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Abstract

This document is laid out as follows: Part I contains a general introduction to
echocardiography. Part II and III cover new material in this thesis and their ab-
stracts are listed below. The material in part II and part III are basically the same
as the material in the two papers in part V. Both papers are accepted for publica-
tion in conference proceedings of Medical Imaging and Informatics in Beijing, China.
This conference takes place in August this year and I am pleased to be invited to
deliver an oral presentation. In part II and III, text, figures, and equations are given
more space. In part IV four appendices are listed; Appendix A covers a derivation
of spectral parameters of the ultrasound Doppler signal, Appendix B covers a dis-
cussion of the classification criteria, Appendix C covers a discussion of the effect
of reverberations from previous shots and Appendix D contains some images of the
new imaging modes. For your convenience, a list of symbols used in this thesis is
added after the bibliography.

Part II: The bandwidth of the ultrasound Doppler signal is proposed as a clas-
sification function of blood and tissue signal in transthoracial echocardiography of
the left ventricle. The new echocardiographic mode, Bandwidth Imaging, utilizes
the difference in motion between tissue and blood. Specifically, Bandwidth Imaging
is the absolute value of the normalized autocorrelation function with lag one. Band-
width Imaging is therefore linearly dependent on the the square of the bandwidth
estimated from the Doppler spectrum. A 2-tap Finite Impulse Response high-pass
filter is used prior to autocorrelation calculation to account for the high level of
DC clutter noise in the apical regions. Reasonable pulse strategies are discussed
and several images of Bandwidth Imaging are included. An in vivo experiment is
presented, where the apparent error rate of Bandwidth Imaging is compared with
apparent error rate of Second-Harmonic Imaging on 15 healthy men. The apparent
error rate is calculated from signal from all myocardial wall segments defined in [1].
The ground truth of the position of the myocardial wall segments is determined by
manual tracing of endocardium in Second-Harmonic Imaging. A hypotheses test of
Bandwidth Imaging having lower apparent error rate than Second-Harmonic Imag-
ing is proved for a p-value of 0.94 in 3 segments of end diastole and 1 segment in end
systole on non averaged data. When data is averaged by a structural element of 5
radial, 3 lateral and 4 temporal samples, the numbers of segments are increased to 9
in end diastole and to 6 in end systole. These segments are mostly located in apical
and anterior wall regions. Further, a global measure GM is defined as the proportion
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of misclassified area in the regions close to endocardium in an image. The hypoth-
esis test of Second-Harmonic Imaging having lower GM than Bandwidth Imaging
is proved for a p-value of 0.94 in the four-chamber view in end systole in any type
of averaging. On the other side, the hypothesis test of Bandwidth Imaging having
lower GM than Second-Harmonic Imaging is proved for a p-value of 0.94 in long-axis
view in end diastole in any type of averaging. Moreover, if images are averaged by
the above structural element the test indicates that Bandwidth Imaging has a lower
apparent error rate than Second-Harmonic Imaging in all views and times (end di-
astole or end systole), except in four-chamber view in end systole. This experiment
indicates that Bandwidth Imaging can supply additional information for automatic
border detection routines on endocardium.

Part III: Knowledge Based Imaging is suggested as a method to distinguish
blood from tissue signal in transthoracial echocardiography. This method utilizes the
maximum likelihood function to classify blood and tissue signal. Knowledge Based
Imaging uses the same pulse strategy as Bandwidth Imaging, but is significantly
more difficult to implement. Therefore, Knowledge Based Imaging and Bandwidth
Imaging are compared with Fundamental Imaging by a computer simulation based
on a parametric model of the signal. The rate apparent error rate is calculated in
any reasonable tissue to blood signal ratio, tissue to white noise ratio and clutter to
white noise ratio. Fundamental Imaging classifies well when tissue to blood signal
ratio is high and tissue to white noise ratio is higher than clutter to white noise
ratio. Knowledge Based Imaging classifies also well in this environment. In addition,
Knowledge Based Imaging classifies well whenever blood to white noise ratio is above
30 dB. This is the case, even when clutter to white noise ratio is higher than tissue
to white noise ratio and tissue to blood signal ratio is zero. Bandwidth Imaging
performs similar to Knowledge Based Imaging, but blood to white noise ratio has
to be 20 dB higher for a reasonable classification. Also the highpass filter coefficient
prior to Bandwidth Imaging calculation is discussed by the simulations. Some images
of different parameter settings of Knowledge Based Imaging are visually compared
with Second-Harmonic Imaging, Fundamental Imaging and Bandwidth Imaging.
Changing parameters of Knowledge Based Imaging can make the image look similar
to both Bandwidth Imaging and Fundamental Imaging.
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The field of echocardiography is broad, and this introduction covers a selected
subset of the field that this thesis is build on. In section 1.1 an overview of the most
important echocardiographic modes is given and the signal chains are described by
flowcharts. The clinical aspects of echocardiography is limited to standard imaging
views and the diagnose criteria ejection fraction. Finding ejection fraction involves
defining endocardium either by manual tracing or by automatic routines. A brief
overview of automatic endocardium tracking routines is given in section 1.3. In
section 1.4 a software for handling ultrasound data is discussed briefly.

1.1 Echocardiography

The first use of ultrasound in medical applications was reported in the early fifties
by Wild [2], Howrey and Bliss [3] and Edler and Hertz [4]. Echocardiography has
evoluted enormously since then, motivated by the fact that heart failure and heart
deceases are the most common causes of death in western countries.

In transthoracial echocardiography the probe has a center frequency ranging
from 2.5 to 3.5 MHz, since the region of interest is up to 12-15 cm into the body.
Bones and air in lungs are not penetrated by ultrasound at these frequencies. The
view points are therefore limited dramatically and probes providing sector scan are
usually preferred.

Various echocardiographic modes are available on conventional scanners. Ex-
amining the cardiac muscle, the amplitude of the pulse echo along one beam is
visualized in motion-mode. The two dimensional image is called the beam-mode. In
amplitude imaging, the modes Fundamental Imaging and Second-harmonic Imaging
are available. Blood flow in the heart is examined by Continuous Wave Doppler,
Pulsed Wave Doppler or Color Flow Imaging. Movement of myocardium is examined
by Tissue Velocity Imaging (Tissue Doppler Imaging).

The next two subsections describes flowcharts for sector scan beam-mode ampli-
tude imaging and Color Flow Imaging.

1.1.1 Amplitude imaging

The basic principle of ultrasound imaging is as follows; a voltage signal of a few
oscillations in the MHz range is applied to a piezo-electric material, causing it to
vibrate. For a multi element transducer each element transmits sphere pressure
waves (sound waves) and in the far-field these sphere waves add up to a focused
beam. After one pulse transmission the same elements absorbs the sound waves of
the echoes of the transmitted pulse. Since the speed of sound is relatively constant
in tissue and blood the time delay after pulse emission is used to distinguish signal
from different depths. The radial resolution is half the pulse length and the lateral
resolution is the beam width. The beam width can be shown to be linearly dependent
of center frequency and depth. The beam width is also inversely dependent of the
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transducer width. An electronically steered transducer controls the phase delays on
each element, allowing control of the focal point along the beam and steering the
beam in different directions. Modern systems can focus on every depth on reception,
while only few focal points (usually one or two) can be used on transmission.

A flowchart of how the signal is processed is shown in Fig. 1.1(a). After the
transducer elements have received a pulse and thereby created a voltage signal, the
signal is digitalized. The beam former adds up time delayed signals from every
element to obtain the desired focus. A bandpass filter with passband equal to the
bandwidth of the emitted pulse is used to improve signal to noise ratio. In Second-
Harmonic Imaging [5] the center frequency of this bandpass filter is doubled causing
only the signal from non-linear scattering to pass. This type of imaging is reported to
have better quality than Fundamental Imaging [6]. In particular, Second-Harmonic
Imaging has lower side lobe levels and less reverberation noise.

The next step in the process is the time gain compensation TGC, which com-
pensates for the attenuation from different depths. A detection algorithm finds the
envelope of the signal and a quasi logarithmic amplifier increases the amplitude of
the weaker signal. This is done so strong signal can be visualized with weak signal.

The flowchart has so far shown how signal from one range cell is channeled
through the system. In order to show a two dimensional image, the signal from
each range cell and from each beam is stored in a two dimensional array. When the
array is filled up, the data is scan converted, meaning that the physical dimensions
become correct. For a sector scan this involves a polar coordinate transformation.
The data is color coded from black to white and then displayed. Fig.1.2(a) shows a
transthoracial cardiac Second-Harmonic Image of a healthy mature male. The image
consists of 193 reception beams at 400 depths and the frame rate was 44 frames per
second.

1.1.2 Ultrasound Doppler measurements

When a sound wave is reflected from a moving scatterer the frequency of the reflected
signal is changed from the transmitted frequency. The Doppler equation gives a
relation between this frequency shift fd and the velocity along the beam vz;

vz = − c

2f0

fd (1.1)

where c is speed of sound and f0 is the center frequency of the probe. The first
use of this effect was reported in 1957 by Satomura et. al. [7]. Jensen’s book [8]
and Angelsen’s book [9] gives a thorough discussion of Doppler methods for blood
velocity estimates on modern systems.

In Continuous Wave Doppler, this shift is measured directly. Typically one part
of the transducer emits a continuous sound wave and the other part of the transducer
receives the echoes of the emitted wave. The Doppler shift is small compared with
the center frequency of the probe, since the speed of blood is small compared with
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(b) Tissue Velocity Imaging and Color Flow
Imaging

Figure 1.1: Flowchart for amplitude imaging and Tissue Velocity Imaging/Color
Flow Imaging systems. After the transducer elements have received a pulse and
thereby created a voltage signal, the signal is digitalized. The beam former adds up
signals from every element which are time delayed to obtain the desired focus. In
amplitude imaging a bandpass filter with passband equal to the bandwidth of the
emitted pulse is used to improve signal to noise ratio. The time gain compensator
TGC, compensates for the attenuation from different depths and a detection algo-
rithm finds the envelope of the signal and a quasi logarithmic amplifier increases
the amplitude of the weaker signal. In Color Flow Imaging and Tissue Velocity
Imaging the signal goes through the same process as in amplitude imaging until it
is beam-formed. Afterward, the signal is complex demodulated and filtered through
a rectangular receiver filter. The signal is highpass filtered before the spectral pa-
rameters ω1, B, P is calculated. In Tissue Velocity Imaging ω1 is calculated after a
weak highpass filter. In order to show a two dimensional image, the signal from each
range cell from every depth and every beam has to be stored in a two dimensional
array. When this array is filled up, the data is scan converted, meaning that the
physical dimensions become correct. The data is color coded and displayed.
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(a) Second-Harmonic Imaging

Figure 1.2: Second-Harmonic Imaging of a mature male.

speed of sound. Complex demodulation is done to transfer the passband signal to
a baseband signal. A high pass filter removes the components from tissue and the
desired blood velocities can be measured from the spectrum.

In Pulse Wave Doppler the transducer alternates from emitting and receiving
pulses in the same manner as in amplitude imaging. Radial resolution is therefore
possible. Since the transmitted pulses are short, the bandwidth is much broader than
for Continuous Wave Doppler, and the frequency dependent attenuation distorts the
signal more than the Doppler shift. In Pulse Wave Doppler the frequency shift is
not measured directly. In fact signals from a number of pulses, consecutively shot
in the same direction, are used to estimate the Doppler shift. Pulse Wave Doppler
was first suggested by Baker and Watkins [10] in 1967.

Color Flow Imaging is essentially Pulsed Wave Doppler swept over a two dimen-
sional sector. Color Flow Images was first shown by Namakawa [11] and Kasai [12].

The estimation techniques for blood velocities can be divided into narrow band
and wide band methods. Narrow band methods use relatively long pulses and esti-
mate the parameters from one range gate. Examples of this are the autocorrelation
technique [12], Fourier based techniques and autoregressive modeling [13]. Wide
band techniques use a train of short pulses to track a group of red blood cells using
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the intensity of their echoes. Data from many range gates is used. Examples are
the cross correlation routine [14], the sum absolute difference technique [15] and the
wide band maximum likelihood estimator [16].

A flowchart for a typical narrow band Color Flow Imaging system is shown in Fig.
1.1(b). After the signal is received, digitalized and focused in the beam former, it is
complex demodulated. This places the signal into the baseband and the directional
information is kept. The receiver filter maximizes signal to noise ratio by having
a rectangular impulse response with duration equal to the pulse length [17]. The
radial length of the sample volume is increased by this filter.

At this point the data is stored in a buffer until all pulses in one beam direction
have arrived this buffer. If eight pulses were used, meaning packet size eight, then
eight samples are available for further processing. In fact these pulses are high
pass filtered to remove clutter noise from slowly or non moving tissue. Torp [18]
and Bjærum [19] have given a thorough discussion of highpass filters when the
samples are few. After the estimators for power, bandwidth and mean frequency
are calculated, the data is scanconverted and displayed. In Color Flow Imaging,
velocities toward the probe is conventionally shown red and velocities away is shown
blue. The intensity of the colors are dependent on the mean frequency shift. Broad
bandwidth indicates disturbed flow and is visualized green. Fig.1.3(a) shows an
Color Flow Image.

In Tissue Velocity Imaging, the flowchart is basically the same as for Color Flow
Imaging. The pulse strategy is different and also the high pass filter prior to the
calculation of the autocorrelation is much weaker or not present. The signal to noise
ratio is significantly higher than in Color Flow Imaging, since the signal from tissue is
much stronger than signal from blood. This allows a much shorter pulse transmission
which increases radial resolution. Also a low packet size (often three) is sufficient
and enables high frame rate. This is important for imaging the rapid movement of
myocardium in the end systole. Furthermore, a beam interleaving method is used
to keep a pulse repetition frequency low while frame rate high. Further, a low pulse
repetition frequency enables non dangerously to emit more energy into the body
per pulse resulting in stronger echoes. In some cases a weak high pass filter is used
to subtract DC clutter noise from reverberations along the beam. Tissue Velocity
Imaging and Color Flow Imaging are usually duplex, meaning that they are both
shown together with an amplitude image (usually Second-Harmonic Image). An
example of an Tissue Velocity Image is shown in Fig. 1.3(b).

1.2 Standard echo Doppler examination

Due to the fact that ultrasound can not penetrate oxygen in the lungs and bones, the
positions of the probe placements are limited. The standard transthoracial imaging
views of the left ventricle are left para-sternal, right para-sternal, supra-sternal,
subcostal and apical positions. Explaining the diagnostic benefits of these views are
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(a) Color Flow Image

(b) Tissue Velocity Image

Figure 1.3: Ultrasound Color Flow Imaging and Tissue Velocity Imaging of a mature
male.
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not the scope of this thesis, but an overview is found in [20]. Particularly, the three
apical views are interesting in this thesis. The three standard apical views are the
four-chamber view, the two-chamber view and the long-axis view. These three views
contain the long axis of the left ventricle and are rotated around the long axis with
60 degrees to each other. Together they give a very good overview of the heart.

Three simple sketches of the human heart, seen from four-chamber view, two-
chamber view and long-axis view, are shown in Fig. 1.4(b), 1.4(c) and 1.4(d). These
sketches are found in the documentation of GcMat described in section 1.4, and later
manipulated. Here, left ventricle LV, right ventricle RV, left atria LA and right atria
RA are marked. The valve between left ventricle and the atrial-ventricular plane
AV is called the mitral valve and the valve between left ventricle and aorta AO is
called the aortic valve.

Cerqueira et. al. [1] have given recommendations for nomenclature and standard-
ized segmentation of myocardium. The sixteen segmentation model for echocardio-
graphy is shown in the bulls-eye diagram in Fig. 1.4(a).

The segments are found by slicing the ventricle into three thirds. The parallel
slices have equal space between each other and are perpendicular to the left ventri-
cle long-axis. These three slices are further divided into the final myocardial wall
segments. The mid- and basal slices consist of six equally sized segments, while the
apical slice consists of four segments. This can be seen in Fig. 1.4.

Ultrasonic imaging of the two-chamber view accesses basal anterior, mid ante-
rior, apical anterior, apical inferior, mid inferior and basal inferior segments. The
four-chamber view accesses basal inferoseptal, mid inferoseptal, apical septal, apical
lateral, mid anterolateral and basal anterolateral segments. And the long-axis view
accesses the basal anteroseptal, mid anteroseptal, apical septal, apical lateral, mid
inferolateral and basal inferolateral. This segmentation model is used in chapter 3
in part II.

1.2.1 The ejection fraction

One of the most important diagnose criterias of coronary heart decease, valve de-
ceases and heart failure is the ejection fraction. This is the ejected volume divided
by the maximum volume of the left ventricle. Echocardiography is the most com-
mon tool to measure ejection fraction since it is noninvasive, cheap, accessible and
thoroughly tested. The stress echo examination involves continuous imaging of the
heart as the heart pulse is increased either by medicine or by activity. By stressing
the heart the examiner measures ejection fraction at different levels of stress. To do
this, the examiner has to draw the endocardial border manually in end diastole and
in end systole in at least two scan planes. The volume estimate is obtained by the
Simpson method, which is implemented on most conventional scanners.

This means that the examiner has to draw the endocardium four times, for every
stress-level she wants to examine. The normal procedure is to use three stress-levels.
Consequently, endocardium has to be traced at least twelve times. This is obviously
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(a) Bulls-eye (b) four-chamber view

(c) two-chamber view (d) long-axis view

1. basal anterior 7. mid anterior 13. apical anterior
2. basal anteroseptal 8. mid anteroseptal 14. apical septal
3. basal inferoseptal 9. mid inferoseptal 15. apical inferior
4. basal inferior 10. mid inferior 16. apical lateral
5. basal inferolateral 11. mid inferolateral
6. basal anterolateral 12. mid anterolateral

Figure 1.4: Fig. (a) Display, on circumferential polar plot, of the 16 myocardial
segments and recommended nomenclature recommended for echocardiography. Fig.
(b) to (d) are planes through the heart according to the ultrasound four-chamber
view, two-chamber view and long-axis view
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very time-consuming and a reliable endocardium detection routine is needed to make
the whole procedure fully automatic. The next section covers an introduction to this
field.

1.3 Tracking algorithms of endocardium

Various automatic and semi-automatic methods have been implemented on scan-
ners to track endocardium. Also, several authors have reported post-processing
algorithms to detect endocardium. Here is a short resume of existing methods for
extracting endocardium border.

1. Hand-crafted methods: Flexible models can be built up from simple sub-
components such as circles, arcs, lines etc, which are allowed a certain degree
of freedom. The algorithm searches through the image for these features one
at the time. Yuille et. al. [21] model parts of the face such as the eyes and
the mouth in this way. Lipton et. al. [22] modeled the left ventricle using
a handcrafted method in combination with Generic Algorithms from echo-
cardiograms.

2. Articulated methods: A number of authors consider articulated models built
from rigid bodies connected by sliding and rotating joints. Beinglass and
Wolfson [23] describe a scheme of locating such objects using the generalized
Hough transform with the point of articulation as the reference point for each
sub-part. Connected sub-parts vote for the same reference point. Malassiotis
and Strintzis [24] use the Hough transform in combination with an active shape
model to track the endocardium from ultrasound images.

3. Active Contour Models (snake): Kass et al. [25] describe flexible contours,
which are attached to image features. These energy minimization spline curves
are modeled as having stiffness and elasticity and they are attracted toward
features such as lines and edges. Constraints can be applied to ensure smooth-
ness and continuity. The snake algorithm is a parametrized model, where
the parameters are the control points of the spline. This method has been
widely implemented on ultrasound scanners in various ways [26] to [30]. Also
GE Vingmed Ultrasound AS Vivid 7 has a snake algorithm using the atrial-
ventricular valve plane and apex detection scheme to find endocardium.

