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Question. When is Ext∗Λ(M, Λ / r) finitely generated over (one of) Ext∗Λ(M, M)
and Ext∗Λ(Λ / r,Λ / r)?

It is not difficult to see that Ext∗Λ(M, Λ / r) is finitely generated over Ext∗Λ(M, M)
whenever M is periodic; suppose Ωp

Λ(M) = M and let µ denote the extension

0 → M → Pp−1 → · · · → P0 → M → 0.

If n ≥ p, say n = qp + i where 0 ≤ i < p, then an element of Extn
Λ(M, Λ / r) can be

written as fµq where f ∈ Exti
Λ(M, Λ / r). Since Exti

Λ(M, Λ / r) is finitely generated
over k for 0 ≤ i < p, the result follows.

As to the finiteness of Ext∗Λ(M, Λ / r) as an H-module, a criterion for when this
always happens was given in [EHSST, Proposition 1.4]. This result is actually much
stronger, as it states that Ext∗Λ(X,Y ) is finite over H for all finite Λ-modules X
and Y if and only if Ext∗Λ(Λ / r, Λ / r) is finite over H.

3. Reducing Complexity

We can use Theorem 2.3 to construct eventually periodic modules - and therefore
also periodic modules - of infinite projective dimension (the modules having finite
projective dimension are not very interesting in the context of eventual periodicity).
This is done by considering an (almost) arbitrary module and from it obtain a new
module whose minimal projective resolution behaves ”nicer”.

Let X =
⊕∞

n=0 Xn be a graded k-module of finite type. The rate of growth of
X, denoted γ(X), is defined as

γ(X) = inf{t ∈ N0 | ∃a ∈ R such that `k(Xn) ≤ ant−1 for n À 0},

and it may be finite or infinite (here N0 denotes N∪{0}). Now consider our module
M with the minimal projective resolution (Pi, di). The complexity of M , denoted
cxΛ M , is defined as the rate of growth of the graded k-module

⊕∞
n=0 Pn, that is

cxΛ M = inf{t ∈ N0 | ∃a ∈ R such that βn(M) ≤ ant−1 for n À 0}.

Thus the complexity of M indicates how the sequence of Betti numbers behaves with
respect to polynomial growth. From the definition we see that M has complexity
0 if and only if it has finite projective dimension, and that it has complexity less
than or equal to 1 if and only if its sequence of Betti numbers is bounded. The
main result of this section gives the existence of a new module whose complexity is
exactly one less than that of M . The proof uses the identity

cxΛ M = γ(Ext∗Λ(M, Λ / r)),

which provides a method for computing the complexity of a module. This identity
follows from the identities (see the paragraphs following [Ben, Definition 5.3.3])

γ(Ext∗Λ(M, Λ / r)) = max{γ(Ext∗Λ(M,S)) | S simple Λ-module}
βn(M) =

∑

S simple

`k(PS)
`k(HomΛ(S, S))

· `k(Extn
Λ(M,S)),

where PS denotes the projective cover of the simple module S.
Given a homogeneous element η in HH∗(Λ) of positive degree, we can interpret

it as a Λe-linear map η : Ω|η|Λe(Λ) → Λ, where Ωi
Λe(Λ) denotes the i’th syzygy in

the minimal projective Λe-resolution of Λ. Let Qi denote the i’th module in this
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resolution. By taking pushout we obtain the exact commutative diagram

0 // Ω|η|Λe(Λ) //

η

²²

Q|η|−1 //

²²

Ω|η|−1
Λe (Λ) // 0

0 // Λ // Kη // Ω|η|−1
Λe (Λ) // 0

of Λe-modules, whose bottom row we denote by ζη. Since Ω|η|−1
Λe (Λ) is projective

as a right (and left) Λ-module, the exact sequence ζη splits when considered as a
sequence of right (and left) Λ-modules. Applying −⊗Λ M therefore gives the exact
commutative diagram

0 // Ω|η|Λe(Λ)⊗Λ M //

η⊗ΛM

²²

Q|η|−1 ⊗Λ M //

²²

Ω|η|−1
Λe (Λ)⊗Λ M // 0

0 // M // Kη ⊗Λ M // Ω|η|−1
Λe (Λ)⊗Λ M // 0

of left Λ-modules, whose bottom row we denote by ζη⊗Λ M . Even though ζη splits
when considered as a sequence of left Λ-modules, this is not necessarily the case for
the new sequence. In fact, from [EHSST, Proposition 2.2] we see that the sequence
splits if and only if η annihilates Ext∗Λ(M,M).

The module Kη⊗ΛM is going to be the one having complexity one less than that
of M . However, as the above shows, the element η cannot be chosen arbitrarily,
for if ζη ⊗Λ M splits then the complexity of Kη ⊗Λ M equals that of M . To see
this, note that in a split short exact sequence the complexity of the middle term
equals the maximum of the complexities of the end terms, and that the complexities
of the end term modules in ζη ⊗Λ M are equal since Ω|η|−1

Λe (Λ) ⊗Λ M is a syzygy
of M (it does not matter that Ω|η|−1

Λe (Λ) ⊗Λ M in general is not a syzygy in the
minimal projective resolution of M , since projectively equivalent modules are of
equal complexity). Thus we must pick an η not annihilating Ext∗Λ(M, M).

Let N be any Λ-module. Applying the functor HomΛ(−, N) to ζη ⊗Λ M gives
the long exact sequence

HomΛ(M, N)
∂η−→ Ext|η|Λ (M, N) → Ext1Λ(Kη ⊗Λ M, N) → Ext1Λ(M,N)

∂η−→

...

∂η−→ Exti+|η|−1
Λ (M,N) → Exti

Λ(Kη ⊗Λ M,N) → Exti
Λ(M, N)

∂η−→
...

for Ext (we shall refer to this sequence as ES(M,N, η)), where we have replaced
Exti

Λ(Ω|η|−1
Λe (Λ)⊗Λ M, N) by Exti+|η|−1

Λ (M, N) for i ≥ 1 using dimension shift. By

making these replacements, the new connecting homomorphism Exti
Λ(M, N)

∂η−→
Exti+|η|

Λ (M, N) is just multiplication by (−1)iη, a fact which is vital for the proof
of the main theorem. To see this, note that applying HomΛ(−, N) to the above
commutative diagram gives rise to a commutative diagram of long exact sequences
in Ext. Tracing the connecting homomorphism ∂η then gives the desired result.
Whenever we refer to the exact sequence ES(M, N, η), we shall drop the sign (−1)i

in front of the multiplication map induced by η, as it is of no relevance.
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Note that if Fg holds, then Ext∗Λ(Kη ⊗Λ M, Λ / r) is a finitely generated H
module, regardless of the choice of η. To see this, consider the exact sequence

∞⊕

i=1

Exti+|η|−1
Λ (M, Λ / r) →

∞⊕

i=1

Exti
Λ(Kη ⊗Λ M, Λ / r) →

∞⊕

i=1

Exti
Λ(M, Λ / r)

induced by ES(M, Λ / r, η). Both the end terms are finitely generated over H, hence
so is the middle term because H is Noetherian. Since in addition HomΛ(Kη ⊗Λ

M, Λ / r) is finitely generated over k (which sits inside H0), the claim follows.
In addition to giving us an important tool for computing the complexity of a mod-

ule, the equality cxΛ M = γ(Ext∗Λ(M, Λ / r)) implies that the modules we work with
have finite complexity. For if Fg holds, then the rate of growth of Ext∗Λ(M, Λ / r) is
not more than that of H, since it is a quotient of a finitely generated free H-module.
Now as in the proof of Proposition 2.2, there is a finite set {a1, . . . , ar} in H of
homogeneous elements of positive degrees, generating H as an algebra over H0.
By the Hilbert-Serre Theorem (see [Ben, Proposition 5.3.1]) and [Ben, Proposition
5.3.2], we have that γ(H) equals the order of the pole at t = 1 of a certain rational
function g(t)/

∏r
i=1(1− t|ai|), where g ∈ Z[t]. Hence the rate of growth of H is not

more than r, implying cxΛ M ≤ r.
The aim is now to pick an η such that the rate of growth of Ext∗Λ(Kη⊗ΛM, Λ / r)

is one less than the rate of growth of Ext∗Λ(M, Λ / r). That such an element exists
is a consequence of the following result.

Proposition 3.1. Let A =
⊕∞

i=0 Ai be a commutative Noetherian graded k-algebra
of finite type over k, generated as an A0-algebra by homogeneous elements a1, . . . , ar

with |ai| = ni > 0. Let N =
⊕∞

i=0 Ni be a finitely generated graded A-module, and
pick a homogeneous element η ∈ A as in Proposition 2.1. Let w ∈ N be an integer
such that η : Ni → Ni+|η| is injective for i ≥ w, define Vi−w to be the cokernel of
this map, and denote by V the graded k-vector space

⊕∞
i=0 Vi. If γ(N) > 0, then

γ(V ) = γ(N)− 1.

Proof. Consider the Poincaré series P (N, t) =
∑∞

i=0 `k(Ni)ti of N . By the Hilbert-
Serre Theorem we have

P (N, t) =
f(t)∏r

i=1(1− tni)
,

for some f(t) ∈ Z[t], and from [Ben, Proposition 5.3.2] we see that γ(N) equals the
order of the pole of P (N, t) at t = 1. By assumption this integer is strictly greater
than zero.

Now consider the exact sequences

0 → Ni
η−→ Ni+|η| → Vi−w → 0

for i ≥ w. Taking k-module lengths we get `k(Vi) = `k(Ni+w+|η|) − `k(Ni+w) for
i ≥ 0, giving

P (V, t) =
∞∑

i=0

`k(Vi)ti =
∞∑

i=0

`k(Ni+w+|η|)ti −
∞∑

i=0

`k(Ni+w)ti.

