

Performance Engineering Method
for Workflow Systems:
An Integrated View of Human
and Computerised Work Processes

Gunnar Brataas

Information Systems Group
Faculty of Physics, Informatics and Mathematics
Norwegian University of Science and Technology
Gunnar.Brataas@idt.unit.no

This thesis is submitted in partial fulfilment
of the requirements for the academic degree of
Doktor ingenior

4th July 1996

Abstract

A method for designing workflow systems which satisfy performance requirements
is proposed in this thesis. Integration of human and computerised performance is
particularly useful for workflow systems where human and computerised processes
are intertwined. The proposed framework encompasses human and computerised
resources.

Even though systematic performance engineering is not common practice in informa-
tion system development, current best practice shows that performance engineering
of software is feasible, e.g. the SPE method by Connie U. Smith. Contemporary
approaches to performance engineering focus on dynemic models of resource con-
tention, e.g. queueing networks and Petri nets. Two difficulties arise for large-scale
information systems. The first difficulty is to estimate appropriate parameters which
capture the properties of the software and the organisation. The second difficulty
ig to maintain an everview of a complex model, which is essential both to guide the
choice of parameters and to ensure that the performance engineering process is an
integral part, of the wider system development process.

The proposed method is based on the static performance modelling method Struc-
ture and Performance {SP) developed by Peter H. Hughes, SP provides a suitable
bridge between contemporary CASE tools and traditional dynamic approaches to
performance evaluation, in particular because it addresses the problems of parame-
terisation and overview identified above,

The method is explored and illustrated with two case studies. The Blood Bank
Case Study comprised performance engineering of a transaction-oriented information
system, showing the practical feasibility of integrating the method with CASE tools.
The Gas Sales Telex Administration Cuse Study for Statoil looked at performance
engineering af a workflow system for telex handling, and consisted of performance
modelling of human activity in interaciion with a Lotus Notes computer platform.
The latter case study demonstrated the feasibility of the framework.

il

Preface

This thesis is submitted to the Norwegian University of Science and Technology
{NTNU) for the doctoral degree “doktor ingenigr”. The thesis advisors have been
Professor Arne Selvberg and Professor Peter Hughes. The research was carried
out from March 1990 to March 1996 in the Information System group, Faculty of
Physics, Informatics and Mathematics, Norwegian University of Science and Tech-
nology. The Norwegian University of Science and Technology (In Norwegian, Norges
teknisk-naturvitenskapelige universitet, NTNU) was formed by the Ist of January
1996, as a merger between The Norwegian Institute of Technolegy (NTH} and other
institutions.

I want to thank my advisors, Professor Arne Sglvberg and Professor Peter Hughes,
for inviting me to this doctor’s degree study. Arne’s optimistic atiitude and overview
of thesis writing was of great help. Peter shared with me his deep knowledge of
performance engineering.

Thanks are also given to Andreas Lothe Opdahl and Vidar Vetland for good coop-
eration in the IMSE project. Andreas inspired me with his conceptual overview and
Vidar encouraged me to look at practical examples. Babak Amin Farshchian, Anne
Helga Seltveit, Harald Renneberg, and my collegues in the Information Systems
Group created a stimulating work environment. I also wish to thank the dipioma
students supervised by me; in particular Kenneth Finn Flegstrand, Havard Ding-
stand Jgrgensen and Alexander Kowalski. At the Regional Hospital in Trondheim,
Eilen Berg, Knut Ekren, and Hilde Heigesen and their collegues were helpful. Rei-
dar Breivik, Ole Petter Drange, Grete Vika Lunde, Paul Nedrebg, Jan Rune Schepp
among others assisted me with the case study in Statoil. Eric Ole Barber pave
valuable comments on scine chapters.

Also thanks to my father Torbjgrn Brataas, who commented on the English lan-
guage, my mother Britt Sissel Foss Brataas, who has given encouragement, and my
brother Arne Brataas, who will also finish his thesis soon. The membhers of the
Acem-collective have formed a firm home base during this work. Thanks to Er-
lend Bleken and Asle Fosterveld for chats, especially when prospects looked gloomy.
Finally, thanks to Cecilie for getting me out of focus from time o time.

vi

This work has been financed as follows: During 1990 - 91, I was engaged in the
IMSE project. In 1992 - 93, 1 was granted a scholarship from The Norwegian
Inssitute of Technology. My research in 1994 was supported by the BEST project,
which was funded by The Research Council of Norway. Finally, I have worked as
researcher in the Information System Group at NTNU during the last year of my
thesis completion.

During the working period, the author has collaborated with a number of people.
To make sure the thesis cites the source for anything that does not originate with
the author, I have adopted the following conventions:

Work done hy others: the source of the contribution is cited.

¢ Work done in collaboration with others where it is difficult to distinguish who
has contributed: it will be explicitly stated in the text that the work reported
is done together with other people.

¢ Work done by M. Sc. students supervised by the author: the particular report
is cited.

o BEverything else ts the author’s own contribution where nobody else except the
thesis advisors have been involved.

An outline of the thesis is given in Table 0.1.

Trondheim, 4th July 1996

Gunnar Brataas

vii

Qutline of the Thesis

Basic framework of this thesis is introduced Chapter 2. The frame-
work is motivated by the problem with the interaction between
the organisation and the computer system in the Biood Bank Case
Study.

State of the art in the fields of:

e Classical performance evaluation {Chapter 3).
o The Structure and Performance {SP) method {Chapter 4).
s Performance engineering (Chapter 5).

e Organisational change and workflow technology {Chapter 8).

Method for:

e Performance engineering of information systems (Chapter 6).

o Performance engineering of workflow systems (Chapter 9}.

Case studies for:

o Transaction-oriented information system: A more detailed
analysis of the Blood Bank Case Study {Chapter 7).

o Workflow systems: The Gas Sales Telex Administration Case
Study. This case study is divided in two parts:

~ Organisation: Performance modelling of the manual telex
handling in the gas sales telex administration organisa-
tion, in Chapter 10.

- omputerised workflow system: Chapter 11 describes el
ements of a model of the Lotus Notes workflow plat-
form software in the Gas Sales Telex Administration Case
Study. This chapter also describes the integrasion of the
Lotus Notes platform with the manual processing as de-
scribed in Chapter 10.

Conclusions and Further Work in Chapter 12.

Table 0.1: A brief outline of the thesis.

Contents

Introduction

1.1 Research Context
1.2 Investigating the Problema
1.3 Research Objectives.
1.4 Clammed Contributions

Basic Framework

2.1 A First Case Study — The Blood Bank,
2.2 BasicFramework L
2.3 Applying the Basic Framework on the Transfusion Process
2.4 Performance Measures in Different Domains
2.5 Chapter Summary

Performance Modelling

3.1 Workload, System and Performance
3.2 Contention Modelling
3.3 Performance Modelling Cycle,
3.4 Chapter Sammary

Structure and Performance (5P)

4.1 Hierarchies of Resources,
4.2 Workload = Work + Load oL
4.3 System and Subsystem Performance Specification
44 Abstract Virtual Machine 0 L.
4.5 Moedule and Component Specification

46 DataModel
47 Typing of Operations
4.8 Chapter Summary L

Performance Engineering of Information Systems

5.1 Non-fanctional Requirements
5.2 Lifecycle Models for Development of Information Systems
5.3 Motivation for Performance Engineering
54 Quantitative Performance Modelling
5.5 Qualitative Performance Modelling
5.6 Chapter Swmmary

Method for Performance Engineering of Information Systems

viii

54
57
67
67

69

CONTENTS

ix

6.1 Method Overview 71
6.2 Worlds L e 82
6.3 Rationality of Design Process 85
6.4 Object-oriented Performance Engineering? 86
6.5 Comparison with Current Best Practice o, 88
6.6 Chapter Summaryo e 90

7 Application to a Transaction-oriented System 91
7.1 Specify System Requirements 92
7.2 Establish Components: Projected Application 97
7.3 Establish Components: Systems Platformyo ... 100
7.4 Bvaluate and Validate Static Modelo oL 104
7.5 Summary of Findings oo o000 106

8 Organisational Change and Workflow Technology 109
8.1 Organisational Change o 109
8.2 Workflow and Workflow Systems 118
8.3 Chapter SUMMAaIY o 127

9 Extending the Method to Workflow Systems 129
9.1 SP as Organisational Models 129
9.2 Basic Framework oL 130
9.3 Taxonomy of Degree of Determinism 132
0.4 Differences between Human and Computerised Resources 135
9.5 Similarities between Human and Computerised Resources 135
9.6 Generic SP Model of Workflow Systems? 137
9.7 Chapter Sumumary 138
10 Application to a Workflow Organisation 139
10.1 Specify System Requirements 140
10.2 Establish Components: Telex Secretary 147
10.3 Evaluate and Validate Static Model of Telex Secretary 156
10.4 Establish Components: Contract Specialists 163
10.5 Bvaluate and Validate Static Model of Contract Specialist 164
10.6 Summary of Findings0 ... LGB
11 Application to a Workflow Computer System 169
11.1 Specify System Requirtements170
11.2 Establish Components: Lotus Notes Client-server 173
11.3 Establish Components: Replication Architecture 176
11.4 Establish Components: Customising Lotus Notes 177
11.5 Establish Components: Secretary Using Lotus Notes . 179
11.6 Evaluate and Validate Static model for Computerised Solution 180
11.7 Similarities Between Manual and Computerised Solutions 188
11.8 Generalisation of the CaseStudy 189
11.9 Summary of Findings o 191

12 Conclusions and Further Work 193
12.1 Major Contributions 193

CONTENTS

12.2 Limitations and Further Work

Appendices

A Replication in Statoeil

Al Replication Plan,
A2 Network Service Classes
A3 Email Transport, ..

B The Experimental CASE Tool PPP

B.1 PPP Languages
B2 PPP CASE Tool,

List of Figures
List of Tables
Bibliography

Index

149

............. 199
............. 201
............. 202

203

............. 203
............. 210

213

217

219

235

Chapter 1

Introduction

An information system must have acceptable performance in terms of response time,
throughput, and utilisation of the available resources. Performance engineering of
information systems aims at developing systems with acceptable performance. The
overall research problem of this thesis is the feasibility of performance
engineering for computer supported information systems within human
organisations. Contemporary approaches to performance engineering focus on
dynamic models of resource contention and process synchronisation typically repre-
sented by networks of queues, state transitions or process interactions. These dy-
nanyic models may be solved by a variety of weil-established analytic and simulation
techniques. The difficulties which arise {or large-scale problems are twofold:

1. Estimating appropriate parameters which capture the properties of the sofi-
ware and the organisation.

2. Maintaining an overview of a complex model, which is essential both to guide
the choice of parameters and to ensure that the performance engineering pro-
cess is an integral part of the wider system development process.

1.1 Research Context

This work was initiated during the IMSE project. ! As part of the IMSE project, An-
dreas Lothe Opdahl, Vidar Vetland and myself applied SP to performance engineer-
ing of information systems [BOVS92]. We found that the static performance mod-

"The IMSE project aimed at developing an integrated performance modelling support envi-
ronment. Tt was a collaborative research project supported by the Commission of the European
Communities as ESPRIT I project no 2143, and was carried out by the following organisations:
BNR Europe STL, Thomson OSF, Simulog A.8., University of Edinburgh, INRIA, IPK (Berlin),
University of Dortmund, University of Pavia, SINTET {University of Trondheim}, University of
Turin and University of Milan. The project started in January 1989 and was finished in Decem-
ber 1991,

2 Chapter 1. Introduction

elling method 8P (Structure and Performance) developed by Peter Hughes [Hug88]
provides a suitable bridge between modern CASE tools and the traditional dynamic
methods, in particular because it addresses the problems of parameterisation and
overview identified above. Three thesis themes emerged from our participation in
the IMSE project (Figure 1.1). Opdahl defended his thesis in 1992 [Opd92] and
Vetiand in 1993 [Vet93]). Thus, I am the last in a group of three doctor students
who have been working with performance engineering of information systems in the
Information Systems group.

Organisation
domain
Brataas t
1990-1996 —
Application
I domain

Opdahl i

1988-1992 '
l ‘ Platform domain
Vetland i
19891993
! Hardware domain

Figure 1.1: Schematic relation hetween three performance engineering theses in
the Information Systems Group.

1.2 Investigating the Problem

To get practical experience, the Blood Bank Case Study was investigated from the
spring of 1991 untit spring 1992. This was done as part of the IMSE project. The
Blood Bank Case Study comprised performance engineering of a transaction-orienied
information system which was developed for the Regional Hospital in Trondheim.
Process models were specified in the experimental CASE tool PPP and were anno-
tated with parameters describing estimated use of software resources, showing the

practical feasibility of a method for using performance engineering tools integrated
with common CASE tools [BOVS92].

1.3. Research Objectives 3

While there were no performance problems in the computerised parts of the blood
bank system, severe problems were discovered in the interaction hetween humans
and computers. Therefore, we introduced human resources into the framework, and
extended our scope to encompass workflow systems. Workflow systems are infor-
mation systems for supporting execution of erganisational processes (workflows). In
workflow systems, there is close interaction between compuiational resources and
organisational resources.

The (Fas Sales Telex Administration Case Study in the Statoil oil company was ini-
tiated during the autumn of 1993. Human resources were included i the modelling
framework. This case study was finished during the spring of 1995. The Gas Sales
Telex Administration Case Study looks at performance engineering of a workflow
system for telex handiing. The original Statoil project was initiated because the
otd manual information system did not offer acceptable response time and through-
put. The case study consists of the performance modelling of human activity in
interaction with a computer platform containing Lotas Notes.

In order to suppori the Gas Administration Case Study we had to develop a perfor-
mance model of Lotus Notes. This model was based on measurements of external
behavioural properties. The model had to be developed without deep knowledge of
the internal structural properties of Lotus Notes. The prediction accuracy of the
Lotus Notes model suffers accordingly. We have not made any efforts to develop
the Lotus Notes model beyond what was necessary to show the feasibility of the
proposed modelling framework.

1.3 Research Objectives
The major problems addressed in this thesis are:

1. How is it possible to estimate the performance of workflow systems prior to
their realisation to ensure that they satisfy stated performance requirements?

2. Is it possible to treat the performance aspects of the (human) organisation and
the compuier system within the same framework?

For cach of these research problem, a corresponding research objective is formulated:

1. Describe a method for performance engineering of workflow systems based on
SP
L .

2. Investigate to which extent human resources can be modelled like computer
resources in 8P. Find the equivalences and the differences.

4

Chapter 1. Introduction

1.4 Claimed Contributions

This thesis contributes to the state of the art as follows. Concerning the method,
the major contribution is:

¢ A method for performance engineering of information systems is proposed,

based on SP. This is a step forward with respect to the state of the art in the
field of performance engineering of information systems. The method is ex-
plored and iltustrated with two case studies, the first focusing on a transaction-
oriented information system, and the second on workflow systems and the
organisation around a workflow system.

Concerning the similarities between computerised and human processes and re-
sources, the major contribution is:

* An overall resource framework which integrates both human and computerised

processes and resources has been developed. With respect to information pro-
cessing, the organisational structure is analogous with the structure of a com-
pater system. This framework has been tested out in the Cas Sales Telex
Administration Case Study. Integration of human and computerised perfor-
mance is particularly usefui for workflow systems where the humans and the
computer systems are heavily intertwined.

In this thesis, we have concentrated solely on bringing together methods for per-
formance modelling of software resources and of human resources into one commeon
framework. We have not made efforts to improve the state-of-the art of performance
modeiling of software components beyond what was done in Opdahl’s and Vetland’s
contributions.

Chapter 2

Basic Framework

This chapter introduces the basic framework of the thesis. The framework has
been developed to bridge the gap between performance engineering of computerised
information systems and of organisations. The approach is motivated through the
presentation of the Blood Bank Case Study.

2.1 A First Case Study — The Blood Bank

The motivation for trying to develop a common approach to deal with human and
compuier resources within the same frammework stems from the Blood Bank Case
Study as mentioned in the preface. Figure 2.1 depicts a simplified view of the blood
bank using the PrM method in Section B.1.2. The basic human roles in the blood
bank are donors, patients and laboratory engineers. The blood bank consists of the
four main processes, donor administration, blood stock administration, transfusion
administration and laboratory administration:

Administrate Donors Assisted by laboratory engineers, donors give raw blood
which are stored in the blood bank. The blood bank is the name of the cabinet
where all the different blood products are stored.

Administrate Blood Stock Makes sure the stock of blood will meet future de-
mands for blood. Blood is also purchased from other blood banks.

Transfusion After testing, blood products are transfused to patients.

Laboratory Performs several tests on blood. Raw blood consists of several blood
products which are grouped according to the AB0 and the Rh test system.
These test systemns reduce the risk of giving patients blood products which
do not match the patients blood type, which would usually have fatal conse-
quences.

6 Chapter 2. Basic Framework

donor blood
mformation
o~
biood donor 1
data L donor D
Admini— Tformaton Dggm
~ strate
appointment Donors
N/
{ 2 y
bloed stock
7 - blood packet
fboraky ormaion | admingrate LG 510l b Ban
‘engineer Blood Stack
——
alient
nformaton
patient blood
est esults Information
{ 4y
atient Patient
Laboratory [*—aborrmation | Dats

Figure 2.1: Top level blood bank model. These four information subsystems can
be decomposed into 34 processes [Flu91].

2.1.1 The Original Manual Transfusion Process

Figure 2.2 shows informally the main components of the transfusion process, which
take care of the transfusion of blood from the blood bank to patients in need for
blood, and is 2 decomposition of process 3 in Figure 2.1. The processes of IFigure 2.2
are carried out by humans. The relevant processes are:

Request for Blood Products The ward of the patient requests one or more blood
products for the patient from the blood bank. This request is brought to the
blood hank organisation on a sheet of paper.

Iind Blood Product The blood bank organisation finds suitable bleod products
in the physical blood bank.

Physical Crossmatch of Blood Products Laboratory engineers mix a sample
of donor blood with patient blood, looking for indications of mismatch.

2.1. A First Case Study — The Blood Bank ¥

‘Ward Biood bank

® Request for Biood Products ot @ Find Blood Products
® Physicat Crossmatch of Blood Products

@ Deliver Blood Products

Figure 2.2: The manual transfusion process in the blood bank organisation.

Deliver Blood Products Blood products are delivered to the ward and the trans-
fusion process is terminated as seen from the blood bank organisation’s point
of view {given that no complications arise).

2.1.2 The New Computerised Transfusion Process

It was decided to give computer support to the blood hank, and five computerised
processes were added, which also hrought about changes to the human processes.
The computerised transfusion process is depicted in Figure 2.3. Process Find Blood
Products (3.3), Physical Crossmatch of Blood Products (3.6), and Deliver
blood products (3.8) are done by humans without computer support. The cther
process components are:

Fetch Patient Data (3.1) Patient data is fetched from the blood bank comput-
erised information system.

Request Blood Products (3.2) Blood products are requested based on informa-
tion from the ward. The information on the paper with the request from the
ward must here be typed into the compuderised information system.

Get Reguisition Overview (3.4} A laboratory engineer investigates the requisi-
tions made for a patient

Computerised Crossmatch of Blood Product (3.5) A laboratory engineer per-
forms a computerised crossmatch between the donor blood and patient blood.

Register Result of Physical Crossmatch (3.7) Iavoked for each blood packet
requested for the patient.

Chapter 2. Basic Framework

Ward

Blood hank

(10.1 \

(T (P (B (O (

35

N 36 N

[

3.8 \

Request for
Blood
Products

Fetch
Patient
Data

Get
Requisition
Overview

Request
Blood
Products

Find Blood
Products

[Crossmat
pf Blood
Product

ised| -ﬁlysical
ch Crossmatch
of Blood
L]“mdul:r)

-~

Deliver
Bilood
Producis

Register
Result of
Physical
ssmagich

Cro!

Figure 2.3: The transfusion process in the blood bank as it was implemented.
Manual processes are indicated by boldface process symbols.

2.1.3 Performance Problems in the Manual Subsystem

The Blood Bank Case Study was done to investigate the modelling of computer
performance problems. The study showed that there were no problems with the
computer capacity, but after the system was put in operation, a severe performance
problem was discovered in the interaction between the computer and the staff of
the blood bank [BSH4, Bra94]. The introduction of the computerised information
system actually slowed down the performance of the organisation. This experience
changed the direction of this thesis into developing an approach for performance
modelling that takes human aspects and computer aspects into consideration within
the same modelling framework. To understand the problems with the transfusion
process, this section first introduces some background material about both the man-
ual and the computerised version of the transfusion process. A solution to the proh-
lems is then presented in Section 2.3 which is based on the performance engineering
method of this thesis, introduced in Section 2.2. The problem processes are:

Get Requisition Overview (3.4) The computerised process took approximately
1 minute to execute, and was therefore never used. Part of the reason for
this long time was that the patient’s name had to be reentered, even if it
was already present in the system. The system developers had not properly
understood the workflow, and they did therefore not discover that process 3.4
would succeed process 3.3, which makes reentering of data unpractical.

Computerised Crossmatch of Blood Product (3.5) This process was not pe-
formed as prescribed, because it was much more convenient o look directly
into the physical blood bank than to type in the necessary data and wait
for the answer from the computerised information system. Instead, requests
for blood packets were handwritten in & book, and fed into the computerised
information system after the whole process had been terminated. Whenever
the laboratory engineers wanted to look something up, this book was more
convenient to use than the computerised information system.

2.2. Basic Framework 9

Register Result of Physical Crossmatch (3.7) This process also created prob-
lems, because the process had to be performed once for every packet of blood
which was requested for a patient. When up to 10 blood packets for one pa-
tient were needed in a hurry, this was not very practical, and created another
argument for the informal book-based approach.

The basic problent in these three cases was the slow interaction between the manual
and the computerised information system. If too much data had to be entered or
if too many screen images had to be invoked, this would sometimes slow down the
workfiow and hence the performance of the organisation.

Accuracy of the information in an information system is important. Therefore, it
is more critical if update operations are neglected, compared to retricve operations.
Thus, there are no serious problems if computerised retrieve operations like process
Get Requisition Qverview (3.4) and process Computerised Crossmatch of
Blood Product {3.5) are not used, but replaced by some manual processes. How-
ever, this could have heen discovered by including manual work for entering data
in a performance model used during development of the computerised information
system. But the process Register Result of Physical Crossmatch (3.7}, which
updates information is more important. This process will therefore be considered
more closely in Section 2.3.

The information system processes (i.e. the composite manual/computerised pro-
cesses) were not explained in the information system documentation, and this made
it very hard to get an overview of the relations between the different screen images
which were used to enter and display information. It required careful study of the
original documentation to find implicit information which could give some clues to
understand the total information system processes. In addition, interviews had to
be performed. If the information system processes had been recorded in the first
place, understanding the transfusion process would have been easier.

2.2 Basic Framework

The basic framework introduced in this thesis views organisations, humans, (plat-
form) soffware and hardware as a hierarchy of resources which are used by workflow
processes in the workflow system. As ilustrated in Figure 2.4, workflow processes
use organisational resources which again use humans. A workflow is a process in
an organisation. Workflow processes also use software resources which finally use
hardware resources. Actors start workflows and use the result of workflow. The solid
lines inside of each ellipse describe relationships between the objects in each ellipse,
whereas the dotted lines describe refationships hetween objects in different elipses.
This framework is elaborated upon below. For more comments on this framework
see Section 9.2. Figure 2.6 gives a rough indicating of the focus of each chapter in
this thesis in terms of the overall framework in Figure 2.4.

10 Chapter 2. Basic Framework

—_
.“."“"..."uululul"llluun"annn"..,."“
I Yeupg,,
(L] gy
(L tee,
Pihy e
1“‘ > »
0y e, 7 »]
o ’, Bl
A3 .
hJ -
3 Actors : 8
H =
% s)
'. .
Yo, 0 <
5, A
£ st
I.,.. "“.n
ey, L
aney, g
. aneny
idree B LA T T PV Ty TR
ol Try, [
o 'o,. ¥
0 e,
Gl ., L7 2}
&
N K [77]
& ",
s % Qe
g : o
v, -
. o &
“0,‘ e H
.
teny, ant m
oy E et
LIPN - LU
LT Y
tl.-""." . anppete®®
o L] b+ 1L}
v Rl LLLT P snraninpeet
LLETTTTT J
PP LLL LT
T b teey
“...nnlnunu‘c‘..".. [
N [o
o Y * Q)
+ ¥ b
" { Humans &
; Y
5
&
H
H
=
%
*,
s,
.".
e, v
oy, Ll
ettt J

Figure 2.4: Basic framework for performance engineering in workflow organisa-
tions. The legend is in Figure 2.5.

Resources in the organisational domain consist of hierarchies of organisational units
like departments and sectors which finally will devolve work on humans. Resources
in the workflow system domain basically encapsulate workflows with hoth human
and computerised parts, for example the workflow which was described earlier i
this chapter. Typical examples of software resources are a database or a file system,
while a disk, a network or a CPU are hardware resources. An information system !

ctontains information processes which are executed with resources. A computerised

"This is not intended to be an extensive definition of an information system. A more complete
definition is [FRIQS]: “An information system is the conception of how information-oriented aspects
of an organisation are composed (actors, resources, etc.) and how these operate, thus describing
the (explicit and for implicit) information-providing arrangements existing within that organisation.”
The terms typed in the sans serif font build on other definitions,

2.2, Basic Framework 11

Resourcel .~ e # Links indication
3 PPP actor m SP module Human relations between
. quencing models
@ PPP process :O cht:]e;l:mg centre et ks within
a model

Figure 2.5: Legend for the basic framework in Figure 2.4.

Note that the term resource is used more narrowly than the ordinary use of this
term. In this thesis, a rescurce acts reactively. A resource carries out work which
is initiated by an actor. In one sense a resource is more passive than an actor,
because the actor determines the goals of the work to be carried out. On the other
hand, the resource does the actual work and may therefore be considered o he more
active than the actor who merely waits for the results. Resources can either be
existing and possible to measure or projected and impossible to measure. In either
case, it is possible to model the resources. For existing resources measurements are
used to construct these models. For projected resources, estimations are needed.
Each resource offers some eperations to resources at higher levels of abstraction and
uses operations from resources at lower levels of abstraction. There is a difference
between the number of operations and the type of operations: in this thesis, the
term operation is used for the type of operation, each invocation of an operation is
counted hy the number of active customers.

Initially, 1 reacted against the idea of bringing humans into the same framework
as the computer, because 1 felt this would reduce humans to the level of machines.
However, the Blood Bank Case Study showed the need for viewing the two together.
Early organisational theory also focused on the mechanistic view [Mor88], e.g. Tay-
lor’s scientific management. A comprehensive theory of organisational performance
must also take other views into accouni, but this is outside the scope of this thesis.
This thesis tries to develop a basic framework, which is needed prior to address-
ing more complex problems. For a more elaborated discussion on the relationship
befween humans and machines, see Chapter 8.

e e

-~ - Actors M}
‘\\._____h ® 9 ,,__1_(:,‘ L

e

Orgarusauon of;urc\\

910 451},

,f"’ Humans \‘f Hardwarc \
\(3) 8 9 J‘\\ s/

..... fas N

Figure 2.6: The structure of this thesis in terms of Figure 2.4.

12 Chapter 2. Basic Framework

2.3 Applying the Basic Framework on the Trans-
fusion Process

The problem with the transfusion process described in Section 2.1.3 shows the tight
coupling between a computerised information system and a manual information
system. These systems do not use the same type of resource, but could they be
considered under a common approach? This section will apply the basic framework
in Section 2.2, and sketch a solution.

As described in Section 2.1.3, the process Register Result of Physical Cross-
match (3.7) was critical. Bad performance in this process is particularly eritical
when several blood packets are needed in a hurry. The need for blood packets may be
described by the operation get.blood_product in the blood bank application in Fig-
ure 2.7. This aperation is indicated with a circle in the Blood bank application
resource. For this get.blood_product operation, resource consumption for both
the Bicod bank computer system and the manual information system with the
Laboratory engineer must be specified.

We will focus on the manual resource Laboratory engineer, because it was the
human interaction (with the computer system) which was problematic, and not the
computer system. For the manual operations of the Laboratory engineer, it will
be sufficient to specify the operation enter_data, which for example may take 20
seconds. Thus, entering data 10 times, one éime for each of the 10 packets of blood,
wiil result in a response time of about %% - 10 = 3 minutes. If for example five
patients need 10 packets each, this will take around 15 minutes, for the interac-
tion only with the computer system. With such response times, we obviously have
performance problems. Calculations like this are elaborated upon in the Gas Sales
Telex Administration Case Study in Section 11.5.

et blood product

Blood bank™—
application

enter data

"~ Laboratory Blood bank
engineer computer systen

Figure 2.7: A sketch of the resources needed for earlier prediction of potential
problems. The legend is in Figure 2.5.

2.4. Performance Measures in Different Domains 13

2.4 Performance Measures in Different Domains

The term “performance” is used in a Hmited sense in the information system perfor-
mance engineering domain and in this thesis, compared to the much broader use of
the same term in the organisational domain. In this thesis, performance is defined
as a quantitative property of a system, which can be measured in terms of: through-
put or response time. Examples are: a throughput of 35 blood packets a day, or a
response time of 1 minute for finding a suitable blood product in the blood bank.
See Section 3.2.1 for other performance measures.

In the organisational domain, performance may also mean long-term performance
t.e. how well overall organisational goals are met. For long-terma measures, shis
thesis uses the term effectiveness. The term “efficiency” is also related to perfor-
mance. Efficiency is the ratio of useful work performed relative to the total energy
used [Hor®2]. Thus, efficiency applies hoth to computer systems and to organ-
isational systems. ‘This section elaborates on the distinction between the terms
performance, effectiveness, and efficiency as used in this thesis.

Effectiveness is related to deing the right things, in contrast to efficiency which fo-
cuses on deing things right. The effectiveness of a system is the degree to which the
system meets longterm goals. In the computerised information system domain, ex-
amples of effectiveness measures are accuracy [Chu93), security [Chu93}, availability,
reliability, user-friendliness, and performance. Therefore, response time which is a
performance measure, also is an effectiveness criteria.

In the organisational domain, all the above effectiveness measures are relevant. In
addition, other effectiveness measures are also needed. Some authors view customer
satisfaction as the ultimate effectiveness measure [CH92]. Customer satisfaction has
to do with getting the right output at the right place, at the right time and al the
right price [Har01]. Adaptability, i.e. the flexibility of the process to handle changes,
may also be important for customer satisfaction.

Many organisations having customer satisfaction as part of their strategy do litile o
measure it [Ecc91]. Since what is measured receives attention, this is problematic,
particularly when rewards are tied to the measures. As an example of missing mea-
surements, each department in a manufacturing crganisation may have optimised
their part of the total process, withoul having measured the effectiveness of the
overall process [[2890]. When measuring for example the response time for the total
customer delivery process, this may be quite long. Methods for measuring organi-
sational effectiveness with financial measures have been refined during the past four
hundred years and are supported by vast institutional infrastructures [Bcc91]. This
may mean ihat developing new measures will need substantial resources.

14 Chapter 2. Basic Framework

In most organisations, human effectiveness is supervised. However, the degree of
formality will differ greatly from unofficial surveillance to formal computer surveil-
lance. Computer surveillance of human effectiveness can be acceptable if certain
constraints are adhered to [GH91). I is for example important to keep the granular-
ity of the surveiliance so high that it gives the persons the possibility to be effective
and not only efficient. In the struggle for efficiency, is is easy to loose sight of effec-
tiveness [Cov00]. hmprovements of organisational efficiency may for example lead to
painful stress injuries [BG92], which is not very effective for the persons involved. As
another example of unbalance between efficiency and effectiveness, increases in infor-
mation system efficiency in an organisation may be taken out in teris of increased
amount of information, improved quality of the information and better presentation,
but not in increased effectiveness of the organisation [Sim94]. Again, this leads to
suboptimal solutions.

Until now, this discussion has been on an organisational level. On a social level,
the lack of empirical evidence for a correlation between computerised information
systen spending and productivity is termed the productivity paradox [Bry93, Stro4].
Possible explanations of the productivity paradox are mismeasurements, lag before
resuits show up, redistribution of profits within the organisation or mismanagement
of information systems [Bry93].

2.5 Chapter Summary

This introductionary chapter is suggesting that the interaction between organisa-
tional performance and computer system performance would benefit from modelling
in the same framework. This has been supported by some problematic workflows in
the blood bank at the Regional Hospital in Trondheim. The basic framework which
is the main contribution of this thesis has been outlined. Concluding this chapter
was a comparison between the concept of performance as used in this thesis and
the standard concepts of effectiveness and efficiency. While effectiveness focuses on
long term effects of a system or an organisation, performance as used in this thesis
is a quantifiable property of a system which may be measured in terms of through-
put and response time. Efficiency is related to doing things right, in contrast to
effectiveness which focuses on doing the right things.

Chapter 3

Performance Modelling

The aim of performance modelling or performance eveluation is to estimate the per-
formance of a system with a certain workload. Performance models which represent
the performance, the workload and the system are an important part of performance
modelling. Performance modelling is part of the wider concept of performance en-
gineering, which is introduced in Chapter 5. This chapter briefly introduces some
basic concepts of performance modelling. Since performance modelling traditionally
is mostly used in computerised systems, this chapter will also focus on such systems.
For more information, see textbooks like [Fer78, FSZ83, LZGS84, ABC88, MADY4]
or the survey [HL84].

3.1 Workload, System and Performance

Both the workload W and the system S must be specified before it is meaningful to
estimate the performance P of S as shown in Figure 3.1. This is also illustrated by
the functional representation {Hugd6}:

P(S, W)

Many disputes over performance could have been avoided if developers and users
remembered to include not only §, but also W in the performance specification.
The workload and the system are heavily intertwined. Depending on the boundaries

Wi § = P

Pigure 3.1: W gives workload on the system, S, with the resulting performance P.

15

16 Chapter 3. Performance Modelling

Environment

TLILLITITTY
et ""'---.,,, /\ Workload for large system
*
".'

:" .‘.1““"“".'.l.'.."""la.’ ‘."-
- g " -
: $ Small System :A"‘?\ Workload for small system
..’4 "..."'ll!ll|l|t|l'l“‘.“‘ .“:

o ‘.“

".,,“" Large System o

v
I aat®
"""lu-u [TTLI L Lo

Figure 3.2: Both the small system and the large system have a workload. The
workload on the small system belongs to the large system.

between the system and the environment, part of the “system™ could betong o the
“workload” and vice versa. This is iltustrated in Figure 3.2 where & small system is
part of a larger system. The workload on the small system will also be a part of the
large system. As an example, the small system may be a computer system and the
large system an organisation including a computer system.

As an example of how the notation P(S,W) can be used, consider these definitions
of design, improvement and comparison in the context of performance [Hug96):

Design Find S such that:

P(S? T/V) = m

where pq is the performance requirement, Sizing is an example of design, and
is to supply an information system with sufficient data storage and information
processing power for a given workload.

Improvement Giver § and W, find a modified system 5" such that:

P(S', W) > P(S, W)

Comparison Given a workload W and systems S,, 9, < Sy, find the ranking or
ratios:

P(SL, W) P(Sy, W) - ... P(S, W)

3.1.1 Performance Characterisation

Response time and throughput are the most commonly used performance measures,
Response time is measured in time units, e.g. 1 day or 2 microseconds. Throughput

3.1. Workload, System and Performance 17

is measured in terms of departures per time unit, for instance 10 telexes per day
or 100 disk accesses per second. All performance measures are interrelated. For
example, for a system in equilibrium, throughput (X) and response time {R) are
related by Little’s law:

N=X R

where &V is the number of customers in the system. As a special case of Little’s law,
the throughput X of a system and the utilisation U of the resources inside of the
system are related by the equation U/ = XD, where D is the resource demand for
each customer. See also Section 3.2.1 for other measurable quantities of a system.
Other relations between measurable quantities are shown in [LZGS84).

3.1.2 Workload Characterisation

Ferrari defines a workload as the set of all inputs {programs, data, commands) which
the system receive from its environment during a certain time frame [Fer78, p. 221].
This view will be expanded in more detail in Chapter 4, in the context of the SP
method. For more information on workload characterisation, consult. the standard
textbooks, e.g. [Fer?8, FSZ83] where useful concepts are defined, e.g. two workloads
for the same system are equal if their performance is equal [Fer78]. [CS93] gives a
survey of workload characterisation methods for hardware.

Two obstacles in workload charactenisation are the two feedback loops in Figure 3.3,
namely the feedhack from the environment because of the performance, and the
feedback from the system to the workload [Fer78, p. 234]. The feedback from the
environment may either result in more workload or less workload on the system. For
a telephone switching system:, people will often call repeatedly il they do not get
through, hence the workload will increase. Increased response time may also result
in less workload on the system, because users may react by not using the system.
This feedback loop was considered for the Blood Bank Case Study in Chapter 2.

Feedback from
user community

W—t S +—» P

>

System—dependent
characterisation

Figure 3.3: Two feedback loops causing problems for workload characterisation.

18 Chapter 3. Performance Modelling

The cause of the feedback from the system to the workload is system dependencies
in the workioad. System dependencies prevent reuse of a system specification with
another workload or prevents the reuse of a workload specification with another
system. The key to system independence is to construct the waorkload specification
in terms of logical resources instead of physical resources [Fer78).

3.1.3 System Characterisation

For performance modelling, the system § must be complete, meaning that it must
include all the resources used by the system. This use of the term system differs from
the use of the same term in information systems, where it is easy to forget that the
hardware resources also are part of the system, as shown in Figure 3.4. Performance
is holistic and depends on overview of all the resources which are directly or indirectly
used by the workload.

For a elosed system, the mimber of customers inside of the system is constant. For an
open system, the number of customers inside of the system is not fixed, consequently
customers are crossing the system boundary in this case.

An important part of system characterisation is contention modelling and instru-
mentation. Contention modelling is described in Section 3.2. For information on in-
strumentation, see [Fer78). Tools for program instrumentation exist [Amm&2}, which
could guide implementation decisions, like selection of a suitable storage structure
for an editor [AB88] or a sorting algorithm [AW Sg1].

ELLLLLLLE LT TP
ant? try
i l.‘

Y %,
”‘“ * ..Ilulllnn“".- '."0,
s“‘ u".“ t 3 ."'.‘0,. "'o
& Information Y, '
& " -
s § system £ K
~ - b -
bl - - -
Id - - -
H % ot $:
: ", Application o :
H Ty +* 5
.'- ,".""!nu l|ll."“““ 5
K s
[-
*, Resources s
“ - A
"Holistic" ., o
performance system e, o

ny .
,a LA
R TR LU

Figure 3.4: An “information system” which does not take {hardware) resources
into account in contrast to a “halistic” performance system where all the resources
are included in the system.

3.2. Contention Modelling 19

3.2 Contention Modelling

In cases where resources are limited, i.e. where there is a queue for a given resource,
then the processes using this resource will contend for resources while waiting i
the ¢queue. While a dynamic performance model represents contention, a static
performance mode} does not. Static modeliing is considered in Chapter 4. As shown
helow, the two main modelling paradigins for dynamic contention modelling are the
queue-oriented and the state-oriented paradigin:

Maodelling paradigm Solution method
Simulation | Analytic
Queue oriented X X
State oriented X X

As shown, both the queue-oriented and the state-oriented paradigm may be solved
analytically or with simulation. Complex models in both paradigms will often re-
quire simulation, e.g. in general it is not possible to analytically solve a queueing
network model with priorities between several classes. SIMULA is an example of
a {Norwegian!) simulation language [Bir79]. Solving models with simulation will
usnally use nore computer resources than solving the same models analytically. On
the other hand, complex analytic models may require costly numerical techniques
for getting sufficient accuracy.

(reueing networks and bounds analysis are examples of a gueue-oriented modelling
paradigms, which are described in Section 3.2.1 and 3.2.2, respectively. Examples
of a state-oriented modelling paradigm are Petri nets and Markov chains. Petri-
nets are considered in Section 3.2.3. TFor a description of Markov chains, see for
example [TK84]. Apart from the state-oriented and queue-oriented paradigm, we
have the process-oriented paradigm, which can only he solved by simulation, not
analytically. PIT (Process Interaction Tool} is an example of the process oriented
paradigm {Bar89, BHO0]. PIT models generate SIMULA code.

3.2.1 Queueing Networks

This section gives some background material for operational modelling of queueing
networks. The operational approach to performance modeiling of queueing networks
was a breakthreugh in terms of simplicity compared to the stochastic approach which
was previously used. While the stochastic approach uses distributions for each pa-
rameter, the operational approach uses average numbers as parameters, thereby
reducing the parameter capture effort. At the same time, the accuracy of the op-
erational approach is for several problems comparahle fo the accuracy of the more
complicated stochastic approach. The operational approach to bounds analysis are
introduced in Section 3.2.2. This presentation is based on the texthook [LZGS84],
where more details can be found.

20 Chapter 3. Performance Modelling

The service centre is the basic element of a queueing network. Bach service centre
represents some resource in a system and has an average service time for each class
using the resource. A class represents a group of customers who use the centre in
the same way. Hence, a single class queueing network will only represent one class,
whereas a multi class queueing network may represent several classes. There are two
types of service centres:

Delay centres where there is no contention. Each customer visiting the centre has
heen logically allocated their own resource, so there are no queues. The most
common use of a delay centre is to mode] the think time of terminal users.

Queue centres with contention for resources, meaning the customer has to wait for
service at this quete centre in a queue. Disks and CPUs are typical examples
of queue centres.

Figure 3.5 depicts an open queueing network with four queueing centres. The basic
relation for open queueing networks is the equation:

Dy
1-U,

Ry =

The equation above states that the residence time Ry for a queue centre £ is pro-
portional to the resource demand D, for this service centre, and inversely related to
the fraction of this centre which is unused {1~ Uy). For a delay centre where there
is no queue, this retation is simply Ry = Dy. Thus, the factor z—luk accounts for the
queue in a queue centre. As an example, if a queue centre has an utilisation of 50
%, le U =05, Ry, = 2D, for this queve centre. A 40 % increase in the utilisa-
tion to 70 % will give a residence time Ry, = 3.30, which is 67 % higher than the
original residence time of R, = 2D;.. For utilisations over 50 % , residence times are
no longer roughly linear with respect to utilisation as shown in Figure 3.6. Closed
queueing networks have more complex equations.

Departures Disk
Arrivals Disk
CPU ;_" : Disk

Figure 3.5: An example of a gimple open queueing network. This queueing nei-
work represents a CPU and three disks as a gueue centres,

3.2. Contention Modelling 21

Figure 3.6: A graph of the relation R = ;.

All the measurable quantities of a queueing network in the operational approach are:

Ay number of arrivals observed B, busy time

Cr number of completions observed Dj service demand

N customer population Ry residence time

Sy service requirement per visit T length of observation interval
U, utilisation V. number of visits

Z think time of a terminal user Xy throughput

Ay arrival rate

The subscript k refers to a service centre. Note that Ry, is residence time for a single
service centre k, while R is response time for a complete system. Also note that many
of these performance measures could be used to specify performance requirement,
even though throughput and response time are the most commonly used ways of
specifying performance requirements.

Queueing networks which satisfy certain properties may be aggregated by using
FESCs {Flow Equivalent Service Centre). With FESCs, it is possible to abstract
away detailed parts of a queveing network, thus increasing the overview. Application
of FESCs may also reduce considerably the cost of solving a performance model. On
the other hand, by combining different FESCs with other solution approaches like
for example simulation, it is also possible to increase the accuracy of performance
models at a reasonable cost.

3.2.2 Bounds Analysis

A simple way of predicting performance for a closed queueing system is asymptotic
bounds analysis [LZGS84]. A simple performance measure in asymptotic bounds

22 Chapter 3. Performance Modelling

analysis is the intersection between optimistic light load and optimistic heavy load:

_D+%

N*
Dmaz:

where:

N* Number of terminals possible to support with acceptable performance.

D Total service demand for all the resources in the system for one visit.

Dhaar Service demand for the queue centre with the highest service demand
{(the bottleneck queue centre}.

Z Total average think time between each customer visiting the system.

3.2.3 Petri Nets

Petri nets [ABCB8] consist of places and transitions as in Figure 3.7 where places
are depicted as circles and transitions as lines. In a standard Petri net, transitions
are fired when all its input places leading to a transition contain at least one token.
Time in Petri nets can be introduced in two ways: (1) a duration between enabling
and firing of a transition; (2) a token becomes available only after a duration in
a place. This duration may be a fixed delay or a stochastic distribution. The ex-
ponential distribution is simplest to handle mathematically, since a Petri net with
only exponentially distributed transitions is isomorphic to a Markov chain [ABCRS)].
Therefore, solving such Petri nets are equivalent to solving Markov chains. Because
of a large state space even for quite small problems, this may be time-consuming,
both if the chain is solved analytically or if simulation is used. In contrast to queue-
ing networks, there is no support for abstraction in normal Petri nets. Extensions
of Petri net with abstraction support, so-called behaviour net models (BNMs) are
described in [SK93].

|

@

Figure 3.7: A simpie Petri net.

3.3. Performance Modelling Cycle 23

3.3 Performance Modelling Cycle

The modelling cycle in Figure 3.8 shows the relation between an existing system,
workload, performance, modified (or projected) system and the performance model.
As depicted in the left part of this figure, the modelling cycle consists of three basic
phases:

Validation phase: In this phase, a performance model is developed and parame-
terised. The system is measured to give the workload measure for the perfor-
mance model. During the validation phase, the estimated performance of the
performance model is compared with the measured performance of the sys-
tem, under the same workload. To gain confidence in the performance model,
this validation should be repeated for changes, hoth in the system and in the
workload.

Projection phase: The performance model is now used to project the performance
of a projected, modified system with & maodified workload.

Verification phase: Afier the modified system has been finished, it can be mea-
sured. During the verification phase, the projected workload model is com-
pared with the measured, modified workload, and the projected mode! is com-
pared with the measured, modified system.

Note that the terms validation and verification as defined here with respect to per-
formance modelling differ from the general definitions of the same concepts for in-
formation systems as described in for example [SK93).

3.4 Chapter Summary

The basic components in a performance model are a model of the system, a workload
model and a performance model. The operational approack with focus on average
pumbers instead of distributions in the stochastic approach was chosen because of
simplicity. In the operational approach, analytic solution of queueing networks is
possible. In the performance modeliing cycle, the distinction between validation and
verification is important. Model validation is part of model formulation, while veri-
fication is done after the model has been used to project performance for a projected
system. Whereas the workload in validation can be derived from the existing system,
the workload used in verification must be based on some kind of extrapclation of
the present workload to cope with anticipated changes in the projected workload.

24 Chapter 3. Performance Modelling
A o
Measurement Existing system
Measurement
Existing system Existing system
workload measure performance measures
5 Model
g Parameterisation definition Comparison
3
Original] Original
model inputs model outputs
Y.
Modification
analysis Comparison
g
3
L, v
& ‘ +
Modified Modified
_Y |_modei inputs model outputs
Comparison Comparison
5 Y
':gj E/Iodiﬁed systern j Modified system
= workload measures performance measures
3]
2 ’
Measurement
X Modified system Measuccment

Figure 3.8: The performance modelling cycle [LZGS&4].

Chapter 4

Structure and Performance (SP)

This chapter explains the basic concepts of the Structure and Performance (SP)
method as used in this thesis. The material in this chapter found its form after
extensive discussion with Peter Hughes, the originator of SP. SP is a method for
describing the hierarchical and modular nature of a system and for analysing the
resource requirements of its component paris [Hugh3]. SP structures the intercon-
nection between components such that two modeliers who model the same artifact
will tend to make equal models [Vet93, p. 228].

Unsil now, SP has almost exclusively been used to maodel computerised information
systems. A tool supporting SP has been implemented [Min90] and SP ideas have
strongly influenced Vetland’s thesis [Vet93]. His thesis also describes a method for
using SP in existing systems, including real-world examples of SP models. The hest
reference for the conceptual underpinning of the SP method is [Hug88], but see
also [HBP*88, Hug89, Xen%, Hugd3} for supplementary information.

This chapter is structured as follows: First, Section 4.1 iniroduces the concept of
resource hierarchies which is central to SP. Then the separation between work and
load in 8P is explained in Section 4.2. Performance specifications for systems and
subsystems are described in Section 4.3. The abstract virtual machine is a basic
concept underlying the theoretical understanding of SP which is introduced in Sec-
tion 4.4. SP modules may be extended to SP components as explained in Section 4.5.
Section 4.6 describes SPs data model. Typing of operations is explained next, before
these typed operations are used to form distributed and non-distributed architec-
tures in Section 4.7. SP components and operations are written with the teletype
font for clarity.

26 Chapter 4. Structure and Performance (SP)

Figure 4.1: Type of resources used by an application. At the bottom, the resources
are physical and concrete like memory, CPU or disk. Higher in the resource
hierarchy, the resources are abstract. Not visible in this figure is the organisation
which uses the application.

4.1 Hierarchies of Resources

Central to SP are hierarchies of resources. Figure 4.1 shows a typical hierarchy for
a transaction-oriented application. This application gives workload on a graphical
user interface, a network and a database. In turn, these resources will use primary
memory, CPU and disk. In this thesis, the focus is on the time resources are used, e.g.
the CPU usage and the disk usage. This is measured in the number of instructions
during a given time interval, the workload. Workload will be separated in work and
load later in this chapter. This thesis will especially focus on work.