4. Active Shape Models: Initial estimates of shape, scale and orientation are
made. Shape parameters are then changed in a scheme evaluated by principal
component analysis. The model searches for high gradients normal to the
initial shape. This model is expanded to yield the motion of the shape by
Bosch et al. [31]. This model is called active appearance motion-model. This
is a promising border detection algorithm, where the shape parameters are
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evaluated from expert cardiologist drawings. Other references on active shape
models are [32] to [34].

5. Region growing method: This method divides the image into sub-regions,
which have certain properties. Sub-regions that lie next to each other are
merged when they have similar properties. The regions can also be split, when
properties are not spatially uniform. Dove et al. [35] combined a region-growing
scheme with a Fuzzy Hough Transform to detect endocardium on ultrasonic
images.

1.4 Software interface for ultrasound data

General Electric Vingmed Ultrasound AS, Horten has provided a software interface
that handles images from their Idunn scanner system. The program is called GcMat
and communicates with Matlab (The MathWorks Inc.) and a display subsystem
of Idunn. Matlab’s libraries are directed towards research and various toolboxes
such as signal processing, image processing, spline and symbolic mathematics are
frequently used in this environment. Matlab is interactive and allows Just In Time
compilation and communicates with other computer languages such as C, C++
and Fortran. GcMat controls the communication between Matlab and GcViewer
using the Microsoft ActiveX COM-component. GcMat is therefore unfortunately
restricted to Windows platforms only.

GcMat is made for product development and research. All signal and image
processing libraries of the Idunn scanner are available. Images can basically be
taken out of the signal chain at any point and be manipulated further using Matlab’s
libraries. Finally, the images can be written back to GcMat for visualization. The
user can also add graphics such as points, curves and transparent jpg images into
the GcMat environment.
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Abstract

The bandwidth of the ultrasound Doppler signal is proposed as a classification func-
tion of blood and tissue signal in transthoracial echocardiography of the left ventri-
cle. The new echocardiographic mode, Bandwidth Imaging, utilizes the difference in
motion between tissue and blood. Specifically, Bandwidth Imaging is the absolute
value of the normalized autocorrelation function with lag one. Bandwidth Imaging
is therefore linearly dependent on the the square of the bandwidth estimated from
the Doppler spectrum. A 2-tap Finite Impulse Response highpass filter is used prior
to autocorrelation calculation to account for the high level of DC clutter noise in
the apical regions. Reasonable pulse strategies are discussed and several images of
Bandwidth Imaging are included. An in vivo experiment is presented, where the
apparent error rate of Bandwidth Imaging is compared with apparent error rate of
Second-Harmonic Imaging on 15 healthy men. The apparent error rate is calculated
from signal from all myocardial wall segments defined in [1]. The ground truth of
the position of the myocardial wall segments is determined by manual tracing of
endocardium in Second-Harmonic Imaging. A hypotheses test of Bandwidth Imag-
ing having lower apparent error rate than Second-Harmonic Imaging is proved for a
p-value of 0.94 in 3 segments of end diastole and 1 segment in end systole on non
averaged data. When data is averaged by a structural element of 5 radial, 3 lateral
and 4 temporal samples, the numbers of segments are increased to 9 in end diastole
and to 6 in end systole. These segments are mostly located in apical and anterior
wall regions. Further, a global measure GM is defined as the proportion of misclas-
sified area in the regions close to endocardium in an image. The hypothesis test of
Second-Harmonic Imaging having lower GM than Bandwidth Imaging is proved for
a p-value of 0.94 in the four-chamber view in end systole in any type of averaging.
On the other side, the hypothesis test of Bandwidth Imaging having lower GM than
Second-Harmonic Imaging is proved for a p-value of 0.94 in long-axis view in end
diastole in any type of averaging. Moreover, if images are averaged by the above
structural element the test indicates that Bandwidth Imaging has a lower apparent
error rate than Second-Harmonic Imaging in all views and times (end diastole or
end systole), except in four-chamber view in end systole. This experiment indicates
that Bandwidth Imaging can supply additional information for automatic border
detection routines on endocardium.





Chapter 1

Introduction

The ejection fraction is one of the most commonly measured parameters in diagno-
sis and follow up of coronary heart decease, valve decease and heart failure. The
ejection fraction is the ejected volume divided by the maximum volume of the left
ventricle, and measuring ejection fraction involves defining the endocardial border,
either automatically or by manual tracing.

In ejection fraction calculation, the endocardial border has to be traced in at least
two scan planes in both end diastole and end systole. In stress echo examination,
ejection fraction is commonly calculated at three levels of stress. A robust routine
for detecting endocardium automatically is needed to save examination time.

Many approaches have been suggested to solve the endocardium tracking prob-
lem. We mention here briefly; active contour models (snakes) [26], [27], [28], [29]
and [30] , active shape models [31], [32], [33] and [34] , region-growing scheme [35]
and Hough transform [24]. Common for all these approaches is that they are all
applied on Second-Harmonic Imaging data.

However, GE Vingmed Ultrasound AS Vivid 7 has an automatic routine that uses
Tissue Velocity Imaging data in addition to Second-Harmonic Imaging data. Prior
to the border detection, the atrial ventricular plane and apex are detected using
an algorithm that searches for points with desired gray scale intensity and tissue
movement. A simple version of this apex and atrial ventricular plane detection
algorithm is presented in Storaa et al. [36]. This is an interesting example of how
robustness can be achieved by using other data sets than Second-Harmonic Imaging.

It is an important point, that Bandwidth Imaging is not the same as the Variance-
mode, available on most conventional Color Flow Imaging systems. In the Variance-
mode, the variance of the blood flow estimate is estimated by the square of the
bandwidth divided by the packetsize [9] (page 10.20). Prior to the variance estimates,
the signal is highpass filtered to remove clutter noise from surrounding tissue. This
improves the variance estimates in the blood pool. Hence in tissue, the signal ends
up containing mostly white noise, which is not at all related to the motion of the
scatterers in the actual range cell. The variance estimates are therefore not suited
for blood pool definition in Color Flow Imaging systems. In general, only the power
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of the highpass filtered Doppler signal is used for this purpose.
In Bandwidth Imaging contradictory, signal from tissue is only partially attenu-

ated before the bandwidth estimate. The signal from tissue has therefore a narrow
bandwidth, while signal from blood has broader bandwidth, since this signal is a
mixture of blood signal and clutter noise. Bandwidth Imaging is therefore used as
a classification function.

In Power Doppler the packetsize has to be at least 6 to achieve a useful stop-band
in the highpass filter [18]. However in Bandwidth Imaging, a 2-tap Finite Impulse
Response highpass filter is sufficient and this filter is available with a packetsize
of 3. The temporal resolution is proportional to the packetsize and this gives an
important resolution gain compared to Power Doppler. Further, spatial resolution
and framerate are increased by using Multi-Line acquisition. Multi-Line acquisition
is reconstruction of multiple scan lines from sparsely transmitted scan lines. This
means that Bandwidth Imaging is available at a temporal and spatial resolution that
is interesting in endocardial border detection.

In order to discuss the usefulness of Bandwidth Imaging, an in vivo experiment
on 15 healthy male is introduced. A similar experiment is suggested by Spencer et.
al. in [6]. Here, the visualization of Second-Harmonic Imaging and Fundamental
Imaging were rated by expert cardiologists in all myocardial segments outlined in [1].
However, the visual differences between Bandwidth Imaging and Second-Harmonic
Imaging are more radical than the visual differences between Fundamental Imaging
and Second-Harmonic Imaging. Therefore, a test which is less dependent on visual
perception is introduced in this part .



Chapter 2

Bandwidth Imaging

The bandwidth estimator is found to be

B2 = 2− 2
|r(1)|
r(0)

(2.1)

in [9] and [8]. Here the autocorrelation function r(m) is estimated from the signal
zn by

r(m) =
1

N

N−m−1∑
n=0

znzn+m for 0 ≤ m ≤ N − 1 (2.2)

In Bandwidth Imaging the packet size N is set to 3. A derivation of estimators of the
bandwidth, mean frequency shift and power of the Doppler signal with packetsize 3
is given in Appendix A. Notice that the signal dependent part of B2, is dependent
on the absolute value of the normalized autocorrelation function with lag one. For
simplicity Bandwidth Imaging is defined as:

Bandwidth Imaging =
|r(1)|
r(0)

(2.3)

Bandwidth Imaging is therefore high when bandwidth is small and visa verse. This
is because Bandwidth Images should be white in tissue and black in blood, similar
to Second-Harmonic Images.

The appearance of white noise biases the estimate downward, while clutter noise
biases the estimate upward. To compensate for the effect of clutter noise, a 2-
tap Finite Impulse Response highpass filter prior to autocorrelation calculation is
introduced

x1 = z2 − 10−
AF
20 z1

x2 = z3 − 10−
AF
20 z2

(2.4)

where AF is the attenuation factor at zero frequency in dB. When AF is high the
filter can be regarded as a stationary canceling filter and the transfer function is
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given in [8] (page 209). In apical views, the clutter noise level is high in the near
field and the white noise level increases by depth due to depth gain compensation.
We have therefore found it reasonable to let AF decrease linearly from 40 dB to 15
dB in images from apical views with depth 15 cm.

2.1 Instrumentation of Bandwidth Imaging

The strategy for implementation of Bandwidth Imaging is by trial and error of var-
ious pulse strategies on a scanner (Vivid 7, GE Vingmed Ultrasound AS (Horten)).
A reasonable pulse strategy for Bandwidth Imaging is given in Table 2.1. The pulse
strategy for Second-Harmonic Imaging, which is used in chapter 3, is shown for
comparison.

The center frequency for Bandwidth Imaging is a trade off between lateral resolu-
tion and penetration and is set to 2.5 MHz. The pulse length of 0.7 mm is chosen as
a trade off between radial resolution and sensitivity. The pulse repetition frequency
is set to 3750 and this choice is augmented for in subsection 3.4.4. The packet size
is 3, which is the lowest possible for calculating Bandwidth Imaging with the filter
given by equation (2.4).

Note that the pulse length is about 50 % longer in Bandwidth Imaging than in
Second-Harmonic Imaging. Also, Bandwidth Imaging contains approximately 33 %
less beams per frame than Second-Harmonic Imaging. This is because the framerate
of Bandwidth Imaging is equal to the framerate of Second-Harmonic Imaging, the
packet size is three times higher, the Multi-Line acquisition parameter is doubled
and pulse repetition frequency is about the same.

The In Quadrature (signal after complex demodulation in the signal chain) data
is recorded and saved to a file for further post-processing in Matlab (The Math-
Works Inc.). In Bandwidth Imaging, signal is highpass filtered by equation (2.4)
and then calculated by equation (2.3). Second-Harmonic Imaging is calculated by
log compressing the square root of r(0). The images are then scan converted to get
physical scale and histogram equalized to get comparable contrast.
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Table 2.1: Parameters related to the transducer for Bandwidth Imaging and Second-
Harmonic Imaging

Parameter Value

Center frequency 2.5 MHz

Pulse repetition frequency 3.75 kHz

Multi-Line acquisition 4

Packetsize 3

Radial resolution 6.67 · 10−4 m

Aperture 2.2 · 10−3 × 2.0 · 10−3 m2

Depth 0.15 m

Focal point (single) 0.15 m

Framerate 44

Bandwidth

Imaging

Number of beams 127

Center frequency trans./rec. 1.7/3.4 MHz

Pulse repetition frequency 4.25 kHz

Multi-Line acquisition 2

Packet size 1

Radial resolution 4.6 · 10−4 m

Aperture 2.2 · 10−3 × 2.0 · 10−3 m2

Depth 0.15 m

Focal point (single) 0.09 m

Framerate 44

Second-

Harmonic

Imaging

Number of beams 193





Chapter 3

Experiment for comparing
Bandwidth Imaging with
Second-Harmonic Imaging

3.1 Methods

The test included 15 healthy male persons aged 24 to 32. The image qualities were
acceptable, which means that decent agreement with Magnetic Resonance Images
[37] were expected. The three standard apical views, four-chamber, two-chamber
and long-axis view were recorded in one loop each. The pulse strategy and the
instrumentation details were the same as given in section 2.1.

The depth was set to 15 cm and a single transmit focus was chosen in both
Second-Harmonic Imaging and Bandwidth Imaging to get better resolution. In this
study all depth gain compensations were equalized for all depths to eliminate for
this variability.

The subjects were asked to hold their breath and keep still during recording.
This enabled the examiner to compare Second-Harmonic Imaging and Bandwidth
Imaging from the same positions. Afterwards, the images were re-examined in a
GE Vingmed Ultrasound AS (Horten) application called GcMat. This application
communicates with Matlab Inc. for post-processing data. The examiner traced
endocardium in the Second-Harmonic Images in both end systole and end diastole
in all three views. Immediately after tracing in the Second-Harmonic Images, the
same traces were shown in the corresponding Bandwidth Images. In cases where
the subject moved under the examination, the examiner retraced on the Bandwidth
Images.

In article [1], recommendations for nomenclature and standardized segmentation
of myocardium are given. The sixteen segmentation model for echocardiography is
shown in the bulls-eye diagram in Fig. 3.1(a).

The segments are found by slicing the ventricle into three thirds. The parallel
slices have equal space between each other and are perpendicular to the left ventri-
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cle long-axis. These three slices are further divided into the final myocardial wall
segments. The mid- and basal slices consist of six equally sized segments, while the
apical slice consists of four segments. This can be seen in Fig. 3.1. Echocardio-
graphic images from four-chamber view, two-chamber view and long-axis view are
shown in Fig. 3.1(b), 3.1(c) and 3.1(d). The four-chamber view assesses basal infer-
oseptal, mid inferoseptal, apical septal, apical lateral, mid anterolateral and basal
anterolateral segments. The two-chamber view accesses basal anterior, mid anterior,
apical anterior, apical inferior, mid inferior and basal inferior segments. Finally, the
long-axis view accesses the basal anteroseptal, mid anteroseptal, apical septal, apical
lateral, mid inferolateral and basal inferolateral.

From the manual traces of endocardium, the shape and position of myocardial
segments are calculated. This is done by first finding the left ventricle long-axis.
Then three perpendicular lines to the long axis line are calculated. These three lines
intersect the long-axis at the bottom, one third up and two thirds up. These three
lines also intersect the endocardium trace at six points. A seventh point is found as
the intersection between the endocardium trace and the long-axis view trace. These
seven points define the corner points of the myocardial segments along endocardium.
The width of each myocardial segment is set to 20 % of the myocardial short axis.
These segments are seen in figure 3.1(b), 3.1(c) and 3.1(d). Here corresponding
blood segments are shown on the inside of endocardium. The number labels are
denoted in the blood segments, corresponding to the myocardial segments.

All recorded data inside each myocardial segment and each blood segment were
stored in an array, with labels of subject number, segment name, segment type
(blood or tissue), method (Second-Harmonic Imaging of Bandwidth Imaging) and
time instance (end diastole or end systole).

3.1.1 Evaluation criteria for classification functions

A comprehensive discussion of classification theory can be found in [38]. The quan-
tity apparent error rate is chosen to evaluate the performance of the classification
functions Bandwidth Imaging and Second-Harmonic Imaging. Advantages of appar-
ent error rate are that it is easy to implement and not dependent of the form of the
parent populations.

Apparent error rate =
nbM + ntM

nb + nt

(3.1)

Here, nt and nb are the sizes of measured data from tissue πt and blood πb. Further,
ntM and nbM are the number of misclassifications of πt and πb. Apparent error rate
is simply the proportion of misclassifications of the total dataset. In Bandwidth
Imaging and Second-Harmonic Imaging blood and tissue are classified by thresh-
olding. A discussion of this is found in Appendix B. In this experiment the best
threshold is chosen, and apparent error rate is therefore independent of any mono-
tone transformations of πt and πb. The definition of apparent error rate is changed
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to;

Apparent error rate = min
T

(
nbMT + ntMT

nb + nt

)
(3.2)

where the number of misclassifications with threshold T are denoted ntMT and
ntMT . Moreover, a significant problem with this criteria is related to the resolution
inhomogeneity in sectorscan images. In apical segments, the spatial resolution close
to the probe is much higher than the spatial resolution further down. Therefore, a
third version of apparent error rate is proposed,

Apparent error rate = min
T

(∑nbMT

i=1 cbMTi +
∑ntMT

i=1 ctMTi∑nb

i=1 cbi +
∑nt

i=1 cti

)
(3.3)

Here, the cost of sample i in πb or πt are cbi or cti. For a threshold T , the costs of
misclassifications in blood and tissue are cbMTi and ctMTi. The values of cbi, cti, cbMTi

and ctMTi are equal to the areas the measurements are representing in the image.
Apparent error rate is therefore the proportion of misclassified area, given the best
possible threshold. It is important to emphasize that the threshold is constant only
inside one segment.

In this experiment, a more global measure is also introduced, where histogram
variations within an image is taken into account. Here all data from the six myocar-
dial segments in one image is stored into Πt. Also, the corresponding blood data is
stored in Πb. The global measure GM is defined as

GM = min
T

(∑NbMT

i=1 CbMTi +
∑NtMT

i=1 CtMTi∑Nb

i=1 Cbi +
∑Nt

i=1 Cti

)
(3.4)

where the sizes of Πb and Πt are Nb and Nt. Numbers of misclassification at threshold
T are NbMT and NtMT , in blood and tissue respectively. Further, Cbi is cost of
sample i in Πb and Cti is cost of sample i in Πt. Also, CbMTi and CtMTi are costs of
misclassifications in Πb and Πt. GM is therefore the proportion of misclassified area
in an image, given the best possible threshold.

In order to discuss GM we have found it instructive to define another measure
in this experiment. The local measure LM is defined as

LM =
6∑

j=1

(
min

T

(∑nbMTj

i=1 cbMTij +
∑ntMTj

i=1 ctMTij∑Nb

i=1 Cbi +
∑Nt

i=1 Cti

))
(3.5)

where j denotes the segment number in the image, ranging from 1 to 6. Moreover,
CbMTij and CtMTij are costs of misclassifications of a sample i at threshold T for
segment j in blood and tissue. The numbers of misclassification for segment j are
ntMTj and nbMTj, in tissue and blood, respectively. LM is basically the mean of the
apparent error rates for all the segments in an image. In LM the threshold level
can vary from segment to segment, while in GM the threshold level is constant for
the whole image. Therefore, if GM and LM differ a lot, the histograms between



26 COMPARISON EXPERIMENT

the segments also differ a lot. Note that this ratio is independent of any monotone
transformation of the data. This ratio is therefore a good measure of the histogram
uniformity HUM:

HUM =
GM

LM
(3.6)

Prior to apparent error rate, GM and HUM calculation the images have either been
non averaged, moderately averaged or strongly averaged. In moderate averaging,
the structural element is 3 radial, 2 lateral and 3 temporal samples in Second-
Harmonic Imaging. To account for the resolution loss in Bandwidth Imaging, the
structural element in moderate averaging is reduced to 2 radial, 2 lateral and 2
temporal samples. In strong averaging, the structural element is 5 radial, 3 lateral
and 4 temporal samples in Second-Harmonic Imaging and 4 radial, 2 lateral and 4
temporal samples in Bandwidth Imaging.