Multiplying this equation by tw+|η| gives

tw+|η|P (V, t) =
∞∑

i=0

`k(Ni+w+|η|)ti+w+|η| − t|η|
∞∑

i=0

`k(Ni+w)ti+w

= (1− t|η|)P (N, t) + g(t),
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where g(t) is some polynomial in Z[t], and therefore

P (V, t) =
(1− t|η|)P (N, t)

tw+|η| +
g(t)

tw+|η|

=
(1− t|η|)f(t)

tw+|η|∏r
i=1(1− tni)

+
g(t)

tw+|η| .

Thus the order of the pole of P (V, t) at t = 1 is one less than that of P (N, t),
showing γ(V ) = γ(N)− 1. ¤

We now return to the setting given at the beginning of this section. With
Proposition 3.1 at hand, the main theorem is merely a corollary.

Theorem 3.2 (Reducing Complexity). Assume Fg holds and that M does not
have finite projective dimension. Then there exists a homogeneous element η ∈ H
of positive degree such that cxΛ(Kη ⊗Λ M) = cxΛ M − 1.

Proof. We use the previous proposition with A = H and N = Ext∗Λ(M, Λ / r).
There is an integer w ∈ N and a homogeneous element η ∈ H of positive degree
such that the multiplication map Exti

Λ(M, Λ / r)
η−→ Exti+|η|

Λ (M, Λ / r) is injective
for i ≥ w. From the long exact sequence ES(M, Λ / r, η) we then get short exact
sequences

0 → Exti
Λ(M, Λ / r)

η−→ Exti+|η|
Λ (M, Λ / r) → Exti+1

Λ (Kη ⊗Λ M, Λ / r) → 0

for i ≥ w. Using Proposition 3.1 we now get

cxΛ(Kη ⊗Λ M) = γ(Ext∗Λ(Kη ⊗Λ M, Λ / r))

= γ(
∞⊕

i=w+1

Exti
Λ(Kη ⊗Λ M, Λ / r))

= γ(Ext∗Λ(M, Λ / r))− 1
= cxΛ M − 1.

¤

As a corollary we get a result which under certain conditions guarantees the ex-
istence of nonzero periodic modules. As mentioned in the beginning of the previous
section, the existence of such modules is not obvious. For example, in [Ra1], M.
Ramras introduced a nonempty class of commutative Noetherian local rings called
BNSI rings (short for ”Betti numbers strictly increase” rings), which are rings for
which every non-free module has a strictly increasing sequence of Betti numbers.
There exist a lot of finite dimensional algebras which are BNSI rings, for exam-
ple regular local rings of dimension at least two modulo any positive power of the
maximal ideal. Clearly, such rings cannot have nonzero periodic modules.

Corollary 3.3. Suppose Fg holds and that M has infinite projective dimension.
Then Λ has a nonzero periodic module.

Proof. Let d denote the complexity of M (by assumption d > 0). If d = 1 then
M is eventually periodic by Theorem 2.3, whereas if d > 1 the previous theorem
provides homogeneous elements η1, . . . , ηd−1 ∈ H having the property

cxΛ(Kηi ⊗Λ · · · ⊗Λ Kη1 ⊗Λ M) = d− i

for 1 ≤ i ≤ d − 1. Denote the module Kηd−1 ⊗Λ · · · ⊗Λ Kη1 ⊗Λ M by X. This
module has complexity one, and from the discussion prior to Proposition 3.1 we
see that Ext∗Λ(X, Λ / r) is a finitely generated H-module. Using Theorem 2.3 once
more, we get that X is eventually periodic.
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Now if we take an eventually periodic Λ-module of infinite projective dimension,
one of its syzygies is a nonzero periodic module. ¤

Remark. (i) The existence of a periodic Λ-module implies the existence of a periodic
module having period 1; if M is isomorphic to Ωp

Λ(M), where p ≥ 1, then the module⊕p−1
i=0 Ωi

Λ(M) is periodic of period 1 (here Ω0
Λ(M) = M).

(ii) Suppose Λ is a BNSI ring. Then there cannot exist a non-free Λ-module M for
which Fg holds, i.e. Ext∗Λ(M, Λ / r) is not finitely generated over any commutative
Noetherian graded subalgebra of HH∗(Λ); if such a module did exist, then the
corollary would imply the existence of a nonzero periodic Λ-module.

4. Generating Periodicity

In this section we consider the case when the period of an eventually periodic
module is ”detected” by a homogeneous element in the Hochschild cohomology
ring. We start by recalling the group ring case.

Assume k is an algebraically closed field and let G be a finite group. A nonzero
homogeneous element θ ∈ H|θ|(G, k) = Ext|θ|kG(k, k) can be interpreted as a sur-
jective kG-homomorphism θ : Ω|θ|kG(k) → k, the kernel of which it is customary to
denote by Lθ. The cohomological variety of Lθ is easily computed; from [Car,
Lemma 2.3] we have that VG(Lθ) equals VG(θ), i.e. the set of maximal ideals in
the group cohomology ring H·(G, k) containing θ. Now let N be a finitely gener-
ated kG-module. If VG(θ) ∩ VG(N) = {0}, then from the above and the equality
VG(X ⊗k Y ) = VG(X)∩VG(Y ), which holds for all finitely generated kG-modules
X and Y , we get VG(Lθ ⊗k N) = {0}. This is equivalent to Lθ ⊗k N being projec-
tive, and it follows from the proof of [Ben, Theorem 5.10.4] that N is isomorphic
to Ω|θ|kG(N)⊕ P , where P is a projective module. This gives

Ω|θ|kG(N) ' Ω|θ|kG(Ω|θ|kG(N)⊕ P ) ' Ω2|θ|
kG (N),

showing Ω|θ|kG(N) is periodic and therefore that N is isomorphic to a direct sum of
a periodic module and a projective module. If N contains no nonzero projective
summand we must have N ' Ω|θ|kG(N), with the period of N dividing |θ|, and in
this case the element θ is said to generate the periodicity of N .

Returning to the setting given in the previous sections, with k a commutative
Artin ring, Λ an Artin k-algebra (assumed to be projective as a k-module) and
M a finitely generated Λ-module, let η be a nonzero element in HH∗(Λ) of posi-
tive degree. Instead of considering the kernel of the corresponding Λe-linear map
η : Ω|η|Λe(Λ) → Λ (which is not necessarily surjective), we look at the pushout Kη

and the tensor module Kη ⊗Λ M , as we did in the last section.

Proposition 4.1. If the Λ-module Kη ⊗Λ M has finite projective dimension, then
M is eventually periodic with period dividing |η|.
Proof. Denote the projective dimension of Kη ⊗Λ M by d. From the long ex-
act sequence ES(M, Λ / r, η) we see that scalar multiplication by η induces k-
isomorphisms

Exti
Λ(M, Λ / r)

η−→ Exti+|η|
Λ (M, Λ / r)

for i > d. Now let · · · → P1
d1−→ P0

d0−→ M → 0 be the minimal projective resolution
of M , and recall the proof of Proposition 2.2. If we denote by ξ the image of η

in Ext∗Λ(M, M), represented by a map Ω|η|Λ (M)
ξ−→ M , then in the commutative
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variety by one dimension. Recall first that if η ∈ HHt∗(ψ∗Λ1, Λ) is a homogeneous
element, say η ∈ Exttm

Λe (ψmΛ1, Λ), then it can be represented by a Λe-linear map
fη : Ωtm

Λe (ψmΛ1) → Λ. This map yields a commutative diagram

0 // Ωtm
Λe (ψmΛ1) //

fη

²²

ψm(P tm−1)

²²

// Ωtm−1
Λe (ψmΛ1) // 0

0 // Λ // Kη // Ωtm−1
Λe (ψmΛ1) // 0

with exact rows, in which we have denoted by P i the ith module in the minimal
projective bimodule resolution of Λ. Note that up to isomorphism the module Kη

is independent of the map fη chosen to represent η.

Proposition 4.8. If both Fg(M, H,ψ, t) and Fg(Ω1
Λ(M), H, ψ, t) hold and M does

not have finite projective dimension, then there exists a homogeneous element η ∈ H

of positive degree such that dimVψ
H(Ω1

Λe(Kη)⊗Λ M) = dimVψ
H(M)− 1.

Proof. By assumption the H-modules Extt∗
Λ (ψ∗M, Λ / r) and Extt∗

Λ (ψ∗Ω1
Λ(M), Λ / r)

are finitely generated, hence by slightly generalizing the proof of [Be1, Proposition
2.1] we see that there exists a homogeneous element η ∈ H of positive degree, say
η ∈ Htm ⊆ Exttm

Λe (ψmΛ1,Λ), such that the multiplication maps

Extti
Λ(ψiM, Λ / r)

·η−→ Extt(i+m)
Λ (ψi+mM, Λ / r)

Extti
Λ(ψiΩ1

Λ(M), Λ / r)
·η−→ Extt(i+m)

Λ (ψi+mΩ1
Λ(M),Λ / r)

are both k-monomorphisms for i À 0. Consider the short exact sequence

0 → Λ → Kη → Ωtm−1
Λe (ψmΛ1) → 0

obtained from η. As Ωtm−1
Λe (ψmΛ1) is right Λ-projective, the sequence splits when

considered as a sequence of right Λ-modules, and consequently the sequence

0 → M → Kη ⊗Λ M → Ωtm−1
Λe (ψmΛ1)⊗Λ M → 0

is exact. For each i ≥ 0 the latter sequence induces a long exact sequence

Extti
Λ(ψi(Kη ⊗Λ M), Λ / r) → Extti

Λ(ψiM, Λ / r) ∂ti−−→
Extt(i+m)

Λ (ψi+mM, Λ / r) → Extti+1
Λ (ψi(Kη ⊗Λ M), Λ / r) →

Extti+1
Λ (ψiM, Λ / r)

∂ti+1−−−→ Extt(i+m)+1
Λ (ψi+mM, Λ / r)

in which we have replaced Extj
Λ(ψi(Ωtm−1

Λe (ψmΛ1)⊗Λ M),Λ / r) with
Extj+tm−1

Λ (ψi+mM, Λ / r), due to the fact that ψi(Ωtm−1
Λe (ψmΛ1)⊗Λ M) is a

(tm − 1)th syzygy of ψi+mM . By [Mac, Theorem III.9.1] the connecting homo-
morphism ∂j is then the Yoneda product with the extension (−1)j

ψi(η ⊗Λ M), in
particular we see that ∂ti is scalar multiplication with (−1)tiη.