Use of primary and secondary memory resources in the system may he crucial for
the performance of the system. Even if memory becomes cheaper, it will still be a
limited resource. During application development, it is for example easy to put too
much data into primary memory which may lead to problems later during develop-
ment, because slow, secondary memory must be used. As an example of memory
considerations during design, client-server storage systems are analysed in (DM92].
While the primary focus of this thesis is on work, problems concerning space witl
also be touched upon.

The primary reason for including a resource in an SP model is to prepare for a change
in this resource. SP makes a conceptual hierarchy of resources, not a physical hierar-
chy: thus there will not be several clients in a client-server model (See Section 4.7.2
for a client-server SP model.). If two clients are different, this conceptual difference

4.1. Hierarchies of Resources 27

Secretary
Secretary Secretary Secretary
communication processing memory
. Secretary Secretary Secretary Secretary
Mail copy desk bus store

Figure 4.2: SP model for a secretary.

musé be represented explicitly in the conceptual SP model.

To illustrate SP in this chapter, we introduce a model of a secretary in Figure 4.2.
The secretary in Figure 4.2 is seen to possess operations for communication, pro-
cessing and memorising. The secretary acts as a comuuunicator when receiving and
sending documents, and is using the mail, secretary_copy and secretary.bus
resources, where the secretary. copy and secretary_bus resources are resources in-
ternal to the secretary, e.g. it takes secretary time to copy a document. Secretary_bus
is related to the walking in corridors between, e.g. the archive and the desk. The
secretary also performs processing of documents, using the resonice secretary_desk
which is internal to the secretary. Furthermore, the secretary memory operations
is related to the archiving of documents, e.g. a secretary stores and retrieves docu-
ments, and uses secretarial resources secretary_store to do so. This model of a
secretary is used in a slightly expanded version in the Gas Sales Telex Administration
Case Study in Chapter 10.

4.1.1 Relation to Basic Framework

The hasic framework in this thesis was introduced in Figure 2.4 and will be explained
in more detail in Figure 9.2. Since this chapter and the following chapters 5 and
6 focus mostly on compuierised information systems, Figure 4.3 shows an outline
of the resource framework for performance engineering of computerised information
systems.

This chapter focuses on static {software} modelling, and also comments on the in-
teraction between static software modelling and dynamic hardware modelling. Con-
tention in software and hardware may be modelled with dynamic techniques from
Chapter 3, as described in [Vet93].

28 Chapter 4. Structure and Performance {SP)

e,
s,
o ", 7
~ (J
&
% S fred
“, o 2
o «
et
o
& ‘-,‘ L77)
K F
, s
3 G
-
s
“-
' re H
7
s
3 "
[+
[
5
., 4
",
& ", =
K s
H H
% §
-, &
J 5
4, o
2y, ¥
o, et
. ‘
LIPS AT L

Figure 4.3: Framework for performance engineering of computerised information
systems. The legend for this framework is shown in Figure 2.5 in Section 2.2,

operations
OO 000
HighTevet
FESOUrCe
Becteasing abstraction level
and increasing level of details
&S00 00 B 063
Tow level Fow'lcvel
resource resource

Figure 4.4: Work is always related to the use of operations at a given abstraction
level.

4,2. Workload = Work 4 Load 29

4.2 Workload = Work -+ Load

Underlying the philosophy of SP is the distinction between work and load {Hug88].
Taken together, work and load define the workload for some system, illustrated by
the symbolic equation Workload = Work + Load in the title of this section. An
exaimple illustrates the distinction between work and load: when you receive a doc-
wment,, the load applies to the point in time when you receive the documents during
this period. At each point in time you receive a document, some organisational or
computerised resources will be used. This resource usage is measured in terms of
work. Worlk is always related to the use of operations from a resource at some ab-
straction level as illustrated in Figure 4.4. Operations at a high level of abstraction
use other operations at a low abstraction level.

The workload for each operation will contain both the work and the load, i.e. both
the amount of work for each operation, and the number of operations during a given
time interval. Simply put, load is when an operation is invoked and work is what the
operation does with the system. When a load model and a work model are combined
with a contention model, we have & performance model [Vet93]:

| Performance Model = Load Model + Work Model + Contention Model |

Each of these aspects are described by a model, as illustrated in Figure 4.5. The
load model is described in Section 4.2.2, the work mode! in Section 4.2.1 and the
contention model in Section 3.2. As shown in Figure 4.5, the dynamic lead model
is only relevant in the contention model and not in the static work model.

User Operations

Work

Work
] model

Resqurce
mands

Primary

Contention model feSOUrces

Figure 4.5: Combining a work model, & load model and a contention mode] gives
a performance model [Vetd3].

30 Chapter 4. Structure and Performance (SP)

4.2.1 Work

Work is defined as a vector uw of operations applied on a given resource in SP. !
Assume that a secretary handles documents, and performs an in_doc operation every
time she receives a document. When she sends out a document she will perform an
out.doc operation. Then the vector:

mn-doc out_doc
@‘Secrctary - [2 1]

states that the resource Secretary must perform 2 in_doc operations and 1 out_
doc operations. For work, there is no information about when the operation occurs;
how long time an operation takes and the sequence of operations. Thus, work is a
static concept, since time is not involved. This is in contrast to the dynamic load
concept where time is vital. But since things are not necessarily simple, a static
work model may exhibit load-dependence as elaborated upon in Section 4.3.2.

The work vector w may be normalised o a unit work vector @ which specifies the
work for the “average” operation [Hug96]. If the total number of operations is v, @
is defined by = w2, where @ have the elements 2;, ¢ = 1,2, ... and Sya; = 1. If for
example: W Secretary, then v =3 and @ = [%, %} v is related to the visit count V' by
the equation: v = bV where by, is the batch size [Hug96).

Information work is related to physical work, not only conceptually [Kol86}, but
also in practice. Eventually, work in an information process will iead to changes of
states in a hardware chip. Opdahl gives a survey and compares several definitions
of computer work jOpd92).

operation
OO0
Decreasing abstraction level
and increasing level of detail
OCO0OQO0
suboperations

Figure 4.6: Work complexity is a matrix showing the relation hetween two levels
of operation.

4.2.1.1 Work Complexity Specification

Work complezity is related to differences in work between two abstraction levels. In

"More specifically, the vector of operations is applied on an abstract machine. This is introduced
in Section 4.4.

4.2. Workload = Work + Load 31

Figure 4.6, the work complezity specification describes the relation between 2 high
level operations and 5 low level operations. This work complexity specification is a
matrix which has complexity functions for each element, as shown helow where each

;. . . . - 4 . - i
element f7 in the complexity specification matrix (ngs o m 15 & complexity function:

ubsystem

subop_I - subop.m
1 1
op-1 I
System _ . N . .
< Subsystem ~ : e .
op-n LR 4

In this work complexisy specification, System has n operations while Subsystem has
m operations. For example in Figure 4.2 the complexity specification below repre-
sents the relation between the resource Secretary and the resource Secretary_comm
unication:

send_draft fetch_post send_post
Secretary in-doc 0 1 0

- Secrelary _communication oui_doc T 0 1

Each of the six elements in this matrix is a complexity function. The complexity
function ;’;;ffg;aﬂ = z in this complexity specification describes the relation between
the operation out_doc and the operation send_draft. The parameter z is a parame-
ter which must get a value before this complexity function is determined. If x = 0.5,
this means that for each out_doc operation, the operation send_draft is performed
0.5 times. This number may mean that on the average, only half of the documents

which the secretary sends out needs a draft.

4.2.1.2 Problems with Work Characterisation

The basic problems with characterisation of work are [Hug96]:

Operational variety The system may offer a large number of operations. 2 In

general, it may be impossible to characterise all these operations. For exampie,
the complexity specification ngg;:g:g;gvm above is a simplification. Several
operations were not considered important, and consequently not modeiled to

cope with the problem of operational variety.

2The term function was originally used instead of operation i.e. functional vaziety (Hug?78}. The
term function is more general than the term operation. Commandsin UNIX may for example have
$0 many parameters that each function in reality hides several alternative operations. To keep the
number of concepts low, this thests uses the term operation.

32 Chapter 4. Structure and Performance {SP)

Data dependence Performance may depend critically on the data which are op-
erated on. The complexity specification Cg:;’ﬁ:;‘%’_pm ahove, for example, de-
pends on the data z. If either the number of data values is too large, or the
volume of data is too large (e.g. an operation sorting 1000 numbers), some
techniques for finding relevant combinations of operations may be used (see

end of this section for more information).

Sequence dependence Performance may depend on the order in which the opera-
tions are invoked. This will only happen for state dependent systems. Software
will be state dependent if synchronisation is involved, or even more subtle if
for example database statistics may control the way the database locks for
information. Hardware will be state dependent if performance depends on for
example the position of a disk arm, or placement of files on a disk.

Theoretically, data dependence and operational variety are equivalent because for
each permutation of data a new operation may be defined, leading to operational
variety. For example, the walk operation in the complexity specification in Sec-
tion 10.2.1 has the distance to walk as data, but each distance could also have been
modeiled with one operation, which may have led to the problem of operational va-
riety. Operational variety is typically handled with cluster analysis while sequence
dependence is handled by repeating the experiment for several sequences. Validation
is important to justify the simplifications.

4.2.2 Load

In the ideal case, the load on an operation should represent each time the operation
is used. This load description would be truly representative, but far from compact.
Simplificaticns are used in practice. As stated in Section 3.2, this thesis focuses on
the operational approach in contrast to the stochastic approach to load specification.
Load in the operational approach may be modelled as transactions for an open
system, and for a closed system load may be modelied with baich load or the more
general terminal load [LZGS84):

Transaction: Intensity for one {unit) operation A
Batch: Number of concurrent operations N
Terminat: Number of concurrent operations, and think time {N,Z}

4.2.3 Workload

A workload specification will contain a description of both work and load How
work and load are combined to form workload is not straightforward. In the general
case, a system will have n operations. Each operation represents one way of using

4.2, Workload = Work + Load 33

Al

cl A2
asses A

Am

Operations
123

b1
NN O o
oo =4

System

Figure 4.7: Each closs represents one way of using the operafions of a system.

the resources inside of the system. The environment has m ways of using these
operations. Bach way of using the operations is termed a eless. This is Hllustrated
in Figure 4.7, where the m clagses are depicied as triangles and the n operations are
Nustrated with circles. Each class has a certain load. For example, class 1 may have
an average of 30 visits during each day, in a transaction type of load specification:

b Class_ 1 = 30

How each class uses the operations of the system is specified by a work specification.
Assuming n == 2 (2 operations), class 1 may use operation in.doc £ times and the
1

operation out.doc y times. This work specification is a normalised work vector

Ugecretary @ described in Section 4.2.1:

in.doc out_doe

i = 2 S
Y Seeretary = [3 3]

For class 1, the workload specification W52 is now:

Class.l ___ y Class_1
W = A

5
Secretary * USecretary

in_doe out_doc
wisel = [20 10

Secretary

Formally, the workload specification for an open system of the transaction type with
one class is:

34 Chapter 4, Structure and Performance (SP)

With severa classes, the vectors W, if and 57 will be matrices and the scalar) wij)
be a vector. For a closed System with one class, the workload description ig:

W= (N,z4q

N is the number of Customers in ghe system. Z = ¢ fop a batch systen. For a
terminal System, Z #£ ¢, 3 Specifies how each operation offered by the system is
used by one clags.

4.2.4 Resource Demands

The Mapping between the work model an the contention model is specified by
the resource demand mode), Resource demands are Specified ag 5 vector, Below
is an example of resource demands for the tWo operations of Secretary. desk in
Figure 4,9.

read | 1
DSCcretary_desk = type [10 J

Whereas the time is irrelevant for a work Specification, it g mandatory for 5 resource
demand Specification. Resource demands are always measured relative ¢ some time
interval, In this case, the time intervaj jg 1 minute, Thus, it takes 1 minnte to
read one bage and 10 minutes to type one page. In [LZG884J, the term service
demand/requirement is used in the Same way as resource demand in thig thesis.

Before we cap make a more general definition of a performance specification ip
Seetion 4.3.2, we must first define subsystems in relation to Sp.

4.3. System and Subsystem Performance Specification 35

4.3.1 Subsystem

For hierarchical decomposition, a subsystemn must include at least one physical re-
source. The subsysten must also be sufficiently separable fron: the rest of the system
5o that it is meaningful to define its performance quasi-independently. In practice,
this means that the subsystem [Hug96]:

1. Shares some communication resource with the rest of the systen.

2. Is otherwise self-contained. In particular, it does not share any of its resources
with processes running outside of the subsystem.

3. Is separable with respect to the other subsystems in the system. A key re-
quirement of separability is that the average rate at which the subsystem
processes requests only depends upon $he number n of the customers in the
system [LZGS84]. In practice, separability is a question of approximation.

For a system, the first requirement is not necessary, but the second and third require-
ment are necessary. © With these principles, it is possible to visually detect subsys-
tems in SP models, e.g. principle 2 above is broken in Figure 4.2, since the operasions
for some of the components Secretary.copy, Secretary. desk, Secretary_bus, and
Secretary.store are performed by the same physical resource, namely the secre-
tary. This deficiency in the model is corrected in Chapter 10,

4.3.2 Performance Specification

A performance specification can be made for all subsystems which adhere to the
restrictions in Section 4.3.1. The relation between work, load and workload is shown
in Figure 4.8.

The different parts in Figure 4.8 can be represented as [ollows [Hug6, Hug95]:

Visit count: Ve
Normalised unit work operation (Sec. 4.2.1): 1,

Work unit for system 5: (Ve s}
Processing concurrency: n
Dynamic constraint (on the concurrency}: s mas
Processing rate: s
Complexity specifications are: {C}
Devolved work-units: {55y Thas -

INote the slight clash between the common term “information systern” and the term “system”
as described in Section 3.1.3. An “information system” may not include the necessary software
platform and hardware, and may therefore not be “self-contained”. Since the term “information
system” is established, this thesis will still use this term.

36 Chapter 4. Structure and Performance (SP)

Workioad

Work Process
unit CONCUITENCY

A
Structure ol
specification Structurall

Component gg;ﬁ.’r{l

complexity— System
specifications performance

Devolved specification
work—units

Dynamic
constraint

—
Drynamic
system

Subsystem model

performance L

specifications

1
PEOCESSING TALE =+-vevswremmesrmnrorssssnrossnannsd

Figure 4.8: Hierarchical performance modelling [Hug5, p. 40].

The structure specification is considered in Section 4.6.1. System performance for
one class is:

Py = (i, ps(n}, 15 maz) where n=0,1,2,... 75 maz

Similarly, performance for a subsystem for one class is:

Py = (i, ﬁ‘ss{n):nss,mam)

For the top-level system, fi;(n) is evaluated for a closed system level model and can
be regarded as defining a FESC. The formulas must be applied recursively for all
subsystems, until ali the { P} for the corresponding @, are available. See [Hug96,
Hug®5] for more information.

For multiclass workloads, the definitions above must be extended [Hug9G). Each
class will be represented by a separate workload vector, and n must be replaced by a
population vector 7 describing the number of concurrently active customers of each
class. For each value of the population vector, separate throughput rates must be
defined for each class.

4.4. Abstract Virtual Machine 37

Operations

o 0 0O
o Q O
Information in> — Information out™>

Figure 4.9: The virtual machine processes information with some operations.

4.4 Abstract Virtual Machine

The abstract virtual machine is a more exact name of the resources at several levels of
abstraction which are modelled in SP. For a deeper understanding of SP, the concept
of abstract virtual machine is important, but also hard to grasp conceptually. All the
other concepts in SP are related to this concept. A virtual machine takes information
in, processes this information based on some operations and sends the information
out again as can be seen in Figure 4.9. Fach operation may have parameters with
data describing the operation further.

This machine is virtual because it is implemented in terms of software or human re-
sources. The virtual machine concept was originalty used in the design of operating
gystems iP585]. An abstract machine makes no assumptions about the implementa-
tion, e.g. a Turing machine {Gil76]. It is illustrating to consider a real (as opposed to
a virtual) machine which processes steel. Pieces of steel are taken into the machine
and shaped according to some operations (i.e. buttons) on the machine. The final
shape of the steel pieces is the result of a sequence of operations.

This sequence of operations in a virtual machine is the result of a process controlling
the machine. A process is a partially ordered set of operations on some data. It
is not a total ordering 1o allow for nondeterminism, which is necessary for parallel
machines. Each operation of the virtual machine also starts a process, the socalled
inner process, in conirast to the outer process which invoked the operation in the
first place. This is illustrated in Figure 4.10. Suboperations are operations used
by the inner process. A process can be a procedure in a programming language,
a predicate in Prolog or a speech act between humans. In the steel example in
Section 4.4, several buttons on submachines could in theory be pushed when one
machine button is pressed,

4.5 Module and Component Specification

In SF, there are three concepts designed to specify levels of available information
for an SP node, ranging from an ADT, when there is only superficial knowledge, to

38 Chapter 4. Structure and Performance (SP)

7~ _operation
Ly

Inner process

virktal machine

Figure 4.10: The outer process invokes an operation on the virtual machine and
an inner process is started.

datamodel

operations

Figure 4.11: An abstract data type and a data model.

datamodel

~ High level

module

QE datamodel 6[datamodel

Figure 4.12: A module specification with data models.

4.6, Pata Model 39

modules and components where the knowledge level increases.

ADT A set of operations upon a common data structure is known as an abstract
data type (ADT). This is completely abstract, i.e. it does not depend on some
virsual machine. In Figure 4.11, an ADT is shown by a line with dots, where
the dots symboilise operations. The boxes symbolise data structures. As an
example, the ADT for the Secretary memory in Figure 4.2 is:

OSecretary.memory = Lyet-internal address, get.externaladdress, store.achieve, get_achicue |

This ADT has two data structures, namely address-tuple and archive-tuple.
An ADT and data model taken together are termed an interface [MVH94].

Module A moedule is an ADT associated with a specific virtual machine, i.e., the
lower-level ADTs on which it depends must be specified. This is iflustrated in
Figure 4.12.

Component A component is a module specification augmented with implementa-
tion dependent information about work complexity and compactness, While
complexity specifications were introduced in Section 4.2.1.1, compactness spec-
ifications are described in Section 4.6.1.

4.6 Data Model

A data model determines the meaning of data and mutual relationships among
the various items. In Figure 4.11, the data model is modelied as an orthogonal
dimension to the operations. The data model is the mterface to the memory of
the virtual machine. If data should be stored beyond the current lifetime of the
process, memory must be used. The memory may be viewed as an outer dala
structure implemented by a storage structure. The outer process accesses the outer
data structure and the inner process accesses the storage structure. The storage
structure implements the outer data structure. The storage struciure is persistent
just as the outer data structure. There is a relation between the data model in SP
and PhM in PPP (PhM is described in Appendix Bj.

4.6.1 Compactness

Compactness specifications only apply for memory links. Comipactness describes
a relationship between a data structure and its storage structure in a lower level
component, [Min90]. The compaciness specification G shows the amount of storage
required for a single unit of data. The unit may be whatever is relevant at each level,
provided consistency is maintained. (FRefs-Notes ig the compactness specification for
the relation between Lotus.Notes and the Disks in Figure 11.4:

40 Chapter 4. Structure and Performance (SP)

blocks
QR = telex [0.0025+1 |

The above equation states that one document takes 0.002s + 1 blocks of storage
allocation in the disk, where s is the size of an average document in characters. A
document with 2000 characters will need 0.002 - 2000 + 1 = 5 blocks.

Each level of the memory chain has an extent limit specification [Min90]. The extent
limit specification is a vector which specifies the maximum number of items of each
storage structure in terms of its normal unit of allocation. For a 400 MB disk
where the block is the storage structure and where the block size is 1 kB, the extent
specification Epiqu will be:

blocks
Epig = [400000 |

The devolved extent must he less than the extent limit:

Lotus. Nok
ELotusLNotcs ' GD?SES oces S EDisk

Compactness specifications and extent specifications are a relatively underdeveloped
area in SP.

4.6.2 Workspace

The workspace is the temporary storage in a virtual machine during flow of infor-
mation between operations of a process. The concept of workspace is orthogonal to
the process concept. The outer process operates in the outer workspace just as the
inner process operates in the inner workspace. Processes which get input from the
outer workspace, other workspaces or the storage structure, operate on the inner
workspace and place the results in the outer workspace, communicate with other
workspaces or store data in the storage structure. As an example of a workspace
in & computer system, the temporary storage of a procedure in the C programming
language is the content of variables used during execution of this procedure. In
Turing machines, the workspace is on the tape [Gil76].

The workspace of a person is his brain and in addition, temporary information on
a blackboard, on a piece of paper or in a computer used by this person. A group of

4.7. Typing of Operations 41

peopie may also have a common workspace. In the Gas Sales Telex Adminigtration
Case Study in Chapter 10, paper is part of the workspace for the STATOIL organi-
sation. Paper is processed by case workers and distributed by mail men, functioning
as a way of communication between the internal processes inside of each case worker.
Tor some operations, the paper will survive the lifetime of the operations, and can
therefore he regarded as memory. This reflects the simitar nature of workspace and
memory. Persistence is the only difference between them.

4.7 Typing of Operations

It is especially the typing in SP which increases the possibility of spotting similar-
ities between SP models, which again makes reuse simpler. As commented on in
Section 5.4.5.2, reuse of performance models is important to save the cost of mod-
elling. This section first describes the three basic operation types in SP, then some
remarks are given on the fourth and seldomly used operation type in Section 4.7.2. A
non-primitive module in SP is either non-distributed or distributed. The type rules
for non-distributed SP models are explained in Section 4.7.3. Section 4.7.4 describes
the rules for distributed SP models and also gives two examples of client-server SP
models.

Secretary
Secretary Secretary Secretary
communication prococessing mermory

Secretary Secretary Secretary Secretary

Mail copy desk bus store

Figure 4.13: SP model for a secretary. Links between components are typed.
Processing operations have solid lines, memory operations have bold lines and
communication operations have dotted lines.

4.7.1 Basic Types

The basic types of operations in SP are processing operations, memory operations
and communication operations. Typing of operations in SP is indicated by the
thickness of the links in SP models as shown in Figure 4.13. Processing operations
have solid lines, memory operations have bold lines and communication operations
have dotted lines. These three types of aperations conform to the main tasks of an

42 Chapter 4. Structure and Performance (SP)

information system, which are manipulation, storage, and distribution of informa-
tion [SK93]. The operation types are distinguished as foliows:

Processing Processing operations transform information and operate in the local
workspace of a virtual machine. This is in contrast to the memory and com-
munication operations where information is either transported from or to the
workspace, but not within the workspace.

Memory Memory operations or data access operations are used for access to and
storing of data beyond the lifetime of the outer process. In Figure 4.13,
Secretary. memory is the secretary as interface to the local archive which is a
memory for the secretary.

Communication A communication operation transfers data between the outer and
inner process when their workspaces do not interact. A communication opera-
tion is really a memory operation with low persistence and distributed access.
This shows the blurring distinction between communication and memory, and
may explain why it is easy to mix these operations in Lotus Notes. 4

4.7.2 Discrimination

In addition to the three types described above, there is one additional type of op-
eration, namely discrimenation, which is internal to each process and therefore not
visible in 8P models. In practice, discrimination is lumped together with process-
ing {Hug88]. Discrimination is one of the most subtle aspects of SP. Discrimination
operations perform decisions concerning the process and is part of the socalled con-
trol process inside of the virtual machine [Hug88]. If an 1F-statement in Figure 4.14
is executed in component 4, this is discrimination in terms of the module 4.

Only some part of the IF-statement in Figure 4.14 may be discrimination inside the
CPU component. It may for example be necessary to process some data before a
decision (discrimination) can be made. Thus, as we decompose, only some elements
of discrimination at the upper level still continue to be so. One discrimination in the
{F-statement, in Figure 4.14 may also become several discriminations when decom-
posed, i.e. in addition to a test, some decisions regarding which memory segment
that should be read may accur. If we decompose information processes down to the
chip level, all information processing becomes discrimination, ie. state changes on
the chip.

4n Lotus Notes, described in Section 8.2.4 and Section 11.2, it is often easy to serd information
instead of just telling where in memory the information can be found. This gives higher workload
on the computer system and therefore also degrades the performance of the humans using the
computer system.

4.7. Typing of Operations 43

CPU

Figure 4.14: Discrimination in SP.

Figure 4.15: The non-distributed module & uses the submodules B for storage and
the submodule C for processing.

Figure 4.18: A variant of the client-server architecture.

44 Chapter 4. Structure and Performance (5P)

4.7.3 Non-distributed Models

Non-distributed modules have one processing submadule and one memory submod-
ule as shown in Figure 4.15 where operations in module A invoke operations in
submodules B and C. Operations on submodule B are memory operations, and op-
erations on module C are processing operations. This is indicated by bold lines for
memory operations and by solid lines for processing operations.

4.7.4 Distributed Models

Distributed modules have (1) more than one processing submodule, (2) more than
one memory module, or (3) both [Vet93, p. 93]. A simple example of a distributed
module is depicted in Figure 4.16. Making 5P models according to the principles
for distribution is simple for models with only two levels: the module level and the
submodule level, However, making SP models with more than two levels is hard, and
will often take several iterations. Based on the basic relationships, non-distribution
or distribution, more complex architectures can be made. In Figure 4.17, a client-
server architecture is made by combining a non-distribution architecture with a
distributed architecture.

Another representation of the client-server architecture is shown in Figure 4.18,
where the intrinsic processing which was performed by component B in Figure 4.17,
now is done by component A’. This representation is a transformation of the repre-
sentation in Figure 4.17, where each level is non-distributed. The * in A signifies
that the A component in Figure 4.17 is not similar to the A’ component in Fig-
ure 4.18. This is expressed by the equation: 4* = 4 + (B - B’), which states that A’
performs more work than A. This work is equal to the work which was performed by
B in Figure 4.17, and which is no longer performed by B’ in Figure 4.18. The model
of Lotus Notes in Figure 11.3 is an example of a more complex SP model. However,
the extension from the client-server models above is straightforward.

4.8 Chapter Summary

SP is a method for modelling relations between resources at several levels of abstrac-
tion. The key feature of SP is the distinction between work and load. SP focuses
on modelling of work which in contrast to workload is a static concept. SP may be
combined with dynamic approaches, for example queueing neiworks, to deal with
more complex performance problems. Links between SP modules may be a process-
ing link, a communication link and a memory link. These links form an important
part of making it more easy to discover shmilarities in different SP models, thus
encouraging reuse.

4.8, Chapter Summary 45

A common criticism of SP is the high number of concepts. The reason for this
complexity can be twofold:

1. SP mtroduces extra complexity whick is not present in the domain from the
beginning. In this case, SP only increases the workload on the analyst, without
giving improved quality of the model in return.

2. SP captures complexity which is in the domain, but which has been hidden. 1t
is now the choice of the analyst if he wants to use this complexity to improve
the quality of the model in some respects.

My experience with SP is in line with the latter view. During SP modelling, the
size of an SP model tends to increase when more and more of the complexity of the
domain is undersiood. When sufficient understanding is reached, the complexity
and thus the size of the SP model tends to decrease. Finished SP models are usnally
COMPacs.

46

Chapter 4. Structure and Performance (SP)

Chapter 5

Performance Engineering of
Information Systems

For large projects, it is important to discover mismatch in performance at an early
stage in the project, because counteraciing performance problems late in the project
is much more costly and time-consuming. This is similar to paying insurance to
avoid high expenses later. With performance engineering of information systems,
inadequate performance is discovered before integration and testing [Smif90] and
could be defined as [AleB6]:

Performance engineering is the matching of software requirements to
hardware options and defines computer capacity needs for given soft-
ware requirements and operational conditions. Performance engineering
ensures adequate computer capacity when the systems are completed and
operational.

The first section outlines where performance requirements fit into the larger picture
of non-functional requirements. Since performance engineering is part of the overall
information system development, Section 5.2 describes information system lifecycle
models. Then the motivation for performance engineering is discussed in Section 5.3,
This section continues with an overview of the state of the art for performance
engineering of information systems. The quantitative approaches which are mostly
used, are described in Section 5.4, while one qualitative approach to performance
engineering is described in Section 5.5.

5.1 Non-functional Requirements

All requirements which do not deal directly with the functional relation between the
environment and the system, are defined as non-functional requirements. Broadly

47

48 Chapter 5. Performance Engineering of Information Systems

speaking, for non-functional requirements there is no direct route from specification
to implementation [Fin91}. Thus, non-functional requirements are in general hard
to retrofit, i.e. to fit in after the product has been finished [DBC88]. The distinction
between functional and non-functional requirements is not clearcut, however. As
a design area becomes more mature, some of the non-functional requirements will
become functional, e.g the non-functional requirement of user friendliness has to
same extent been taken care of by advanced user interfaces specified as part of the
functional requirements.

There is no generally agreed upon taxcenomy of non-funetional requirements [Chu93],
but non-functional requirements will at least include effectiveness requirements, in-
terface requirements and adaptability requirements. ! Some authors make a distine-
tion between customer-criented (observable by the customer) and systeni-oriented
(only internal to the computerised information system) non-functional requirements
{Chud3, KKP90] or between product-oriented (oriented towards the final product)
and process-oriented (focus on the development process) non-functional require-
ments [Chud3]. In the ideal case, the tradeoff between non-functional requirements
is made explicitly and not left to intuition. Such an explicit tradeoff process is il-
tustrated in [SW93] and [MCN92] from & quantitative and a qualitative modelling
point, of view, respectively.

5.2 Lifecycle Models for Development of Informa-
tion Systems

Performance engineering will be embedded in an information system development
lifecycle. This section presents some well-known and also some promising lifecycle
models and comments on how performance engineering fits into each lifecycle model.

5.2.1 The Waterfall Model

The waterfall model in Figure 5.1 forms the basis for most lifecycle models used
in practice today [Boe88]. The advantage of the waterfall model over the conven-
tional code-and-fix approach is to encourage design before coding and to increase
the quality of the documentation, which in particular will make maintenance eas-
ier. With clearly separated phases where documentation is the end product of the
previous phases, project control is also easier than with the code-and-fix approach.
Each phase culminates by verification and validation to eliminate as many problems
as possible in the lifecycle products. Iterations of earlier phases arc to the extent
possible performed in the next succeeding phase, which is illustrated by the arvows
in Figure 5.1.

! Adaptability requirements determine how easy the system is to adapt to changes in the envi-
ronment: expandability, flexibility, inleroperahility, portability and reusability [Chu83, KKP20).

5.2. Lifecycle Models for Development of Information Systems 49

System

feasibility
Validation \’
Software plans an
roguirements

Validatien

\ Product design

stification

\ Detailed design
crification \
\ Code

Unit fest \

\ integration
reduct

verification

\ Implementation

Systerm test

Dperations and
maintenance

Revalidation,

Figure 6.1: The waterfall model of the software lifecycle [Boe81].

Below, each phase is considered in sequence [Boe81}:

System feasibility Defining a preferred concept for the software product, and de-
termining its life-cycle feasihility and superiority to alternative concepts.

Software plans and requirements A complete, validated specification of the re-
quired functions, interfaces, and performance for the software product.

Product design A complete, verified specification of the overall hardware-goftware
architecture, control structure, and data structure for the product, along with
such other necessary components as draft user’s manuals and test plans.

Detailed Design A complete, verified specification of the control structure, data
structure, interface relations, sizing, key algorithms, and assumptions of each
program component.

Coding A complete verified set of program components.

Integration A properly functioning operational software product composed of the
software components.

Implementation A properly functioning operational hardware-software systeni, in-
cluding such objectives such as program and data conversion, installation and
training.

Operations and Maintenance The system runs in production, and is maintained.

50 Chapter 5. Performance Engineering of Information Systems

Performance engineering in the waterfall model is elaborated in more detail in Sec-
tion 5.4.1, where the SPE approach of Connie Smith is outlined. The basic prohlem
with the waterfall model is the emphasis on fully elaborated documents as comple-
tion criteria for early defined requirements and design phases, which in turn may
lead to elaborate specifications of poorly understood requirements [Boess].

The waterfall lifecycle model has been extended to the structured lifecycle model,
where the degree of formality is increased by the use of structured analysis and
design assisted by semi-format conceptual modelling like data flow diagrams, entity
relationship modelling and state transition diagrams.

9.2.2 Extending the Waterfall Model with Prototyping

As an extension of the waterfall lifecycle model, prototyping may be used. Functional
prototyping is typically used in information systems engineering to reduce uncer-
tainty, e.g. to get a better understanding of requirements. The development process
using functional prototypes are usually highly iterative with much user participa-
tion. The two basic forms of functional prototyping are evolutionary prototyping
or throwaway prototyping [Von90]. The evolationary prototype eventnally evolves
into a full information systems, and focuses initially on weil-understood require-
ments [DBC&8). In contrast, throwaway prototyping {or rapid prototyping) focuses
on the poorly understood requirements and are thrown away when requirenents
are stable. The user interface may for example be investigated with a throwaway
prototype. For a taxonomy of prototyping, see [Lin93).

In contrast to a functional prototype, a performance prototype will try to emulate the
hardware and the software of the target system, and is therefore complementary to
the functional prototypes as depicted in Figure 5.2, A performance prototype may be
generated from detailed design specifications [Hug84). A prototype interactor which
collects statistics during a user dialog may later emulate the workioad. Compared
with the method advocated in this thesis, this method is quite time-consuming,
and also requires the target platform to be physically available. However, for non-
standard or untried parts of the design where no validated platform: models are
available, (throwaway) performance prototyping may be the only alternative.

5.2.3 Extending the Waterfall Model with Incremental De-
velopment

Incremental development is a possible extension of the waterfall lifecycle model.
Incremental development is the process of constructing a partial implementation of
the total system, and then slowly adding increased functionality or performance. The
term evolutionary development is also used. In contrast to evolutionary prototyping,
mcremental development presupposes that most of the requirements are understood
hefore the process starts. The two methods may of course be combined. Like

5.2. Lifecycle Models for Development of Information Systems 51

interactor

functional
prototype

performance
prototype

Figure 5.2: The complementary functional and performance prototypes may be
driven by a prototype interactor.

the code-and-fix approach, incremental development may lead to hard-to-change
spaghetti-code. This is especially a problem when the projected system happens to
be integrated with an existing system [Boe88]. Performance problems may be hard
to discover at an early stage during incremental development.

5.2.4 Operational and Transformational Development

The basis of operational development is a formal executable language, enabling vali-
dation [Zav84]. One problem with the operational model is inadequate performance,
which is expecied since one of the objectives of the operational method is to delay
hinding of resources as far as possible. The idea 1s to increase the performance of
the operational model through transformations. These transformations preserve the
external behaviour of the executable model, and are also written in the same mod-
elling language. However, more details are included, making the model better suited
for implementation. There is not much practical experience with the operational
development method, but this method is promising since hierarchic or top-down
development may be possible. This is in contrast to the incremental development
approach which advocates bottom-up development.

The operational method is quite similar to the transformational method, with the
exception that by using the operational method, automated support for the trans-
formation is more stressed than with the transformational method. Both the oper-
ational and the transformational approach use prototyping actively, Whereas the
prototyping techniques mentioned in Section 5.2.2 use different languages for specifi-
cation and prototype development, this is not necessary in the operational approach
since the specification itself is executable.

52 Chapter 5. Performance Engineering of Information Systems

Cumulative
cost
-} .a Propress
- [
through steps .

Detwrmine & P Evaluate altematives
objectives identify, resolve risks
alternatives,

cORstraints

Operational
prototype

Risk
analysis,
YIS Prototype

Commitrment
parggon

Review

Requirements plgn T
life—~cycic plan Concept of

. Smmuiations, model, benchmarks
operation)

Software
requircments

Devetopment

Requirements
plan

validation

Imegration
and test plan Design validaton

and verification

¢ Integration
i | and test
Plan next phases ! Acceptance!
Implementation | test !

1 |

: Develop, verify
i next-level product

Figure 5.3: The spiral model [Boe88).

5.2. Lifecycle Models for Development of Information Systems 53

5.2.5 The Spiral Model

The basis of the spiral development model is analysis of risk. Development proceeds
through the spiral as illustrated in Figure 5.3. Each iteration of the spiral starts
by identifying objectives for the product being developed (e.g. the performance),
alternatives (for implementing this product) and constraints {(e.g. cost, schedule,
non-functional requirements). The alternatives are then evaluated relative to the
objectives and constraints. The risks found during this evaluation is resolved with
prototyping, simulation, analytic modelling, benchmarking etc.

Development proceeds in a spiral fashion where effort is directed to high-risk areas
during each twrn of the spiral, for example through extensive prototyping. Low-
risk areas may even be neglected. Depending on the risk structure of the project,
development can reduce to most other methods like waterfall, both evolutionary
and throw-away prototyping, or operational/transformation. The focus on the risky
part of the system is a strong point because this gives early attention to these parts,
without waste of resources and time. But the basic problem with this approach
is that risk identification and resolution require experience. Thus, the method is
hard to use by inexperienced personnel. Moreover, the spiral model may foster the
development of specifications which are not necessarily uniform.

The hierarchical spiral model is an extension of the spiral model [Fiv90a, Iiva0b]. In
the hierarchical spiral model, the emphasis on conceptual modelling is stronger than
in the spiral model, and three levels of modelling is described: (1) organisational
level, (2) conceptual level, and (3) technical level (this is fairly similar to the three
levels in OSSAD in Section 8.1.3).

5.2.6 PPP Method

The experimental CASE tool PPP forms the language, method and tool environment
of this thesis. Whereas the PPP langnages and CASE environment are outlined in
Appendix B, the PPP method is explained here. The development of a computerised
information system is perceived as a mapping between the manuval system and the
computerised system. A model of the manual system precedes the design of the
computerised information sysiem: as shown in Figure 5.4.

The PPP method is top-down where models are developed in an incremental and
iterative manner. The iterative and prototyping development discipline which is
used in PPP is similar to the spiral development model. During the early phases of
irformation system development, the focus is on understanding the problem domain
and not so much on making requirements for the finished product [LSS94]. Later,
analysis and design are highly integrated. Stating which parts of the manunal system
should be automated determines the automation border. The parts to be automated
are then decomposed and specified to a sufficient level of formality for code to he
generated automatically.

54 Chapter 5. Performance Engineering of Information Systems

Renl world \

/ model
Iterated decomposition
of the medel
Real world

system
Decide sutomation
bourdaries

Real world system
with CIS Iterated decomposition
of the sutomated part
@ Finat computerized IS
b SE—

Figure 5.4: The PPP method [GEWS1].

Pue to the tightly coupled languages, models in one language may generate initial
models in another language, e.g. a process model may generate an initial version
of a data model. (See Section B.1.2 about the process language in PPP, and Sec-
tion B.1.2 for the data modelling language in PPP.) Prototyping {Lin93], model
execution [Wil83], model explanation {Gul93], model verification [Yan93], configu-
ration management [And94], and support for several views [Sel94] are integrated
parts of the PPP method. See also {Kro95, p. 152} for more information on the PPP
method. As an experimental method, the PPP method is not sufficiently tested in
industrial environiments.

5.3 Motivation for Performance Engineering

Even if hardware costs decrease, performance will not disappear as a design prob-
lem, which is illustrated by the saying: “Software gets slower faster than hardware
fast.” The demand for software and hardware has until now increased at a larger
rate then the reduction in hardware costs [Opd92]. The primary motivation for
performance engineering of information systems is to decrease the cost and risk of
system development. When performance engineering successfully augments infor-
mation system development, timely completed information systems which satisfy
performance requirements can be realised.

5.3. Motivation for Performance Engineering 55

Tuning is often appropriate when performance problems can be localised to spe-
cific areas of a system, e.g. denormalisation of database tables, adjusting system
parameters, limiting number of file openings and closing, etc. [Fox89). However,
this socalled “fix-it-later approach” on the hmplemented system will not save the
design from inadequate design decisions [Smi90] or overconstrained interpretations
of performance requirements [Fox83]. It is easy to see the similarity between the
fix-it-later approach towards performance and the code-and-fix approach to overall
software development: both approaches give developers full freedom but little help.

An important characteristic of performance engineering is to facilitate communi-
cation between phases in the lifecycle. Information which is needed early in the
lifecycle are transported from: later phases of preceding projects. As stated in the
preface, owerview is crucial for this communication o succeed. With an overall
method for performance engineering during development of information systems,
only critical parts of an information system need to be designed with performance
ir mind. For the other parts, no extra effort is needed. Thus, performance engineer-
ing may reduce the cost and risk of designing an information system with acceptable
performance, since performance optimisation is onty applied for the critical parts
of the system. Moreover, this optimisation could be done earlier with the overview
which performance engineering offers. For more discussion of cost/benefit analysis
of perforimance engineering, see Section 5.3.1.

Despite the benefits, performance engineering is still either consciously or uncon-
sciously neglected because [Bel87, BF87h]: (1) Functional problems receive more
attention. (2) Resistance towards using a method; the aspect of art disappears. {3}
Lack of skills, because there are few developers with performance engineering skills
from similar projects. (4) Hard to see benefit in advance. Like insurance, perfor-
mance engineering only pays off when accidents happens. (5) High cost, e.g. inter-
views take time for busy people. (6) Resistance towards redesign: early performance
estimates may reveal need for redesign which may be hard to sell to management
because of the cost impact. (7) Performance is somebody else's responsibility. In ad-
dition, an external performance engineer will often have problems getting workload
information, which may be business confidential.

in general, however, there is a definite trend in indusiry towards “turn-key” or total
project engineering. Customer and market requirements te ensure the performance
of the total delivery are driving forces. On this basis, it is believed that the motiva-
tion for performance engineering is going to increase.

5.3.1 Tradeoffs in Performance Engineering

When doing performance engineering, the most important factors in this tradeoff
are, cost, accuracy and benefils as described in Section 5.4.5.2. Both performance
modelling and measurements have cost implications. For performance modelling,
the costs are roughiy:

56 Chapter 5. Performance Engineering of Information Systems

Operational The cost of not using the measured computer system for other pur-
poses. For some measurements, an idle machine is needed. Therefore, it will
be necessary to use some sort of test system.

Manpower The time of qualified performing needed to perform measurements
modelling will of course have a cost. In addition, valuable manpower resources
are tied up.

Equipment Extra software (e.g. measurement programs like SPM/2) and extra
equipment, (e.g. measurement hardware to measure network traffic) may have
to be purchased. Often, however, this kind of equipment will be needed anyway
even if fix-it-later is used.

In practice, the largest cost factor is likely to be the cost of qualified manpower.
Costs of performance modelling will consist of:

Delay in project Performance modelling takes time, and may slow down the project.

Manpower People with performance modelling competence may be expensive to
hire.

Equipment Tools for performance modelling are not off-the-shelf software and may
therefore he expensive and hard to get.

As for performance measurements, manpower costs ave likely to be highest aiso here.

Accuracy is important in each submodel and especially for the overall performance
model. Overall performance model accuracy can only be assessed accurately af-
ter implementation, during verification. The whole performance model must be
balanced in terms of accuracy. During the early phases of development, there are
geveral reasons for using simple performance models, e.g. a simple model is easier
to make and to modify while a complicated model will often be delayed relative to
development [BF87b]. Operations at a high level of abstraction are generally more
vague and also harder to annotate in terms of resource demands, because the link
to implementation is looser than at a lower level of abstraction. However, since the
aumber of low-level processes is higher, this requires more manual work. Thus, there
is a tradeofl between cost of performance engineering and accuracy.

The benefits of performance engineering are hard to estimate, because this depends
on the cost of shortcomings in a system with performance problems, which is hard
to estimate, because it is hard to carry out exact experiments here. The cost of
performance problems will most likely not be put on print, e.g. this project costed
20 % more because of performance problems. Besides, performance problems will
often result because of cther problems. In a controlled project, where performance
engineering is performed, performance wilt be under control, and there will be few
performance problems. Often, performance engineering will not have large effects
the first time it is applied. But increased awareness of performance issues and
compilation of statistics will often have long-term effects.

5.4. Quantitative Performance Modelling 57

The most dowinant benefit of using performance engineering is reduction in the need
for manpower to do fix it later. Slowing down a project, as a result of fix it later
efforts, will not affect only the person performing the programming, but also the
rest of the project members and in the end, the rest of the organisation. Time will
often have a value also independent of manpower cost: if the time to do fix-it-later is
reduced, this will open up new possibilities, irrespective of the cost involved. Time
to market is a critical factor in industry. Reduction of development time increases
the market potential for a given product, which is overall beneficial.

The primary success criteria for performance engineering is: cost < benefits. Cost
and benefits will be a function of accuracy. If accuracy is below a certain limit, the
performance models and measurement cannot be used for anything useful and there
will be no benefits, even if there is a cost mvolved. Cost/benefit for performance
engineering of information systems are also considered in [Smi80]. Cost/benefit
calculations for tuning are described in detall in [FSZ83] and may also add more
details to the discussion above.

5.4 Quantitative Performance Modelling

In quantitative performance modelling, numbers are used as the basis for perfor-
mance engineering. The focus of guantitative performance engineering is not so
much on accurate performance prediction, but more on removal of unrecoverable
bottlenecks {Fox89]. Performance engineering activities were commented on in the
context of the lifecycle models earlier in this chapter. Below, the most promising
approaches to performance engineering are considered. The SPE approach has an
elaborated method and this aspect is therefore given attention, while for the HIT
approach, the interesting aggregation philosophy is outlined.

5.4.1 SPE

Connie Umland Smith was one of the first to combine analytic modeis of software
with anaiytic models of hardware [SB80, Smi86]. Her Software Performance En-
gineering (SPE) approach uses software execution models to model software, and
system execution models to model hardware as depicted in Figure 5.5.

Soﬂ“;ﬁroz :ﬁecuuon Software

1

Hardware

System execution
models

Figure 5.5: Software execution models are used to model software, while system
execution models modet hardware.

58 Chapter 5. Performance Engineering of Information Systems

The software execution models are extensions of program flowcharts and the system
execution models are extensions of queueing networks [Smi90]. The SPE method is
shown in Figure 5.6, using the sofiware execution language of SPE. The SPE method
in Section 5.2 augments existing lifecycle models rather than replacing them. Below
is a brief explanation of the method:

Define SPE assessments for lifecycle phase Define performance objectives for
the ¢urrent lifecycte phase.

Create concept for lifecycle product Make models appropriate for the lifecycle
phase, using the principles for creating response software explained in Sec-
tion 5.4.1.1.

Gather data By measurements of existing applications and by performance walk-
throughs where users representatives, software representatives and performance
analysts meet to discuss the information 1o put into the models.

Construct & evaluate appropriate model Construct and evaluate software ex-
ecution models and system execution models.

Report results During performance walkthroughs.

Alternatives preferable If the models indicate that performance goals will not be
met, alternatives are found and cost-estimated. If feasible and cost-effective
alternatives are found, the concept for this lifecycle is changed according to the
principles for creating response software in Section 5.4.1.1. The performance
goals are revised if no feasible and cost-effective alternatives are found.

Cornplete lifecycle product The lifecycle product is revised according to the
findings in the previous steps.

Verification & Validation An important part of the SPE method is continued
verification of the model specifications and validation of performance model
predictions. Performance models are replaced by prototypes and implementa-
tions at an early stage for critical parts of the software.

Enter next phase The steps above are repeated for each phase in the lifecycle.
Integration with conceptual modelling is not an integrated part of SPE. The SPE

method has been used on such systems as client/server applications [SW94], real-
time systems [SW93] and MIMD computers [SL82].

5.4.1.1 Principles for Creating Responsive Software

Smith presents seven principles for making software with good performance {Smi90}.
Most. designers would more or less intuitively use these principles. Making the
principles more explicit is likely to increase the practical use. As & consequence of

5.4. Quantitative Performance Modelling 59

Define SPE assessments

for lifecycle phase
Verification & Create concept for
Validation lifecycle product

Until predicted

proseseemeaneess performance is

acceptable

Gather data

Construct & evaluate

appropriate model

Report resnlis

Maodify lifecycle

Alternatives Acceptable i
preferable? performance |
Infeasib; Revise performance

goal

Complete lifecycle
product

Enter next phase

Figure 5.6: The SPE method [Smis0].

60 Chapter 5. Performance Engineering of Information Sysiems

our rigid definitions in Chapter 4, these principles are easy to explain., Below it is
indicated if the principles could be applied for only one process at a time or if they
depend on synergy between several processes:

Fixing-point (independent) Execute processes as early as found cost-effective.
The time of execution is termed the fixing-point, because at this point in time
the connection between the process and the result is fixed.

Locality-design {independent and synergy) Use resources which are close to
the process in terms of time, space, degree and effect.

Processing versus frequency tradeoff (independent) Minimise the product of
work and load for each process.

Shared-resource {synergy) Minimise the sum of adiministration and holding time
for shared resources.

Parallel processing (synergy) Minimise the sum of administration time and ex-
ecution time for paraliel processes.

Centring (independent) ldentify dominant processes and reduce their work.

Instrumenting (~) Monitor performance through instrumenting processes and re-
SOUTCES.

The principles which depend on synergy will require information ahout performance
and not only about work. The principles could be applied at several levels of ab-
straction and also at several points during the lifecycle.

54.2 LQM

Layered Queueing Models (LQMs) are designed to provide performance estimates
for distributed systems [RS95]. With LQMs, it is possible to study the effects of
changes in requests between processes, the number of instances of processes, the
internal level of concurrency within processes, and the placement of processes on
processors. L{}Ms have separate models for software contention and for (hardware)
device contention, and can modse} systems with contention both for software and
hardware resources.

The graphical notation for software processes and (hardware) devices are shown in
Figure 5.7. In this figure, each paralielogram is a group of one or more processes.
A group of processes are processes which are statistically identical. Each circle in
the figure is a (hardware) device. Directed arcs indicate requests for service from a
calling group to a serving group or device.