3.2 Results

The occasions where the apparent error rate of Bandwidth Imaging is smaller than
apparent error rate of Second-Harmonic Imaging are counted in all segments. This
number ranges from 0 to 15, since 15 subjects attended the study. The result is
shown in Fig. 3.2. If numbers are 11 or above, the p-values are higher than 0.94
on the hypothesis test; true apparent error rate of Bandwidth Imaging is equal or
lower than true apparent error rate of Second-Harmonic Imaging.

This means that if we assume that true apparent error rate of Second-Harmonic
Imaging is lower than or equal to true apparent error rate of Bandwidth Imaging,
then there is less than 6 percent chance that the result of this test would occur.
If we had assumed that true apparent error rate of Second-Harmonic Imaging is
higher than true apparent error rate of Bandwidth Imaging, then the outcome of
this experiment is more likely than 6 percent to occur.

This indicates that Bandwidth Imaging classifies better than Second-Harmonic
Imaging in these segments, and these segments are therefore marked green. Segments
with numbers four and below are marked red, because the test indicates that Second-
Harmonic Imaging has a lower apparent error rate than Bandwidth Imaging in these
segments. The left column shows results of end diastole and the right column shows
results of end systole.

In apical septal and in apical lateral segments a super-index and a sub-index are
given. The super-index tells us which view has the lowest mean apparent error rate
taken over subjects in Bandwidth Imaging. Correspondingly, the sub-index shows
the best view of Second-Harmonic Imaging. Here 4 means four-chamber view and
L means long-axis view. In these segments, the test compares the apparent error
rate of Second-Harmonic Imaging and the apparent error rate of Bandwidth Imaging
from their respective best views.

The top row shows apparent error rate calculated from not averaged data. In
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end diastole, the test indicates that Second-Harmonic Imaging has a smaller appar-
ent error rate than Bandwidth Imaging in basal inferoseptal, basal inferior, basal
inferolateral, basal anterolateral, mid inferoseptal and mid inferior. Contradictory,
the test indicates that Bandwidth Imaging has a smaller apparent error rate than
Second-Harmonic Imaging in mid anterior, mid anterolateral and apical lateral. The
test can not indicate which method has the smallest apparent error rate in the other
segments. In end systole, the high scores of Second-Harmonic Imaging are found
in basal anteroseptal, basal inferoseptal, basal inferior, basal inferolateral, basal an-
terolateral, mid inferoseptal, mid inferior, mid inferolateral and mid anterolateral.
The only high score of Bandwidth Imaging is found in the mid anterior segment.
The test can not indicate which method has the lowest apparent error rate in the
other segments.

In the mid and bottom row of Fig. 3.2 the test is performed on moderately and
strongly averaged data, respectively. In end systole with moderate averaging, the
basal anterior, mid anteroseptal, apical anterior and apical septal becomes green in
addition to the green segments of the non averaged data. The basal anterolateral
segment however, goes from red to undecidable. In strong averaging also basal an-
teroseptal and apical inferior become green, while mid inferior and basal inferolateral
go from red to undecidable.

In end systole with moderate averaging, the apical anterior segment becomes
green, while basal anteroseptal, basal inferolateral, mid inferolateral and mid an-
terolateral segments go from red to undecidable. In strong averaging basal anterior,
mid anteroseptal, apical inferior and apical lateral go from undecidable to green.
The mid inferior segment goes from red to undecidable.

The effect of averaging is therefore that the number of green segments is increased
from 3 to 7 to 9 in end diastole and from 1 to 2 to 6 in end systole. Also, the number
of red segments is reduced from 6 to 5 to 3 in end diastole and from 9 to 5 to 4 end
systole.

The top row of Fig. 3.3 shows the mean apparent error rate (in percent) taken
over subjects for Bandwidth Imaging (top number) and for Second-Harmonic Imag-
ing (bottom number). The results for end diastole are shown in the left column and
the results for end systole are shown in the right column. In apical septal and apical
lateral segments the minimum means are shown, corresponding to sub- and super-
indexes of Fig. 3.2. The next two rows show the corresponding numbers when data
is moderately and strongly averaged. Note that the apparent error rate decreases
with averaging in every segment at any time instance (end diastole or end systole).

In Fig. 3.3, we see that the apparent error rate is very different in various
segments. On non averaged data, the apparent error rate of Bandwidth Imaging,
varies from 0.21 to 0.37 in end diastole and 0.27 to 0.38 in end systole, while apparent
error rate of Second-Harmonic Imaging, varies from 0.11 to 0.38 in end diastole and
0.16 to 0.40 in end systole. The smallest numbers of the apparent error rate are found
in segments where Second-Harmonic Imaging works best, and the largest numbers
of apparent error rate are found in segments where Bandwidth Imaging works best.
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This effect is further investigated by grouping the segments. The segments with
green numbers in Fig. 3.3(a) are the best Bandwidth Imaging segments in end dias-
tole BEDS. Similarly we have HEDS, which are the best Second-Harmonic Imaging
segments in end diastole and the undecidable end diastole segments UEDS. In the
systole we have correspondingly defined BESS, HESS and UESS from Fig. 3.3(b).

Fig. 3.4(a) and 3.4(b) show mean apparent error rate of Second-Harmonic Imag-
ing and Bandwidth Imaging, taken over subjects and segments in the above groups.
The x axes of the figures show the level of averaging. It is clear that the Bandwidth
Imaging groups are more collected than the Second-Harmonic Imaging groups. This
indicates that the great regional differences seen in Fig. 3.2 are more a matter of
regional differences of Second-Harmonic Imaging, rather than regional differences of
Bandwidth Imaging. Furthermore, we see that Bandwidth Imaging decreases more
rapidly by averaging than Second-Harmonic Imaging.

The result of GM is shown in the Table 3.1. Here, the occasions where GM of
Bandwidth Imaging is smaller than GM of Second-Harmonic Imaging are counted
for each view. This is done in end diastole and in end systole without averaging,
with moderate averaging and with strong averaging. Similarly to the result shown
in Fig. 3.2, values above 11 are marked green and the values below 4 are marked
red.

The test indicates that Second-Harmonic Imaging has a smaller GM than Band-
width Imaging in four-chamber view in end systole in any type of averaging. On the
other side, Bandwidth Imaging has a smaller GM in long-axis view in end diastole
in any type of averaging. In moderate averaging two-chamber view and long-axis
view are marked green in end diastole and two-chamber view is marked green in
end systole. In strong averaging all views are marked green except the four-chamber
view in end systole.

In Table 3.2 the results of HUM are plotted in the same manner as for GM.
The test indicates that Bandwidth Imaging has a lower HUM in all views without
and with moderate averaging. In strong averaging the test is indecisive in all views,
except four-chamber view in end systole. This number is green.

Furthermore, in Fig. 3.5(a), 3.5(b), 3.5(c), 3.5(d), 3.5(e) and 3.5(f) both GM and
LM are plotted from four-chamber view, two-chamber view and long-axis view in
end diastole and end systole as functions of averaging. It is an important result that
GM and LM decrease by averaging in both methods. This makes it fair to compare
similarly averaged images. Obviously the LM lines lies below the GM lines. The
gap between GM and LM is larger in Second-Harmonic Imaging than in Bandwidth
Imaging. This explains the HUM results.

3.3 Discussion of the comparison experiment

In comparing Second-Harmonic Imaging and Bandwidth Imaging, the ground truth
of the endocardial borders are found by manual traces on Second-Harmonic Images.
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It can be objected that there is a flaw in comparing two methods, when the ground
truth is determined by one of them. On the other side, manual traces of endocardium
on images of reasonable image quality as basis for ejection fraction measurements
are reported to have reasonable agreement with ejection fraction measurements of
Magnetic Resonance Imaging [37]. In this study the subjects had reasonable image
qualities, and this votes for more trust to the manual traces as ground truth of
endocardium. Moreover, if the manual traces are biased, it can be argued that they
are biased in favor of Second-Harmonic Imaging, since they are drawn on Second-
Harmonic Images. This would therefore only strengthen the results in favor of
Bandwidth Imaging.

We have selected apparent error rate as the quantitative evaluation criteria of
Bandwidth Imaging and Second-Harmonic Imaging. This measure is intuitive be-
cause it calculates the proportion of misclassified area, given the best threshold. In
a practical clinical setting this threshold level is not known. However, automatic
border detection routines are in general more dependent on a good tissue to blood
contrast, rather than evenly distributed intensity levels in an image. We therefore
postulate that the apparent error rate is related to the potential of an automatic
detection routine of endocardium.

Further, one may argue that the threshold level is evaluated by the measured
data, and therefore apparent error rate is underestimating the true optimal error
rate. On the other side, it is suggested in [38] that apparent error rate is approaching
the true optimal error rate when the sample sizes are high. In this experiment the
sample sizes are above 1000 in all segments. And, even if apparent error rate is
underestimating the true optimal error rate, the comparison of Bandwidth Imaging
and Second-Harmonic Imaging may still be valid. This provides that apparent error
rate is biased equally in Bandwidth Imaging and Second-Harmonic Imaging. The
results of the hypothesis test, Bandwidth Imaging having lower apparent error rate
than Second-Harmonic Imaging, is therefore emphasized in this manuscript.

In the experiment we found the lowest values of apparent error rate in segments
where Second-Harmonic Imaging worked best, and the largest values of apparent
error in segments where Bandwidth Imaging worked best. This indicates that the
great regional differences seen in Fig. 3.2 are more a matter of regional differences in
Second-Harmonic Imaging, rather than regional differences in Bandwidth Imaging.
This is also seen in Fig. 3.4(a) and 3.4(b).

Since the traces of endocardium in end diastole and end systole are needed for
ejection fraction calculation, only these time instances are considered in this experi-
ment. Notice also the difference between end diastole and end systole in Fig. 3.4 and
3.5. These differences are greater in Bandwidth Imaging than in Second-Harmonic
Imaging.

Many automatic detection routines involve using several or all frames in a heart
beat. Therefore averaged images have been considered in this study. It is important
to notice from Fig. 3.2 that apparent error rate decreases with averaging in every
segment at any time instance (end diastole or end systole). If this was not the
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case, it would not be fair to compare averaged data of Second-Harmonic Imaging
with averaged data of Bandwidth Imaging. The result that averaging seems to favor
Bandwidth Imaging can be taken as an argument for employing Bandwidth Imaging
data in detection routines that use many frames.

In the experiment GM was introduced as the apparent error rate, with constant
threshold value in the whole image. In prescreening methods, such as finding left
ventricle center, atrial ventricular plane, apex or other features, an image with small
regional variance in intensity and few dropouts are desired. We postulate that
there is a relation between GM and the efficiency of prescreening algorithms in left
ventricle. Here, robustness is often more important than accuracy.

Next, histogram uniformity measure HUM is introduced to investigate the his-
togram variations between segments. It is defined as GM/LM and is obviously close
to one when the optimal threshold is equal for all segments. HUM increases, when
the optimal thresholds differ more between segments. In general the test indicates
that HUM is lower in Bandwidth Imaging than in Second-Harmonic Imaging when
data is not or moderately averaged.

These differences even out when data is averaged. The reason for this is that rapid
myocardial movements have the effect of blurring the endocardial border on averaged
images. In LM, this effect is accounted for by the adjustment of the threshold to an
optimum level. In GM the threshold is not so adaptive, and blurring of the border
results in a higher GM.

In this experiment we have discussed Bandwidth Imaging with one instrumen-
tation strategy. We have indicated differences between myocardial segments, image
views and time instances (end diastole and end systole). In the next section a dis-
cussion of other pulse strategies and parameter settings of Bandwidth Imaging is
included.

3.4 Discussion of instrumentation of Bandwidth

Imaging

In the process of instrumenting Bandwidth Imaging, we tried a variety of pulse
repetition frequencies, pulse lengths, center frequencies and beam sizes. Also a
great number of filter coefficients AF were tested. We found these effects important
in instrumenting Bandwidth Imaging:

3.4.1 Transit time effect

In Fig. 3.6 six Second-Harmonic Images from two-chamber view are shown. These
images correspond to 6 time steps, equally sparsed during one heart cycle. Image 1
shows end diastole and image 4 shows end systole.

In Fig. 3.7 an unfiltered version of Bandwidth Imaging is shown. The transit
time effect is the effect of decorrelation of signal due to movement of scatterers inside
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the range cell. In the systole (image 4), tissue is darker in the anterior wall segments
(right side of the image), because this tissue moves faster than surrounding tissue.
Note that the histogram equalization process is done on the dataset of a whole
cardiac cycle. This is done so the transit time effect becomes easier to see. When
viewing a movie of images, the myocardium is flickering. When pulse repetition
frequency is turned down this effect becomes even stronger.

3.4.2 Clutter filter effect

In Fig. 3.8 the In Quadrature data is filtered with AF equal 40 dB, prior to calcu-
lation of the autocorrelation function. Here, the clutter noise of Fig. 3.7 is strongly
reduced in the apex region. Notice that tissue is brightest in image 4, where the
cardiac muscle is moving the most. This is because the clutter filter impulse re-
sponse is velocity dependent [8] (page 209). This effect is stronger further down in
the image, since the movement here is more rapid and the white noise level is higher.
It is interesting to see that the clutter filter has the opposite effect of the transit
time effect, where moving tissue is darker than stationary tissue.

In Fig. 3.9 this effect is accounted for by letting the attenuation factor AF of
equation (2.4) be depth dependent. Here the attenuation factor decreases linearly
from 40 to 15 dB. This is motivated from the fact that the DC clutter level is
strongest in the apical region.

3.4.3 Other visual effects in Bandwidth Imaging

In Fig. 3.9 we see that tissue surrounding the cardiac muscle is more similar to tissue
in the cardiac muscle in Bandwidth Imaging than in Second-Harmonic Imaging. This
is most likely because Bandwidth Imaging is more dependent on motion of scatterers,
while Second-Harmonic Imaging is more dependent on the reflection coefficient of
the scatterers.

Next, the mitral valve and apparatus are not visible in Fig. 3.9. This can be
explained by two factors. First, the signals from these features are mixtures of
blood and tissue signals and therefore have broader bandwidths. Second, signal
from vibrating muscles, such as in mitral apparatus, is known to have a broader
bandwidth than signal from other tissue [39].

Also, the speckle pattern of Bandwidth Imaging differs from Fundamental Imag-
ing. Bandwidth Imaging has s noise type that is often referred to as salt and pepper
noise. Therefore a simple median filter is used with a neighborhood of 2 radial and
3 temporal samples in Fig. 3.10.
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3.4.4 Factors influencing the choice of pulse repetition fre-
quency

The transit time effect and clutter filter effect, are arguments for a higher pulse
repetition frequency. Theoretically, pulse repetition frequency is limited upward by
the speed of sound and by the penetration depth. In practical instrumentation setup,
the effect of reverberations building up from shot to shot limits pulse repetition
frequency upward before the theoretical limit.

In Second-Harmonic Imaging, the pulse repetition frequency is limited upward
by reverberations from previous shots. This results in a pulse repetition frequency
depending on focus of the transmitted beam, the center frequency and the pulse
length. This problem is omitted in Color Flow Imaging, since the reverberation
noise from earlier shots is removed by the clutter filter. In Bandwidth Imaging
however, the clutter filter is only partial, and this effect has to be accounted for. In
this study we found that a pulse repetition frequency of 3750 compromised these
effects. This is further discussed in Appendix C.

3.5 Conclusion

A new echocardiographic mode has been proposed, where the difference in Doppler
signal from blood flow and tissue motion is utilized. A reasonable instrumentation
setup of Bandwidth Imaging is outlined in this manuscript. A major difference
between Bandwidth Imaging and conventional Power Doppler and Variance-modes
on Color Flow Imaging systems is that Bandwidth Imaging does not require a long
stop-band highpass filter. Bandwidth Imaging can therefore be implemented with
a packetsize 3. This means that Bandwidth Imaging can be implemented with a
temporal and spatial resolution that is interesting for endocardial border detection.

An experiment is added, where apparent error rate of Bandwidth Imaging is com-
pared with apparent error rate of Second-Harmonic Imaging. The results indicate
that Bandwidth Imaging can compete with Second-Harmonic Imaging in some seg-
ments, especially in apical and anterior regions. The test suggests that Bandwidth
Imaging has less differences between segments, improves more by averaging and has
a more uniform histogram throughout the image. This votes for automatic routines
using several time frames. In particular, we suggest using Bandwidth Imaging for
prescreening methods for finding left ventricle features.



FIGURES 33

Left Ventricular Segmentation
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(a) Bulls-eye (b) Four-chamber view

(c) Two-chamber view (d) Long-axis view

1. basal anterior 7. mid anterior 13. apical anterior
2. basal anteroseptal 8. mid anteroseptal 14. apical septal
3. basal inferoseptal 9. mid inferoseptal 15. apical inferior
4. basal inferior 10. mid inferior 16. apical lateral
5. basal inferolateral 11. mid inferolateral
6. basal anterolateral 12. mid anterolateral

Figure 3.1: Display, on circumferential polar plot, of the 16 myocardial segments
and recommended nomenclature recommended for echocardiography.
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Apparent error rate
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(a) End diastole, no averaging

7

1

0

2

3

1
12

6

0

1

3

4
10

7L
4

6

9L
L

��
��

��
��

��
��

????????????



111111111111








11
11

11
11

11
11

(b) End systole, no averaging
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(c) End diastole, mod. averaging
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(d) End systole, mod. averaging
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(e) End diastole, strong averaging
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(f) End systole, strong averaging

Figure 3.2: The results show the number out of 15 where apparent error rate is lower
in Bandwidth Imaging than in Second-Harmonic Imaging in end diastole (left) and
end systole (right) in all myocardial segments. Numbers of 11 and above are marked
green, indicating that Bandwidth Imaging works best and numbers of 4 and below
are marked red, indicating that Second-Harmonic Imaging works best. The three
rows show result when images are not averaged, moderately averaged and strongly
averaged, respectively.
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Mean Values of apparent error rate
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(a) End diastole, no averaging
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(b) End systole, no averaging
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(c) End diastole, mod. averaging
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(d) End systole, mod. averaging
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(e) End diastole, strong averaging
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(f) End systole, strong averaging

Figure 3.3: Mean values of the apparent error rate in percent, of Bandwidth Imaging
segment (top) and Second-Harmonic Imaging segments (bottom). The results of the
end diastole and the end systole are shown in the left and the right column at three
levels of averaging. In apical septal and apical lateral segments the minimum value
is shown, corresponding to sub- and super-indexes of Fig. 3.2.
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(a) End diastole, segm.

(b) End systole, segm.

Figure 3.4: Fig. 3.4(a) and 3.4(b) show how apparent error rate of Second-Harmonic
Imaging HI and Bandwidth Imaging BI in HEDS, BEDS, UEDS, HESS, BESS and
UESS behave in various averaging. Notice that the apparent error rate of the Band-
width Imaging segments are more collected and decreases faster in averaging.
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(a) End diastole, four-chamber (b) End systole, four-chamber

(c) End diastole, two-chamber (d) End systole, two-chamber

(e) End diastole, long-axis (f) End systole, long-axis

Figure 3.5: The figures show difference between LM and GM in four-chamber, two-
chamber and long-axis view in end diastole and end systole, in various averaging.
All lines decrease in averaging. If that was not the case, it would not be fair to
discuss GM and LM in various averaging.
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Table 3.1: Numbers of subjects where GM is lower in Bandwidth Imaging than in
Second-Harmonic Imaging

Four-chamber Two-chamber Long-axis

Raw 5 6 12

Mod. av. 8 12 14End diastole

Strong av. 11 15 14

Raw 0 6 7

Mod. av. 1 14 10End systole

Strong av. 3 13 11

Table 3.2: Numbers of subjects where HUM is lower in Bandwidth Imaging than in
Second-Harmonic Imaging

Four-chamber Two-chamber Long-axis

Raw 14 12 15

Mod. av. 11 12 11End diastole

Strong av. 10 7 6

Raw 13 14 15

Mod. av. 12 12 11End systole

Strong av. 12 7 8
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Figure 3.6: Second-Harmonic Images from two-chamber view at six equally spaced
time steps in the cardiac cycle.
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Figure 3.7: Bandwidth Images with no highpass filter prior to the autocorrelation
estimate.
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Figure 3.8: Bandwidth Images that are highpass filtered with an attenuation factor
of 40 dB.
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Figure 3.9: Bandwidth Images that are highpass filtered with an attenuation factor
that decreases linearly from 40 dB to 15 dB.
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Figure 3.10: The images from Fig. 3.9 are median filtered with a structural element
of 3 temporal and 2 radial samples. Here, some of the salt and pepper noise are
removed.





