
URN:NBN
Supporting Relationships
in Digital Libraries

Trond Aalberg

Department of Computer and Information Science
Norwegian University of Science and Technology

April 23, 2003
:no-3403

ii

URN:NB
N:no-3403

iii

URN:NBN
Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for the doctoral degree “doctor scientiarum”. The work reported has been
carried out during the time period 1998–2003 at the Information Management
Group, Department of Computer and Information Science.

First of all I want to thank my supervisor, Professor Ingeborg Torvik Sølvberg, for
providing me with a fine combination of freedom and guidance in the shaping of
this work. The discussions we have had and the feedback I have received
throughout these years have been invaluable for this work. I also want to thank my
colleagues at the Department of Computer and Information Science for the friendly
and helpful environment that has enabled me to do this work.

Particular thanks to BIBSYS for allowing me to use their database in the
application that was developed as a part of this work.

Finally, I want to thank a very patient and understanding family.

Trond Aalberg
April 23, 2003
:no-3403

iv

URN:NB
N:no-3403

v

URN:NBN
Abstract

The motivation for this work is based on two recognized research issues for digital
libraries. One is the need for interlinked and semantically rich information spaces
where relationship information is of particular importance. The other is the service-
oriented architecture of digital libraries. The digital libraries of the future will
consist of smaller and independent systems that each will provide different
functionality and access to different contents.

This work defines and explores a service for managing and using explicit
relationships – the Digital Library Link Service. The service implements an
instance-oriented approach to relationships that enables any kind of typed
relationship to be created among the information objects of digital libraries. The
service can be used to create consistent information spaces on top of digital library
repositories and enables an associative organization and retrieval of information
objects.

This work shows that the use of a fine-grained relationship model implemented
as distributed objects enables distribution of the relationship network while still
being able to support constraints and maintain consistency. The cost of this,
however, is a complexity that can reduce performance and scalability due to the call
latency of network communication. A prototype is developed that utilizes caching
in order to solve this. Tests conducted show that this technique significantly
contributes to the scalability and efficiency. This is particularly important when the
relationship information is distributed across different processes with high call-
latency in between.

The work further presents a prototype application for enhancing bibliographic
catalogues with the rich set of relationship types defined in the bibliographic
information model proposed by the International Federation of Library Associations
and Institutions – the FRBR model. The Digital Library Link Service is used to
implement an index that facilitates the navigation of bibliographic relationships in
order to explore bibliographic entities along the paths laid out by the FRBR model.
This demonstrates the applicability of the service as a flexible tool for associative
organization of information objects.

The main applications of the service are limited to systems with a relaxed
requirement in terms of automatic processing of larger sets of relationships. The
main access paradigm explored for interacting with relationships is by navigation.
The need for automatic and efficient processing of a large relationship network, e.g.
for the purpose of indexing, can be supported by extending the system with
additional functionality. Another recognized problem is that the use of CORBA
references to address long-term persistent information can cause referential integrity
problems. One possible way to solve this is to assigning objects globally unique
identifiers that later can be used to recover from referential integrity problems.
:no-3403

vi

URN:NB
N:no-3403

URN:NBN
Table of Contents

Preface ..iii
Abstract ... v
Table of Contents ...vii
List of Figures ..xiii

Chapter 1 Introduction .. 1
1.1 Problem Statement ... 1
1.2 Approaches and Objectives .. 2
1.3 Contributions .. 2
1.4 Outline of the Thesis .. 4

Chapter 2 Digital Libraries ... 5
2.1 Defining Digital Libraries .. 5
2.2 Digital Library Information 8
2.2.1 The Primary Content of Digital Libraries 8
2.2.2 Metadata ... 9
2.2.3 Collections .. 11
2.2.4 Compound Objects .. 12
2.2.5 Identity .. 12
2.2.6 A Digital Library Information Model 13
2.3 A Relationship Centric Approach 15
2.3.1 Motivation ... 15
2.3.2 Relationships Among Information Objects 16
2.3.3 Relationship Support in Digital Libraries 18
2.3.4 Explicit Relationships ... 19
:no-3403

viii

URN:NB
2.4 Digital Library Services ... 21
2.4.1 The Global Information Infrastructure 21
2.4.2 Digital Library Architectures 21
2.4.3 Components and Services 22
2.4.4 Middleware ... 24
2.4.5 The World Wide Web .. 25
2.4.6 CORBA .. 27
2.5 A Relationship Service for Digital Libraries 28