5.4. Quantitative Performance Modelling 61

Software contention model

User group 1 User group 2

Application Commurica— Application

process | tiens process process 2
Bisk Disk
process | process 2

Device contention mextel

Commnnaica- Applicaton Application Disk Disk
User group 1 Uscr group 2 tions pracoss process 1 process 2 process 1 process 2

THINE CPU1 CPU 2 CPU2 DISK 2

rsreave st rar——
Request for service

Legend:

Group of processes Device

Figure 5.7: Example of a software process architecture [R595].

LQMs can be solved with MVA based algorithms. For LQMs, in addition to the
standard parameters for queueing network models, the average number of visits a
process makes to other processes and process scheduling disciplines must be specified.
Two solution methods for LQMs are described. The Method of Layers (MOL) is
described in [RS95), while The Stochastic Rendezvous Network (SRVN) is outlined
in [FHM*95]. SRVN is quite similar to LQM, but employs a simpler Bard-Schweitzer
MVA approximation, instead of the Linearizer algorithm used in MOL [RS95].

Compared to SP extended with queueing networks, LQM focuses more on dynamic
modelling. Whereas modelling of contention both in software and hardware is an
area for further research in PPP/SP, it is more developed in LQM. On the other
hand, static modelling is not so much in focus in LQM. An integration of SP and
LOQM may be possible. SPs graphical diagrams could supplement the layered queue
modets.

My colleague and SP-forerunner Vidar Vetland is a co-author of at least two LQM
papers about distributed application development. Parameter capture is discussed
in [RV95], and scalability is an issue in [RVH95].

62 Chapter 5. Performance Engineering of Information Systems

System description Basic models Modolling library

High level New batic models
I modeliing

activitly

basic

O maodels
New basic models
odelli
epert

Figure 5.8: The overall COMPLEMENT process model (Adapted
from |[CVT+92]).

5.4.3 COMPLEMENT

The COMPLEMENT ? project describes performance engineering of real-time and
embedded systems [PBA193]. As part of the COMPLEMENT project, Ayache et al.
explain annotations of HOOD design objects with performance information [AC92].
Performance requirements are included in HOOD objects, which together with an-
nosations of estimated resource consumption and execution characteristics, make it
possible to design high-level performance models which are meaningful for design-
ers. Static performance modelling is not included in the final prototype, even if some
thoughts along these lines have been done in internal reports.

A process model for making dynamic models as an interaction between designers
and modelling experts is described {CVT+92]. This process model focuses on the
interaction between the designers and modelling experts as shown in Figure 5.8.
Modelling experts construct low-level models with standard modelling techniques
like Petri-nets and queueing networks. Generic low-level models make it easier to
create specific instances of low-level models, termed basic models. A modelling
library assists the modelling expert in creating new generic and basic models. These
high-level models are elaborated enough so that meaningful performance models
could be made. The designers compose & high-level model of the system using basic
models from this library. This high-level model contains all the necessary information
for generation of the low-level model and is an intermediate representation between
the user and the low-level model, The low-level model is a representation of the high-
level model, by using a modelling technique. When basic models are used to model
a system, and when this system is implemented, measurements become available.
These measures are used to calibrate the basic model and indirectly also the generic
models. This activity is an important part of the interaction between the designers
and the modelling experts. Three case studies are mentioned, and the result of these
case studies should refine the approach [CVT¥92].

2Partialiy funded by the Commission of the European Communities as ESPRIT I project
number 5409,

5.4. Quantitative Performance Modelling 63

54.4 HIT

The modelling tool HIT (Hierarchical Evaluation Tool) [BIF87a, BMW88, Beilg)
is developed at the University of Dortmund by Beilner et al. In HIT, different
submodels can be solved using different solution technigues, ranging from simulation
to exact analysis. The submodels are combined using aggregation techniques. Thus,
the focus in HIT is on several solution techniques, socalled heterogeneous modelling.
The langurage of HIT is both graphical and textual. The graphical models in HIT
resemble SP models, but they miss typing in processing, memory and communication
types of operations. Since there is no explicit notion of work in the HIT, there is no
explicit static modelling in HIT either. HIT is a commercial tool.

5.4.5 Extensions of SP

In the Information Systems Group as NTNU, two theses have contributed to a deeper
understanding of the SP method, and are outlined below.

5.4.5.1 Opdahl’s Framework

Andreas Lothe Opdahl has made a framework for extending common CASE-tool
with performance parameters during design, enabling performance engineering inte-
grated with the normal design process of computerised information systems {0892,
OVBS92, Opd92]. The practical feasibility of the approach was demonstrated by
implementing the ideas in the experimental CASE-tool PPP, and by using this tool
on the Blood Bank Case Study described in Chapter 7. As described in the Blood
Bank Case Study and in Figure 5.9, process models must be annotated with three
types of parameters to enable performance engineering:

Workload intensities For all the operations which are invoked by the organisation
surrounding the computerised information system, workload intensities must
be specified. See Section 7.1.4 for a practical example.

Branching probabilities Describing the average probability of triggering other
processes. See Section 7.2.1.1 for a practical example.

Resoarce demands FEvery primary process must be annotated with resource de-
mands in terms of a platform. This platform will typically be an SP ADT. ?
See Section 7.2.1.3 for a practical example.

Based on these three types of performance parameters, together with a platform
model, performance of the computerised information system can be predicted as

3See Section 4.5 for an example of an absiract data type (ADT} in SP.

64 Chapter 5. Performance Engineering of Information Systems

/ Computerised \

process model

O

anisatiyn

Resource model

Figure 5.9: The process model must be annotated with workload intensities,
branching probabilities and resource demands.

illustrated in the Blood Bank Case Study. Parameters for aggregated processes may
also be used if enough parameters are not available for decomposed processes.

Sensitivity analysis to find the most critical parameters receives much attention
in Opdahl’s thesis. The idea behind this sensitivity analysis is primarily to use
approximate parameters in a first run of the model. The sensitivity analysis will
show the criticel parameters, and more efforts could therefore be used to estimate
them in successive runs of the model. This enables systen: developers to assist in
estimation of performance engineering parameters even if their understanding of
performance engineering is low.

5.4.5.2 Vetland’s Framework

Vidar Vetland elaborated on the SP framework for composite modelling of work in
software and hardware both by deepening the theoretical understanding of SP and
giving real examples[Vet93, VHS93a, VHS93b]. When the software and hardware
are divided in several models, parameter capture, accuracy, cost and reusability can
be improved. In his thesis, Vetland describes these tradeoffs [Vet93, pp. 143 ~ 161]:

Feasibility of measurement Limitations In measurements can be classified as fol-
lows: (1) The inherent problems, (2) the practical problems, and (3) the avaji-
ability of information about structure and performance. The inherent problems
of workload modelling (operational variety, data dependence, and sequence
dependence) [Hug96] manifest themselves at each layer of composite workload
models. The practical problems can usually be solved by extensive tool sup-
port for measurement and modelling. The availability of information is crucial
since tools are of no help if the required information itself is not available.

5.4. Quantitative Performance Modelling 65

Compatibility with contention model All operations on hardware and software
resources with contention must be modelled explicitly in the work model,
thereby increasing accuracy and cost. Vetland elaborates on the interaction
between SP and contention modelling using examples.

Reusability will decrease cost, but this reduction depends on the extra measure-
ment experiments and changes of other work model components that have to
be undertaken when it is reused [OSV@3]. If work depends severely of the state
parameters (see Section 4.2.1.2), the cost of reuse must also include the cost
of modelling these parameters. The amount of extra measurements needed
during reuse will determine both accuracy and cost of reuse.

Risk of error propagation Will increase when an additional level of work model
components is introduced. This risk of error propagation is related to the worst
case accuracy, so if addisional levels are introduced, the complexity functions
for each level must be more accurate. On the other hand, introducing more
operations does not affect the risk of error propagation.

Measurement cost Consists of the number of measurement runs which must be
prepared and performed, and the number of complexity functions needed.
When one more level of work model is introduced, more complexity specifi-
cations and complexity functions are needed.

Inn a recent paper, Vetland et al. has made a complexity specification for a TCP/IP
implementation [PVRS95].

5.4.6 Taxonomy of Quantitative Approaches

A taxonomy of the languages for performance engineering is shown in Figure 5.1. In
this taxonomy, the SP method is combined with the PPP CASE tool and queueing
networks as described in Section 5.4.5.1. This taxonomy is slightly biased, since it
focuses on the strong features of the PPP/SP combination.

When comparing the approaches, one should separate the conceptual and the im-
plementation issues. Even though the PPP/SP approach [BOVS92! and the SP
approach [Vet93, PVRS95] have some case studies, the SPE approach is for example
more mature than the PPP/SP approach. HIT is also more mature in this respect,
while LQM and COMPLEMENT seems fairly equal to PPP/SP in terms of practical
experience.

66 Chapter 5. Performance Engineering of Information Systems

Approach SPE LM HIT COMPLEMENT | PPP/SP
Interaction with design tools indirect | direct indirect direct. direct
Typing of component interfaces | no pariial no no yes
Hierarchical approach impliciy | explicit explicit implicit explicit
Static modelling partial partial pastial partial compiete
Dynamic decomposition open MOL/SRVN | aggregation | open open

Table 5.1: Taxonomy of approaches to performance engineering,

Interaction with design tools Information systems are often developed with de-
sign or CASE tools. An important issue is if the information system models
used in CASE tools are easily integrated with the performance models in ques-
tion. COMPLEMENT and PPP/SP have a strong coupling to CASE tools
which Is indicated in the scoring. LQM is also designed with easy coupling to
design tools in mind. SPE and HIT do not seem to have this strong coupling.
They seems to be more oriented towards the performance analyst, compared
to PPP/SP and COMPLEMENT, which focus more on the developer of infor-
mation systems.

Typing of component interfaces SP is the only approach with expiicit typing of
operations (c.f. Section 4.7). This feature gives rules for model construction,
and increases the possibility of finding similarities with other (older) models,
making reuse more likely. Typing rules also give information about niissing
parts of the model and therefore function as consistency checks. Interaction
with design tcols may therefore be more formal. LQM separates software
modeiling from hardware modelling, which is a step towards explicit typing.
In the other approaches there is no typing.

Hierarchical approach The hierarchies in SP and SPE are complementary. In
SPE the hierarchies are implicit. ¢ The implicit view of hierarchies in Soft-
ware Execution Models is intuitive for simple software, but for larger designs
the explicit hierarchic view of LQM, SP and HIT compresses the details and
increases the overview. See Section 6.2 and 6.5 for an elaboration.

Static modelling Static modelling builds on a separation between work and load.
This feature is complete in SP, but only partial in the other approaches. SP
also has the static concepts of compactness and extent, (c.f. Section 4.6.1).

Dynamic decomposition All the approaches rely on dynamic modeliing, using
queueing networks or simulation. LQM was specifically designed to model both
contention in software and hardware simultaneously, with the Method of Layers
{(MOL) or Stochastic Rendezvous Network (SRVN). HIT uses aggregation of
separable subsystems. For the other approaches, the choice of decomposition
method is open, but historically only ageregation seems to have been used.

Other complementary pairs of models could be envisaged. Thus, possible candidates
will therefore also be SPE + SP, HIT + PPP or LQM + PPP /SP. This has not been
considered in more detail.

“Implicit hierarchies are also normal in CASE tools, e.g. PrM in PPP. Based on Pri diagrams
which are decomposed, explicit process hierarchies can be made (.. Section B.1.2)

5.5. Qualitative Performance Modelling 67

5.5 Qualitative Performance Modelling

All the approaches described until now have been quantitative, 1.e. focusing on using
numbers to facilitate in performance engineering. Quantitative performance engi-
neering is aiso dominant in practice and in the literature. Nixon has presented a
qualifative approach [Nix94h, Nix93, Nix91] which is part of the comprehensive TE-
LOS [MBJIK90] and DAIDA [IMSV92] framework for development of information
systems which also deals with other non-functional requirements [MCN92, Chu9l,
CKM*91]. Performance requirements are represemted together with other non-
functional requirements as interrelated goals [MCN92]. During the implementation
process, performance goals, decisions, and their effect on goals are organised into
goal graphs, helping the developer to select among alternatives and to justify im-
plementation decisions, e.g. related to database definition and development [Hys91].
Principles from {Smi90], outlined in Section 5.4.1.1, are used in $his decision process.
Developers are aided by having a catalogue of decompeosition methods which allow
them to select aspects to explore and focus upon.

5.5.1 Comparing the Quantitative and Qualitative Approach

The qualitative approach does not depend on getting numbers which are problem-
atic in the quantitative approach. On the other hand, numbers are needed to get
overview, e.g. which parts of the system are important and which are not? It is also
more easy to make decisions based on quantitative information than on qualitative
information, especially for large systems. Thus, the quantitative and qualitative
approaches are complementary, each contributing $o the other. Therefore, Nixon
works to extend the qualitative framework with quantitative concepts like workload
statistics [Nix94a], which are nsed as arguments for selecting among implementation
alternatives. This integration is, together with applying the framework to extensive
portions of larger systems, an area for further research.

5.6 Chapter Summary

This chapter has presented current methods for performance engineering of infor-
mation systems. The SPE approach is embedded in the waterfall lifecycle model,
and will therefore benefit from the extensions of the waterfall lifecycle like proto-
typing and iterative development. However, the SPE approach does not elaborate
on the integration with conceptual modeiling. Therefore, the focus on the developer
is not as good as in the PPP/SP method. The work concept which leads to static
modelling is unique to SP. More practical experience is needed with PPP/SP. The
COMPLEMENT framework is fairly similar to the PPP/SP framework, but the fo-
cus on static modelling seems Lo be missing. A HIT + PPP or a LQM + PPP/SP
solugion would be interesting to elaborate further on. The integration of quantitative

68 Chapter 5. Performance Engineering of Information Systems

and qualitative modelling also seems promising.

Chapter 6

Method for Performance
Engineering of Information
Systems

The general method for performance engineering of information systems is presented
at an abstract level in this chapter. The focus of this presentation is on the comput-
erised part of the framework which was introduced in Figure 2.4, i.e. the framework
in Figure 4.3. The method is applied t¢ the Blood Bank Case Study in Chapter 7.
The organisationat parts of the framework are introduced in Chapter 9. The same
method is then applied to the organisational and computer parts of the Gas Sales
Telex Administration Case Study in Chapter 10 and 11 respectively. This method
was derived from all these case studies, but primarily from she Blood Bank Case
Study. Even though this method is meant to be general, more efforts have been
directed to some areas of performance engineering than to others. The houndaries
of the discussion are:

Design of a complete systerm or an application Several types of performance
engineering problem can be solved with this method: {1} The whole system is
to be designed from scratch; (2) some of the modules may be available prior
to the design of a system and the system is developed on top of this platform;
(3) the system is designed, but should be installed in a new environment.
This framework is useful for all of these situations. The case studies which
are used to illustrate the method are of type (2), L.e. with focus on design of
applications on top of an existing platform. The scope of the discussion could
also be extended to cope with the design and operation of several applications
on several different platforms. Design of platform components could also be
considered more extensively.

First phases in method Phase IIB., IIl. and IV. in the method in Table 6.1 are
not considered to the same exient as the first phases in the method. The fo-
cus of this presentation is on the first phases in system development, where

69

70Chapter 6. Method for Performance Engineering of Information Systems

the focus is on static modelling. In later phases, more accurate dynamic per-
formance models are needed, e.g. a resource may be modelled progressively
more detailed, e.g. dynamic medelling replacing static modelling, single-class
queueing networks replacing bounds analysis or simulation replacing multi-
class queueing networks. ! Dynamic modelling is extensively deseribed in the
literature, e.g. [FSZ83, LZGS84, Kan92, Smig0], and is not focused in this
thesis.

Limits on validation Iz theideal case, case studies which are used to validate this
method should influence the resulting performance of the ongoing projects.
However, it was not possible to give performance guidance in the two case
studies, because:

o Performance engineering depends on formality in information system de-
velopment. Both in the Blood Bank Case Study and in the Gas Sales
Telex Administration Case Study, process models (DFD models) had to
he built from scratch before performance engineering could start. If ex-
isting process models could have been extended with relevant parameters,
understanding of the system would be easier to get, and the cost of per-
formance engineering would decrease.

¢ It is hard to introduce new methods in an organisation. Skills and com-
petence are missing.

s Need for manpower resources. Since this is & new method, it is hard to
pet access to sufficient manpower resources.

These difficulties will be quite analogous to the difficulties when introducing
CASE-tools in an organisation [Par0]. Performance engineering would have
been simpler if performance models of the platform had been available. Per-
formance modelling of the platform was a complex task, which is described in
more detail by Vetland [Vet93],

The first part of this chapter is prescriptive and presents an overview of the method
in Section 6.1. In this section, all the phases in the method are also described. The
second part of this chapter focuses on specific problems and is more descriptive,
This second part consists of all the remaining sections in this chapter. Section 6.2
describes the world concept which is an important part of the method. In this sec-
tion, the hierarchy in SP is also compared with the hierarchy of DFD. Section 6.3
comments on the rationality of the method. Section 6.4 comments on the interac-
tion with the method and ohject-oriented development methods. Finally, Section 6.5
compares the method with the SPE method. Part of the developed method is pre-
sented in [BOVS96]. Inspiration from this joint work with Opdahl and Vetland wili
he evident in this chapter. Parts of a performance engineering method is also implic-
itly presented in Opdahl's thesis {Opd92], where method issues were not explicitly
considered.

"The IMSE project investigated how this shift in modelling approach could be done
smoothly {Hug89).

6.1. Method Overview 71

Overall method

1. Specify system requirements:

IA. Determine objectives of performance model.
IB. Specify system boundaries.
IC. Estimate workload.

ID>. Determine performance requirements.
I1. Create performance model:

IIA. Establish static model.

IIB. If necessary, establish dynamic model.
Y. Guide system development.

IV. Verify and refine overall performance model.

Table 6.1: Overall method.

6.1 Method Overview

To introduce the method, a simple, non-iterative view of the method is shown in
Table 6.1. Iterative refinement of performance models is an important part of the
method. Sections 6.1.2 through Section 6.1.8 in the chapter is an elaboration of the
method in Table 6.1.

The performance model should reflect the performance of the system. The system
may of course also be affected by the method. If inadeguate performance could
be isolated to one part of the system, then the performance in this part should be
improved. In cases where potential improvements are infeasible, for example because
of excessive costs, performance requirements must be relaxed or the overall system
must be changed. This illustrates that performance engineering also involves a
tradeoff with factors outside of modelling, e.z. cost, as described in Section 5.3.1. The
relation between the method for performance engineering and system development
is explained in Section 6.1.1.

This method makes a distinction between modelling of projected applications and
existing subsystems. All resources in a system may be divided into existing resources
and projected (or new) resources. Existing resources can be measured, whereas pro-
jected applications canmot be measured. A projected resource can only be modelled.
The existing resources may serve as a platform for the projected resources.

72Chapter 6. Method for Performance Engineering of Information Systems

Structural
mode] of
projected
application

Structurat modeliing
pmjected systemn

) /"’W
dmng?ion Objectives of
Modelllng W

Reat world

Structural

modei of
existing
system

Development Performance

Pﬂ:ﬂuction modelling

peridrmance
requirem
Performance
model

Guide system

Figure 6.1: Relation between information system development and performance
engineering.

6.1.1 Relation to Information System Development

The method for performance engineering of information systems is embedded into a
wider method for information system development as shown in Figure 6.1. The bold
lines in the figure shows the main flow of control in the figure, while the solid thin
lines arve mainly used for feedback information flows. The lefy, inner, bold-lined loop
in this figure is for information system development and is a condensed version of
the PPP method in Figure 5.4. The outer, bold-lined loop shows the performance
modelling, and its interaction with information system development in the inner
loop. Each graphical symbol in the figure is explained below:

Real world The relevant part of the system prior to development (¢.f. real world
system in PPP method in Figure 5.4).

Design description A model of the real world and in particular of the comput-
erised system. Typical models are process models and data models {PrM and
PhM in PPP as described in Appendix B).

Final computerised system A working computerised implementation of user re-
quirements {c.f. PPP method in Figure 5.4). This system is put into production
in the real world.

Structural model of prejected application, an outline of a performance model
of the projected application. The performance engineering process starts when
performance is identified as a risk factor in information system development

6.1. Method Overview 73

(c.f. the spiral modei in Section 5.2.5). The process ends when the system has
acceptable performance or when it has been concluded that it is not possible
to build the system with acceptable performance. Based on objectives of the
performance model (described in Section 6.1.2), performance model boundaries
are determined (in Section 6.1.3). The components in the structural model are
based on structure information from the design description.

Structural model of existing system, an outline of a performance mode! of the
existing system is made based on the real-world system. The existing system
will often form the platform for the projected system.

Overall performance model, a progressively more refined performance model
with parameters consisting of both a static {(see Chapter 4 and Section 5.4.5.1,
and 5.4.5.2) and (if necessary) dynamic models {see Section 3.2). Static model
parameters consist of complexity specifications for the components {described
in Section 4.2.1.1}, compactness specifications (see Section 4.6.1} and resource
demands (see Section 4.2.4) for the primary components. If needed, dynamic
models may be made for the existing system or for the overall system, con-
sisting of both the existing system and the projected application, to increase
the accuracy of the performance model. Relevant parameters for (dynamic)
queueing network models are described in Section 3.2.1 and in [LZGS84).

Based on the real world the workload is estimated {in Section 6.1.4} together
with performance requirements (in Section 6.1.5). Based on model parameters,
the performance model predicts system performance and guides system devel-
opment. Part of the model may be verified by parts of the final computerised
information system during development. After the projected system is put in
production, it is possible to verify the projections of the performance model
and the workload model.

Since modetling and design of information systems is an iterative process, there will
be several iterations in the outer loop in Figure 6.1. When a new information sys-
tem model is designed or considerably changed, a new turn in the loop is performed
if performance is & risk factor in this phase. As soon as parts of the information
system are finished, verification of the performance {sub)models is performed, using
instrumentation in the finished parts. The performance model i Figure 6.1 guides
system development, for example with work budgets, as described in Section 6.1.7.
Performance requirements are relaxed if $he initial performance requirements are im-
possible to fulfil. When the information system is finished, it is possible to verify the
predictions in the performance model as described in Section 3.3. In addiiion to the
non-functional requirement performance, ali the other functional and non-functional
requirements should also he met during development. This tradecfl process is de-
scribed in general in Section 5.1 for non-functional requirements and in [LSS94] for
functional requirements. When doing performance engineering, the most important
factors in this tradeofl are, however, cost, accuracy and benefits as described in Sec-
tion 5.3.1. During the implementation phase in the information systemn lifecycle,
hardware components are selected subject to consiraints by earlier choices [Fer78].

74Chapter 6. Method for Performance Engineering of Information Systems

6.1.2 Determine Objectives of Performance Model (IA.)

By means of the method in Table 6.1, the system 5, the workload W and the per-
formance requirements P are described with models. The purpose of a performance
model is to facilitate in making a system S which satisfies performance requirements
P under a certain workload W, Therefore, the performance model should he geared
towards identifying at an early design stage potential difficulties in reaching this ob-
jective. Identification of the objectives of the performance model is the focal point
of all the later phases in the performance engineering method. Examples of overall
objectives of the performance model are:

s Make sure system 5 meets the performance requirement P with the work-
load ¥ This is a standard design problem as formulated in Section 3.1 by the
function P{S, W) > p, where p is the performance requirements.

¢ Find the bottleneck in system S for a given workload W and performance
requirement F.

o Find the cheapest (e.g. cost-optimised) system S for a given workload W and
performance requirement F.

The latter objective depends on an extended method where cost also is integrated,
and is outside the scope of this thesis,

6.1.3 Determine System Boundaries (IB.)

Before modelling starts, it is important to determine the boundaries of the system
and therefore also of the model. As stated in Section 3.1, both the workioad and the
performance heavily depend on the system houndaries. A system {and a subsystem)
has a least one systemic property not possessed by any of its parts [FRI95]. The
definition of subsystem in the context of performance in Section 4.3.1 imposes further
restrictions on valid system (and subsystem) boundaries. Thus, not all boundaries
which are possible correspond to a system boundary. See Section 6.2 for a discussion
of the “world” concept which is relevant for system: boundaries.

6.1.4 Estimate Workload (IC.)

The boundary between the environment and the system determines the operations
which make up the workload. As stated in Section 4.5, these operations are specified
for example as:

OSecretary.memory = |gel.internal_address, get_external_address, store_achieve, get.achieve]

6.1. Method Overview 75

As discussed in Section 4.2, a worklead specification W will contain a description of
both work and load. For an open system of the transaction type with one class, the
workioad specification is:

-

W = A

Most organisations keep workload statistics at the organisational level already (this
was for example the case in the Biood Bank). Therefore, it is often: only a matter of
compilation of statistics, i.e. talking to the right people in the organisation. Because
of the several local realities (c.f. Section 8.1.2) in an organisation, people do not
know about all the material which is available. Therefore, for an organisation to see
all numbers compiled in one place is in itself instrumental to give overview which
will provide new insights. This is the process of externalisation of local realities into
the organisational reality as elaborated in Section 8.1.2.

The workload will often consist of several parts. One part of the workload may be
well-defined and maore or less periodic while other parts will be inherently ad hoc,
i.e. per definition impossible to predict. For periodic workloads, the notion of busy
interval is useful for identification of critical intervals [Fer78]. The busy interval
is the time interval with the highest workload for the use of & resource r, and is
specified as:

fr = (Ta t‘;)

T is the length of the interval, and ¢, is the start time. If the start time ¢, is not
fuily specified, as e.g. 1.00 PM, but not which day, it will implicitly refer to a period.
In this case, this period is one day, but it could also be a week or even a year.

Often, the interval duration is one hour. As an example, in telecommunication each
day has a busy hour. The day is divided into 96 quarters and the four succeeding
quarters with the highest load make up the busy hour. The time consistent busy
hour is defined as the four succeeding quarters which have the highest load during a
longer period than one day. This period could be one week, one month or one year.
The busy hour will often have a higher load than the time consistent busy hour, but
on the average, the time consistent busy hour constitutes the largest load on the
system.

In the general case, each resource and each workload will kave individual busy inter-
vals, because bottlenecks depend on a low-level definition of work, The CPU may
for example have another busy interval than the disk. For computerised resources,
it is known that small variations in processes that run on the system may change
the bottleneck. This makes it hard to make general performance models.

76Chapter 6. Method for Performance Engineering of Information Systems

Estimation of the busy interval may be problematic (1} when the distribution of
workload during the busy interval is uneven, e.g. all the traffic within a fraction
of the interval [Buz86]; (2) with infrequent operations which may create a lot of
problems when they occur. Even if their average workload is low, the work they
devolve on the system may be substantial.

6.1.5 Determine Performance Requirements (ID.)

Performance requirements for operations with high workload have to be charac-
terised more carefully than less critical operations. Performance requirements should
be specified in terms of performance metrics, which normally is response time or
throughput for the operations in the system (see Section 3.2.1 for other performance
metrics). For an open system with one class, performance requirements will be a
vector of response time, R, for all operations: 2

P=R

Often enough information is not available to set the performance goals, as discussed
in Section 6.3. In these cases, it is possible to defer setting performance requirements,
and (later) ask the customers if the estimated response times (based on & performance
model) are satisfactory. Lack of precise performance requirements may disturb the
notion of a (performance) contract between developers and customers. A weak
{performance) contract is normally to the disadvantage of the customer. Developers
may excuse inadequate performance by blaming the customer for poor specification
of performance requirements or poor workload specification.

Phase 11A: Establish static model

ITA-1. Specify model components.

IIA-2. Parameterise static model components of projected appli-
cation.

IIA-3. Parameterise and validate static model components of ex-
isting system.

ITA-4. Evaluate and verify static model.

Table 6.2: Static model method.

2See Section 4.3.2 for performance requirements for closed systems.

6.1. Method Overview i

6.1.6 Create static model (ITA.)

In this phase, the static model is constructed. This phase contains several (sub)phases
which is shown in Table 6.2. As described in Section 6.1.1, components form the
basis for the static model, as described in phase IA-1. These model components are
derived from the design description. In phase IIA-2, the static model of the projected
(new) application is parameterised. These phases are constdered more extensively in
Section 6.1.6.1. Phase IIA-3. contains the parameterisation of the static model of the
existing system, which is considered in Section 6.1.6.2. In phase IIA-4. the complete
static model is evaluated and verified. The static model is evaluated by including
resource demands as described in Section 4.2.4. With the introduction of resource
demands, it is possible to predict response time without contention as illustrated
in the Gas Sales Telex Administration Case Study in Section 10.3. Verification is
described in Section 6.1.8.

6.1.6.1 Modelling of Projected Application (I1A-2.)

The projected components are modelled based on design descriptions which are
annotated with relevans parameters as explained in Section 5.4.5.1, As depicted in
Figure 6.2, several roles participate with parameters.

‘ " Systems analysts™
User representutives

Computerised
process model :

Orpéanisatipn

Software implementors

- Vendor representatives
‘ Resource model

System administrators

Figure 6.2: Different. roles give different types of parameiers as illustrated by the
broken lines. Roles are emphasised.

78Chapter 6. Method for Performance Engineering of Information Systems

The parameters from each role are described below:

Systems analysts make design descriptions which reflect the problem area. In
Figure 6.2 it is depicted how systems analysts make PrM models which reflect
information processes and the flow of information and control between these
processes.

Software implementors annotate the PPP models with resource consumption for
every process in system-independent form. They will also identify the branch-
ings in the system and correlate them with branchings at the organisational
level.

Vendor representatives give basic computer system information and help specify
the target platform.

System administrators contribute with an overview of site-specific features of the
computer system, e.g. operating system parameters.

User representatives give estimated workload, and the branching probabilities
for the branchings which were identified above. “User representatives” do not
necessarily mean end users, but may also mean managers with an overview
knowledge of the workload on the application. Capture of parameters in the
organisation is described in more detail in {ST89]. Forecasting may also he
necessary if there is an expected growth in the workload [CMBN82].

Of course, several roles may be solved by the same person. These roles are linked
to the world concept in Section 6.2. The systems analyst is for example not in
the same world as the software implementor. Vendor representatives and system
administrators contribute to the existing performance model which is described in
Section 6.1.6.2,

6.1.6.2 Modelling of Existing System (I1A-3.)

When the design description starts to be a basis for implementation, a software /hardware
platform needs to be selected. Platform components will often ezist before the de-
velopment project starts. In general, the problem of selecting a software/hardware
platform is hard, because a large range of alternatives have to be analysed and be-
cause vendor data often are valid only under narrow conditions [BF87b]. Failure to
recognise model limitations is one of the biggest shortcomings of performance engi-
neering in the development lifecycle{Fox89]. Inaccuracy in the resource consumption
estimates together with inaccuracies in the existing system performance model are
the two main sources of error in the modelling process [Fox89]. Making a model of
an existing system is a highly iterative process, where model formulation, measure-
ments, documentation reading and communication with other specialists are highly
intertwined. Because of its complexity, such modelling will always have a creative
element. However, if methods like SP become commercially available they will give

6.1. Method Overview 79

good assistance. Modelling of existing systems with SP is described in Vetland’s
thesis [Vet93]. For availability of complexity specifications in SP it is possible to
distinguish between the foliowing situations:

Used in the organisation Since the software is in production use in the organi-
sation, it is easy to measure and therefore to get complexity specifications.

In the market but not used in the organisation. This means that complexity spec-
ifications are available, but either some other organisation’s software must be
measured, or complexity specifications must be purchased.

Under development in the organisation, which means that it is possible to
find approximate complexity specifications like in the Blood Bank Case Study.

Under development in market In this situation, it is often hard to get access to
enough information. Approximate complexity specifications may be available
from the vendor.

Needed but no proeduct yvet Almost impossible te gei complexity specifications,
since only requirements are available.

Projected Projected
application application
with implicit
platform |
Platform
Primary ‘ Primary
resources resources
(a) (b)

Figure 6.3: In (a) the platform model is inside of the application model, whereas
in (b} the platform model is outside of the application model.

With an explicit platform model of the existing platform: as shown in Figure 6.3 (b),
processes are annotated in terms of the work on the platform model, and the perfor-
mance information in the platform world is hidden. Thus, performance engineering
is easter in Figure 6.3 (b). This is in contrast to the situation in Figure 6.3 (a) where
there is no platform model. In (a}, the developer has to know all the details inside
of the platform world in order to annotate his application processes in terms of the
resource demands for the primary resources.

The target platform model is an ADT (abstract data type) as described in Sec-
tion 4.5, and offers & set of operations. The specification of a platform ADT is a
matter of workload characterisation, where the basic question is on selecting rep-
resentative operations for the platform system. As often during modelling, this is

80Chapter 6. Method for Performance Engineering of Information Systems

o Application wordd .,

Vi Application %,

! Target
platform
operations

Fite system

Primary operations

Figure 6.4: An example of a platform model in the Blood Bank Case Study.

some kind of a chicken-and-egg problem, whicl can only be solved with the feedback
provided by iteration and verification. If experience from simiiar projects exists,
previous iterations are available. If no experience is available, iterations must be
performed within the project itself. The high-level platform operations should be
close to the operations perceived by the projected system developers. To further
ease the effort required in the annotation process, few parameters should be asked
for, i.e. a very representative platform characterisation may be too complicated to
be used by the developers.

In Figure 6.4, an example of a target platform for the Blood Bank Case Study is
shown. As indicated in this figure, the application and the ADT {abstract data
type) of the DBMS, HLL (high-level language) and Ul (user interface) is part of the
application world. The primary operations are also shown in the figure. In this case,
the primary resources are the disk and the CPU ({this figure neglects the network
which was aiso a part of the Blood Bank Case Study).

6.1.7 Guide System Development (IIL.)

The core of the interaction between the performance model and the design descrip-
tion is exchange of work estimates/measurements and work budgets as illustrated
in Figure 6.5. Development of mformation systems with performance engineering is
like ordinary budgeting/accounting applied to work and structure during develop-
ment of an information system. The non-linear response time curve in Figure 3.6
itlustrates why it may give inaceurate budgets by just adding response times for the
same resource. Response time is a performance measure. Since performance mea-
sures in contrast to work measures are not additive, budgets in terms of performance
measures are harder to handle than work budgets.

6.1, Method Overview 81

Budgets
Design
Reat world description
Requirements __Estimates/
“Teasurements +

Performance
model

Relax performance requirements

Figure 6.5: Budgets guide the design process. If the budgets predict inadequate
performance, this may be cured by refinements in the design description, or re-
laxed (performance) requirements. The names on the links in this figures are
more detailed than to the link names in Figure 6.1, e.g. the link “Guide system
developmeni” in Figure 6.1 will at least contain the link “Budgeis” in this figure.

The best estimates from the developers are used when the performance model is
made. Based on the validated overall performance model, it is possible to derive
work budgets for each module of the system. When designing a modute, the com-
plexity specification for this module will serve as a budget for each operation in the
module. Similarly, space budgets are expressed in terms of extent and compactness
specifications.

During development of each operation, work budgets for operations may overrun.
This overrun may be determined with a new iteration of the performance model.
Updated parameters from the modified design description give a modified perfor-
mance mode] which gives new performance predictions. If inadequate performance
will be the result of this budget overrun, the design description must be modified,
or its implementation must be improved. If it is impossible to sufficiently improve
the projected performance by changes in its design or its implementation, the per-
formance requirements (or some other requirements) must be relaxed.

Estimates are replaced by measurements as input to the performance model as soon
as possible. Instrumentation is needed to verify the performance model, and should
be planned during design when it is possible to establish a direct correspondence
between user functions and measurement events. It is more easy to maintain this
relationship than to reconsiruct it later{Smiog].

6.1.8 Verify and Refine Overall Performance Model (IV.)

The overall performance model can only be compared with the implemented system
when the final computerised information system runs in production. During pro-
duction, the system is running under real workioad. It is then possible to see if the
estimated organisational workload corresponds to the real organisational workload.
This comparison is termed verification as described in Section 3.3.

82Chapter 6. Method for Performance Engineering of Information Systems

As components of the projected system are implemented, they can be measured
and verified. Measurement data are also useful for testing, giving an ealy vali-
dation of estimates. Measurements should replace estimates as early as possible.
Measurements will often depend on instrumentation [Fer78]. Validation and verifi-
cation will be done on several levels. During parameter capture, it may be possible
to compare information from several sources as in the Blood Bank Case Study in
Section 7.1.4.1. As long as the model is small, it is easier to spol the parameters
which must be corrected, or to introduce more sophisticated maodelling techniques
(contention modelling, simulation instead of queueing networks) if accuracy is not
good enough and if cost is not exceeded. Sensitivity techniques make it possible
to focus on the important parameters [Opd92]. If the whole system is not finished,
an artificial environment must be used for the unfinished parts of the system. This
artificial environment must simulate a production environment. With this verifica-
tion, feedback on resource budgets could be given. Validation and verification is
when modelling meets practice, and is an important learning process for the people
involved.

6.2 Worlds

The concept of a “world” i an information system refers to an information layer in
an information system. This information layer may be hardware resources, software
resources or organisational resources as briefly introduced in Section 2.2 and elab-
orated in Chapter 9, e.g. Figure 6.4 shows the world of the blood bank application
developers. The world concept was an important part in our Jearning process. With
this concept, suddenly the coin dropped in the box of understanding.

Worlds in information systems are connected to the concept of hierarchical decom-
position and resource platforms in SP, which is described in Section 6.2.1. The
concept of worlds is wider than the concept of views in SQL databases [Dat86] and
in PPP {c.f. Appendix B). For DBMSs, the world concept is illustrated with this
quate [Dat86, p. 481

{T)he DBMS has a view of the database as a collection of stored records,
and that view is supported by the file manager; the file manager, in
turn, has a view of the database as & collection of pages, and that view
is supported by the disk manager; and the disk manager has a view of
the disk “as it really is”.

Section 6.2.1 compares hierarchical decomposition in SP with the hierarchical de-
composition in DFDs {data flow diagrams), and is important for an understanding
of the world concept. Section 6.2.2 explaing how worlds are used during develop-
ment of information systems and also describes the connections between worlds and
performance engineering.

6.2. Worlds 83

SO s e R
\-/
—c—

a) The modute before decomposition b} The module after DFD decomposition. ¢} The module after SP decomposition.

Figure 6.6: Decomposition of 2 module in the SP language and the DFD language.

6.2.1 Hierarchical Decomposition

The level of abstraction in SP is not the same as the level of abstraction in a data flow
diagram (DFD). This is part of the reason why SP is hard to use for newcomers. SP
models software and hardware resources at several levels of abstraction. The focus
is not so much on modelling of processes. While DFD decomposes the processes as
shown in Figure 6.6 (a), SP decomposes the resource piatform as depicted in Figure
6.6 {b). In DFD, it is also possible to work on several resource platform levels, but
this is not explicit, as in SP. Thus, the decomposition concept in SP may be viewed
as orthogonal to the decomposition concept in DFD. SP takes care of resource levels
whereas DFD models processes in detail. Within an SP module, there may be several
DFD processes. SP may be viewed as a “macro” modelling language which shows
the overall structure, while DFD is a “micro” modelling language where details are
Hlustrated. As an example of SP decomposition, the SP module Telex_secretary in
Figure 10.4 in Section 10.1.3.2 is decomposed in Figure 10.7 in Section 10.2. Accord-
mgly, Figure 10.7 may be aggregated to form the Telex_secretary in Figure 10.4.
In DFD it is also possible to make process hierarchies, ® but since the level of detail
in DFD is larger than in SP, these process hierarchies will in practice become very
large. Overview is therefore easily lost,

PrM is an extended DFD language as explained in Section B.1.2. When translating
PrM diagrams to SP diagrams, triggering flows in PrM will often corvespond to op-
erations in SP [Opd92]. The typing of operation in SP (processing, communication
and memory) has similarities with the basic concepts process, link and communi-
cation in DFD. Information flows and sequence of operations are Jost in SP. This
is llustrated in Iigure 6.7 and is the price we pay for a more compact representa-
tion. Since operations in SP are more compact than processes in PrM, SP diagrams
can contain more information in the same disgram. The model for the secretary
in Figure 4.2 and the workflow systems in Figure 9.5 are concrete examples. The
dotted lines in Figure 6.7 show how each PrM process devolves work in terms of
suboperations.

35ee Section B.1.2 for & description of process hierarchies in the DFD language PrM.

84Chapter 6. Method for Performance Engineering of Information Systems

System
operations

PM
process,

py h—y ~

L,

SP module Subsystem

operations

Figure 6.7: There will be several DFD) processes within an SP module.

6.2.2 Worlds in Information System Development

The quote in be beginning of Section 6.2 shows that even if developers with dif-
ferent roles work with the same subsystems, they will work in different worlds. As
another example, the information systems developer is not in the same world as the
hardware developer even if both work with hardware systems. Their tasks are differ-
ent. Whereas the information systems developer configures hardware systems, the
hardware developer constructs hardware systems. Modern systems are complex and
offer several operations with the same functionality [Fox89]. How these operations
are used by the developers depend on their knowledge, or the world they work in.

A designer should know more than others about the resources in his world. The
concept of world is related to the concept of internal realities of organisations [Kro95].
‘The things you cannot understand is not part of your world. Hence, worlds have to
do with information hiding, and is problematic in performance engineering which is
holistic: no part of the system can be neglected {c.f. Section 3.1.3).

The world concept for information systems and organisations serves to explain why
performance engineering is hard to grasp. Every developer of an information pro-
cessing systems knows about the resources which are inside of his world. These
resources use other resources which one may not know abouti, i.e. they are outside
of this world. However, when a performance model is developed, knowledge about
all the worlds in the system must be available.

6.3. Hationality of Design Process 85

A major problem in performance engineering is therefore a communication problem
between the developers in each worid and the performance engineer who is responsi-
ble for the overall performance model. This problem is especially tricky when many
design worlds exist, usually during the design phase. Performance requirements are
stated by users in cooperation with developers for the application world, i.e. the
world which the application developer works in.

Some of the non-functional requirements are hidden from the developers in the ap-
plication world, but they are relevant for developers in other, lower worlds. Because
of complexity, some of these non-functional requirements are temporarily ignored
during development. In the end, however, all of them have to be considered. The
designer or user often finds it hard to grasp what the performance engineer is aiming
at. Often, the performance engineer is satisfied with a much lower level of accuracy
than the designer expects. Therefore, the performance engineer must supply design-
ers and users with estimates of the cost of typical functions they should use [Bel87].

Recursive applications of the abstract virtual machine in SP takes you into new
resource worlds, Processes in a virtual machine or a world can only use resources
which are available in this world. Data structures are constructed in the world where
the design takes place (usually only the top level). At every other level there is also
some degree of freedom. For example in a database, it s possible to change the
concrete data structures.

6.3 Rationality of Design Process

The method is presented as a series of iterated phases. Even when this method
is formulated as a series of phases, an overview is needed before this method can
be applied with success. The more overview a performance engineer or an system
developer has, the better, With overview, it is possible to focus on the important
tasks ai each stage of performance engineering. Hence, the risk identification in
the spiral model in Section 5.2.5 is an example of overview, now covering the total
system development and not only performance engineering.

Often we have the situation in performance engineering where the information is not
available. For example, the busy hour will depend on the workload at the primary
resource level which is only available i phase I1A. or even IIB. These chicken-and-
egg problems may be solved by iteration, i.e. by improving the estimation of the busy
hour in the next iteration of the method. Let us call this brute force application of
the method for a “rigid” method. A rigid method is easy in theory, but in practice
it will often be too costly.

In contrast to the rigid method, we may use tacit knowledge about performance
and performance problems. Tacit knowledge cannot be divectly represented, but
shows up in actions of the person having the knowledge [SK93]. Some of the tacit
knowledge will be specific system knowledge. Specific system knowledge will always

86Chapter 6. Method for Performance Engineering of Information Systems

beat general system knowledge, A person with specific system knowledge will know
the important aspects of design. Examples of specific system knowledge is familiar-
ity with the operations typically used on the platform, and typical platform level
resource demands for application level operations. The tacit knowledge or intuition
from the domain expert should be supported with accurate tools and methods. Suc-
cess without specific knowledge can be achieved through the rigid method. The
Blood Bank Case Study is partly an example of this. Hence, domain expertise is to
some extent replaceable by raw manpower and method iterations. For example, if
a designer knows from experience that the server used to be the bottleneck in the
type of applications you make, there is no need to investigate consumption of client
resources, l.e. the parameter estimation effort can be reduced. There are special
problems on projects with no previous experience where domain experts are badly
needed but often not available.

In practice, a synthesis of the intuition-based ad-hoc method and the rigid method
will be used in an interactive process. The engineering part is to keep uncertainty
under control. This is in fine with common observations: a rational design process is
not {completely) followed in practice, but it is important to ry to follow it IPC86).

6.4 Object-oriented Performance Engineering?

This method is formulated in the context of traditional development methods. Re-
cently, object-oriented (00) methods have become more widespread. We now con-
sider how our approach could be applied in an OO setting. The phases in the method
are in principle independent of development methods. Using an OO development
method will only change the interface between the design description and the perfor-
mance model. It is therefore sufficient to consider the relation between OO0 models
and the basic framework of this thesis. Section 6.4.1 describes the basic concepts of
OO0 in a fairly standard fashion. In Section 6.4.2 the common QO method OMT is
used as an example.

The origins of object-orientation can be traced back to the Norwegian simulation lan-
guage SIMULA {c.f. Section 3.2) in the 1960s. Even today, QO is most widespread
for programming (OOP, Object-Orientation Programming). OO Design (O0D) and
00 Analysis (DOA}) are also used commercially, but to a less extent. There is no
clear separation between OOD and OOA, which has been referred to as the seam-
less transition from QOA to OOD. The object-orientation paradigm is basically a
bottom-up approach to software development, since the OOA focuses on the appli-
cation domain objects [SK93].

6.4. Object-oriented Performance Engineering? 87

6.4.1 Basic OO concepts

The basic concepts of object-orientation are objects, classes, encapsulation, inheri-
tance, polymorphism, and dynamic binding [SK93]. An object is an encapsulation
of a set of operations (methods} which can be invoked externally and of a local
state which remember the effects of the operations [BGHS91]. The value of the local
state can only be accessed by sending a message to the object which calls one of its
operations. An ohject has a unique and unchangeable identifier.

Objects are organised in classes, which provide the implementation of operations.
Classes are again organised in generalisation hierarchies, where it is possible to in-
herit operations. Objects and classes are also organised in aggregation hierarchies
so that composite objects or classes can be made based on more primitive objects
and classes. An abstract interface which shows only available operations and no
implementation may be called a type. It is possible to construct type hierarchies.
Since several classes may implement the same type and one class may be imple-
ment several types, there is not necessarily a structural relationship between class
hierarchies and type hierarchies [OSV93].

A polymorphic operation can be applied uniformly to a variety of cbjects, i.e. the
same draw operation may draw different graphical objects, such as arcs, rectangles,
circles ete. The algorithm to be used for drawing may be selected at run time,
which is termed dynamic binding. Dynamic binding is an effective mechanismn to
implement polymorphism.

6.4.2 OMT

To be more specific, the Object Modelling Technique (OMT) will be used as an
example. OMT is based on three major models [SK93}:

Object model describing the static structure of the objects and their relation-
ships. The object model and may be seen as an ER diagram extended with
for example generalisation hierarchies from semantic networks.

Dynamic model representing the state transitions of the system. The dynamic
models are based on concurrent state-transition diagrams extended with con-
structs similar to those found in Statecharts [Har88).

Functional model describing the transformation of data within a system, using
DFDs (Data Flow Diagrams).

OMT distinguishes between eight phases of system development [SK93). The first
five phases focus on the object model and thevefore on the static aspects of develop-
ment. An importani issue here is to identify the objects. Objects or combinations

88Chapter 6. Method for Performance Engineering of Information Systems

of objects could be characterised for performance engineering purposes by SP com-
ponents.

Phase six in the OMT system development, Verifying that access paths exist for
likely queries focuses on dynamics. This phase will be assisted by a combination
of dynamic and functional models. PrM, which is used in this thesis, is a superset of
DFD. Since OMT uses DFD, the framework in this thesis could be applied. Based
on a functional description of the interaction between objects, complexity specifi-
cations may be derived. Some of the additional constructs in PrM are necessary
if a performance model should be made during design, e.g. branching probabilities.
As described in Section 5.4.5.1 workload intensities and resource demands are also
needed.

The two last phases in OM'T are Iterating and refining the model and Grouping
classes into modules. While Iterating and refining the model will literally
refine the models, the phase Grouping classes into modules will determine the
final SP structure.

6.5 Comparison with Current Best Practice

The SPE method which is described in Section 5.4.1 is one of the most well-established
methods for performance engineering of information systems, and also represents
current best practice. If we compare the SPE method with the PPP/SP method
in this thesis, each activity in the SPE method corresponds to an activity in the
PPP/SP method:

Define SPE assessments for lifecycle phase Determine objectives of performance
model. Specify System Boundaries.

Create concept for lifecycle product Develop design description.
Gather data Estimate workload. Determine performance requirenents.

Construct & evaluate appropriate model Establish projected and existing com-
ponents of the performance model. Parameterise these submodels.

Report resuits Guide system development.

Alternatives preferable Changes in the design description may lead to a new
turn in the outer loop in Figure 6.1 and changes in the performance model, or
performance requirements may he relaxed.

Complete lifecycle product Develop design description based on feedback from
the performance engineering process.

6.5. Comparison with Current Best Practice 89

Verification & Validation Validate submodels and verify projections from the
overall performance model.

