can prevent
adding variation in one part of the system that is already sufficiently modelled
in another part of the system, or even worse; adding contradicting variations.
We therefore strive for a unified optimization using objective criteria for all
parts of the ASR system, including the lexicon.

A complete data-driven approach to pronunciation rule derivation was
presented in this dissertation. Using rules we can generalize from the variation
seen in the adaptation data to words not present in these data. The method
presented shows how to use the acoustic log likelihood as a metric to assess
the rules.
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11.1 Variation modelling for different speaking styles

We have shown in chapter 7 that augmenting the recognizer lexicon with pro-
nunciation variants found in a general purpose lexicon gave small performance
gains, and most for read native speech. Error analysis showed that the system
using a single canonical pronunciation generated different errors than the one
using pronunciation variants, although the word error rate was similar. For
non-native speech we observed no improvement for context-dependent acoustic
models compared to context-independent models. This speaking style had
the largest gain using speaker dependent acoustic model adaptation, but the
performance was still far from the results for native speech. For spontaneous
speech we observed less improvement by speaker adaptation than for read
speech.

11.2 Data-driven pronunciation rule derivation and
assessment

Baseform variant generation by using data-driven rule derivation can be de-
scribed in five steps (repeated from section 5.4):

1. Automatically generate alternative transcriptions
2. Align the reference and alternative transcriptions
3. Derive rules from the alignment

4. Assess and prune the rules

5. Generate baseform variants from the rules, assess the variants, prune or
assign weights, and modify the lexicon

In this dissertation data-driven approaches were presented for all steps, but
the main contributions are on steps 2, 4 and 5. For step 2 we have introduced
association strength as a way to derive phone substitution costs from the data.
For step 4 we have introduced a metric based on acoustic log likelihood and
for step 5 we have presented a framework for a confusability metric based on
decision theory.

In chapter 8 the methods presented were evaluated on non-native speech.
The results show that the acoustic log likelihood pruning gave improved per-
formance compared with the more traditional rule probability pruning. We
observed a better performance when modelling the non-native speakers jointly
than individually. This was a surprising result, as the speakers had quite
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different language backgrounds, but may be because the amount of data used
was small. Even if the joint set of non-native speech was more diverse, the
larger amount of data was beneficial to get a more reliable rule selection for
the data-driven methods investigated. The confusability metric gave inconsis-
tent results for this task, showing the vulnerability for the method when the
vocabularies of the adaptation and test sets differ strongly.

For spontaneous dictation the results in chapter 9 showed no benefit by
using the same pronunciation modelling techniques as used for non-native
speech, neither for rule probability pruning nor acoustic log likelihood pruning.
One reason may be that the rather simple rules investigated in this dissertation
only modelled variation that already was sufficiently modelled by the acoustic
models. The reason may also be that pronunciation modelling is not the main
answer to better modelling of this speaking style.

11.3 Alignment

In chapter 10 some shortages of current alignment methods were identified. To
compare dynamic programming alignment methods with different substitution
cost schemes, we have compared WER after rule based pronunciation variation
modelling using the different alignments. The non-native task was chosen for
this experiment and the alternative transcription was made using a phone
loop. The statistically based association strength was shown to produce equal
or better performing rules than uniform or phonetically based substitution
costs.

The usual dynamic programming approach has difficulties: 1) for tran-
scription errors and disfluencies (usual in spontaneous speech) and 2) when
aligning different words (for confusability measures). We have shown examples
of this where a time synchronous alignment may be beneficial to ensure that
we compare the same acoustic segments.

11.4 Conclusions

Current ASR systems perform substantially worse for both non-native and
spontaneous speech than for read speech. In this dissertation we have therefore
investigated a data-driven approach to rule based lexicon adaptation for these
two speaking styles.

For a spontaneous dictation task the proposed method did not give any
improvement, nor did more traditional rule probability based pronunciation
modelling. The recognized strings were similar to the baseline result; the vari-
ation modelled by the rules did neither correct, nor introduce errors. Baseform
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variants from a general purpose lexicon did not give any improvement either,
but here the errors differed compared with using one canonical baseform entry.

For the non-native task we observed the same effect as for spontaneous
speech when adding general purpose variants: The errors differed, but the
performance did not. The proposed rule-based lexicon adaptation gave sig-
nificant improvements for this task, and we observed larger gain for the new
acoustic log likelihood metric compared with a rule probability metric.