Chapter 3 Relationship Knowledge .. 31
3.1 The Term and the Concept 31
3.2 Relationship as Knowledge 32
3.3 Where Do Relationships Come From? 34
3.4 The Mathematical Relation 36
3.5 The Relationship as a Modeling Primitive 37
3.6 The Meaning of Relationships 39

Chapter 4 Relationship Representation 45
4.1 The Implementation of Relationships 45
4.2 Extensional and Intensional Relationships 45
4.3 Property or First-class Object 47
4.4 Relationships in Object-Oriented Systems 48
4.4.1 Object-Oriented Systems 48
4.4.2 The OMG CORBA Relationship Service 52
4.5 Hypermedia Systems .. 54
4.5.1 Hypertext and Hypermedia 54
4.5.2 Linking .. 55
4.5.3 Link Models ... 57
4.5.4 Open Hypermedia ... 60
4.6 Descriptive Solutions ... 61
4.6.1 Metadata Formats ... 61
4.6.2 The Resource Description Framework 63
4.6.3 Topic Maps .. 64
4.6.4 HTML .. 64
4.6.5 XLink ... 66
4.6.6 HyTime .. 68
4.7 Overview .. 70
N:no-3403

ix

URN:NBN
Chapter 5 A Generic Relationship Model 73
5.1 A Model for Explicit Relationships 73
5.2 Requirements ... 73
5.2.1 Participants ... 74
5.2.2 Relationship Semantics 74
5.2.3 Relationship Structure .. 76
5.2.4 Constraints .. 78
5.2.5 Relationship Identity ... 79
5.3 Developing a Model ... 80
5.3.1 An Initial Model .. 80
5.3.2 Embedding Role Semantics 81
5.3.3 Adding Types and Constraints 82
5.3.4 Overview ... 83

Chapter 6 Design and Architecture .. 85
6.1 Supporting Relationships in Digital Libraries 85
6.2 The Core Tasks .. 87
6.3 The Object Model .. 87
6.4 Navigating Relationships ... 91
6.5 Creating Relationships ... 91
6.6 The Type Service ... 93
6.7 Constraints ... 97

Chapter 7 Application Issues .. 101
7.1 Distribution .. 101
7.2 Using CORBA ... 104
7.3 Service Integration ... 104
7.3.1 Integration with Information Objects 105
7.3.2 Client-side Integration 106
7.4 Import and Export .. 108
7.5 Identifiers and Uniqueness 111
7.5.1 Information Objects .. 111
7.5.2 CORBA Objects .. 111
7.5.3 Link Uniqueness .. 112
7.6 Relationship Attributes .. 114
7.7 Performance and Scalability 116
7.8 Transactions and Concurrency 120
7.9 Security .. 121
:no-3403

x

URN:NB
Chapter 8 Implementation and Testing 127
8.1 The Prototype Implementation 127
8.1.1 Supported Features ... 127
8.1.2 Interface Definitions ... 128
8.1.3 Implementation Issues 130
8.1.4 The Object Request Broker 131
8.1.5 Runtime Management of Servants 133
8.1.6 Persistent Objects ... 134
8.2 Performance and Scalability 135
8.2.1 Fat Operations .. 136
8.2.2 Caching ... 137
8.2.3 Object Locality .. 139
8.3 Performance Testing .. 140
8.3.1 Test Setup .. 140
8.3.2 Navigation Performance 143
8.3.3 Creating Relationships 145

Chapter 9 The FRBR Application .. 149
9.1 Introduction .. 149
9.2 Current Bibliographic Catalogues 150
9.3 The FRBR Model ... 153
9.4 Enhancing Existing Catalogues 154
9.5 Implementing the Index ... 158
9.5.1 Defining a Link Typology for the FRBR-model 159
9.5.2 Extracting Entities and Relationships 160
9.5.3 The FRBR Index .. 168
9.6 A Client for Navigating Relationships 169
9.7 Evaluating the Application 171

