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Abstract

Capsule video endoscopy, which uses a wireless camera to visualize the digestive tract, is emerging as an alternative
to traditional colonoscopy. Colonoscopy is considered as the gold standard for visualizing the colon and takes 30
frames per second. Capsule images, on the other hand, are taken with low frame rate (average five frames per second),
which makes it difficult to find pathology and results in eye fatigue for viewing. In this paper, we propose a variational
algorithm to smooth the video temporally and create a visually pleasant video. The main objective of the paper is to
increase the frame rate to be closer to that of the colonoscopy. We propose variational energy that takes into
consideration both motion estimation and intermediate frame intensity interpolation using the surrounding frames.
The proposed formulation incorporates both pixel intensity and texture feature in the optical flow objective function
such that the interpolation at the intermediate frame is directly modeled. The main feature of this formulation is that
error in motion estimation is incorporated in our model, so that only robust motion estimation are used in estimating
the intensity of the intermediate frame. We derived Euler-Lagrange equations and showed an efficient numerical
scheme that can be implemented on graphics hardware. Finally, a motion compensated frame rate doubling version
of our method is implemented. We evaluate the quality of both 90 and 100% of the frames for medical diagnosis
domain through objective image quality metrics. Our method improves state-of-the-art result for 90% frames while
performing equivalent for the remaining cases with other existing methods. In the last section, we show application of
frame interpolation to informative frame segment visualization and to reduce the power consumption.
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1 Introduction The second generation CCE developed by [3] is about

Capsule video endoscopy has proven to be a powerful
tool for diagnosis of the digestive tract diseases. It has
many advantages over traditional colonoscopy, as being
less invasive and requires no sedation. There are dif-
ferent types of capsules that are currently available on
the market. These include esophageal, small bowel, and
colon capsules. Colon capsule video endoscopy (CCE)
has been used to diagnose inflammatory bowel disease
[1] (i.e., Chron’s disease and ulcerative colitis), gastroin-
testinal bleeding, and polyps. Since it is less invasive
than colonoscopy, it might also increase participation in
colorectal cancer screening. It has been shown to have
high sensitivity for the detection of clinically relevant
lesions [2].
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11 x 31 mm and takes 14 frames/min until the first frame
of the small bowel then captures frames at adaptive frame
rate of 4-35 frames per second depending on the speed of
the capsule. Although, adaptive frame rate improves the
visualization, the video appears jagged; sample videos can
be obtained from [4]. The images are at a lower resolution
compared to traditional colonoscopy (usually full-HD).
The images produced by capsule video endoscopy suffer
from several problems, such as uneven and low illumina-
tion, low resolution, high compression ratio, and noise.
The problem of capsule image enhancement has been
an active research topic over the past decade [5, 6], but
there are few publications that consider the low temporal
frame rate aspect of capsule videos. Frame interpolation
is a technique of creating intermediate frames based on
overlapping neighboring frames in sequence. The CCE
video reader softwares such as RapidReader [4] support
viewing from 2-40 frames per second with an option to
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pause, rewind, and play the video. Watching the video at
two frames per second is the most robust way to find
pathologies, but the videos are not smooth for watching
and hence takes more time to view. It is important to
note that frame interpolation does not increase the dura-
tion of CCE videos rather makes the video more smooth
and natural to view. CCE frame interpolation should in
general consider the following three conditions: Firstly,
the interpolated frame should not contain motion and
image artifacts that could lead to wrong diagnosis. Sec-
ondly, flickering and blurring of frames should be avoided
when displaying image sequences. Thirdly, the interpo-
lated frames need to compensate apparent motion of cam-
era and give a natural motion portrayal. Karargyris et al.
[7] proposed three-dimensional reconstruction of the
digestive wall in capsule endoscopy videos using elastic
video interpolation. In their work, they propose a method-
ology that creates the intermediate (interpolated) frames
between two CCE frames followed by three-dimensional
reconstruction, given that these two frames carry mutual
information of some degree. The interpolation is done
by computing optical flow from the region-based match-
ing technique. The segmentation of the video frames is
performed by the fuzzy region growing segmentation fol-
lowed by matching of the segments in consecutive frames
based on color, texture, and geometry information. Simi-
lar work was presented in [8] where the authors presented
frame interpolation as a post-processing technique at the
receiver for saving battery power at the transmitter. This
is done by transmitting frames at a lower frame rate, given
it can be reconstructed by using neighboring frames at the
receiver, hence saving power at the transmitter. In their
work, they used unidirectional and bidirectional block-
matching motion estimation and compensation method
to create the intermediate frames.