Enter next phase Refine the design description or implement part of the final
computerised information system.

Our method extends the SPE method in certain respects:

Design description Easier interaction between the design description and the per-
formance model. This is demonstrated by annotating PrM models with perfor-
mance parameters, for example in the Biood Bank Case Study. The resource
coneept in SP complements the process models and data models of common
CASE-tools, in this case the experimental CASE-tool PPP {GLW91]. Work
budgets are also more convenient during development than budgets in terms
of performance (c.f. Section 5.4.6).

World concept In SP the world concept is made explicit, deepening the under-
standing of performance for large systems. The method is based on this
“world” concept. Two worlds of competence are needed in performance en-
gineering. Information system deveiopers know details about the developed
application {but have often only superficial overview of the hardware and soft-
ware platform), and system architects have an overview of the total system
{including hardware and software platform, but often only superficial overview
of the application}. Information system developers, with low performance en-
gineering competence, but with high information system competence, could
assist in doing performance engineering in the early phases of systems de-
velopment. In particular, such personnel could be instrumental in resource
annotation before professional performance engineers (e.g. systems architects)
eventuaily take over and detail the performance models based on the most
important parameters.

Hierarchies In SP it is easier to build hierarchies at & meaningful level of ahstrac-
tion {c.f. Section 6.2.1). Explicit platforms in SP is an example of a very
useful hierarchy level. Together with the hierarchies, the typing in SP (c.f.
Section 5.4.6) makes reuse more likely [Vet83].

Organisations It is quite easy to extend the PPP/SP method to organisations as
described in this thesis. Tor an information system, the focus on the organ-
isation is more important than for a software system. Therefore, this is an
information system performance engineering method and not only a software
performance engineering method.

4Smith uses the term verification and validation differently from this thesis. In her view, checking
mput parameters is verification and checking model projections is validation, no matter if the model
is existing or projected. Smith's view corresponds to Boehm's view of verification as answering the
question “Are we building the preduct right?”, and validation as answering the question “Are we
building the right product” [Boe8l}. The meaning of verification and validation in this thesis is
described in Section 3.3 and builds on {LZGS84).

90Chapter 6. Method for Performance Engineering of Information Systems

6.6 Chapter Summary

This chapter has presented a method for performance engineering of information
systems based on the SP language which was presented in Chapter 4. An overview
of the method was shown in Table 6.1 and in Figure 6.1. The world concept, which
forms a basic part of this method, was also presented. The hierarchy mechanism in
SP differs from the hierarchy mechanism of PrM. While a decomposed PrM process
still uses the same resources, the resource platform itself changes during SP decom-
position. Similarty, the platform concept in SP was described. Compared with 3PE,
this method has an improved link to the design description through the structural
model.

The method is applied to the Biood Bank Case Study in Chapter 7 and extended to
workflow systems in Chapter 9. Then, the method it is applied to the organisational
and computer parts of the Gas Sales Telex Administration Case study in Chapter 10
and 11 respectively.

Chapter 7

Application to a
Transaction-oriented System

The blood bank application was a typical medium-size transaction-oriented informa-
tion system with database and user interface as key platform components. Early in
1991, the Region Hospital in Trondheim was selected as the site for the case study
of projected applications, because {1} geod working relations had heen established
between our group and both the Region Hospital and the computer vendor Tandeny;
(2) the blood bank was the only application under development at the Region Hos-
pital at that time; (3} the blood bank application was sufficiently large so that it was
realistic, and equally well reasonably small so that it was feasible to study within
the time constraints of a PhDD thesis. The method in Chapter 6 was developed as
a result of the Blood Bank Case Study in this chapter {Chapter 7). The descrip-
tion in this chapter, which is a condensed and revised version of the relevant parts
of [BOO1, BOV392], is therefore also a practical application of the method in Chap-
ter 6. Three design documents which were made during construction of the blood
bank application, together with interviews formed the basis for this case study:

Requirement specification [Twi90b] A textual description of the system with
main screen images described as figures. Subordinate screen images were de-
scribed using natural language.

Functional systems design [T'wi®0a] This document was platform independent
and contained a textual description of processes down to three levels of decom-
position. The logical database design in the form of ER models and tentative
database schemas was also described.

Computer system design [Twi91] A platform dependent document which con-
tained a physical database description with a complese database schema. All
screen images are shown as figures. A test plan for the application was out-
ined. In this document, performance testing was moved to the programming
phase, in line with the standard fix-it-later approach described in Section 5.3.

91

92 Chapter 7. Application to a Transaction-oriented System

Note that while conceptual structural modelling was done (with an ER model),
conceptual functional modelling {e.g. DFD modelling) was not performed.

An overview of the blood bank organisation and application was given in Section 2.1,
describing the necessary background for this case study. This chapter is organised
as follows: The context of the case study is described in Section 7.1 where also the
original scientific objectives of the case study are listed. Section 7.2 illustrates the
modelling of the projected blood hank application, while the (existing) platform is
described in Section 7.3. The static performance model of the blood bank application
is evaluated in Section 7.4.

7.1 Specify System Requirements

The presentation of this case study is complicated because of the three levels in-
volved: (1) The original case study; (2) practical (historical) validation of the per-
formance of the blood bank application; (3} illustration of the method of this thesis.
While Section 7.1.1 focuses on the first activity, the other subsections in this section
describe the last two activities.

7.1.1 Scientific Objectives

The initial scientific objectives of the original case study in the context of the IMSE
ESPRIT I project ! was formulated as [BOVS92]: 2

FE: Demonstrate how information system performance engineering and information
systems development could be undertaken using the same modelling tools.

FP: To investigate the feasibility of specifying average resource demands in terms
of higher-level operations.

FE: To investigate to which extent this enables developers withont much skill in
performance engineering to assist in performing engineering.

When these original scientific ohjectives are extrapolated, the overall scientific objec-
tive becomes: “Find a method for performance engineering of information systems.”
which is the theme of this whole thesis.

IThe IMSE project was described in Chapter 1.
2Quperscript B in F¥, Ff and FF refers to the Blood Bank Case Study to avoid confusion
with the Gas Sales Telex Administration Case Study.

7.1. Specify System Requirements 93

7.1.2 Objectives of Performance Model

Two objectives were identified for the blood bank application before the case study
started. 3 The objectives were to investigate if:

OZF: The blood bank application has acceptable performance.

OF: The blood bank application will not give a heavy workload on the rest of the
hospital computer system.

These “practical” objectives fit well within the “scientific” objectives in Section 7.1.1.

7.1.3 Determine System Boundaries

The blood bank application interacted with other applications, namely the clinical
laboratory application and the microbiology application for requesting blood prod-
ucts and performing tests on blood. In addition, an existing security application in
the patient administration application was also used by the blood bank as part of
the application platform. All these applications are shown in Figure 7.1,

Blood bank
organisation

PIPTLYTY TETTTIN
ey 1y,
v,
o e,
0 =,

Blood bank

'.‘-"" application Y
Laboratory Microbiology under 3 Patient system
application application H study H application

g
it
/
o
',
ey

0‘.
o
)

Application
platform o

a“
&

&
K
-,

o
2, o
ettt

Figure 7.1: An overview of the workload and resources used by the biood bank
application.

3No detailed performance evaluation was performed in the original documentation of the blood
bank application. In the original documentation [Twid0a], the workload of the biood bank appk-
cation is superficially compared to other applications, and it is concluded that the workload on
the Tandem computer will be smaller than on other well-known architectures, because more screen
handling is taken care of by client PCs. For the workload on the client PCs, experience from other
users indicates that this will not be a problem. This documentation was only available to us, afler
the blood bank was selected as a case study.

94 Chapter 7. Applcation to a Transaction-oriented System

In this case study, the blood bank application and the application platform for this
application was the focus of the performance engineering and was therefore selected
as the system under study in Figure 7.1. The blood bank organisation gives the
workload on this blood bank application.

The blood bank application would increase the workload on the other applications.
In order to assess this increase, performance models for the other applications should
also be available, Bowever, the workioad from the blood bank application to these
other applications was considered to be small. On this basis, the simplifications
derived from definitions of system boundaries were justified.

Some extra complications are not shown in Figure 7.1. (1) Some of the other appli-
cations may use services from the blood bank. (2} An extra part of the blood bank
application for handling financial aspects was added late in the design phase, and
is not included in the figure. Financial data is collected all the time, and computed
monthly. {3} Finally, the whole blood bank organisation is changed approximately
once & year as new products arrive which make the blood products more durable.
Therefore, the information system will also be modified from time to time. These
three complications are not included in the case study, but are commented in the
conclusion.

7.1.4 Estimate Workload

In the organisation, 22 organisation operations which gave workload contributions
on 13 application operations [Flg91] were identified. Estimmates for the organisational
workload were collected from:

Measurements which showed the flow of information and material in the organisa-
tion. Such statistics are often available in large organisations, e.g. for the blood
bank, the number of donations per year for each class of blood was collected.

Interviews wherercles and operations within the organisation were captured {“Whao
does what?"). The connections between operations were also valuable. In ad-
dition, the flow of information and material to and from the external agents
were identified. External agents are persons or organisations outside of the
blood bank organisation who interact with the blood bank. Flow of informa-
tion and material within the blood bank were also identified. The information
handling related to the flow of material was also investigated.

Unstructured interviews improved our understanding of the operations carried
out in the blood bank. The question “What triggers this operation?” led
to interesting and constructive answers about the organisation. For detailed
and specific questions related to fluctuations of the workload, strictured forms
were used. Once the questions were clear, it was easy to ask people to estimate
work on the system.

7.1. Specify System Requirements 95

Ins the Blood Bank Case Study, the busy interval for the existing application was used
when analysing the projected application. This was in line with the performance
objective OF in Section 7.1.2, which stated that the impact on the existing system
should be studied. One busy interval was defined: [ypwma = (1 hour,08.00) was the
highest workload during one hour of normal operation, i.e. 1 howr from 8.00 AM untii
4.00 AM. This was identified to be Monday, Tuesday, Wednesday and Thursday in
the weeks before Christmas and Easter {when the blood bank had to build up the
blood stock before a longer vacation where donors were hard to get} [Fla91].

In addition, a workload scenario was defined for the highest possibie workload on
the application Wfoedtant je. the workload when a major accident created a large
demand for blood. This could happen at any time during the day or night [Fig01],

and was a typical ad-hoc workload.

The organisational workload for the 13 application operations in the hlood bank
during the busy interval [y.mqr is specified as an open system as follows: *

i

search_for donor
find_donor
specially treated
normal _donalion
change_prognosis
pack_plasma
W T Blood -bank . send._plasma
albumin_deliverance
product..delivery
search_for_product
feteh_patient_for_trans
get_overview
fetch_patient_for_lob

O OO O b= o

L

The detailed caleulation behind these operation arrival rates are shown in {Flp91].
As an example of the calculation behind this figure the organisational workload on
the application operation find donor 5 is explained below. In order to increase
the stock of blood before a long Christmas and Baster vacation, 110 as opposed fo
normally 80 donor appointments were made every day. Assuming that 10 % of the
donors did not turn up for their appointments, the number of donations became 100
every day. Donors arrived for 4.5 hours, so 22 donors arrived per hour. This rate of
22 donors per hour corresponds to one operation at the organisational level, namely

4Note that this vector is transposed as indicated by the superscript T. Arrival rates were speci-
fiedd in terms of transactions because the blood bank serves a large number of patients and donors.
Each donor and each patient use the blood bank infrequently. See 4.2.2 for more information about
the different types of operations.

5For clarity, SP components and operations are written with the teletype font.

96 Chapter 7. Application to a Transaction-oriented System

the perform_donation organisational operation. Apart from the perform_donation
organisational operation, the make_appointment_for_donation organisational oper-
ation also contributed to the find donor application operation with an arrival rate
of 37 per hour. Hence, the find donor operation is triggered 22 + 37 = 59 times
during the husy hour.

search_for_donor and find.donor represent two different types of application op-
erations. As described above, the find donor has a clear relationship with work
carried out by the organisation. When a donor turns up for donation or when the
laboratory engineers want to make a new appointment with a donor, the operation
find_denor is invoked. The operation search.for.donor also has direct connection
to the work carried out by the organisation. This function is for example used when
blood for patients with special needs is requested. Also, this function provides an
overview of the donors in the blood bank. This function is not connecied to flow of
material in the organisation, but has to do with coordinating future activities. In this
way this distinction conforms well with the difference between production workfiows
and ad-hoc workflows in Section 9.3. The workload for coordination work is harder
to predict than the workload for production work. The workload of coordination
work depends to a larger extent on the response time of the information system,
the learning effort and how easy it is to do without the services of the information
system, e.g. instead of looking up in the blood bank database, you can always look
ir: the physical blood bank.

7.1.4.1 Parameter Validating

The organisational workload parameters described in Section 7.1.4 were partly vali-
dated by comparing information from different sources. When the same parameters
are collected from both statistics and interviews, a validation of the interviews can
be made [Flgd1]. The number of biood donations can serve as an example. In 1990,
17990 packets of blood were donated to the blood bank. Divided by the 251 working
days in 1990, this gives 71.7 packets of hlood on an average day. The blood bank
personnel estimated that 80 donation appointments were planned during a normal
weekday from Monday to Thursday inclusive. Normally, 8 donors did not turn up fox
donation. Thus, 72 donors visited the blood bank on Monday, Tuesday, Wednesday
and Thursday. Every Friday, 60 appointments were made. Assuming that the same
fraction of donors did not turn up for donation, 54 donors visited the blood bank on
Fridays. No denations were made during weekends and holidays. Thus, the average
munber of donations made during a typical day was: 4—"'2;—"’4 = 8.4. Compared with
71.7 as estimated from statistics for an average day, this gives a discrepancy of 5 %
only.

7.2. Establish Components: Projected Application 97

7.1.5 Determine Performance Requirements

In line with performance objective OF in Section 7.1.2, performance requirements
were developed. For the original blood bank information system: development project,
the performance requirement was specified implicitly ¢ as a throughput rate of 100
donors during the normal workload W Floed-benk (¢ £ Gection 7.1.4):

Normal

PIB: XBi'aod,bank =100

During the high workload W gt the number of transfusions will increase, espe-
cially transfusions which need specially treated blood [Flgd1]. However, the number
of donors will not increase, and the throughput rate is therefore the same during the
high workload. Simply put, only the work and not the load increases during the high
workload. The throughpus rate is the same during the high workload. Performance
requirements based on performance objective Oy were not formulated.

A more detailed performance requirement corresponding to performance objective
O?F could have been specified in terms of response time for each of the 13 application
operations, e.g. less than 3 seconds response time for the find_donor operation on
the average.

7.2 Establish Components: Projected Application

The blood bank was not initiaily developed using CASE-tools, which made it neces-
sary to make process medels before conducting the performance engineering. Oniy
four data flow diagram models at high abstraction level existed when we created our
process models. Flgstrand refined our initial process models [Flg91]. We aimed at
creating process models which would have been created if application development
had been undertaken using a process modelling tool. As a suitable tool for drawing
processes annotated with resources demands, we used a prototype version of the
PrM (Process Maodelling) tool, designed for making perforinance engineering during
desipn feasible. This tool was developed by Andreas Lothe Opdahl as described in
Section 5.4.5.1.

In this section, we will focus on the fetch info process which is one of the 34
primitive processes in the blood bank. This fetch info process is a decomposition
of the find donor process which was used as an example in Section 7.1.4.

6Talks with a major Norwegian consulting firm revealed that this is common when performance
modelling is performed as a part of information system development: no explicit performance
requirements are identified. Based on intuitive judgement, the resulting performance from the
performance models, is decided as acceptable or not acceptable. See also Section 6.1.5 for a
discussion.

98 Chapter 7. Application to a Transaction-oriented System

7.2.1 Annotating Process Model

This section will describe the annotation of the blood bank model, first with branch-
ing probabilities in Section 7.2.1.1 and afterwards with resource demands in Sec-
tion 7.2.1.8. Before resource demands can be specified, a resource platform must
he defined. The resource platform is described in Section 7.2.1.2. Annotation of
a process model with branching probabilities and resource demands was explained
conceptually in Section 5.4.5.1.

Specify input and output ports

[Done } Save | Abort]

futput port: O And
Type: O Primitive
Inner poris:
+: Port: &3 and
Type: i3 Cond
Cond factar: O Average @ 0.1
Inner ports:
+: Port: O Flow
Nama: donar 1d. 1 &Non terminating

Port: & Xor
Type: 2 Primitive
Inner ports:
+: Choice factor: O Average : 0.5

Port: & Flow
Name: donor appointment data 1 2 Terminating

Choice factor: O Average @ 0.5

Part: XFlow
Name: doror donation data : & Yerminating

Part: & And
Type: & Cond
Cond factor: & average : 0.2

Inner ports:
+: Port: £ Flow

Name: donor id.2 + & Non terminating

Tigure 7.2: PrM output port connectives for the fetch info process

7.2.1.1 Branching Probabilities

Figure 7.2 shows how branching probabilities are specified for the PrM process fetch
info. These branching probabilities came from the users during interviews. The
output port 7 for process fetch info has a composite port, consisting of three ports.
The first part of this composite port is a conditional port and has the probability of
0.1 for being used. The second part is also a composite port, with two ports, where

"For an explanation of “port”, see Section B.1.2 where the PrM process modelling language in
PPP is explained.

7.2. Establish Components: Projected Application 99

only one of them witl have output with probability 0.5, i.e. one of these processes
will have output for each invocation of the process. These two ports are ferminating,
i.e. when data is entered on one of these ports, the process is finished. The last and
third part of the composite port is a conditional port, whick has the probahility of
0.2 of being used. This process is non-terminating, which means that the fetch
info process can continue after output of data from this port.

7.2.1.2 Resource Platform

Database operations were a dominant part of the projected application. Three SQL
database operations were considered as importans:

select refers to a singleton select where one relation is referenced, and only a small
volume of data refurned.

select_list is ugsed when a joined, sorted list of tuples is the result of a select. Hence,
this operation induces substantially more load than the select operation.

update consists of the three SQL operations update, insert and delete.

These SQL operations use COBOL statements on the TANDEM computer. Therve-
fore, COBOL statements were included as the fourth $ype of operations on the
server platform in Figure 7.4.

Screen handling for the blood bank is mostly done by a PC. Experience from proto-
types showed that this PC client contributed significantly to the resulting response
time. Three screen handling operations were selected:

transfer_screen estimates conununication work when a normal simple screen image
is required. A simple screen image holds only fields and rows as elements. No
tables are used.

transfer_table is used when a table on the screen 1s read. If the user can browse
through a list, this list is implemented with a table in the screen handler.

update.table accounts for the communication work when a table also can be up-
dated.

Since these screen operations use Actor statements on the PC, Actor statements
are included as the fourth operation on the screen.h platform in Figure 7.4,

100 Chapter 7. Application to a Transaction-oriented System

7.2.1.3 Resource Demands

Resource demands of primitive PrM processes were annotated in terms of the plat-
form operations which were described in Section 7.2.1.2. The resource demand for
one process estimates the average number of computer system resources needed per
triggering of the process. Resource demands were captured during interviews with
information system implementors. When every primitive process was annotated with
resource demands, the implementation specification for the blood module couid be
derived. As a more detailed example, the resource demand for the fetch info
process is shown in Figure 7.3. In Figure 7.3, it is estimated that the fetch info
process uses 50 COBOL statements, one select and one transfer.screen. This
resource demand reflects that this process uses a singleton select and a simple screen
image.

E_, Nane: Tandedi
Pracossing:

Hawa: COBOL
OGperrations:
1: Oporation: <laia‘~enﬂ [
Usage mober: O dverage ¢ 5@ amv
Hmory: ~ b dondygen cata
1 uls uscd . s
;SO PEHs % p dongr i, A
np.numn 3 ‘ feton tnfa.
1: Hperation: select i persn \d
tUsagn musbos: unveragc 11 ,.____mm___
2: Dperation: scleet }ist | 2 ey
Tew tiggenson 1d. s B
Usagn mmbes: O dvaraga 7 0 - J’/’]
3: Opsration: updale
Usage mavber: O Average G I'

RPN
j

i 3 fona) 03 mcssﬁm:
Procesaing: ;
Wamo: Bctor g
Dperations: i
1: Dperation: stztemanl ¥
llonge mnber: { Average : ;

Nana: scrasry

Dpamtinm
Dporatioe: transfor_scroen
Uoage munber: O Average T

L Distr {buted
Virtual nachines:
L: 15 vsee CROERTETT
2: $1s used =)
fommenications:
£: Tz used

Operation: transfer_table
Ueage mmbec: O fvorage ©
Opsration: vpdale_table

Usage munbor: O Average :

Figure 7.3: Resources used by the fetch info process.

7.3 Establish Components: System Platform

Figure 7.4 shows the SP model for the Blood Bank Case Study. The bloed bank
appiication in Figure 7.4 is termed blood. The two modules below this module in
the SP hierarchy, server {or database server in full) and screen_h (screen handler

7.3. Establish Components: System Platform 101

in full) constitute the platform which is used by the bleed module. The server
module in Figure 7.4 offers memory {database operations) and processing (COBOL-
statements) to the blood module, while the screen_h module offers communication
and processing to the blood module.

The distr module represents an aggregated CPU which distributes computation to
one of the six physical CPUs cpu(1) ...cpu(6) assisted by the bus [Vet93]. The
modules diskh, distr, bus, cpu, disk, pc.comms, pc_line, pec.cpu, and distr and
all the modules used by distr, are also indirectly used by the blood module. All
the other modules in Figure 7.4 are used to model the existing applications pas, 1ab
and mic which are applications in the same way as the blood bank application.

The platform operations on the server and disk.-h modules are explained below.
For more information about modelling of the existing applications, consuit [BOVS92,
Vet83]. An outline of the hardware model can be found in [BOVS92), and is discussed
further in [Vet93].

5p Static Model: prajected(l)
(TTBone "} [T (Tt }
Left button - Move object

Middle bution - Create ltink
Right button - Show cperation menu

W o e

A

~
N

server(zi sFreen,n(i)
£

I \
pe.conns{1}

I
conps{l} hi1}

—

1
distr{1}

| hus(‘;)—l

cpuit} eput i)

: llme(l)

[1 f 10 3
disnil} c_Tine{i} pe.cpuii}
|] ﬁ i f F }

Figure 7.4: SP mode! for the Blood Bank Case Study

7.3.1 Database Platform Operations

Three SQL database operations are offered by the server medule in Figure 7.4:

102 Chapter 7. Application to a Transaction-oriented System

select This operation refers to a singleton select. where one relation is referenced,
and only a small volume of data returned. When the index but not the required
block is stored in cache, only one block must be read from the file system for
this database operation. This is indicated in the complexity specification below
by the number 1. The number means that one select operation on the average
results in one block read from the diskh component i Figure 7.4. In addition,
a SQL message statement is used. This corresponds to the operation sql_asg
on the diskh module.

select _list is used when a joined, sorted list of tuples is the result of a select. Hence,
this operation induces substantially more load than the select operation. For
example when the donor relation is read, in the worst case all 7000 donors are
referred. One PERS tuple which stores information about one donor, occupies
260 bytes on the average. When the block size is 4 KB, maximum 1995200 = 444
blocks are read in the ideal case. ¥ With a selectivity of 10 % , 44 of these blocks
are read. This estimate is fairly representative and is therefore used in the
complexity specification from the select_list operation to the read_block
operation of component diskh. The number in the complexity fanction from
select_list 60 sql_msg is 6, because each block equals 8 packets. Therefore,
44 blocks equal 6 packets.

update Consists of the three SQL operations update, insert and delete. In a stable
database, these update database operations are rare, and since they require
approximately the same amount of resources, there is no need to make a dis-
tinction between them. Often new tuples are added 1o the database even if
old information is updated, making the distinction between insert and update
artificial. In all three cases we assume only one write operation is used.

The matrix below represents the complexity specification for the server component
using the diskh component.

COBOL sql_msg read_block write_block

COBOL 1
server _ Select 1 1
Tdiskh ™ select_list 6 44
update 1 1 1

For more details about this complexity specification, consult [BOVS92]. * The com-
plexity specification between diskh and disk is also shown in [BOVS92].

¥The mix of the terms “ideal” and “maximum® may be confusing. The estimate is “maximum”
because all 7000 donors should be read, which corresponds to 444 blocks. On the other hand, the
DBMS may read more than 444 blocks to read all the 7000 donors. In this sense, the estimate is
“ideal”. The estimate is therefore an “ideal maximum” or a “mintmum maximum”.

"Performance modelling of 2 DBMS is considered by Hyslop [Hys$1]. Hyslop has designed
a modelling framework with seven levels for DBMS performance modelling. This framework is
supported by a tool and validated for DB2 (designed for IBM mainfranes) and Teradata DBC/1012
{a multimicro database machine}. Missing parameters are estimated using default values. Hysiop

7.3. Establish Components: System Platform 103

7.3.2 Screen Handler Platform Operations

The screen_h contains processing (statements for the PC screen handier language)
and communication (transfer operations). The three communication operations of-
fered by the screen.h module are explained in Section 7.2.1.2. The pc_comms con-
tributes with memory operations for the screen h module. The pc_comms is dis-
tributed between the Tandem: machine and the PC, and devolves both memory
and processing operations on the distr and the pc_cpu. Communication between

distr and pc_cpu is carried out by pe.line. Complexity specifications are shown
in [BOVS92].

7.3.2.1 Problem with Characterisation of User Interfaces

Operations for user interfaces are in general hard to characterise, partly because
there is no established way of separating requirements and design of user interfaces.
In the blood bank application, the screen layout in the requirements specification
was designed with the Pathmaker application in mind. Pathmaker is Tandem’s
mainframe screen application package. In Pathmaker, it is relatively costly to acquire
each screen, therefore several fields were included in each screen image, in order to
reduce the number of screens.

It was later decided to use a client-server architecture with the screen package Actor
and the communication package TDS on the PC, which were communicating with
the Tandem mainframe. Here, switching between windows was more efficient, and it
was therefore natural to display additional information in sub-windows. Actor also
provided possibilities for table lookup and selection between alternatives. Hence,
the requirements specification were changed. This example reveals that, for less
understood aspects of a the requirements specification, design issues are likely to
blend with the requirements specification, making performance engineering harder.

7.3.3 Work Model

When combining the branching probabilities with the resource demands for each
of the 13 application operations, a work complexity matrix for the blood bank ap-
plication can be derived. This work model offers 13 application operations to the
organisation and devolves work in terms of 8 platform operations. The resource
demands for each operation in this implementation specification are the sums of the
resource demands for the PrM processes which are invoked by this operation. 1

circumvents the problem with the DBMS optimiser which works during run time, by actually asking
the optimiser for the database in question what it would like to do.

10¢r_screen, tr-table and update_ta in this table are abbreviations for transfer_screen,
transfer_table and update_table respectively defined in Section 7.3.2.

104 Chapter 7. Application to a Transaction-oriented System

COBOL select select list update Actor #r_screen tr.table update_ta

search_for_donor Foo310 1 310 1
find_donor 219 B.E3 1.1 269 3.35
specially . treated 200 16 3 200 1
normal .donation 400 20 9 400 1
change_prognosis 400 10 b4 400 1
pack_plasma 400 10 4 400 1
Gt = send_plasma 400 10 4 400 1
atbumin.deliverance 400 20 4 480 1
product .delivery 400 40 4 400 1
search.for.product 400 1 1 406 1
feich_patient for_trans 485 12 0.5 2 535 5.05 0.5
get gverview 310 10 1 2 310 3 1
fetch_patient_for lab | 210 10 2 pate) 3 p

When update or insert database operations of vital information are done, several
select operations are performed to verify that the new information is consistent, with
the information already stored in the database. Therefore, i one primitive PriM
process consists of one update operation, often five to fifteen select operations are
also inciuded. This explains the high number of select operations, for example for
the product_delivery operation.

7.4 Evaluate and Validate Static Model

Based on the work model in Section 7.3.3, and specifications of resource demands
for each platform operation in [BOVS92], the time used on each operation for each
resource was calculated, with the time-measure milliseconds: 1

Tandemn _CPU disk PC line PC_.CPU

search_for donor [150 88 8 820
find_donor 100 37 27 1800
specially_treated 130 74 30 1300
normal_donation 250 200 30 1300
change._prognosis 12¢ 56 30 1300
pack_plasma 140 92 30 1300
D?#;lacdwwork,pi'atfarm = serd._plasma 140 92 30 1300
albuman_deliverance 210 110 30 1300
product..delivery 360 150 30 1300
search_for_product 160 110 B 820
Jetch_patient for trans 220 100 44 3100
get_overview 260 140 32 2400
Jetch. patient_for_lab | 116 56 24 1600 |

¥This matrix shows the time for each primary resource: Tandem CPU, disk PC_line PC_CPU,
and js not the direct result of matrix multiplication with the complexity matrix C;fgi}‘im. The
derivation from the complexity matrix and the resocurce demand matrices in [BOVS92] is still

straightforward.

7.4. Evaluate and Validate Static Model 105

This matrix does not include load, and is therefore not a workload model, but since
it estimates residence {ime on each primary module, it is not a strict work model
either. It may be termed a time-work model. From this matrix it is evident that
the work on the PC is substantialiy higher than for the Tandem for all operations.
The best-case response time for the search for_denor operation is 1.1 5 (0.15 +
0.088 + 0.008 + 0.82). This estimate does not take contention into consideration.
Contention modelling is elaborated in Chapter 3.

Even with moderate contention, these response times would still be acceptable. Sec-
tion 7.1.3 describes interaction with other systems and this would also affect the
result. Since only a fraction of the workload affected other systems, the contribution
from this will also be small. Consequently, performance objective OF in Section 7.1.2
was found to be satisfactory. The performance requirement P;B i X Blosd bant: = 100
also seems to be satisfied when only the computerised resources were considered.
As discussed in Chapter 2, the interaction between the human and compuserised
resources was more problematic,

When every coluinn in the matrix for the work for each operation is multiphied by
the operation arrival rate vector, a new matrix is derived. This matrix represents the
workload on the Tandem and PC during the busy hour {numbers now in seconds):

blood _ Blood_bank blood
Dplﬂiform - /VNorm((! : Dtime-wor'k,pfﬂtform

Tandem_CPU disk PC_line PC_CPU
Dlieed . = total | 9.5 12 2.0 130

During busy hour 9.5 s of Tandemn CPUs, 4.2 s of Tandem disks, 2 s of PC line
and 130 s of PC CPU are consumed. The result indicates that the blood bhank
will not constitute a significant Joad on the Tandem computer system during busy
hous on the averuge, since 9.5 s and 4.2 s are only a small fraction of one howr.
Competition for hardware resources is neglected in these estimates, as is also the case
for the interaction with other systems described in Section 7.1.3. Even with these
limitations it seems clear clear that the performance objective O, in Section 7.1.2
has been satisfied.

106 Chapter 7. Application to a Transaction-oriented System

An intermediate result before the vector above was derived is shown below. This
intermediate result shows how much time (in milliseconds) each operation will use
on each resource during the busy hour.

Tandem CPU disk PC line PC.CPU

search.for_donor [1200 700 G4 G600
find_donor 5900 2200 1600 106000
specially_treated 130 74 30 1300
normal_donotion 500 200 60 2600
change_prognosis 120 il 30 1300
pack_plosme 280 186 60 2600
Ditioed = send_plasma 0 0 0 0
albumin_delivergnce (] 0 0 0
product..delivery 0 0 0 0
search_for _product 640 440 32 3300
fetch_patient_for.irans 440 200 88 6200
get_overview 260 140 32 2400
fetch_patient. for_lab | 0 0 & 0]

We can see that the two operations search for doner and find denor account
for most of the resource consumption in the blood bank application. For these
two operations, the two database operations select and select.list which use
Tandem CPU are the most demanding. If the model should have been refined
further, only these two operations and their four resource demands need to be taken
into consideration, thereby reducing the effort in parameter estimation.

7.5 Summary of Findings

For two reasons, the presentation here gives a better impression of what actually
happened in the Blood Bank Case Study. First, this was a learning situation. It
is therefore not considered relevant to explain errors which were done as a result
of this. Second, a detailed description of the actual process would be too long
and tedious to read: iterations, side steps, bottom up and top down are all used
in practical modelling. As an example of iterations: an idea of the organisational
operations is needed before the busy hour could be selected. Some steps may even
be performed in parallel, e.g. Estimaie workload (IC.) and Parameterise static
model components of projected application (I1A-2.).

In this case study, parameter validation is described in Section 7.1.4.1. Informal
system validations of the blood bank applications confirm that there were no per-
formance problems with the operations of the application, as predicted by this case
study and also by the informal performance evaluation done by the project team.
However, one routine in the organisation, namely the transfusion process, was prob-
lematic. This routine has been described in Section 2.1.

7.5. Summary of Findings 107

The primary aim of the Blood Bank Case Study was not o correct performance
problems in the blood bank application, but to develop tools and methods for per-
formance engineering during design. In this respeci, this case study differed from
actual performance engineering, and in this respect the case study was successful.
Performance engineering would have been easier if we could augment existing con-
ceptual models with the relevant parameters needed. In this case study, the process
models had to be made from seratch, meaning an extra effort. Platform models will
also be easier to make when there are performance models for the existing applica-
tions. Both these factors will make petformance engineering more feasible because
the cost of performance engineering wilt be reduced. Therefore, the scientific objec-
tive F¥ in Section 7.1.1 was met by this case study.

The case study showed that the parameter capture for organisaticnal data was fea-
sible. Getting parameters for the application development was also feasible. In the
Blood Bank Case Study the number of interesting numbers which must be acquired
from either developers or the computer personnel are in the order of 100. Therefore,
it is a manageable task to collect these parameters. The scientific objective FiP in
Section 7.1.1 was therefore also met by this case study. Results from the case study
indicate that only approximately two application operation rates and four resource
demands need to be exactly specified as noted in Section 7.4. A more detailed model
which also took contention into account, could investigate this more closely. This
shows how the number of necessary parameters may he reduced after one iteration
of parameter estimation and model prediction. In addition, this shows how person-
nel with low performance engineering competence but with high information system
competence could help in the earlier phases. In particular, such personnel could be
instrumental in resource annotation before professional performance engineers even-
tually take over and detail the models with the most important parameters. In this
way, the scientific objective Ff in Section 7.1.1 is also satisfied by this case study.

108 Chapter 7. Application to a Transaction-oriented System

Chapter 8

Organisational Change and
Workflow Technology

The convergence of organisational and computational work will produce major struc-
tural changes both in organisations and in the field of computer systems, and wiil
therefore offer new challenges for performance analysis [Den94]. An important part
of the giue between the computer system and the organisation will be workflows
which are organisational processes with a defined objective and which use both
computerised and human resources. These workflows are supported by workflow
systems.

This chapter forms the background for the extension of the method described in
Chapter 6 to workflow systems in Chapter 9. Organisational change will first be
briefly described in Section 8.1. Workflows and workflow systems are discussed in
Section 8.2.

8.1 Organisational Change

The focus inr this thesis is on computerised and manual work For humans in an
organisation, this “mechanistic® view is only one among several views. Each view
offers valuable insights. This section describes the relations between a “mechanistic”
view and other views. Moreover, this section introduces other valuable insights about
organisational change in the context of information systems development.

Several “views” of an organisation is discussed in Section 8.1.1. Local realities, which
are useful for understanding how several parts of an organisation view the organi-
sation differently, are described in Section 8.1.2. Earlier proposals for modelling of
organisations in the context of information systems are described in Section 8.1.3,
with focus on OSSAD. This section concludes with & description of business process
reengineering (BPR) in Section 8.1.4.

109

110 Chapter 8. Organisational Change and Workflow Technology

Structure

Task Technology

Actors

Figure 8.1: Leavitt's diamond for organisational change.

8.1.1 Ways of Viewing an Organisation

Leavitt's diamond [Leafb] in Figure 8.1 is often referred to in connection with or-
ganisational change. Leavitt views organisations as congisting of four set of vari-
ables [Leafb]:

Task: Refers to the organisations’ raisons d’étre: the seqguence of tasks which exist
in the organisation for production of goods and services.

Actor: Describes humans with various skills.

Technology: Problem solving inventions like software, or measurement of work
effectiveness.

Structure: Systems of communication, aushority and work flow. The classical or-
ganisational theory which has to do with clarifying and defining the jobs of
people belongs here.

Organisational change may focus on actor, technology, or siructure variables, with
the goal of improving organisational effectiveness. Leavitt describes how these sets
of variables interact. Change in one set of variables may influence other sets of
variables. Most efforts to influence organisational change must therefore deal with
not only one set of variables, but eventually with all of them.

For a change process in an organisation, the actor set of variables in Leavitt’s dia-
mond are particularly important, and is the topic of several textbooks, e.g. [CH89].
A change process in organisations goes through a series of stages, each requiring
considerable time [Kot95]). Skipping stages only creates the iHusion of speed and
may eventually stop the change process. Kotter distinguishes the eight most impor-
tant phases in a change process [Kot95): 1) establishing common understanding of
urgency, 2) forming a powerful guiding coalition, 3} creating a vision, 4) communi-
cating the vision, 5) empowering others to act on the vision, 6) planning for and
creating short-term wins, 7) consolidating improvements and producing still more
change, and 8} institutionalising new approaches.

8.1. Organisational Change 111

Several other frameworks for understanding of organisations also exist, where Mor-
gan presents one of the more well known [Mor88]. According to him, organisations
have at least nine “images”. The mechanistic image views the organisation as an
advanced machine, where formal authority, organisational charts and rules are im-
portant. The mechanic image is rational. All persons share the same goals, which is
clearly a simplification. Taylos’s Seientific Management belongs to the mechanistic
image. He took away the mystique from material work by breaking each task down,
3o that it was possible to educate unskilled workers to perfection. Drucker claims
the same to be possible also for business and material work [Dru91).

Apart from the mechanistic image, Morgan describes eight other images: {1} organ-
ism, (2) brain, (3) social, (4) culture, (5) political system, (6) psychiatric prison, (7)
flux and transformation and (8) instrument of domination. The cultural image for
example describes myths and symbols, whereas the political system image describes
competition for limited rescurces, conflicts, influence and power. These images are
discussed in the context of workflow systems {Car®5]. Aspects of these images are
(of course) highly relevant for groupware systems [Gru94]. This thesis focuses on
the mechanistic hnage.

8.1.2 Local Realities

A local reality represents the knowledge of individuals and groups, i.e. how these
individuals or groups perceive the organisation based on their everyday experience
with the organisation and from other arenas. ' Figure 8.2 depicts how these local
realities are externalised through communication or cther actions to form the ergan-
isational reality, which represents how other individuals and groups have to relate to
the organisation. This organisational reality may consist of institutions, language,
artifacts, and technology. The organisational reality of an organisation does in turn
form local realities by internalisation or sensemaking, which are performed more
or less consciously by individuals or groups in the organjsation. The resulting lo-
cal veality forms the basis for how these individuals and groups act and view the
actions in the organisation. Both externalisation and internalisation may happen
simultaneously.

The concept of several local realities builds upon the constructivistic “weltanschaw-
ung”. According to the constructivistic “weltanschauung”, there are several realities
in an organisation. This is in contrast to the objectivistic “weltanschauung”, where
a reality exist independent of any observer, so there is only one “reality”. On the
other extreme, in the mentalistic “weltanschauung”, the concept of reality in an
organisation is completely dependent of the observer. An observer can only make
mental constructions of his perceptions. Therefore, the concept of a “local reality”
has no meaning.

LThe theory in the beginning of this section is based on [Kro95], where & more extensive treat-
ment and more background material can be found. Krogstie has based himself on [Gje93] and
several other references which are more easily available.

112 Chapter 8. Organisational Change and Workflow Technology

Local Reality
(Individuatl and
group knowledge)
Internalisation Externalisation
(Sensemaking) {Action)
Orpanisational reality

(Objects, institutions, |
language, technology)

Figure 8.2: Social construction in an organisation [Gje93, Kro95].

8.1.2.1 Local Realities in Gas Sales Administration

As a small example of local realities, the reason for continuing to use telexes, which
is quite slow compared to for example emails, to exchange information in the gas
sales telex administration system varied through the organisation 2 At least three
local realities were relevant:

The data department Telex was used because Statoil, as a new partner in the gas
trade, could not dictate the terms on which the trade was made. For historical
reasons, telex messages are legally binding.

A contract specialist in the gas sales administration They asked the data de-
partment which arguments to use to convince their partners to change to email
connections. Telex was not safer than email.

The secretary in the gas sales administration Preferred physical paper (in con-
trast to “virtual” paper), because when the paper is on the table, it serves as a
reminder. At least the same functionality must be provided in the new system.

Externalisation of local realities is illustrated by another example from the gas sales
administration system. In the Lotus Notes solution, distribution lists with & fixed
number of addresses were introduced, whereas in the old manual solution the con-
struction of a distribution was an ad-hoc activity and therefore flexible. Therefore, a
local reality was externalised into an organisational reality. Even though it is possi-
ble to make ad-hoc lists in the new solution, some flexibility may be lost in the new
organisational reality, and more rigidity in the organisation may result. And while
the efficiency is better with the new, more routine-based solution, the effectiveness
is not so easy to assess.

2This example is best understood in the context of the Gas Sales Telex Administration Case
Study in Chapteri0.

8.1. Organisational Change 113

8.1.3 Office Information Systems

Modelling of business processes and of information system processes wiil benefit
from more interaction [Hol91, Ger93, Gal93]. This is the theme of office information
systems. On the other hand, there must also be a separation hetween business
models and models of the computer system, since they are not meant to solve the
same problems [PW93].

Office information systems can be defined as systems which assist office workers in
performing their variety of information handling tasks, such as document prepa-
ratior: and management, office activity planning and coordination, communication
within the office and with the outside world [Yan89]. Several approaches for mod-
elling of offices exist. OSSAD and TODOS [PBF*89, PRI0} belong to the most
recent research in this area. Only OSSAD is presented here, becanse the modelling
language used in OSSAD is especially interesting. Both OSSAD and TODOS men-
tion performance explicitly, and also reports some case studies with performance
engineering. Compared to the approaches in Chapter 5, OSSAD and TODOS do
not seem to offer so much new in terms of performance engineering.

OSSAD [CAS89, BCRY] (Office Support System Analysis and Design) presents an
integraiion between computerised information systems and organisational develop-
mens and structure. OSSAD consists of three models:

Abstract Model models “raisons d'étre”or the normative essentials of the organ-
isation: objectives, mission, strategy. The focus is on why things are done
instead of what is done. The organisation is divided into functions, which
again are decomposed into sub-functions. Packets of data or objects flow he-
tween functions.

Descriptive Model concentrates on the interaction between organisational and
technical solutions and contains four types of diagrams:

Role/Units Schema focuses on the interaction between roles, and is in the
simplest case an organisational chart with formal authority. QSSAD
makes a distinction between several roles: users, managers of organisa-
tional units being supported, developers of technical systems, developers
of organisational systems. All these roles are directed towards change in
the organisation, which is logical since development by definition implies
change. Units in OSSAD are aggregations of roles, based on coordina-
tion/control.

Task/Procedure Schema models the relation between task/procedures and
resources. Tasks are the atomic work unit performed by a single role
and are aggregated inte procedures with well defined input and output.
Measures of performance are attached to the procedures. Resources in
O8SAD are objects of data. Facilities are hardware and software.

Operations Schema is a formal description of the sequence of relationships
among the operations incorporated in a task or procedure, and are mod-

114 Chapter 8. Organisational Change and Workflow Technology

elled with a Petri Net-like language. Macro-operations are defined by a
role interrupt, and are generalisations of operations.

Role Interaction Schema shows the interaction between tasks and roles.

Specification Model for modelling of the software and hardware.

(O8SAD uses six models which capture different aspects. This may be too complex
to be of any practical use, but on the other hand, OSSAD is also a comprehensive
complete modelling paradigm. Performance of an office task is for example explicitly
modelled with Petri nets [Bes88).

8.1.4 Business Process Reengineering

Business Process Reengineering (BPR) is a reaction to using information technology
to pave the cow paths instead of improving organisational effectiveness. BPR, was
originally advocated by computer scientists like Hammer [Ham90]. It is therefore
not, strange that the focus in the beginning was on mechanistic concepts. BPR
is not based on science, but advocated by industry practitioners and consulting
firms [Dav93). It is therefore no surprise that the literature on BPR is not ho-
mogeneous [1de95al. In contrast to other philosophies like TQM (FTotal Quality
Management) which aims at evolutionary changes, BPR. aims at radical changes,
where there is a large possibility of not reaching the goal. Both for TQM and BPR,
the aim is to plan changes, in contrast to ad-hoc approaches. A comparison between
several approaches to organisational change is shown in Figure 8.3

According to the National Association of College and University Business Officers
(NACUBO} publication, Redesign for Higher Education, BPR has been defined
as A managerial approach that holistically incorporates institutional strategy, work
processes, people, and technology to improve effectiveness radically and io create
sustainable competitive advantage by chollenging and redesigning the core business
processes of an institution using operational, technical, and change management in
a unified way [bprdsf . It may take some time before BPR becomes so mature.

Some writers claim BPR. and workflow to be the same thing when they both are
applied to the whole organisation [Ide95b]. Other writers claim BPR to be the
concept for organisational change and workflow the enabling technology, where BPR.
precedes workflow [Mar@4b]. Action Workflow described in Section 8.2.2 is one way
of modelling business processes. The traditional IPO paradigm in Section 8.2.2 is
another method.

115

8.1. Organisational Change

35...rszi.......\x.:..{...,\L..........15:!.£r.rs..a.,r\...t.\i,.?.z\....ia R

ELEMENT Total Quality Just—In-Time Simultaneous Time noﬁmmammwou Rusiness Process
Management (i Engineering Management (TCMY Reengineering
(TQM) (SE) Fast Cycle Response (BPR)
(FCR)
Focus Quality Reduced inventory Reduced time 10 Reduced time Processes
Astitude to customers Raised throughput market (time = cost} Minimise non—vaiue
Increased quality added
Improvement scale Continuous Continuous Radical Radical Radical
Incremental Incremental
Organijsation Commeon goals "Cells" and team R&D and Production Process based Process based
across functions working work as a single team
Customer focus Tnternal and external Initiator of action Internal partnerships Quick response *Outcomes driven
satisfaction "pulls” production
Process focus Simplify Workflow/Throughput Simultaneous R&D Eliminate time “1deal" or Streamlined
Improve efficiency and Production in all processes
Measure to control development
Technigues Process maps Visibility Programme teams Process maps Process maps
Benchmarking Kanban CADICAM Benchmarking Benchmarking
Self—assessment Small batches Self-assessment

SPC

Diagrams

Figure 8.3: Comparing approaches t

Quick set-up

o organisational change [PROG].

ISAT
Creavityfout of box
thinking

116 Chapter 8. Organisational Change and Workflow Technology

Davenport has devised a five step plan for BPR{DS80]:

Develop Business Vision and Process Objectives: In the most successful ex-
amples, the managers had developed a broad strategic vision where the BPR
fits in. The most likely objectives are: cost, time, output quality and em-
powerment. K is often hard to optimise several cbjectives simultaneously, but
focusing on one objective will often lead to improvements in the other objec-
tives as well. The objectives should be specific and may also be quantified.

Identify Processes to Be Redesigned: Most companies are unable to support
more than ten to fifteen processes per vear, because of limited management
attention. In the paper[DS90}, two approaches are outlined for selecting pro-
cesses. The exhaustive approach identifies all processes within an crganisation
and selects the most urgent for BPR, while the high-impact focuses on the
most important processes from the start.

Understand and Measure Existing Processes: This is important so that prob-
lems are not repeated and serves as a baseline for further improvements.

Identify I'T Levers: Awareness of IT capabilities should influence BPR early be-
cause IT may create new process design options. Davenport describes eight
ways in which IT can influence an organisation, e.g. through disintermedia-
tion: by connection of partners who otherwise would communicate through an
intermediary.

Design and Build a Prototype of a Process: BPR benefits from the iterations
in prototyping. Prototyping is eased by CASE tools which generate code.

A method for BPR is also described in [GKT93].

8.1.4.1 Principles for BPR

In Hammer's article from 1990, these BPR principles are discussed [Ham90]:

Organise around outcomes, not tasks: It is better with one person than several
for all subtasks: faster and closer customer contact. This principle decreases
the number of subtasks, but increases the number of services each person must
offer to the organisation.

Have those who use the cutput of the process perform the process: When
the person close to the process performs it, there is little need for management.
This principie shifts borders between organisations, so that the organisation
which need the outputs of a given task also performs the same task, even when
this normally would be another organisation’s responsibility.

B.1. Organisational Change 117

Subsume information-processing work into the real work that produces
the information: There is 1o reason to separate processing and prodaction
of information. For example, in the operation ward at RiT (See Chapter 2
for a description of the blood bank case study), transfusion results were sent
to the blood bank which stored them. If the operation ward could input $he
data, work would have been saved. This principle takes away work from cther
parts of the organisations.

Treat geographical resources as though they were centralised: With infor-
mation systems, it is possible to have both the benefit of decentralisation and
of centralisation at once. Each organisational unit does for example not need
to have a purchasing department of its own. This principle reduces duplication
of resources, in contrasts to the second principle.

Link parallel activities instead of integrating their result using mformation
systems for coordination during parallel activities. This principle increases co-
ordination.

Put decision points where the work is performed and build control into
the process: The people who perform the work should make the decisions.
This principle reduces the number of authority levels by giving persons lower
in the organisation more authority.