Chapter 10 Evaluating the Service ... 173
10.1 Application Areas .. 173
10.2 The Object Model .. 174
10.3 Distribution .. 176
10.4 Reuse .. 177
10.5 Referential Integrity ... 178
10.6 Interoperability ... 180
N:no-3403

xi

URN:NBN
Chapter 11 Conclusions and Future Work 183
11.1 Conclusions .. 183
11.2 Summary of Contributions 184
11.3 Related Work ... 185
11.4 Limitations and Further Work 188

Appendix ... 191
A.1 The LinkService Module .. 191
A.2 The Typology Module .. 194
A.3 The Typology Schema .. 196
A.4 The FRBR Typology... 199

References ... 211
:no-3403

xii

URN:NB
N:no-3403

URN:NBN
List of Figures

Figure 2.1: A digital library information model. 15
Figure 2.2: Explicit relationships. ... 20
Figure 2.3: The Common Object Request Broker Architecture. 28
Figure 2.4: A service for relationships.. 29
Figure 3.1: The triangle of meaning.. 32
Figure 3.2: Relation and Cartesian products. .. 37
Figure 3.3: Relationship naming... 42
Figure 4.1: Relationships in the object data model of ODMG. 51
Figure 4.2: Hyperbase systems. .. 58
Figure 4.3: Link server systems. ... 59
Figure 4.4: The link model of OHP-Nav. ... 61
Figure 4.5: A family expressed as a topic map. .. 65
Figure 4.6: Link elements and link types in HTML documents. 67
Figure 4.7: A family expressed as an extended xlink. 69
Figure 5.1: Naming relationships.. 75
Figure 5.2: Relationships of different degree.. 77
Figure 5.3: Binary 1:1 relationship. .. 78
Figure 5.4: Binary 1:N relationship. ... 78
Figure 6.1: Use case diagram of the DL-LinkService. 88
Figure 6.2: The objects used to implement a relationship. 90
Figure 6.3: The use of node, role and link objects. 90
Figure 6.4: Navigation as a chained method invocation. 92
Figure 6.5: Factory objects.. 92
Figure 6.6: The bind pattern.. 94
Figure 6.7: XML format for type definitions. ... 96
Figure 6.8: The levels of the DL-LinkService. ... 99
Figure 7.1: DL-LinkService components.. 102
Figure 7.2: Deployment diagram. ... 103
Figure 7.3: Distributed network of relationships. 103
Figure 7.4: Integration with information objects. 106
Figure 7.5: Runtime integration. ... 107
Figure 7.6: Mapping to various descriptive formats. 109
:no-3403

xiv

URN:NB
Figure 7.7: The UUID object. ... 113
Figure 7.8: Testing for uniqueness.. 114
Figure 7.9: Relationship attributes. ... 116
Figure 7.10: Ping response time.. 118
Figure 7.11: Transaction. .. 122
Figure 8.1: Test setup.. 132
Figure 8.2: The flow of information in the caching mechanism............. 138
Figure 8.3: The direct references that the cache enables. 138
Figure 8.4: Different distribution of the objects in test setup. 142
Figure 8.5: Testing the performance of navigation................................. 144
Figure 8.6: Testing the performance of creating relationships. 147
Figure 9.1: Example MARC records. ... 152
Figure 9.2: The Group 1 entities of the FRBR model............................. 154
Figure 9.3: Example relationships from the FRBR model...................... 155
Figure 9.4: The FRBR index... 158
Figure 9.5: The FRBR typology. .. 161
Figure 9.6: Extracting entities and relationships..................................... 162
Figure 9.8: Extracted works and their origin MARC fields.................... 163
Figure 9.7: MARC fields and their occurrence in the test set. 163
Figure 9.9: Different categories of expressions found. 164
Figure 9.10: Example expressions I. ... 165
Figure 9.11: Example expressions II... 165
Figure 9.12: List of identified relationships.. 166
Figure 9.13: Example relationships. ... 167
Figure 9.14: Multi-part volumes and the expressions they embody. 167
Figure 9.15: Screenshot of the client. ... 170
N:no-3403

URN:NBN
1 Introduction

The process of tying two items together is the important thing.