The results indicate that we should choose different ways to model pronun-
ciation variation for these two speaking styles. However, the rules investigated
in this dissertation are rather simple and this may be one reason why they were
better able to model the larger shifts in pronunciation present in non-native
speech. Further research combining more sophisticated rule derivation with
the proposed acoustic log likelihood pruning should be tried before we reject
the hypothesis that pronunciation variation modelling also will give a better
performance for spontaneous speech.

One of the main differences between read and spontaneous speech is the
grammar used as well as disfluencies like restarts and long pauses. The
language model may therefore be the best choice for more research to achieve
better performance for this speaking style.

Even if speaker adaptation was shown to give large improvements for non-
native speech, the resulting performance was worse than for native speech
on the same task. To achieve results more comparable to native speech, a
combination of lexical and acoustic adaptation may be beneficial. It is then
crucial to use a metric for the pronunciation rule and variant pruning that
incorporates the variation accounted for by the acoustic models. The proposed
metric in this dissertation is a step towards this goal.

11.5 Some directions for further work

The rules investigated in this dissertation are rather simple. We have only
looked at phone identity as context for the transformation. We will then only
be able to model the phone sequences seen in the adaptation data. CART
based rule modelling is one way of generalizing the context automatically
from the data, and a combination of CART based rule derivation and acoustic
log likelihood assessment would therefore be interesting for further studies.
With a better generalization (or more data) more sophisticated rules could
be derived using more information, e.g. stress and syllable information or for
non-natives especially, orthographic information. Coarticulaton effects across
word borders should also be included in the variation modelling.

The step from rules to variants needs more attention. We have in this
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dissertation assessed only the most important variants by the restriction of
applying only one rule to each baseform. A rule hierarchy based on an acoustic
log likelihood metric must be formulated to extend the method presented to
using several rules in one baseform.

The unigram language model was implicitly incorporated in the rule prun-
ing metric. This was done by assessing the total effect instead of the relative
effect of the rules. We then incorporate the word probability found in the
adaptation set. Higher order language models should be incorporated, and
more explicitly by using the probabilities from the language model defined
for the task. The probabilities given will then be the same as used in the
recognition phase. The task language model is usually trained on much larger
amounts of text data than in the adaptation data and will give more reliable
estimates for the probabilities. One problem with assessing the total effect is
that we then needed the extra restriction of using only one rule for each rule
condition. A clustering procedure where we ensure that each acoustic segment
only contributes once may be beneficial.

Controlling the confusability is important. A joint optimization using
acoustic log likelihood in the pronunciation rule pruning will to some extent
help to reduce the confusability by preventing addition of superfluous varia-
tion. For a proper confusability metric the combined effect of the baseforms
should be assessed. We have in this dissertation presented a framework for
discriminative pronunciation assessment with confusability measures based on
decision theory. Assessing this framework on data with better agreement
between the adaptation and test data than the non-native task should be
investigated. When a suitable metric is found it can be used in data-mining
approaches to find the optimal set of baseforms.

One difference between the non-native and spontaneous tasks we have
investigated is that for the non-native speakers we derived pronunciation rules
from an adaptation set with the same speakers as in the test set. Deriving
speaker dependent lexica is an interesting task for future research where the
main challenge is that we normally will have small amounts of data for each
speaker.

Dialects and native accented speech are not investigated in this disserta-
tion, but we may assume that these speaking styles will behave more similar to
non-native speech than spontaneous speech. An investigation of the proposed
method, and refinements of it for dialect pronunciation modelling, should be
investigated.
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Appendix A

Phonetic alphabets

Phone symbol Example | Transcription | Phone class
CMU | SAMPA

ih I it ih t checked vowel
eh E ed eh d checked vowel
ae { at ae t checked vowel
aa A odd aa d checked vowel
ah ' hut hh ah t checked vowel
uh U hood hh uh d checked vowel
iy i eat iy t free vowel

ey el ate ey t free vowel

ay al hide hh ay 4 free vowel

oy 01 toy t oy free vowel

uw u two t uw free vowel

ow oU oat ow t free vowel

aw au cow k aw free vowel

ao 0 ought ao t free vowel

er 3" hurt hh er t free vowel

Table A.1: US English vowels in the CMU and SAMPA phonetic alphabets

The International Phonetic Alphabet (IPA) of the International Phonetic
Association [57] is widely used by linguists, but for ASR purposes more com-
puter friendly alternatives are used. In this dissertation we have mainly used
the phone symbols given by the CMU phonetic alphabet [15]. This is a
phonetic alphabet for transcription of US English and consists of 39 symbols,
not counting variants for lexical stress. The Speech Assessment Methods Pho-
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netic Alphabet (SAMPA) is a well defined standard for a computer readable
phonetic alphabet, [97]. Both phone sets are shown in tables A.1 and A.2 with
the phone classification used by SAMPA.