Capture information once and at the source: This principle perfornms storage
of information once instead of several times, and has similarities with the third
principle

When these principles are applied, fewer persons offer more services each. Each per-
son also gets more responsibility. This is in contrast 1o scientific management, which
focuses on specialisation. BPR focuses on the whole organisation and gives away
control if this improves effectiveness. Interestingly, there is some similarity between
these principles and Connie Smith’s principles for creating responsive software in
Section 5.4.1.1 {Sje93]. This indicates that the principles are somewhat mechanis-
tic. BPR principles could therefore be used to guide an effectiveness engineering
process in the early phases of an information system development, when focus is on
organisational effectiveness and not on computer system performance. Hammers’s
principles are similar to the four ways Drucker claims could improve the effectiveness
of an organisation [Dru9l]. According to Drucker, effectiveness of knowledge and
service tasks could be improved in four ways [Drudl):

1. Define the task; and eliminate unnecessary tasks. Drucker lists examples where
an insurance company increased productivity of its claims-settlement depart-
ment fivefold by eliminating checking on all but very large claims.

2. Concentrated work on the task; for example by using clerks to do paperwork
for nurses so the nurses can concentrate on the patients. Drucker claims that

3In SP, this means moving discrimination {c.f. Section 4.7.2) downwards in the organisational
hierarchy.

118 Chapter 8, Organisational Change and Workflow Technology

the shortage of nurses would disappear if half of their time was not. spend on
paperwork.

3. Define effectiveness; does it mean quantity, quality or a combination?

4. Make the employer a partner in productivity improvement; the only way to
really improve effectiveness. For business processes, capital is only a toof in
production [Drudi]. Whether toois kelp or harm productivity depend on the
people who use them and the skills of the user. This is in contrast to the role
of capital in materia) processes, where capital is a Jactor in production, i.e. it
can replace lahour,

Hanumer’s principles may of course be used to improve the transfusion process, for
example by entering patient data directly from the ward. Actually, this was also
implemented with the computerised information system, but sufficient training of the
ward personnel had not been done [Si#93}. An information system is an interaction
between humans and the computerised information system, and is not stronger than
the weakest link in the chain, in this case training of personnel.

8.2 Workflow and Workflow Systems

The first section gives a brief definition of workflow and workfiow systems and ex-
plains the basic elements of a workflow system, Typical roles in workflows are
described in Section 8.2.1.1, followed by an overview of the roots of workflow. A ref-
erence model for workflow systems is described in Section 8.2.3. A generic model of
workfiow system is then outlined. Section 9.3 describes the most refevant workflow
taxonomy for this thesis. Two fundamentally different ways of modelling workflows
are explained in the Section 8.2.2. Finally, Lotus Notes which implements some
workflow features, is briefly described. Lotus Notes is relevant for thig work because
it was used in the Gas Sales Telex Administration Case Study.

8.2.1 What is Workflow?

A workflow is a process in an organtsation [Mar94h, Jood5]. The workflow is assisted
by a group of case workers. A typical workflow is shown in Figure 8.4, Figure 8.4
shows a document-based workflow which is carried out by three social resources.
Each social resource is a person with some responsibilities. Petersen is the case
manager who is responsible for the workflow, and Christie and Oscarson are case
workers who perform some part of the workflow. In the end, there is often the
need for integration of the result of each individual process. This mntegration is the
responsibility of the case manager Peterson. This workflow was simple; most real
workflows will be more complex.

8.2, Workflow and Workflow Systems 119

NS

Petersen

Case manager
AE N

Christie Oscarson

Law expert Economy expert

Integration

Figure 8.4: An example of a simple workflow.

During execution of a workfiow, all persons involved should know where their part
of the workflow fit into the overall workflow. To keep this “overview” is the task
of the workflow system. A workflow system is a computerised information system
which assists case workers who carry oul workflows. A workflow system handles
all the accesses to the workflow. This definition of workBow system * corresponds
to Marshak’s definition, who argues that workflow systems contain four basic ele-
ments [Mar94b}:

Workflows to reach business goals.

Human resources performing workflows based on business rules. By definition,
workflows involve more than one person {Mar94a]. Roles which are independent
of specific people are important for workflow, by increasing the flexibility.

Computerised resources invoked by the human resources for executing work-
flows.

Data accessed by the tools.

The same data may be used by several computerised resources. The same comput-
erised resources may also be used by several human resources, and the same human
resource may be used for several workfiows. This view is also supported by the
conceptual framework for workflow system and workflows found in [Joo95]. Other
characteristics of workflows ave:

4The term “sask processing system” system was originally used by this author {BSH94] instead
of the term “workflow system”. Since the workflow terminology is now commonly used, this non-
standard terminclogy is no longer relevani. However, the conceptual simplicity of a task processing
system handling a tesk supervised by a fask maneger with tesk workers carrying out subtasks still
has appeal.

120 Chapter 8 Organisational Change and Workflow Technology

Documents: Workflow is often centred around documents which flow between the
environment and the organisation and within the organisation. These docu-
ments may be electronic as well as paper-based.

Objectives: Defined before triggering the workflow and met when terminating the
workflow.

Lifecycle: An organisational process reguires organisation, planning, administra-
tion, supervision and execution [Sta92].

Types of processes: In an organisation there are three types of processes, namely
material processes, information processes and business processes MMWFF92].
Workflows may involve all of these processes, however, with focus on business
processes.

Customers: Workflows have customers, meaning that the workflow has defined
business outcome with recipients of the outcome. Customers may be either
internal or external to the organisation [DS90]

Organisational boundaries: Organisational processes cross organisational bound-
aries, and are generally independent of formal organisational structures {DS90].
Requirements for workflow system which cross organisational borders arve pre-
sented in [JLP'95], e.g. better monitoring tools for performance both of the
workflow sofsware and for the organisational processes running on the workfiow
system.

Insurance companies, banks, blood banks and governments are examples of organisa-
tions which perform workflow. Workflow systems are suited for processes where man-
aging the flow of information is important, for example by tracking of data [CH92].
This is in contrast to information-oriented processes, where the focus is on the in-
formation content of the applicasions, e.g. by presenting different views to different
users. Information-oriented processes may be handled by conventional information
gystems.

8.2.1.1 Typical Workflow Roles

Four typical roles may be identified during workflow execution [Sta92]:

Case manager has total responsibility for a workflow [Ham90]. He makes a work-
flow and allocates resources, ensuring completion of the workflow within the
resource budget and the time limit. His task is also to modify the workflow or
the resource allocation when needed.

The case manager is responsible for the workflow and may delegate work to
experts where needed. The law expert and the economy expert in Figure 8.4
may work in parallel. The responsibility of the case manager is to integrate
their results.

8.2. Workflow and Workflow Systems 121

Document manager describes, registers, archives, retrieves, distributes, ttans-
forms, and throws away documents. He should ensure that documents can
be rensed; hence version control of documents will be an important part of his
job.

Logistics manager should organise an information workflow so that subprocesses
receive and send sufficient information within time limits. He is also responsible
for presentation and filtering of information.

Case worker is a specialist who carries out the subprocesses [DS90] according to
a workflow by getting information, establishing cooperation with other case
workers, reporting status, and producing information.

Only the case worker adds value for the customer [Hal94]. The other roles are
supervisory warkflows where processing should be minimised as far as possible.

8.2.1.2 Taxonomies of Workflow Systems

For workflows, the taxonomy of production versus ad-hoe workflow discussed in
Section 9.3 is important. For workflow systems, there are several taxonomies [WF94,
Mar94b], e.g.:

Email-driven versus database-driven workflow: Workflow systems may be built
on top of email systems or databases [Abb94]. Workflow systems on top of
email systems typically occupy the low end of the workflow market, while
workflow on top of databases occupies the high end of the workflow market.

Document-oriented versus process-oriented workflow: Document-oriented work-
flow where routing information is put into the document, e.g. intelligent doc-
uments {Yan89]. Lotus Notes is clearly document-oriented. Process-oriented
worlkflow systems make the process explicit and arve therefore better suited for
more complex workflows [Abb94].

Centralised versus deceniralised workflow systems: Until now, most work-
flow systems have a centralised workflow engine. Large organisations need
a decentralised workflow system. [AMGH5] proposes a decentralised architec-
ture for the workflow system Exotica, where the workflow engine bottieneck in
other workflow systems are eliminated at the expense of other problems, e.g.
casy monitoring of the distributed workflows.

8.2.1.3 Related Work

In the beginning, workflow systems were developed by industry. In recent years, this
topic has received academic attention. There are several roots of workfiow. Each
root explains one aspect of workfiow:

122 Chapter 8. Organisational Change and Workflow Technology

Speech act theory aims at understanding human communication [Sea69}.

Coordination science investigates coordination in different contexts. A survey of
coordination science is provided in {MC94].

Groupware may be defined as a computer-based system that supports groups of
people engaged in a common task (or goal) and which provides an interface
to a shared environment [EGR91]. The group of people must also be aware
of this sharing, in contrast to a typical transaction-oriented system which is
designed to isolate users as far as possible. Workflow is only one aspect of
groupware. Email is the most generally used groupware toal.

Office information systems aim at improving the understanding of organisations
(see [Yan89] and Section 8.1.3.).

Project management involves project planning (i.e. defining work requirements,
quantity of work and resources needed) and project monitoring (i.e. track-
ing progress, comparing actual to predicted, analysing impacts and making
adjustments) [Ker89]. A project can be considered as any series of activi-
tles and tasks that have a specific objective to be completed within certain
specifications, with defined start and end dates, funding limits (if applicable)
and resources (i.e. money, people, equipment) [Ker89]. A project is usually
distinguished from a production workflow by the uniqueness of the chjective.

Database management system (DBMS) is the software that handles all access
to the database [Dat86]. A database is a collection of stored operational data
used by the application systems of some particular enterprise [Dat86]. Man-
agement of documents is an important part of workflow systems. Consult
for example [Jab94, GH95] for more information about database aspects of
workflow.

Operating systems is a program which acts as an interface between a user of a
computer and the computer hardware. Denning argues that husiness pro-
cesses is at the fifteenth level of abstraction in operating systems as illustrated
in Figure 8.5 (Den92, Den94]. This will make operating systems “software that
assists in managing the flow of work in an organisation”, in contrast, io “soft~
ware that manages the flow of work in a network of computers” as it is now.
All the levels except form levels 14 and 15 have remained almost unchanged
since the 1970s [Den92]. °

Tiach of these roots has had their own view of workflow and workflow systems.
Generally, the field of workflow systems is now converging. See the hock [WF94] for
a description of workflow and workflow systems from different angles. This book also
contains five case studies and lists 63 workflow system vendors. The book [KB93]
provides an introduction to both workflow, workflow systems and groupware systems.
More information about requirements for future workflow systems can also be found

SThere is a mix of processing and memeory hierarchy in this figure, which may be clearer if a
similar SP model had been made. The number of levels would then decrease, so level 15 would no
longer exist.

8.2. Workflow and Workflow Systems

123

Abstraction

Business processes

Graphical presentation of jobs
User virtual machine
Directories

Inputfoutput streams
Peripheral devices

Files

Interprocess Communication

Time scale
{seconds)

10°

10
10
10
10
10
10

4
1

-1
-2
-2
-2

Level

15

@ i4
(3]

2 13
g

=t 12
[*]

g 11

E 10
E

9

8

7

2 6

H 5

2 4

5 3
g

5 2
g

« 1

Q

Virtual memory

Local secondary storage

Primitive processes and semaphores
Interrupts

Procedures

Instruction sets

Local random-—access memory

Hardware electronics

Figure 8.5: Levels of abstraction in operating systems [Den92].

in [Mar92, Abb94, JLP*95]. A survey of workflow systems is listed in [Mar94a,
JLPH05], and the workflow system FlowMark from IBM is described in [LA94].
Information about workflow and workflow systems can also be found at WWW,

e.g. [DoCS95].

8.2.2 Workflow Modelling Approaches

Most commercial CASE toals are based on the Input/Process/Output (IPO} paradigm
in Figure 8.6, for example PPP in Appendix B. Tools for modelling business pro-
cesses may follow the PO paradigm, e.g. [KLO93]

—

Input Output

| Process |

e/

Figure 8.6: The Input/Process/Output paradigm.

124 Chapter 8. Organisational Change and Workflow Technology

Proposal Agreement

Conditions of

satisfaction Provider

Customer

Satisfaction Performance

Figure 8.7 The speech act based paradigimm paradigm (Adapted
from [MMWFF92]. The workflow loop is copyright of Action Technology.).

Another way of modelling workflows is through the speech act based paradigm. The
speech act based paradigm aims at understanding business processes and is inspired
by speech act theory. The focus of the speech act based paradigm is on customer
satisfaction [Red94] by explicitly modelling the interaction between the customer
and the performer as a closed leop with four phases, illustrated in Figure 8.7. As
described in Section 2.4, some authors view customer satisfaction as the ultimate
effectiveness criteria.

During the proposal phase, either the customer wants some work done, and proposes
conditions of satisfaction, or a performer offers some services with tentative condi-
tions of satisfaction. The performer and the customer come to an agreernent both
on the workflow and on the conditions of satisfaction during the agreement phase.
The performance phase finishes when the performer claims that the task has been
completed. The satisfaction phase ends when the customer declares that the condi-
tions of satisfaction are met. This last phase is crucial, since it ensures closing the
loop {Den94]. The complete loop with all four phases has a loop time. Each phase
in the loop may be visited several times before customer satisfaction is ensured.
Several loops may be connected together sequentially or in parailel. There may also
be conditions to be met for their execution. Extensions in queueing networks are
needed to calculate contention as a result of speech act based modelling [Den94].
The interaction between SP and speech act based modelling should alse be studied
more carefully.

The speech act based paradigim is in some respects orthogonal to the IPO paradigm.
The speech act based paradigm is good at modelling interaction between agents,
where the IPO (input/process/output) paradigm is weak. On the other hand, the
IPO paradigm enables hierarchic models (For a more detailed comparison, see (CH92).
An integration of the IPO paradigm and speech act based paradigm may be fruit-
ful [Hal%4]. Because each phase in the speech act based paradigm may be visited
several times before customer satisfaction is reached, this integration is not straight-
forward.

8.2. Workflow and Workflow Systems 125

Process
Definition
Tools

Process
Definitior
Tools

Interface

i . Adm. and orkflow Client
gdﬁum_stra:non Monitoring \ Tnter— Workflow
T lomtormg Tools Workflow Enactment Service operability Enactent

ools terface JInterface Services

W?rkﬂow Invoked
Client A
Applications pplications

Figure 8.8: The Workflow Reference Model shows how five subsystems interop-
erate with the Workflow Enactment Service {Coa95].

8.2.3 Workflow Reference Model

The Workflow Coalition has designed the Workflow Reference Model depicted in
Figure 8.8, to facilitate standardisation and interoperability of workflow systems.
The 6 suhsystems of a workflow system are described below [Coa95]:

Workflow enactment serviee is the hasic subsystem with one or more workflow
engine(s) providing the run-time environment for execution of business pro-
Cesses.

Process definition tools for analysing business processes. The IPO paradigm and
the speech act based paradigm both explained in Section 8.2.2 are the two
main ways of analysing business processes. Business Process Reengineering is
intertwined with workflow {c.f. Section 8.1.4).

Workflow client applications presenting the work items to the end users. Lotus
Notes is a typical example [Mar94b].

Workflow administration and management tools for presenting a view of the
workfiow status.

126 Chapter 8. Organisational Change and Workflow Technology

Invoked applications supplying the workflow enactment service with a range of
invoked applications such as email, archive systems, and spreadsheets. Invo-
cation of legacy systems also belongs here.

Client workflow enactment services, workflow system/engine from other ven-
dors. Seven levels of interoperability between workflow systems are defined,
ranging from the ability for a number of workfiow systems to reside on the same
hardware and software base with low interoperability to a similar method of
workflow system operation at a high degree of interoperability.

Between the workfiow enactment service and the other subsystems, interfaces en-
abling interoperability are defined as shown in Figure 8.8. Since interoperability is
the primary objective of this reference model, these interfaces have been highlighted
in the figure.

8.2.4 Lotus Notes

Lotus Notes is perhaps the best known groupware product, enabling several people
to share information easily. Lotus Notes may be used as workflow client application
for other workflow enactment services or process definition tools (e.g. from Action
Technology). The functionality of Lotus Notes should be viewed in this context.
Lotus Notes does for example not offer complete database capabilities, but uses
instead other databases for advanced retrieval. Lotus Notes is not ideal for workflow
either, since there is no graphical means for manipulation of the process. 6 The
simplicity of Lotus Notes is important and is assumed to be kept also in future
releases.

Reply
Button tolox
Lo—From: ! Statoil, U& P 4} A
Static .-
x| Eoeetebme: [1103993 -
| “~fopic: |__ Frigg shortfail I -

A
e

Because of shorifail, Frigg

cannot deliver gas to Emden

for the next two days. . Body
field

What do we do now?

Figure 8.9: Basic elements of a form.

5The workflow module in 9.6 is almoest missing in Lotus Notes which focuses on the document
module.

8.3. Chapter Summary 127

30.9.1995 Total Contract change
1.10.1995 Statoil, U & P Frigg shortfall
1.10.1995 Stateil, M Proposed contract annex

Figure 8.10: A view lists several fields for each form, This view is sorted on the
date field.

The basic Lotus Notes functionality is simple and is outlined here. For more in-
formation about Lotus Notes, consult material from the vendor Lotus. A database
is a collection of related documents stored in a single file [Lot93b]. This file may
be stored in the client or in a server. Bach document is defined by a ferm which
specifies the content and the layout of the document. A form can contain fields,
static text, graphics, and buttons as illusirated in Figure 8.9. Static text, graphics,
and buttons are meant to help the user, and do not contain information which could
be acted upon by other forms.

A field is a named area in a form which contains a single type of information, e.g.
date, sender or title. The information in a field may be derived from the information
in other fields. The body field contains free text and may in the general case be multi-
media information, i.e. images and sound. In Figure 8.9 the body field contains free
text. A wiew presents the information in somefields. In a view, decuments are sorted
based on one field. Figure 8.10 gives an example of a view where the documents are
sorted on date.

The two major data structures in Lotus Notes are the document (whick is defined
in a form) and the view. It is llustrating to see a Lotus Notes document as a gener-
alisation of an email message. For emails there is only one form, including the date,
from, to, and subject fields. The body field is the message itself. Normally, there is
only one view, which sorts the emails on date, similar to the view in Figure 8.10.

In Lotus Notes a mailserver is dedicated to Lotus Notes email functions and rout-
ing. A dotabese server stores other non-email, shared Lotus Notes databases and
replicates databases if required, but performs no email routing [Lot93a]. Replication
of Lotus Notes databases in Statcil is explained in Appendix A.

8.3 Chapter Summary

The focus of this thesis is on the mechanistic aspects of organisations. Other aspects
of organisations are also important for workflow. BPR. is a planned approach to
radical change and improved effectiveness in an organisation. Denning describes
business processes as the 15th level of abstraction.

This chapier has defined workflow for the purpose of this thesis. A workflow is a
process in an organisation using computerised and human resources and a workflow
system which supports the execution of the workflow. Workflow has several roots

128 Chapter 8. Organisational Change and Workflow Technology

in academia, but the most important inspiration is from the market pull in indus-
try. Since workfiow is a wide area, the Workflow Reference Model is an initiative
to ease the interoperability between several workflow products and an attempt to
standardise the terminology in the field.

The speech act based paradigm is a new approach for specification of workflows,
which may also be used as part of BPR (Business Process Reengineering). Lotus
Notes is a platform for information sharing with limited workflow capabilities. Lotus
Notes may also be part of a full-fledged workfiow system, supplemented by other tools
which interoperate according to the Workflow Management Coalition.

Chapter 9

Extending the Method to
Workflow Systems

For performance engineering of workflow systems, the framework in Figure 4.3 must
be extended to alse take care of organisations with human resources. The basic
framework was outlined in Section 2.2, and is considered in more detail in this
chapter. Differences and similarities between human and computerised resources
are also described. The method which was described in Chapter 6 will essentially be
the same for this basic framework. The extended method is illustrated in the Gas
Sales Telex Administration Case Study, especially in Chapter 10.

Section 9.1 of this chapter will first describe how SP can be used to mode} organ-
isational structures. Section 9.2 describes the basic framework on this thesis. A
taxonomy of the degree of determinism in workflows is described in Section 9.3.
Differences between human and computerised resources are discussed in Section 9.4,
hefore similarities between human and computerised resources are described in Sec-
tion 9.5. A generic model of workflow systems is outlined in Section 9.6,

9.1 SP as Organisational Models

Inspired by [NN93], this thesis will use the following definitions: A group is two or
more persons with common goals. More than one group with common goals form
an organisation. An organisation will have at least three levels: the individual level,
the group level and the organisational level as shown in Figure 9.1. Figure 0.1 is
hierarchic. A large husiness organisation will most often have some kind of hierarchy.
Hierarchy is an instrument for management and channelling of information in a
complex organisation. Other organisational structures like networks are of course
alsc possible. Typical levels in a hierarchy are the enterprise level, the business area
level or the sector level as in The Gas Sales Telex Administration Case Study in
Figure 10.3. Organisational resources like roles may be at a lower level of abstraction,

129

130 Chapter 9. Extending the Method to Workflow Systems

Organisation

Group 1 Group 2

N AN

Person A Person B Person C Person I

Fignre 9.1: An organisation must at least consist of the individual level, the group
leve] and the organisational level Hlustrated in the SP modelling style.

e.g. contract specialists and telex secretaries as seen in Figure 10.4, also in the Gas
Sales Telex Administration Case Study.

9.2 Basic Framework

The basic framework for performance engineering of workflow systems was depicted
in Figure 2.4 and is for convenience shown again in Figure 9.2. Since this framewark
stbhsumes the framework for performance engineering of information systems in Fig-
ure 4.3, see also Figure 4.3 for a description of the basic concepts of software and
hardware. Figure 9.2 contains orthogonal concepts, e.g. workflows and resources are
independent of each other in the same way as actors and processes. All concepts are
shown in the same figure. The new aspects of the framework are explained below:

Workflow A workflow (process) is similar to an information system process in Fig-
ure 4.3. In addition, processes using only human resources have held outlines.

Organisation In addition to the software/hardware hievarchies in Figure 4.3, 8P
will represent hierarchies in organisations as outlined in Section 9.1. All these
organisational resources will in the end use operations from humans as shown
in the framework in Figure 9.2.

Humans Contention modelling may be extended to human resources as well as
to hardware resources. For more information on contention modelling, see
Section 3.2. Kxtensions in queueing networks may be needed to handle the
cycles described in Section 8.2.2 in workfiows [Den92].

Humans in a computerised organisation will of course use software, even if this
is not. explicitly shown in the figure. This will be clearer in the case studies
which follow.

Actors Actors start workflows and use the result of workflow. Humans are often
actors. On the other hand, humans may also act as part of organisational re-
sources which may perform work. A clear distinction cannot be made between

9.2. Basic Framework 131

SN "“.uuulllnluuluunlnnnu
. "y
“lunu“ '"""""
pantt e
st X
tid "
0“‘ .." g
. . B
t‘ :
: Actors i 8
; z e
: -
] y: [
~
o
l 4
0
A
(i
ll'llll'll!lllll’
LLLITTT TP Marg,
Thag,
¥,
oy, w
o, Q
e,
v, u
s, 7}
‘- 8
.
-
K =)
o Foui
o
o (=W
u.fu.un“inunuuunk"

““uvu-uuuun..,""
i (N

- 2

%
aaaatpunnana

Resources

JTTIr.
“t‘ *,
5

=3

'-. ..‘
0 iy
T e

Figure 9.2: The framework for performance engineering in workflow organisations.
The legend for this framework is shown in Figure 2.5 in Section 2.2,

132 Chapter 9. Extending the Method to Workflow Systems

actors and resources, because a person or a computer hardware subsystem of-
fering operations to other actors, and therefore acting as a resource, may also
become an actor when demanding work from other resources. An actor may
also execute part of his workflow, and will then become a resource. Viewing
a person or hardware subsystem as an actor or a resource depends on the
abstraction level.

Several subsystems can he identified in Figure 2.4. Two subsystems are particularty
interesting:

1. Only the organisation including human resources and the workfiow which is ex-
ecuted in the organisation. This subsystem does not include the computerised
parts of the framework, and is a purely manual information system.

2. The computerised parts in the figure, i.e. the basic software and hardware
and the computerised part of the workflow, which is similar to the system in
Figure 4.3.

Each of these subsystems are studied more carefully in Chapter 10 and 11 respec-
tively in the context of the Gas Sales Telex Administration Case Study. Subsystem
(1) may be used during design of the information system in order to generate perfor-
mance requirements or during design of the workflow in order to derive organisational
performance for this particular workflow.

It is useful to compare our framework in Figure 2.4 with Leaviit’s diamond in Sec-
tion 8.1.1. In our framework, parts of the task set of variables are described in the
workflow system, where the sequence of the workflows is shown. The sequence of
workflows is also shown in the structure set of variables. For the other three sets of
variables, the mapping from Leavitt’s framework to our framework is simple. The
actor set of variables corresponds to our human agents, the technology set corre-
sponds to the hardware and to the existing software in the framework. Finally, the
structure set of variables corresponds mainly to the organisation in our framework.
It is important to notice that the framework in this thesis does not cover all aspects
of Leavitt’s diamond.

9.3 Taxonomy of Degree of Determinism

Probably the most basic difference between workflow systems is the degree of deter-
minism. This thesis uses the terms: {1) production workflows having deterministic
resource demands, (2) template workflows which have statistical resource demands,
e.g. some subprocesses may be optional, and (3) ad-hoe workflows having unpre-
dictable resource demands, often because the pext subprocess is not determined
before the present subprocess is finished. From a performance point of view, a

9.3. Taxonomy of Degree of Determinism 133

template workflow can consist of production subprocesses, but noi of ad-hoc sub-
processes. If an ad-hoc workflow is part of a template workflow it is not possible to
predict performance as for the template workflow. There is an interesting dynamic
here: the first time a workflow is performed, it will be an ad-hoc workflow, but if the
same workflow is repeated, it will then be possible to formulate template workflow
or even production workflows. The three workflow types are described below:

Production workflow invelving repetitive processes, critical to core business pro-
cesses, e.g. Insurance claims which obey a fixed sets of rules [Sil94]. In a
production workflow it is possible to estimate the flow of information in ad-
vance. Therefore, the resource demands are also predefined and it is possibie to
minimise consumpiion of time and resources, with for example by approaches
like BPR (c.f. Section 8.1.4). Since the workflow is predefined in detail, care
should be taken not to deviate from the process. No workflow will be com-
pletely routine: there will always be some uncertainty.

Template workflow is a skeleton of a process where details are added during work-
flow execution. This template could be retrieved from an archive or may be
unconsciously based on past experiences. This workflow template will tell how
things are typically done; thus simplifying workflow planning. Resource de-
mands for template workflows are stochastic. In a template workflow, the
workers are empowered, i.e. by making decisions on their own (See Section 9.5
for a description of empowerment in the framework of this thesis.). The dis-
tinction between template and production workflows corresponds to the dis-
tinction between course and detailed workflow structure in [Sta9d2]. Workflow
templates are mentioned in [LLA94].

Ad-hoc workflow automates unique or occasionally used processes. Ad-hoc work-
flows cannot be defined in advance, often because the next subprocess is not
decided before the present subprocess is finished. The resource demands for
ad-hoe workflows are unpredictable, and it, is therefore impossible to do man-
agement of resources here. Specialised and unstructured work helongs here,
e.g. an authoring process is a design process containing some problems which
are not clearly defined [TW95]. Typical for ad-hoc workflows is the need for
constant communication, which after all is the very nature of “ad hoc” [KB85].
This communication may be assisted by synchronous groupware [EGR91], e.g.
video conferences. Supporting ad-hoc activities with groupware may lead to
large productivity gains in organisations [FRCLI1]. Note that all ad-hoc work
in an organisation will not be ad-hoc workflows, since a workflow te some
extent may be automated.

Both the terms production workflow and ad-hoc workflow are used approximately
as in the literature, e.g. [Si194, KB95]. The concept of template workflow is made
explicit here, but it is often not distinguished from a slightly more general production
workflow concept. These three types of workflow represens a continuum of automated
processes, not mutually distinct areas, as noted by iMar94a] (for production and ad-
hoc workflows — he did not describe iemplate workflows.). Some workflow systems

134 Chapter 9. Extending the Method to Workflow Systems

will be better suited to handle production workflows, while other fit for ad-hoc
workflows.

These three types of workflows are present in the case studies as follows: The blood
bank workflows were production workflows which were repeated approximately in
the same way several times during a month, a week, a day and even several times
during an hour. In contrast, some of the processes in the gas sales adminisiration
sector in Statoil were template workflows where onty the template but not the de-
tailed workflow was repeated. This difference in determinism between four typical
workflows in the two case studies is illustrated in Figure 9.3,

in the Gas Sales Telex Administration Case Study, the secretary workflow was mostly
production workflow, but not as well-defined as the workflows of the Blood Bank
Case Study. It should be remembered that much secretary work must be done ad-
hoc. It is very hard to completely eliminate ad-hoc workflows in an organisation.
Therefore, one objective of studying the production workflows is to make sure there
is room for the ad-hec workflows which are vital for the survival of the organisation.
Most workflows for the contract specialists in the gas sales administration sector were
of the template type. In contrast, the informal communication in Section 10.1.3.1
was of the ad-hoc type, as depicted in Figure 9.3.

The difference hetween the workflows of the blood bank and the sales administration
sector is also reflected in the environment of the two organisations. The blood bank
lived in a stable environment whereas the environment of the gas sales administration
is more dynamic. The rate of change on the environment is reflected in the rate of
change of the processes in the organisation, a well-known phenomena.

Most blood bank processes

Routine T 5.0 market secretary process
Template —— Gas market case worker processes

Unstructured communication in the
Ad hoc

Gas Sales Administration sector

figure 9.3: The workflows in the blood bank and in the Gas Sales Telex Admin-
istration Case Study differ in degree of determinism.

9.4. Differences between Human and Computerised Resources 135

9.4 Differences between Human and Computerised
Resources

The most important difference between humans and computers is that humans cover
all the other “images” of Morgan outlined in Section 8.1.1, not only the mechanistic
nnage. According to the social image, it may for example be desirable to give workers
“redundant” information. Humans are irrational in addition to being rational, so
it is not possible to predict their hehaviour only within the mechanistic image.
This is in contrast to computers which do not have judgements of their own. For
computers, only the mechanistic image is relevant. Humans take initiatives (make
requirements) and can perform ad-hoc work (for satisfaction of needs which are
hard to formalise). Hence, it is not possible to specify a human process exactly,
In contrast to a computer process where this is possible [Yu94]. There will often
be a gap between the specification of & human process and the way it is actually
performed. This gap should in the ideal case be non-existing for routine workflows.
For a template workflow, the gap between the actual template and the specified
template should also be negligible in the ideal case. For an ad-hoc workflow, it is
not possible to make a specification of the workflow. When work is carried out ad
hoc, the other images will also be more important than for well-defined work where
constraints are fixed. A more detailed discussion would require extensive background
in organisational theory and is cutside of the scope of this thesis. As described in
Section 10.3.2.1, human flexibility is important even in production workloads, for
example if the workload is too high. Humans may handle routine work in an ad-hoc
WAY.

Within ihe mechanistic image, an important difference is that the characteristic time
elements will vary between human and computerised resources. The typical time
element for human and computerised operations differ with several orders of mag-
nitude. A fast CPU can perform in the order of 100 million elementary operations
per second, whereas a business process may take in the order of days (10° seconds).
This difference in characteristic time elements is also illustrated in Section 8.5. It
is desirable to analyse worlds with the highest characteristic time elements hefore
other worlds with lower characteristic time elements are analysed.

9.5 Similarities between Human and Computerised
Resources

For many purposes, viewing humans and compuiers in the same way makes sense.
This is, however, acceptable if only mechanistic aspects of humans are relevant. This
is essentially done in common approaches like PERT and GANTT. Like computers,
humans may alse be multiprogrammed. This is described in Section 10.3.1.3, where
a human can type and read at the same time. A computer may use the disk and the
CPU by different processes.

136 Chapter 9. Extending the Method to Workflow Systems

As another illustration on the mechanistic view, consider the concept of workspace
as defined in Section 4.6.2. A workspace of a workflow is lost when a person starts
another workflow, and it will take some time before the workspace of the old workflow
is restored. For a computer which stops and starts, the execution of a process with
loss of workspace may result in disk usage which is expensive in terms of time. The
concept of workspace in humans and machines will therefore at least have similarities,
even though they may not be completely equal.

Both in organisations and in computer systems, a resource may move freely between
several levels of abstraction, e.g. a buman may type on the keyboard (low level),
analyse the document and change it (higher), assess the benefits of the organisation
and decide the scope of the document (even higher level). For computers, all the
Denning’s 15 abstraction ievels in Section 8.2.1.3 may be used by the same CPU.

A shift in abstraction level will also give a shift in “worlds” as described in Sec-
tion 6.2.2. This shift in worlds creates problems, because designers in one world
will not have a complete averview of resources in other worlds. This is one of the
key problems with performance engineering of information systems. In information
systems, the problem is solved by giving designers in each world an overview, for
example with an SP model of the total design. The world concept of information
systems resembles the concept of “local realities” for organisations as elaborated in
Section 8.1.2. Also for organisations, modelling may increase the overview which
is needed to cope with the problems of several local realities. Several realities will
also create intrinsic problems which only can be handled more or less satisfactory,
however, with no “final solution”.

A compaterised information system and a manual information system will use two
principles for shifting of work between different worlds at different levels of abstrac-
tion, namely through delegation and empowerment. Another principle for shifting
work between resources al the same resource abstraction level is work switching. All
three principles are depicted in Figure 9.4 and described below:

S L

Role A Role B

(2) Delogation / \ / \ {¢) Empowerment

(b) Resource
switching

kY
Person A Person B

Figure 9.4: Three principles of work shifting: (a) delegation, (b) resource switch-
ing and (c) empowerment.

9.6. Generic SP Model of Workflow Systems? 137

Delegation A top-down mechanism of shifting work between computational /organi-
sational levels: some computational/organisational levels delegate the respon-
sibility of some processes/workflows to a lower level in the computer/organi-
sation. For organisations it is of course important to make sure the persons
involved share the same goals.

Resource switching In this case, a resource takes care of other operations than
usual. If a general resource is used to handle specialised operations, this may
give inferior performance.

Empowerment In contrast to delegation which is initiated by a manager, empow-
erment is initiated bottom up, by a subordinate. In this case, a subordinate
malkes decisions which are normally made higher up in the organisational hi-
erarchy. Often, there will be limitations as to which upper organisational level
a given subordinate can operate on. Again, shared goals are crucial for the
success of this principle. This principle will only apply to organisations and
not to computer systems.

These three principles will interfere with each other. It is for example necessary with
somme sort of delegation to determine the upper organisational level for empowerment.
Effective delegation wili also often contain some empowerment. With empowerment,
the cne who delegates the work may not be aware of exactly what the person who
gets the delegated responsibility for the workHow will do. The person who delegates
will therefore have problems in predicting the amount of resources which will be
needed.

These three principles are connected to the principles for BPR in Section 8.1.4.1 and
the principles for SPE in Section 5.4.1.1. The BPR principle “Have those who use the
output of the process perform the process” will for example depend on empoweriment.
In a computer sysiem, resource switching is performed when a general praphics
processor takes over work from & CPU, or if a dedicated document handling system
takes over document handling from a database system. This is the locality-design
SPE principle. Detailed evaluation of these three principles is a topic for future
work.

9.6 Generic SP Model of Workflow Systems?

A workfiow system offers certain operations to the organisation. An outline of a
generic model of workfiow systems was made in the diploma thesis of Dingstad [Jer93)
under my supervision. He studied several requirements specifications for workflow
systems and made a distinction between two main modules of such systems, namely
the workflow handling and the document handling module (Figure 9.5). All opera-
tions in these requirement specifications manipulated either the workflow handling
or the document handling module.

138 Chapter 9. Extending the Method to Workflow Systems

Workflow

system

Workflow Document
handling handling

Figure 9.5: Internal architecture of a workflow system.

The document handling module stores documents with several versions. Typical
operations are:

O pocrament hamatong = | ETiCVe _document, store_document, delete_document]

The workflow handling module contains the routing workflow for the document (i.e.
a process diagram) and the allocation of resources to each primary process in the
workflow. Typical operations are:

Oworigton hanatmy = |T€ETIEVE_WOTK flow, store_work flow, delete_work flow]

Process diagrams showing how the four basic roles of workflow {c.f. Section 8.2.1.1}
manipulate these components are found in [Jpr93]. This outline of a generic model
may be extended for example by including more aspects of the Workflow Reference
modei in Section 8.2.3.

9.7 Chapter Summary

This chapter describes how SP may be used to model organisations. The basic
framework was described in more detail in this chapter. While only the mechanistic
“Image” is relevant for computerised resources, all the other “images” of Morgan
are relevant for humans. Therefore, it is not possible to specify human workflows
or resources exactly within the mechanistic image. Within the mechanistic image,
the large difference in orders of magnitude between the time element in human and
computer processes and resources is important.

In this thesis, the most important taxonomy for workflows is the distinction between
production workflows with deterministic resource demands, template workflows with
statistical resource demands, and ad hoc workflows with unpredictable resource de-
mands.

Chapter 10

Application to a Workflow
Organisation

This chapter explains the manual processing in the Gas Sales Telex Administration
Case Study. This case study was part of a project in the Norwegian oil company
Statoil, termed “Better Telex in Gas Sales Telex Administration”. In the gas indus-
try, telexes are used as a means of communication between stakeholders of the gas
production and trade. The central case worker in the “Better Telex in Gas Sales
Administration” project was the telex secretary. The contract specialists were also
mportant case workers. The focus of the project was improvement of telex handling
effectiveness in the sales administration sector because of an anticipated increase in
the number of telexes. Estimation of the performance in this case study is dependent
on detaited modelling. The feasibility of this method has been explored by detailed
modelling of the telex work performed by the secretary. Before selecting this case
study, some requirements were defined. The case study should be:

1. Realistic: i.e. from a real organisation.

2. Extensive: i.e. include all the vital part of the proposed system. Performance
is holistic, as described in Section 3.1.3. No parts of the system can be lightly
ignored.

3. Hlustrate design choices: The case study should illustrate design decisions for
workflow applications. How do these decisions affect performance? Which
type of decisions have to be made? On what basis can the decisions be made?

4. Small: because it must be possible to finish within the scope of this research.

Al these requirements are fulfilled by this case study. The tradeofl’ between (2)
complexity and (4) size was made easier thanks to assistance from Statoil’s personnel.
Since Statoil is one of the largest industrial organisations in Norway, and since Statoil
is technically advanced, using state-of-the-art technology, cases from Statoil are likely

139

140 Chapter 10. Application to a Workflow Organisation

to be relevant also for other organisations. Finally, this case study continued good
working relations with Statoil.

The information presented here is based on interviews with the contract specialist
JRS and the secretary GVL. It is supplemented with internal reports [Wal93, Sta94b,
Stad4c} where appropriate. The original Statoil project “Better Telex in Gas Sales
Administration” began in March 1994, and we were involved in the project by the
end of April 1994. The project “Better Telex in Gas Sales Administration” was
estimated to take 600 man hours. In November 1994, time consumption was rees-
timated to 900 man hours and in January 1995 to 1500 man hours, because of
problems with network performance in the backbone network, which takes care of
the communication between internal and external networks in Statoil.

This chapter begins by providing requirements for the system in Section 10.1. The
manual process for the telex secretary is parameterised in Section 10.2, and evaluated
in Section 10.3. Section 10.4 describes parameters the manual process for contract
specialists. The contract specialist model is evaluated in Section 10.5. Finally, this
chapter ends with a summary of findings in Section 10.6.

10.1 Specify System Requirements

10.1.1 Scientific Objectives

The overall scientific objective of this case study is to illustrate the method for
performance engineering of workflow applications, by applying the method to a real
example. This will sort out the essential problems from the more academic ones.

10.1.2 Objectives of Performance Model

In [Sta94b], the objectives of the original Statoil project were stated as: (1) decrease
response time (for telex handling}, {2) increase throughput (for telex handling), and
(3) decrease service demands (for the secretary doing telex handling). These three
objectives of the original Statoil project correspond to the three main performance
measures response time, throughput and utilisation as described in Section 3.1.1.
Based on these three objectives of the original Statoil project, the performance
chjective for the performance model was formulated as:

OF: Find ount if response time was smaller for the computerised solution than for
the manual solution.

If this performance objective was satisfied, the other two objectives of the original
Statoil project were likely to he satisfied also.

10.1. Specify System Requirements 141

. & -,
o S Manual s,

K & . . 3 “a,
& ;/ information % ",
& subsystem
3 : !
; %, |Organisation| Organisa--:":
: o = tional H
. information
r Loms .,,Hsyste
; ¢ Notes K3]
kY Software/ i
3 hardware £

x Computerised
™, information
o, subsystem

Figure 10.1: Distinction between three relevant systems

10.1.3 Determine System Boundaries

For an organisation using a workfiow system, particularly two subsystems are im-
portant as described in Section 9.2. This is shown in Figure 10.1, where Lotus Notes
together with associated software and hardware play the role of a simple workflow
system. The computerised subsystem is described in more detaji in Chapter 11.
The manual information subsystem is described further below. Figure 101 is a
simplification of Figure 9.2,

The rest of this section will first describe the overall process in the gas sales admin-

istration in Section 10.1.3.1, to give the context for the telex handling (sub)process.
Second, the organisation in Statoil is described in Section 10.1.3.2.

10.1.3.1 Overall Model of Gas Sales Administration

An overall view on the contract coordination which is the central process for gas
sales administration is given in Figure 10.2. The basic processes are:

Participate in meeting A group of companies cooperate to exploit a natural gas
field in the North Sea. The relationship between these partners is regulated

1The manual information subsystem is a subsystem if the computerised subsystem is missing,
as it is in the manual solution described in this chapter. If the manual information system is
put on top of the computerised subsystem it is an application and not a subsystem as defined in
Section 4.3.1.

142 Chapter 10. Application to a Workflow Organisation

by several agreements {LGNH94]. Because of changes in the environment, e.g.
production stop in the North Sea, change in cost profiles, these agreements
have to be changed by annexes. Thege annexes are decided in formal meetings
between the partners which are held approximately once a month. Change
proposals from all the partners are important inputs to the meeting.

Find issues After the meetings (mentioned in process Participate in meeting), the
contract coordination perscnnel decide on issues which need further consid-
erations. These issues are sent to domain experts in law, economy, geology,
transportation or marketing who make statements.

Make proposals for changes Out of the approximately 15 issues which are found
in the Find issues ? process, around 3 issues are critical. These critical issues
are resolved based on statements from domain experts, and form the basis for
change proposals.

Participate in pre-meeting The proposals for change is discussed in a pre-meeting.
Also, the change proposals in these pre-meetings are sent to the other part-
ners. The whole process then begins with a new meeting in the Participate in
meeting process.

The process in Figure 10.2 is a closed process, which is a slight simplification. In
addition to this formal process, there is also an informal process (informal phone
calls to coordinate with partners) whick is not considered here. The formal process
for contract specialists has two types of {sub)processes:

Routine Consists of sending out drafts to other colleagues and finding information
in the archive.

Skilled This process is harder to structure than the routine processes. Each con-
tract specialist has some contracts to supervise. When incoming telexes arrive,
contract specialists must answer questions concerning their contracts. The se-
lected contract specialist searches in licences, agreements, committee reports
and in other contracts. He also uses his own accumulated expertise, and asks
other contract specialist or his manager for assistance. Since the exact word-
ing in a telex may be vital for Stateil, more than one person must check each
outgoing telex. Apart from this, there is little interaction between the contract
specialists, because the large amount of details needed to handle each contract
makes context changes costly.

Since the scope of the original Statoil project “Better Telex in Gas Sales Adminis-
tration” was the routine processes of the contract specialist, we will also focus on
these processes here. The telex secretary in the sales administration also has many
processes. However, in this case study, the only relevant task is handling of incoming
and outgoing telexes.

For clarity, processes are typed with the boldface font.

10.1. Specify System Requirements

143

change

change "

proposals

change

ot

proposals
Partners

offibial
minftes,

unofficial
inforgpation

TMETHO~ Find

Participate
in meeting

¥

yandum ™ | relevant

Y

p

critical

N

issues

staterments
from
experts

ssues

changes

Make

roposals

change

T

Participate

proposal
for

[

contpact
inforpation

_coniract

tnformation

Contract
archive

proposals

Figure 10.2: Contract coordination process.

in pre—
meeting

N/

144 Chapter 10. Application to a Workflow Organisation

Enterprise
Natural gas Document Business
dev. & market cenitre Area
l Marketing Sales Market Sector
Analysis 1 [Adnﬂnistratm‘n’ East
Figure 10.3: Rudimentary SP diagram for the Staioil organisation
Sates
Sector

Contract Sedes
—

Contract Telex Contract)
speciglist specialist

Figure 10.4: Rudimentary SP diagram for the sales administration sector.,

10.1.3.2 Siatoil Organisation

The organisation chart, for the Natural Gas Business Area in Statoil is shown in Fig-
ure 16,3, based on {Sta94a). Note that this organisational chart also is an SP model,
Missing links show that this is not a complete SP model. As an example of memory
links, the Document centre 3 is shown. The Document centre will not be affected
by the introduction of the “Better Telex in Gas Sales Administration” project, and
is therefore not, considered in detaii. There are approximately 30 different, Document
centres in Statoil which take care of the central archiving of documents for business
areas and divisions.

The organisational chart in Figure 10.3 is expanded in Figure 10.4. Figure 10.4
shows the subsystem which was discussed in Section 10.1.3.1. Both Contract
coordination and Troll participate in contract coordination. Troll ig 7 large field
in the North Sea with a considerable amount of naturai gas. The Sales operation
department does not participate in contract coordination. The mailman is used for
communication within Statoil, which is shown by the dotted line in Figure 10.4. He
is not explicitly considered in this case study.

*For clarity, SP components and operations are typed with the teletype font.

10.1. Specify System Requirements 145

The actual number of primary resources corresponding to the modelled primary
resources in Figure 10.4 are in most cases 1, e.g. one telex secretary. Regarding the
number of Contract.specialists, there are 6 both for Contract coordination
and Troll. The Sales cperation department has 30 case workers but they are not
affected by telex handling. The Mailman may be shared by other sectors. Therefore,
the average number of mailmen in the Sales administration will be less than 1.

From now on, the focus of the discussion will be on the resources Telex_secretary
angd Contract_specialist in Figure 10.4. These resources are marked with the
boldface font in the Figure 10.4. The other secretaries in Contract coordination
and Troll were not engaged in telex handling.

10.1.4 Estimate Workload

The focus of the original Statoil project “Better Telex in Gas Sales Administration”
was telex handling. The rest of this thesis will focus on the Telex_secretary and
Contract_specialist resources in Figure 10.4. The workload characterisation is
also limited to telex handling. The name gas sales telex administration will be used
to indicate this part of the gas sales administration which handles telexes.

Two workload scenarios are defined:

s Normal operation

s Shortfall, which happens when the seller is not able to make the contractual
volumes available to the buyers, for example because of a production stop in
a North Sea installation.

Contract deadline could have been defined as a third scenario, with a load between
Shortfall and Normal operation. From a performance point of view, the average
case {during normal operation} and the worst case (during shortfall) together give
enough information. *

Two cperations are relevant in this case study:

intelex Number of incoming telexes to Sales_telex_administration
out.telex Number of outgoing telexes from Sales_telex_administration

If a more detailed investigation of telexes had been performed, fransactions cor-
responding to meaningful organisational work, such as for example the operation

*In line with [Smi90}, who argues that information system engineers always are optimistic, we
consider best case and average estimates to be similar. Therefore, the terin best case estimate will
not be used in this thesis. Only average and worst case estimates are used.

146 Chapter 10. Application to a Workflow Qrganisation

Revise_contract, could have been used. Such transactions could consist of some
incoming and some outgoing telexes, and could take of the order of weeks or months
to terminate.

At present, normal workload per day for the gas sales telex administration is {Sta94c}:

in.telex out telex

Sales Telex. Admindstration __
I’V‘]"od!'::;,'‘normal - [20 19]

Expected future, normal workload per day is {Sta94c]:

in.telex out_telex

Sales.. Telen . Admindstration r
I,V.F'utt.me.normal - [75 50]

The workload during shortfall is estimated to be twice the workflow during normal
operation:

in.teler out_telex

Sales. Teler_Administration __
W oday shortiall = [40 20]

in_telex oul_telex

rSales. Telez . Administration __
W Future,shortfall - 159 160]

These numbers were estimated by the contract coordinator JRS together with me.

10.1.5 Determine Performance Requirements

Ir Section 10.1.2, performance objective Of was formulated as comparing the per-
formance of the manual and the computerised solutions. The computerised solution
should have a smaller response time than the manual solution based on the present,
normal workload. This performance requirement may be expressed as:

PG, RSuies_T elex. Administration - RSales-Tefe:\:-Adminissmtinn
1 Computerised, Today, Normal Manual, Today, Normal

10.2. Establish Components: Telex Secretary 147

R is a vector of response times for each operation on the Sales Telex Administration,
which in this case is the operation for incoming and for outgoing telexes.