In this paper, we further explore this direction of
estimating intermediate frames and propose a differ-
ent parametrization of variational energy for CCE frame
interpolation. We show experimentally that the proposed
variational energy formulation improves the quality of
interpolated CCE frames. The contributions of this work
are three folds. Firstly, we combine motion estimation and
compensation in a single energy formulation and such for-
mulation improves the quality of interpolated frame with
less computation since we do not compute forward and
backward optical flow. The proposed energy formulation
includes symmetric motion estimation and compensa-
tion which can be solved by primal dual approach [9].
Secondly, by exploiting the law of texture energy, we intro-
duce a symmetric textural and intensity constraint for
computing robust interpolation of CCE frames. Unlike
previous approaches that compute one directional optical
flow [7], our formulation considers symmetric optical flow
under the symmetric textural and intensity constraint,
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which gives a better interpolation of CCE frames in terms
of objective quality metrics. Thirdly, we evaluate and
analyze appropriateness of CCE frame interpolation for
medical diagnosis using objective image quality metrics.

The outline of the article is as follows: in Section 2,
we re-visit earlier works in variational formulation for
frame interpolation. In Section 3, we present our approach
and detail derivation both theoretically and numerically.
In Section 4, we present implementation of the pro-
posed method. In Section 5, we evaluate the proposed
method, along with comparison to other works. Finally, in
Section 6, we present discussion and conclusion.

2 Background

Before going into the details of our method, we present a
short review of variational frame interpolation approaches
as used in natural image sequences. There are two gen-
eral steps for frame interpolation. These are motion esti-
mation and motion compensation, respectively. Motion
estimation involves computing the temporal movement
between the current frame and the previous frame, in the
form of motion vectors. The motion vectors can be block-
based (sparse) or pixel-based(dense). Keller et al. [10]
proposed a variational method for both optical flow calcu-
lation (motion estimation) and the actual new frame inter-
polation (motion compensation). The flow and intensities
are calculated simultaneously in a multiresolution set-
ting. Using standard maximum a posteriori to variational
formulation rationale, the authors derived a minimum
energy formulation for the estimation of a reconstructed
sequence as well as motion recovery. Similarly, Rakét et al.
[11] proposed motion compensated frame interpolation
with a symmetric optical flow constraint. Motion vectors
are computed using TV-L1 energy, and interpolated frame
is computed by averaging the warped flow to current
and previous frame. Once motion vectors are computed,
motion compensation is used to estimate the intermediate
frame as follows:

I(x+ ;u,n) = %(I(x,n— D+Ix+un+1) (1)

Motion estimation involves computation of displace-
ment vectors between two neighboring frames. Let I(x, n)
be a video sequence and u = (u,v) be a displacement
vector of pixel position x = (x,y) of frame number .
Assuming the intensity of the pixel did not change due to
displacement, we can write the optical flow constraint as

Ixn =Ix+un+1), [:QCR*>R (2)
Taking the Taylor series expansion of the right-hand side
of Eq. (2), we get the known optical flow constraint as

Viu+1 =0 3)
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where VI and I; are spatial and temporal derivative oper-
ators, respectively. Horn and Schunck [12] proposed a
variational approach to solving Eq. (3) using L2-norm
under smoothness assumption of flow field as shown in
Eq. (4). This quadratic cost function can easily be solved
using Euler-Lagrange equations. The main disadvantage
of this formulation is that it penalizes high gradients of u
and disallows discontinuities.

aﬁmyzf{uwmﬂ+aUu+mﬂdA (4)
Q

where dA = dxdy and A is a constant.

To circumvent this problem, L1-norm was exploited in
[9]. L1-norm is a better choice for optical flow computa-
tion as it is robust for outliers and allows discontinuities
in the flow field. Zach et al. [9] proposed an algorithm that
can be understood as a minimization of Eq. (5), which is
the sum of the total variation of flow field u = (i, v) and
an L1 attachment term:

Ez(u) = / [Vu| + AlI(x,n) —I(x+w,n+ 1)|dA (5)
Q

Once motion vectors are estimated, interpolated frame
is computed as in Eq. (1). Our proposed approach is dif-
ferent from [10] in that forward and backward optical flow
is not computed on every multiresolution scale. Rather,
symmetric flow is employed, hence avoiding redundant
flow computation. Unlike [11], we model motion vector
estimation and intermediate frame interpolation as a sin-
gle energy formulation. In the next section, we discuss the
proposed method.