Part III

New Doppler-Based Imaging
Method in Echocardiography with

Applications in Blood/Tissue
Segmentation





Abstract

Knowledge Based Imaging is suggested as a method to distinguish blood from tissue
signal in transthoracial echocardiography. This method utilizes the maximum like-
lihood function to classify blood and tissue signal. Knowledge Based Imaging uses
the same pulse strategy as Bandwidth Imaging, but is significantly more difficult
to implement. Therefore, Knowledge Based Imaging and Bandwidth Imaging are
compared with Fundamental Imaging by a computer simulation based on a para-
metric model of the signal. The apparent error rate is calculated in any reasonable
tissue to blood signal ratio, tissue to white noise ratio and clutter to white noise
ratio. Fundamental Imaging classifies well when tissue to blood signal ratio is high
and tissue to white noise ratio is higher than clutter to white noise ratio. Knowl-
edge Based Imaging classifies also well in this environment. In addition, Knowledge
Based Imaging classifies well whenever blood to white noise ratio is above 30 dB.
This is the case, even when clutter to white noise ratio is higher than tissue to white
noise ratio and tissue to blood signal ratio is zero. Bandwidth Imaging performs
similar to Knowledge Based Imaging, but blood to white noise ratio has to be 20
dB higher for a reasonable classification. Also the highpass filter coefficient prior to
Bandwidth Imaging calculation is discussed by the simulations. Some images of dif-
ferent parameter settings of Knowledge Based Imaging are visually compared with
Second-Harmonic Imaging, Fundamental Imaging and Bandwidth Imaging. Chang-
ing parameters of Knowledge Based Imaging can make the image look similar to
both Bandwidth Imaging and Fundamental Imaging.





Chapter 1

Introduction

The state of art echocardiographic modes for defining endocardium of left ventricle
of the human heart are; Fundamental Imaging, Second-Harmonic Imaging and Left
Ventricle Opacification. These methods distinguish blood signal from tissue signal
by their differences in power [9].

Alternatively, Doppler signal from blood flow differs from tissue motion, since it
is less coherent with depth. In Power Doppler, blood is distinguished from tissue
signal by the power of the highpass filtered Doppler signal. Here a packetsize of
above 6 is required to achieve the desired filter characteristics [18].

In part II, Bandwidth Imaging was introduced and the experiment indicated
that tissue and blood could be distinguished with a packetsize as small as 3. The
small packetsize enables a resolution that is interesting for endocardial border def-
inition. In this part, we seek to discuss the theoretical potential of Knowledge
Based Imaging and Bandwidth Imaging, where the pulse strategy of the optimized
Bandwidth Imaging method is taken as a starting point.

In chapter 2 a parametric models for signal from blood and tissue are outlined
and Knowledge Based Imaging is defined. In chapter 3, the apparent error rates
of Knowledge Based Imaging, Bandwidth Imaging and Fundamental Imaging are
calculated from computer generated signals in various types of noise. In section
3.4, some premature Knowlege based Images with different parameter settings are
compared with a Fundamental Image, a Bandwidth Imaging and a Second-Harmonic
Image.





Chapter 2

Signal model and definition of
Knowledge Based Imaging

Torp et. al. [40] introduced a parametric model for the autocorrelation functions in
regions with rectilinear flow, under the assumption that signal is a complex Gaussian
process. In this chapter, this model is expanded to yield turbulent flow as well. The
signal model is also further expanded to include additive white noise and clutter noise
in a similar manner as in Heimdal et. al. [41]. This is the theoretical framework for
defining, instrumenting and discussing Knowledge Based Imaging and Bandwidth
Imaging.

2.1 Parametric model for the autocorrelation func-

tion of signal from blood and tissue

As mentioned above the signal model of [40] is used. Here the authors assume a
random continuum model for blood scattering [42]. The spatial fluctuation in mass
density and compressibility, which determine the incoherent part of the scattering,
is assumed proportional to the fluctuation of blood cell concentration nb(r, t), where
r is position and t is time. Here, nb(r, t) is a zero mean random process. For a short
correlation in space, for a fixed time and neglecting diffusion, the autocorrelation
function of nb(r, t) is approximated in [42] by

< nb(r, t), nb(r + ξ, t + τ) > = Υ(r, t) δ(ξ − ζ(r, t, τ))

Υ(r, t) =
var(nb(r)) ·∆V

∆V

(2.1)

where ζ(r, t, τ) is the displacement of the fluid element in position r during the time
interval t to t + τ . The function Υ(r, t) is the variance per unit volume in numbers
of blood cells inside a small volume ∆V , and this quantity is proportional to the
backscattering coefficient in blood.
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Assuming a Gaussian shaped beam profile and a rectangular shaped receiver filter
impulse response, the authors outline an expression for the expected value of the
two dimensional autocorrelation function for any time and radial lag. In general it is
necessary to assume rectilinear flow, but in the case of no radial lag, this assumption
has to be valid inside only one range cell. The expected value of the autocorrelation
function with only time lag for an electronically steered probe is

r(m) = r(0)β(m)e2i m k v1 T

β(m) = e
− 3

2
m2

»
( v1 T

L )
2
+

“
v2 T
Θ1

”2
+

“
v3 T
Θ2

”2
– (2.2)

according to [40]. Here the respective velocity components are v1, v2, v3. Further, L is
pulse length, and Θ1 and Θ2 are the lateral and elevation resolutions corresponding
to -3.25 dB opening angle. The repetition time is T and k is the wave number,
which is equal to 2π divided by the wavelength. This model yields for laminar flow.
Moreover, flow in left ventricle is turbulent [43], and in the next subsection this
model is expanded to yield for turbulent flow as well.

2.2 Model for turbulent blood flow

For turbulent flow we assume that the autocorrelation function for nb(r, t) is

< nb(r, t), nb(r + ξ, t + τ) >= Υ(r, t)
1

(2π)
3
2 σ1σ2σ3

e
− 1

2

„
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1
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2
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σ2
3

«

(2.3)
where ζ1, ζ2 and ζ3 are mean displacements and σ1, σ2 and σ3 are standard deviations
of displacements. Here we assume a Gaussian shaped velocity profile to describe
turbulent flow. With this extra assumption, the development of the expected value
of the autocorrelation function r(m) can follow the same path as in paper [40].
The difference is to multiply r(m) with the Gaussian probability density function of
velocities and integrate over all velocities.

r(m) = r(0)

∫ inf

−inf

∂vx, ∂vy ∂vz

β(m) ei m 2 k v1T e
− 1

2

„
(vx−v1)2

σ2
1

+
(vy−v2)2

σ2
2

+
(vz−v3)2

σ2
3

« (2.4)

Here σ1, σ2 and σ3 are redefined as the standard deviations of the velocity com-
ponents. Further, v1, v2 and v3 refer to the means of the velocity components.
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Integrating this gives

r(m) = r(0)β̂(m)α̂(m) e
i
m 2 k v1 T

a1 where

α̂(m) = e
− 2 m2 k2 T2 σ2

1
a2
1 , β̂(m) =
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(2.5)

The coefficients a1, a2 and a3 are close to one when σ1T is small compared to L,
σ2T is small compared to θ1 and σ3T is small compared to θ2. Therefore ˆβ(m) is
close to β(m). A simplified model for turbulent flow is therefore

r(m) = r(0)β(m)α(m) ei m 2 k v1 T where α(m) = e−2 m2 k2 T 2 σ2
1 (2.6)

The effect of turbulence is covered in the α(m) parameter, which is a function of
the radial velocity distribution alone.

2.3 Model including white noise and clutter noise

Signal is assumed to be described by three components in Heimdal’s model [41].
These three components are the signal from the range cell, additive white noise with
power σ2

n and DC clutter noise from stationary echo with power σ2
c . We assume

the same, and the autocorrelation estimate for blood rb(m) and for tissue rt(m) is
modeled as:

rb(0) = σ2
b + σ2

c + σ2
n

rb(1) = σ2
b β(m)α(m) e 2 k v1 T + σ2

c

rb(2) = σ2
b β(m)4α(m)4 e 4 k v1 T + σ2

c

rt(0) = σ2
t + σ2

c + σ2
n

rt(1) = σ2
t β(m) e 2 k v1 T + σ2

c

rt(2) = σ2
t β(m)4 e 4 k v1 T + σ2

c

(2.7)

Notice that the power terms of white noise are zero for rb(1), rt(1), rb(2) and rt(2).
This is because white noise from different shots are uncorrelated. Transversing
velocities are neglected in the tissue model and taken into account by the turbulent
parameter in the blood model.

The probability density function for a signal z in blood is Pb and the probability



54 SIGNAL MODEL

density function for a signal z in tissue Pt is

Pb(z|σb, σc, σn, vb, σvb
) =

1

πN |Cb|
ez̄ C−1

b z

Pt(z|σt, σc, σn, vt) =
1

πN |Ct|
ez̄ C−1

t z
(2.8)

where vb and vt are the radial velocity components in blood and tissue and σvb
is

the standard deviation of the velocity profile inside one range cell in blood. Here
Cb and Ct are:

Cb =

 rb(0) rb(1) rb(2)

rb(1) rb(0) rb(1)
rb(2) rb(1) rb(0)



Ct =

 rt(0) rt(1) rt(2)

rt(1) rt(0) rt(1)
rt(2) rt(1) rt(0)


(2.9)

In general the parameters defining Pb and Pt are not known. If their distributions
are known then

Pb(z) =

∫ inf

− inf

dσb, dσc, dσc, dvb, dσvb
Pb(z|σb, σc, σn, vb, σvb

) Pσb
Pσc Pσn Pvb

Pσvb

Pt(z) =

∫ inf

− inf

dσt, dσc, dσc, dvt, Pt(z|σt, σc, σn, vt) Pσt Pσc Pσn Pvt

(2.10)

where Pσb
Pσc Pσn Pvb

Pσvb
Pσt and Pvt are the probability density functions for the

σb, σc, σn, vb, σvb
, σt and vt. In practice, these probability density functions can

potentially be found from a priory knowledge, estimation or experimental trial and
error.

2.4 Knowledge Based Imaging

The echocardiographic mode Knowledge Based Imaging is proposed as

Knowledge Based Imaging = 20 · log10

[
ln

(
Pt(z) + Pb(z)

Pt(z)

)]
(2.11)

Here z is the measured complex signal vector with length equal to packet size.
Knowledge Based Imaging is basically a histogram manipulated version of the maxi-
mum likelihood ratio of a signal sample. The maximum likelihood ratio is Pt(z)/Pb(z),
and this is described in Van Trees [44].
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The histogram manipulation can be argued for in the following way: The ex-
pression (Pt(z) + Pb(z))/Pt(z) is close to 1 when Pt(z) is dominating, equal to 2
when Pt(z) = Pb(z) and approaches infinity when Pb(z) is dominating. The natural
logarithm of this becomes a number between zero and infinity. Notice that this
number is dominated by the difference of the exponents in equation (2.8). These
exponents are dominated by the power of the signal, and this motivates for the final
log compression. This histogram becomes reasonably uniform.

Another interesting method is the generalized likelihood ratio test that is also
described in Van Trees. In the case of Knowledge Based Imaging, this is the same as
calculating Knowledge Based Imaging from equation (2.11), where Pt(z) and Pb(z)
are substituted with P̂t(z) and P̂b(z);

P̂b(z) = max
Rb

(Pb(z|σb, σc, σn, vb, σvb
)) where (σb, σc, σn, vb, σvb

) ε Rb

P̂t(z) = max
Rt

(Pt(z|σt, σc, σn, vt)) where (σt, σc, σn, vt) ε Rt

(2.12)

Obviously, Knowledge Based Imaging requires definition of parameter space in tissue
Rt and blood Rb. In this manuscript, this is done by defining the upper and lower
limits of the parameters. This is hereby referred to as Knowledge Based Imaging
with box constraints.

2.5 Fundamental imaging

In the computer simulation, Fundamental Imaging is defined as

Fundamental Imaging = 20 log10(r(0)) where r(m) =
1

3

3−m−1∑
n=0

znzn+m (2.13)

Note that no highpass filter is used prior to Fundamental Imaging calculation.

2.6 Bandwidth Imaging

A derivation of estimators of the bandwidth, the mean frequency shift and power of
the Doppler signal for packetsize 3 is given in Appendix A. In part II Bandwidth
Imaging is defined as

Bandwidth Imaging =
|r(1)|
r(0)

(2.14)

and prior to the autocorrelation estimate the signal is filtered with this 2-tap Finite
Impulse Response filter

x1 = z2 − 10−
AF
20 z1

x2 = z3 − 10−
AF
20 z2

(2.15)

where AF is the attenuation factor at zero frequency.
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Table 2.1: Parameters related to the transducer for Fundamental Imaging, Knowl-
edge Based Imaging and Bandwidth Imaging

Parameter Value

Center frequency 2.5 MHz

pulse repetition frequency 3.75 kHz

Multi-Line acquisition 4

Packet size 3

Radial resolution 6.67 · 10−4 m

Aperture 2.2 × 2.0 · 10−6 m2

Depth 0.15 m

Focal point (single) 0.15 m

Framerate 44

Number of beams 127

2.7 Pulse strategy

The pulse strategy of Bandwidth Imaging, Knowledge Based Imaging and Funda-
mental Imaging is given in Table 2.1. The center frequency for Bandwidth Imaging,
Knowledge Based Imaging and Fundamental Imaging is a trade off between resolu-
tion and penetration and is set to 2.5 MHz. The pulse length (0.7 mm) is chosen as
a trade off between radial resolution and sensitivity. The pulse repetition frequency
is set to 3750 and this choice is argued for in subsection 3.4.4 in part II. The packet
size is 3, which is the lowest possible for calculating Bandwidth Imaging with the
filter given by equation (2.15).



Chapter 3

Evaluation of Knowledge Based
Imaging, Bandwidth Imaging and
Fundamental Imaging by
computer simulation

3.1 Methods

In this chapter the classification functions Knowledge Based Imaging, Bandwidth
Imaging and Fundamental Imaging are evaluated and compared using the quantity
apparent error rate. A comprehensive discussion of classification theory can be found
in [38]. Here apparent error rate is defined as

Apparent error rate =
nbM + ntM

nb + nt

(3.1)

where, nt and nb are the sizes of measured data from tissue πt and blood πb. Further,
ntM and nbM are the numbers of misclassifications of πt and in πb. Apparent error
rate is simply the proportion of misclassifications of the total dataset. Obviously, the
numbers of misclassifications are a function of the threshold level. In this experiment
the best threshold is used, and apparent error rate is therefore independent of any
monotone transformations of πt and πb. The definition of apparent error rate is
changed to;

Apparent error rate = min
T

(
nbMT + ntMT

nb + nt

)
(3.2)

where the number of misclassifications in blood and tissue with threshold T , are
denoted nbMT and ntMT , respectively.

In this experiment, 2000 signal samples from blood and 2000 signal samples from
tissue are generated from a random generator. Here the pulse strategy is given in
Table 2.1, which is the same pulse strategy as in chapter 3 in part II. Speed of
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sound c is 1540m/s. Blood signal zb and tissue signal zt are created by

zb = Lb x1 Cb = Lb
TLb

zt = Lt x2 Ct = Lt
TLt

(3.3)

where x1 and x2 are normalized complex Gaussian signal created by the random
generator. Moreover, Lt and Lb are the lower triangular matrices, obtained by
Cholesky factorization of Cb and Ct given in equation (2.9). Fundamental Imaging
is calculated by equation (2.13), Knowledge Based Imaging by equation (2.11), and
Bandwidth Imaging by equation (2.14).

For simplicity Cb and Ct are divided by σ2
n, so that apparent error rate is

discussed for various blood to white noise ratio, tissue to white noise ratio, and
clutter to white noise ratio. It is also interesting to discuss the ratio between tissue
and blood signal.

The parameters vt and vb are picked randomly from two Gaussian distributions
with mean zero and standard deviation 0.025 m/s and 0.25 m/s, respectively. The
parameter σvb

is set to zero in simulations where laminar flow is assumed. In simu-
lations where turbulent flow is assumed σvb

is chosen to 0.1 m/s.

3.2 Results

In Fig. 3.1 and in the first column of Fig. 3.2, apparent error rate is color coded
to show its level at any tissue to white noise ratio, clutter to white noise ratio and
tissue to blood signal ratio. The color bar goes from 0 (red) to 0.5 (blue). All these
subplots show tissue to white noise ratio (y-axis) versus clutter to white noise ratio
(x-axis) from 0 to 140 dB. In the bottom row tissue to blood signal ratio is 0 db,
and this ratio increases by increment of 10 dB in the next rows.

In the first column, blood and tissue signal are separated by Fundamental Imag-
ing. Obviously apparent error rate is dependent on tissue to blood signal ratio, and
it is necessary that clutter to white noise ratio is lower than tissue to white noise
ratio for reasonable classification.

In column two, blood and tissue signal are separated by Knowledge Based Imag-
ing. Here the velocity distributions of tissue and blood have standard deviations
of 0.025 m/s and 0.25 m/s, respectively. The turbulence parameter is set to zero.
We see that Knowledge Based Imaging classifies better than Fundamental Imag-
ing everywhere. Note that a reasonable classification is possible whenever blood to
white noise ratio is above 30 db, regardless of tissue to blood signal ratio and clutter
to white noise ratio. This can be seen by noting the relation tissue to white noise
ratio = tissue to blood signal ratio + blood to white noise ratio. This effect is even
stronger in the third column, where the turbulence parameter in blood is turned up
to 0.1 m/s.

In the case of Bandwidth Imaging, only one parameter has to be set, namely
AF. The same signal as in third column of 3.1 , is highpass filtered by different
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Figure 3.1: Apparent error rate is color coded from 0 (red) to 0.5 (blue). All subplots
show tissue to white noise ratio (x-axis) versus clutter to white noise ratio (y-axis)
from 0 to 140 dB. In the first row tissue to blood signal ratio TBR is 0 db and in the
next rows this ratio increases by increment of 10 dB to 40 dB. In the first column
blood and tissue signals are separated by Fundamental Imaging FI. Apparent error
rate is dependent on tissue to blood signal ratio and that clutter to white noise
ratio is lower than tissue to white noise ratio. In column the separation is done by
Knowledge Based Imaging KBI. Here the velocity distributions of tissue and blood
have standard deviations of 0.025 m/s and 0.25 m/s, respectively. KBI classifies
well as long as blood to white noise ratio is above 30 dB. This effect is stronger in
the next column, where the turbulence parameter in blood is set to 0.1 m/s.
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TBR
(in dB)

BI Filter
Coeff.