The CMU phone set is similar to the ARPABET which is widely used
in the ASR community. Slightly different versions of ARPABET exist. The
version defined in [73] and [90] consists of more phones than the CMU set and
some symbols differ. For example is [nx] used instead of [ng] and [axr]
instead of [er].

The Bell Labs recognizer (BLASR) uses the two additional phones shown
in table A.3:

e Where the BLASR lexicon uses the phone here described as [ax], the
CMU lexicon uses [ah] or [ih]. This phone is often called “schwa”.

e Where the BLASR lexicon uses the phone here described as [aaa], the
CMU lexicon uses [aa].

If pronounced differently the [aal] will be rounded while the [aaal will be
unrounded. These two phones may be pronounced similarly in some regions
in the US (both unrounded) while they will be different in other regions (e.g. in
British English).
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Phone symbol Example | Transcription | Phone class
CMU | SAMPA

P p pee p iy plosive
b b be b iy plosive
t t tea t iy plosive
d d dee d iy plosive
k k key k iy plosive
g g green griynmn plosive
ch tS cheese ch iy z affricate
jh dz gee jh iy affricate
f f fee f iy fricative
v v vee v iy fricative
th T theta th ey t ah | fricative
dh D thee dh iy fricative
s S sea s iy fricative
z z zee z iy fricative
sh S she sh iy fricative
zh Z seizure s iy zh er | fricative
hh h he hh iy fricative
m m me m iy sonorant
n n knee n iy sonorant
ng N ping p ih ng sonorant
r r read r iy d sonorant
1 1 lee 1 iy sonorant
W W we w iy sonorant
y j yield y iy 1 d sonorant

Table A.2: US English consonants in the CMU and SAMPA phonetic
alphabets

Phone symbol || Example | Transcription Phone class

used ‘ SAMPA

ax ¢ another | ax n ah dh er | short central vowel
aaa | A: stars s taaar z free vowel

Table A.3: Extra vowels used in BLASR
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Appendix B

CMU lexicon specification

In the experiments in chapters 7 and 9 we have used the cmudict.0.6 from
August 8, 1998, [15]. The README-file is given below. In chapter 8 we
have used the BLASR lexicon from Bell Labs. A comparison of the CMU
and BLASR lexica is difficult as they use different phone sets as described in
appendix A.

The CMU lexicon README file:
Date: 11-8-95

Files: README (this file), cmudict.0.1.Z (compressed), cmulex.0.1.Z,
cmudict.0.2.Z (compressed), cmudict.0.3.Z (compressed), cmudict.0.4.Z,
cmulex.0.3.Z, cmulex.0.4.Z, phoneset.0.1, phoneset.0.3, phoneset.0.4.

This directory contains pronunciation dictionaries (cmudict.0.1.Z is
the first one we put out, cmudict.0.4.Z is the latest and most
up-to-date) containing approximately 100k words and their
transcriptions; lists of the words are in cmulex.0.[134].Z. We use
these dictionaries at Carnegie Mellon in our speech understanding
systems.

The phone set for cmudict.0.4 contains 39 phones, a list of which can be
found in phoneset.0.4.

Lexical stress is indicated by means of a numeral [012] attached to a vowel:
0 = no stress
1 = primary stress
2 = secondary stress

Alternate transcriptions are identified with a numeral in parentheses as
part of the lexical entry.
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We generated this dictionary using the following independent sources:

- a 20k+ general English dictionary, built by hand at Carnegie Mellon
(extensively proofed and used).

- a 200k+ UCLA-proofed version of the shoup dictionary.

a 32k subset of the Dragon dictionary.

a 53k+ dictionary of proper names, synthesiser-generated, unproofed.

a 200k dictionary generated with Orator, unproofed.

a 200k dictionary generated with Mitalk, unproofed.