(Vannevar Bush, As We May Think, 1945)

1.1 Problem Statement

The motivation for this work is based on two recognized research issues for digital
libraries. One is the need for interlinked and semantically rich information spaces
where relationship information is of particular importance. The other is the service-
oriented architecture of digital libraries. The digital libraries of the future will
consist of smaller and independent services that each will provide different
functionality and access to different contents. These two highly orthogonal research
issues lead up to the specific problem statement explored in this research which is:

How to provide a service for using and managing relationships
in digital libraries.
:no-3403

2 1 Introduction

URN:NB
1.2 Approaches and Objectives

This work explores several interrelated approaches to the problem statement:
• Relationships are viewed as a generic type of information: The use of a

common data model for this kind of information can enable uniform access,
use and management of semantically and structurally different relationships.

• Relationships as explicit information: Implementing relationships as first-
class objects enables the creation of relationships between third-party entities.
Furthermore, it can enable access to relationship information by third-party
applications.

• Build upon existing technology and experience: Although current support for
relationship information in information systems is based on diverse models
and techniques, there are established conventions with respect to issues like
relationship semantics and relationship constraints that need to be supported.

• A distributed solution: If digital libraries are envisioned as a distributed infor-
mation environment, a service for relationship management and use needs to
be implemented as a distributed application as well.

This leads to the following objectives for this work:
• To propose a model for relationship information in digital libraries.
• To design and evaluate an open solution for representing, managing and using

relationship information in digital libraries.
• To explore relationship information in a distributed context.

1.3 Contributions

The major contributions of this thesis are:
• The thesis contributes to the understanding of relationships in digital libraries

by reviewing how relationships generally are understood and supported in
information technology. A general conclusion is that existing solutions for
representing and processing relationship information are highly diverse.

• An abstract model of explicit relationships is specified that provides a flexi-
ble solution for representing relationship information in a uniform way. This
shows that a generic data model can be used to capture the full range of rela-
tionship types that are relevant for digital libraries. This solution, however,
requires a relationship typing scheme to ensure logically correct relation-
ships.
N:no-3403

1.3 Contributions 3

URN:NBN
• The thesis specifies and describes the Digital Library Link Service – an
instance-oriented solution for managing and using relationships in digital
libraries. The use of an object-oriented solution enables a coherent and flexi-
ble solution for the data, behaviour and constraints of explicit relationships.
By separating the typing of relationships from the implementation a reusable
and dynamic service for relationship support in digital libraries is achieved.
The DL-LinkService can be used to create complex relationship networks.

• This work shows that the use of a fine-grained relationship model imple-
mented as distributed objects enables distribution of the relationship network
while still being able to support constraints and maintain consistency. The
cost of this, however, is a certain complexity that can reduce performance and
scalability due to the call latency of network communication. A prototype is
developed that utilizes caching in order to solve this. Tests conducted show
that this technique significantly contributes to the scalability and efficiency.
This is particularly important when the relationship information is distributed
across different processes with high call-latency in between.

• The fine-grained relationship object model that is deployed enables distribu-
tion along many axes. The service can be used in a client/server fashion or it
can be used for peer-to-peer collaborative construction of a consistent, coher-
ent and highly distributed relationship networks. A general conclusion is that
relationship information can be highly distributed if this is needed. Imple-
menting long-term persistent information as distributed objects, however, is a
challenging issue due to the possible lack of referential integrity that may
occur. This work suggests the use of globally unique identifiers as the main
enabler for implementing solutions to solve and prevent such problems.

• The proposed solution supports interactive traversal of the relationship net-
work. However, the main access paradigm explored in this work is user-initi-
ated navigation with a relaxed requirement for processing capacity. The need
for automatic and efficient processing of a large relationship network, e.g. for
the purpose of indexing, can be supported by extending the system with addi-
tional functionality.

• Furthermore, a prototype application for enhancing bibliographic catalogues
with a rich set of relationship types is implemented. This demonstrates the
applicability of the service as a flexible tool for associative organization of
information spaces and illustrates the potentially rich information structures
that relationships can enable in digital libraries.

Two papers reporting this work have been presented at the European Conference on
Research and Advanced Technology for Digital libraries (ECDL) [1, 2].
:no-3403

4 1 Introduction

URN:NB
1.4 Outline of the Thesis

The remaining of this thesis is laid out as follows:
• Chapter 2 is an introduction to digital libraries and discusses the major char-

acteristics of digital library systems. This chapter further focuses on the infor-
mation that digital libraries maintain and discusses the benefits of a more
relationship-centric approach to digital libraries. The last part discusses
digital libraries as a distributed and open environment for sharing and using
information and functionality, and outlines how a relationship service for
digital libraries can be modelled and implemented.