Now consider the connecting homomorphism ∂ti+1. Applying the Yoneda rela-
tion (†) from Section 3 to η and the short exact sequence

θ : 0 → Ω1
Λ(M) → P0 → M → 0

gives the relation

(η ⊗Λ Ω1
Λ(M)) ◦ (ψm Λ1 ⊗Λ θ) = (−1)tm(Λ⊗Λθ) ◦ (η ⊗Λ M),

which we may twist by ψi to obtain the relation

ψi(η ⊗Λ Ω1
Λ(M)) ◦ ψi+mθ = (−1)tm

ψiθ ◦ ψi(η ⊗Λ M).
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This gives a commutative diagram

Extti
Λ(ψiΩ1

Λ(M), Λ / r)

·(−1)t(i+m)+1η

²²

ψi θ
// Extti+1

Λ (ψiM, Λ / r)

∂ti+1

²²
Extt(i+m)

Λ (ψi+mΩ1
Λ(M), Λ / r)

ψi+mθ
// Extt(i+m)+1

Λ (ψi+mM, Λ / r)

in which the horizontal maps are isomorphisms, hence the connecting homomor-
phism ∂ti+1 is also basically just scalar multiplication with η, as was the case with
∂ti. Consequently they are both injective for i À 0, giving a short exact sequence

(††) 0 → ti
Λ(ψiM, Λ / r)

·η−→ t(i+m)
Λ (ψi+mM, Λ / r) → ti+1

Λ (ψi(Kη ⊗Λ M), Λ / r) → 0

for large i (in which we have used the short hand notion j
Λ(−,−) for

Extj
Λ(−,−)). Note that we may identify Extti+1

Λ (ψi(Kη ⊗Λ M),Λ / r) with
Extti

Λ(ψi(Ω1
Λe(Kη)⊗Λ M), Λ / r); since Kη is right Λ-projective the projective bi-

module cover
0 → Ω1

Λe(Kη) → Q → Kη → 0

of Kη splits as a sequence of right Λ-modules, and therefore stays exact when
tensored with M . In addition, the Λ-module Q⊗Λ M is projective, hence

Extti+1
Λ (ψi(Kη ⊗Λ M),Λ / r) ' Extti

Λ(ψi(Ω1
Λe(Kη)⊗Λ M),Λ / r).

Consider now the H-module Extt∗
Λ (ψ∗(Ω1

Λe(Kη)⊗Λ M), Λ / r), and let w
be an integer such that the sequence (††) is exact for i ≥ w. Then
the submodule

⊕∞
i=w Extti

Λ(ψi(Ω1
Λe(Kη)⊗Λ M), Λ / r) is finitely generated over

H, being a factor module of the submodule
⊕∞

i=w Extt(i+m)
Λ (ψi+mM, Λ / r) of

the finitely generated H-module Extt∗
Λ (ψ∗M, Λ / r). But then the H-module

Extt∗
Λ (ψ∗(Ω1

Λe(Kη)⊗Λ M),Λ / r) must be finitely generated itself, since each graded
part Exttj

Λ (ψj (Ω1
Λe(Kη)⊗Λ M),Λ / r) is finitely generated over H0. Also, from [Be1,

Proposition 3.1] we get

γ

( ∞⊕

i=w

Extti
Λ(ψi(Ω1

Λe(Kη)⊗Λ M), Λ / r)

)
= γ

( ∞⊕

i=w

Extt(i+m)
Λ (ψi+mM, Λ / r)

)
− 1,

and since for any Λ-module X the rate of growth of Extt∗
Λ (ψ∗X, Λ / r) equals that

of
⊕∞

i=w Extti
Λ(ψiX, Λ / r) we get

γ
(
Extt∗

Λ (ψ∗(Ω1
Λe(Kη)⊗Λ M), Λ / r)

)
= γ

(
Extt∗

Λ (ψ∗M, Λ / r)
)− 1.

Therefore the equality cxt
(
Ω1

Λe(Kη)⊗Λ M
)

= cxt M −1 holds, and so from Propo-
sition 4.5 we conclude that dim Vψ

H(Ω1
Λe(Kη)⊗Λ M) = dimVψ

H(M)− 1. ¤

Finally we turn to the setting in which Fg(X, H, ψ, t) holds for all Λ-modules
X, and derive two corollaries from Proposition 4.8. Observe first that if
Fg(Λ / r,H, ψ, t) holds, then Fg(S, H,ψ, t) holds for every simple Λ-module S,
and so by induction on the length of a module we see that Fg(X, H, ψ, t) holds
for every Λ-module X; namely, if `(X) ≥ 2, choose a submodule Y ⊂ X such that
`(Y ) = `(X)− 1. The exact sequence

0 → Y → X → X/Y → 0

induces the exact sequence

Extt∗
Λ (ψ∗(X/Y ), Λ / r) → Extt∗

Λ (ψ∗X, Λ / r) → Extt∗
Λ (ψ∗Y, Λ / r)

of H-modules, and since the end terms are finite over H, so is the middle term.
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Corollary 4.9. If Fg(Λ / r,H, ψ, t) holds and dimVψ
H(M) = d > 0, then there ex-

ist homogeneous elements η1, . . . , ηd−1 ∈ H of positive degrees such that the module

Ω1
Λe(Kηd−1)⊗Λ · · · ⊗Λ Ω1

Λe(Kη1)⊗Λ M

is eventually ψi-periodic for some i ≥ 1.

Proof. This is a direct consequence of Proposition 4.6 and Proposition 4.8. ¤

Corollary 4.10. Suppose k is a field and Λ is a Frobenius algebra, and let Λ ν−→ Λ
be a Nakayama automorphism. If Fg(Λ / r,H, νn, 2n) holds for some n ≥ 1 and
dimVν

H(M) = d > 0, then there exist homogeneous elements η1, . . . , ηd−1 ∈ H of
positive degrees such that every nonzero nonprojective indecomposable summand of

Ω1
Λe(Kηd−1)⊗Λ · · · ⊗Λ Ω1

Λe(Kη1)⊗Λ M

is τ -periodic.

Proof. This is a direct consequence of Proposition 4.7 and Proposition 4.8. ¤
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IV.

MODULES WITH REDUCIBLE COMPLEXITY

abstract

For a commutative Noetherian local ring we define and study the class of modules
having reducible complexity, a class containing all modules of finite complete inter-
section dimension. Various properties of this class of modules are given, together
with results on the vanishing of homology and cohomology.

This paper is to appear in J. Algebra.



MODULES WITH REDUCIBLE COMPLEXITY

PETTER ANDREAS BERGH

1. Introduction

The complexity of a finitely generated module over a commutative Noetherian
local ring is a measure on a polynomial scale of the growth of the ranks of the
free modules in its minimal free resolution. Over a local complete intersection
every finitely generated module has finite complexity. In fact, it follows from [Gul,
Theorem 2.3] that this property characterizes a local complete intersection, and
that it is equivalent to the complexity of the residue field being finite.

In [AGP] a certain finiteness condition was defined under which a module behaves
homologically like a module over a complete intersection. Namely, a module M over
a commutative Noetherian local ring A has finite complete intersection dimension if
there exist local rings R and Q and a diagram A → R ´ Q of local homomorphisms
(called a quasi-deformation of A) such that A → R is faithfully flat, R ´ Q is
surjective with kernel generated by a regular sequence, and pdQ(R⊗A M) is finite.
There is of course a reason behind the choice of terminology; it was shown in [AGP]
that a local ring is a complete intersection if and only if all its finitely generated
modules have finite complete intersection dimension, and that this is equivalent to
the finiteness of the complete intersection dimension of the residue field. Moreover,
it was shown that if the projective dimension of a module is finite, then it is equal
to the complete intersection dimension of the module.

We shall study a class of modules whose complexity is “reducible” (defined in
the next section), a class which contains all modules of finite complete intersection
dimension. In particular, we investigate for this class of modules the vanishing of
homology and cohomology, and generalize several of the results in [ArY], [ChI],
[Jo1] and [Jo2].

2. reducible complexity

Throughout this paper we let (A, m, k) be a commutative Noetherian local ring,
and we suppose all modules are finitely generated. We fix a finitely generated
nonzero A-module M with minimal free resolution

FM : · · · → F2 → F1 → F0 → M → 0.

The rank of Fn, i.e. the integer dimk Extn
A(M, k), is the n’th Betti number of M ,

and we denote this by βn(M). The complexity of M , denoted cx M , is defined as

cx M = inf{t ∈ N0 | ∃a ∈ R such that βn(M) ≤ ant−1 for n À 0},
where N0 = N∪{0}. In general the complexity of a module may be infinite, whereas
it is zero if and only if the module has finite projective dimension.