A1l entries that occur solely in copyrighted sources, like the Dragon

dictionary, are not currently included in this dictionary. If you have

words and transcriptions that you would like included in this unrestricted

resource, please send them to Robert L. Weide (weide@cs.cmu.edu) and we

will consider them for an upcoming version.

A1l of the above sources were preprocessed and the transcriptions in the
current cmudict.0.1 were selected from the transcriptions in the sources or
a combination thereof. We have removed some potentially unreliable
transcriptions from this dictionary, including those based on only one
source, and will reintroduce them once we have verified the transcriptiomns.

CMU does not guarantee the accuracy of this dictionary, nor its suitablity
for any specific purpose. In fact, we expect a number of errors, omissions
and inconsistencies to remain in the current result. We intend to
continually update the dictionary as we make progress in correcting them.
We will make subsequent versions available via anonymous ftp, and those
who would like notification when updated versions are available should
send email to weide@cs.cmu.edu.

We welcome input from users: send e-mail to Robert L. Weide
(weide@cs.cmu.edu) if you have comments and suggestions on the content
of the dictiomary.

The Carnegie Mellon Pronouncing Dictionary [cmudict.0.4 and all previous
versions] is Copyright 1993, 1994, and 1995 by Carnegie Mellon University.
Use of this dictionary for any research or commercial purpose is completely
unrestricted. If you make use of or redistribute this material, we would
appreciate acknowlegement of its origin.

If you add words to or correct words in this dictionary, we would like
the additions and corrections sent to us (weide@cs) for consideration
in a subsequent version. All final entries will be approved by Robert L.
Weide, editor of the dictionmary.
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Confidence intervals

The confidence intervals used in this dissertation are computed according to
methods reported in [47] and [56]. We assume that the errors are indepen-
dently distributed according to a binomial distribution where n is the number
of samples (in our case words) and p is the word error rate (WER) of the
baseline system. The probability of the number of errors n. can then be
expressed as:

n

P(ne =) = b(z;n,p) = < ) p e (L=p) ), (C.1)

T
We want to test the hypothesis Hy that a new recognizer has the same number
of errors; n, = np (where np is the mean of the binomial distribution). We
reject the Hj hypothesis if the probability that the number of errors n. is
outside a confidence interval (c1, ¢3), is larger than a value given by the
confidence coefficient. The low and high borders of the confidence interval
for a given confidence coefficient can be found by:

Plep<ne<e)=1—-a (C.2)

Furthermore, the binomial distribution can be approximated with a normal
(Gaussian) distribution with mean np and variance np(1 — p). We then get
an expression for the confidence interval given the total number of samples n
and the error rate p of the baseline system.

The tables below give the 95% confidence intervals (o = 0.05) computed for
the number of samples in the test sets used in this dissertation for a selection
of word error rates.
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‘ WER H Low ‘ High H Interval ‘

)
10
15
20
25
30
35
40
45
50

4.30

9.01
13.81
18.68
23.55
28.46
33.41
38.35
43.31
48.32

5.79
11.04
16.22
21.38
26.47
31.54
36.62
41.65
46.66
51.68

1.49
2.03
241
2.70
2.92
3.08
3.21
3.30
3.35
3.36

Table C.1: Confidence intervals for 3446 words (h1)

‘ WER H Low ‘ High H Interval ‘

Y
10
15
20
25
30
35
40
45
50

4.39

9.15
13.97
18.85
23.76
28.67
33.62
38.58
43.54
48.54

.66
10.90
16.05
21.17
26.27
31.33
36.38
41.42
46.43
51.44

1.27
1.75
2.08
2.32
2.51
2.66
2.76
2.84
2.89
2.90

Table C.2: Confidence intervals for 4633 words (s9)
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‘ WER H Low ‘ High H Interval ‘

5 4.51 | 5.52 1.01
10 9.33 | 10.70 1.37
15 || 14.20 | 15.83 1.63
20 || 19.10 | 20.93 1.83
25 || 24.01 | 25.99 1.98
30 | 28.96 | 31.05 2.09
35 | 33.91 | 36.10 2.19
40 || 38.89 | 41.13 2.24
45 || 43.86 | 46.13 2.27
50 | 48.85 | 51.14 2.29

Table C.3: Confidence intervals for 7435 words (s3)