• The topic of Chapter 3 is to explain what relationship knowledge is. This is
accomplished by describing selected theories about knowledge, the mathe-
matical relation, and relationship modeling. The last part of this chapter
emphasizes relationship semantics and describes the various types of rela-
tionships that are recognized in different fields related to digital libraries.
Chapter 4 continues this discussion by reviewing and discussing solutions for
relationship mechanisms with a particular focus on object-oriented systems,
hypermedia link services and formats for descriptive relationship informa-
tion. Chapter 5 summarizes the aspects of relationship representation that this
work emphasizes, and introduces an abstract model that provides a flexible
solution for representing relationship information in a uniform way.

• Chapter 6 introduces and describes the core design of the Digital Library
Link Service (DL-LinkService) – the system that the remaining of the thesis
explores. Various application issues related to the service is described in
Chapter 7, such as how the service can be integrated into digital library
systems and how the design can be extended to support features like relation-
ship attributes, and how transactions and security can be used to solve partic-
ular application issues.

• Chapter 8 describes the specific prototype that is developed with a particular
focus on the performance optimization techniques that are implemented. This
chapter further describes various tests that have been performed which are
used to explore possible problems and limitations of the system.

• Chapter 9 presents a prototype application that uses the DL-LinkService to
implement a semantically rich relationship-based index over bibliographic
records.

• Chapter 10 evaluates the main features of the DL-LinkService
• Finally, Chapter 11 concludes this work with a summary of major contribu-

tions, limitations and future work.
N:no-3403

URN:NBN
2 Digital Libraries

2.1 Defining Digital Libraries

In the last decade, digital libraries have grown to be a common field of interest for
researchers, developers and users from a broad range of disciplines. Digital libraries
do not, however, have any single precise definition, and the many disciplines and
practitioners involved tend to emphasize different aspects when engaging in
research and development. In their introduction to the first issue of the International
Journal on Digital Libraries, Adam and Yesha explain the main theme of digital
libraries with the following [3]:

Digital Libraries are concerned with the creation and management of
information sources, the movement of information across global networks
and the effective use of this information by a wide range of users.......

This definition captures the motivation for many research and development efforts,
but is highly general in the sense that it does not clearly distinguish digital libraries
from other kinds of information systems. After all, not all information systems are
digital libraries. A more specific definition is given by Borgman et al. in [20]:

Digital libraries are a set of electronic resources and associated technical
capabilities for creating, searching, and using information. In this sense they
are an extension and enhancement of information storage and retrieval
systems that manipulate digital data in any medium (text, images, sounds;
static or dynamic images) and exist in distributed networks. The content of
digital libraries includes data, metadata that describe various aspects of the
data (e.g., representation, creator, owner, reproduction rights), and metadata
that consist of links or relationships to other data or metadata, whether
internal or external to the digital library.
:no-3403

6 2 Digital Libraries

URN:NB
Stephen Griffin defines digital libraries with the following [74]:
...digital libraries provide for collection development, organisation, access,
annotation and preservation, and deal both with information in digital form
as well as digital management of information residing on physical media.

A different description is used by the Association of Research Libraries in [11]
based on a review of digital libraries by Karen Drabenstott [58]:

• The digital library is not a single entity.
• The digital library requires technology to link the resources of many.
• The linkages between the many digital libraries and information services are

transparent to the end users.
• Universal access to digital libraries and information services is a goal.
• Digital library collections are not limited to document surrogates: they extend

to digital artefacts that cannot be represented or distributed in printed formats.
One problem when discussing digital libraries is that they exist in the crossroads
between many disciplines and interests. This inevitably leads to many views on
what a digital library actually is. In the book “From Guthenberg to the Global
Information Infrastructure” [19], Christine Borgman discusses two substantially
different meanings of digital libraries:

• Digital library as an organization
• Digital library as a service

The viewpoint of digital libraries as an organization is often promoted by the
practitioners of the field, based on the assumption that traditional library institutions
are the organizations in charge of information management and that the main
concern is to enable these organizations to store, manage, and make available digital
content in a networked world. On the other hand, research communities – in
particular in the field of computer science – often have an initial focus on enabling
technologies like databases, information retrieval, and network architectures, and
promote the view of digital library as a service for collecting and organizing
content on the behalf of users, by the use of information technology.