We now give the main definition, which is inductive and defines the class of
modules having reducible complexity as a subcategory of the category of (finitely
generated) A-modules having finite complexity. However, before stating the defin-
ition, recall that the n’th syzygy of an A-module X with minimal free resolution

· · · → P2 → P1 → P0 → X → 0
1
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is the cokernel of Pn+1 → Pn and denoted by Ωn
A(X) (note that Ω0

A(X) = X), and
it is unique up to isomorphism. For an A-module Y and a homogeneous element
η ∈ Ext∗A(X,Y ), choose a map fη : Ω|η|A (X) → Y representing η, and denote by Kη

the pushout of this map and the inclusion Ω|η|A (X) ↪→ P|η|−1. As parallel maps in
a pushout diagram have isomorphic cokernels, we obtain an exact sequence

0 → Y → Kη → Ω|η|−1
A (X) → 0.

Note that the middle term Kη is independent (up to isomorphism) of the map fη

chosen to represent η.

Definition 2.1. Let CA denote the category of all A-modules having finite complex-
ity. The subcategory Cr

A ⊆ CA of modules having reducible complexity is defined
inductively as follows:

(i) Every module of finite projective dimension belongs to Cr
A.

(ii) A module X ∈ CA with cx X > 0 belongs to Cr
A if there exists a homo-

geneous element η ∈ Ext∗A(X, X) of positive degree such that cxKη <
cxX, depthKη = depth X and Kη ∈ Cr

A. We say that the element η reduces
the complexity of M .

Remark. The condition depth Kη = depth X is not very strong; suppose for example
that depth Ωi

A(X) ≤ depth A for all i (this always happens when A is Cohen-
Macaulay). Then we must have depth X ≤ depthΩ|η|−1

A (X), implying the equality
depth Kη = depth X.

Note the trivial fact that if every A-module has reducible complexity, then A
must be a complete intersection since then by definition every module has finite
complexity. The following result shows that the converse is also true, in fact every
module of finite complete intersection dimension has reducible complexity. More-
over, if A is Cohen-Macaulay and M has reducible complexity, then so does any
syzygy of M .

Proposition 2.2. (i) Every module of finite complete intersection dimension
has reducible complexity.

(ii) If A is Cohen-Macaulay and M has reducible complexity, then so does the
kernel of any surjective map F ³ M when F is free. In particular, any
syzygy of M has reducible complexity.

(iii) if B is a local ring and A → B a faithfully flat local homomorphism, then
if M has reducible complexity, so does the B-module B ⊗A M .

Proof. (i) If M has finite complete intersection dimension, then from [AGP, Propo-
sition 5.2] it follows that the complexity of M is finite. We argue by induction on
cxM that M has reducible complexity, the case cx M = 0 following from the defini-
tion. Suppose therefore that the complexity of M is nonzero. By [AGP, Proposition
7.2] there exists an eventually surjective chain map of degree −n (where n > 0) on
the minimal free resolution of M . This chain map corresponds to an element η of
Extn

A(M,M), giving the exact commutative diagram

0 // Ωn
A(M) //

fη

²²

Fn−1
//

²²

Ωn−1
A (M) // 0

0 // M // Kη // Ωn−1
A (M) // 0

of A-modules.
Now consider the exact sequence involving Kη. Since M and Ωn−1

A (M) both
have finite complete intersection dimension, then so does Kη. The exact sequence
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gives rise to a long exact sequence

· · · → Exti
A(Kη, k) → Exti

A(M, k)
∂η−→ Exti+n

A (M,k) → Exti+1
A (Kη, k) → · · · ,

where Exti
A(Ωn−1

A (M), k) has been identified with Exti+n−1
A (M, k). It follows from

[Mac, Theorem III.9.1] that the connecting homomorphism ∂η : Exti
A(M,k) →

Exti+n
A (M, k) is then scalar multiplication by (−1)iη (we think of Ext∗A(M,k) as

a graded right module over the graded ring Ext∗A(M, M)), and reversing the argu-
ments in the proof of [Ber, Proposition 2.2] shows that this is an injective map for
i À 0. Consequently the equality βi+1(Kη) = βi+n(M) − βi(M) holds for large
values of i. By [AGP, Theorem 5.3] the complexities cx M and cx Kη equal the
orders of the poles at t = 1 of the Poincaré series

∑
βn(M)tn and

∑
βn(Kη)tn,

respectively, thus cx Kη = cx M − 1.
It remains only to show that depth Kη = depth M , but this is easy; from [AGP,

Theorem 1.4] we have 0 ≤ CI-dimΩi
A(M) = depth A−depthΩi

A(M) for each i ≥ 0,
and this implies the inequality depth Ωi

A(M) ≤ depthΩi+1
A (M). In particular we

have depth M ≤ depthΩn−1
A (M), and therefore depth Kη must equal depth M .

(ii) Let L denote the kernel of the surjective map F ³ M . Again we argue
by induction on cxM . If the projective dimension of M is finite, then so is the
projective dimension of L, and we are done. Suppose therefore cxM is nonzero,
and let η ∈ Ext∗A(M,M) be an element reducing the complexity of M . By the
Horseshoe Lemma we have an exact commutative diagram

0

²²

0

²²

0

²²
0 // L

²²

// K ⊕Q

²²

// Ω|η|−1
A (L)

²²

// 0

0 // F

²²

// F ′ ⊕Q

²²

// F ′′ ⊕Q

²²

// 0

0 // M

²²

// Kη

²²

// Ω|η|−1
A (M)

²²

// 0

0 0 0

where F ′ and F ′′ are free modules, and Q is a free module such that Ω|η|A (M)⊕Q '
Ω|η|−1

A (L). If M and Kη are maximal Cohen-Macaulay, then so are L and K ⊕Q,
and if not then depth L = depth M +1 and depth(K⊕Q) = depth Kη +1. In either
case we see that depthL equals depth(K ⊕ Q). Moreover, we have cx(K ⊕ Q) =
cxKη < cxM = cx L, and so by induction we are done.

Note that the upper horizontal short exact sequence in the above diagram cor-
responds to an element θ in Ext|η|A (L, L) reducing the complexity of L. A map
fθ : Ω|η|A (L) → L representing θ is obtained by lifting a map fη representing η along
the minimal free resolution of M , as in the diagram

0 // Ω|η|+1
A (M)

ΩA(fη)

²²

// F|η|

²²

// Ω|η|A (M)

fη

²²

// 0

0 // L // F // M // 0
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In this way we obtain a map ΩA(fη) : Ω|η|+1
A (M) → L, and adding to Ω|η|+1

A (M) a
free module Q′ such that Ω|η|+1

A (M)⊕Q′ ' Ω|η|A (L), we obtain a map Ω|η|A (L) → L
representing θ.

(iii) If X is any A-module with a minimal free resolution FX , then the complex
B ⊗A FX is a minimal free B-resolution of B ⊗A X, giving the equality cxA X =
cxB(B⊗A X). Moreover, if Y is another A-module then from [Mat, Theorem 23.3]
we have depthA X − depthA Y = depthB(B ⊗A X) − depthB(B ⊗A Y ). Hence if
η ∈ Ext∗A(M, M) reduces the complexity of M , the element B ⊗A η ∈ Ext∗B(B ⊗A

M,B ⊗A M) reduces the complexity of B ⊗A M . ¤

Thus the class of modules having finite complete intersection dimension is con-
tained in the class of modules having reducible complexity. However, the following
example shows that the inclusion is strict in general; there are a lot of modules
having reducible complexity but whose complete intersection dimension is infinite.

Example. Suppose M is periodic of period p ≥ 3 (i.e. Ωp
A(M) is isomorphic to

M), and that depth M ≤ depthΩp−1
A (M). Then we have an exact sequence

0 → M → Fp−1 → Ωp−1
A (M) → 0,

and we have 0 = cx Fp−1 = cx M − 1 and depth Fp−1 = depth M . Therefore M
has reducible complexity, and it cannot be of finite complete intersection dimension
since then by [AGP, Theorem 7.3] the period would have been two.

An example of such a module was given in [GaP, Section3]; let (A,m, k) be the
commutative local finite dimensional k-algebra k[x1, x2, x3, x4]/ a, where a is the
ideal generated by the quadratic forms

x2
1, x2

2, x2
3, x2

4, x3x4, x1x4 + x2x4, αx1x3 + x2x3

for a nonzero element α ∈ k. The complex

· · · → A2 d2−→ A2 d1−→ A2 d0−→ M → 0,

where the maps are given by the matrices

dn =
(

x1 αnx3 + x4

0 x2

)
,

is a minimal free resolution of the module M := Im d0, and so if α has finite order
p we see that M is periodic of period p.

It is worth mentioning that there do exist examples of modules over Gorenstein
rings whose complete intersection dimension is not finite but which have reducible
complexity (see [GaP, Proposition 3.1] for an example similar to that above).

Now let X and Y be arbitrary A-modules, and θ1 ∈ Ext∗A(X, X) and θ2 ∈
Ext∗A(X, Y ) two homogeneous elements. The following lemma, motivated by
[EHSST, Lemma 7.2], links Kθ1 and Kθ2 to Kθ2θ1 , and will be a key ingredient
in several of the forthcoming results.