Threshold
Value

40

30

20

10

0

Figure 3.2: The table shows color coded apparent error rate of Bandwidth Imaging
BI in the first column. Here the signal has the same parameters as in Fig. (3.1).
The second column shows attenuation factor at zero frequency from 0 dB (blue) to
50 dB (red). The attenuation factor seems linearly dependent on clutter to white
noise ratio and blood to white noise ratio. The last column shows the best threshold
level for Bandwidth Imaging classification. The scale is 0 (blue) to 1 (red). It is
important to see that this level is quite uniform in the regions where Bandwidth
Imaging classify well.
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AF ranging from 0 to 50 dB. The AF that minimizes apparent error rate is chosen,
and the best value of apparent error rate is shown in the first column in Fig. 3.2.
Bandwidth Imaging performs similar to Knowledge Based Imaging, but the general
trend is that blood to white noise ratio has to be 20 dB higher for the same level
of apparent error rate. It is also important to mention that Bandwidth Imaging
performs worse than Fundamental Imaging in regions where tissue to blood signal
ratio is high, tissue to white noise ratio low and clutter to white noise ratio smaller
than tissue to white noise ratio.

The second column of Fig. 3.2 shows the best possible AF on a scale from 0
(blue) to 50 dB (red). It is seen that AF is smooth in regions where Bandwidth
Imaging classify well. This coefficient seems linearly dependent on blood to white
noise ratio and clutter to white noise ratio. The last column shows the best threshold
level on a scale from 0 (blue) to 1 (red). Here we see that the threshold level seems
smooth and not AF-dependent in regions where Bandwidth Imaging classify well.

3.3 Discussion of computer simulation

In this signal model we assumed one and the same pulsestrategy for Bandwidth
Imaging, Knowledge Based Imaging and Fundamental Imaging. If different pulses-
tratgies were compared, the results would be very dependent on the signal model. In
that case, the signal model had to be validated for every choice of pulse strategies.
In our case, we simply have to assume that the backscattered signal can be described
by these three components; signal from blood or tissue in a range cell, uncorrelated
white noise and stationary clutter noise.

It can be argued that Fundamental Imaging does not have optimized pulse strat-
egy and the comparison is therefore favoring Knowledge Based Imaging. Moreover,
the state of art echocardiographic mode is Second-Harmonic Imaging, which is re-
ported to be an improvement compared to Fundamental Imaging [6]. The aim of
this comparison is therefore not to determinate whether Knowledge Based Imaging
or Bandwidth Imaging are better than conventional methods. The aim is rather
to outline differences in how Knowledge Based Imaging, Bandwidth Imaging and
Fundamental Imaging classify in various types of noise.

For the same reason, the computer simulation covers only a subset of all types
of signal and noise environments that can be expected in transthoracial echocardio-
graphy. This subset is limited in three ways.

First, the velocity distributions of scatterers in πt and πb are assumed Gaussian
with standard deviation 0.025 m/s and 0.25 m/s. These distributions are chosen,
because they seem reasonable at depth 7.5 cm from apical views. Other velocity dis-
tributions could be chosen as well. For instance, the velocity of the atrial ventricular
plane is normally above 0.085 m/s in end systole and the velocity of the mitral flow
yet can exceed 1 m/s. It is important to mention that pulse repetition frequency
can be adjusted to get optimal classification for any two samples of blood and tissue
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signal. Hence, the difference in velocity distributions is the governing parameter.
Next, blood flow in left ventricle is found to be turbulent by Schoephoerster

and Chandran [43]. Turbulence comes into the model, by the assumption that
the scatterers in a range cell have a Gaussian velocity distribution with standard
deviation 0.1 m/s. This argument could be challenged, both because of the shape
of the distribution and also the size of the standard deviation.

And third, the assumption that clutter noise comes only from stationary signal
could be challenged. This is because clutter noise also comes from moving tissue.

In the experiment, apparent error rate is used to estimate the true optimal error
rate. In [38] apparent error rate is reported to underestimate the true optimal error
rate, because the data used to build the classification rule is also used to evaluate
the rule. However, this underestimation is reduced by using a large sample size.

In transthoracial echocardiography the clutter level is high in the near-field, due
to the penetration of inhomogeneous tissue. Also the level of white noise increases
downward the beam, due to depth gain compensation. The above results indicate
that the greatest potential of Knowledge Based Imaging is in the apical region, where
high clutter to white noise ratio can be compensated by high blood to white noise
ratio.

Bandwidth Imaging performed similar to Knowledge Based Imaging, but the
general trend is that blood to white noise ratio had to be about 20 dB higher for
the same level of apparent error rate. This can explain why the best results of
Bandwidth Imaging were found in apical segments in the experiment in chapter 3
in part II . In column two in figure 3.1, AF is plotted in different types of noise.
This coefficient seems linearly dependent of blood to white noise ratio and clutter to
white noise ratio in the dB scale. This may explain why it seems reasonable to use a
depth dependent clutter rejection filter prior to the Bandwidth Imaging calculation
in chapter 2 in part II.

In the next section the attention is drawn back to Knowledge Based Imaging,
where some premature images are discussed.

3.4 Discussion of instrumentation of Knowledge

Based Imaging

The strategy for implementation of Knowledge Based Imaging is to use the pulse
strategy of Table 2.1 on a scanner (Vivid 7, GE Vingmed Ultrasound AS (Horten)).
If we use the generalized maximum likelihood definition of Knowledge Based Imaging
with box constraints, there are 14 parameters to adjust. These are the upper and
lower limits of σt,σb,σc,σn,vt,vb and σvb

. This section contains some examples of
instrumentation of Knowledge Based Imaging with box constraints. In this case,
the box constraints can be tuned so Knowledge Based Imaging can look similar to
both Bandwidth Imaging and Fundamental Imaging.

Knowledge Based Imaging at one range cell is calculated in this way: A five
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dimensional array of values of σb, σc, σn, vb and σvb
is created and limited by the box

constraints. Next, all Pb(z) are calculated and the maximum value determined. A
similar path is followed to calculate maximum of Pt(z). Finally, Knowledge Based
Imaging is calculated by equation (2.11).

Fig. 3.3 shows six four-chamber view images of a healthy mature male with
different echocardiographic modes. Fig. 3.3(a), 3.3(c) and 3.3(e) show Second-
Harmonic Imaging, Fundamental Imaging and Bandwidth Imaging, respectively.

Fig. 3.3(b), 3.3(d) and 3.3(f) show three variants of Knowledge Based Imaging.
In these images, σn is set to increase from 10 dB to 20 dB downward in the image.
In Fig. 3.3(d) KBI 2 is shown. Here, vb and vt are set at 7 steps between - 1 to 1
m/s. Here, σvb

and σc are both set to zero. The only parameters separating P̂t(z)

and P̂b(z), are σb and σt. These are given at 3 equally spaced steps from 50 to
100 dB in blood and 120 to 150 dB in tissue. We see that the KBI 2 is similar to
Fundamental Imaging. They are related in the way that they both separate blood
from tissue signal by their difference in power.

KBI 3 is shown in Fig. 3.3(f). Here there is no separation by power at all and
σb and σt are set in three steps between 40 to 140 dB. The separation between
blood and tissue signal is by velocity and velocity distribution. Here, vb is set at
seven steps between - 1 to 1 m/s. Further, the magnitude of velocity in tissue vt is
limited by 0.013 m/s in the apical region, and this magnitude is increased linearly
to 0.13 m/s at 15 cm depth. This is because the radial velocities in myocardium
are higher in the atrial ventricular plane region, than closer to apex. Moreover,
the turbulence parameter σvb

is set to 0.12 m/s. It is important to mention that
the image is enhanced by setting this parameter. Also the clutter parameter is set.
The clutter parameter is set to decrease linearly downward in the image from 140
to 80 dB. The net effect of setting this parameter is similar to clutter filtering in
Bandwidth Imaging. It is interesting that KBI 3 becomes similar to Bandwidth
Imaging. The fact that Knowledge Based Imaging can be adjusted between the
two extremes that look similar to Fundamental Imaging and Bandwidth Imaging,
indicates that Knowledge Based Imaging can be used to find an optimal imaging
method that compromises these two extremes.

KBI 1 is shown in Fig. 3.3(b). KBI 1 is a mixture of these two extreme ways
of setting parameters of Knowledge Based Imaging. Here the velocity, velocity
distributions and clutter parameter are the same as for KBI 3 and the power settings
are the same as for KBI 2. This gives hope for finding an optimized imaging setup
of Knowledge Based Imaging that balances the advantages of Bandwidth Imaging
and Fundamental Imaging. More images are shown in Appendix D.

3.5 Conclusion

Knowledge Based Imaging is proposed as a Doppler-based method to distinguish
left-ventricular blood pool from myocardial wall in echocardiographic images. A
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computer simulation is used to outline differences in how Knowledge Based Imaging,
Bandwidth Imaging and Fundamental Imaging classify in various types of noise.
Fundamental Imaging classifies well in environment where tissue to blood signal
ratio is high and clutter to white noise ratio is lower than tissue to white noise
ratio. Knowledge Based Imaging classifies also well in this environment. In addition
Knowledge Based Imaging classifies well as long as blood to white noise ratio is
above 30 dB, regardless of the clutter to white noise ratio and the tissue to blood
signal ratio. This motivates for a better tissue differentiation in apical areas.

Moreover, Bandwidth Imaging classifies similar to Knowledge Based Imaging,
but blood to white noise ratio has to be 20 dB higher to get the same value of
apparent error rate. Also, the simulations show that the optimal filter coefficient
prior to the autocorrelation estimate is linearly dependent of blood to white noise
ratio and clutter to white noise ratio. This argues for the linearly dependent filter
coefficient suggested in chapter 2 in part II.

A few images of Knowledge Based Imaging are supplied in this paper, showing
that Knowledge Based Imaging can be adjusted to look similar to both Fundamental
Imaging and Bandwidth Imaging.

Finally, we acknowledge that more optimization and research are needed for a
clinical valuable implementation of Knowledge Based Imaging. First, the imple-
mentation should be real time, and the challenges here are the maximizations in
equation (2.12) or integrations in equation (2.10). In the case of maximisations in
equation (2.12), the maximizations could be done by a Preconditioned Conjugate
Gradient Method.

Second, the box constraints of Knowledge Based Imaging have to be set ev-
erywhere in the image. To some degree they could be found. The level of white
noise could be measured, while the transmitter is turned off. The velocity and tur-
bulence parameters in tissue and blood could be found from a priory knowledge.
Further, the signal characteristic could potentially be estimated by for instance a
Levenberg-Marquardt method with box constraints [45]. Also, the potential of man-
ual adjustment of parameters may also be investigated.



3.5. CONCLUSION 65

(a) Second-Harmonic Image (b) KBI 1

(c) Fundamental Image (d) KBI 2

(e) Bandwidth Image (f) KBI 3

Figure 3.3: Four-chamber views with different imaging modes. Fig. 3.3(a), 3.3(c)
and 3.3(e) show Second-Harmonic Image, Fundamental Image and Bandwidth Image
respectively. In Fig. 3.3(b), 3.3(d) and 3.3(f) three variants of Knowledge Bssed
Images are shown. In Fig. 3.3(d) power differentiation is emphasized and this image
is therefore similar to Fig. 3.3(c). In Fig. 3.3(f) velocity and turbulence differences
are emphasized and this image is therefore similar to Fig. 3.3(e). Fig. 3.3(b) shows
an image which is a combination of the settings in Fig. 3.3(d) and 3.3(f).
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Appendix A

Spectral parameters of the power
spectrum

In Color Flow Imaging power P , mean frequency shift ω1 and bandwidth B are most
commonly estimated from the autocorrelation function. These estimators can be
defined from the zero, first and second order central moments of the power spectrum
G(ω)

P =
1

2π

∫ π

−π

dωG(ω)

0 =

∫ ω1+π

ω1−π

dωG(ω)(ω − ω1)

B2 =
1

2πP

∫ ω1+π

ω1−π

dωG(ω)(ω − ω1)
2

(A.1)

Note that the integration limits are dependent and centered around ω1. This is an
important generalization from simply integrating from −π to π as in [9].

A.1 Estimation of power spectrum

A well known estimation of the power spectrum is the periodogram which is defined
as

G(ω) =
1

N
|Z(ω)|2 =

1

N

∣∣∣∣∣
N−1∑
n=0

zne
−jωn

∣∣∣∣∣
2

(A.2)

where zn are the signal samples and Z(ω) is the corresponding Fourier transform
and N is the packet size. Another definition of G(ω) is

G(ω) =
N−1∑

m=1−N

r(m)e−jωm (A.3)
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where r(m) is the autocorrelation function

r(m) =
1

N

N−m−1∑
n=0

znzn+m for 0 ≤ m ≤ N − 1

r(m) =
1

N

N−1∑
n=|m|

znzn+m for 1−N ≤ m ≤ −1

(A.4)

In this chapter the last estimator of G(ω) is chosen, and estimates for P , ω1 and B
are found from this estimator.

A.2 Estimators of power, mean frequency shift

and bandwidth

We use the relation r(−m) = r(m), rearrange the sequence in the sum and use the
cosine relation. This gives

G(ω) =r(0) +
N−1∑
m=1

r(m)e−jωm + r(m)ejωm

=r(0) + 2
N−1∑
m=1

|r(m)| cos(mω − 6 r(m)) (A.5)

where 6 r(m) indicates the complex phase of r(m). Inserting the expression for G(ω)
into (A.1) and performing the integration gives the following relations for

P =r(0)

ω1 =ω1 +
2

r(0)

N−1∑
m=1

(−1)m

m
|r(m)| sin(mω1 − 6 r(m))

B2 =
π2

3
+

2

r(0)

N−1∑
m=1

(−1)m

m2
|r(m)| cos(mω1 − 6 r(m))

(A.6)

In the middle equation the alternating sum is equal to zero, yielding an expression
for ω1. The bandwidth estimator is similar to

B2 = 2− 2
|r(1)|
r(0)

(A.7)

which was found by [9] and [8]. In the special case with packet size 3 the 2-tap
Finite Impulse Response filter reduces N to 2, G(ω) becomes

G(ω) = r(0) + |r(1)| cos(ω − 6 r(1)) (A.8)
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so the power spectrum is a phase shifted cosine plus a constant. It is quite intu-
itive that the bandwidth is dependent on the ratio of the cosine amplitude and the
constant. The estimators of (A.6) reduce to

P = r(0)

ω1 = 6 r(1) + k π k is even

B2 =
π2

3
− 2

|r(1)|
r(0)

(A.9)

Note that in the last part of second equation of (A.9) k is restricted to even integers.
This is because the odd solutions give a higher bandwidth estimate than the even.
This ensures that ω1 is at the ”center of gravity of G(ω)”. Due to the ω1 dependence
of the integration limits of (A.1) ω1 and B2 are not distorted when scatterers are
moving at a speed close to the Nyquist velocities. The ambiguity of ω1 is the aliasing
effect. It is interesting to see that for white noise we get the desired π/

√
3 RMS

(root mean square) bandwidth instead of
√

2, which is thirty percent too low.
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Discussion of classification criteria

A comprehensive discussion of classification theory can be found in [38]. The mini-
mum total expected cost of misclassification MECM can be evaluated if prior proba-
bilities, probability density functions and also the cost of misclassification are known.
If we assume that the costs of misclassification in the blood population πb and the
tissue population πt are equal, then MECM reduces to the total probability of mis-
classification TPM, which is given by

TPM = P (observation comes from πb and is misclassified)

+ P (observation comes from πt and is misclassified)

= pb

∫
Rt

fb(x) dx + pt

∫
Rb

ft(x) dx

(B.1)

where pb and pt are prior probabilities and fb(x) and ft(x) are probability densities
associated with πb and πt. The optimal error rate is the value that minimizes TPM.
If the probability densities fb(x) and ft(x) are known, then the regions Rb and Rt

that minimizes TPM are determined by

Rb :
fb(x)

ft(x)
≥ pt

pb

Rt :
fb(x)

ft(x)
<

pt

pb

(B.2)

If we assume that the probability density functions of (B.1) are Gaussian with
different means µb and µt, but the same variance σ, the allocation rule becomes:
Allocate x0 to πb if

(µt − µb)

σ
x0 −

1

2

(µt − µb)(µt + µb)

σ
≥ ln

(
p2

p1

)
(B.3)

Allocate x0 to πt otherwise. If the sample sizes of tissue and blood signal are equal,
the prior possibilities are equal, and the allocation rule reduces to

x0 ≥
1

2
(µt + µb) (B.4)
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This means that the allocation rule simply comes down to thresholding the classifi-
cation functions when the parent populations are Gaussian. Further, if the means of
the parent populations are known, the threshold level that minimizes TPM is also
known.

Unfortunately, in Knowledge Based Imaging, Bandwidth Imaging and Second-
Harmonic Imaging the parent populations are not known. However, if we assume
they are similar to Gaussian, the above discussion indicates that a reasonable allo-
cation rule is thresholding. This threshold is obviously not known and the optimal
error rate can therefore not be calculated directly. In this manuscript the apparent
error rate with the optimal threshold level is chosen, since the theoretical threshold
is not available.



Appendix C

Discussion of the effect of
reverberations from previous shots
in Bandwidth Imaging

Let x1 and x2 be high-pass filtered signal samples obtained from equation (2.4) in
part II. Let also s1 and s2 be highpass filtered signal that only comes from the range
cell. If r is reverberations from the previous shot then a simple model for x1 and x2

is

x1 = s1 + r

x2 = s2

(C.1)

Furthermore r(1) is the autocorrelation function with lag one

r(1) = x1 x̄2 (C.2)

and r(0) is the autocorrelation function without lag

r(0) =
1

2
(|x1|2 + |x2|2) (C.3)

By equation (2.3) in part II, Bandwidth Imaging is basically the normalized dif-
ference of |x1| and |x2|. Obviously, |x1| is biased by the reverberation noise and
in general the difference between |x1| and |x2| increases in this type of noise. This
means that Bandwidth Imaging becomes darker in regions influenced by reverbera-
tions from previous shots.

Note that r comes from the whole acoustic focus of the reception beam and not
only the range cell. Therefore, r is depth dependent. The rule of thumb is that
radial resolution rD of the acoustic focus of the reception beam is given by

rD = 2
R2

a2
λ (C.4)
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where the depth is R, a is aperture and λ is the wavelength. The acoustic focus
of the reception beam has a radial resolution that increases with the square of the
depth. Also larger reception beam focus increases the signal power of r. For the
probe used in Table 2.1 in part II, the radial resolution is the same as the width of
the range cell in the first 2.2 cm. The radial resolution is about 1 cm at 6 cm depth
and at 10 cm it is about 4 cm. In Bandwidth Imaging, these artifacts are seen as
shadowed regions close to the probe and further down as darkened lines. Dropouts
in amplitude images are caused by energy absorptions, due to reverberations close
to the probe. Artifact of reverberations from previous shots in Bandwidth Imaging
can look similar to the dropout in amplitude images.

The influence of r is dependent on the attenuation factor at zero frequency in
the Finite Impulse Response filter and the pulse repetition frequency. In Fig. C.1,
Second-Harmonic Imaging is shown at six equally sparsed time steps in the cardiac
cycle. In Fig. C.2, Bandwidth Imaging is shown where the pulse repetition frequency
is set to 2750. The reverberation noise from previous shots is not visible. In Fig.
C.3 the pulse repetition frequency is turned up to 4500, and this type of noise is
seen as the septal wall is darkened. The septal wall is particularly vulnerable to this
type of noise, since the smooth surface reflects much of the transmitted beam. In
this case, sound is echoing back and forth between ventricle walls, and corrupting
the signal in the next shots. It is therefore possible that pulse repetition frequency
should be lower when imaging from the four-chamber view.