This work is mainly concerned with digital libraries as a specific kind of
information system or service. For this purpose it is useful to refer to the description
of digital libraries found in [54], which defines digital libraries using three key
characteristics that distinguish them from other systems:
N:no-3403

2.1 Defining Digital Libraries 7

URN:NBN
• Functionality: It offers integrated services to a comprehensive digital collec-
tion of cultural or scientific information that is available primarily for reading
and secondarily for expanding upon as well as annotating.

• Purpose: It is mainly used for learning and research.
• Lifetime: It provides access to information whose value is preserved across

long periods of time.
Furthermore, some of the features that are particularly emphasized in digital library
information systems are:

• Rich information needs
• Multiple sources of related information
• Heterogeneous information
• Rich data sources
• Multimedia information
• Defined user populations
• Motivated users
• Task-orientation
• Domain-orientation
• Cross-lingual access
• Collaboration.

This work particularly focuses on support for relationship information in digital
libraries and in this context, the following selected characteristics are important:

• Digital libraries are associated with repositories of long-term persistent infor-
mation and services for managing, organizing and using the information that
exists within these repositories.

• The contents of digital libraries are primarily read-only, but digital library
systems should provide tools and services for expanding and enriching
content in ways that increase the access to and usability of the content.

• Digital library systems represent multiple sources of related information
rather than islands of information. Relationships may exist between informa-
tion in the same repository, and relationships may exist across system and
organizational boundaries.

• Digital libraries exist in an environment that is characterized by collaboration
and integration.
:no-3403

8 2 Digital Libraries

URN:NB
2.2 Digital Library Information

Even though the content of digital libraries can be highly heterogeneous, there is a
certain shared understanding that underlies most digital library systems. Just as
traditional libraries by many are associated with information sources like books,
journals, etc., it is natural to assert that digital libraries are associated with similar
information sources that exist in the digital realm – digital document-like objects.
These entities are often organized in collections, and each “document” is described
by metadata records.

Information models for digital libraries have been explored in several digital
library research projects [9, 10, 115, 145, 161]. In this work, an abstraction of the
information in digital libraries will be used that reflects the various concepts that are
commonly used in digital libraries. In its simplest form, the model states that
everything in a digital library should be considered an information object and that
the main mechanism for expanding upon these objects and communicating about
them is through the use of names or identifiers.

2.2.1 The Primary Content of Digital Libraries
The primary content of digital libraries can, to some extent, be compared with the
established convention of a document. Documents can be characterized as
knowledge- or information-carrying artefacts, and since the invention of writing,
such artefacts have been a major convention for exchanging and storing
information. The written language has enabled mankind to capture and store facts
and ideas and is fundamental for advanced reasoning as well as the transfer of
knowledge from one generation to the next generation. An intuitive understanding
of the document concept is naturally based on the written word. In the modern
world, however, we are not limited by the pencil and the paper, but can choose
between many different technologies for recording ideas and events. For that reason
the notion of a document can be expanded to include all artefacts that later can be
used as a source for information and knowledge, such as still images, moving
images, and sound recordings. Even items like the ones we find in museums can be
informative and should be included in this extended notion of a document [26].

Although digital libraries imply the use of digital technology, this does not limit
the scope of digital library content to documents encoded and transferred as binary
data. Digital representation of information is a rather new invention, and the body of
knowledge recorded by humans throughout its history is still dominated by physical
artefacts like printed books, manuscripts, and physical images. These physical
artefacts may exist in different shapes and may be included in digital libraries by
any digital surrogate. A digital image of a manuscript stored in a library or a
physical object kept in a museum can be sufficient for the information needs of the
N:no-3403

2.2 Digital Library Information 9

URN:NBN
end user. Other artefacts may be represented through other surrogates like a
metadata record or merely an identifier. Such surrogates can still be useful in the
initial steps of acquiring, discovering, evaluating and selecting information, and
should be considered equal to digital content objects when discussing digital
libraries.

Information in digital form is characterized by the ease with which it can be
changed or altered. For this reason, the scope of digital libraries is naturally
extended to include dynamic information as well, such as documents that are
updated continuously – like patient records – or information sources that
disseminate information influenced by the time it is viewed or other input values –
like today’s weather forecast. A distinction can, however, be made between the
content of digital libraries which is document centric, and the content of database
applications which typically is highly structured and based on a predefined
knowledge of users and tasks [54].