3 Method

A high resolution video sequence can be considered as
continuous space-time image volume. Frame interpola-
tion problem, on the other hand, can be modeled as an
inpainting problem along temporal axes in this volume.
2D inpainting may be viewed as denoising with a binary
mask B(x) which is set to zero in the missing region of the
image and non-zero otherwise. Following the same rea-
soning, let us define original video sequence and desired
high frame rate sequence as Iy and [ respectively. From
mathematical point of view, Iy and I are piece-wise con-
tinuous functions of R3 — R defined in space of bounded
variation. Assuming the intensity of a pixel is constant
in the direction of optical flow, a general formulation to
estimate symmetric optical flow (SOF) and interpolated
frame can be written as

E(u,[(x,n)):/ |VI(x,n)|dA
Q
+/ MIIx+w,n+1)—I(x—u,n—1)|dA (6)
Q

+/ A3luldA
Q
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where I(x, n) is the required interpolated frame, V is the
spatial derivative operator, and u = (u, v) are the x and y
components of the SOF field. In order to find the interme-
diate frame /(x, ), we need to minimize the energy given
by Eq. (6). Taking the derivative of Eq. (6) with respect to
u yields SOF estimation:

0Er(u) _ 0E(u,I(x, n))
du ou

0
=—/ MIx+u,n+1)—Ix—un—1)|dA
Ju Q

d
+—/ AsluldA
Ju Q

(7)

We can recognize the above expression as SOF con-
straint. In ideal case, where the flow field is accurate, the
intermediate frame can be computed directly as I(x, n) =
Ix+wn+1) = I(x — u,n — 1). However, for prac-
tical capsule videos, with photometric variations (i.e.,
shadow, shading, specular reflection, and light source
changes) as well as geometrical variations (i.e., viewpoint
and object orientation), these conditions do not hold. In
order to improve the smoothness and accuracy of the
optical flow, we propose to improve optical flow esti-
mation by including information from textural features.
In this work, we explored nine filters of size 5 x 5,
which are constructed from four basic vectors L5 =
(1,4,6,4,1];E5 = [—1,-2,0,2,1];S5 = [-1,0,2,0,—1J;
and R5 =[1,—4,6,—4,1], as suggested by the law of
texture energy [13]. By multiplying these four vectors
mutually, textural features such as center-weighted local
average (L5), edges (E5), spots (S5), ripples, and waves in
texture (R5) are included in estimating robust SOF. Once
the nine textural maps are computed, the final texture is
estimated by weighted summation of the texture using
Eq. (8). Texture map estimation scheme is shown in Fig. 1.

n=9
In=) Iywi ®)
n=1

where w; is

VI,
Wi= 9o 9
1+ Zn:l vIth
In addition, local binary kernel [1,1,1;1,—-1,1;1,1,1] is
explored for robust optical flow computation. Incorporat-

ing the textural constraint to Eq. (7) results in our final
energy for optical flow computation:
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estimated using Eqg. (26)

Fig. 1 Image texture computation scheme. Given input image (a), nine filter responses (b), are computed by applying nine masks as explained in
Section 3, then followed by computing energy map at each pixel by summing absolute value of filter output across neighborhood around pixel.
The image responses are masked to remove margins containing text and normalized between [0, 1], (¢). Finally, the final texture map (d) is

aEf(ll) 0
= — MIx+u,n+1)—Ix—un—1)|dA
Ju ou Jgo

d
+—/ Al ln(x+w, n+1) — [ (x—u, n—1)|dA
Ju Q

il
+ — / AsuldA
Ju Q
(10)

where Iy, is a texture feature as in Eq. (8) and A; is the
weighting factor. This formulation has an advantage in
that it incorporates robust textural features. Moreover, in
the standard formulation of variational optical flow, the
estimated motion vector field depends on the reference
image and is asymmetric as can be seen from Eq. (5).

Similarly, the derivative of Eq. (6) with respect to I(x, n)
using the notation 7 = I(x, n) for simplicity gives

IE(D)  9E(u,I=1I(x,n))
al al

a
:—A/ |VI(x,n)|dA
al Ja

i)
—A/ MIx+w,n+1)—I(x—u,n—1)|dA
al Ja

(11)

which can be rewritten to include quality measure of the
optical flow. This can be expressed by dividing the optical

flow constraint equation into regions of intensity inter-
polation, where warping of the flow to both neighboring
frames I(x —u,n — 1) and I(x + u, n + 1) are equal or not.