‘ WER H Low ‘ High H Interval ‘

Y 433 | 5.74 1.41
10 9.06 | 10.98 1.92
15 || 13.89 | 16.17 2.28
20 || 18.73 | 21.29 2.56
25 || 23.64 | 26.40 2.76
30 | 28.54 | 31.46 2.92
35 | 33.49 | 36.53 3.04
40 || 38.43 | 41.55 3.12
45 || 43.42 | 46.59 3.17
o0 | 48.40 | 51.58 3.18

Table C.4: Confidence intervals for 3849 words (h2)
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Appendix D

Decision theory

This appendix contains some general decision theory and provides definitions
for the equations used in section 6.1. The appendix is based on [22], [96], and
[64]. The notation chiefly follows Katagiri et al. in [64].

The basic problem in decision theory is that we observe an object and want
to decide which class the observation belongs to. The object will usually be
some kind of feature vector representing speech, images, or other signals. We
use training data to optimize the classifier that we use for the decisions.

A classification system consists of:

e The classifier C(-)
e M classes Cj,5 =1,2,..., M
e A design sample set of feature vectors {x}

Classification can be described as a partitioning of the signal space in
disjoint regions. We want to use the training data to find the partitioning
that gives us minimum error rate. Therefore we need an optimizing criterion
emphasizing borders rather than typical examples.

D.1 Bayes classifier
Optimization regarding the minimum error classification (MCE) criterion will
give us a Bayes classifier which is defined as choosing the class that maximizes

the a posteriori probability, [22].

C(x) = C; < i=argmax P(C; | x) (D.1)
j
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The a posteriori probability can be expressed utilizing the conditional
probability densities and the a priori probability:
p(x, Cj)

p(x)
__px[G)P(C))
2k p(x | Cr)P(Cr)
__pi(x)P(C))
Yk pe(x)P(Cy)
The last line is just a change of notation showing the conditional probability

densities as class densities.
Using only the numerator gives a mazimum likelihood (ML) classifier:

Cx)=C; — i= arg;naxp(x | C;)P(C;) = arg;naxpj(x)P(Cj) (D.3)

P(Cj|x) =

(D.2)

The class density is estimated using the acoustic models and the a priori
probability is estimated using the language model. In the maximum likelihood
(ML) framework both these two components are estimated, but only for each
class individually. Skipping the denominator removes the dependency on the
other classes.

Using the Bayes classifier we must estimate the posterior probability. Usu-
ally this is done using a model for the posterior probability, i.e. a parametric
estimation. We then estimate the parameters in the density chosen instead of
the entire density. The design issue is which type of probability densities to
use since we rely on a reasonable assumption for the model. The functional
form of the conditional probability density is in practice rarely known, but a
Gaussian distribution is often used since the central limit theorem states that
the limiting distribution as the number of sampled increases is Gaussian. The
estimation will often be done using a plug-in classifier and we estimate the
posterior probability by estimating the class density and the class probability:

p;(x:0)P(C)

P(Cy | %) = (D.4)
> i (;0) P(Ch)
The class probability is often estimated by counting occurrences:
B(cy) = count(x € C) (D.5)

> count(x € Cy)

The parameters 6 are the parameters needed to describe the class densities.
Using a plug-in classifier we have two levels of approximations, first we must
find an estimator 6 for @ and secondly assume that pr(x; 9) is a good estimator
for pg(x;0).
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Figure D.1: Two dimensional signal space with three classes divided in disjoint
regions.

D.2 Discriminant functions

Instead of estimating the posterior probability the classifier can be represented
by a discriminant function for each class Cj:

g;(x; A)

The classifier will then consist of the parameter set A and a decision rule given
by the discriminant functions. The decision rule is to choose the class with
the discriminant function that gives the highest value:

(D.6)

C(x) =C; <= i=argmaxg;(x;A) (D.7)

J
The discriminant functions will divide the signal space in disjoint regions as
shown in figure D.1.
The relation between the Bayes decision rule and the discriminant function
representation of the classifier is given by the following “Bayes classifier”
discriminant function:

gi(x;A) = P(Cj | x;A) (D.8)

The discriminant function does not need to be a probability function, the
parameters A of the classifier can be trained to reduce classification error which
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will be a more direct approach than to model parameters of a class distribu-
tion. Estimating the discriminant function directly is called a non-parametric
estimation. The discriminant function approach makes it possible to achieve
minimum classification error without having (or assuming) the true parametric
form of the probability function. The distinction between parametric and
non-parametric is often less clear-cut than the names indicate, quoting [96]
page 26:

“The real distinction is between families of probabilities which are
quite constrained by having only few parameters, and those which
are so flexible that they can approximate (almost) any posterior
probabilities.”