A major challenge for digital library systems is to be able to deal with a
heterogeneous set of documents within the same environment. The content itself
can be highly diverse and include different media like text, images and video.
Additionally, there are numerous formats in use for storing and exchanging
information for each of these media types. Nevertheless, a common denominator for
the content of digital libraries is that they are persistent sources of information and
that they have some kind of identity that enables the same information to be
accessed and reused across time. Despite the variety of media and the formats that
are in use, the content of digital libraries should be perceived as a uniform set of
content objects. This abstraction is needed in order to be able to manage, access and
extend upon this information in a uniform way. Typing of information and the type
specific processing of this information needs to be supported in a transparent way,
such as the way we deal with documents on the World Wide Web where media types
[64] are used to transparently communicate information about the format of the
transferred document.

2.2.2 Metadata
Bibliographic data and catalogues have for centuries been the main tool for libraries
to create order in the universe of their holdings, and a corresponding practice can be
found in other domains as well. Descriptive cataloguing is considered by many to be
the true art of library practice, and many of the services that libraries provide are
centred on the bibliographic records of the library catalogue. The purpose of the
catalogue, as stated by Charles C. Cutter in 1904 [43], is to offer the user a variety
of approaches or access points to the information contained in the collection of the
library by enabling a person to find any work when one of the following is known:
:no-3403

10 2 Digital Libraries

URN:NB
• The author
• The title
• The subject

An additional objective for the catalogue is to assist the user in the choice of a work
and to show what the library has:

• By a given author
• On given and related subjects
• In a given kind of literature

In most modern libraries, the card catalogue of earlier centuries is replaced by a
database and machine-readable bibliographic records. Databases provide for a more
flexible use of bibliographic records, and current online systems allow for searching
and browsing the catalogues in a number of ways.

In digital libraries, metadata has emerged as the preferred term when referring to
information that describes other information. Although some delimit metadata to
descriptions of networked resources1, a more general and inclusive interpretation of
metadata is usually implied, as exemplified in the following definition by Dempsey
and Heery [56]:

Metadata is data associated with objects which relieves their potential users
of having to have full advance knowledge of their existence or
characteristics.

A main advantage with the metadata term is that it is a domain independent and
common term that covers all the description formats that can be found in any
domain. If a digital library as a term is used to denote a highly heterogeneous set of
information systems, then metadata should be the preferred term because it is not
loaded with the practice and standards of a specific discipline.

Metadata can essentially be interpreted as a surrogate for the actual content
object. The information included in a metadata record may serve purposes like:

• Searching, discovering, or selecting information.
• Accessing or retrieving information.
• Identification or verification.
• Contextual information about the information.
• Management and preservation.

1. E.g. ODLIS: Online Dictionary of Library and Information Science,
http://www.wcsu.ctstateu.edu/library/odlis.html
N:no-3403

2.2 Digital Library Information 11

URN:NBN
Metadata is an important element of digital libraries. Some of the objectives of
manually generated metadata can be complemented or replaced by full-text
indexing and automatically generated metadata, but certain aspects of descriptions
that are based on natural, human language are hard to replace. Using natural
language is often the preferred solution of users to express their information need in
the search and retrieval process. It will be difficult to replace manually generated
language-based metadata, which describes the content of images or videos, by
automatic feature extraction techniques simply because the perceived information
of such resources relies on human interpretation. Another important feature of
metadata is that it enables explicit knowledge about content objects to be stored and
maintained. Not all information that is required to manage, organize, locate, and use
information, is an implicit part of the actual information. As for content objects,
digital library systems utilize a heterogeneous set of metadata formats encoded in a
number of storage formats.

2.2.3 Collections
Collections have traditionally been one of the basic structuring paradigms in
libraries, archives, and museums. The holdings of a library are often referred to as
the collection of that library, but additional collections are frequently used within
the library to physically organize and maintain the items of the library – either based
on the requirements for certain material to be maintained and processed in a specific
way, or because the collection itself represents some logical organization that is
convenient in management and use. A collection is additionally an intellectual
resource. It represents a selection based on an evaluation of which items are most
valuable and have the required potential for reuse. Some collections can be based on
the notion of full or partial completeness, and intend to be an as complete as
possible selection of items that share a set of characteristic features.