OE;(I 9 .
’f) =7/ |VIdA + (12)
ol dal Jo

i/ B l(x+u,n+1) —I(x—u,n—1)|dA+
al Jo
(13)

— A

ﬂ(X)?ZIII(X+u,n+1)—I(X—u,n—l)llz (14)

where f(x) = 1if|Ix—w,n—1) —Ix+uw,n+1)| <e¢,
and € is a small positive constant; otherwise, B(x) is set to
a zero similar to 2D inpainting. B(x) represents a negation
operator. In the above formulation, Eq. (12) represents
spatial diffusion on the interpolated image and Eq. (13)
on the other hand is diffusion along the flow line. The
extra fidelity term Eq. (14) is added to avoid blurring of the
interpolated frames in regions defined by f(x) = 1, i.e,,
correct intensity estimation. Here, we make an assump-
tion that the intensity of the pixel at intermediate frame
as estimated from both neighboring frame is robust, if the
optical flow estimation at that pixel is accurate; otherwise,
we fill the missing region using flow direction through
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inpainting along the flow lines. Following the above for-
mulation, the problem is thus to find a motion vector u
and intermediate frame /(x, #) that minimizes Eq. (10) and
Eq. (12), respectively. In order to minimize Eq. (10), we
take first-order Taylor series expansion on data fidelity
term of Eq. (10) and it becomes:

Ey(u) = /Q hslul + 2l (w, @)]dA (15)

where

p(u,g) =Ix+ug,n+1) —I(x—ug,n—1)
+ Ae(len(x + g, 7 + 1) — Iin(x —wg, n — 1))
+ VIx+up,n+ 1)(u — up)
+ VIx —ug,n — 1)(u — up)
+ A¢(VIh (x + ug, 7 + 1)(u — o)
+ VIn(x —ug, 7 — 1)(u — ug)) + 0q(x)
(16)

oq(x) is added to the fidelity term of our energy func-
tion to account for small intensity variation in the image.
Introducing auxiliary variable w to Eq. (15) and applying
convex relaxation similar to [9], Eq. (15) can be decoupled
into two energies as:

Ef(w) = [ Aslul+ i(u —w)? (17)
f 9 20

Eyr(w) = / %(u —w)> + Aalp (W, q)| (18)
Q

This convex relation was first proposed by [9], coupling
the two energies by quadratic link function. Setting 6 low
forces the minima to occur when u = w. In Eq. (17), mini-
mization problem is identical to denoising problem except
that the integral is taken over a motion vector u and can
be solved by using Chambolles projection algorithm, and
Eq. (18) can be solved simply by pointwise thresholding
method.

To minimize the intensity inpainting energy given by
Eq. (12), we derive the Euler-Lagrange equations. This can
be written as:

OE;
a7 {6m) =0 (19)

Minimizing the energy based on this L1 norm requires
that the function to be convex and differentiable. Hence,
we write absolute value function in Eq. (12) as ¢(I?) =
v+ € = |I|, where € is a small positive constant
regularizer. ¢(I%) is a convex and differentiable function
which meets the mentioned requirement in the process
of searching minimum. Therefore, the Euler-Lagrange
equation becomes
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OFi 1 — V. (AVI v (82Ly
W( (x,n)) =V -( (x, 1)) — B(X)A2 ( o >
+ B Ix+u,n+1) —I[(x —u,n—1))

(20)

where

A= (VI %), B=¢ ([x+un+l)—I(x—u,n—
1%, and V = (u,1).

In the above equation, the first term represents a dif-
fusion term with diffusion velocity of A. The second part
of the equation represents diffusion of intensity in the
direction of the computed optical flow. This term act as a
transportation of intensity along the flow line. In our case,
we are only interested with diffusion along the flow lines
as defined by mask B(x). It is possible to apply diffusion
on the whole image along the flow lines, but we found that
a good initial solution can easily be estimated by setting
I(x,n) = %(I(x —u,n— 1) + I(x + u,n + 1)). The last
part of the equation avoids smoothing the images where
intensities are correctly computed from optical flow.

4 Numerical implementation

To minimize the energies defined in Egs. (12)—(14)
and (19), we first derived the Euler-Lagrange equations.
The formulations can easily be parallelized with multi-
core processors [14]. The Euler-Lagrange equations for
Eqgs. (16)—(18) are shown in Eq. (20). The 2D divergence
operator V- for N by M image is defined as

[ L(G,j) — LG,j—1), ifj<N.