In addition, the projected system must cope with the anticipated increase in work-
load from W s Teler daministration g, 17 Gales. Telon-administration Ip Jine with this, a

stricter performance requirement may be formulated as:

PG WT Sales. Tefez‘_admzmstmtmn RSales-Pe!e:r.Admmzstmt:on
Future, Norma Computerised, Future, Normal
< WT Sales.Teles_Administration RSal'cs Telex_Administration

Todoy, Normal Manual, Today, Nortmal

This means that the total time spent using the computerised solution under expected
future workload should be less than the total time spent on the manual solution
today. Note thai the vector W is transposed. The product on each side of the
inequality sign will be a scalar °

10.2 Establish Components: Telex Secretary

A process model of incoming telexes is shown in Figure 10.5. In this figure, manual
processes have bold outlines, while computerised processes have thin outlines. The
processes are explained below.

Receive telex This is done by the telex machine when some contract parts have
beenr sent by a customer or partner. The telex is hrought to the mail box in
the sales telex administration.

Get telex to office The telex must be brought from the mail box to the telex
secretary’s office.

Read telex The telex secretary must read the telex to determine who she should
send it to.

Log telex For each telex information about the sender, the topic and other infor-
mation must be filed in a log.

°For P, the workload does not have to be taken into consideration, since the workload is
similar on both sides of the inequality sign. The inequality sign in PF will compare two vectors,
in contrast to P§ where two scalars are compared. This difference could have been eliminated if
PlG had been formnlated as:
G. WT Sales_ Telex_administration RSulesATblemﬁdministmtian
Today, Normal Computerised, Today, Normal

< ;,VT Sales.Telex_Admindstration RSaIes Telez. Administration
Today, Normal Manual, Today, Normal

This more complex formujation of PE is almost similar to the simpler formulation which is
used in this thesis. The extra complexity with the more complex formulation was not considered
Necessary.

148 Chapter 10. Application to a Workflow Organisation

USLO I

Contract
parts

AR Y G

Receive Get telex Read Log
telex to office telex telex

Make
tefex
distribution
list

Make
copics

Send
copics
of telox

N

DOKIS

Figure 10.5: Process for incoming telexes.

Make telex distribution lists The secretary m

akes a list of who should receive
each telex.

Make copies She copies the telex so that each receiver gets a copy of the telex.

Send copies of telex The telex secretary sends copies of the telex to Copy receivers
and case workers internal to the sales adm

inistration in Statoil according to
the distribution list which she made earlier.

The process for outgoing telexes are shown in I igure 10.6 and the processes are
explained below.

Transport from case worker Each telex is brought from the case worker to the
telex secretary.

ase
workers

stomie

Retype Logthe Make 1elex
from case the tolex distribution
worker

list

telex

(Lﬁ(ﬂf A

Figure 10.6: Process for outgoing telexes.

10.2. Establish Components: Telex Secretary 149

Telex
secretary
Secretary Secretary | Secretary
comms proc metnory
. Secretary Secretary Secretary Secretary
Mail copy desk bus store
e e i e e | -

Secretary |

Figure 10.7: SP model for the present telex handling by the telex secretary.

Retype the telex The telex secretary retypes the telex text, because the computer
system of the contract specialists is not integrated in the same network as used
to send telexes.

Log the telex Each outgoing telex is logged for future reference.

Make telex distribution list The secretary makes a list of who should receive
each telex.

Make copies She copies the telex so that each receiver gets a copy of the telex.

Mail telex The telex secretary mails copies of the telex to receivers external to the
sales telex administration according to the distribution list which she made
earlier,

Mail telex The telex secretary mails copies of the telex to receivers external to the
sales telex administration according to the distribution list which she made
earlier.

Based on the process diagrams above, the SP model in Figure 10.7 is derived.
The resource Telex secretary is visible to the outside world. Mail is also used
by several other resources. All the other resources in Figure 10.7 are only visi-
ble to the Telex.secretary. They are in Telex_secretary’s world. Intemally,
Telex secretary plays roles in communication, processing and memory. This is
indicated by placing Secretary _comms, Secretary_proc and Secretary memory
under Telex_secretary in the figure. On the bottom level, Secretary_copy, Secre
tary.desk, Secretary_bus, and Secretary store perform the basic operations of

150 Chapter 10. Application to a Workflow Organisation

the telex secretary. © The external resource Mail is also used by Secretary_comms.
Each component and complexity specification is described in detail in the next sub-
sections.

As explained in Section 10.1.4, Sales Telex Administration has the two opera-
tions in_telex and out.telex. Part of the work in these two operations is dele-
gated to Telex_secretary. Therefore, Telex. secretary also has the two operations
in telex and out_telex.

10.2.1 Telex Secretary’s Role in Communication

A telex is distributed to external and internal receivers, i.e. receivers outside and
inside of the sales telex administration in Statoil. In Figure 10.7, Secretary.comms
accounts for the communication between the telex secretary and the internal and
externa) receivers of telexes. The link from Telex secretary to Secretary_comms
in Figure 10.7 is a communication link, hecause Telex_secretary delegates com-
munication to Secretary.comms.

Figure 10.5 shows the process for incoming telexes. Telex_secretary has to perform
the process Get telex to office and afterwards the process Send copies of telex
{to the internal receivers) in this figure. The other processes in Figure 10.5 do not
involve communication by Telex.secretary. These two communication processes
result in the two operations fetchmail and send_internal telex as shown in the
complexity specification below.

send_drafi send_internal fetch_-mail send_meil feich_receipt

Cvf!"eisz_sscrstary _ intelex 0 1 1 0 G
’Secrelory..comms — out_telex T 1 0 1 1

The parameter x in this complexity specification receives a value in Table 10.1. For
outgoing telexes, the telex secretary must do the process Retype the telex. In this
retyping, there are @ drafts of the telex distributed o the case worker who prepares
the draft. This is the reason for the = send.draft operations for each outgeing
telex {the out.telex operation). Moreover, Telex_secretary has to send_internal
telexes and send_mail to the telex office via the mail box. For outgoing telexes there
will also be a receipt where there is a need for communication.

5in Figure 10.7, the components Secretary.copy, Secretary.desk, Secretary.bus, and
Secretary.store are implemented by the same person, and are therefore not four independent
subsystems as described in Section 4.3.1. The common, primary subsystem consisting of the
Secretary, is depicted with the dashed box in the figure. The dashed box is not relevant for static
modelling, only for dynamic modelling. Therefore, the dashed box with corresponding complexity
specifications is not relevart in this chapter, which focuses primarily on static modelling.

10.2. Establish Components: Telex Secretary 151

10.2.1.1 Copying of telexes

The link from the Secretary_comms module to the Secretary_copy module is a
processing link. For the send_internal (copy of telex) operation, one copy of n,
pages in the telex is needed for each of the ; internal receivers. For the other
operations, no copying is needed.

copy
send_draft 0
send_internal | ngry
= fetch_mail 0
send_mail]
Jeteh _receipt 0

O.S'ecrcta:t‘y..comms
Secretary..copy

10.2,1.2 Desk processing

In addition to Secretary.copy, Secretary_comms also delegates processing to Sec~
retary.desk. For the fetch.mail and fetch receipt operations, a split of the
telex is needed. Both fetchmail and send.mail are stamped with logging informa-
tion like date, who the receipts of the telex are, etc. The receipt must bhe compared
with the n, telexes with n, pages each. Receipt handling is therefore modelled as
reading n, telexes with n, pages each.

split stamp read

send._draft 0 0]
send _internal 0 0 0
Caream-comms = fetchomail | 1 1 0
send . mail G 1 0
fetch_receipt 1 0 nemy

10.2.1.3 Mail

Secretary_comms uses the mail box as storage for the mail which is sent: and received.
This link is not a communication link, because the message which is sent in the mail
box is more persistent than Secretary. comms. The complexity specification is shown
below:

152 Chapter 10. Application to a Workflow Organisation

send_mail gei_mail

send._draft] 0

send_internal 0 0

Cf;:;emry“camms — fetch_mai[0 1
send_mail 1 0

Setch_receipt 0 1

10.2.1.4 Walking

The walking {which has the communication operation type, as shown by the links in
Figure 10.7) for the Secretary_comms is handled by Secretary. bus. The walking
distances to the mail box, copier and contract specialist are d,,, d, and d, respec-
tively. For example a send_draft operation needs walking to the contract specialists.

walk
send._draft ds
send.internel | d.+d,
Secretary _comms __ :
" Secretary _bus — fetch_mazl d:'?
send.mazl dy

fetch_receipt dy

10.2.2 Telex Secretary’s Role in Storage

Secretary.memory in Figure 10.7 is the secretary acting as storage and therefore
has & memory link. The secretary stores addresses of internal and external telex
receivers and also logs the telexes. Moreover, telexes are stored in the Jocal archive.
This is represented in the complexity specification below:

get.int_adr get.ext_adr store_arch get_arch store_log get.log
C'I‘clcﬁ:_s(:m-ctttr'y . in.telex ri+ 1 0 1 0 1 0
Secrctary.memory gud felex r o 1 1 1 1

10.2.2.1 Processing

For each of the operations in Secretary memory, some reading must be performed.
it is estimated that approximately 0.1 page are read for each operation:

10.2. FEstablish Components: Telex Secretary 153

read
get_int_adr [0.1
get_ext_adr | 0.1
Seeretary..memory __ store.arch 0.1

CSecresuryfdcsk - get_arch G.1
store_log 0.1
get_log 0.1

The link from Secretary memory to Secretary.desk is a processing link.

10.2.2.2 Walking

When the local archive is used, the secretary has to walk back and forth between
her desk and the local archive.

walk
get_int_adr 0
get_ext_adr 0
CSccretaTy-memory . store_arch o
Secretary bus get_arch d,
store_log 0
get_log 0

This complexity specification is a communications link as shown in Figure 10.7.

10.2.2.3 Interface to Storage

The telex secretary acts as an interface to the archive and to the log and the address
list for external and internal addresses. The work of getting data to and from the
memory 15 shown by the memory link. FEach operation in Secretazy.memory is
mapped directly to a primitive operation in Secretary.store.

gel_int_adr get_ext.adr store_arch get.arch store.log gel_log

get_int_odr 1 it 6 0 i} 0

get_ext_adr] 1 0 0 9 0

oSeeretary_manory - Store.arch 0 0 1 0 0 0
Seerctary_store - get_mch 0 0 0 1 0 4]
store.log 0 ¢ 0 ¢ i 0

get.log it b 0 0 0 1

154 Chapter 10. Application to a Workflow Organisation

This complexity specification is the identity matrix:

G.S'ecretary,mcmory =]
Secretary.store -

10.2.3 Telex Secretary’s Role as Processor

For outgoing telexes, Telex secretary has to retype n, pages written by the con-
tract specialist into the text processing system Display Write 370 {Wal93]. There are
also z iterations between the contract specialist and the secretary with draft versions
of outgoing telexes with n, pages which the Telex_secretary has to polish:

retype polish

CTelcz_sccrctary = in.telex 0 0
Secretary _proc out_telex o zn,,

Both for retyping and polishing one page, reading one page in necessary. Whereas
retyping uses text which has been used in other documents, polishing uses text in
the same draft as a basis. In both cases, only a fraction of the texi is typed again.
The fraction of pages typed again will differ hetween retyping (p,) and polishing

(p:):

read type
C.S'ccretm'ympmc . retype [1 Ps :|

Secretary_desk pO.{ESh 1 P

10.2.4 'Fotal Secretary Work

This section presents the total work which Telex_secretary delegates to the prim-
itive resources Mail, Secretary.copy, Secretary.desk, Secretary.bus, and Sec-
retary.store,

10.2.4.1 Mail

The total work on the Mail resource is:

10.2. Establish Components: Telex Secretary 155

CTefea:.sem'etnryw yTeles.secretary Secrctory. comms
Mait — Y8ecretary-comms Mail

send_mail get_mail

OTeffzm_secretm‘y — in.telex 0 1
Madl out _telex 1 1

10.2.4.2 Secretary.copy

For Secretary_copy, the total work is:

OTcle:c_sccmiarym Teler_secretary ~vSecretary.comms
Secretary.copy — - Secretary.comms — Secrefary_copy

copy

Telex_secretory __ in_telex T
7/ Secretery.copy out_telex T

10.2.4.3 Secretary._desk

Total work on Secretary_desk:

Telex.secretary o~ Telex_secrctary cSecretary-comms + CTclca:,secretary _ ydecrelary memory
‘Secretarydesk -~ Secrelary.comms ~ - Secretary.desk Secretary.memory Secretary.-desk
+ OTele:t_secremry | ySecretary proc
Secretary.proc Secretary_desk
split stamp read type
(Teles_Secretary __ tn-telex 1 1 0.1(r; + 3} 0
Seerctary-desk out_telex 1 1 (1+x+ndn,+014+r+7.) nylps +zp)

10.2.4.4 Secretary_bus

Delegated work on Secretary.bus:

156 Chapter 10. Application to a Workflow Organisation

Telez.secretary __ ~Telex_secretary ~Secretary.comms + (yTe!ez_secretary _ tSecretary-memory
“Secretary.bus T M Secretary.comms Secretary_bus “ Secretary memory Secretary_bus
walk
CfTeiem_Secre!ury _ i telex do + de + 20!;;

Seeretary-bus 7 oul_teler | 2dg + de + 3d, + ad,

10.2.4.5 Secretary_store

On Secretary_store, the total work is:

OTeJcm.sccrctary — 1 lelexsecretary ~Secretary.memory
Secretary.store ' Secretary_memory - Secretary_store

gelint.adr get_ext_adr store_arch gei.arch store_log get_log

Telew. Seeretary in.teles 741 0 1 0 1 0
‘Seeretary.store. oy telex 7y Te 1 1 1 1

10.3 Evaluate and Validate Static Model of Telex
Secretary

In this section, the work complexity functions for the telex secretary are used to
estimate the performance of the telex secretary. Section 10.3.1 estimates resource
demands on the primary telex secretary operations, and in Section 10.3.2 the per-
formance for the telex secretary is estimated.

10.3.1 Resource Demands for Telex Secretary

'The resource demands for all the primary operations are estimated in this seciion.
It is necessary to replace parameter names by numbers. Table 10.1 below shows the
average numbers which are used. As an example, the average numnber of external
receivers 7. = 9 in the tabie is estimated as follows: There are from 4 to 8 firms with

10.3. Evaluate and Validate Static Model of Telex Secretary

157

| Parameter | Value | Description of parameter

Pi

Ps

2
2
1
10
2
10

0.5

Number of telexes to be read during receipt handling
Number of pages in a telex, from 1 to 5.

Walking distance, in meters, to local archive.
Walking distance, in meters, to copier.

Walking distance, in meters, to the mail box.
Walking distance, in meters, between

contract specialist and telex secretary

External receivers of a telex.

Internal receivers of a telex.

Number of iterations between contract specialist and
telex secretary

Fraction of pages which has to be retyped initially by the
telex secretary based on text from the contract speciaiist.

Fraction of pages to be retyped during each iteration

between between contract specialist and telex secretary

Table 10.1: Parameters representing average numbers for the manual solution.

1to 2 receivers in each firm. In addition, there are 2 recetvers working in Statoil, but
not, in Stavanger {the “oil capital of Norway”, where the sales telex administration
is located), who will be considered as external to the sales telex administration. In
the rest of this section, these nwmbers are used to calculate numeric estimates for
resource demands for the telex secretary.

10.3.1.1 Resource Demands for Mail Handling

The two parameters k, acd k&, are used for resource demands of mail handling, giving
the resource demand matrix as follows:

: DMai.! =

send_mail | ks
getomail | &y

The total resource demand for mail handling is:

Telex.secretary __ ~Telex_secretary
D i = Cagait Dot

DTEIG_.‘xvsecrelary — in_telex kg
Mot out telex | ks + kg

158 * Chapter 10. Application to a Workflow Organisation

10.3.1.2 Resource Demands for Secretary as Copy Operator

The Telex.secretary must operate the copier. This is estimated to take 0.02
minutes per copy, and the resource demand matrix therefore becomes:

DSecmLary_copy = copy [0.02]

Copying of telexes is cumbersome, because of the thin paper which is produced hy
the telex machime. The total resource demand for the secretary as copy operator is:

Telew.secretary _ ~Telex_secretary
D Secretary.copy — C.S‘ecremry_copy -D Secretary-copy

D‘Te!ez_sccrcmry — in_telex 002 - (2 . 2)
Secretary-cory = gyj teler | 0.02-(2-2)

[Teles_secretary wn_telex [0.08]

Secretary_copy out_teler 0.08

10.3.1.3 Resource Demands for Secretary as Desk

As a processor, the telex secretary offers the operations split, stamp, read and
type. The “speed” of these operations is estimated below. To split a telex takes
(.26 minutes, and to stamp a telex takes 1 minute. The measure for read is the
number of pages to read. One page takes 1 minute, so the time spent for reading is
linear with the number of pages. Fyping one page is estimated to take 10 minutes.

split [0.25
stamp | 1
D Seeretary_desk reqd 1

type 10

10.3. Evaluate and Validate Static Model of Telex Secretary 159

The relationship hetween the number of pages read and the time it takes need not
be linear, i.e. for less than one page, reading is slower than for more than one page,
except when the number of pages reaches a certain limit, when reduced attention
reduces the speed again. Another solution would be to use time to read as a measure,
but if reading speed is not equal, this will clutter the separation between work and
ioad. This also applies to the operation type.

Typing could be combined with reading, just as the secretary could think while she
walks. Thus, a human agent could perform several functions at a time, each using
different aspects of the human agent (which is analogous to multiprogramming in
a computer system, i.c. the disk and the CPU may be used by different processes).
The modelling language allows for all this complexity to be represented.

The tota} resource demand for the secretary as desk is:

Telez_secretary _ o~ Telex_secretary
D.S‘ecretary_desk T M Secretarvy.desk DS?CTC"-GT.U-dCSk
D Telen.sceratary _ in-teled 025 1+1-14+1-0124+3)+0

Seoretary_dest = out pelew | 0.25+ 1+ {1+ +2)-240.1(4 + 2+ 9)] + 10[2(0.25 + 1 - 0.5))

DTele:c_sccrctary - in_telex 1.75
Seoretary-desk ™ oyt _telex | 25.75

10.3.1.4 Resource Demands for Secretary as Bus

When the secretary works as a bus, she walks. The “speed” of the secretary is
estimated to be 0.025 minutes per meter. The walking “speed” is valid for small
distances within an office, and accounts for some optimisation by the secretary. If
the telex secretary is requested to walk to the mail box for feiching both a receipt
and a new telex, then she only has to walk once.

DSecnetary_bus = walk [0.025]

The total resource demand for walking is:

DT‘elestecmta:ry _ i1Telex secretary)
Seeretary.bus T ' Secretary-bus Secretary_bus

160 Chapter 10. Application to a Workflow Organisation

) Teles _seoretary _ in_telex 0025 (141042.2)
Secretary.-bus oul telex | 0.025-(2-14+104+3-2+1-10)

D

Telex -secretary in-telex 0.375
Seerclary-bus oy felex | 0.70

10.3.1.5 Resource Demands for Secretary as Store

Since finding the appropriate addresses is more complex for external receivers than
for internal receivers, this is reflected in the resource demands for get_int_adr and
get_ext_adr.

The store_log operation includes time for (1) finding a log mumber and {2) writing
down in a book for future reference (2 a) date received, (2 b} date sent, (2 ¢} topic,
and {2 d) addressee of the telex. get.log is stmpler.

get.ant.adr [0.1
get.ext adr | 0.2
__ store.arch | 0.1

D.S'ecrezary_store "'" qct-arch 0.1
store_log 1.0
getlog 3.1

The total resource demand for the secreiary as store is:

D?biez.secremry . e Telen secretary D
Secrelary-store ™ “ Secretary.store Secretary.store
DTclcz_secreLary o . lelex 0.1 (2 + 1) +01-F4+1-1

Secretary-store ™ ouj telex | 0.1-2402-9+01-1+01-14+1-14+01-1

10.3. Evaluate and Validate Static Model of Telex Secretary 161

DTeiex_secretary . in.telex 14
Seeretary_store ™ out_telea: 3.3

10.3.2 'Total Resource Demand for Telex Secretary

The total resource demand for the telex secretary is:

Telex.secretary _ myTelen secretory Telex_secretary Telez.sceretary Telez_secrciary
D =D Secretary bus +D Secretary.desk +D Secretary.copy + D Secretery.siore

DTe!eJ:_secrelm'y — in_teler 3.6
out telex | 30

This means that with the model and parameters selected, the telex secretary uses 3.6
minutes to handle an incoming telex, and 30 minutes to handle an outgoing telex.

10.3.2.1 Model Validation

The resulting resource demand for outgoing telexes corresponds ¢ the 28 minutes
as reported in the internal Statoil report [Stad4c]. 3.6 minutes for incoming telexes
could be closer to the 5 minutes estimated for incoming telexes in the Statoil re-
pors [Sta94c]. Note that both the value 3.6 and the value 5 minutes were estimated.
The first one (3.6 minutes) was estimated by me together with the confract co-
ordinator JRS in Statoil, and the second value (5.0 minutes) had previously been
estimated by the contract coordinator JRS.

A better correspondence would require further work with the parameters in the
model. Such a validation process is supported both by the SP modelling language
and the method with iterations as described in this thesis. Therefore, the method is
applicable 10 performance modeliing for routine secretary work.

With the workload Waneel o ration described in Section 10.1.4, the secretary will
spend 20 - 3.6 + 10 - 30 = 372 minutes = 6.2 hours each day on telex handling. This
corresponds roughly to a full-time position (7.5 hours each day), especially if we also
consider the context changes which are necessary for each telex, and which are not

considered explicitly. This high utilisation corresponds $o the overloaded feeling of

162 Chapter 10. Application to a Workflow Organisation

the telex secretary. If we compare with a computer system, an average utilisation of
83 % (&2 = 0.83) is high. The high average utilisation is possible because humans
are more flexible than computers. If the workioad is too high, humans may perform
shortcuts to get the work done. During shortfall she will use twice as much time,
i.e. over 12 hours, which is too much for one person if she is to work with sufficient
quality. Also under the anticipated, future load, it is impossible for a single telex
secretary to cope with the workload.

The type operation for the cutgoing telexes accounts for approximately half of the
telex secretary workload. Therefore, a change in the parameters p;, p;, n,, & or the
resource demand for secretary type could change the secretary workload drastically.

10.3.2.2 Contention Modelling

Modelling of contention was not necessary in this case study, since $he manual system
was not going to be used when the computerised solution in Chapter 11 came in
production. If contention moedelling had been necessary, the static model gives us
the parameters we need. As a simple illustration, an open two class queueing network
with the parameters above 7 wili predict that the secretary on the average had 0.9
ingoing and 3.8 outgoing telexes on here desk waiting to the handled. The average
response time for incoming telexes would be 21 minutes. For outgoing telexes, the
average response time would be 2 hours and 50 minutes. An open queuneing network
assumes independent arrival of telexes, which may be guestionable. With more
sophisticated contention models, other assumption could have been used.

10.3.2.3 Error in Input Data

The total resource demands described in Section 10.3.2 were initially higher. The
initial estimate was:

DTclcx_secretary — in.telex 4
out_lelex | 43

The most important reason for this estimate was another value for the parameter
z. The parameter z, the number of iterations between contract specialists and telex
secretary, was estimated to be 2 by me. The distance from the telex secretary te the
mail box, dp, was initially 10, hased on my estimations. After discussions with JRS
we found = 1 and d, = 2 to be more appropriate and the results were as presented

"Following the notation from Section 3.2.1, Dipseter = %g = 0.08, Dyt seter = % = {.5,
Pl ~ 10 _ _ - -
Ain_tclez = 75 = 2.7, /\out_tcfe:-; = 75 = 1.3, Uin_tetez =)\z'nvteichiniclca: = (.16, Uou!"tcic:c -

)‘out.tetezDauLtelc:c = 0.67.

10.4. Establish Components: Contract Specialists 163

before. Identification of this error and subsequeni corrections were simple because
of the structured method whick had been used.

10.4 Establish Components: Contract Specialists

The “Better Telex in Gas Sales Administration” project will affect the interaction be-
tween the contract specialist and the telex secretary. The Contract_specialist in
Figure 10.4 is abstract and does not say anything about the distribution of work be-
tween the contract specialists in Contract_coordination and in Troll. Contract-
specialist devolves work on Contract.specialist bus as shown in Figure 10.8
below. The link from the Contract.specialist to Contract.specialist._bus is a
communication link:

The contract specialist must walk to the telex secretary to take the telex, and the
telex secretary walks with the typewritten copy of the telex back to the contract
specialist for comments. Hence, there is a relation between the number of fimes
the contract specialist walks and the number of times the telex secretary walks.
Therefore, the walk is relevant for the contract specialist. As shown in the com-

Contract
specialist

Contract
specialist bus

Figure 10.8: Rudimentary SP model for the present handling by the contract
specialists.

plexity specification below, the walking operation is only used for out_telexes. For
all the z iterations between the Contract specialist and the Telex_secretary,
the Contract_specialist walks the distance d;, which is the distance between the
Contract_specialist and the Telex_secretary:

walk

Contract_specialist . .
S Comtrast -sveeialist_bus = out_telex [e,]

In this simple case, the complexity specification degenerates to only one complexity
function. Replacing the parameters with the average numbers in Table 10.1 gives:

walk

Contract _specinlist . .
C(Z‘ontract_specz'afist.,bus = oul_telex [10]

164 Chapter 10. Application to a Workflow Organisation

10.5 FEvaluate and Validate Static Model of Con-
tract Specialist

The work complexity functions for the contract specialists are used to estimate the
performance of the contract specialists in this section. Section 10.5.1 estimates
resource demands for the primary contract coordination operations, and in Sec-
tion 10.5.2 the total resource demands for the contract specialist are estimated.

10.5.1 Resource Demands for Contract Specialists

Contract_specialist_bus only offers one primary operation, namely walk. As
described in Section 10.1.3.1, the contract specialists also perform a lot of other
work, which is not relevant in this context. The resource demands for the contract
coordinator JRS for this operation, measured in minutes is taken from [Sta94c]:

= walk [0.025]

DContmct_speciaiist_bu.s

The saving in typing for each contract specialist of 0.5 minutes for each telex
in [Sta94c], is not taken care of there, because some additional work also must
be performed by the contract specialists to use the “Better Telex in Gas Sales Ad-
ministration” project.

10.5.2 Total Resource Demand for Contract Specialists
The total resource demand for the contract specialisis is:

I)Contmct_specz'alist _ CContmct_specia!ist A DT
= Y Contractspecialist_bus Contract_specialist_bus

DConsracLspcciaiist — out_telex [0.25]

Using the workload vector Wiy, etion frOM Section 10.1.4, the contract spe-
cialist will spend 10 - 0.25 = 2.5 minutes on the telex which is affected by this case
study. But since the total number of contract specialists in Contract coordination
and Troll is 12, the total time during a typical day is 12 - 2.5 = 30 minutes. This is

only a fraction of the time which is spent. by the telex secretary

10.6. Summary of Findings 165

10.6 Summary of Findings

The overall conclusion is that the static model came out with estimates which were
consistent with observed behaviour, in terms of utilisation. The correspondence
hetween the model and what was expected was good enough to be used as a basis for
changes in the actual system. The parameters of the model could have been refined
if the model should have been used for example for response time estimations, which
are more sensitive to parameter quality. The error in estimating the distance d,
in Section 10.3.2.3 showed the model to be quite sensitive to office layout, i.e. the
distances between copy machines and desks and case workers.

The presentation in this chapter gives a top-down impression of what happened dur-
ing the modelling of the organisation in the gas sales telex administration. According
to such a top-down approach, for example the system boundaries are determined be-
fore the system is modelied. In practice, modelling is more complex. Details will
often affect general matters in a bottom-up manner. The method of this thesis is
iterative to take account of this.

The overall scientific objective of this case study was described in Seciion 10.1.1
as to sort of the essential problems from the more academic ones. The issues may
be structured in the following way. Firstly, is it at oll possible to model human
workflows, with no constraints on the size of the model, i.e. without any aggregations
of operations or structural variables. ® The cost of making and mainiaining such
a model would in most cases be too large in practice (cf. the tradeoff between
accuracy and cost in Section 5.4.5.2). Therefore a practical model must aggregate
the operations and structural variables of the real world. This leads to the second
question. Is the inaccuracy introduced by the chosen aggregations acceptable?

Given that it is possible to create a reasonably correct model with manageable size,
the third question is if the accuracy in the computation of the model is reasonable.
Is the accuracy of the model solution method acceptable? In summary the three
guestions may be formulated as:

FG: lIs it possible to model human behaviour at all?
FE: Is the inaccuracy introduced by the chosen aggregations acceptable?

FE: 1s the accuracy of the model solution method acceptable?

Question FF, about the possibility of making accurate estimates for human work-
flows, would be positively answered for fairly routine workflows. If the worlkflow is
routine or stable, then it is possible to find a mean. The problems in identifying the

8Table 10.1 shows structural variables for the manual selution of the Gas Sales Telex Adminis-
tration Case Study.

166 Chapter 10. Application to a Workflow Organisation

mean s similar to the problems in estimating the mean for computer systems. Sta-
tistical techniques are needed. As an example of the similarity hetween manual and
computer operations, see the discussion about the operation walk in Section 10.3.1.3.

The routine subprocesses in a template workflow will also be possible to estimate.
For ad-hoc workflows, it is {(per definition) not possible to say anything general about
resource demands. Attempts to model the skilled part of the contract specialist work
showed that for this almost ad-hoc type of work, tradeoffs with other factors must be
included in the method (c.f. Section 8.1.1). This is outside the scope of this thesis.
These other factors are much more fixed in routine work of the telex secretary, and
may therefore be ignored during modelling of the routine work for the telex secretary.

For the second question, FE, it is illaminating to compare alternative aggrega-
tions. The model in Chapter 10 is more detailed than the coarse model in the
report [Stad9dc]. A detailed model has the potential to be more accurate, if the
input data is more accurate. If parameter accuracy is not sufficient, it is easy to
aggregate the model before using it, producing a coarser model which is more suited
to the available parameters. At the one extreme the two operations in_telex and
out.telex could have been measured directly, in terms of the time used. This
coarse approach is used for the human workflows in Chapter 11. There are aiso
other approaches in between the coarse and the more detailed approach selected in
this chapter. Selecting a suitable granularity for modelling of human workflows is
no different from selecting granularity when modelling a computer system.

The level of detail represented by the model was influenced by the use of SP in
software modelling. It was chosen partly to explore the correspondence between
human and computerised information processing. The two are compared in Sec-
tion 11.7 which illustrates the generality of the SP paradigm. This level of detail
enables reuse of the static model components, when parameters representing e.g.
office layout, skill levels, and information Processing requirements vary.

Modeiling the walking operations gave challenges. Estimating distances walked as in
Table 101 was decided upon as described in Section 10.3.1.4. A prablematic area is
how the secretary will combine walking with several items to the same place: a smart
secretary might carry several items in one go. Another issue is whether she could
think while walking. As a possible sofution, the legs and brain could be modelled as
separate resources ¥ Some tasks occupy both resources, like sitting by the desk and
reading, while other tasks like walking with some documents will only occupy the
legs, leaving the brain free for other purposes.

A more detailed model is more suited for reuse. The SP model shown in Figure 10.7
may be the beginning of a more general model of cage workers, because communica-
tion, processing and storage are the basic ways of handling information. In a more
general SP model, the processing operations will be more complex. The major dif-
ference between the telex secretary and most case workers is that case workers have
a larger number of different processing operations compared to the telex secretary,

*This level of detai] also has its humorous sides...

10.6. Summary of Findings 167

who only performs relatively few different processing operations.

For the third question Fy, for this case study, there are no built in assumptions in
the SP calculations whick would give rise to inaccuracy. For contention modelling,
the usual considerations for approximate solution methods would apply. In general,
development of a performance model is a tradeoff between accuracy and cost {c.f.
Section 5.4.5.2). For general software it may be possible to divide the development
cost for a performance model between several installations. Sometimes the accuracy
of a general model may be sufficient. In cases where the accuracy of a general model
is too poor, i4 may be possible to make a customised model. The customisation
may hamper the reusability of the model, and will therefore increase the cost of the
model. The cost of performance modelling may therefore on some cccasions he too
large in practice.

168 Chapter 10. Application to a Workflow Organisation

Chapter 11

Application to a Workflow
Computer System

This chapter presents an outline of an overall performance model of Lotus Notes,
which forms the basis for the computerised workflows in the gas sales telex ad-
ministration sector in Statoil. A work model of Lotus Notes will be of interest
for performance engineering. Lotus Notes work models could also be useful for ca-
pacity planning and tuning in large organisations. This chapter is based on talks
with personnel in Statoil and the latest documentation [Sta94b, Staddc]. The model
of the client-server Lotus Notes architecture is based on work done by Alexander
Kowalski [Kow95], who was a diploma student under my supervision.

To limit the amount of work, replication in Lotus Notes is not modelled in this
thesis. If a model of replication in Lotus Notes had been available, it could have
been included in the overall Lotus Notes model.

Note that the existing platform in this chapter is not existing in the same sense as
the existing organisation in Chapter 10. The manual information system is available
in the gas sales telex administration sector, while Lotus Notes is existing somewhere
else in Statoil (or in another company), but not in the gas sales telex administration
sector.

The background for this case study was explained in Chapter 10. This chapter is
structured as follows: Section 11.1 describes the requirements for the Lotus Notes
systemi. Section 11.2 explains a work model of basic Lotus Notes functionality, while
Section 11.3 gives an overall work model of Lotus Notes replication. Section 11.4
describes the integration of the workflow platiorm Lotus Notes witl: the manual
system in Chapter 10. The interaction between the telex secretary and Lotus Notes
is described in Section 11.5. The complete work model for the computerised solution
is evaluated in Section 11.6. Section 11.7 compares the SP mode] of the computerised
solution with the SP mode! for the manual solution. A generalisation of the Gas
Sales Telex Administration Case Study is discussed in Section 11.8.

169

170 Chapter 11. Application to a Workflow Computer System

11.1 Specify System Requirements

11.1.1 Objectives of Performance Model

The objective in Section 10.1.2 was: !

OF: Find out if response time was smaller for the computerised solution than for
the manual selution.

This objective will be detailed in this chapter. Assessment of the organisational ben-
efit of using Lotus Notes is important. When a large organisation installs workfiow
systems, they cannot afford to buy unsuitable equipment, because it is extremely
costly and time-consuming to do fix-it-later with thousands of users involved. Lotus
Notes for the whole gas division wili typically cost about 4 MNOX, 2500 NOK per
workstation per year. The total Statoil organisation has 5000 Notes clients. In this
context, a performance objective is:

OF,: Find the organisational benefit of using Lotus Notes.

This objective may be seen as an extension of objective OF . In addition to the perfor-
mance cbjectives in Section 10.1.2, capacity planning for the Lotus Notes application
is also relevani. Examples of relevant questions are: (1) For what applications should
Lotus Notes be used? (2) Which hardware is necessary for Lotus Notes? (3) What,
will be the performance consequences of replacing the Lotus Notes database with
a full-blown Oracle relational database? (4) How do we detect the problem when
applications are designed in a local setting and later used in a network setting, with
poor performance as the result? Thus, a second performance objective is:

O%: Find the consequences of replacing parts of the computerised information sys-
tem with other components.

11.1.2 Determine System Boundaries

Replication needs to be introduced before two important subsystems are described
in Section 11.1.2.2.

1Superscript G in OF refers to the Gas Sales Telex Administration Case Study to avoid confusion
with the Blood Bank Case Study.

11.1. Specify System Reguirements 171

Server level 1

Server level 2

Server level 3

Figure 11.1: Three server levels in Statoil

11.1.2.1 Replication in Lotus Notes

Lotus Notes distributes the database across several servers. This hnproves perfor-
mance since the user can use the server which is closest to him. Tach server holds
a copy of the shared database. Databases on different servers are kept consistent
through replication. During replication, changes are propagated beiween all the
servers. As the result of replication, all databases are equal {at least in the simple
case — partial replication is also possibie).

Statoil has designed a special replication methed for Lotus Notes. This method
builds on the server hierarchy in Figure 11.1, ? and is explained in Appendix A. As
depicted in Figure 11.1, each server at server level 1 has servers at server level 2 as
nodes, and servers at server level 2 have nodes af server level 3.

For every person in Statoil, basic information like name and office number is stored
in the name and address book which is stored at server level 1. The servers at server
level 1 are maintained in Stavanger [$S1a93]. Each department or office should always
have at least one server at server level 2. For small offices, where no server level 3
servers are needed, the server level 2 server must also work as a mail and database
server. Normally, server level 3 works as mail and database servers.

11.1.2.2 Two subsystems

Figure 11.2 shows how two interaciing subsystems can be identified in the Lotus
Notes system. The Replication subsystem takes care of the replication of documents
between the hierarchy of Lotus Notes servers in Figure 11.1, while the Client-server
subsystem deals with the interaction between a Server.level.3.server and the

2This figure is not an SP model. An SP model represents logical structure of work, whereas this
model represents physical server structure.

172 Chapter 11. Application to a Workflow Computer System

Py, T,
Nq.," LT
v

Ml Ara?
n‘"".“ Replicati "':q““"“ Lotus "“"'u.,
= eplication o, Notes o
i Berver level 2 Communi~ §= iServer level 3 _! Communi- Cii H
3| server cation 3| server § cation ent | §
. s 3
*, . *, & . &
" Replication Client-server
*r,, e, ot At
subsystem e, subsystem
- -

.
+s arrt
LITY eTLld '.l.. l"'
LTI RALLLITEVPPPPPITTL L L

Figure 11.2: Separate parts of Lotus Notes modelling

Client. For simplicity, only the replication between server level 3 and server level
2 is considered in this section. The replication between server level 2 and 1 is
approximately similar to the replication between server level 3 and 2. Both the
Server_level 2_server and the Server_level_3 server are of course shared with
other users and cther applications. This figure will be expanded in later sections.
Both Server and Client modules will have several primary resources: i.e. disk and
CPU. Finally, the Communication module may be more complex.

In this case study, the server and the network are shared resources, whereas the
client is not shared. Thus, only the server and the network are potential performance
bottlenecks which are subject to analysis in this thesis. To limit the complexity, the
server (and not the network) is the focal point of the case study.

11.1.3 Estimate Workload

In Section 8.2.4, a document and a view were identified as the major data structures
in Lotus Notes. Both a document and a view can be opened. It is only meaningful

to store a document, but not meaningful to store a view. Therefore, three typical
Lotus Notes operations were modelled:

open_view Open a view showing the content of a database
open.doc Open a document which is in a database
store.doc Store a document in a database

These three operations correspond to the routine work of a case worker. Of course,
other operations for example searching for a document, or database maintenance
will also be used, but in this case study, such operations will be relatively rare. For
these thiee operations, two parameters were investigated:

s Size of the documents stored in the database measured in bytes
(a byte will roughly equal one character).
n Number of documents stored in the database.

11.2. FEstablish Components: Lotus Notes Client-server 173

Lotus
Notes

Chient

AIENINRNINRENANEEFNHAREIRRANNERS
-

Server

x

it

sxandesannennageing

Disk 4 CPU3 CPU, Disk

N
e
7
<
%

=
(T8
Jarnnaeny

EERRTITR NIRRT N RN RO ETRU NS TRNUNANERNT B R R R EREN AN IR EA NN RN N NN A BRI RN TERARTE

Figure 11.3: SP meodel for Lotus Notes

11.1.4 Determine Performance Requirement

The performance requirements for the “Better Telex in Gas Sales Administration”
project were specified in Section 1¢.1.5. These performance requirements will also
he used here. In addition, performance reguirements for the Lotus Notes application
corresponding to OF in Section 11.1.1 may also be developed..

11.2 Establish Components: Lotus Notes Client-
server

Lotus Notes devolves work both on the server level 3 server (termed Disks and CPUs)
and on the client (termed Disk, and CPU,) as shown in the SP model in Figure 11.3.

With the available measurement tool SPM/2 from IBM, it was not possible to mea-
sure the component 05/2 in Figure 11.3 Kow95]. SPM/2 was designed for another
network than used in our installation. Therefore, measurements for the network
component were also hard to get. * The resulting, reduced modet is shown i Fig-
we 11.4. Using hardware monitors and better measurement tools, * the measured
SP model could resemble the model in Figure 11.3.

For Kowalski, it took roughly three months to do the measurements. With more
practice, this time could have been significantly reduced. On the other hand, Kowal-
ski also noted that more measurements should be done 1o increase the confidence in
his results. In the ideal case, the vendor should include a complexity specification

3With hardware monitors it was easy to measure the network component in Statoil. Kowalski
did not have access to such tools.

4IBM ajso purchases more expensive and more sophisticated measurement tools. Sophisticated
measurement tools may also be available from other vendors.

174 Chapter 11. Application to a Workflow Computer System

Lotus
Notes

/N

Disk4 CPU4

Figure 11.4: The SP model measured by Kowalsks

for his software. This is possible since work characterisation is workload indepen-
dent. For the vendor of off-the-shelf products like Lotus Notes, it will he feasibie to
make detailed work specifications. See Section 5.4.5.2, which is based on Vetland's
thesis [Vet83], for more discussion.

The resulting complexity specification for the relation between the three user oper-
ations above and instructions on the Intel Pentium 90 MHz server CPU with 256
KB ¢ache is:

wnstruction
open_view | 15805+ 3000n + 62000000
C’é?f}js:a’“’““ = open.doc | 5385+ 15000n + 18000000
store_doe 95 s + 26 000000

The parameter s is the average size of documents stored in the database measured
in bytes and the parameter n is the number of documents stored in the database.

Thus, an open_view on a database with 2 000 documents and with a size of 5 kB
for each document is equivalent to:

CPU instructions = 1580 - 5 - 1600 4+ 3000 - 2000 + 62000 000
=7900000 + 6000 000 + 62 000 000
=76 000000 instructions

The complexity specification for the relationship between the three user operations
and the read sector and write sector operations on the 1 GB Quantum Empire SCSI
disk on the server (with 32 MB primary memory on the server and with 16 MB of
primary memory on the client) is expressed as follows:

read_sector write_sector
open_view | 0.0067 s 4 0.167n + 86 112
Cpeus Notes — open.doc 0.0012 5 -+ 8.325 42

store_doc 9 0.00404 s + 132

11.2. Establish Components: Lotus Notes Client-server 175

An open_view of 2 000 documents with a size of 5 kB each will devolve:

Physical sectors read from disk = 0.0067 - 5 - 1 000 + 0.167 - 2000 + 86
=34 + 534 + &6
= 450 physical sectors

11.2.1 Validation

In repression analysis the coefficient of determination R? can theoretically vary be-
tween 0 and 1 [Jai®1]. The closer to 1, the better the regression. In Kowalski’s
measurements, B2 ranged between 0.84 and 0.9995. For some of the measured pa-
rameters, confidence intervals were hroad. Therefore these parameters could not be
used outside of some boundaries, e.g. the number of documents have to be hetween
2000 and 5000. The regression could have been better if more measurements had
been done, ot if the work model had been refined. Making a detailed work model
is hard because of the unknown behaviour of the software. Contact with the ven-
dor, Lotus, will he necessary to make a really good work model, but even then the
inherent problems of work modelling as mentioned in Section 5.4.5.2 stiil apply.

This work model depends quite strongly on the selected disk. A refined model, where
the operating system OS/2 is modelled as an extra software layer as described in
Figure 11.3, would make the work model more hardware independent. The mea-
surements may also be sensitive to size of CPU cache, client primary memory, server
cache, server primary memory, and to the version and type of operating system and
the version of Lotus Notes. These installation parameters could be included as a
parameter in the complexity specifications, making them more general.

More careful modelling would increase the reproducibility of the measurements, e.g.
changes in fragmentation and placement of files on the disk could be taken care of
by including alt relevant states and then estimating a suitable average. Changes in
fragmentation or file placement may also be taken care of by changiag the workload
specification by for example formulating new operations for some particularly im-
portant states. This would complicate the modelling task, but give more accurate
results. As another example of state dependency which may need extensions in the
workload specification, it is known that opening of a database view is more complex
in Lotus Notes if there has been a change in database indexes, than if indexes have
not been changed. The robustness of the complexity specification to changes like
internal Lotus Notes tuning parameters could also be studied more carefully.

176 Chapter 11. Application to a Workflow Computer System

Replication
082 TCPIP 0812
Disk cPU, Network, cPU, ! Disk 5

Figure 11.5: Replication architecture for Lotus Notes.

11.3 Establish Components: Replication Archi-
tecture

Replication in Statoil was introduced in Section 11.1.2.1, and elaborated upon in
Appendix A. Figure 11.5 shows an outline of an SP model for replication. In this
figure, the resources which are used during replication between server level 2 and
server level 3 are shown.

Note the distinction between the SP hierarchy levels and the replication hierarchy
Jevels in Figure 11.5. Disky and Disks are at the same SP hierarchical level, but
at a different replication hierarchical level. The archives wiil be located in Disk;.
Several of the modules will be more complex than what is shown here. For examiple,
inside of the Networks/; components there are also gateways. And if there are large
differences beiween the servers at server levels, this must be indicated with separate
models.

Each module will also have operations. The replication module in Figure 11.5
may have only one operation perform.replication. Depending on the size of the
archive (which is specified in an extent specification as described in Section 4.6.1),
this operation will result in a number of read._sectors on Disks and send._packets
on Networkyss. Since replication is a never-ending-loop with three hour intervals,
only two scenarios are possible on the server. Either replication happens or repli-
cation does not happen. If replication has priority over the client-server work in
Section 11.2, load concealment [LZGS84] can be assumed with some inflation factor
Iew > 1, s0 the refined service demand I is increased compared to the original
resource demand I

D' = LemD

The replication architecture between server level 1 and server level 2 will be quite
similar to the replication architecture in Figure 11.5 between server ievel 2 and server
level 3.

11.4. Establish Components: Customising Lotus Notes 177

“‘““"uu".“"
[

‘0‘.‘.“ h”' ',

» *
g Customised Y
: Lotus Notes H
"' :.

O"‘ “’ﬁ

0,". ““‘
At il [} L LA o
Tohs
Notes

Figure 11.6: Simplified, customised Lotus Notes model.

11.4 Establish Components: Customising Lotus
Notes

Lotus Notes is customised in the “Better Telex in Gas Sales Administration” project.
As illustraied in Figure 11.6, this customisation is put on top of the generic Lotus
Notes work mode! described in Figure 11.3 and is indicated with the dotted ellipse
in the figure. In practice, more complexity specifications than Cyiomsed-tons-Netes gre
needed. °

As described in Section 8.2.4, the two basic data structures in Lotus Notes are view
and form. In the gas sales telex administration information system, several views
and forms exist. These twelve operations are offered to the users:

view_distribution list: Show a view of all the distribution lists. To simplify the
process of sending a telex to several receivers, disltribulion lists are made and
maintained. Each distribution list has a name and consists of several ad-
dressees. An addressee has a name, a felex number and possibly a Notes
address.

distribution_list_form: Open one particular distribution list.

view. user.profile: Show a view of all the user profiles. Each sender of telexes has
a user profile which contains his name, office nuunber, his reference and all the
companies he sends the telex on behalf of. If for example Statoil is an operator
of an area, then telexes may be sent on behalf of the other partners, e.g. Total,
Elf or Saga.

user_profile.form: Open one particular user profile.

5For example, the last two operations send.telex.internally or send telex.externally
in Qfuomsed.lobstiotes wil] yge the IPX.c/3 component. This may be specified by the
Cpgtmsed-Lotus-Nates complexity specification. When estimating these two operations, care should
be taken to also include the telex receipt.

178 Chapter 11. Application to a Workflow Computer System

view_mail list: Show a view of ali mail lists. For internal receivers, there is also a
mail list.

mail list_form: Open one particular mail list.

view_telex: Show a view of all telexes which are either incoming, sent, outgoing or
under work (Initially, there were three views for viewing telexes, discriminating
between incoming, sent and outgoing telexes. To be more user friendly, these
three views were concatenated into one view, which is termed view_telex.).

telex_form: Open one particular telex for editing,
store_telex _form: Store a telex which is sent.

show_stamp: Show the stamp on a telex. An electronic stamp is used for each
telex. This stamp contains the archive number, subject, status, sent date,
archive date, receiver, external copy to, internal copy to and receipts received.
Most often this stamp is invisible, with the exception that it is visible for an
archived telex and for a sent telex which is not archived.

send_telex_internally: Send a telex within the sales administration sector in Sta-
toil.

send_telex_externally: Send a telex outside of the sales administration sector in
Statoil.

Operations for changing and storing distribution list, user profiles and mail lists are
also needed, but if these lists are seldom changed, the corresponding operations may
be ignored in a coarse modelling. Below, the complexity specification for the link
from Customised_Lotus_Notes to Lotus_Notes is outlined:

open_view open_doc store.doc

view distribution list 1
distribution_list_form 1
view_user_profile 1
user_profile_form 1
view mail _list 1
CCustomised_I;osus_Notes — mm{l-h‘gt—fm’m 1
Latus_Notes view_telex 1
telex_form 1
store_telex_form 1
show _stamp 1
send_telex_internally 1
send_telez_externally | 1 1

As seen from this complexity specification, only a fraction of the elements in this
12x 3 matrix needs to be estimated. These approximate estimates should be replaced
by measurements as soon as possible.

11.5. Establish Components: Secretary Using Lotus Notes 179

Telex
secretary
Secretary Customised
desk comp. Lotus Notes

Figure 11.7: SP model which shows how the secretary and Lotus Notes are used.