Notice also that the apex area is darker in Fig. C.3 than Fig. C.2. There can
be two reasons for this. First, the clutter filter is dependent on pulse repetition
frequency, and therefore signal shown in Fig. C.2 is filtered weaker than signal
shown in Fig. C.3. This can to some degree be compensated for by adjusting AF.
Second, reverberation noise from previous shots is also a possible reason. However,
this is usually seen as flickering darker stripes, rather than dark smooth regions. The
conclusion is that the pulse repetition frequency is limited upward by reverberations
from previous shots and downward by transit time effect and clutter filter effect.
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Figure C.1: Second-Harmonic Images is shown at six equally spaced time steps in
the cardiac cycle. The images are added for comparison with C.2 and C.3.
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Figure C.2: Bandwidth Images is shown with a pulse repetition frequency of 2750.
The reverberation noise from previous shots is not visible.
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Figure C.3: Bandwidth Images with pulse repetition frequency of 4500. The re-
verberation noise from previous shots is seen as the septal wall is darkened. The
septal wall is particularly vulnerable to this type of noise, since the smooth surface
reflects much of the transmitted beam. Notice also that the apex area is darker in
Fig. C.3 than in Fig. C.2. There can be two reasons for this. First, the clutter
filter is dependent on pulse repetition frequency, and therefore the data in Fig. C.2
is filtered weaker than Fig. C.3. Second, reverberation noise from previous shots is
also a possible reason.





Appendix D

Images of Knowledge Based
Imaging, Bandwidth Imaging,
Fundamental Imaging and
Second-Harmonic Imaging

The next 18 pages contain four-chamber, two-chamber and long-axis views of six
subjects in the study in chapter 3 in part II. On the left side of all the figures
in this appendix, Second-Harmonic Imaging, Fundamental Imaging and Bandwidth
Imaging are shown respectively. On the right side of all figures in this appendix,
three variants of Knowledge Based Imaging are shown. Here the parameters of
Knowledge Based Imaging are set in a similar manner as in Fig. 3.3 in part III. In
KBI 2, blood and tissue signal are separated by their difference in power and the
KBI 2 images are therefore similar to Fundamental Images. In KBI 3, blood and
tissue signal are separated by their velocity and turbulence differences and the KBI 3
images is therefore similar to Bandwidth Images. KBI 1 are images with parameter
settings, which are a combination of the settings of KBI 2 and KBI 3.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.1: Four-chamber views of subject 1.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.2: Two-chamber views of subject 1.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.3: Long-axis views of subject 1.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.4: Four-chamber views of subject 2.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.5: Two-chamber views of subject 2.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.6: Long-axis views of subject 2.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.7: Four-chamber views of subject 3.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.8: Two-chamber views of subject 3.



90 APPENDIX D

(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.9: Long-axis views of subject 3.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.10: Four-chamber views of subject 4.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.11: Two-chamber views of subject 4.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.12: Long-axis views of subject 4.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.13: Four-chamber views of subject 5.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.14: Two-chamber views of subject 5.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.15: Long-axis views of subject 5.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.16: Four-chamber views of subject 6.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.17: Two-chamber views of subject 6.
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(a) Second-Harmonic Imaging (b) KBI 1

(c) Fundamental Imaging (d) KBI 2

(e) Bandwidth Imaging (f) KBI 3

Figure D.18: Long-axis views of subject 6.
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Abstract. A new estimator, Bandwidth Imaging, related to the band-
width of the ultrasound Doppler signal is proposed as a classification
function of blood and tissue signal in transthoracial echocardiography of
the left ventricle. An in vivo experiment is presented, where the apparent
error rate of Bandwidth Imaging is compared with the apparent error
rate of Second-Harmonic Imaging on 15 healthy men. The apparent error
rates are calculated from the 16 myocardial wall segments defined in [1].
A hypothesis test of Bandwidth Imaging having lower apparent error
rate than Second-Harmonic Imaging is proved for a p-value of 0.94 in 3
segments in end diastole and in 1 segment in end systole. When data was
averaged by a structural element of 5 radial, 3 lateral and 4 temporal
samples the numbers of segments increased to 9 in end diastole and to 6
in end systole. This experiment indicates that Bandwidth Imaging can
supply additional information for automatic border detection routines
on endocardium.

1 Introduction

The ejection fraction is one of the most commonly measured parameters in di-
agnosis and follow up of coronary heart decease, valve decease and heart failure.
The ejection fraction is the ejected volume divided by the maximum volume of
the left ventricle, and measuring ejection fraction involves defining the endocar-
dial border, either automatically or by manual tracing.

In ejection fraction calculation, the endocardial border has to be traced in
at least two scan planes in both end diastole and end systole. In stress echo
examination, ejection fraction is commonly calculated at three levels of stress.
A robust routine for detecting endocardium automatically is needed to save
examination time.

Many approaches have been suggested to solve the endocardium tracking
problem. We mention here briefly; active contour models (snakes) [2] to [6] ,
active shape models [7] to [10] , region-growing scheme [11] and Hough transform
[12]. Common for all these approaches is that they are all applied on Second-
Harmonic Imaging data.



However, GE Vingmed Ultrasound AS Vivid 7 has an automatic routine that
uses Tissue Velocity Imaging data in addition to Second-Harmonic Imaging data.
Prior to the border detection, the atrial ventricular plane and apex are detected
using an algorithm that searches for points with desired gray scale intensity and
tissue movement. A simple version of this apex and atrial ventricular plane
detection algorithm is presented in Storaa et al. [13]. This is an interesting
example of how robustness can be achieved by using other data sets than Second-
Harmonic Imaging.

It is an important point, that Bandwidth Imaging is not the same as the
Variance-mode, available on most conventional Color Flow Imaging systems.
In the Variance-mode, the variance of the blood flow estimate is estimated by
the square of the bandwidth divided by the packetsize [14] (page 10.20). Prior
to the variance estimates, the signal is highpass filtered to remove clutter noise
from surrounding tissue. This improves the variance estimates in the blood pool.
Hence in tissue, the signal ends up containing mostly white noise, which is not at
all related to the motion of the scatterers in the actual range cell. The variance
estimates are therefore not suited for blood pool definition in Color Flow Imaging
systems. In general, only the power of the highpass filtered Doppler signal is used
for this purpose.

In Bandwidth Imaging contradictory, signal from tissue is only partially at-
tenuated before the bandwidth estimate. The signal from tissue has therefore a
narrow bandwidth, while signal from blood has broader bandwidth, since this
signal is a mixture of blood signal and clutter noise. Bandwidth Imaging is
therefore used as a classification function.

In Power Doppler the packetsize has to be at least 6 to achieve a useful stop-
band in the highpass filter [15]. However in Bandwidth Imaging, a 2-tap Finite
Impulse Response highpass filter is sufficient and this filter is available with a
packetsize of 3. The temporal resolution is proportional to the packetsize and this
gives an important resolution gain compared to Power Doppler. Further, spatial
resolution and framerate are increased by using Multi-Line acquisition. Multi-
Line acquisition is reconstruction of multiple scan lines from sparsely transmitted
scan lines. This means that Bandwidth Imaging is available at a temporal and
spatial resolution that is interesting in endocardial border detection.

In order to discuss the usefulness of Bandwidth Imaging, an in vivo exper-
iment on 15 healthy male is introduced. A similar experiment is suggested by
Spencer et. al. in [16]. Here, the visualization of Second-Harmonic Imaging and
Fundamental Imaging were rated by expert cardiologists in all myocardial seg-
ments outlined in [1]. However, the visual differences between Bandwidth Imag-
ing and Second-Harmonic Imaging are more radical than the visual differences
between Fundamental Imaging and Second-Harmonic Imaging. Therefore, a test
which is less dependent on visual perception is introduced in this paper .



2 Bandwidth Imaging

The bandwidth estimator is found to be

B2 = 2−2
|r(1)|
r(0)

where r(m) =
1
N

N−m−1∑
n=0

znzn+m for 0 ≤ m ≤ N−1 (1)

in [14] and [17]. Here r(m) is the autocorrelation function zn is the signal. In
Bandwidth Imaging the packet size N is set to 3. Notice that the signal de-
pendent part of B2, is dependent on the absolute value of the normalized auto-
correlation function with lag one. For simplicity Bandwidth Imaging is defined
as:

Bandwidth Imaging =
|r(1)|
r(0)

(2)

Bandwidth Imaging is therefore high when bandwidth is small and visa verse.
This is because Bandwidth Images should be white in tissue and black in blood,
similar to Second-Harmonic Images.

The appearance of white noise biases the estimate downward, while clutter
noise biases the estimate upward. To compensate for the effect of clutter noise, a
2-tap Finite Impulse Response highpass filter prior to autocorrelation calculation
is introduced

x1 = z2 − 10−
AF
20 z1

x2 = z3 − 10−
AF
20 z2

(3)

where AF is the attenuation factor at zero frequency in dB. When AF is high the
filter can be regarded as a stationary canceling filter and the transfer function
is given in [17] (page 209). In apical views, the clutter noise level is high in
the near field and the white noise level increases by depth due to depth gain
compensation. We have therefore found it reasonable to let AF decrease linearly
from 40 dB to 15 dB in images from apical views with depth 15 cm.

2.1 Instrumentation of Bandwidth Imaging

The strategy for implementation of Bandwidth Imaging is by trial and error
of various pulse strategies on a scanner (Vivid 7, GE Vingmed Ultrasound AS
(Horten)) . A reasonable pulse strategy for Bandwidth Imaging is given in Table
1. The pulse strategy for Second-Harmonic Imaging, which is used in section 3,
is shown for comparison.

The center frequency for Bandwidth Imaging is a trade off between lateral
resolution and penetration and is set to 2.5 MHz. The pulse length of 0.7 mm
is chosen as a trade off between radial resolution and sensitivity. The pulse
repetition frequency is set to 3750, as a trade of between reverberation noise
from earlier shots and transit time effects in tissue. The transit time effect is the
effect of decorrelation of signal due to movement of scatterer inside the range



Table 1. Parameters related to the transducer for Bandwidth Imaging and Second-
Harmonic Imaging

Parameter Bandwidth Imaging Second-Harmonic Imaging

Center frequency trans./rec. 2.5/2.5 MHz 1.7/3.4 MHz
Pulse Repetition frequency 3.75 kHz 4.25 kHz
Multi-Line Aqusition 4 2
Packetsize 3 1

Radial resolution 6.67 · 10−4 m 4.6 · 10−4 m

Aperture 2.2 · 10−3 × 2.0 · 10−3 m2 2.2 · 10−3 × 2.0 · 10−3 m2

Depth 0.15 m 0.15 m
Focal point (single) 0.15 m 0.09 m
Framerate 44 44
Number of beams 127 193

cell. The packet size is 3, which is the lowest possible for calculating Bandwidth
Imaging with the filter given by equation (3).

Note that the pulse length is about 50 % longer in Bandwidth Imaging than
in Second-Harmonic Imaging. Also, Bandwidth Imaging contains approximately
33 % less beams per frame than Second-Harmonic Imaging. This is because the
framerate of Bandwidth Imaging is equal to the framerate of Second-Harmonic
Imaging, the packet size is three times higher, the Multi-Line acquisition param-
eter is doubled and pulse repetition frequency is about the same.

The In Quadrature (signal after complex demodulation in the signal chain)
data is recorded and saved to a file for further post-processing in Matlab (The
MathWorks Inc.). In Bandwidth Imaging, signal is highpass filtered by equation
(3) and then calculated by equation (2). Second-Harmonic Imaging is calculated
by log compressing the square root of r(0). The images are then scan converted
to get physical scale and histogram equalized to get comparable contrast.

3 Experiment for comparing Bandwidth Imaging with
Second-Harmonic Imaging

3.1 Methods

The test included 15 healthy male persons aged 24 to 32. The image qualities
were acceptable, which means that decent agreement with Magnetic Resonance
Images [18] were expected. The three standard apical views, four-chamber, two-
chamber and long-axis view were recorded in one loop each. The pulse strategy
and the instrumentation details were the same as given in section 2.

The depth was set to 15 cm and a single transmit focus was chosen in both
Second-Harmonic Imaging and Bandwidth Imaging to get better resolution. In
this study all depth gain compensations were equalized for all depths to eliminate
for this variability.

The subjects were asked to hold their breath and keep still during recording.
This enabled the examiner to compare Second-Harmonic Imaging and Band-
width Imaging from the same positions. The examiner traced endocardium in
the Second-Harmonic Images in both end systole and end diastole in all three



views. Immediately after tracing in the Second-Harmonic Images, the same traces
were shown in the corresponding Bandwidth Images. In cases where the subject
moved under the examination, the examiner retraced on the Bandwidth Images.

In article [1], recommendations for nomenclature and standardized segmen-
tation of myocardium are given. The sixteen segmentation model for echocar-
diography is shown in the bulls-eye diagram in Fig. 1(d).

From the manual traces of endocardium, the shape and position of myocardial
segments are calculated. This is done by first finding the left ventricle long-axis.
Then three perpendicular lines to the long axis line are calculated. These three
lines intersect the long-axis at the bottom, one third up and two thirds up. These
three lines also intersect the endocardium trace at six points. A seventh point is
found as the intersection between the endocardium trace and the long-axis view
trace. These seven points define the corner points of the myocardial segments
along endocardium. The width of each myocardial segment is set to 20 % of the
myocardial short axis. These segments are seen in figure 1(a), 1(b) and 1(c).
Here corresponding blood segments are shown on the inside of endocardium.
The number labels are denoted in the blood segments, corresponding to the
myocardial segments.

All recorded data inside each myocardial segment and each blood segment
were stored in an array, with labels of subject number, segment name, segment
type (blood or tissue), method (Second-Harmonic Imaging of Bandwidth Imag-
ing) and time instance (end diastole or end systole).

Evaluation criteria for classification functions A comprehensive discussion
of classification theory can be found in [19]. The quantity apparent error rate
is chosen to evaluate the performance of the classification functions Bandwidth
Imaging and Second-Harmonic Imaging. Advantages of apparent error rate are
that it is easy to implement and not dependent of the form of the parent popu-
lations.

Let the measured data from tissue be πt and the measured data from blood
be πb, then we suggest this definition of apparent error rate

Apparent error rate = min
T

(∑nbMT

i=1 cbMTi +
∑ntMT

i=1 ctMTi∑nb

i=1 cbi +
∑nt

i=1 cti

)
(4)

Here, nt and nb are the sizes of πt and πb, while, ntMT and nbMT are the
number of misclassifications in πt and πb at the threshold is T . Further, the cost
of a sample i in πb or πt are cbi or cti. The costs of misclassifications in blood
and in tissue are cbMTi and ctMTi. The values of cbi, cti, cbMTi and ctMTi are
equal to the area the measurements are representing in an image. The Apparent
error rate is therefore the proportion of misclassified area, given the best possible
threshold. It is important to emphasize that the threshold is constant only inside
one segment. Prior to apparent error rate and GM calculation the images have
either been non averaged, moderately averaged or strongly averaged. In moderate
averaging, the structural element is 3 radial, 2 lateral and 3 temporal samples
in Second-Harmonic Imaging. To account for the resolution loss in Bandwidth
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(a) Four-chamber view (b) Two-chamber view (c) Long-axis view
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(d) Bullseye

1. basal anterior 9. mid inferoseptal
2. basal anteroseptal 10. mid inferior
3. basal inferoseptal 11. mid inferolateral
4. basal inferior 12. mid anterolateral
5. basal inferolateral 13. apical anterior
6. basal anterolateral 14. apical septal
7. mid anterior 15. apical inferior
8. mid anteroseptal 16. apical lateral

Fig. 1. Display, on circumferential polar plot, of the 16 myocardial segments and rec-
ommended nomenclature recommended for echocardiography.

Imaging, the structural element in moderate averaging is reduced to 2 radial, 2
lateral and 2 temporal samples. In strong averaging, the structural element is
5 radial, 3 lateral and 4 temporal samples in Second-Harmonic Imaging and 4
radial, 2 lateral and 4 temporal samples in Bandwidth Imaging.

3.2 Results

The occasions where the apparent error rate of Bandwidth Imaging is smaller
than apparent error rate of Second-Harmonic Imaging are counted in all seg-
ments. This number ranges from 0 to 15, since 15 subjects attended the study.
The result is shown in column one and three in Fig. 4. If numbers are 11 or
above, the p-values are higher than 0.94 on the hypothesis test; true apparent
error rate of Bandwidth Imaging is equal or lower than true apparent error rate
of Second-Harmonic Imaging.

This indicates that Bandwidth Imaging classifies better than Second-Harmonic
Imaging in these segments, and these segments are therefore marked green. Seg-
ments with numbers four and below are marked red, because the test indicates
that Second-Harmonic Imaging has a lower apparent error rate than Bandwidth
Imaging in these segments. The first column shows results of end diastole and
the third column shows results of end systole.

In apical septal and in apical lateral segments a super-index and a sub-index
are given. The super-index tells us which view has the lowest mean apparent error



rate taken over subjects in Bandwidth Imaging. Correspondingly, the sub-index
shows the best view of Second-Harmonic Imaging. Here 4 means four-chamber
view and L means long-axis view. In these segments, the test compares the
apparent error rate of Second-Harmonic Imaging and the apparent error rate of
Bandwidth Imaging from their respective best views.

The top row shows apparent error rate calculated from not averaged data.
In end diastole, the test indicates that Second-Harmonic Imaging has a smaller
apparent error rate than Bandwidth Imaging in basal inferoseptal, basal infe-
rior, basal inferolateral, basal anterolateral, mid inferoseptal and mid inferior.
Contradictory, the test indicates that Bandwidth Imaging has a smaller appar-
ent error rate than Second-Harmonic Imaging in mid anterior, mid anterolateral
and apical lateral. The test can not indicate which method has the smallest
apparent error rate in the other segments. In end systole, the high scores of
Second-Harmonic Imaging are found in basal anteroseptal, basal inferoseptal,
basal inferior, basal inferolateral, basal anterolateral, mid inferoseptal, mid infe-
rior, mid inferolateral and mid anterolateral. The only high score of Bandwidth
Imaging is found in the mid anterior segment. The test can not indicate which
method has the lowest apparent error rate in the other segments.

In the mid and bottom row of Fig. 4 the test is performed on moderately
and strongly averaged data, respectively. In end systole with moderate averaging,
the basal anterior, mid anteroseptal, apical anterior and apical septal becomes
green in addition to the green segments of the non averaged data. The basal
anterolateral segment however, goes from red to undecidable. In strong averaging
also basal anteroseptal and apical inferior become green, while mid inferior and
basal inferolateral go from red to undecidable.

In end systole with moderate averaging, the apical anterior segment becomes
green, while basal anteroseptal, basal inferolateral, mid inferolateral and mid
anterolateral segments go from red to undecidable. In strong averaging basal
anterior, mid anteroseptal, apical inferior and apical lateral go from undecidable
to green. The mid inferior segment goes from red to undecidable.

The effect of averaging is therefore that the number of green segments is
increased from 3 to 7 to 9 in end diastole and from 1 to 2 to 6 in end systole.
Also, the number of red segments is reduced from 6 to 5 to 3 in end diastole and
from 9 to 5 to 4 end systole.