Lemma 2.3. If θ1 ∈ Ext∗A(X, X) and θ2 ∈ Ext∗A(X, Y ) are two homogeneous
elements, then there exists an exact sequence

0 → Ω|θ2|
A (Kθ1) → Kθ2θ1 ⊕ F → Kθ2 → 0

of A-modules, where F is free.
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Proof. Denote |θi| by ni for i = 1, 2. The element θ1 gives rise to an exact commu-
tative diagram

0 // Ωn1
A (X)

fθ1

²²

i // Qn1−1

h

²²

π // Ωn1−1
A (X) // 0

0 // X
j // Kθ1

// Ωn1−1
A (X) // 0

where Qn denotes the n’th module in the minimal free resolution of X. Letting
Q

g−→ X be a surjection, where Q is free, we can modify the diagram and obtain

0

²²

0

²²
Ker(h, jg)

²²

Ker(h, jg)

²²
0 // Ωn1

A (X)⊕Q

(fθ1 ,g)

²²²²

( i 0
0 1 )

// Qn1−1 ⊕Q

(h,jg)
²²²²

(π,0) // Ωn1−1
A (X) // 0

0 // X
j //

²²

Kθ1
//

²²

Ωn1−1
A (X) // 0

0 0

Since Ker(h, jg) is isomorphic to Ω1
A(Kθ1) ⊕ Q′ for some free module Q′, the left

vertical exact sequence yields an exact sequence

0 → Ω1
A(Kθ1)⊕Q′ → Ωn1

A (X)⊕Q
(fθ1 ,g)−−−−→ X → 0

on which we can apply the Horseshoe Lemma and obtain an exact sequence

µ : 0 → Ωn2
A (Kθ1) → Ωn1+n2−1

A (X)⊕ F
(Ω

n2−1
A (fθ1 ),s)−−−−−−−−−−→ Ωn2−1

A (X) → 0,

where F is free and F
s−→ Ωn2−1

A (X) is a map.
The definition of cohomological products and the pushout properties of Kθ2θ1

give a commutative diagram

0 // Y // Kθ2θ1

w //

t

²²

Ωn1+n2−1
A (X) //

Ω
n2−1
A (fθ1 )

²²

0

0 // Y // Kθ2

v // Ωn2−1
A (X) // 0
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with exact rows. Adding F to Kθ2θ1 and Ωn1+n2−1
A (X) in the right-most square,

we obtain the exact commutative diagram

0

²²

0

²²
Ωn2

A (Kθ1)

²²

Ωn2
A (Kθ1)

²²
0 // Y // Kθ2θ1 ⊕ F

(w 0
0 1 )

//

(t,r)

²²

Ωn1+n2−1
A (X)⊕ F //

(Ω
n2−1
A (fθ1 ),s)

²²

0

0 // Y // Kθ2

²²

v // Ωn2−1
A (X)

²²

// 0

0 0

in which the right vertical exact sequence is µ and F
r−→ Kθ2 is a map with the

property that s = vr. The left vertical exact sequence is of the form we are
seeking. ¤

We end this section with two results on modules over complete intersections.
Recall that a maximal Cohen-Macaulay (or “MCM” from now on) approximation
of an A-module X is an exact sequence

0 → YX → CX → X → 0

where CX is MCM and YX has finite injective dimension, and that a hull of finite
injective dimension of X is an exact sequence

0 → X → Y X → CX → 0

where CX is MCM and Y X has finite injective dimension. These notions were
introduced in [AuB], where it was shown that every finitely generated module
over a commutative Noetherian ring admitting a dualizing module has a MCM
approximation and a hull of finite injective dimension. The following result provides
a simple proof of the complete intersection case, using a technique similar to the
proof of the main result in [Bak] and the fact that over a complete intersection
every module has reducible complexity.

Proposition 2.4. Suppose A is a complete intersection.

(i) If η ∈ Ext|η|A (M,M) reduces the complexity of M , then so does ηt for t ≥ 1.
(ii) Every A-module has a MCM approximation and a hull of finite injective

dimension.

Proof. (i) Using Lemma 2.3 it is easily proved by induction on t that cx Kηt ≤
cxKη.

(ii) Fix an exact sequence

0 → Y → C → M → 0

where C is MCM (the minimal free cover of M , for example). If the complexity of
Y is nonzero, let η ∈ Ext|η|A (Y, Y ) be an element reducing it, and choose an integer
t ≥ 1 with the property that Ωt|η|−1

A (Y ) is MCM. The element ηt is given by the
exact sequence

0 → Y → Kηt → Ωt|η|−1
A (Y ) → 0,
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and by (i) it also reduces the complexity of Y . From the pushout diagram

0

²²

0

²²
0 // Y

²²

// Kηt

²²

// Ωt|η|−1
A (Y ) // 0

0 // C

²²

// C ′

²²

// Ωt|η|−1
A (Y ) // 0

M

²²

M

²²
0 0

we obtain the exact sequence

0 → Y ′ → C ′ → M → 0

(with Y ′ = Kηt), where C ′ is MCM and cx Y ′ < cx Y . Repeating the process we
eventually obtain a MCM approximation of M , since over a Gorenstein ring a mod-
ule has finite injective dimension precisely when it has finite projective dimension.

As for a hull of finite injective dimension, fix an exact sequence

0 → M → Y → C → 0

where C is MCM (obtained for example from a suitable power of an element in
Ext∗A(M,M) reducing the complexity of M). If the complexity of Y is nonzero,
choose as above an element η ∈ Ext|η|A (Y, Y ) reducing it, and let t ≥ 1 be an integer
such that Ωt|η|−1

A (Y ) is MCM. From the pushout diagram

0

²²

0

²²
M

²²

M

²²
0 // Y

²²

// Kηt

²²

// Ωt|η|−1
A (Y ) // 0

0 // C

²²

// C ′

²²

// Ωt|η|−1
A (Y ) // 0

0 0

we obtain the exact sequence

0 → M → Y ′ → C ′ → 0

(with Y ′ = Kηt), where C ′ is MCM and cx Y ′ < cx Y . Repeating the process we
eventually obtain a hull of finite injective dimension of M . ¤
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3. Vanishing results

This section investigates the vanishing of cohomology and homology for a module
having reducible complexity, and the following is assumed throughout :

Assumption. The module M has reducible complexity, and N is a nonzero A-
module. If cx M > 0, then there exist A-modules K1, . . . ,Kc and a set of cohomo-
logical elements {ηi ∈ Ext|ηi|

A (Ki−1,Ki−1)}c
i=1 given by exact sequences

0 → Ki−1 → Ki → Ω|ηi|−1
A (Ki−1) → 0

for i = 1, . . . , c (where K0 = M), satisfying depth Ki = depthM, cxKi < cxKi−1

and cx Kc = 0 (such elements ηi must exist by Definition 2.1).

For an A-module N , we define qA(M, N) and pA(M, N) by

qA(M, N) = sup{n | TorA
n (M, N) 6= 0},

pA(M, N) = sup{n | Extn
A(M,N) 6= 0}.

The definition of modules having reducible complexity suggests that when proving
results about qA(M, N) and pA(M, N), we use induction on the complexity of M .

The first result and its corollary (which considers a conjecture of Auslander and
Reiten) consider the vanishing of cohomology, and generalize [ArY, Theorem 4.2
and Theorem 4.3].

Theorem 3.1. The following are equivalent.
(i) There exists an integer t > depth A−depth M such that Extt+i

A (M, N) = 0
for 0 ≤ i ≤ |η1|+ · · ·+ |ηc| − c.

(ii) pA(M, N) < ∞.
(iii) pA(M, N) = depth A− depth M.

Proof. We only need to show the implication (i) ⇒ (iii), and we do this by induc-
tion on cx M . If the projective dimension of M is finite, then by the Auslander-
Buchsbaum formula it is equal to depth A−depth M . Since N is finitely generated,
we have N 6= m N by Nakayama’s Lemma, hence there exists a nonzero element
x ∈ N \ mN . The map A → N defined by 1 7→ x then gives rise to a nonzero
element of Extpd M

A (M, N), and therefore pA(M, N) = depth A− depth M .
Now suppose the complexity of M is nonzero, and consider the exact sequence

(†) 0 → M → K1 → Ω|η1|−1
A (M) → 0.

The vanishing interval for Exti
A(M, N) implies that Extt+i

A (K1, N) = 0 for 0 ≤ i ≤
|η2| + · · · + |ηc| − (c − 1), and so by induction pA(K1, N) = depth A − depth K1.
Since we have equalities pA(M, N) = pA(K1, N) and depth M = depth K1, we are
done. ¤

Corollary 3.2. pA(M, M) = pd M .

Proof. Suppose pA(M, M) < ∞. If the projective dimension of M is not finite,
i.e. if cx M > 0, then consider the exact sequence (†) representing η1 (from the
proof of Theorem 3.1), where K1 = Kη1 . Since η1 is nilpotent there is an integer
t such that ηt

1 = 0, and therefore cx Kηt
1

= cxM . But using Lemma 2.3 we see
that cx Kηi

1
≤ cxKη1 for all i ≥ 1, and since cx Kη1 < cxM we have reached

a contradiction. Therefore the projective dimension of M is finite and equal to
depth A − depth M by the Auslander-Buchsbaum formula, and from Theorem 3.1
we see that pA(M,M) = pd M . ¤

The next result is a homology version of Theorem 3.1, and it is closely related
to [Jo1, Theorem 2.1].
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Theorem 3.3. The following are equivalent.
(i) There exists an integer t > depth A−depth M such that TorA

t+i(M, N) = 0
for 0 ≤ i ≤ |η1|+ · · ·+ |ηc| − c.

(ii) qA(M, N) < ∞.
(iii) depth A− depth M − depth N ≤ qA(M, N) ≤ depth A− depth M.

Proof. We only need to show the implication (i)⇒ (iii), and we do this by induction
on cx M . The case pd M < ∞ follows from the Auslander-Buchsbaum formula and
[ChI, Remark 8], so suppose therefore cxM > 0, and consider the exact sequence
(†) from the proof of Theorem 3.1. Since TorA

t+i(K1, N) = 0 for 0 ≤ i ≤ |η2|+ · · ·+
|ηc| − (c− 1), we get by induction that the inequalities hold for K1 and N . But as
in the previous proof we have qA(M,N) = qA(K1, N) and depth M = depth K1,
hence the inequalities hold for M and N . ¤

The following result contains half of [ChI, Theorem 3] (and a version of the first
half of [ArY, Theorem 2.5]) and the main result from [Jo2] for Cohen-Macaulay
rings, which says that the integer qA(M,N) can be computed locally. It also es-
tablishes the depth formula provided N is maximal Cohen-Macaulay.

Theorem 3.4. (i) If qA(M,N) is finite and depthTorA
qA(M,N)(M,N) = 0,

then
qA(M, N) = depth A− depth M − depth N.