11.5 Establish Components: Secretary Using Lo-
tus Notes

Figure 11.7 shows how Lotus Notes is used by the Telex.secretary in the Lotus
Notes solution. The Telex secretary also uses operations from Secretary._desk_comp,
in the same way as in the manual solution in Chapter 10. Telex_secretary uses
Customised Lotus.Notes asmemory and communication and Secretary.desk.comp
as processing. This is shown by the three links in Figure 11.7. Secretary.desk_comp
is used for processing because the secretary for example will type on the client.
Most of the Customised Lotus_Notes operations are memory operations. The
send_telex_ internally and send telex externally operations of Customised
Lotus_Notes are communication operations.

With the Lotus Notes solution, the secretary only has to type_charaters. Of course,
she will also nead to think and wiil also use herself as a storage system, but this
activity has not explicitly been modelled in the manual solution, and will therefore
not be explicitly modelled here either. The resulting complexity specification is
shown below: ¢

type_char
Telex _seervelary . in_telex 10
¢ [160

Seeretary_desk_comp ™ apd felex

When Lotus Notes is introduced in the organisation, paper-based workflow will stilt
be used during a transition period. However, this section only looks on the situation
when the secretary performs all the telex handling with the Lotus Notes selution.
If she still uses paper-based workflow, the resulting model will be a superset of this
model and the model for the paper-based solution in Section 10.2.

SThis complexity specification could of course be refined. 1t would for example be possibie
to break down the number of characters needed to perform each Lotus Notes command, e.g.
view distribution list and distributionlist_form.

180 Chapter 11. Application to a Workflow Computer System

As depicted in Figure 11.7, the Telex secretary will also use Lotus_Notes, Because
of all the Lotus Notes-operations, this complexity specification is divided in three.
The first part is shown below:

view_disir_list distr_list_form view_user.prefile user_profile.form

(,'f‘clc.r_accr\ﬂm'y . intelex 1 1 0 0
“ Custonused dotns Notes ! = pul_telex T4y T+y 0 0

Note that the user profile is not used during normal operation, but only when there
is a need to create new distribuiion lists. In Section 11.4, this was described as
not being of importance here. The parameter y in the complexity specification is
explained in Table 11.1. y measures the number of drafts which are transported
between the telex secretary and the contract specialist in the computerised solution.
If y increases with the computerised solution compared to z in $the manual solution,
this may mean that the (local) quality of the telexes is improved. With respect to
the {global} quality of work in the gas sales administration, this local improvement
in quality may not lead to global quality mmprovements (c.f. discussion of efficiency
and effectiveness in Section 2.4).

The mailing iists are used both for incoming and for cutgoing telexes. For outgoing
telexes, the iterations y also affect this second part of the complexity specification:

view.moil list mail list_ferm wlew felez telex_form
o Telexsecrctary . in.telex 1 1 1 1
Cusiomised_fLotus-Neles.2 7 gul_telex 1-+y l+‘y 14y 1+y

The stamp of the telex is referenced both for incoming and for outgoing telexes as
shown in the third and final part of the complexity specification below:

store.telex. form show_stamp send_telex_internally send_teles_esternally
o felezsceretary in.telex H 1 1 n

Gustonused.Lotus_Notes,.? — gpui_telex 14y T4y Y i

In this complexity specification, it is also indicated thas the telex needs to be stored.
Whereas an incoming telex only needs to send _telex_internally, an outgoing telex
only needs send_telex._externally.

11.6 FEwvaluate and Validate Static model for Com-
puterised Solution

Figure 11.8 shows an almost complete resource model for the manual and com-
puterised sclution. Note that the contract specialist is missing in the comput-
erised solution. This is because the work which was performed by the component

11.6. Ewvaluate and Validate Static model for Computerised Solutioni8l

Sales
administration
Contract Telex
specialist secretaty
Secretary Secretary Secretary
comms proc memory
Contract Secretary . Secretary Secretary Secretary
specialist bus copy Mail bus desk store
a) Manual telex solution
‘Felex
secretary
Customised
Lotus Notes
Lotus
Notes
0872 1PX OS82
Secre . .
e c“fgp_ Disk 3 CPU; Network ,, cPU, Disk,,

b) Computerised telex solution

Tigure 11.8: A “complete” SP model for {a) the manual and {b) the computerised
solution.

182 Chapter 11. Application to a Workflow Computer System

Contract_specialist in the manual sotution, is done by the network in the com-
puterised solution. The primary Secretary resource in Figure 10.7 is not shown in
Figure 11.8, because this resource was only necessary because the secretary actually
performed all the work of the primary resources in Figure 10.7.

A computerised version of DTees-seeretary iy Section 10.3.2, would answer the questions
in Section 10.1.5. To derive DTelezseeretary for the computerised solution we would
need complexity matrixes for all the components in Figure 11.8. Time was not
available to parameterise the whole computerised platform. The server components
Disks and CPUs were measured in Section 11.2. In addition, the Secretary Desk
component was estimated in Section 11.5. The client components Disk, and CPU,
and the network component Networky; and the operating system component 08/2
were not measured. The model which were parameterised in this thesis is shown in
Figure 11.9.

Sales
administration
Contract Telex
specialist secretary
Secretary Secretary Secretary
comms proc memory
Contract Seccretary , Sccretary Secretary Secretary
specialist bus copy Mail bus desk store
a) Manuatl telex solution
Telex
secretary
Customised
Lotus Notes
Lotus
Notes
Sccretary i
desk comp. Disk 3 CPU3

b) Computerised telex solution

Figure 11.9: The model which was parameterised for {a) the manual and (b) the
computerised solution.

11.6. Evaluate and Validate Static model for Computerised Solution183

11.6.1 Resource Demands for Computerised Solution

The resource demands for the computerised solution which was parameterised is
estimated in this section. It is necessary to replace the parameter name y by a
number. Table 11.1 below shows the average number which is used. In the rest
of this chapter, this number is used to calculate numeric estimates for resource
demands.

[Paramster | Value | Deseription of parameter I
Y 0.5 | Number of iterations of telex drafts between the contract
specialist and the secretary with the Lotus Notes solution.
{The symbol 2z was used for the same purpose in the
manual solution in Table 10.1 in Section 10.3.1.)

Table 11.1: Parameter representing average numbers for the Lotus Notes solution.

11.6.1.1 Resource Demands for Secretary as Desk

As a processor, the telex secretary types characters. The speed for the type_char
operations is estimated to 0.02 minutes per character. Compared to the type op-
eration in Section 10.3.1.3, which was for one page, this means that each page has
500 characters on the average. In the Gas Sales Telex Administration Case Study
the number of characters in sach page is estimated to be 1000 (c.[. Table 10.1 and
Section 4.6.1). type_char is a bit slower to take account of the think time for the
secretary when she switches between different windows.

‘DSccre:aryAdesk_cemp = type“Ch'aT [0.02 }

All the comments on multiprogramming and nonlinearity in Section 10.3.1.3 will
also apply to the type.char operation. Total resource demands for the secretary as
desk in the computerised solution will be:

DTei’ez_secrctary __ iTelez secretary D
Secretary-desk_comp — ' Secretary_desk.comp Secretary.desk_comp

DTe{cx_secrcmry . in.telex 10-0.02
Seerctary-desk-comp ™ oyt telex | 100-0.02

184 Chapter 11. Application to a Workflow Computer System

) Telex_secretary _in_telex 0.2
- Secretary..desh .comp ~ out_teler 2.0

11.6.1.2 Disk Server Resource Demands

Reading one sector on the disk is estimated to take 1 milliseconds, and writing one
sector is estimated to take 2 milliseconds. ¥ The service demand iz minutes will
therefore be:

D _ read-sector | A
Disk.3 — LT

write_seclor

This is a rough estimation which is sensitive to physical placements of files on the
disk and to the size of the files which are read and writien. For more accurate and
complex models of disks, see for example [RW94]. The resulting resource demands
on the disk server is:

Di"elex_secrctary . poTelen_secretary . (*Customised_Lotus Notes ~vlotus.Notes D
Disk.& = M Customised.Lotus.Notes Lotus_Notes # Digh 3 Disk_ 8

H [P, Fi- . Tetex_secretary .
An intermediate result is the matrix Cr 0 voes © below:

open_view open_doc store.doc

CTctc:LSccretary _ in.telex 3 5 2
Lotus_Notes out _telex 45 75 3

Using this intermediate result, and setting n = 2000 and s = 5 kB gives:

"Phese estimates are based on the equation:

Seek_time + Laotency
#_sectors

Service_demond = + Transfer_time

The size of a typical telex was 5 kB, With a secior size of 0.5 KB, # . sectors = 10} (remember 1
KB = 1024 bytes and 1 kK = 1000 bytes). Based on [Quad6], the seek time is estimated te be 9.5
ms for read and 11.0 ms for write, the average Jatency 5.6 ms and the transfer time 0.05 ms. This
gives for read Service.demand = i‘iﬂ')—""—ﬁ + 0.05 =~ 1.6 ms.

11.6. Evaluate and Validate Static model for Computerised Solution185

pTelee_Secretary _ in-telex | 1500 - ﬁ%ﬁ + 850 - gzl
Disk-3 out delex | 2200 - gysts + 1300 - mim

DTglez_Secretary - in_telex 0.06
Disk-5 out.telex | 0.09

11.6.1.3 CPU Resource Demands

The processor is estimated o execute 70 million instructions per second. 8 The
resuliing service demand per minute is:

— g ; [S
Deopy_s = mstmctwns[60-70 050 006]

The resulting resource demands on the CPU on the server is:

]')Tclﬁz_secremry . Telex_secretary Tustomised_Lotus.Notes . CLotus_Notcs
- cry.z

CPU.S = Y Customised.Lotus.Notes ' Lotus. Notes “Depu g

Using the intermediate result in Section 11.6.1.2 and setting » = 2000 and s = 5 kB
gives:

DTeIeI..Secretary — in.telex 540 - 70?50
cry.s out.teler | 800 - =55

DTelc:c-Secrctary _ in_telex 0.13
Cru-3 T out_telex | 0.19

8 owalski used the number 70 MIPS from the Dhrystone benchmark for the Pentium $0 MHz
CPU [Weid6] when converting the resource demand from the SPM/2 measurement tool to number
of instructions. Service demands for the CPU should be used with care if the actual CPU do not
scale with respect to the Dhrystone benchmark, for the workload in this case study. The Dhrystone
benchmark do for example not exercise 1/0 performance [Jai91}.

186 Chapter 11. Application to a Workflow Computer System

11.6.2 Total Resource Demands for Computerised Solution
The total resource demand for the computerised solution is:

Telez.secretary __ yTeler_secretary Telex_sccretary Telex_secretary
D - DSecrettzry_desk_comp + ‘DDisk_S + DCPU,S

[y Teles_secretary _ in_telex 0.4
out telex | 2.3

This means that with the model and parameters selecied, it takes 0.4 minutes to
handle an incoming telex, and 2.3 minutes to handle an outgoing telex. Most of this
time will be spend by the secretary using the user interface.

11.6.3 Performance Requirements Satisfied?

In Section 10.1.5, two performance requirements were formulated for the Gas Sales
TFelex Administration Case Study. The first performance requirement under present
workload was:

PG. RSai’es_Taiez.ArIministmtion < RSales_Tetca:ﬂdminislmtion
1" Computerised, Today, Normal Manual, Teday, Normal

The resource demand for the computerised solution was estimated above as in Sec-
tion 11.6.2:

[ySales. Telex. Administration, Yoday, Normal _ in.telex 0.4
Computerised T out.telex | 2.3

The resource demand for the telex secretary and the contract specialist in the manual
solution were estimated in Section 10.3.2 and 10.5.2 respectively. We have to add
them together to get the total resource demand for the manual telex administration:

DSates-TeieI_Administmtion . n_telex 3.6
Manual, Today,Normal - out_telex 30

11.6. Evaluate and Validate Static model for Computerised Solutionl87

In the parameterised model, some parts of the system in Figure 11.8 were not con-
sidered. The network and the client were omitied in the model as shown in the
parameterised model in Figure 11.9. I the omitted parts of the model, for exampie
replication in Section 11.3, were parameterised, the predicted response time would
mcrease. Since the largest response time in the computerised solution, 2.3 minutes,
is most sensitive to variations in Secretary_desk_comp, it is nevertheless reasonable
to assume performance requirement PS to be satisfied. Contention effects, i.e. when
resource demands are replaced by response times, may destroy performance require-
ment PE. Only further investigation of the omitted parts of the static model and a
more detailed contention model can give a better answer. This is further work.

Under expected future workload, performance requirement P& must hold. Since this
performance requirement is stricter, more information about the omitted parts of
the model is necessary before it is possible to say whether performance requirement
P€ holds or not.

Telex
secretary
Secretary Secretary Secretary
COMmMS proc memory
Secretary . Secre Secretary Secretary
copy Mait bus desk store

a) Manual telex solution

Lotus
Noptes
0s/2 PX Q§/2
Diskq CPU4q Networkc " CPU, Disk

b} Computerised telex solution

Figure 11.10: Comparing the {a) old mannal solution with (b) the new comput-
erised solution.

188 Chapter 11. Application to a Workflow Computer System

11.7 Similarities Between Manual and Comput-
erised Solutions

Figure 11.10 compares the manual with the computerised solution. To focus on
the essential difficulties, Figure 11.8 has been simplified as shown in Figare 11.10.
Compared to Figure 11.8, Figure 11.10 does not show the customised part of Lotus
Notes in Figure 11.6 and the human part of the computerised solution in Figure 11.7.

Alshough the manual and the computerised solutions are fairly equal there are some
differences:

e The server (i.e. the module 05/2;, Disks and CPU3)} is almost missing in the
manual solution. This is only imaginary since it is similar to the archives in
Statoll in Figure 10.3.

e The secretary performs some of the communication herself, namely the com-
munication whichk is internal to the sales telex administration sector. The
mail man is used for external communication in the manual solution. In the
computerised solution, all communication is performed with the (compiex)
network.

e Secretary.bus has a parallel in the bus in between Disks and CPU;, which is
not modelled explicitly in Figure 11.10 {b), and the local bus in the Network,s.

¢ Secretary_store is an (active) interface to storage. This is the same situation
as for the disk, which may seem to be the physical disk, but which in reality
also is the interface.

The operations walk, split, log, stamp, copy have no manual operation, and are
almost completely computerised. For the other operations, the manual operation is
commented on below:

Find_int: Stored in the name and address book. However, the telex secretary still
has to find the correct distribution lists and user profile in Lotus Notes.

Find_ext: Same comment as for Find_int.

Read: Most of this is still manual, but the time consuming job of handling incoming
receipts are no longer necessary.

Type: Because of cut and paste, less typing is necessary.

The saving with the computerised solution has to do with using cut and paste of
incoming telexes from external agents. Both in the manual and the computerised
solution, eld archived telexes produced internally can be reused. In addition, some

11.8. Generalisation of the Case Study 189

extra work must be performed in the computerised solution, e.g. understanding the
user interface and moving the cursor.

BPR principles cotld be nused to improve the performance even more. Some of the
secretary processes may for example be taken over by the confract specialists.

When only one secretary is using this application, no load-dependent effects need
to be taken into consideration, except for the other applications using the same
resources. For scaling up the case study, load dependent effects have {0 be investi-
pated.

11.8 Generalisation of the Case Study

The aim of this research is to investigate performance engineering of workflow sys-
tems. In this section we generalise the findings of the Gas Sales Telex Administration
Case Study. If we compare the resonrce model in Figure 10.7 with the process for
outgoing telexes in Figure 10.6, we realise that the Telex_secretary module in Fig-
ure 10.7 provides resources to the six subprocesses in Figure 10.6. Each of the six sub-
processes in Figure 10.6 uses the three modules Secretary comms, Secretary proc
and Secretary.memory in Figure 10.7. This is illustrated in Figure 11.11.

ase

workers stome
Y
4 NT N N y
Transport - Retype u Log the - Make telex Make p
from case the telex telex distribution copies . '?SI
worker . list elex
\. o o N " s\ v

H -.,. “'.‘ 3....' Yrer .‘,u “.ﬂ“u

: ", o .'"n. .-"" o c, .,u""“'

H)

H o ,..‘ ‘““‘.n .:::! :“‘. o,‘ ..

H .“‘ (T it o . e, "'o,

H " LA Try, taey

H ..“ Lt *y, ey,

: n". -t . ."o e g e,

H R S Rty v, 1, .

H .-::.-""“ “"' *, re e,
Secretary Secretary Secretary
comms proc memory

i Secretary Secretary Secretary Secretary
Mai copy desk bus store

Figure 11.11: Connecting the process model with the resource model in the man-
ual solution. The link between the PrM process model and the SP resource model
are indicated with dashed lines.

190 Chapter 11. Application to a Workflow Computer System

O?f;m stome!
4
{ L JL JL L L 1
lTranspcm: Retype Log the Make ielex Make Post J
frorn casc the teiex telex distribution capies 1elex
worker list

Figure 11.12: Only four subprocesses needed communication. Communication
was performed by the SP resource Secretary.comms.

The resources Secretary_comms, Secretary.proc and Secretary_memory in Fig-
we 11.11 represent specialised operations for the case worker with the specialised
task telex secretary. These specialised operations may be possible to generalise,
which is an area of further research.

The dashed licks in Figure 11.11 show the same complexity specifications as the
complexity specifications between the module Telex_secretary and the modules
Secretary_comms, Secretary.proc and Secretary.memory in Figure 10.7. These
complexity specifications are termed Csyreiary sommsr Csseretonpror. 3 Coereiars momory
and were described in Section 10.2.1.

In particular, the compiexity specification (‘gfff;;ﬁ;’fﬁgfm can be identified in Fig-
ure 11.11 as the dashed links to the module Secretary_comms, i.e. the links from
the subprocesses Transport for case worker, Log the telex, Make a telex dis-
tribution list and Post telex. This is illustrated in Figure 11.12. The complexity

P Telezsocrctary
specification Cggerary. comns 1S 2150 shown below:

send_drafl send_internal fetch_mail send_mail fetch.receipt

GTcleac_secrctary _ in_telex 0 1 i 0 0
Seeretary-comms — guf feler x 1 0 1 i

For the computerised solution, the six subprocesses in Figure 10.7 use the modules
Custemised Lotus_Notes and Secretary_desk.comp as illustrated in Figure 11,13,
Since each subprocess will use both the Secretary desk_comp resource and the
Customised. Lotus.Notes resource, links between these models are not shown in
the figure. As discussed In Section 11.7 the computerised solution performs much

11.9. Summary of Findings 191

the same tasks as the manual solution, e.g. communication in the computerised so-
lution is handled by the network. If the process in Figure 10.6 had been designed
with the computerised solution in mind it might have been revised, e.g. the Trans-
port_from_case_worker process could for example be ignored since it is now taken
care of by the network, and is no longer an explicit part of the solution,

a8

WOTKCTS stome

L

L/

L A N) A ¥ 4 AN

Transport Retype Logthe Make telex Make
from case the telex telex distribution copies Post
worker Tist telex

Customised
Lotus Notes

Lotus
Notes

VARV VAR

Secretary . .
desk comp. Disk 4 CPU4 thworkc " CPU, Disk .

Figure 11.13: Connecting the process model with the resource model in the com-
puterised solution. The links between the PrM subprocess model and the two SP
resources Secretary.desk comp and Customised.lotus Notes are not shown in
the figure. All the six subprocesses connect to each of the two resources.

11.9 Summary of Findings

This chapter has given an outline of a general model of the client-server past of
Lotus Notes. A work medel of the replication in Lotus Notes has been outlined.
Similarities in the work model of the computerised and in the manual solution were
identified. There i3 no overall validation in this chapter, because it is not possible
to validate a system which is under development.

Model structure is coarser here than in Chapter 1¢. This is because availability of
parameters and the amount of work mvolved made it harder to make a detailed

192 Chapter 11. Application to a Workflow Computer System

model. This illustrates two granularities for modelling human workflows.

All the interconnections between the several parts of the method resulted in a number
of iterative refinements of the models in this case study. This is in accordance with
the method outlined in Chapter 6.

In this case study, the number of details was quite high. Since several worlds also
were involved, the concept of several local realities was noticeable. Each local reality
would roughly correspond to one component in the SP model. If time had permitted,
it would have heen possible to make a more detailed model involving a larger number
of components (c.f. Figure 11.8}. It would also been possible to go further into the
different worlds involved. Making such a large model would require the support of
a tool integrating PPP and SP.

In the ideal case, general models presented in this chapter should have been sup-
plied by the software vendor, in this case the Lotus Notes vendor. These general
models would then serve as work model platforms and make work modelling during
development. easier.

Chapter 12

Conclusions and Further Work

This chapter sums up the perceived achievements of this work and points out aspects
which should be dealt with more extensively, giving directions for further work.

12.1 Major Contributions

The major achievements for each part of the contribution are described below.

A method for performance engineering of information systems is described, based on
the SP method. This is a step forward with respect to the state of the art in the field
of performance engineering of information sysiems.

As described in Section 5.3, the primary motivation for performance engineering
of information systems is to decrease the cost and risk of system development.
When performance engineering successfully angments information system develop-
ment, timely completed information systems which satisfy performance requirements
can be realised. Even though systematic performance engineering is not common
practice in information system development, current best practice shows that per-
formance engineering of software is possible, and cost effective for some systems, e.g.
the SPE method [Smi%)|. The method in this thesis represents an improvement of
the state of the art in the following respects:

Design description Easier interaction between the design description and the per-
formance model. This is demonstrated by annotating PrM models with perfor-
mance parameters, for example in the Blood Bank Case Study. The resource
concept in SP complements the process models and data models of common
CASE-tools, in this case the experimental CASE-tool PPP [GLWI1]l. Work
budgets are also more convenient during development than budgets in terms
of performance {c.f. Section 5.4.6}.

193

194 Chapter 12. Conclusions and Further Work

‘World concept In SP the world concept is made explicis, deepening the under-
standing of performance for large systems. The method is based on this
“world” concept. Two worlds of competence are needed in performance en-
gineering. Information system developers know details about the developed
application (but have often only superficial overview of the hardware and soft-
ware platform), and system architects have an overview of the total system
(including hardware and software platform, but often only superficial overview
of the application). Information system developers, with low performance en-
gineering competence, but with high information system competence, could
assist in doing performance engineering in the early phases of systems de-
velopment. In particular, such personnel could be instrumental in resource
annotation before professiona) performance engineers (e.g. systems architects)
eventualiy take over and detail the performance models based on the most
important parameters.

Hierarchies In SP it is easier to build hierarchies at a meaningful Jevel of abstrac-
tion (c.f. Section 6.2.1). Explicit platforms in SP is an example of a very
useful hierarchy level. Together with the hierarchies, the typing in SP {c.f.
Section 5.4.6) makes reuse more likely [Vet93].

Organisations It is quite easy to extend the PPP/SP method to organisations as
described in this thesis. For an information system, the focus on the organ-
isation is more important than for a software system. Therefore, this is an
information system performance engineering method and not only a software
performance engineering method.

The method is explored and Hlustrated with two case studies, the first focusing on
a transaction-oriented information system, and the second on workflow systems and
the organisation around a wotkflow system. The number of parameters in both case
studies was nof. too great. Both in the Blood Bank Case Study and in the Gas
Sajes Telex Administration Case Study the number of necessary parameters was in
the order of 100. The number of necessary parameters may be reduced after one
iteration of parameter capture and model projection. In both case studies it was
possible to make the model as accurate as needed.

An overall resource framework which integrates both human and computerised pro-
cesses and resources in the same framework has been developed.

An integrated approach to performance analysis of workflows in terms of throughput
and response time to satisly customer requirements is needed [VLP95]. The devel-
oped framework is promising and represents a path for further work. The framework
should make it easier to handle performance issues in workflow systems in a more
coherent way, as described in the paperiBSH94]. When humans and computer re-
sources are considered in the same system, tradeoffs between them become clearer.

For information processing, there is no fundamental difference between humans and
computer rescurces. Human and computerised processes can be modelled in the

12.2. Limitations and Further Work 195

same framework, if they belong to routine or template processes. More research
efforts are needed for ad-hoc workflows.

Some SP concepts are more readily understood after the introduction of human
resources, e.g. conununication as memory with low persistence (see Section 4.7.}.

12.2 Limitations and Further Work

For each part of the contribution, issues should be addressed in future work. For
performance engineering, these issues need more consideration:

s The SP tools should be integrated with the PPP tools. A fully integrated tool
should be built. Whereas the coupling between PrM and SP was implemented
by Opdahl {Opd92], the coupling between PhM and the data modelling in SP
needs more consideration.

More flexibility is also needed in the SP tool if it shall be heipful also in eatly
phases of system developmens. It should be possible to specify ADTs without
having to specify all the modules down to primary modules.

e Boundaries of the discussion of the method was described in the beginning
of Chapter 6. It should be investigated if aspects which have not received
thorough attention in the discussion calls for refinements in the method.

Concerning the integrating of human and computerised processes and resources,
issues for future work are:

e The 8P model shown in Figure 10.7 may be the beginning of a more general
model of case workers, because communication, processing and storage is the
only way of handling information. In a more general SP model, the processing
operations will be more complex and need more research. The typing rules in
SP need more investigation in the organisational worid.

¢ Administration of Lotus Notes performance may be problematic [Bru9s]. Fur-
ther work on the Lotus Notes modeiling in this thesis could provide part of a
solution to this problem. The same ideas should aiso be applicable to perfor-
mance problems in WWW servers.

¢ According to the FRISCO group {FRI95], little work has been done to assess
the effectiveness of information systems. Integration of this framework with
frameworks for other effectiveness criteria, both for information systems and
for organisations, may be one path o follow,

o Performance of the computerised izformation system will often set the bound-
aries for the solutions which may be selected at the organisational level {DS90],

196

Chapter 12, Conclusions and Further Work

and it is therefore important with an interaction between performance engi-
neering and BPR. Tools for monitoring performance arve especially important
for workflows crossing organisational boundaries [JLP*95]. This framework
needs to be extended more thoroughly into the organisation. A closer look on
BPR. and the principles governing BPR may be necessary.

To do BPR, one must know something about the intentions as described by
Yu [Yu94]. Krogstie has also modelled goals in the PPP framework [Kro95].
Yu's thesis models goal and softgoal relationships in addition to resource and
task relationships. It would be interesting to integraie these relationships into
the PPP/SP framework.

Appendices

197

Appendix A

Replication in Statoil

Server level 1

Server level 2

Server level 3

Figure A.1: Three server levels in Statoil

This chapter explains the replication used in Statoil at an overali level. Ineffective
replication scheduling is an often-underrated cause of suboptimal performance for
Lotus Notes [Yav34]. Point-to-point replication with every server would have been
an easy, but also a resource consuming way of doing replication. Instead, Statoil
uses hierarchic replication with three server levels. As depicted in Figure A1, each
server al server level 1 has servers at server level 2 as nodes, and servers at server
level 2 have nodes at server level 3.

A.1 Replication Plan

The replication plan in Statoil consists of three activities. The first and third activity
are hub-and-spoke replication and the second activity is point-to-point replication.

1This figure is not an SP model. An SP model represents logical structure of work, whereas this
model represents physical server structure.

199

200 Appendix A. Replication in Statoil

Hub-and-spoke replication is a structured, stable, and simple-to-maintain means of
performing replication [Sta93]. With hub-and-spoke replication, the hub initiates
replication with each node. A Notes huh is a server dedicated to routing mail and
replication databases to other Notes servers [Lot93aj. The servers to which a hub
connects are designated as “spokes” [Lot93al.

Activities 1 and 2 in the replication plan are perforined in parallel, foliowed by
activity 3 {Sta3]:

Activity I Server level 2 initialises replication with servers at server level 3, for one
server at server level 3 after the other. After the last server node is replicated,
the whole process is repeated but now in the opposite direction. This ensures
that changes in the servers at level 3 are distributed to all the other serves at
server level 3 with the same server level 2 hub.

Activity 2 All the servers at server level 1 are replicated with each other in a
chain, one by one. Finally, the last server in the chain is replicated with the
first server, which distributes all the changes between all servers at server level
1.

Activity 3 Server level 1 is replicated with server level 2 in the same way as in
activity 1 above.

When activity 3 is finished, activities I and 2 start in an endless loop. Activity
I and activity 2 each takes 3 hours, including 6.5 hours for extra point-to-point
replications. Since the maximum number of nodes for each hub is 10, this leaves 15
minutes for each node to replicate in both directions (10- 15 minutes = 150 minutes
= 2.5 hours).

Since each activity takes 3 hours, and activities 1 and 2 are performed in paraliel,
the complete replication plan with activity 1, 2, and 3 takes 6 hours. When this
replication plan is repeated 2.5 times (i.e. activity (1 and 2), 3, (1 and 2), 3, and, {1
and 2)), changes in every server is propagated to all the other servers in the network.
Hence, it will take maximum 15 hours (2.5 - 6 = 15) before changes in one server is

distributed to all the other servers.

This simple hub-and-spoke replication may be extended with some other means of
replication:

Point-to-point replication As arule of thumb, if a database is needed in only one
or two servers, point-to-point replication should be used [Sta93]. Otherwise,
the replication plan sketched above can be used, or the replication to level
2 only below.

Replication to server level 2 only I a database is needed only in a few offices,
it might be sufficient to replicate it to server level 2 instead of all the way up
to server level 1.

A.2. Network Service Classes 201

Server A Server B
Server AA Server AR Server AC Server AD Server AE

Figure A.2: Crossreplication between two Server A and Server B.

Crossreplication If the load on one server becomes too large, the server can be
extended with one more server as depicted in Figure A.2 where Server A is
extended with Server B. Thus, the load on Server A is reduced, because Server
B takes responsibility for Server AD and Server AE which previously beionged
to server A.

To determine the order of replication, three priorities are used [Sta93]:

Low Used for databases which should be replicated to every server at server level 1.
Medium For crossreplication at server level 2,

High Not used now, but might be used for crossreplication at server level 3.

Server connections for replication and remote mail routing are determined by con-
nection documents in the name and address book. Network connection documents
are for servers in the same network and the same domain and remote connection
documents are for servers in different networks or different domains [Lot33a).

A.2 Network Service Classes

The capacity of networks differ, so Statoil distinguishes hetween three service lev-
els [Sta93]:

Service level 1 Full WAN (wide area networks} connection with 64 kbps or higher
capacity (1 kbps = 1000 bits per second). Since LANs (local area networks)
offer higher capacity than WANs, LANs are also included here. Typical ca-
pacities for L ANs and WANs respectively are:

LAN maximum capacity in the 1) Mbps area. More specifically, Fthernet
has a maximum capacity of 1) Mbps, the Token ring has a maximum
capacity 4 Mbps and 16 Mbps and FDDI has a maxinmun capacity of 100
Mbps.

202 Appendix A. Replication in Statoil

WAN The national telecommunication agency delivers capacity in 64 kbps
increments, e.g. 256 kbps and 384 kbps.

Service level 2 Full WAN connection, with less than 64 kbps capacity.

Service level 3 No WAN connection, with less than 84 kbps capacity. Typically
this is a dial-up communication, e.g. 9600 bps to Warsaw.

With service level 2, it is useful to have more local databases than with service
level 1. All databases miust reside locally with service level 3.

A.3 Email Transport

Emails in Statoil need faster transport than replicated databases. If the receiver
server al server level 3 is a node of the same server level 2 hub as the sender server at
server level 3, point-to-point routing between these servers is used. But if the receiver
server is controlled by another server levet 2 huh, three point-to-point routings are
used to transport the email [Sta03}:

Routing 1 From the server level 3 sender server to the server level 2 hub.

Routing 2 Between the sender hub at server level 2 and the receiver hub at server
level 2.

Routing 3 From the receiver hub at server level 2 to the receiver server at server
level 3.

This approach is depicied in Figure A.3. No hub needs to take care of other emails
than the emails which are local to this hub, thereby reducing the server workload
and simplifying cosl estimation.

Routing 2
Server level 2 Hub A Hub B
Routing 1 Routing 3
Server level 3 Node A Node B

Figure A.3: Email transport between two server level 3 server nodes with different
server level 2 hubs, consisting of three routings.

Appendix B

The Experimental CASE
Tool PPP

To show how these solutions can he exploited for the PPP {Phenomena, Process,
Program) approach we will specify how they can be included in the PPP CASE tool.
The revised version of PPP is under developmens and thus, the features suggested
in this work are not yet implemented.

The PPP approack comprises a set of languages, methods and tools to support
information systems development, from initial problem description and requirements
specification to implementation and maintenance. This section presents the PPP
languages and the implementation of the PPP CASE tool.

This chapter i¢ mere or less directly copied from Seltveit’s thesis [Seld4] with her
PETIMISSION.

B.1 PPP Languages

PPP languages are: Phenomenon Language (PhM) [Sg79, Se80, Opd88, Yan93),
Process Language (PrM) [BC86, Opd88, GLWY1] and Process Life Description
(PLD} [Wil93]. The basic constructs of the PPP languages are adopted from well-
known and widely used modelling languages. PhM is an extended ER language
and describes the static aspects of the UoD. PrM and PLD describe the dynaric
aspects and are based on Structured Analysis [GS77, deM78] and graphical program
specification [Tri88], respectively.

203

204 Appendix B. The Experimental CASE Tool PPP

JTREAL . ¢ RBAL
- . . . &,
price weight ey
an att name | aft
{4 Fon | [consi f] Processing
L% — t1 Lo ooy, LUnit

f.t

. Donsisls——ofl
Bty £
f._l';'\ “fn
“STRING et —| Paid | e LT pipe M NTEOEE:
P - p.l . - in pumber -

component
flow a

Compressor

LA £ 1) i1

Figure B.1: An example of a PhM model.

B.1.1 PhM

PhM (Phenomenon Modeiling Language) is an extension of the traditional Entity-
Relationship language. The basic modelling constructs of PhM are: entity classes,
relationship classes, attribute relations and data types. PhM distinguishes between
data entities and non-data entities. The non-data entities describe real world chjects
whereas the data entities describe the informational counterparts, t.e., information
ahout the real world cbiects. Anr example of & PhM model is shown in Figure B.1 and
as we see, the graphical notation is slightly different from traditional ER notation.

Entity classes, relationship classes and cardinality constraints have the same mean-
ing as in the ER. To increase the expressive power, the PhM contains the foi-
lowing extensions compared to the traditional ER: attribute relations, relation-
ship constraints, generalisation/specialisation hierarchies, conceptual views and a
PhM algebra. For more comprehensive descriptions, the interested reader is referred
to [Se77a, S¢79, Su80, Opd8s, Yan93).

An attribute relation links a data type to an entity. Attribute relations are clas-
sified into four types {SK93):

o Identifier which uniquely determines instances of an ensity class {denoted id}.

e Attribute which is used to denote single-value properties to instances of classes
(denoted att).

» Repeating group which is used to denote multiple-value properties to instances
of classes (denoted rep).

o Quality which is used to denote properties that are characteristic of a class
rather than of the elements of the class (denoted qual).

B.1. PPP Languages 205

A relationship constraints specifies if an entity class participates fully or partially
ir a relationship. An entity class relaies fully (denoted f) in a relationship if all
the instances of the entity ciass participate in the relationship; otherwise it relates
partially (denoted p) in the relationship.

Generalisation is supported through the subclass concept {denoted S). An entity
class may have several subclasses. All the members of a subclass are also members
of the subclass’ superclass and they inherit all the properties of the superclass.

Conceptual views' are introduced to allow definition of different views of a domain,
i.e., each conceptual view consists of a collection of entity classes, relationship classes,
etc. They can be used in a similar manner as how SQL views [Dat86] are used to
define various views of an SQL application. A PhM mode} can thus be extended or
modified by adding new conceptual views. By providing an algebra, extensions of
the model can be done by defining new components, e.g., entity classes, in terms of
already defined components.

The ONE-R algebra is developed by M. Yang [Yan93]. It is based on relational
algebra but it is extended t¢ manipulate components in a PhM model. The ONE-
R algebra provides the following operators: union, difference, product, selection,
projection, reduction, nest, unnest, pack, uapack, join, natural join, relationship
join and packed retationship join.

B.1.2 PrM

PrM (Process Modelling Language) is based on the process language of the PPP
language, and is an extension of regular DFDs {GSTT]. It specifies processes and
their interaction in a formal way. The interaction hetween processes is modelled
using the concept of flows. PrM specifications imclude the interactions between
processes at the same level of abstraction, as well as how processes at any level
of abstraction relate to their parent process and their decompositions. The basic
modelling concepts of PrM are: processes, data stores, external agents, flows, ports,
buffers, items, resources and timers. An example of a PrM model is shown in
Figures B.2 and B.3.

The concepts of process, external agent, data store, and daia flow have the same
meaning as in the traditional DFD. The external agent in PrM corresponds to the
source/sink concept (i.e., external entity) in DFD. To increase the expressive power,
PrM contains some extensions compared to DFDs. For more detailed descriptions
of PrM, see [BC8G, Opd88, GLW91].

A flow is modelled as a channel carrying ifems. Items are the objects stored in
stores, sent or received by external agents and carried by flows. The concept of flow

LA conceptual view was initially called a scenario [S#77h).

206 Appendix B. The Experimental CASE Tool PPP

Trggering flow
forE e
. H Simulation
il : T Oil iSystcm
Company Process
Design T
............... Design Basis Externat agent

Process

Non-triggering flow Design Basis

Store

TFigure B.2: Top-level PrM model for oi} processing design.

. Process Sketch
A

Scparator
Conditions

Ui

] OkSigal T

£1.2

Design Basis

m Design Ba;{;_

Product Spee.,
Wellhead Data

T

P13

[Choose

o]

= |'Wellhcad
timation

s isisisne !

Design Basis

Weilhead
Estimates]

Separator
Condition

—

T

Separator
ondition

Compressor
Conditions

P14

"1 Choose

Simulation
System

Compressor

i Compres.

Conditions

...} Condition
| O

Figure B.3: Decomposed PrM model for oil processing design including ports.

B.1. PPP Languages 207

is extended to denote material flow as well as dataflow. * No distinction is made
between flows carrying data and flows carrying material. Furthermore, flow may be
Iriggering or non-triggering. Triggering flows determine when a process should be
considered for firing. A process is triggered when the items on its triggering flows
have arrived. Triggering of a process impHes that a process instance is created. A
trigger may be triggered one or more times and each time a new process instance
is created. Triggering flows are depicted in the diagrams by a T in the processes
where the flow ends. Triggering and non-triggering items may be buffered upon
arrival at a process ciass if there is no process instance to consume them. Such
items are stored in a buffer. Items, buffers and resources are not depicted in a
diagram. Terminating flows indicate the termination of a process’ execution, and
are depicted in the diagrams by a T in the processes where the flow starts.

A resource contains items that are necessary for a process to run. A resource may be
connected to several processes and items are retrieved and returned by the processes.
Resources are diagrammatically depicted by a circle with the resource name written
inside.

The concept of store is extended to denote a material store as well as a date store.
Stores denote abstractions of repositories of information and material.

A port is a graphical formalism for expressing logical relations between input flows
{and output flows, respectively) of processes. A process can have one or more input
ports and one or more output ports. Ports define the set of valid combinations of
input flows and output flows which will make up a process instance. Ports can be
classified into three types (the graphical notation is depicted in Figure B.4):

e Ploin ports (AND, OR and XOR) depict that the items on the flows enter the
process once only, i.e., i one ‘hateh’. The meaning of the ports:

— An AND port depicts a logical AND relation between the flows.
— An OR port depicts a logical OR relation between the flows.
— An XOR. port depicts a logical XOR relation hetween the flows.

o Repeating ports (REP) depict that the items on the flows enter the process one
or more times, L.e., in one or more ‘hatches’.

s Conditional ports (COND) depict that the items on the flows may enter the
process once, but only if the condition that applies is satisfied.

The different ports can be used isolated or nested to form composite ports. An
examnple of the former is shown in Figure B.5. The process has 4 possibilities:
‘arrivals on a’, ‘arrivals on b’, ‘departures on ¢’ and ‘departures on d'. The process
has two possible (valid) input combinations, either ‘arrival on a’ or ‘arrival on b’ hut
only one valid output possibility, namely ‘arrival on ¢ and d’.

?Real-world modefling in PPP is still a research topic. Decomposition of material flows is for
example investigated in [0594].

208 Appendix B. The Experimental CASE Tool PPP

AND OR XOR COND REP

Figure B.4: Port symbols of PrM.

0)
a ¢ .
rrrrar——r——————.
—————————ee =
b d
- W,

Figure B.5: A simple port example.

An example of how composite ports can be used is shown in Figure B.6. The
process has 7 possibilities: ‘arrivals on a’, ‘arrivals on b', ‘arrivals on ¢, ‘arrivals
on d', ‘departures on ¢, ‘departures on {” and ‘departures on g'. There are three
possible input combinations: (b) (i.e., one b flow), (a, b) (i.e., one a flow, one b flow)
and {c, d) and three possible output combinations: (e, f, g}, (e, g) and {f, g). This
vields a total of 9 acceptable flow combinations for the process as a whole.

e
==
b = f
[
o
g

Figure B.G: A small composite port example.

Timers are either clocks or delays. Clocks are used to model events thas are to occur
at a specific moment in time. Delays are used to model events thai are delayed a
certain time interval and are specified relative to the occurrence of a flow.

In addition to PrM, an overview facility called Process Hierarchy (PH) is also pro-
vided. A PH is introduced to represent hierarchical relationships between processes
and their decompositions. No ordering is implied in the diagram. Each non-leaf
node of a PH is described by a PrM. Figure B.7 shows the PH generated from the
PriMs of Figures B.2 and B.3. Processes on higher levels of abstraction are pictured
'higher up’ in the Process Hierarchy. It should be noted that each process in PrM
is allowed to be represented by only one icon in the PH.

B.1. PPP Languages 209

P12 1.3

Choose
Separator
Condition

Choose
Compres.
Condition

Welihead
Estimation

Figure B.7: An example Process Hierarchy.

A complete PH for a given instance of a process model shows all the processes in the
corresponding PrMs, ie., all processes at all levels of decomposition. For some ap-
plications, the number of processes way grow large and it may appear useful to split
the PH into several smaller PHs, each depicting a limited part of the decomposition
hierarchy.

B.1.3 PLD

PLI (Process Life Description) is a procedural language and it is used to describe
the process logic of non-decomposed processes. Constructs of PLD are;

e Start: indicate beginning of a PLI) specification

» Receive: receive dataflow

¢ Send: send dataflow

s Assignment: symbolise a block of program statements or a subprogram cail
o Selection: IF-test

e Loops: FOR and WHILE-loops

An example of a PLD specification of process P1.3 Choose_Separator_Conditionin
Figure B.3 is shown in Figure B.8. When the ports are designed in a PPP diagram,
the skeleton of PLD is generated automatically, taking care of the reception and
sending of data. Further design details can then be added. For & detailed description
of PLD, see [Wil93].

210 Appendix B. The Experimental CASE Tool PPP

=

Reeeive
change request
from Sionlation_System:

I elettion

compressioa_tonditions, ok ! ehe |

Seod separator_cooditions > Sm; " 1oz_condiions >

to Process,_wkelc 0 Chacté_Compressos
Soditien™
Recrive

mpreisor conditions
Mrous Chooss, Cotapressor_

ion, condid _aki elee Send szparator, conditiont
o i o Process_gkelch:

Send
Send weparater_cooditiont seprator_conditions
1o Proctss_theich:

' Beccive

EScnd-oommm g
Send separator_comditions
etch:

Figure B.8: An example of a PLD specification,

B.2 PPP CASE Tool

A revised version of a prototype CASE tool environment for PPP is under de-
velopment. Compared with the previous version [GLW®1], new features such as
explanation generation, performance evalunation, and complexity reduction wiil be
provided. A graphical representation of the current PPP implementation is presented
in Figure B.9, the various components of which we will detail by first describing the
purpose of each module and secondly how each module is implemented.

B.2.1 Purpose of Modules

¢ Modelling editors serve to allow the creation and checking of the concep-
tual and design level models of the application being developed. The editors
facilitate creation, retrieval, modification, deletion and storage of models rep-
resented in PhM, PrM and PLD.

e PPP repository holds a copy of the conceptual and design maodels in a
database, allowing access to the information through a versioning facility.

e Analysis support provides verification and validation support. Verification
includes syntax checking and checking of semantics of PPP models. Validation
includes translation of PPP models to executable prototypes.

+ Explanation facility provides means to explain phenomena represented in
conceptual models. The explanation generation facility for PPP offers the user

B.2.

PPP CASE Tool 211

e e
User interfece cditor
R,
Document design
Fxplanation facility SRR
Runtime gencration

Axnalysis suppornt

PPP Modelling Tools

Loczl PPP Repoaitory Global PPP Repository
Y
Versionisg control Vessioning conbrol
ODBC ODRBC
o

Figure B.9: Implementation architecture of the PPP CASE tool.

a set of questions to be asked to increase their understanding. It can also take

mto account user characteristics and the context in which the questions are
asked.

User interface editor serves to allow the creation and checking of static and
dynamic aspects of user mterfaces of the application heing developed. It is
basged on the features offered by graphical user interface technology.

Document design serves to allow the creation and storage of documents with
specific formats, e.g., reports, forms and sheets.

Runtime generation support provides support for the generation of the
run time system as well as for the execution of systems developed using the
PPP approach.

Sybase is the RDBMS used by any application built by the PPP tools when
it, is executed on the PPP runtime system.

B.2.2 Implementation of the Modules

The prototype is heing developed o SUN Sparc workstations which run UNIX So-
laris 2.3. C++ is used as the implementation language for most of the functional

212 Appendix B. The Experimental CASE Tool PPP

features. Exceptions are some of the modules which are already implemented sepa-
rately in BIM-Prolog and are included in the new version of the PPP tool by using
the C++/Prolog interface. The user interface is built using the commercial user
interface packages Interviews and Unidraw. All the services provided by the varl-
ous modules described below are accessed through this common user interface. The
following list gives a brief description of the implementation of each module. The
communication between modules is made using the local PPP repository.

¢ Modelling editors including the document design editor are built using
Interviews, Unidraw, and C+4-+. Interviews and Unidraw provide the graph-
ical primitives necessary for building a graphical and form based CASE ool
and is coupled with the PPP repository which acts as the persistent storage
mechanism for the tools when in use.

¢ PPP repository holds a copy of the conceptual and design models in a
database, allowing access to the information through a versioning facility.
The repository also provides the means for integrating the various PPP tools
through data sharing. The storage structure (also called the PPP repository
structure) is partly® derived from the PPP meta-model.

¢ Analysis support provides verification and validation support. Verification
is to be provided as an integral part of the modelling editors. The user can
choose the target language for the generation of executable prototypes.

¢ Explanation facility is implemented using Bim-Prolog.
s User interface editor is implemented using Interviews and Unidraw.

s Sybase is a commercial RDBMS which is used without modification as the
RDBMS in the PPP (for both development as welt as for the rungime system).

3The PPP repository structure must also convey some additional information about adminis-
trative matters, efc.

List of Figures

1.1

21

2.2
2.3

2.4
2.8

2.6
2.7

3.1
3.2

3.3
3.4
3.5
3.6

3.7
3.8

4.1

4.2
4.3

4.4

Schematic relation between three performance engineering theses in
the Information Systems Group. 2

Top level biood bank model. These four information subsystems can

be decomposed into 34 processes [Flgd1l L. 6
The manual transfusion process in the biood bank organisation. . .. 7
The transfusion process in the blood bank as it was implemented.

Manual processes are indicated by boldface process symbols. 8
Basic framework for performance engineering in workflow organisa-

tions. The legend isin Figure 25, 10
Legend for the basic framework in Figure 24. 11
The structure of this thesis in terms of Figure 2.4., 11
A sketch of the resources needed for earlier prediction of potential

problems. The legend is in Figure 25. 12

W gives workload on the system, S, with the resulting performance P. 15
Both the small system and the large system have a workload. The
workload on the small system belongs to the large system. 16
Two feedback loops causing problems for workload characterisation. . 17
An “nformation system” which does not take (hardware) resources
into accouns in contrast to a “holistic” performance system where all

the resowrces are included in the system. 18
An example of a simple open queueing network. This queueing net-

work represents a CPU and three disks as a queue centres. 20
A graph of the relation R=7%;. 21
AsimplePetrinet.o o 22
The performance modelling cycle [LZGS84]. 24

Type of resources used by an application. At the bottom, the re-
sources are physical and concrete like memory, CPU or disk. Higher
in the resource hierarchy, the resources are abstract. Not visible in
this figure is the organisation which uses the application. 26
SP model for asecretary. 0 oo 27
Framework for performance engineering of computerised information
systems. The legend for this framework is shown in Figure 2.5 in

Section 2.2. e e 28
Work is always related to the use of operations at a given abstraction
level. e 28

213

214

LIST OF FIGURES

4.6

4.7
4.8
4.9
4.10

4.11
4.12
4.13

4.14
4.15
4.16

437
4.18

9.3
5.4
5.8
5.6
5.7
58
59

6.1

6.2

6.3

6.4
6.5

6.6

Combining a work mode}, a load model and a contention model gives

a performance model [Vet93,. L. 29
Work complexity is a matrix showing the relation between two levels

of operation. Lo 30
Fach class represents one way of using the operations of a system. . . 33
Hierarchical performance modelting [Hug95, p. 40). 36
The virtual machine processes information with some operations. . . 37
The outer process invokes an operation on the virtual machine and

an jnner processisstarted. L oL oL L. L 38
An abstract data type and adatamodel. L. 38
A module specification with data models., 38

SP model for a secretary. Links between components are typed. Pro-
cessing operations have solid lines, memory operations have bold lines

and communication operations have dotted Hnes. 41
Digerimination in 8P. L oo 43
The non-distributed rodule A uses the submodules B for storage and

the submodule C for processing. 43
The module A is distributed. 0oL 43
A cHent-server architecture. L. 43
A variant of the client-server architecture. 43
The waterfali model of the software lifecycle [Boe81}. 49
The complementary functional and performance prototypes may be

driven by a prototype interactor. 51
The spiral model [Boe88]. 52
The PPP method [GLWOL]. 54
Software execution models are used to model software, while system

execution models model hardware. 0 oL 000 a7
The SPE method [Smi®0). L. 59
Example of a software process architecture [RS951. 51

The overall COMPLEMENT process model {Adapted from [CYT*92]). 62
The process model] must be annotated with workload intensities, branch-
ing probabilities and resource demands. oL oL 64

Relation between information system development and performance

ENZINEETINE. . . . v v v v o e 72
Different roles give different types of parameters as illustrated by the
broken lines. Roles are emphasised. 77
In (a) the platform model is inside of the application model, whereas
in (b) the platform model is outside of the application model. 79
An example of a platform model in the Blood Bank Case Study. . . . 80

Budgets guide the design process. If the budgets predict inadequate
performance, this may be cured by refinements in the design deserip-
tion, or relaxed (performance) requirements. The names on the links
in this figures are more detailed than to the link names in Figare 6.1,
e.g. the link “Guide system development” in Figure 6.1 will at least
contain the link “Budgets” in this figure, 81
Decomposition of a module in the SP language and the DFD language. 83

LIST OF FIGURES 215

6.7
7.1

7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9
8.10

9.1

9.2

9.3

9.4

9.5

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8

11.1
11.2
11.3
11.4
11.5
11.6

There will be several DFD processes within an SP modute. 84

An overview of the workload and resources used by the bhiood bank

application. 93
PrM output port connectives for the fetch info process 98
Resources used by the fetch info process.. 160
SP model for the Blood Bank Case Study 101
Leavitt’s diamond for organisational change. 110
Social construction in an organisation [Gje93, Kro95). 112
Comparing approaches to organisational change [PR95]. 115
An example of asimple workflow. 119
Levels of abstraction in operating systems [Den92]. 123
The Input/Process/Output paradigm. 123
The speech act based paradigm paradigm {Adapted from [MMWFF92].