In the second and fourth column of Fig. 4 mean apparent error rate taken
over subjects is shown in percent for Bandwidth Imaging (top number) and
Second-Harmonic Imaging (bottom number). Second column shows end diastole
and fourth column shows end systole. In apical septal and apical lateral segments
the minimum value is shown, corresponding to sub- and super-indexes of Fig. 4.
Note that the apparent error rate decreases with averaging in every segment at
any time instance (end diastole or end systole).

In column two and four in Fig. 4, we see that the apparent error rate is very
different in various segments. On non averaged data, the apparent error rate of
Bandwidth Imaging, varies from 0.21 to 0.37 in end diastole and 0.27 to 0.38 in
end systole, while apparent error rate of Second-Harmonic Imaging, varies from



(a) End diastole segm. (b) End systole segm.

Four-chamber Two-chamber Long-axis

Raw 5 6 12
Mod. av. 8 12 14End diastole
Str. av. 11 15 14
Raw 0 6 7
Mod. av. 1 14 10End systole
Str. av. 3 13 11

(c) GM result

Fig. 2. Fig. 2(a) and 2(b) show how the apparent error rate of HEDS, BEDS, UEDS,
HESS, BESS und UESS behave in various averaging. Notice that the apparent error
rate of the segments in Bandwidth Imaging BI are more collected and decrease faster
in averaging. Notice the difference between end diastole and end systole in Bandwidth
Imaging, while these differences are not present in Second-Harmonic Imaging HI. Fig.
2(c) shows the numbers of subjects were GM is lower in Bandwidth Imaging than in
Second-Harmonic Imaging.

0.11 to 0.38 in end diastole and 0.16 to 0.40 in end systole. The smallest numbers
of the apparent error rate are found in segments where Second-Harmonic Imaging
works best, and the largest numbers of apparent error rate are found in segments
where Bandwidth Imaging works best.

This effect is further investigated by grouping the segments. The segments
with green numbers in top left figure in Fig. 4 are the best Bandwidth Imaging
segments in end diastole BEDS. Similarly we have HEDS, which are the best
Second-Harmonic Imaging segments in end diastole and the undecidable end
diastole segments UEDS. In the systole we have correspondingly defined BESS,
HESS and UESS from the top figure in the third column of Fig. 4.

Fig. 2(a) and 2(b) show mean apparent error rate of Second-Harmonic Imag-
ing and Bandwidth Imaging, taken over subjects and segments in the above
groups. The x axes of the figures show the level of averaging. It is clear that the
Bandwidth Imaging groups are more collected than the Second-Harmonic Imag-
ing groups. This indicates that the great regional differences seen in Fig. 4 are
more a matter of regional differences of Second-Harmonic Imaging, rather than
regional differences of Bandwidth Imaging. Furthermore, we see that Bandwidth
Imaging decreases more rapidly by averaging than Second-Harmonic Imaging.

The result of GM is shown in the Table 2(c). Here, the occasions where GM
of Bandwidth Imaging is smaller than GM of Second-Harmonic Imaging are
counted for each view. This is done in end diastole and in end systole without



averaging, with moderate averaging and with strong averaging. Similarly to the
result shown in Fig. 4, values above 11 are marked green and the values below
4 are marked red.

The test indicates that Second-Harmonic Imaging has a smaller GM than
Bandwidth Imaging in four-chamber view in end systole in any type of averaging.
On the other side, Bandwidth Imaging has a smaller GM in long-axis view in
end diastole in any type of averaging. In moderate averaging two-chamber view
and long-axis view are marked green in end diastole and two-chamber view is
marked green in end systole. In strong averaging all views are marked green
except the four-chamber view in end systole.

3.3 Discussion of the comparison experiment

In comparing Second-Harmonic Imaging and Bandwidth Imaging, the ground
truth of the endocardial borders are found by manual traces on Second-Harmonic
Images. It can be objected that there is a flaw in comparing two methods, when
the ground truth is determined by one of them. On the other side, manual
traces of endocardium on images of reasonable image quality as basis for ejection
fraction measurements are reported to have reasonable agreement with ejection
fraction measurements of Magnetic Resonance Imaging [18]. In this study the
subjects had reasonable image qualities, and this votes for more trust to the
manual traces as ground truth of endocardium. Moreover, if the manual traces
are biased, it can be argued that they are biased in favor of Second-Harmonic
Imaging, since they are drawn on Second-Harmonic Images. This would therefore
only strengthen the results in favor of Bandwidth Imaging.

We have selected apparent error rate as the quantitative evaluation criteria
of Bandwidth Imaging and Second-Harmonic Imaging. This measure is intuitive
because it calculates the proportion of misclassified area, given the best thresh-
old. In a practical clinical setting this threshold level is not known. However,
automatic border detection routines are in general more dependent on a good
tissue to blood contrast, rather than evenly distributed intensity levels in an
image. We therefore postulate that the apparent error rate is related to the
potential of an automatic detection routine of endocardium.

Further, one may argue that the threshold level is evaluated by the measured
data, and therefore apparent error rate is underestimating the true optimal er-
ror rate. On the other side, it is suggested in [19] that apparent error rate is
approaching the true optimal error rate when the sample sizes are high. In this
experiment the sample sizes are above 1000 in all segments. And, even if ap-
parent error rate is underestimating the true optimal error rate, the comparison
of Bandwidth Imaging and Second-Harmonic Imaging may still be valid. This
provides that apparent error rate is biased equally in Bandwidth Imaging and
Second-Harmonic Imaging. The results of the hypothesis test, Bandwidth Imag-
ing having lower apparent error rate than Second-Harmonic Imaging, is therefore
emphasized in this paper.

In the experiment we found the lowest values of apparent error rate in seg-
ments where Second-Harmonic Imaging worked best, and the largest values of



apparent error in segments where Bandwidth Imaging worked best. This indi-
cates that the great regional differences seen in Fig. 4 are more a matter of re-
gional differences in Second-Harmonic Imaging, rather than regional differences
in Bandwidth Imaging. This is also seen in Fig. 2(a) and 2(b).

Since the traces of endocardium in end diastole and end systole are needed
for ejection fraction calculation, only these time instances are considered in this
experiment. Notice also the difference between end diastole and end systole in
Fig. 2(a) and 2(b). These differences are greater in Bandwidth Imaging than in
Second-Harmonic Imaging.

Many automatic detection routines involve using several or all frames in a
heart beat. Therefore averaged images have been considered in this study. It is
important to notice from Fig. 4 that apparent error rate decreases with averaging
in every segment at any time instance (end diastole or end systole). If this was
not the case, it would not be fair to compare averaged data of Second-Harmonic
Imaging with averaged data of Bandwidth Imaging. The result that averaging
seems to favor Bandwidth Imaging can be taken as an argument for employing
Bandwidth Imaging data in detection routines that use many frames.

In the experiment GM was introduced as the apparent error rate, with con-
stant threshold value in the whole image. In prescreening methods, such as find-
ing left ventricle center, atrial ventricular plane, apex or other features, an image
with small regional variance in intensity and few dropouts are desired. We pos-
tulate that there is a relation between GM and the efficiency of prescreening
algorithms in left ventricle. Here, robustness is often more important than accu-
racy.

3.4 Discussion of instrumentation of Bandwidth Imaging

In the process of instrumenting Bandwidth Imaging, we tried a variety of pulse
repetition frequencies, pulse lengths, center frequencies and beam sizes. Also a
great number of AF were tested. There is not room for a comprehensive dis-
cussion of parameter tuning in this paper. Fig. 3(b) shows Bandwidth Imaging
from two-chamber view at six equally sparsed time steps in the heart cycle. Im-
age 1 indicates end diastole and image 4 indicates end systole. In Fig. 3(a) the
corresponding Second-Harmonic Images are shown. These effects are important
in Bandwidth Imaging:

Tissue surrounding the cardiac muscle is more similar to tissue in the car-
diac muscle in Bandwidth Imaging than in Second-Harmonic Imaging. This is
because Bandwidth Imaging is more dependent on the motion of the scatterers,
while Second-Harmonic Imaging is dependent on the reflection coefficient of the
scatterers.

Next, the mitral valve and apparatus are not visible in Fig. 3(b). Signal
from mitral valve and apparatus is a mixture of blood and tissue signal and has
therefore a broader bandwidth. Moreover, signal from vibrating muscles such as
in mitral apparatus is known to have broader bandwidth [20].

Further, Bandwidth Imaging is dependent of the movement of the scatterers
and the image quality is therefore dependent on the acquisition time in the



(a) Second-Harmonic Images (b) Bandwidth Images

Fig. 3. In Fig. 3(a) Second-Harmonic Images from two-chamber view are shown at six
equally spaced time steps in the cardiac cycle. The end diastole is shown in the first
image and the end systole is shown in the fourth image. In Fig. 3(b) the corresponding
Bandwidth Images are shown.

cardiac cycle. This can be seen as image four is much brighter than image one.
This can also explain the differences between end diastole and end systole seen
in Fig. 2(a) and 2(b).

3.5 Conclusion

A new echocardiographic mode has been proposed, where the difference in
Doppler signal from blood flow and tissue motion is utilized. A reasonable in-
strumentation setup of Bandwidth Imaging is outlined in this paper. A ma-
jor difference between Bandwidth Imaging and conventional Power Doppler and
Variance-modes on Color Flow Imaging systems is that Bandwidth Imaging does
not require a long stop-band highpass filter. Bandwidth Imaging can therefore
be implemented with a packetsize 3. This means that Bandwidth Imaging can
be implemented with a temporal and spatial resolution that is interesting for
endocardial border detection.

An experiment is added, where apparent error rate of Bandwidth Imaging
is compared with apparent error rate of Second-Harmonic Imaging. The results
indicate that Bandwidth Imaging can compete with Second-Harmonic Imaging
in some segments, especially in apical and anterior regions. The test suggests
that Bandwidth Imaging has less differences between segments, improves more
by averaging and has a more uniform histogram throughout the image. This votes



for automatic routines using several time frames. In particular, we suggest using
Bandwidth Imaging for prescreening methods for finding left ventricle features.
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Result: Apperant error rate
End diastole End systole
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Fig. 4. Column one and three show numbers where apperant error rate is lower in
Bandwidth Imaging BI than in Second-Harmonic Imaging HI in end diastole and end
systole, respectively. If numbers are 11 and above they are marked green, because the
hypothesis test; apperant error rate of Bandwidth Imaging is smaller than apperant
error rate of Second-Harmonic Imaging is proved for a p-value is 0.94. Contradictively,
numbers of 4 and below are marked red. In column two and four, the mean values of
apperant error rate in percent are shown in end diastole and end systole. The top values
are apperant error rate of Bandwidth Imaging and the bottom values are apperant error
rate of Second-Harmonic Imaging. Top row shows result when images are not averaged,
second row shows result for moderate averaging and last row shows result when data
is strongly averaged.
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Abstract. Knowledge Based Imaging is suggested as a method to distin-
guish blood from tissue signal in transthoracial echocardiography. This
method utilizes the maximum likelihood function to classify blood and
tissue signal. Knowledge Based Imaging and Bandwidth Imaging [1] are
compared with Fundamental Imaging by a computer simulation. The
apparent error rate is calculated in any reasonable tissue to blood sig-
nal ratio, tissue to white noise ratio and clutter to white noise ratio.
Fundamental Imaging classifies well when tissue to blood signal ratio
is high and tissue to white noise ratio is higher than clutter to white
noise ratio. Knowledge Based Imaging classifies also well in this envi-
ronment. In addition, Knowledge Based Imaging classifies well whenever
blood to white noise ratio is above 30 dB, even when clutter to white
noise ratio is higher than tissue to white noise ratio and tissue to blood
signal ratio is small. Bandwidth Imaging performs similar to Knowledge
Based Imaging, but in general blood to white noise ratio has to be 20
dB higher. Some images of Knowledge Based Imaging with different pa-
rameter settings are visually compared with Second-Harmonic Imaging,
Fundamental Imaging and Bandwidth Imaging.

1 Introduction

The state of art echocardiographic modes for defining endocardium of left ven-
tricle of the human heart are; Fundamental Imaging, Second-Harmonic Imaging
and Left Ventricle Opacification. These methods distinguish blood signal from
tissue signal by their differences in power [2].

Alternatively, Doppler signal from blood flow differs from tissue motion, since
it is less coherent with depth. In Power Doppler, blood is distinguished from tis-
sue signal by the power of the highpass filtered Doppler signal. Here a packetsize
of above 6 is required to achieve the desired filter characteristics [3].

In paper [1], Bandwidth Imaging was introduced and the experiment indi-
cated that tissue and blood could be distinguished with a packetsize as small as
3. The small packetsize enables a resolution that is interesting for endocardial



border definition. In this paper, we seek to discuss the theoretical potential of
Knowledge Based Imaging and Bandwidth Imaging, where the pulse strategy of
the optimized Bandwidth Imaging method is taken as a starting point.

In section 2 a parametric models for signal from blood and tissue are outlined
and Knowledge Based Imaging is defined. In section 3, the apparent error rates
of Knowledge Based Imaging, Bandwidth Imaging and Fundamental Imaging
are calculated from computer generated signals in various types of noise. In
section 4, some premature Knowlege based Images with different parameter
settings are compared with a Fundamental Image, a Bandwidth Imaging and a
Second-Harmonic Image.

2 Signal model and definition of Knowledge Based
Imaging

Torp et. al. [4] introduced a parametric model for the autocorrelation functions
in regions with rectilinear flow, under the assumption that signal is a complex
Gaussian process. In this section, this model is expanded to yield turbulent flow
as well. The signal model is also further expanded to include additive white
noise and clutter noise in a similar manner as in Heimdal et. al. [5]. This is
the theoretical framework for defining, instrumenting and discussing Knowledge
Based Imaging and Bandwidth Imaging.

2.1 Parametric model for the autocorrelation function of signal
from blood and tissue

As mentioned above the signal model of [4] is used. Here the authors assume
a random continuum model for blood scattering [6]. The spatial fluctuation in
mass density and compressibility, which determine the incoherent part of the
scattering, is assumed proportional to the fluctuation of blood cell concentration
nb(r, t), where r is position and t is time. Here, nb(r, t) is a zero mean random
process. For a short correlation in space, for a fixed time and neglecting diffusion,
the autocorrelation function of nb(r, t) is approximated in [6] by

< nb(r, t), nb(r + ξ, t + τ) > = Υ(r, t) δ(ξ − ζ(r, t, τ))

Υ(r, t) =
var(nb(r)) · ∆V

∆V

(1)

where ζ(r, t, τ) is the displacement of the fluid element in position r during the
time interval t to t + τ . The function Υ(r, t) is the variance per unit volume in
numbers of blood cells inside a small volume ∆V , and this quantity is propor-
tional to the backscattering coefficient in blood.

Assuming a Gaussian shaped beam profile and a rectangular shaped receiver
filter impulse response, the authors outline an expression for the expected value
of the two dimensional autocorrelation function for any time and radial lag. In
general it is necessary to assume rectilinear flow, but in the case of no radial lag,



this assumption has to be valid inside only one range cell. The expected value
of the autocorrelation function with only time lag for an electronically steered
probe is
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according to [4]. Here the respective velocity components are v1, v2, v3. Further,
L is pulse length, and Θ1 and Θ2 are the lateral and elevation resolutions corre-
sponding to -3.25 dB opening angle. The repetition time is T and k is the wave
number, which is equal to 2π divided by the wavelength. This model yields for
laminar flow. Moreover, flow in left ventricle is turbulent [7], and in the next
subsection this model is expanded to yield for turbulent flow as well.

2.2 Model for turbulent blood flow

For turbulent flow we assume that the autocorrelation function for nb(r, t) is

< nb(r, t), nb(r+ξ, t+τ) >= Υ(r, t)
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where ζ1, ζ2 and ζ3 are mean displacements and σ1, σ2 and σ3 are standard
deviations of displacements. Here we assume a Gaussian shaped velocity profile
to describe turbulent flow. With this extra assumption, the development of the
expected value of the autocorrelation function r(m) can follow the same path as
in paper [4]. The difference is to multiply r(m) with the Gaussian probability
density function of velocities and integrate over all velocities.

r(m) = r(0)
∫ inf

−inf

∂vx, ∂vy ∂vzβ(m) ei m 2 k v1T e
− 1

2

„
(vx−v1)2

σ2
1

+
(vy−v2)2

σ2
2

+
(vz−v3)2

σ2
3

«

(4)
Here σ1, σ2 and σ3 are redefined as the standard deviations of the velocity
components. Further, v1, v2 and v3 refer to the means of the velocity components.
Integrating this gives

r(m) = r(0)β̂(m)α̂(m) ei
m 2 k v1 T

a1 where
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The coefficients a1, a2 and a3 are close to one when σ1T is small compared to L,
σ2T is small compared to θ1 and σ3T is small compared to θ2. Therefore ˆβ(m)



is close to β(m). A simplified model for turbulent flow is therefore

r(m) = r(0)β(m)α(m) ei m 2 k v1 T where α(m) = e−2 m2 k2 T 2 σ2
1 (6)

The effect of turbulence is covered in the α(m) parameter, which is a function
of the radial velocity distribution alone.

2.3 Model including white noise and clutter noise

Signal is assumed to be described by three components in Heimdal’s model [5].
These three components are the signal from the range cell, additive white noise
with power σ2

n and DC clutter noise from stationary echo with power σ2
c . We

assume the same, and the autocorrelation estimate for blood rb(m) and for tissue
rt(m) is modeled as:

rb(0) = σ2
b + σ2

c + σ2
n

rb(1) = σ2
b β(m)α(m) e 2 k v1 T + σ2

c

rb(2) = σ2
b β(m)4α(m)4 e 4 k v1 T + σ2

c

rt(0) = σ2
t + σ2

c + σ2
n

rt(1) = σ2
t β(m) e 2 k v1 T + σ2

c

rt(2) = σ2
t β(m)4 e 4 k v1 T + σ2

c

(7)

Notice that the power terms of white noise are zero for rb(1), rt(1), rb(2)
and rt(2). This is because white noise from different shots are uncorrelated.
Transversing velocities are neglected in the tissue model and taken into account
by the turbulent parameter in the blood model.

The probability density function for a signal z in blood is Pb and the proba-
bility density function for a signal z in tissue Pt is

Pb(z|σb, σc, σn, vb, σvb
) =

1
πN |Cb|

ez̄ C−1
b z

Pt(z|σt, σc, σn, vt) =
1

πN |Ct|
ez̄ C−1

t z
(8)

where vb and vt are the radial velocity components in blood and tissue and σvb

is the standard deviation of the velocity profile inside one range cell in blood.
Here Cb and Ct are:

Cb =

 rb(0) rb(1) rb(2)
rb(1) rb(0) rb(1)
rb(2) rb(1) rb(0)

 Ct =

 rt(0) rt(1) rt(2)
rt(1) rt(0) rt(1)
rt(2) rt(1) rt(0)

 (9)

In general the parameters defining Pb and Pt are not known. If their distributions
are known then

Pb(z) =
∫ inf

− inf

dσb,dσc,dσc,dvb,dσvb
Pb(z|σb, σc, σn, vb, σvb

) Pσb
Pσc Pσn Pvb

Pσvb

Pt(z) =
∫ inf

− inf

dσt,dσc,dσc,dvt, Pt(z|σt, σc, σn, vt) Pσt Pσc Pσn Pvt

(10)



where Pσb
Pσc Pσn Pvb

Pσvb
Pσt and Pvt are the probability density functions for

the σb, σc, σn, vb, σvb
, σt and vt. In practice, these probability density functions

can potentially be found from a priory knowledge, estimation or experimental
trial and error.