(ii) If A is Cohen-Macaulay and qA(M,N) is finite, then the equality

qA(M, N) = sup{ht p−depth Mp − depth Np | p ∈ Spec A}
holds.

(iii) If qA(M,N) = 0 and N is maximal Cohen-Macaulay, then the depth for-
mula holds for M and N , i.e.

depth M + depth N = depth A + depth(M ⊗N).

Proof. (i) We argue by induction on cx M , the case pd M < ∞ following from [Aus,
Theorem 1.2] and the Auslander-Buchsbaum formula. Suppose therefore that the
complexity of M is nonzero, and consider the exact sequence (†) from the proof
of Theorem 3.1. Since TorA

qA(M,N)(M, N) is a submodule of TorA
qA(M,N)(K1, N),

the latter is also of depth zero, hence by induction and the equalities qA(K1, N) =
qA(M, N), depthK1 = depth M we are done.

(ii) Suppose qA(M, N) is finite, and let p ⊆ A be a prime ideal. If M has finite
projective dimension, so has Mp, and from Theorem 3.3 we get qAp(Mp, Np) ≥
ht p− depth Mp − depth Np. If cx M > 0, consider the exact sequences

0 → Ki−1 → Ki → Ω|ηi|−1
A (Ki−1) → 0

for i = 1, . . . , c (where K0 = M), satisfying depth Ki = depthM, cxKi < cxKi−1

and cx Kc = 0. Localizing at p, we see that depth(Ki)p = depth Mp (as in the
remark following Definition 2.1), and that qAp((Ki)p, Np) = qAp((Ki−1)p, Np). As
Kc has finite projective dimension we get

qAp(Mp, Np) = qAp((Kc)p, Np)
≥ ht p− depth(Kc)p − depth Np

= ht p− depth Mp − depth Np,

hence since qA(M, N) ≥ qAp(Mp, Np) the inequality

qA(M, N) ≥ sup{ht p−depth Mp − depth Np | p ∈ Spec A}
holds.



10 PETTER ANDREAS BERGH

For the reverse inequality, choose any associated prime p of TorA
qA(M,N)(M, N).

Then qA(M, N) = qAp(Mp, Np) and depthTorAp

qAp (Mp,Np)
(Mp, Np) = 0, and a small

adjustment of the proof of (i) above gives

qAp(Mp, Np) = ht p− depth Mp − depth Np.

(iii) Again we argue by induction on cxM , where the case pd M < ∞ follows
from [Aus, Theorem 1.2]. Suppose cx M > 0, and consider the exact sequence
(†). We have qA(K1, N) = 0, hence by induction the depth formula holds for
K1 and N . Since depth K1 = depthM , we only have to prove that the equality
depth(M ⊗N) = depth(K1 ⊗N) holds. For each i ≥ 0 we have an exact sequence

0 → Ωi+1
A (M)⊗N → Fi ⊗N → Ωi

A(M)⊗N → 0,

and as N is maximal Cohen-Macaulay we must have that depth
(
Ωi

A(M)⊗N
)

is at most depth
(
Ωi+1

A (M)⊗N
)
. In particular the inequality depth(M ⊗ N) ≤

depth
(
Ω|η1|−1

A (M)⊗N
)

holds, and therefore when tensoring the sequence (†) with
N we see that depth(M ⊗N) = depth(K1 ⊗N). ¤

The next result deals with symmetry in the vanishing of Ext. It was shown
in [AvB] that if X and Y are modules over a complete intersection A, then
Exti

A(X, Y ) = 0 for i À 0 if and only if Exti
A(Y, X) = 0 for i À 0. This was

generalized in [HuJ] to a class of local Gorenstein rings named “AB rings”, a class
properly containing the class of complete intersections. Another generalization ap-
peared in [Jør], where techniques from the theory of derived categories were used
to show that symmetry in the vanishing of Ext holds for modules of finite complete
intersection dimension over local Gorenstein rings.

Theorem 3.5. If A is Gorenstein then the implication

pA(N,M) < ∞⇒ pA(M,N) < ∞
holds. In particular, symmetry in the vanishing of Ext holds for modules with
reducible complexity over a local Gorenstein ring.

Proof. Define the integer w (depending on M) by

w = depth A− depth M + |η1|+ · · ·+ |ηc| − c.

If for some integer i ≥ 1 we have TorA
i (M, N) = · · · = TorA

i+w(M, N) = 0, then
TorA

i (M, N) = 0 for all i ≥ 1 by Theorem 3.3. The result now follows from [Jør,
Theorem 1.7 and Proposition 2.2]. ¤

The final result deals with the vanishing of homology for two modules when A is
a complete intersection. Namely, in this situation the homology modules are given
as the homology modules of two modules of finite projective dimension, due to the
fact that every module over a complete intersection has reducible complexity.

Theorem 3.6. Suppose A is a complete intersection, and let X and Y be A-modules
such that TorA

i (X, Y ) = 0 for i À 0. Then there exist A-modules X ′ and Y ′, both
of finite projective dimension, such that depth X = depth X ′,depth Y = depthY ′

and TorA
i (X, Y ) ' TorA

i (X ′, Y ′) for i > 0.

Proof. If the complexity of one of X and Y , say X, is nonzero, choose a homo-
geneous element η ∈ Ext∗A(X, X) reducing the complexity. By Proposition 2.4(i)
any power of η also reduces the complexity of X, so choose an integer t such that
TorA

i (Ωt|η|−1
A (X), Y ) = 0 for i > 0. The element ηt is given by the short exact

sequence
0 → X → Kηt → Ωt|η|−1

A (X) → 0,
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therefore by the choice of t we see that TorA
i (X, Y ) and TorA

i (Kηt , Y ) are isomorphic
for i > 0. Since A is Cohen-Macaulay we automatically have depth X = depth Kηt ,
and repeating this process we eventually obtain what we want. ¤

This result has consequences for the study of the rigidity of Tor over Noetherian
local rings. This study was initiated by M. Auslander in his 1961 paper [Aus],
in which he proved his famous rigidity theorem; if X and Y are modules over
an unramified regular local ring R, and TorR

n (X, Y ) = 0 for some n ≥ 1, then
TorR

i (X, Y ) = 0 for all i ≥ n (recall that a regular local ring (S, mS) is said to be
ramified if it is of characteristic zero while its residue class field has characteristic
p > 0 and p is an element of m2

S). In 1966 S. Lichtenbaum extended Auslander’s
rigidity theorem to all regular local rings (see [Lic]), and subsequently Peskine
and Szpiro conjectured in [PeS] that the theorem holds for all Noetherian local
rings provided one of the modules in question has finite projective dimension. A
counterexample to the conjecture was provided by Heitmann in [Hei], where a
Cohen-Macaulay ring R together with R-modules X and Y were given, for which
pd X = 2 and TorR

1 (X,Y ) = 0, while TorR
2 (X, Y ) 6= 0.

However, whether the rigidity of Tor holds for Noetherian local rings provided
both modules involved have finite projective dimension is unknown. If this holds
over complete intersections, then Theorem 3.6 shows that the conjecture of Peskine
and Szpiro also holds for such rings (i.e. rigidity of Tor holds provided one of the
modules involved has finite projective dimension). In fact, the theorem shows that
if rigidity holds over a complete intersection R provided both modules have finite
projective dimension, then rigidity holds over R for all modules X and Y satisfying
TorR

i (X, Y ) = 0 for i À 0.

4. A generalization

In this final section we discuss a situation which slightly generalizes the con-
cept of reducible complexity. Instead of letting M have reducible complexity as in
Definition 2.1, we make the following assumption:

Assumption. The complexity of M is finite, and if it is nonzero then there exist
local rings {Ri}c

i=1 such that for each i ∈ {1, . . . , c} there is a faithfully flat local
homomorphism Ri−1 → Ri (where R0 = A), an Ri-module Ki, an integer ni and
an exact sequence

0 → Ri ⊗Ri−1 Ki−1 → Ki → Ωni

Ri
(Ri ⊗Ri−1 Ki−1) → 0

(where K0 = M) satisfying depthRi
Ki = depthRi

(Ri ⊗Ri−1 Ki−1), cxRi Ki <
cxRi−1 Ki−1 and pdRc

Kc < ∞.

Of course, if M has reducible complexity then by choosing each Ri to be A
we see that the assumption is satisfied. Now let S → T be any faithfully flat
local homomorphism, and X and Y any (finitely generated) S-modules. If FX

is a minimal S-free resolution of X, then the complex T ⊗S FX is a minimal
T -free resolution of T ⊗S X, and by [EGA, Proposition (2.5.8)] we have natural
isomorphisms

HomT (T ⊗S FX , T ⊗S Y ) ' T ⊗S HomS(FX , Y ),
(T ⊗S FX)⊗T (T ⊗S Y ) ' T ⊗S (FX ⊗S Y ).

Therefore we have isomorphisms

Exti
T (T ⊗S X,T ⊗S Y ) ' T ⊗S Exti

S(X, Y ),

TorT
i (T ⊗S X,T ⊗S Y ) ' T ⊗S TorS

i (X, Y ),
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and as T is faithfully S-flat we then get

Exti
T (T ⊗S X, T ⊗S Y ) = 0 ⇔ Exti

S(X,Y ) = 0,

TorT
i (T ⊗S X, T ⊗S Y ) = 0 ⇔ TorS

i (X, Y ) = 0.

We then get the equalities

cxS X = cxT (T ⊗S X)

pS(X, Y ) = pT (T ⊗S X, T ⊗S Y )

qS(X, Y ) = qT (T ⊗S X, T ⊗S Y )
depthS X − depthS Y = depthT (T ⊗S X)− depthT (T ⊗S Y ),

where the one involving depth follows from [Mat, Theorem 23.3].
Using the above facts it is easy to see that both Theorem 3.1 and Corollary 3.2

remain true in this new situation, as does Theorem 3.3 if we drop the left inequality
in (iii).