The workflow loop is copyright of Action Technology.). 124
The Workflow Reference Model shows how five subsystems mteropez—

ate with the Workflow Enactment Service [Coal]. 125
Basic elementsof aform. L 126
A view lists several fields for each form. This view is sorted on the

date field. 127

An organisation maust at least eonsist of the individual level, the group
level and the organisational level illustrated in the 5P modelling style. 130
The framework for performance engmeering in workflow organisa-
tions. The legend for this framework is shown in Figure 2.5 in Sec-

tion 2.2, . L. L e 131
The workflows in the blood bank and in the Gas Sales Telex Admin-

istration Case Study differ in degree of determinism.. 134
Three principles of work shifting: (a) delegation, {b) resource fswmch—

ing and (¢) empowerment. L oo L 136
Internal architecture of a workflow system. 138
Distinction between three relevant systems 141
Contract coordination process. 143
Rudimentary SP diagram for the Statoil organisation 144
Rudimentary SP diagram for the sales administration sector. 144
Process for incoming telexes. Lo oL 148
Process for outgoing telexes. L 148
SP model for the present telex handling by the telex secretary. 149
Rudimentary SP model for the present handling by the contract spe-

clalishs. . .« .. e 163
Three server levels in Statoil o oL, 171
Separate parts of Lotus Notes modelling 172
SP model for Lotus Notes 173
The SP model measured by Kowalski 174
Replication architecture for Lotus Notes. 17

Simplified, customised Lotus Notes model. 177

216 LIST OF FIGURES

11.7 5P model which shows how the secretary and Lotus Notes are used. . 179
11.8 A “complete” SP model for (a) the manual and {b} the computerised

solublon. e 181
11.9 The model which was parameterised for (a) the manual and (b) the

computerised solution. o 0oL 182
11.10Comparing the (a) old manual solution with {b) the new computerised

soludlon. 187

11.11Conmecting the process model with the resource model in the man-
ual solution. The link between the PrM process model and the SP

resource model are indicated with dashed lines., ..., 189
11.120nly four subprocesses needed communication. Communication was
performed by the SP resource Secretary.comms. 190

11.13Connecting the process model with the resource model in the comput-
erised solution. The links between the PrM subprocess model and the
two SP resources Secretary_desk_comp and Customised.Lotus Notes
are not shown in the figure. All the six subprocesses connect to each

of the two resources. L e 191
A1 Three server levels in Statoi} L. 199
A2 Crossreplication between two Server A and Server B. 20
A.3 Email transport between two server level 3 server nodes with different

server level 2 hubs, consisting of three routings. 202
B.l Anexampleofa PhMmodel. L. 204
B.2 Top-level PrM model for oil processing design. 206
B.3 Decomposed Prid model for oil processing design inciuding ports. . . 206
B4 Portsymbolsof PvM. oo o 208
B.S Asimpleportexample. o0 oo Lo 208
B.6 A small composite port example. L L L. 208
B.7 An example Process Hievarchy. 209
B.8 An example of a PLD specification. 210

B.9 Implementation architecture of the PPP CASE tool.. 211

List of Tables

0.1 A brief outline of thethesis. vii
5.1 Taxonomy of approaches to performance engineering. 66
6.1 Overall method. 71
6.2 Static model method.o oL 76
10.1 Parameters representing average numbers for the manual solution. . . 157

11.1 Parameter representing average numbers for the Lotus Notes solution. 183

217

218 LIST OF TABLES

Bibliography

(ABSS]

[Abbo4]

(ABCSS]

[ABSO1]

[ACO2]

. [Ale86]

[AMGO5]

[Amim92)

[And94]

[AWS91]

Reda A. Ammar and Taylor L. Booth. Software Optimization Using
User Models. IEEE Transactions on Systems, Man, and Cybernetics,
18(4):552 - 560, July/August 1988.

Kenneth R. Abbott. Experiences with Workflow Management: Issues
for the Next Generation. In Proceedings Conference on Computer-
Supported Cooperative Werk (CSCW *94). ACM, Gctober 1994,

M. Ajmone Marsan, G. Balbo, and G Conte. Performance Models
of Muliiprocessor Systems. MIT press, Cambridge, Massachusetts,
second edition, 1988.

Rudolf Andresen, Janis Bubenko jr., and Arne Selvherg, editors. Ad-
vanced Information Systems Engineering, Trondheim, Norway, May
1991. Springer-Verlag. 3th International Conference, CAISE 01,

Sandra Ayache and Eric Conquet. Integration of Performance Speci-
fication and Evaluation in System Development Life-cycle. Technical
report, Matra Marconi Space France, 1992,

Charles 'T. Alexander. Performance Engineering: Various Techniques
and Tools. In Proc. CMG 86, pages 264 - 267, 1986.

G. Alonso, C. Mohan, and R. Ginthdr, Exotica/FMQM: A Persistent
Message-Based Architecture for Distributed Workflow Management.
In [SKS595], pages 1 - 18, 1995.

R.A. Ammar. Experimental-Analytical Approach to Derive Software
Performance. Informaiion and Software Technology, 34(4):229 — 238,
April 1992.

Rudolf Andersen. A Configuration Management Approach for Sup-
porting Cooperative Information System Development. PhD thesis,
The University of Trondheim, The Norwegian Institute of Technol-
ogy, 1994,

R.A. Ammar, J. Wang, and H.A. Sholl. Graphic Modelling Technique
for Software Execution Time Estimation. Information and Saftware
Technology, 33(2):151 -156, March 1991.

219

220

BIBLIOGRAPHY

[Bar89)

[BC86)

[BUSY]

[Beig9]

[Bel87!

[Bes’8]

[BF87a)

[BFS7h]

(BGo2)

[BGHSOL]

[BI90]

[Bir79)

[BMW3S]

BOg1|

[Boe&1]

Eric Barber. The Process Interaction Tool User Guide. Document
IMSE R-5.1-3, STC ple, 1989, (V 5 : February 1991).

5. Berdal and Steinar Carlsen. PIP : Processes Interfaced through
Ports. Master’s thesis, IDT, NTH, Trondheim, Norway, 1986.
DAISEE, Working Paper No 56.

E. Beslmiiller and D.W. Conrath. The OSSAD Methodology. FSPRIT
89 Conference Proceedings, pages 865 ~ 877, December 1989.

Heinz Beilner. Structured Modelling - Hetrogeneous Modelling. Proc.
European Simulation Multiconference, 1989,

T Bell. Performance Engineering: Doing it "Later™ on Large
Projects. CMG Transactions, pages 75 — 81, winter 1987,

Eduard Beslmiiller. Office Modelling Based on Petri Nets. In ESPRIT
‘88, pages 977 — 987. North-Holland, 1988. Part 2.

H Beilner and Stewing F.J. Concepts and Techniques of the Perfor-
mance Modelling Tool, HIT. Proceedings of the European Simulotion
Multiconference ESM'87, 1987.

T.E. Bell and A.M. Falk. Performance Engineering: Some Lessons
From the Trenches. In Proc, CMG 87, pages 549 — 552, Dec. 1987.

Susanne Badtker and Joan Greenbaum. Gender, Information Tech-
rology and the Design of Office Systems. In Design of Information
Systems: Things versus People. Falmer Press, 1992. Editors: Green,
E., Owen, J. and Pain, D.

Gordon Bilair, John Gallagher, David Butchison, and Doug Shepherd.
Object-Oriented Languages, Systems and Applications. Pitman Pub-
Hshing, 1991.

Eric Ole Barber and Peter H. Hughes. The Evolution of the Process
Interaction Tool. In Proceedings of the 17th Association of Simula
Users Annual Conference, Pilsen, Czechoslovakia, August 1990.

G.M. Birtwistle. Discrete Fvent Modelling on Simula. Macmillan,
1979,

H. Beilner, J. Maeter, and N. Weissenberg. Towards a Performance
Modelling Environment: News on HIT. Proceedings of the 4th Inter-
national Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, 1988.

Gunnar Brataas and Andreas Lothe Opdahl. Deriving Workload Mod-
els of Projected Software: A Case Study. IMSE Project report R6.6 -
9, SINTEF {(University of Trondheim}, July 1991. Version 1.

Barry W. Boehm. Software Engineering Economics. Prentice-Hall,
1981.

BIBLIOGRAPHY 221

[Boe88]

BOVS92]

IBOVS986]

[bprds)
[Bragd]

[Bruds)

[Bry93]

[BSHO4]

Buz86!

[Car9s)

[(CAS89]

(CIH89)

Berry W. Boehm. A Spiral Model of Software Development and En-
Lhancement. Computer, pages 61 ~ 72, May 1988.

Gunnar Brataas, Andreas Lothe Opdahl, Vidar Vetland, and Arne
Sglvberg. Information Systems: Final Evaluation of the IMSE. IMSE
project deliverable D6.6 — 2, final version, The Norwegian Institute of
Technology, The University of Trondheim, February 1992,

Gunnar Brataas, Andreas Lothe Opdahi, Vidar Vetland, and Arne
Salvberg. A Method for Efficient Utilisation of Computing Resources.
In preparation, 1996.

What is BPR? listserve, May 1995.

Gunnar Brataas. Performance Engineering of Task Processing Sys-
tems. 1TOS Netiverk Trondhehm, 2. juni 1994. Seminar.

Lee Bruno. Administering Lotus Notes. Open Computing, 12(1):73 ~
74, January 1995,

Lxik Brynjolfsson. The Productivity Paradox of Information Technol-
ogy. Cominunications of the ACM, 36{12).66 — 77, December 1993,

Gunnar Brataas, Arne Sglvberg, and Peter Hughes. Integrated Man-
agement of Human and Computer Resources in Task Processing Or-
ganisations: A Conceptual View. In Jay F. Nunamaker and Ralph H.
Sprague, editors, 27th Hawaii International Conference on Systems
Seience (HICSS-27). Minitrack: Modelling the Dynamics of Infor-
mation Systems and Organisations, volume 1V, Information Systems:
Coillaboration Technology, Organizational Systems and Technology,
pages 703 — 712, Maui, Hawali, January 4 - 7 1994. IEEL Computer
Society Press.

Jeflrey P. Buzen. A Modeler’s View of Workload Characterisation.
In Workload Characterisation of Computer Systems and Computer
Nelworks, pages 67 ~ 72. North-Holland, 1986. Editor: Guiseppe
Serazzi.

Steinar Carlsen. Organizational Perspectives of Workflow Technol-
ogy. Technical report, The Norwegian Institute of Technology, The
University of Trondheim, May 1995.

David W. Conrath, Valeria De Antonellis, and Carla Simone. A Com-
prehensive Approach to Modeling Office Orgarization and Support
Technology. In B. Pernici et al., editor, Office Information Systems:
The Design Process, pages 73 ~ 92, Elsevier Science Publishers B. V.
(North Holland), 1989.

Thomas G. Cummings and Edgar ¥. Huse. Organization Development
and Change. West, Publication Company, fourih edition, 1989.

222

BIBLIOGRAPHY

(CHY2)

[Chudl]

[Chugd]

[CKM*01]

[CMBN82)

[Coagh)

[Cova0]

[(593]

(CVT*92]

[Dat86]

[Davo3]

(DBC8S)

[deM78)

[Dend2]

Kethy Center and Suzanne Henry. A New Paradigm for Business
Processes. JTBM report, pages 1 — 11, 1992,

Lawrence Chung. Representation and Utilization of Non-Functional
Requirements for Information System Design. In fABS91), pages 5 -
30, 1991.

Lawrence Chung. Representing and Using Non-Functional Require-
ments: A Process-Oriented Approach. PhD thesis, University of
Toronto, Toronto, Onitario, M55 1A4, June 1993.

Lawrence Chung, Panagiotis Katalagarianos, Manolis Marakakis,
Michalis Mertikas, John Mylopoulos, and Yannis Vassilon. From In-
formation System Requirements to Design: A Mapping Framework.
Information Systems, 16(4}:429 - 481, 1991.

K.M. Chandy, J. Misra, R. Berry, and D. Neuse. The Use of Per-
formance models in Systematic Design. In Proc. Notional Compuler
Conference, pages 251 ~ 256, Huston, June 1982,

Workflow Management Coalition, May 1995. http://www.aiai
ed.ac.uk/WIMC/.

Stephen R. Covey. The 7 Habits of Highly Effective People; Powerful
Lessons in Personal Change. Simon & Schuster, 1990.

Maria Calzarossa and Giuseppe Serazzi. Workload Characterisation:
A Survey. Proceedings of the IEEE, August 1993. Special issue on
performance evaluation.

Eric Conguet, Alberto Valderruten, Rémi Tremoulet, Yves Raynaud,
and Sandra Ayache. A Process Model of the Performance Evalua-
tion Activity., In Proceedings of the Summer Computer Simulation
Conference, Reno, USA, 27 - 30 July 1992.

C.J. Date. An Introduction to Datobase Systems. The System Pro-
gramming Series. Addison Wesley, fourth edition, 1986.

Thomas Davenport. Process Innovation: Reengineering Work through
Information Technelogy. Harvard Business School Press, 1093,

AM. Davis, EH. Bersoff, and ER. Comer. A Strategy for Com-
paring Alternative Software Development Life Cycle Models. [EEE
Transactions on Software Engineering, 14(10):1453 - 1461, Octoher
1988,

Tom deMarco. Structured Analysis and System Specification. Yourdon
Press, 1978.

Peter J. Denning. Work Is a Closed-Loop Process. American Scientist,
80(4):314 - 317, July — August 1992.

BIBLIOGRAPHY 223

[Den94]

PMO2]

[DoC:595]

[Drugl}

[DS90]

[Eccoi]

[EGRO1]

[Fer78]

(FHM*+05]

[Findi]

(191

[Fox89]

(FRCLY1]

Peter J. Denning. The Fifteenth Level. In SIGMETRICS 94 Pro-
ceedings, pages 1 — 4, Nashville, May 1994.

Elias Drakopoulos and Matt J. Merges. Performance Analysis of
Client-Server Storage Systems. [EEE Transactions on Computers,
41(11):1442 ~ 1452, November 1992.

University of Twente Department of Computer Science.
Workflow Management Project. WWW, November 1995.
http://wwwis.cs.utwente.nl:8080/ joosten/workflow.htmi.

Peter F. Drucker. The New Productivity Challenge. Harverd Business
Review, pages 69 — 79, November —~ December 1991.

Thomas H. Davenport and James E. Short. The New Industrial En-
gineering: Information Technology and Business Process Redesign.
Sloan Management Review, pages 11 — 27, Summer 1990.

Robert G. Eccles. The Performance Measurement Manifesto. Harvard
Business Review, pages 131 - 137, January — February 1991.

C.A. Ellis, 8.J. Gibbs, and G.L. Rein. Groupware: Some Issues and
Experiences. Communications of the ACM, 34(1):38 — 58, January
1991.

Domenico Ferrari. Computer Systems Perfermance Evaluation.
Prentice-Hall, Englewood-Clifls, New Jersey 07632, 1978.

G. Franks, A. Hubbard, S. Majumdar, Petriu D., and C.M. Rolia,
Woodside. A Toolset for Performance Engineering and Software De-
sign of Client-Server Systems. Performance Evaluaiion, 24{1 ~ 2):117
— 136, November 1995.

Anthony Finkelstein. A Neat Alphabet of Requirements Engineering
Tssues. In ESEC 91, 3rd Furopean Software Engineering Conference,
pages 484 — 491. Springer-Verlag, 1991,

Kenneth Flgstrand. Estimating Organization Work: A Blood Bank
Case Study. Master’s thesis, The Norwegian Institute of Technology,
The University of Trondheim, Pec 1991,

G. Yox. Performance Engineering as a Part of the Development Life
Cycle for Large-Scale Software Systems. In Proc. 11th International
Conference on Software Engineering, pages 85 - 94, Pittshurgh, PA,
May 1989,

Ellen Francik, Susan Ehrlich Rudman, Donna Cooper, and Stephen
Levine. Putting Innovation o Work: Adoption Strategies for Mul-
timedia Communication Systems. Communicotions of the ACM,
34(12):53 - 63, December 1991.

224

BIBLIOGRAPHY

(FRIQS]

FSZ83)

((1al93]

[Ger93]

(GHY1]

[GHY5)

[Gir76)

[Gje93]

(GKT93]

[GLWO1)

[Grud4)

[GS77)

|Gul93]

FRISCO. Personal communication, March 1995, IFIP, WG 8.1, Task
group: FRamework of Information System COncepts.

Domenico Ferrari, Giuseppe Serazzi, and Alessandro Zeigner. Mea-
surement and Tuning of Computer Systems. Prentice-Hall, Englewood
Cliffs N.J. 07632, 1983.

R.D, Galliers. Towards a Flexible Information Architecture: Integrat-
ing Business Strategies, Information Systems Strategies and Business
Process Redesign. Journal of Information Systems, 3:189 - 213, 1693.

Han Gerrits. Business Process Redesign and Information Systems De-
sign: A Happy Couple? In Information System Development Process,
pages 325 - 336. Elsevier Science Publisher B.V. (North-Holland),
1993.

Rebecca A. Grant and Christopher A. Higgins. Computerized Perfor-
mance Monitors: Factors Affecting Acceptance. [EEE Transoctions
on Engineering Management, 38(4):306 — 315, November 1991.

Diimitrios Georgakopoulos and Mark Hornick. An Overview of Work-
flow Management: From Process Modelling to Workflow Automation
Infrastructure. Distributed and Parallel Databases, (3):119 - 153, 1995,

Arthur Gill. Applied Algebra for the Computer Sciences. Series in
Automatic Computation. Prentice-Hall, 1976.

Reidar Gjersvik. The Construction of Information Systems in Organ-
isations, An Action Research Project on Technology, Orgenisational
Closure, Reflection and Change. PhD thesis, The Norwegian Intsitute
of Technology, 1993,

Subashish Guha, William J. Kettinger, and James T.C. Teng. Busi-
ness Process Reengineering: Building a Comprehensive Methodology.
Information Systems Management, pages 13 - 22, Summer 1993.

Jon Atle Gulla, Odd Ivar Lindland, and Geir Willumsen. PPP, An
Integrated CASE Environment. In [ABS91], pages 194 - 221, 1991

Jonathan Grudin. Groupware and Social Dynamics: Eight Challenges
for Developers. Communications of the ACM, 37(1%:92 - 105, January
1994.

Chris Gane and Trish Sarson. Structured Systems Analysis: Tools and
Technigues. MCDONNELL DOUGLAS, 1977.

Jon Atle Gulla. Ezplanation Generation in Information Sysiems Fn-
gineering. PhD thesis, The Norwegian Institute of Technology, The
University of Trondheim, September 1993,

BIBLIOGRAPHY 225

[11al04]

[Ham99)

[Har8g)

[Haro1]

(HBP*88]

[HL84]

[Holo1]

(Hor92]

[Hug78]

[Hug84;

[Hugs8)

[Hug89)

[Hugd3)

[Hug9s]

{Hug96]

Kristin Halvorsen. Synliggjering og Realisering av Forbedringsmu-
ligheter i Virksomhetsprosesser. Master’s thesis, The Norwegian In-
stitute of Technology, The University of Trondheim, December 1094,
In Norwegian.

Michael Hammer. Reengineering Work: Don’t Automate, Obliterate.
Harvard Business Review, pages 104 - 112, July ~ August 1990,

David Harel. On Visual Formalisms. Communications of the ACM,
31(5):514 - 530, 1988,

H. J. Harrington. Business Process I'mprovement. McGraw-Hili, Inc.,
1901,

Peter Hughes, Eric Ole Barber, Rob Pooley, Graham Titterington,
and Chris Uppal. The Integrated Modelling Support Environment
Design: Study. Document SIMMER. ICL229/1, STC ple, 1988,

P. Heidelberger and S.5. Lavenberg. Computer Performance Evalua-
tion Methodology. TEEE Transactions on Compulers, 33(12):1195 ~
1220, Dec. 1984

Robert H. Holiand. Integration of the Information Cycle. Daia Re-
source Management, pages 6 — 18, Summer 1991,

A. 8. (editor) Hornby. Ozford Advanced Learner’s Dictionary: Ency-
clopedic Fdition. Oxford University, 1992.

Peter Hughes. The Design and Use of Benchmarks for the Measure-
ments of Computer System Performance. In Proceedings of the Sum-
mer School on Computer Systems Performance Evaluation, Sogesta,
Urbino, ltaly, June 1978,

Peter Hughes. PILOT — A Synthetic Prototype Generator for
Database Applications. In Proceedings of the International Confer-
ence on Modelling Technigues and Tools for Performance Analysis,
Paris, May 1984. INRIA.

Peter Hughes. SP principles. Technical report, STC Fechnology
639/1CL226/0, July 1988.

Peter Hughes. IMSE Initial Design. Document IMSE D-1.2-1, STC
ple, 1989. (V1 : June 1989 : Deliverable D-1.2-1).

Peter Hughes. A Modular Approach to System Structure and Perfor-
mance Specification. Technical report, Modicum LTD, 1993. Draft.

Peter Hughes. Hierarchical Performance Specification {single class).
March 1995.

Peter Hughes. Lecture Notes. Technical report, The Norwegian Insti-
tute of Technology, The University of Trondheim, 1996.

226

BIBLIOGRAPHY

[Hys91]

(Idef5a]

[[de95h)]

ivo0a)

[Hv0b)

[Jab94}

[Jaig1}

[JLP+95)

[IMSV92]

[Joo95]

[Jor93]

[Kan92]

William F. Hyslop. Performance Prediction of Relational Databose
Management Systems. PhD thesis, Computer Science Research Insti-
sute, University of Toronto, Toronto, Canada, M58 1Al, September
1991. Technical Report CSRI-254.

Jon Iden. Business Process Reengineering: Eveluating some Common
Assumptions about the role of Information Technology, volume 35 of
Reports in Information Science. Department of Information Science,
University of Bergen, Bergen, Norway, January 1995.

Jon Iden. Workflow Management: What does the Litierature say, vol-
ume 36 of Reports in Information Science. Department of Information
Science, University of Bergen, Bergen, Norway, January 1995,

J. livari. Hierarchical Spiral Model for Information System and Soft-
ware Development. Part 1: Theoretical Background. Information and
Software Technology, 32(6):386 — 399, July/August 1990.

J. bivari. Hierarchical Spiral Model for Information System and Soft-
ware Development. Part 2: Design Process. Information and Software
Technology, 32(7):450 — 458, September 1990,

Stefan Jablonski. MOBILE: A Modular Workflow Model and Archi-
tecture. In Proceedings of the Fourth International Working Confer-
ence on Dynamic Modelling and Information Systems, Novordwijker-
hout, The Netherlands, September 1994,

Raj Jain. The Art of Computer Systems Performance Analysis: Tech-
nigues for Bxperimental Design, Measurement, Simulation, end Mod-
eling. Wiley, 1991,

J. Juopperi, A. Lehtola, O. Pihlajamaa, A Sladek, and Veijalainen.
Usability of Some Workfiow Products in an Inter-Organizational Set-
ting. In [SKS95], pages 19 - 34, 1995.

Matthias Jarke, John Mylopoulos, J.W. Schmids, and Y. Vassiliou.
DAIDA: An Enviromment for Evolving Information Systems. ACM
Transactions of Information Systems, 10(1):1 — 50, January 1992,

Stef Joosten. Conceptual Theory for Workflow Management Support
Systems. Technical report, Centre for Telematics and Information
Technology, University of Twente, P.O. Box 217, 7500 AE Enschede,
the Netherlands, July 1995.

Hévard Dingstad Jergensen. Performance Modelling of Task Process-
ing Systems. Master’s thesis, The Norwegian Institute of Technology,
TFhe University of Trondheim, December 1993.

K Kant. Introduction to Compuier System Performance Evaluation.
McGraw-Hill, Inc., 1992,

BIBLIOGRAPHY 227

KBS

[Ker89]

(KKP90]

[KLO*93)

[Kol$6]

[Kot95]

[Kow05]

[Kro95]

[LAY4]

[Leath)

[LGNH94]

[Lin93]

[Lot93a]

Setrag Khoshafian and Marek Buckiewicz. Introduction to Groupware,
Workflow, and Workflow Computing. Wiley, 1995.

K. Kerzner. Project Managemeni. Van Nostrand Reinheold, third
edition, 1989.

Steven . Keller, Laurence G. Kahn, and Roger B. Panara. Specifying
Software Quality Requirements with Metrics. In [TD90], pages 145 -
163. 1990,

Rudolf K. Keller, Richard Lajoie, Marianne Ozkan, Fayez Saba, Xijin
Shen, Tao Tao, and Gregor v. Bochmann. The Macrotec Toolset for
CASE-based Business Modelling. IEEFE, pages 114 - 118, 1993,

Kenneth W. Kolence. An Overview of the Capacity Management
Process. IEEE, pages 741 - 750, 1986.

John P. Kotter. Why Transformation Efforts Fail. Harverd Business
Review, pages 59 — 67, March — April 1995.

Alexander Kowalski. Modelling of Workflow System Software for Per-
formance Evaluation. Master’s thesis, The Norwegian Institute of
Technology, The University of Trondheim, June 1995.

John Krogstie. Conceptual Modeling for Computerized Information
System Support in Organizations. PhD thesis, The Norwegian Insti-
tute of Technology, The University of Trondheim, August 1995.

Frank Leymann and Wolfgand Altenhuber. Managing Business Pro-
cesses as an Information Resource. IBM Systems Journal, 33{2}:326
~ 348, 1994.

H.J. Leavitt. Applied Organizational Change in Industry: Structural,
Technological and Humanistic Approaches. {n Handbook of organize-
tions, pages 1144 ~ 1170. Rand McNally & Co., Chicago, 1965. Edited
by James G. March,

Egit Lohndal, Tor Gunnar Gloppen, Morten Nygaard, and Carl Einar
Halvorsen. Handbok for Lisensarbeid i Undersskelse og Produksjon.
Intern rapport U&P-KP15 Lisensarbeid, Statoil, Januar 1994, Is Nor-
wegian.

Odd Ivar Lindland. A Prototyping Approach to Validetion af Concep-
tual Models in Information Systems Engineering. PhD thesis, The
Norwegian Institute of Technology, The University of Trondheim,
June 1993

Lotus. Administrator’s Guide. Lotus Development Corporation, 55
Cambridge Parkway, Cambridge, MA 02142, 1993. Lotus Notes Re-
lease 3.

228

BIBLIOGRAPHOY

{Lot93h)

ILSKAQS]

[LS594]

[LZGS84)

IMADO4]

[Mar92]

[Mar94a)
Mar94dbi

[MBJK90]

(MC94]

[MCN92]

[Min90]

Lotus. Getting Started with Application Development. Lotus Devel-
opment Corporation, 55 Cambridge Parkway, Cambridge, MA 02142,
1993. Lotus Notes Release 3.

Jens-Otio Larsen, Anne Helga Seltveit, Bo Kihler, and Jan @yvind
Aagedal, editors. Proceedings of the 8th ERCIM Database Research
Group Workflow on Datebase Issues and Infrastructure in Cooperative
Information Systems, Trondheim, NORWAY, August 1995. SINTEF
and ERCIM.

Qdd Ivar Lindland, Guttorm Sindre, and Arne Sglvberg. Understand-
ing Quality in Conceptual Modeling., IEEE Software, pages 42 — 49,
March 1994,

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Ken-
neth C. Sevcik. Quantitative System Performance - Computer System
Analysis Using Queueing Network Models. Prentice-Hall, Englewood
Cliffs, New Jersey 07632, 1984.

Daniel A. Menascé, Virgilio A. Almeida, and Larry W. Dowdy. Ca-
pacity Planning and Performance Modelling. Prentice Hall, 1994,

Ronni T. Marshak. Requirements for Workflow Products. In D. Cole-
man, editor, Groupware 92, pages 281 - 285, Morgan Kaufman Pub-
lishers Inc., 1992.

Ronni T. Marshak. Perspectives on Workflow. In [WF9;/, 1994,

Ronni T. Marshak. Workfiow White Paper. In Workgroup Computing
Report, pages 15 — 42, Patricia Seybold Group, 1994. Volume 16,
Number X.

John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis
Koubarakis. Telos: Representing Knowledge About Information Sys-
tems. ACM Transactions of Information Systems, 8(4):325 - 362,
October 1990.

Thomas W. Malone and Kevin Crowston. The Interdisiplinary Study
of Coordination. ACM Computing Surveys, 26(1):87 ~ 119, March
1994.

John Mylopoulos, Lawrence Chung, and Brian Nixon. Represent-
ing and Using Nonfunctional Requirements: A Process-Oriented Ap-
proach. [EEE Transactions on Software Engineering, 18{6):483 — 497,
June 1992.

Cydney Minkowitz. The Structure and Performance Specification Tool
Design Document. Document IMSE R-4.1-1, STC Technology, 1990.
(V 1: June 1990 : Deliverahle D-4.1-1).

BIBLIOGRAPHY 229

IMMWEF92] Raul Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando

[Mor88]

(MVHO4]

[Nix91]

[Nix93]

[Nix94a]
(Nix94b]

[NNO3)

[Opdsg]

[Opd92)

[0892]

[0S94]

Fiores. 'The Action Workflow Approach to Workflow Management
Technology. In CSCW ‘92, pages 1 ~ 10, Toronto, Canada, November
1992. ACM SIGCHI & SIGOIS,

Gareth Morgan. Orgaenisasjonshilder, Universitetsforlaget, 1988, In
Norwegian, translated from English.

Cidney J. Minkowitz, Vidar Vetland, and Peter Hughes, A Modular
Approach to Systens Structure and Performance Specification. In The
Seventh International Conference on Modelling Techniques and Tools
for Computer Performance Evaluation, Vienna, Austria, 4 ~ 6 May
1994. Poster presentation.

Brian Nixon. Implementation of Information System Design Spec-
fications: A Performance Perspective. In Paris Kaneliakis and
W. Schmidt Schmidt, editors, Daiabase Programming Languages:
Bulk Types & Persistent Data — Third International Workshop, pages
149 - 168, Nafplion, Greece, August 27 — 30 1991. Morgan Kaufmann.

Brian A. Nixon. Dealing with Performance Requirements During the
Development of Information Systems. Proceedings of the IEEE In-
ternational Symposiuvm on Regquirements Fngineering, pages 42 — 49,
January 1993

Brian A. Nixon. email communication, 24 October 1994,

Brian A. Nixon. Representing and Using Performance Requirements
During the Development of Information Systems. In Proceedings,
Fourth International Conference on Frxtending Datobase Technology,
Cambridge, England, March 1994. Springer-Verlag. Published in the
Lecture Notes in Computer Science series.

V.K. Narayanan and Raghu Nath. Organization Theory: A Strategic
Approaech. Irwin, Homewood, 11, 60430, Boston, MA 02116, 1993.

Andreas Lothe Opdahi. RAPIER - A Formal Definition of Diagram-
matic Systems Specification. Master’s thesis, [DT, NTH, Trondhein:,
Norway, 1988. DAISEE Working Paper No. 88.

Andreas Lothe Opdahl. Performance Engineering during Informa-
tion System Development. PhD thesis, The Norwegian Institute of
Technology, The University of Trondheim, November 1992,

Andreas Lothe Opdah! and Arne Sglvberg. Conceptual Integration
of Information System and Performance Modelling. In Proceedings of
IFIP WG 8.1 Working Conference on Information Sysiem Concepis
— Improving The Understanding, Alexandria/Egypt, 1315 April 1992
1992,

Andreas Lothe. Opdahl and Guttorm Sindre. A Taxonomy for Real-
World Modeliing Concepts. Information Systems, 19(3), April 1994,

230

BIBLIOGRAPHY

[0SV93]

[OVBS92]

[Par90]

[PBA*93]

[PBF+89]

[PC86)

[PRYC]

[PRO5]

[PS85]

[PVRS95]

[PW93]

Andreas Lothe Opdahl, Guttorm Sindre, and Vidar Vetland. Perfor-
mance Considerations in Object-Oriented Reuse. In Proceedings of the
Second International Workshop on Softwaere Heuse, pages 142 - 151,
Lucea, Italy, March 24 - 26 1983. IEEE Computer Society.

Andreas Lothe Opdahl, Vidar Vetland, Gunuar Brataas, and Ame
Setvberg. CASE-Tool Support for Efficient Utilisation of Computing
Resources. In Proceedings of “The Third European Workshop on the
Nezi Generation of CASE-Tools”, Manchester, England, May 1992.

John Parkinson. Making CASE Work. In In /SL90/, chapter 15. John
Wiley & Sons Ltd, 1990.

Ramon Puigjaner, Abdelmalek Benzekri, Sandra Ayache, Eric Con-
quet, Delphine Gazal, Omar Hjiej, Alberto Valderrruten, and Yves
Raynaulds. Estimation Process of Performance Constrains during
the design of Real-Time & Embedded Systems. In Colette Rolland,
Frangois Bodart, and Corine Cauvet, editors, Advanced Information
Systems Engineering, pages 629 — 648. Springer-Verlag, June 1993,

3. Pernici, I. Barbic, M Fugini, R. Maiocchi, J.R. Rames, and C. Rol-
tand. C-TODOS: An Automatic Tool for Office System Conceptual
Design. ACM Transactions on Information Systems, 7(4):378 - 419,
October 1989.

David Lorge Parnas and Paul C. Clements. A Rational Design Process:
How and Why to Fake it. IEEE Transactions of Software Engineering,
SE-12(2):251 - 257, February 1986.

Barbara Pernici and Collette Roliand. Automatic Tools for Designing
Office Information Systems: The TODOS Approach. Springer-Verlag,
1990.

Joe Peppard and Philip Rowland. The Fasence of Business Process
Re-engineering. The Essence of Management Series. Prentice-Hall,
1995.

James L. Peterson and Abraham Silberschatz. Operating System Con-
cepts. Addison Wesley, second edition, 1985.

nnio Pozzetti, Vidar Vetiand, Jerome Rolia, and Giuseppe Serazzi,
Characterizing the Resource Demands of TCP/IP. In International
Conference on High-Performance Computing and Networking 1995,
1995,

Jeffrey Parsons and Yair Wand. Object-Oriented Systems Analy-
sis: A Representation View. Working Paper 93-MIS-001, Faculty of
Commerce and Business Administration, The University of British
Columbia, Vancouver, BC, Canada, VT 172, January 1993.

BIBLIOGRAPHY 231

[Quays)

[Red94]

[RS95]

[RV95]

[RVH95)

[RW94)

[SB80)

[Seatd)

[Sel94]

[Silo4]

[Simd4]

(8j#93]

[SK93]

[SKS$95)

Quantum. Empire 1080 s, A High-Performance, Low-Power Disk
Drive. http://www.quantum.com/products/empl080/, February
1996.

Russell Redenbaugh. The New Common Sense. In [WF§{/, pages 13
~ 24, 1994.

Jerome A. Rolia and Kenneth C. Sevcik. The Methods of Layers.
IEEE Transactions on Software Engineering, 21(8):689 ~ 700, August
1995.

Jerome Rolia and Vidar Vetland. Parameter Estimation for Perfor-
mance Models of Distributed Application Systems. In Proceedings of
CASCON ‘95, Toronto, Canada, November 1995.

Jerome Rolia, Vidar Vetland, and Greg Hills. Ensuring Responsive-
ness and Scalahility for Distributed Applications. In Proceedings of
CASCON 95, Toronto, Canada, November 1995.

Chris Ruemumler and John Wilkes. An Introduction to Disk Drive
Modeling. Computer, pages 17 - 28, March 1994.

Connie Umiand Smith and J.C. Browne. Aspects of Software Design
Analysis: Conewrrency and Blocking. ACM Performance Evaluation
Review, $(2), Summer 1980,

John R. Searle. Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, 1969.

Anne Helga Seltveit. Complezity Reduction in Information Systems
Modelling. PhD thesis, The Norwegian Institute of Technology, The
University of Trondheim, December 1994,

Bruce Sitver. Automating the Business Eovironment. In [WF94),
pages 129 — 154, 1994.

Terje Simonsen. Hvordan redusere prosjekttiden ved fokus pé effektiv
informasjonsflyt og minimum dokumertbehandling. In Effektiv doku-
mentbehandling 1 offshore, juni 1994, In Norwegian.

Wenche Sjegren. Organizational Performance: A Blood Bank Case
Study. Master’s thesis, The Norwegian Institute of Technology, The
University of Trondheim, December 1993,

Arne Spivherg and David Chenho Kung. Information Systems Engi-
neering. Springer-Verlag, 1993.

Arne Sglvberg, John Krogstie, and Anne Helga Seltveit, editors. Infor-
mation Systems Development for Decentralized Organizotions, Trond-
heirm, Norway, August 1995. IFIP, Chapman & Hall.

232

BIBLIOGRAPHY

ISL82]

L0}

[Smi&6)

[Smif0]

[Se77a)

[S#77h)

[Se79]

[S9R0]

[ST89]

[Sta92]

(Sta93]

[Sta0da)
[Sta94h]

[Staddc}

[Str94!

Connie Umland Smith and D.D. Loendorf. Performance Analysis of
Software for an MIMD Computer. In Proc. 1982 Conference on Mea-
surements and Modelling of Compuier Systems, pages 151 - 162, 1982.

Kathy Spurr and Pau} Layzell, CASE on Trail John Wiley & Sons
Ltd, 1990.

Connie Umland Smith. Evaluation of Software Performance Engineer-
ing. In Proc. FJCC, pages 778 — 783, Dallas, Nov. 1986,

Connie Umland Smith. Performance Engineering of Software Systems.
Addison-Wesley, 1990.

Arne Sglvberg. A Model for Specification of Phenomena, Properties,
and Information Structures. Technical Report, IBM Research Labo-
ratory, San Jose, California, 1977.

Arne Sglvherg. On the Specification of Scenarios in Information Sys-
tem Design. Technical Report, IBM Research Laboratory, San Jose,
California, 1977.

Arne Splvberg. Software Requirement Definition and Data Models.
In Proceedings of the §th International Conference on VLIDB, pages
111-118, 1979.

Arne Sglvberg. A Contribuiion to the Definition of Concepts for Ex-
pressing Users’ Information Systems Requirements. In P. P. Chen,
editor, Enlity-Relationship Approach to Systems Analysis and Design.
North-Holland, 1980,

Scott 1. Sink and Thomas C. Tuttle. Planning and Measuring in Your

Organization of the Fulure. Industrial Engineering and Management
Press, 1989.

Statoil. Konsept for sakshehandling. Technical report, Statoil, 26.
August 1992, In Norwegian,

Statoil. Replikering hos Statoil. Intern rapport, Statoil, December
1993. In Norweglan, partially in English.

Statoil. Telefonkatalog for Statoil. Statoil, Juli 1994. In Norwegian.

Statoil. Telextrafikk i GASS M. Intern rapport, dokumentasjon fase
1, Statoil, April 1994, In Norwegian.

Statoil. Telextrafikk i GASS M. Intern rapport, dokumentasjon fase
2, Statoil, Mail 1994. In Norwegian.

Straussman. Information Technology and Organizational Effective-
ness. Tutorial on Hawaii International Conference on Systems Sci-
ences, Maui, Hawalii, January 1994.

BIBLIOGRAPHY 233

[SW93]

[SW94)

[TI>90]

(TKS4)

[Trigs8]

(TW95]

[Twi90a]

[Twig0b]

(Twiol]

[Vet93]

[VH593a)

[VHS93b}

[VLPY5]

[Von90]

[Wal93]

Connie Umland Smith and Lioyd G. Williams. Software Performance
Engineering: A Case Study Inciuding Performance Comparision with
Design ALternatives. IEEE Transactions on Software Engineering,
19{7):720 - 741, July 1993.

Connie Umiand Smith and Bernie Wong. SPE Evaluation of a
Client/Server Application. In CMG§4 Proceedings, pages 528 — 540,
December 4 -9 1994,

Richard H. Thayer and Merlin Dorfmann. Tuterial: System and Soft-
ware Requirements Engineering. IEEE Compter Society Press, 1990.

Howard M. Taylor and Samuel Karlin. An Introduction te Stochastic
Modeling. Academic Press, 1984. .

L. L. Tripp. A Survey of Graphical Notations for Program Design -
An Update. ACM SIGSOFT Software Engineering Notes, 13(4):39~
44, October 1988.

Thomas Tesch and Jirgen Wasch. Research Issues in Workflow Sys-
tems. In [LSKAG5], 1995.

Twinco. Functional System Design Report. Project PAS/SQL Blood
Bank Version 1.1, Twinco, December 1990.

Twinco. Requirements Specification. Project PAS/SQL Blood Bank
Version 1.0, Twinco, March 1990. In Norwegian.

Twinco. Computer System Design Report. Project PAS/SQL Blood
Bank Version 1.0, Twinco, February 1991. In Norwegian.

Vidar Vetland. Measurment-based Composite Computaiional Work
Modelling of Seftware. PhD thesis, The Norwegian Institute of Tech-
nology, The University of Trondheim, August 1993,

Vidar Vetland, Peter Hughes, and Arne Sglvberg. A Composite Mod-
elling Approach to Software Performance Measurement. In Proceed-
ings of SIGMETRICS 93, pages 275 — 276, Santa Barbara, USA, May
10 — 14 1993. Extended abstract.

Vidar Vetland, Peter Hughes, and Arne Sglvberg. Improved Parame-
ter Capture for Simulation Based on Composite Work Models of Soft-
ware. In Proceedings of the 1993 Summer Compuler Simulation Con-
Jerence, Boston, July 19 - 21 1993.

Jari Veijalainen, Aarno Lehtola, and Olli Pihiajamaa. Research Issues
in Workflow Systems. In [LSKA95], 1995.

Roland Vonk. Prototyping, The effective use of CASE Technology.
Prentice Hall, 1990,

Sten Walgen. Bedre telex $ii GASS M. Arbeidsversjon 8, Avenir,
oktober 1993. In Norwegian.

234

BIBLIOGRAPHY

[Wei96]

(WF94]

Wiio3]

[Xendi]

[Yan&0)

[Yan93]

[Yavod]

[Yn94]

[Ziav84]

Reinhold Weicker. DPhrystone Benchmark Results. Available via
anonymous ftp from “ftp.rosc.amil” in directory “pub/aburto”, file
“diiry.thi”, January 1996.

Thomas E. White and Layna Fischer. The Workflow Paradigm. Future
Strategies Inc., Book Division, Alameda, California, 1994,

Geir Willumsen. Erecutable Conceptual Models in Information Sys-
tems Engineering. PhD thesis, The Norwegian Institute of Technology,
The University of Trondheim, November 1993,

Nick Xenios. The Structure and Performance Specification Tool User
Guide. Document IMSE R-4.2-1, BNR Europa Ltd, 1991. (V 1:
October 1991 : Deliverable D-4.1-2).

Jianhua Yang. Computer-Based Document Processing in Office Infor-
mation Systems. PhD thesis, The Norwegian Institute of Technology,
The University of Trondheim, October 1989.

Mingwei Yang. COMIS — A Conceptual Model for Information Sys-
tems. PhD thesis, The Norwegian Institute of Technology, The Uni-
versity of Trondheim, August 1993,

David Yavin. Optimizing Notes Replication. BYTE, pages 201 — 202,
September 1994.

Eric Yu. Modelling Streiegic Helationships For Process Reengineering.
PhI) thesis, University of Toronto, December 1994.

Pamela Zave. The Operational Versus the Conventional Approach to
Software Development. Communications of the ACM, 27(2):104 - 118,
February 1984.

Index

Abstract virtual machine, 37
Actor, 10, 130

Batch load, 32

Blood Bank Case Study, 91
Branching probabilities, 98
Database platform, 101
Introduction, &
Performance requirements, 97
Projected application, 97
Resource demands, 100
Summary of findings, 106
System boundaries, 93
System platform, 100
Transfusion process, i
Work model, 103
Workload, 94

Bounds analysis, 21

BPR, 114
Principles, 116

Compactness, 39

COMPLEMENT, G2

Complexity specification, 30
Computerised information systems, 11
Contention modelling, 19

Data model
In PPP: PhM, 204
In SP, 39
Distributed models, 44
Dynamic performance model, 19
Bounds analysis, 21
Petri nets, 22
Queueing networks, 19

Effectiveness, 13
Efficiency, 13
Ixisting system, 11

FESC, 21

Further work, 195

(Gas Sales Telex Adm. Case Study, 139
Computerised solution
Resource demands, 183
Contract specialist, 163
Resource demand, 164
SP model, 163
Introduction, 139
Lotus Notes
Resource demands, 183
Lotus Notes client-server, 173
Customisation, 177
3P model, 173
Overall manual process model, 142
Replication architecture, 199
SP model, 176
Sales telex administration org., 144
Performance requirements, 146
Summary of findings, 165
Workload characterisation, 145
Similarities between manual and com-
puterised solution, 188
Statoil organisation, 144
System boundaries, 141
Telex secretary, 147
Process model, 147
Resource demands, 136
SP moedel, 149
Work model, 154
Workflow system boundaries, 170
Workflow system workload, 172
Group, 129

HIT, 63

Incremental develepment, 50
Information systems, 11
Computerised, 11
Hierarchies, 122
Office, 113

Layered Queneing Networks, L{}Ms, 60

236

INDEX

Load, 32
Batch, 32
Terminal, 32
Transaction, 32
Local realities, 111
Lotus Notes, 126
Field, 127
Replication, 199
View, 127
LQMs, Layered Queueing Networks, 60

Major contributions, 193
Method for Performance Engineering,
69
Boundaries of discussion, 69
Module specification, 37

Non-distributed models, 44
Non-functional requirements, 47

Office information systems, 113
OSSAD, 113
Operation, 11, 29, 37
Typing, 41
Operational developiment, 51
Organisation, 129
Organisational images, 110
08SAD, 113

Performance, 13
Measures, 16, 21
Specification, 35

Performance engineering, 47
Motivation, 54
Qualitative, 67
Quantitative, 47

Performance model, 15
Closed, 18
Cycle, 23
Different parts, 29
Dynamic, 19
Open, 18
Static, 25
Validation, 23
Verification, 23

Petri nets, 22

PhM, 204

Platform, 79

PLD, 209

PPP, 203
Case toaol, 210
Languages, 203
PhM, 204
PLD, 209
PrM, 205
Method, 53
PrM, 205
Projected system, 11
Prototyping, 50

Queueing Networks, 19, 22

Replication arch. for Lotus Notes, 199
Resource, 10, 130
Differences, human, comp. res., 135
Similarities, human, comp. res., 135

SP, 25
Compactness, 39
Data model, 39
Distributed models, 44
Module specification, 37
Non-distributed models, 44
Opdahl’s extensions, 63
Operation, 29
Unit of work, 30
Vetland’s extensions, 64
Work, 30
Workspace, 40

SPE, 57

Spiral Model, 53

Static performance model, 25
Interaction with CASE-tools, 63
Tradeofls, 64

Subsystem, 35

Summary of Hmitations, 195

System, 35
Closed, 18
Existing, 11
Open, 18
Projected, 11

Terminal load, 32
Transaction load, 32
Transformational develepment, 51

Unit of work, 30
Waterfall model, 48

INDEX 237

Work, 30
Complexity specification, 30
Problems with characterisation, 31
Work, unit vector, 30
Workflow, 118
Ad-hoc, 133
IPO paradigm, 123
Production, 133
Speech act based paradigm, 123
Template, 133
Typical roles, 120
Workflow modelling, 123
Workflow Reference Model, 125
Workflow system, 118
Workflow Reference Model, 125
Two important subsystems, 132
Workload, 32
Workspace, 40
World, 82