2.4 Knowledge Based Imaging

The echocardiographic mode Knowledge Based Imaging is proposed as

Knowledge Based Imaging = 20 · log10

[
ln
(

Pt(z) + Pb(z)
Pt(z)

)]
(11)

Here z is the measured complex signal vector with length equal to packet size.
Knowledge Based Imaging is basically a histogram manipulated version of the
maximum likelihood ratio of a signal sample. The maximum likelihood ratio is
Pt(z)/Pb(z), and this is described in Van Trees [8].

The histogram manipulation can be argued for in the following way: The
expression (Pt(z) + Pb(z))/Pt(z) is close to 1 when Pt(z) is dominating, equal
to 2 when Pt(z) = Pb(z) and approaches infinity when Pb(z) is dominating. The
natural logarithm of this becomes a number between zero and infinity. Notice
that this number is dominated by the difference of the exponents in equation (8).
These exponents are dominated by the power of the signal, and this motivates
for the final log compression. This histogram becomes reasonably uniform.

Another interesting method is the generalized likelihood ratio test that is
also described in Van Trees. In the case of Knowledge Based Imaging, this is the
same as calculating Knowledge Based Imaging from equation (11), where Pt(z)
and Pb(z) are substituted with P̂t(z) and P̂b(z);

P̂b(z) =max
Rb

(Pb(z|σb, σc, σn, vb, σvb
)) where (σb, σc, σn, vb, σvb

) ε Rb

P̂t(z) =max
Rt

(Pt(z|σt, σc, σn, vt)) where (σt, σc, σn, vt) ε Rt

(12)

Obviously, Knowledge Based Imaging requires definition of parameter space in
tissue Rt and blood Rb. In this manuscript, this is done by defining the upper
and lower limits of the parameters. This is hereby referred to as Knowledge
Based Imaging with box constraints.

2.5 Fundamental Imaging

In the computer simulation, Fundamental Imaging is defined as

Fundamental Imaging = 20 log10(r(0)) where r(m) =
1
3

3−m−1∑
n=0

znzn+m

(13)
Note that no highpass filter is used prior to Fundamental Imaging calculation.



Table 1. Parameters related to the transducer for Fundamental Imaging, Bandwidth
Imaging, Knowledge Based Imaging and Second-Harmonic Imaging

Parameter
Fundamental Imaging
Bandwidth Imaging

Knowledge Based Imaging
Second-Harmonic Imaging

Center frequency trans./rec. 2.5/2.5 MHz 1.7/3.4 MHz
Pulse repetition frequency 3.75 kHz 4.25 kHz
Multi-Line Acquisition 4 2
Packetsize 3 1

Radial resolution 6.67 · 10−4 m 4.6 · 10−4 m

Aperture 2.2 · 10−3 × 2.0 · 10−3 m2 2.2 · 10−3 × 2.0 · 10−3 m2

Depth 0.15 m 0.15 m
Focal point (single) 0.15 m 0.09 m
Framerate 44 44
Number of beams 127 193

2.6 Bandwidth Imaging

In paper [1] Bandwidth Imaging is defined as

Bandwidth Imaging =
|r(1)|
r(0)

(14)

and prior to the autocorrelation estimate the signal is filtered with this 2-tap
Finite Impulse Response filter

x1 = z2 − 10−
AF
20 z1

x2 = z3 − 10−
AF
20 z2

(15)

where AF is the attenuation factor at zero frequency.

2.7 Pulse strategy

The pulse strategy of Bandwidth Imaging, Knowledge Based Imaging and Fun-
damental Imaging is given in Table 1. The center frequency for Bandwidth Imag-
ing, Knowledge Based Imaging and Fundamental Imaging is a trade off between
resolution and penetration and is set to 2.5 MHz. The pulse length (0.7 mm) is
chosen as a trade off between radial resolution and sensitivity. The pulse repe-
tition frequency is set to 3750 , as a trade off between reverberation noise from
earlier shots and transit time effects in tissue. The transit time effect is the effect
of decorrelation of signal due to movement of scatterers in the range cell. The
packet size is 3, which is the lowest possible for calculating Bandwidth Imaging
with the filter given by equation (15).



3 Evaluation of Knowledge Based Imaging, Bandwidth
Imaging, Fundamental Imaging by computer simulation

3.1 Methods

In this chapter the classification functions Knowledge Based Imaging, Band-
width Imaging and Fundamental Imaging are evaluated and compared using the
quantity apparent error rate. A comprehensive discussion of classification theory
can be found in [9]. Here apparent error rate is defined as

Apparent error rate = min
T

(
nbMT + ntMT

nb + nt

)
(16)

where, nt and nb are the sizes of measured data from tissue πt and from blood
πb. Further, ntMT and nbMT are the number of misclassifications of πt and πb at
threshold T . Apparent error rate is simply the proportion of misclassifications,
given the best threshold level.

In this experiment, 2000 signal samples from blood and 2000 signal samples
from tissue are generated from a random generator. Here the pulse strategy is
given in Table 1, which is the same pulse strategy as in paper [1]. Speed of
sound c is 1540m/s. Blood signal zb and tissue signal zt are created by

zb = Lb x1 Cb = Lb
T Lb

zt = Lt x2 Ct = Lt
T Lt

(17)

where x1 and x2 are normalized complex Gaussian signal created by the random
generator. Moreover, Lt and Lb are the lower triangular matrices, obtained by
Cholesky factorization of Cb and Ct given in equation (9). Fundamental Imaging
is calculated by equation (13), Knowledge Based Imaging by equation (11), and
Bandwidth Imaging by equation (14).

For simplicity Cb and Ct are divided by σ2
n, so that apparent error rate is

discussed for various blood to white noise ratio, tissue to white noise ratio, and
clutter to white noise ratio. It is also interesting to discuss the ratio between
tissue and blood signal.

The parameters vt and vb are picked randomly from two Gaussian distri-
butions with mean zero and standard deviation 0.025 m/s and 0.25 m/s, re-
spectively. The parameter σvb

is set to zero in simulations where laminar flow
is assumed. In simulations where turbulent flow is assumed σvb

is chosen to 0.1
m/s.

3.2 Results

In column one through four in Fig. 1, the apparent error rate is color coded to
show its level at any tissue to white noise ratio, clutter to white noise ratio and
tissue to blood signal ratio. The color bar goes from 0 (red) to 0.5 (blue). All
these subplots show tissue to white noise ratio (y-axis) versus clutter to white



noise ratio (x-axis) from 0 to 140 dB. In the bottom row tissue to blood signal
ratio is 0 db, and this ratio increases by increment of 10 dB in the next rows.

In the first column, blood and tissue signal are separated by Fundamental
Imaging. Obviously apparent error rate is dependent on tissue to blood signal
ratio, and it is necessary that clutter to white noise ratio is lower than tissue to
white noise ratio for reasonable classification.

In column two, blood and tissue signal are separated by Knowledge Based
Imaging. Here the velocity distributions of tissue and blood have standard de-
viations of 0.025 m/s and 0.25 m/s, respectively. The turbulence parameter is
set to zero. We see that Knowledge Based Imaging classifies better than Fun-
damental Imaging everywhere. Note that a reasonable classification is possible
whenever blood to white noise ratio is above 30 db, regardless of tissue to blood
signal ratio and clutter to white noise ratio. This can be seen by noting the
relation tissue to white noise ratio = tissue to blood signal ratio + blood to
white noise ratio. This effect is even stronger in the third column, where the
turbulence parameter in blood is turned up to 0.1 m/s.

In the case of Bandwidth Imaging, only one parameter has to be set, namely
AF. The same signal as in third column , is highpass filtered by different AF
ranging from 0 to 50 dB. The AF that minimizes apparent error rate is chosen,
and the best value of apparent error rate is shown in the fourth column Band-
width Imaging performs similar to Knowledge Based Imaging, but the general
trend is that blood to white noise ratio has to be 20 dB higher for the same level
of apparent error rate. It is also important to mention that Bandwidth Imaging
performs worse than Fundamental Imaging in regions where tissue to blood sig-
nal ratio is high, tissue to white noise ratio low and clutter to white noise ratio
smaller than tissue to white noise ratio.

The fifth column shows the best possible AF on a scale from 0 (blue) to 50 dB
(red). It is seen that AF is smooth in regions where Bandwidth Imaging classify
well. This coefficient seems linearly dependent on blood to white noise ratio and
clutter to white noise ratio. The last column shows the best threshold level on a
scale from 0 (blue) to 1 (red). Here we see that the threshold level seems smooth
and not AF-dependent in regions where Bandwidth Imaging classify well.

3.3 Discussion of computer simulation

In this signal model we assumed one and the same pulsestrategy for Bandwidth
Imaging, Knowledge Based Imaging and Fundamental Imaging. If different puls-
estratgies were compared, the results would be very dependent on the signal
model. In that case, the signal model had to be validated for every choice of
pulse strategies. In our case, we simply have to assume that the backscattered
signal can be described by these three components; signal from blood or tissue
in a range cell, uncorrelated white noise and stationary clutter noise.

It can be argued that Fundamental Imaging does not have optimized pulse
strategy and the comparison is therefore favoring Knowledge Based Imaging.
Moreover, the state of art echocardiographic mode is Second-Harmonic Imag-
ing, which is reported to be an improvement compared to Fundamental Imag-
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Fig. 1. In column one through four, the apparent error rate is color coded to show its
level at any tissue to white noise ratio, clutter to white noise ratio and tissue to blood
signal ratio TBR. The color bar goes from 0 (red) to 0.5 (blue). All subplots show
tissue to white noise ratio versus clutter to white noise ratio from 0 to 140 dB. In the
first row tissue to blood signal ratio is 0 db and in the next rows tissue to blood signal
ratio increases by increment of 10 dB to 40 dB. In the first column blood and tissue
signal are separated by Fundamental Imaging FI. Obviously, the apperant error rate is
dependent on tissue to blood signal ratio. Furthermore, it is necessary that clutter to
white noise ratio is lower than tissue to white noise ratio for a reasonable classification.
In column two blood and tissue signal are separated by Knowledge Based Imaging
KBI. Here the velocity distributions of tissue and blood have standard deviations of
0.025 m/s and 0.25 m/s, respectively. We see that Knowledge Based Imaging classified
better than Fundamental Imaging everywhere. It is interesting to see that a reasonable
classification is possible when blood to white noise ratio is above 30 dB, regardless of
tissue to blood signal ratio and clutter to white noise ratio. This effect is even stronger
in the next column, where the turbulence parameter in blood is turned up from 0 to
0.1 m/s. In column four, the same signal as in column three is classified by Bandwidth
Imaging BI. The fifth column shows the best AF, where the color bar varies from
0 (blue) to 50 dB (red). The last column shows the best threshold level for the BI
classification, on the scale from 0 (blue) to 1 (red).



ing [10]. The aim of this comparison is therefore not to determinate whether
Knowledge Based Imaging or Bandwidth Imaging are better than conventional
methods. The aim is rather to outline differences in how Knowledge Based Imag-
ing, Bandwidth Imaging and Fundamental Imaging classify in various types of
noise.

For the same reason, the computer simulation covers only a subset of all
types of signal and noise environments that can be expected in transthoracial
echocardiography. This subset is limited in three ways.

First, the velocity distributions of scatterers in πt and πb are assumed Gaus-
sian with standard deviation 0.025 m/s and 0.25 m/s. These distributions are
chosen, because they seem reasonable at depth 7.5 cm from apical views. Other
velocity distributions could be chosen as well. For instance, the velocity of the
atrial ventricular plane is normally above 0.085 m/s in end systole and the ve-
locity of the mitral flow yet can exceed 1 m/s. It is important to mention that
pulse repetition frequency can be adjusted to get optimal classification for any
two samples of blood and tissue signal. Hence, the difference in velocity distri-
butions is the governing parameter.

Next, blood flow in left ventricle is found to be turbulent by Schoephoerster
and Chandran [7]. Turbulence comes into the model, by the assumption that
the scatterers in a range cell have a Gaussian velocity distribution with standard
deviation 0.1 m/s. This argument could be challenged, both because of the shape
of the distribution and also the size of the standard deviation.

And third, the assumption that clutter noise comes only from stationary
signal could be challenged. This is because clutter noise also comes from moving
tissue.

In the experiment, apparent error rate is used to estimate the true optimal
error rate. In [9] apparent error rate is reported to underestimate the true optimal
error rate, because the data used to build the classification rule is also used to
evaluate the rule. However, this underestimation is reduced by using a large
sample size.

In transthoracial echocardiography the clutter level is high in the near-field,
due to the penetration of inhomogeneous tissue. Also the level of white noise
increases downward the beam, due to depth gain compensation. The above re-
sults indicate that the greatest potential of Knowledge Based Imaging is in the
apical region, where high clutter to white noise ratio can be compensated by
high blood to white noise ratio.

Bandwidth Imaging performed similar to Knowledge Based Imaging, but
the general trend is that blood to white noise ratio had to be about 20 dB
higher for the same level of apparent error rate. This can explain why the best
results of Bandwidth Imaging were found in apical segments in the experiment
in paper [1] . In column five in figure 1, AF is plotted in different types of noise.
This coefficient seems linearly dependent of blood to white noise ratio and clutter
to white noise ratio in the dB scale. This may explain why it seems reasonable
to use a depth dependent clutter rejection filter prior to the Bandwidth Imaging
calculation in [1].



In the next section the attention is drawn back to Knowledge Based Imaging,
where some premature images are discussed.

4 Discussion of instrumentation of Knowledge Based
Imaging

The strategy for implementation of Knowledge Based Imaging is to use the pulse
strategy of Table 1 on a scanner (Vivid 7, GE Vingmed Ultrasound AS (Horten))
. If we use the generalized maximum likelihood definition of Knowledge Based
Imaging with box constraints, there are 14 parameters to adjust. These are the
upper and lower limits of σt,σb,σc,σn,vt,vb and σvb

. This section contains some
examples of instrumentation of Knowledge Based Imaging with box constraints.
In this case, the box constraints can be tuned so Knowledge Based Imaging can
look similar to both Bandwidth Imaging and Fundamental Imaging.

Knowledge Based Imaging at one range cell is calculated in this way: A
five dimensional array of values of σb, σc, σn, vb and σvb

is created and limited
by the box constraints. Next, all Pb(z) are calculated and the maximum value
determined. A similar path is followed to calculate maximum of Pt(z). Finally,
Knowledge Based Imaging is calculated by equation (11).

Fig. 2 shows six four-chamber view images of a healthy mature male with dif-
ferent echocardiographic modes. Fig. 2(a), 2(b) and 2(c) show Second-Harmonic
Imaging, Fundamental Imaging and Bandwidth Imaging, respectively.

Fig. 2(d), 2(e) and 2(f) show three variants of Knowledge Based Imaging. In
these images, σn is set to increase from 10 dB to 20 dB downward in the image.
In Fig. 2(e) KBI 2 is shown. Here, vb and vt are set at 7 steps between - 1 to
1 m/s. Here, σvb

and σc are both set to zero. The only parameters separating
P̂t(z) and P̂b(z), are σb and σt. These are given at 3 equally spaced steps from
50 to 100 dB in blood and 120 to 150 dB in tissue. We see that the KBI 2 is
similar to Fundamental Imaging. They are related in the way that they both
separate blood from tissue signal by their difference in power.

KBI 3 is shown in Fig. 2(f). Here there is no separation by power at all and
σb and σt are set in three steps between 40 to 140 dB. The separation between
blood and tissue signal is by velocity and velocity distribution. Here, vb is set at
seven steps between - 1 to 1 m/s. Further, the magnitude of velocity in tissue
vt is limited by 0.013 m/s in the apical region, and this magnitude is increased
linearly to 0.13 m/s at 15 cm depth. This is because the radial velocities in
myocardium are higher in the atrial ventricular plane region, than closer to
apex. Moreover, the turbulence parameter σvb

is set to 0.12 m/s. It is important
to mention that the image is enhanced by setting this parameter. Also the clutter
parameter is set. The clutter parameter is set to decrease linearly downward in
the image from 140 to 80 dB. The net effect of setting this parameter is similar
to clutter filtering in Bandwidth Imaging. It is interesting that KBI 3 becomes
similar to Bandwidth Imaging. The fact that Knowledge Based Imaging can be
adjusted between the two extremes that look similar to Fundamental Imaging



(a) Second-Harmonic (b) Fundamental Image (c) Bandwidth Image

(d) KBI 1 (e) KBI 2 (f) KBI 3

Fig. 2. Four-chamber views of a healthy heart with different imaging modes. Fig. 2(a),
2(b) and 2(c) show Second-Harmonic Image, Fundamental Image and Bandwidth Im-
age, respectively. In Fig. 2(e) Knowledge Based Imaging is adjusted so that blood and
tissue signal are separated by their differences in power. This image (KBI 2) is therefore
similar to Fig. 2(b). In Fig. 2(f) (KBI 3) parameters are adjusted so that blood and
tissue signal are separated by their differences in velocities and turbulence parameters.
This image is therefore similar to Fig. 2(c). Fig. 2(d) (KBI 1) shows a Knowledge Based
Image, which is a combination of the parameter settings of KBI 2 and KBI 3.

and Bandwidth Imaging, indicates that Knowledge Based Imaging can be used
to find an optimal imaging method that compromises these two extremes.

KBI 1 is shown in Fig. 2(d). KBI 1 is a mixture of these two extreme ways
of setting parameters of Knowledge Based Imaging. Here the velocity, velocity
distributions and clutter parameter are the same as for KBI 3 and the power
settings are the same as for KBI 2. This gives hope for finding an optimized
imaging setup of Knowledge Based Imaging that balances the advantages of
Bandwidth Imaging and Fundamental Imaging.

5 Conclusion

Knowledge Based Imaging is proposed as a Doppler-based method to distinguish
left-ventricular blood pool from myocardial wall in echocardiographic images. A
computer simulation is used to outline differences in how Knowledge Based Imag-
ing, Bandwidth Imaging and Fundamental Imaging classify in various types of
noise. Fundamental Imaging classifies well in environment where tissue to blood
signal ratio is high and clutter to white noise ratio is lower than tissue to white



noise ratio. Knowledge Based Imaging classifies also well in this environment.
In addition Knowledge Based Imaging classifies well as long as blood to white
noise ratio is above 30 dB, regardless of the clutter to white noise ratio and the
tissue to blood signal ratio. This motivates for a better tissue differentiation in
apical areas.

Moreover, Bandwidth Imaging classifies similar to Knowledge Based Imaging,
but blood to white noise ratio has to be 20 dB higher to get the same value of
apparent error rate. Also, the simulations show that the optimal filter coefficient
prior to the autocorrelation estimate is linearly dependent of blood to white noise
ratio and clutter to white noise ratio. This argues for the linearly dependent filter
coefficient suggested in [1].

A few images of Knowledge Based Imaging are supplied in this paper, show-
ing that Knowledge Based Imaging can be adjusted to look similar to both
Fundamental Imaging and Bandwidth Imaging.

Finally, we acknowledge that more optimization and research are needed for
a clinical valuable implementation of Knowledge Based Imaging. First, the im-
plementation should be real time, and the challenges here are the maximizations
in equation (12) or integrations in equation (10). In the case of maximisations in
equation (12), the maximizations could be done by a Preconditioned Conjugate
Gradient Method.

Second, the box constraints of Knowledge Based Imaging have to be set
everywhere in the image. To some degree they could be found. The level of
white noise could be measured, while the transmitter is turned off. The velocity
and turbulence parameters in tissue and blood could be found from a priory
knowledge. Further, the signal characteristic could potentially be estimated by
for instance a Levenberg-Marquardt method with box constraints [11]. Also, the
potential of manual adjustment of parameters may also be investigated.
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