V- ly)) = { 0, otherwise
LB b=, ifi< M.
0, otherwise

(21)

Similarly, we defined derivatives using five-point sten-
cil finite difference approximation with convolution mask
[1,-8,0,8,—1] /12. The implementation of the second
term of Eq. (20) is similar to discretization used in [15].
Deriving the Euler-Lagrange equation for Eq. (17) and
setting it to zero becomes

v (2 4 la—w=o (22)
o — —(u — =
va ) T Y

Let us define dual variable as

Vu

[Vu|
Substituting Eq. (22) in Eq. (23) we get

w w
pV(V-®-3)|-V(V-@-F)=0 v
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The fixed-point iteration scheme for Eq. (24) will be
pk 41V (v - (p¥) - %)
(e )

and uft! is computed from Eq. (22) as ukt! = wk+1 4
oV - (pk ) Finally, Eq. (18) can be solved using pointwise
thresholding as in [11]. For completeness, we present the
final result here. For general formulation, where p(u,gq) =
g’u + ¢, the dual variable w is given by w = u +
TH (u—l—gl’g%), where TH is a thresholding operator
defined as

k+1
P

(25)

—0g, ifglu+c< —0lg
TH <u+ gc2> =18 if g'u+c > 0lg?
T
B | gE e ifjgTu + el < g

(26)

Finally, the step by step multi-scale implementation
scheme is given in the resulting Algorithm 1.

Data: I(x,n — 1),I(x,n + 1)
Result: I(x, n)
warping=2, Maxiter=20, scale=0.9, NIter=200;
foreach level=[ do
/* For each pyramid level */
Down sample both image with scale
foreach warping do
Warp images to 1(x, )
foreach Maxiter=k do
Compute u**! from Eq. (25)
Compute wX*! from Eq. (26)
end
Upscale uf+! and wk*1,
end

end
Initialize I(x,n) = $(I(x — u,n — 1) + (X + u,n + 1))
foreach Nlter do

/* Solving Eg. (19) x/
(6 m)Nier-+1 = 10%, mNiter + 57 (L(X, M) ier)

end
Algorithm 1: Variational approach for capsule video
frame Interpolation

5 Results and discussion

In CCE frames interpolation, not only the smoothness
of the output video must be taken into account but also
the quality of the interpolated frame for diagnosis. It
must be kept in mind that the capsule moves through
gastro-intestinal track with an uneven speed by muscle
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peristalsis. Therefore, depending on the speed of the cap-
sule, some of the neighboring frames might contain high
overlap or very small overlap between frames. Hence, the
quality of the interpolated image depends on the degree
of overlap and needs to be evaluated for medical decision-
making process. Therefore, the reconstruction quality in
terms of objective and subjective measures is of great
importance.

5.1 Dataset

In our experiment, we have doubled frame rates from 5 to
10 frame/second. The videos are taken with Givenlmag-
ing Pillcam Colon camera. Four sequences were extracted
from Givenlmaging capsule videos [4].

e Seql: Contains 13 frames from colon with perspective
passage motion of tissues. Average correlation
similarity between neighboring frames is 0.8910.

e Seq2: Contains 16 frames from colon showing a
9 mm polyp on a single frame with complicated
motions. Average correlation similarity between
neighboring frames is 0.8078.

e Seq3: Contains 20 frames from rectum with
occlusions. Average correlation similarity between
neighboring frames is 0.8989.

e Seq4: Contains 18 frames from colon showing 6 mm
polyp on multiple frames. Average correlation
similarity between neighboring frames is 0.8621.
Sample results are shown in Fig. 2.

5.2 Objective metrics

We used the most common metrics for evaluation of inter-
polation error such as mean-squared error (MSE) and
peak signal to noise ratio (PSNR). In addition, we have
also compared using Structural SIMilarity(SSIM) [16] as a
quality measure of one of the images being compared. For
N by M size image, MSE and PSNR are defined as:

1 N M
MSE = W Z Z(Iest - Igr)

n=1m=1

L2

where Iest is the interpolated frame, Iy, is the ground truth
frame, and L is the peak signal strength. For SSIM, we
used the implementation provided by [16]. In our experi-
ment, as we do not have ground truth data, we interpolate
odd-numbered frames using even-numbered frames and
vice versa. Comparison with other methods is done for
both 90 and 100% of the frames. The frames are grouped
based on the similarity of the neighboring frame for inter-
polation. Results are summarized in Tables 1, 2 and 3
for both 90 and 100% of frame sequences. The compar-
ison is done with state-of-the-art and traditional optical

(27)

(28)
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PillCam®COLON

PillCam” COLON

a b

number 4 and d the result of our method

PillCam® COLON PillCam” COLON

d

Fig. 2 Sample result for frame interpolation using neighboring frames on seq1 and seg4 with image size 576 x 576. Frame number 4 is interpolated
using frame number 3 and 5. a Seg4 6 mm polyp original frame number 4 and b estimated frame using our method. € Seq1: Original input: frame

flow variational technique TV-CLG [17]' and TV-L1[18]3
respectively. Moreover, we also compared against non-
variational optical flow method that is robust for large
displacement optical flow computation, SFlow [19]2. In
addition, frame averaging technique is included in the
comparison as a baseline, as it is common in commercial
products. The comparison is done using the implementa-
tion provided by the respective authors.