D.3 Optimization

To train the classifier we need an optimizing function, and we want to find
the connection between this function and the parameters in the classifier that
we can adjust. For minimum error classification the optimizing function is
related to an estimate of the average error rate, or in decision theory notation:
expected loss.

We need a loss function giving us the cost of a misclassification. A zero-one
loss function will count all errors as equally important and by that avoid the
difficulty in setting class-by-class loss, see figure D.2:

li(x; A) = {0’ Olx) =1 (D.9)

1, otherwise

The decision process of the classifier in equation (D.7) is to compare
competing classes. Using the discriminant function from equation (D.6) this
process can be emulated using a distance we will call a misclassification mea-
sure:

di(x; A) = gj(x; A) — gi(x; A) (D.10)

A positive value from this measure means that Cj is preferred over C; and we
have a classification error. (C; = C; will give the value zero, i.e. no loss). Cj is
the class with the largest discriminant value among those classes other than C;.
The zero-one loss function can then be reformulated using the misclassification

measure:
d;(x;A) <
L) = 4 00 b A) <0 (D.11)
1, 0<di(X;A)
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Figure D.2: Zero-one loss function.

We may also use introduce a doubt decision in the loss function. This may
help to handle unseen events. We can use the misclassification measure to

incorporate the “amount” of misclassification in a doubt region using a linear
function as shown in figure D.3, [64]:

0, di(x;A) <0
lLi(xsA) = § 5 - di(x;A), 0<di(x;A) <c2 (D.12)
1, €2 < di(x;A)

This makes the classifier depend on how well the value of the discrim-
inant functions and the misclassification measures correspond to the “real”
misclassification and how comparable the values for different errors are.

To find the total expected loss we must first define the misclassification
probability, pmc(C;), for class C; (the class is truly C;):

pme(C) = P{C(x) # Ci | Ci) (D.13)

For a Bayes classifier we count errors and use the zero-one loss function.
The expected loss, also called risk function, will then become, [96]:

K
R(C(-),Ci) =Y P{C(x) = Cy | Ci}
k=1

(D.14)
~ P{C(x) # C; | Ci}
= pmc(C;)
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Figure D.3: Loss function with linear doubt region.

The approximation will be equality if we have non-overlapping errors, i.e. that
for each sample one or no competing classes will have better score than the
correct one. If several competing classes have better scores than the correct
one for a sample of Cy, the first line will give a higher loss than the true one.
The expression in line one will be an upper bound on the expected loss.

To get the total expected loss or total risk we take the expectation over all
classes:

R(C(-)) = E[R(C(), Cy)]
K (D.15)

= P(Cy)pmc(Cy)
k=1

The probability of misclassification (pmc) must be estimated using the
parameters of the classifier. We will then have a function giving us the con-
nection between minimum error rate and the parameters of the classifier. We
can then optimize the classifier regarding the parameters using this function.

It is, however, important that our classifier training method generalizes
well. Learning the training data by heart will often not help much in classifying
unseen samples. A loss function that represents the amount of error will help.
Usually this is done by using a function of the misclassification measure. This
will make the system more dependent on any assumptions in the design of the
classifier.

Choosing between a parametric and a non-parametric estimation will be
a trade-off between our belief in a distribution assumption and the amount
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of relevant data. If we have sufficient training data we can estimate the
distributions (or discriminative functions) directly. On the other hand, the
model assumptions in parametric modelling may help us in generalizing when
we have less data.
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Appendix E

Detailed experimental results
for different speaking styles

E.1 Choice of retranscription scheme for variant train-
ing

As explained in section 7.2.3 we have several ways of training variant models.
The usual scheme is to use the variants in a forced alignment once in an early
phase of the training, i.e. using monophone models with only one component
in the observation density. We have also tried a scheme where we retranscribe
with the current models at every mixture update to get a better quality
transcription for further training.