Suppose now that M has finite complete intersection dimension. Then [AGP,
Proposition 7.2] and an argument similar to the proof of Proposition 2.2(i) show that
M satisfies this new assumption and that ni = 1 for each 1 ≤ i ≤ c. Consequently,
the vanishing intervals in Theorem 3.1(i) and Theorem 3.3(i) are of length cxA M +
1, as in [AvB, Theorem 4.7] and [Jo1, Theorem 2.1]. Moreover, we obtain [AvB,
Theorem 4.2], which says that M is of finite projective dimension if and only if
Ext2n

A (M, M) = 0 for some n ≥ 1. To see this, note that when cxA M > 0 the
extension

0 → R1 ⊗A M → K1 → Ω1
R1

(R1 ⊗A M) → 0

corresponds to an element θ ∈ Ext2R1
(R1 ⊗A M, R1 ⊗A M). If Ext2n

A (M, M) = 0
for some n ≥ 1, then Ext2n

R1
(R1 ⊗A M, R1 ⊗A M) also vanishes, hence θ2n = 0. As

in the proof of Corollary 3.2 we obtain the contradiction

cxA M = cxR1(R1 ⊗A M)
= cxR1 Kθ2n

≤ cxR1 K1

< cxA M,

showing that we cannot have Ext2n
A (M, M) = 0 for some n ≥ 1 when M is of

positive complexity.
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V.

ON SUPPORT VARIETIES FOR MODULES OVER COMPLETE
INTERSECTIONS

abstract

Let (A, m, k) be a complete intersection of codimension c, and k̃ the algebraic
closure of k. We show that every homogeneous algebraic subset of k̃c is the co-
homological support variety of an Â-module, and that the projective variety of a
complete indecomposable maximal Cohen-Macaulay A-module is connected.

This paper is to appear in Proc. Amer. Math. Soc.



ON SUPPORT VARIETIES FOR MODULES OVER COMPLETE
INTERSECTIONS

PETTER ANDREAS BERGH

1. Introduction

Support varieties for modules over complete intersections were defined by
Avramov in [Avr], and Avramov and Buchweitz showed in [AvB] that these va-
rieties to a large extent behave precisely like the cohomological varieties of modules
over group algebras of finite groups. Further illustrating this are the two main re-
sults in this paper, the first of which says that every homogeneous variety is realized
as the variety of some module (over the completed ring). The second is a version of
Carlson’s result [Car, Theorem 1’] on varieties for modules over group algebras of
finite groups. Namely, we prove that if the variety of a module decomposes as the
union of two closed subvarieties having trivial intersection, then the (completion of
the) minimal maximal Cohen-Macaulay approximation of the module decomposes
accordingly.

Throughout this paper we let (A, m, k) be a commutative Noetherian local com-
plete intersection, i.e. the completion Â of A with respect to the m-adic topology
is the residue ring of a regular local ring modulo an ideal generated by a regular
sequence. We denote by c the codimension of A, that is, the integer µ(m)− dim A,
where µ(m) is the minimal number of generators for m. All modules are assumed
to be finitely generated.

We now recall the definition of support varieties for modules over complete in-
tersections; details can be found in [Avr, Section 1] and [AvB, Section 2]. Let M

be an A-module and M̂ = Â ⊗A M its m-adic completion, and let Â[χ1, . . . , χc]
be the polynomial ring in the c commuting Eisenbud operators of cohomologi-
cal degree 2 (where the integer c is the codimension of A). There is a homo-
morphism Â[χ1, . . . , χc] → Ext∗bA(M̂, M̂) of graded rings under which Ext∗bA(M̂, N)
is a finitely generated graded Â[χ1, . . . , χc]-module for any Â-module N , making
Ext∗bA(M̂, N) ⊗ bA k a finitely generated graded module over the polynomial ring
k[χ1, . . . , χc] via the canonical isomorphism Â[χ1, . . . , χc]⊗ bA k ' k[χ1, . . . , χc]. We
denote k[χ1, . . . , χc] by H and Ext∗bA(M̂, N)⊗ bA k by E(M̂, N). The support variety
V(M) of M is the algebraic set

V(M) = {α = (α1, . . . , αc) ∈ k̃c | f(α) = 0 for all f ∈ AnnH E(M̂, M̂)},

where k̃ is the algebraic closure of k. This is equal to the algebraic set defined by
the annihilator in H of E(M̂, k).

For an ideal a of H we denote by VH(a) the algebraic set in k̃c defined by a, i.e.

VH(a) = {α = (α1, . . . , αc) ∈ k̃c | f(α) = 0 for all f ∈ a}.

Note that the variety V(M) of M is the set VH

(
AnnH E(M̂, M̂)

)
, and if f is an

element of H then VH(f) is the set of all elements in k̃c on which f vanishes.
1
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2. Realizing support varieties

Before proving the main results we need some notation. Let R be a commutative
Noetherian local ring and X an R-module with minimal free resolution

· · · → P2 → P1 → P0 → X → 0,

and denote by Ωn
R(X) the n’th syzygy of X. For an R-module Y , a homogeneous

element η ∈ Ext∗R(X, Y ) can be represented by a map fη : Ω|η|R (X) → Y , giving the
pushout diagram

0 // Ω|η|R (X) //

fη

²²

P|η|−1 //

²²

Ω|η|−1
R (X) // 0

0 // Y // Kη // Ω|η|−1
R (X) // 0

with exact rows. The module Kη is independent, up to isomorphism, of the map
fη chosen as a representative for η. If θ ∈ Ext∗R(X, X) is another homogeneous
element, then their Yoneda product ηθ ∈ Ext∗R(X,Y ) is a homogeneous element of
degree |η| + |θ|. The following lemma links Kη and Kθ to Kηθ via a short exact
sequence, and will be a key ingredient in the proof of the decomposition theorem
in the next section.

Lemma 2.1 ([Ber, Lemma 2.3]). If θ ∈ Ext∗R(X,X) and η ∈ Ext∗R(X,Y ) are two
homogeneous elements, then there exists an exact sequence

0 → Ω|η|A (Kθ) → Kηθ ⊕ F → Kη → 0

of R-modules, where F is free.

Now suppose R is Gorenstein and X is a maximal Cohen-Macaulay (or “MCM”
from now on) module. Then there exists a complete resolution

P : · · · → P2 → P1 → P0
d−→ P−1 → P−2 → · · ·

of M , i.e. a doubly infinite exact sequence of free modules in which Im d is iso-
morphic to X. For an integer n ∈ Z the stable cohomology module Êxt

n

R(X, Y )
is defined as the n’th homology of the complex HomR(P, Y ). If X and Y are Â-

modules and X is MCM, then Êxt
∗bA(X, Y ) =

⊕∞
i=−∞ Êxt

ibA(X,Y ) is a module over
the ring Â[χ1, . . . , χc] of cohomology operators, and the exact same proof as the one
used to prove [EHSST, Lemma 4.2] shows that for any prime ideal q 6= (χ1, . . . , χc)
of Â[χ1, . . . , χc] the Â[χ1, . . . , χc]-modules Êxt

∗bA(X, Y )q and Ext∗bA(X,Y )q are iso-
morphic.

We are now ready to prove the first result, whose corollary shows that every
homogeneous algebraic set is the variety of some Â-module

Theorem 2.2. Let η ∈ H+ = (χ1, . . . , χc) be a homogeneous element, and let
η ∈ Â[χ1, . . . , χc] be a homogeneous element such that η ⊗ 1 corresponds to η when
viewing the latter as an element of Â[χ1, . . . , χc] ⊗ bA k. Furthermore, let Y be an
Â-module, and denote the image of η in Ext∗bA(Y, Y ) by ηY . Then we have an
inclusion

V(KηY ) ⊆ V(Y ) ∩VH(η),
and equality holds whenever Y is MCM.

Proof. Consider the exact sequence

0 → Y → KηY → Ω|η|−1bA (Y ) → 0
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representing ηY . Since varieties are invariant under syzygies we have V(KηY ) ⊆
V(Y ). Moreover, a proof similar to the proof of [EHSST, Proposition 4.1(b)] shows
that (ηY )2 Ext∗bA(KηY , k) = 0, and therefore the element η2 ∈ H is contained in
AnnH E(KηY , k). This gives the inclusion V(KηY ) ⊆ VH(η2) = VH(η), proving
the first half of the lemma.

Now suppose that Y is MCM, and let p 6= H+ be a prime ideal of H containing η
and AnnH E(Y, k). This prime ideal corresponds to a prime ideal p 6= (χ1, . . . , χc)
of Â[χ1, . . . , χc] containing η and the annihilator of Ext∗bA(Y, k). Suppose p does not
contain the annihilator of Ext∗bA(KηY , k). The exact sequence from the beginning
of the proof induces a long exact sequence

· · · → Êxt
nbA(KηY , k) → Êxt

nbA(Y, k)
ηY

−−→ Êxt
n+|η|bA (Y, k) → Êxt

n+1bA (KηY , k) → · · ·
in stable cohomology, which in turn gives the exact sequence

0 → Êxt
∗+|η|−1bA (Y, k)/ηY Êxt

∗−1bA (Y, k) → Êxt
∗bA(KηY , k)

of Â[χ1, . . . , χc]-modules. Now recall from the discussion prior to this theorem
that Êxt

∗bA(W,Z)p ' Ext∗bA(W,Z)p for any Â-modules W and Z with W MCM.
Since p does not contain the annihilator of Ext∗bA(KηY , k), we see by localizing the

above exact sequence at p that Êxt
∗bA(Y, k)p = ηY Êxt

∗bA(Y, k)p. But Êxt
∗bA(Y, k)p,

being isomorphic to Ext∗bA(Y, k)p, is finitely generated over Â[χ1, . . . , χc]p, hence
Nakayama’s Lemma implies Ext∗bA(Y, k)p = 0. This contradicts the assumption
that p contains the annihilator of Ext∗bA(Y, k), and therefore p must contain the
annihilator of Ext∗bA(KηY , k). But then AnnH E(KηY , k) ⊆ p, giving the inclusion

√
AnnH E(KηY , k) ⊆

√
(η, AnnH E(Y, k))

of ideals in H, and consequently we get V(Y ) ∩VH(η) ⊆ V(KηY ). ¤

Corollary 2.3. Every closed homogeneous variety in k̃c is the variety of some
MCM Â-module.