From the above result, we can observe that the proposed
method improves the image quality by 0.3 dB compared
to other state-of-the-art methods, although the difference
in performance in terms of MSE between top method and
our method is comparatively small (1.1 x 10~%). Sample
results of the proposed method are shown in Fig. 2. More
results are shown in Fig. 3.

5.3 Parameters

In general, frame interpolation depends on accurate
optical flow computation. Coarse-to-fine and warping
techniques are frequently used tool for improving the
performance of optic flow methods [9-11]. Warping in
Algorithm 1 controls the number of times Egs. (17) and
(18) are solved iteratively, which is set by Maxiter on

Table 1 Average PSNR for 90 and 100% of test sequences

each scale. Increasing this parameter increases the qual-
ity of computed optical flow as tradeoff with speed. Niter
is the number of times diffusion along the optical flow
lines is propagated. Interpolated frames get smoother with
increase of this parameter. Finally, in order to get full
advantage of the texture feature, A; in Eq. (10) represents
how much textural energy map and pixel intensity con-
tribute for estimating accurate interpolated frame. We did
parameter optimization on X; against PSNR value of the
interpolated and ground truth image. The result of opti-
mization is shown in Fig. 7. A visual comparison showing
results with and without texture features is shown in Fig. 6.
From Figs. 7 and 6, we can see that the textural features
improve the quality of interpolated frame with less motion
artifacts and tissue surface blur.

5.4 Applicability of interpolation for CCE video frames

Colonosocopy, which is a gold standard for visualizing the
colon takes 30 frames per second. The videos are in gen-
eral smooth and natural to view. Currently, CCE is not
recommended as a first-line colorectal cancer screening
option in hospitals. Frame interpolation can be used to
enhance CCE for better visualization by increasing the

Method Seq Seq2 Seq3 Seg4 Avg.

Frames ratio 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
TV-CLG' 26.78 24.12 18.56 1833 25.26 24.21 25.20 23.86 23.85 2270
SFlow? 2612 2371 18.56 18.37 24.71 23.76 25.10 2394 2354 22.52
Frame averaging 13.62 13.31 11.78 11.88 12.68 1271 12.24 12.26 1250 12.50
TV-L13 2521 22.65 18.14 17.95 24.24 23.16 2392 22.72 22.82 21.71
Proposed method 26.71 24.49 18.26 18.03 25.03 23.86 25.69 24.27 23.82 22.70
without texture

Proposed method 27.26 24.94 1845 18.21 25.34 24.16 2529 2399 23.95 22.85

with texture

The PSNR value in italics indicate the best performing method
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Table 2 Average MSE (1073) for 90 and 100% of test sequences
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Method Seq Seq2 Seq3 Seq4 Avg.

Frames ratio 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
TV-CLG' 3.34 8.26 18.59 19.23 3.71 6.53 6.79 8.65 9.28 10.44
SFlow? 341 7.84 18 18.63 3.86 6.40 6.02 7.48 7.82 9.87
Frame averaging 43.63 47.28 68.12 6647 5543 5491 59.85 59.67 57.78 5752
TV-L13 4.05 11.38 20.20 20.49 4.50 821 7.73 9.74 9.13 12.13
Proposed method without texture 397 6.82 19.82 20.55 4.06 8.03 6.47 846 8.55 10.89
Proposed method with texture 2.54 5.69 18.92 19.56 3.51 6.99 5.99 791 7.78 9.98

The MSE value in italics indicate the best performing method

frame rate and improving capsule battery life. In litera-
ture, there are recent works that aim to detect informative
segments automatically [20, 21]. Increasing the frame rate
of these segments will assist the gastroenterologist to go
through the video quickly. Moreover, frame interpolation
can be used as post-processing for saving battery life. In
order to reduce the power consumption of an endoscope
capsule transferring still images over a wireless channel
from inside human intestines to on-body receivers, the
transmitted frame rate can be reduced in favor of gener-
ating the frames at the receiver side [8]. However, CCE
estimation of intermediate CCE frames, with rapid chang-
ing scene and large displacement between frames, can
cause problems even to the human observer. In such sce-
narios, it is difficult (sometimes impossible) to estimate
the intermediate frame as there is no information avail-
able for reconstruction. Hence, it is important to have a
frame reconstruction without undermining the diagnos-
tic value of the video, for example Figs. 4 and 5. When a
gastroenterologist examines CCE videos, he/she can play
videos and pause on a given frame for examining. This
begs a question, how to predict if the interpolated frame
is reliable for diagnosis.