We have used two ways of assessing the effect of the retranscription schemes
used in training:

1. The likelihood of the training data
2. The WER of the test data

We can examine how well the acoustic models explain the training data for
various amounts of training and setups by looking at the average log likelihood
per frame. Retranscribing for every mixture update gave higher log likelihood
of the training data after each iteration compared with retranscribing once
both for monophones, see figure E.1, and for triphones, see figure E.2. The
difference was however minor and we saw the same increase for canonical and
variant models.

The log likelihood after each iteration of training for the variant and
canonical models was also compared. There was hardly any difference be-
tween using transcriptions based on a canonical lexicon and transcriptions
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with variants. For the canonical models the increased log likelihood after
8 iterations compared with 4 iterations is only due to the larger number of
iterations used in the training. This suggests that the increased log-likelihood
for the variant models trained using 8 iteration also is due to the larger number
of iterations rather than the effect of the retranscription. Since the difference
between canonical and variant models was minor, the retranscription effect
may be small because the variant effect is small.

The triphones, figure E.1, gave much higher log likelihood on the training
set than the monophones, figure E.2, as expected.

—65

—65.5[ : RNy ¥ |
f] 4
E | e e
B O —BB i R L F esexex -
o
2
35 8
5-66.5) . 4
g—) mono variant 8it
K] 77 * - mono canonical 8it
S 671 P —— mono variant 4it 4
g = _mono canonical 4it]
=
< 4

—67.5 ¢ x 4

_68 i i i i i i
4 6 8 10 12 14 16
Number of Gaussians in mixture

Figure E.1: Log probability per frame, monophone acoustic models.

The recognition results on the test set showed a small increase in perfor-
mance for most conditions when retranscribing for every mixture update, see
tables E.1, E.2, E.3, and E.4.

For the variant HMM experiments presented in the main results in chap-
ter 7 we chose to use models with retranscription for every mixture update,
i.e. the 8 iteration models. For the canonical models we used the 4 iteration
version since we saw no improvement and a small deterioration for some
triphone setups using 8 iterations.
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Average log probability per frame

Figure E.2: Log probability per frame, triphone acoustic models.

Table E.1: WER in [%] for monophone acoustic models using 4 iterations

xxxxx

—e— tri variant 8it

—64.5 * - tri canonical 8it
—— tri variant 4it
—65 tri canonical 4it
—65.5
—66
—-66.5
_67 i i i
2 4 8 10

Number of Gaussians in mixture

‘ Training ‘ Test H hi ‘ s9 ‘ s3 ‘ h2 ‘
Canonical | Canonical || 34.7 | 40.4 | 27.6 | 22.2
Canonical | Variant 32.9 | 39.3 | 27.2 | 21.1
Variant Variant 33.2 | 40.3 | 28.4 | 21.5
Variant Canonical || 36.2 | 42.8 | 29.7 | 23.7

(only retranscribing once)

Table E.2: WER in [%] for monophone acoustic models using 8 iterations

‘ Training ‘ Test H hi ‘ s9 ‘ s3 ‘ h2 ‘
Canonical | Canonical || 34.2 | 40.3 | 27.4 | 21.6
Canonical | Variant 32.5 1 39.2 | 27.5 | 21.2
Variant Variant 32.0 | 38.2 | 26.7 | 20.1
Variant Canonical || 35.8 | 40.8 | 28.2 | 22.2

(retranscribing for every mixup)
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Table E.3:
retranscribing once)

‘ Training ‘ Test H hi ‘ s9 ‘ s3 ‘ h2 ‘
Canonical | Canonical || 15.9 | 23.7 | 27.7 | 8.0
Canonical | Variant 152 |1 23.5 | 284 | 84
Variant Variant 15.4 | 24.0 | 28,5 | 7.7
Variant Canonical || 20.1 | 29.1 | 30.3 | 11.5

WER in [%] for triphone acoustic models 4 iterations (only

‘ Training ‘ Test hi ‘ s9 ‘ s3 ‘ h2 ‘
Canonical | Canonical || 16.3 | 24.3 | 27.6 | 8.2
Canonical | Variant 15.8 | 23.6 | 28.4 | 8.5
Variant Variant 154 124.4 (289 | 74
Variant Canonical || 20.5 | 29.4 | 31.0 | 11.6

Table E.4: WER in [%] for triphone acoustic models using 8 iterations
(retranscribing for every mixup)
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