Proof. Let η1, . . . , ηt be homogeneous elements in H+, and let Y be an MCM Â-
syzygy of k. Then V(Y ) = V(k) = k̃c, hence by the lemma we have V(KηY

1
) =

V(Y ) ∩ VH(η1) = VH(η1). Repeating the process with η2, . . . , ηt we end up with
an MCM module K such that

V(K) = VH(η1) ∩ · · · ∩VH(ηt) = VH(η1, . . . , ηt).

¤

3. Decomposition

Before proving the next result, recall that an MCM-approximation of an A-
module X is an exact sequence

0 → YX → CX
f−→ X → 0

where CX is MCM and YX has finite injective dimension. The approximation is
minimal if the map f is right minimal, that is, if every map CX

g−→ CX satisfying
f = fg is an isomorphism. This notion was introduced in [AuB], where it was shown
that every finitely generated module over a commutative Noetherian ring admitting
a dualizing module has an MCM-approximation. Moreover, it follows from the
remark following [Mar, Theorem 18] that every finitely generated module over a
commutative local Gorenstein ring has a minimal MCM-approximation, which is
unique up to isomorphism. In particular this applies to our setting, where A is
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a local complete intersection. Furthermore, since A → Â is a faithfully flat local
homomorphism, an A-module Z has finite projective dimension if and only if the
Â-module Ẑ has finite projective dimension, and it follows from [Mat, Theorem
23.3] that Z is MCM if and only if Ẑ is MCM. Therefore, by [Mar, Proposition
19] and the fact that over a Gorenstein ring the modules having finite injective
dimension are precisely those having finite projective dimension, we see that

0 → YX → CX
f−→ X → 0

is a minimal MCM-approximation if and only if

0 → ŶX → ĈX

bf−→ X̂ → 0

is a minimal MCM-approximation.
We are now ready to prove the second main result. It is the commutative com-

plete intersection version of Carlson’s famous theorem (see [Car]) from modular
representation theory; if the variety V of a kG-module L (where k is an alge-
braically closed field and G is a finite group) decomposes as V = V1 ∪ V2, where
V1 and V2 are closed varieties having trivial intersection, then L decomposes as
L = L1⊕L2 where the variety of Li is Vi. Our proof follows closely that of Carlson,
but with some adjustments.

Theorem 3.1. If for an A-module M we have V(M) = V1 ∪ V2 where V1 and V2

are closed homogeneous varieties having trivial intersection, then the completion
ĈM of the minimal MCM-approximation of M decomposes as ĈM = C1 ⊕ C2 with
V(Ci) = Vi.

Proof. Let
0 → Y → C → M → 0

be the minimal MCM-approximation of M . Since Y has finite injective dimension
(or equivalently, finite projective dimension), it follows from [AvB, Theorem 5.6]
that V(Y ) is trivial and that we therefore have V(M) = V(C). Moreover, by
definition the equality V(X) = V(X̂) holds for every A-module X, and therefore
we may suppose that A is complete.

We argue by induction on the integer dim V1 + dim V2. If one of V1 and V2, say
V2, is zero dimensional, then V2 is trivial, and the decomposition C = C ′ ⊕ P ,
with P being the maximal projective summand of C, satisfies the conclusion of the
theorem. Suppose therefore that dim Vi is nonzero for i = 1, 2.

Let a1 and a2 be homogeneous ideals of H = k[χ1, . . . , χc] defining the varieties
V1 and V2, i.e. Vi is the algebraic set VH(ai) in k̃c defined by ai for i = 1, 2. We
then have equalities

{0} = V1 ∩ V2 = VH(a1) ∩VH(a2) = VH(a1 + a2),

and so it follows from Hilbert’s Nullstellensatz that for each 1 ≤ i ≤ c we have
χi ∈

√
a1 + a2. Therefore

√
a1 + a2 is the graded maximal ideal H+ of H, i.e.√

a1 + a2 = (χ1, . . . , χc).
Pick a homogeneous element θ ∈ H+ with the property that dimH/(a2, θ) <

dim H/ a2 (this is possible since dim H/ a2 = dimV2 > 0). By the above there is
an integer n ≥ 1 such that θn belongs to a1 + a2, i.e. θn = θ1 + η where θ1 ∈ a1

and η ∈ a2. Then dim H/(a2, θ1) < dim H/ a2, which translates to the language of
varieties as dim (VH(a2) ∩VH(θ1)) = dim VH(a2 +(θ1)) < dimVH(a2). Similarly
we can find an element θ2 ∈ a2 having the property that it ”cuts down” the variety
defined by a1. Hence the two homogeneous elements θ1 and θ2 satisfy

θ1 ∈ a1, dim (V2 ∩VH(θ1)) < dim V2,

θ2 ∈ a2, dim (V1 ∩VH(θ2)) < dim V1.
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Now since VH(θ1θ2) = VH(θ1) ∪ VH(θ2) ⊇ V1 ∪ V2 = V(C), it follows once
more from Hilbert’s Nullstellensatz that θ1θ2 ∈

√
AnnH E(C, C), where E(C,C) =

Ext∗A(C, C) ⊗A k. Replacing θ1 and θ2 by suitable powers, we may assume that
θ1θ2 ∈ AnnH E(C, C). Viewed as elements in A[χ1, . . . , χc]⊗Ak we have θi = θi⊗1,
where θ1 and θ2 are homogeneous elements of positive degrees in A[χ1, . . . , χc] with
the property that θ1θ2 ∈ AnnA[χ1,...,χc] Ext∗A(C, C). To see the latter, note that
0 = θ1θ2

(
Exti

A(C, C)⊗A k
)

= θ1θ2 Exti
A(C, C) ⊗A k for every i ≥ 0, and since

θ1θ2 Exti
A(C, C) is a finitely generated A-module (θ1θ2 commutes with elements in

A), the claim follows.
Now consider the images θC

1 and θC
2 of θ1 and θ2 in Ext∗A(C, C). Since θC

1 θC
2 = 0,

the bottom exact sequence in the exact commutative diagram

0 // Ω|θ
C
1 |+|θC

2 |
A (C)

f
θC
1 θC

2

²²

// Q|θC
1 |+|θC

2 |−1

²²

// Ω|θ
C
1 |+|θC

2 |−1
A (C) // 0

0 // C // KθC
1 θC

2
// Ω|θ

C
1 |+|θC

2 |−1
A (C) // 0

splits, where Qn denotes the n’th module in the minimal free resolution of C.
Therefore KθC

1 θC
2

is isomorphic to C ⊕ Ω|θ
C
1 |+|θC

2 |−1
A (C), and from Lemma 2.1 we

see that there exists an exact sequence

(†) 0 → Ω|θ
C
1 |

A (KθC
2
) → C ⊕ Ω|θ

C
1 |+|θC

2 |−1
A (C)⊕ F → KθC

1
→ 0

for some free module F . From Theorem 2.2 we have V(KθC
i
) = V(C) ∩ VH(θi),

hence the equality V(C) = V1∪V2 and the inclusion Vi ⊆ VH(θi) give the equalities

V(KθC
1
) = V1 ∪ (V2 ∩VH(θ1)) ,

V(KθC
2
) = V2 ∪ (V1 ∩VH(θ2)) .

By induction there exist A-modules X1, X2, Y1 and Y2 such that KθC
1

= X1 ⊕X2

and Ω|θ
C
1 |

A (KθC
2
) = Y1 ⊕ Y2, and such that

V(X1) = V1,

V(X2) = V2 ∩VH(θ1),
V(Y1) = V1 ∩VH(θ2),
V(Y2) = V2.

Now since V(X1) ∩ V(Y2) and V(X2) ∩ V(Y1) are contained in V1 ∩ V2, which is
trivial, we see from [AvB, Theorem 5.6] that Exti

A(X1, Y2) and Exti
A(X2, Y1) vanish

for i À 0. But KθC
1

is MCM, implying X1 and X2 are both MCM, and so it follows
from [ArY, Theorem 4.2] that Exti

A(X1, Y2) and Exti
A(X2, Y1) vanish for i ≥ 1.

Therefore

Ext1A(KθC
1
, Ω|θ

C
1 |

A (KθC
2
)) = Ext1A(X1, Y1)⊕ Ext1A(X2, Y2),

and this implies that the exact sequence (†) is equivalent to the direct sum of two
sequences of the form

0 → Yi → Zi → Xi → 0

for i = 1, 2, where Zi is an A-module. Then C ⊕ Ω|θ
C
1 |+|θC

2 |−1
A (C) ⊕ F must be

isomorphic to Z1 ⊕ Z2, and since V(Zi) ⊆ V(Xi) ∪ V(Yi) ⊆ Vi and the Krull-
Schmidt property holds for the category of (finitely generated) modules over a
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complete local ring, there must exist A-modules C1 and C2 such that C = C1⊕C2

and V(Ci) = V(Zi). Since

V = V(C1) ∪V(C2) ⊆ V1 ∪ V2 = V

we must have V(Ci) = Vi, and the proof is complete. ¤
Corollary 3.2. The projective variety of a complete indecomposable MCM A-
module is connected.
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