In order to examine the appropriateness of an interpo-
lation, we analyzed different parameters of neighboring
frames that could impact the quality of interpolated frame.
Figure 8 shows PSNR value plot against maximum and
minimum magnitude of the optical flow. From the figure,
we can see that for optical flow maximum magnitude less
than 25, the PSNR is stable. Similar observation can be

Table 3 Average SSIM for 90 and 100% of test sequences

made from Fig. 8, as the correlation between the neighbor-
ing frame increases the PSNR value shows improvement.
This is an interesting observation, in that we can use it to
switch-off frame interpolation when flows are above some
threshold or when the correlation between two frames are
below a given value. The result shown in Fig. 8 is expected
in that as the correlation between neighboring frames is
an indicator to the quality of the interpolated frame. In
order to compute robust threshold of correlation between
neighboring frames, we collected CCE videos from nine
people and extracted seven segments (50 frames each)
from each video, which are marked by gastroenterolo-
gist as suspected region for different types of pathology.
Table 4 shows correlation between neighboring frames as
ratio of number of frames for a given correlation value to
the total number of frames. By using the data from Fig. 8
and Table 4, one can estimate robust threshold for inter-
polation that works for significant portion of the CCE
videos.

It is also important to note the performance of each
method with respect to correlation of neighboring frames.
Figure 5 shows the plot of correlation between neighbor-
ing frames and PSNR value between ground truth and
interpolated frame. The data is curve fitted using expo-
nential family of the form a — b x e™*. It is easy to see that
frame averaging performance above other methods where
correlation between neighboring frames is less than 0.4,
although the interpolated frame is blurred and has motion
artifacts, as the apparent motion is not compensated. This
is expected in that in case of large displacement between

Method Seq Seq?2 Seq3 Seg4 Avg.

Frames ratio 90% 100% 90% 100% 90% 100% 90% 100% 90% 100%
TV-CLG! 0.997 0.994 0.987 0.986 0.997 0.995 0.995 0.994 0.994 0.993
SFlow? 0.997 0.995 0.988 0.987 0.997 0.995 0.996 0.994 0.994 0.993
Frame averaging 0.965 0.964 0.949 0.950 0.957 0.957 0.956 0.956 0.956 0.956
TV-L13 0.997 0.993 0.986 0.986 0.997 0.994 0.995 0.993 0.994 0.992
Proposed method without texture 0.997 0.995 0.986 0.985 0.997 0.994 0.995 0.994 0.994 0.992
Proposed method with texture 0.998 0.996 0.987 0.986 0.997 0.995 0.996 0.994 0.994 0.993

The SSIM value in italics indicate the best performing method
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GT FA

More details are given under Section 5.4

Pro-
posed

TV-
L13

Fig. 3 Visual comparison of interpolated images. The first and second rows show the performance of different methods. On the last row, we can
observe that the interpolated frame is significantly different from the ground truth. This is due to large displacement between the neighboring
frame, with correlation value between them being 0.691. In our approach, interpolation is done when we are confident on the interpolated frame.

neighboring frames, it is difficult to estimate accurately
the optical flow. On the other hand, using methods that
are robust for large displacement optical flow as [19]
gives a better result compared to variational techniques
for large optical flow displacement. However, variational
methods, specifically our proposed method performs bet-
ter than other methods including [19] for approximately
90% of CCE video frames which has correlation greater
than 0.75 as shown in Table 4.

Moreover, we performed a non-parametric paired
Wilcoxon signed-rank test [22] comparing the PSNR
value for each method. The null hypothesis (i.e. data
in two paired methods are samples from continuous

distributions with equal medians H = 0, against the alter-
native that they are not H = 1) is tested with Bonferroni
correction of confidence interval [23]. Figure 5, b and ¢
shows Wilcoxon signed rank test for all methods for cor-
relation value between neighboring frames greater than
0.75. As it can be seen, the proposed method performs
statistically better except for TV-CLG [17]. Although, the
proposed method performs better against TV-CLG [17]
in terms of mean PSNR, it is not statistically significant.
For our experiment, we set a correlation value of 0.75
between neighboring frames to decide if the computed
intermediate frame is suitable for diagnosis. As it is shown
in Table 4, this threshold includes 90% of the frames in

PillCam® COLON

PillCam® COLON

Fig. 4 Large displacement between neighboring frames with maximum magnitude of flow 92 pixels: frame interpolation for frame 7 of Seg2. a The
ground truth frame. b Estimated based on frame 6 and 8. The polyp shown in a appears only in a single frame (frame number 8)
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Fig. 5 Comparison of five methods. a The performance of all methods plotted on correlation vs. PSNR axis. As it can be seen from the graph SFlow
and frame averaging performs well for large displacement optical flow compared to other methods. The performance of the proposed method tops
other methods for correlation > 0.7 which includes majority of the cases. b and € shows Wilcoxon signed rank test for 90% of the sequences

in-terms of hypothesis test and p-value

typical CCE video. For frames below the threshold, frame
interpolation is off, and frame doubling is done to make
the frame rate consistent.

5.5 Future direction: CCE video frame interpolation

Compared with wired colonoscopy, the limited working
time, the low frame rate, and the low image resolution
limit the wider application of CCE. An increase in the

frame rate, angle of view, depth of field, and duration of
the procedure and improvements in illumination seem
likely in the future. The progress of battery technology
and robust computational frame interpolation techniques
can mitigate problems with the current CCE capsules.
CCE needs to be small enough to be swallowable, and the
battery needs to last more than 8 h [24] . The transmis-
sion of the image data occupies about 90% of the total
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Fig. 6 Visual comparison of proposed method with and without textural feature constraint for sample frames from seq3 and seg4. First column
shows the ground truth frame 8 and 12 from seq3 and seg4. The second column and third column show interpolation result using frames 7 and 9
and frames 11 and 13 with texture and without textural feature constraints

With texture

PillCam”COLON

power in CCE [25]. Hence, computational techniques can
have a significant impact in improving the frame rate
of future capsules. As shown on Tables 1, 2, 3 and 4,
the performance the proposed method improves with
correlation between the neighboring frames. With high
frame rate videos, the proposed method gives more robust
interpolated frames. This could significantly increases the

chance of finding more disease pathologies as the CCE
passes through the gastrointestinal tract.

6 Conclusion

In this paper, we discussed the limitation of the current
CCE videos regarding low frame rates. It is desirable to
have a smooth video which is pleasant to view as well as
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z
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18 H ! i 1 1 L 1 1 L |

05 06 07 08 09 1

M

Fig. 7 PSNR vs ;. The above plot shows PSNR value as a function of A;. The lower line shows the performance of the proposed method without
texture, and the upper line shows the maximum improvement with texture features for a given sequence. We can see that the texture component
improves the interpolated frame quality depending on the complexity of the scene
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Fig. 8 Frame interpolation quality for all sequences. a PSNR value against maximum (star) and minimum (circle) optical flow magnitude of each
frame and b the correlation between neighboring frames (star) and warped flow on /(x,n — 1) and /(x,n + 1)(circles)

give a better diagnostic value by reducing eye fatigue. We
proposed a variational approach to CCE frame motion
estimation and intermediate frame intensity computation,
simultaneously. In addition, textural features are included
to make robust motion estimation. We also evaluated the
quality of both 90 and 100% of the frames for medical diag-
nosis domain through objective image quality metrics. We
found that the proposed method gives a state-of-the-art
result for CCE frame interpolation. Moreover, the pro-
posed method can be parallelized, and computationally
efficient methods exist for GPU implementation. As a
future work, we will explore extending variational meth-
ods to make them more robust for large displacement
between neighboring frames(i.e., low correlation). In addi-
tion, objective metrics used here need to be supplemented
with subjective evaluation by medical professional. Fur-
ther video materials can be downloaded from https://
www.ntnu.edu/web/colourlab/software.

Table 4 Percentage of frames with neighboring frame
correlation above given value

Correlation Percentage (%) of frames
>0.90 55.69
>0.85 72.21
>0.80 84.26
>0.75 90.16
>0.70 93.92
>0.60 97.51
>0.50 99.13

Abbreviations

CCE: Colon capsule video endoscopy; GPU: Graphics processing unit; GT:
Ground truth; HD: High definition; MSE: Mean-squared error; PSNR: Peak signal
to noise ratio; SOF: Symmetric optical flow; SSIM: Structural Similarity; TV-L1:
Total variation L1 norm
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