A comparable use of collections can be found in digital libraries. The holdings of
the digital library system can be viewed as a collection, or the digital library can
contain multiple collections. A collection can represent a specific scope or view that
represents a reasonable set of items to browse through or search within, or the
collection may reflect a set of objects with the same distinguishing characteristics
like a specific subject or the same author.

Collections in digital libraries do not necessarily have to be based on the
ownership of information. Information that originates in different repositories can
be organized into collections that reflect a virtual organization rather than a physical
one. Virtual collections have been explored e. g. in [12, 68].
:no-3403

12 2 Digital Libraries

URN:NB
2.2.4 Compound Objects
A different structure that often is found in digital library is that content (and
metadata) consists of a set of subparts. This is slightly comparable to the concept of
collections, but whereas collections usually aggregate a set of objects that plays the
same role, the subparts of a compound object may be of a different kind and serve
different purposes. This compound structure may be either a logical or physical
structure:

• The logical structure is the structure as it appears to the user of the informa-
tion. A book may be divided in chapters, subsections, illustrations and an
index. An issue of a journal may contain a table of contents and a set of arti-
cles. Logical structures can be found in movies, sound recordings and other
information sources as well. The logical structure is based on the concept that
the structure is an intentional one and that the structure remains intact, inde-
pendent of the physical representations of the information object. The same
structure appears regardless of whether the content is viewed on screen or is
printed out.

• The physical structure is a different kind of structure that is based on the
physical organization of the content. Digital information is often managed
and stored as files, and the information that logically appears as a distinct
work on screen or when printed out can be stored as different files that are
integrated whenever the work is retrieved.

2.2.5 Identity
A main feature in digital libraries is that the information has identity. The identity of
information may either be based on the set of distinguishing characteristics – like
metadata – or it can be based upon the use of tokens that we associate with entities
with the sole purpose of serving as identifiers. Many different identifier schemes for
a variety of domains and resource types are in use in both digital libraries and
physical libraries. The ISBN and ISSN numbers have been in use since the 1960s to
identify books and serials [107, 111]. Another example is the SICI identifier scheme
for the identification of specific contributions within serial publications [5].

Identification, addressing and naming are fundamental issues in all information
systems, whether local or distributed. The distinction between these terms is not
always clear, and different technologies and communities use different vocabularies
in this matter. A convenient understanding, in the context of distributed information
systems, is promoted by the Uniform Resource Identifier specification [13]. This
specification defines identifiers as strings that identify abstract or physical
resources. Locators are identifiers that identify resources via a representation of
their primary access mechanism, for example network location. Names are
N:no-3403

2.2 Digital Library Information 13

URN:NBN
characterized by their purpose of providing logical and persistent identifiers
independent of physical location. The basic notion of locators like the web address
“http://www.idi.ntnu.no” is comparable to what others would call a communication
identifier [41] or address, and the meaning of these terms are fairly intuitive. Names
and identifiers, however, are more ambiguous and interchangeable terms. Both
terms reflect the general concept of symbols that denotes conceptual and physical
entities. The term name often implies a symbol that is interpretable by humans (and
machines). The term identifier implies that the symbol uniquely identifies
something.

One solution for identification is to use Universal Unique Identifiers (UUID)
[124, 137, 195]. A UUID is an identifier generated and represented according to a
scheme that ensures uniqueness across both space and time. UUIDs do not require a
registration authority or any other dedicated centralized coordination point. Instead,
it uses the network address of the host and a reliable time-stamp from the system
clock to generate a unique 128 bit long sequence that ensures uniqueness across
both space and time. It can be used for multiple purposes, from tagging objects with
a short lifetime, to reliably identifying objects across the network in an infinite time
perspective.

The move towards digital information distributed over the Internet has resulted
in an extensive use of locator based web addresses (URLs) as the main
identification scheme for information. However, this is not a reliable mechanism
since the web address for a specific document may change or the content of the web
address may change. A far better solution is to use identifier systems that enable a
persistent, reliable, and location independent identification of networked, digital
content objects. A system that has been developed for this purpose is the Digital
Object Identifier [6] that is based on the Handle System developed at CNRI [189,
190]. Another important initiative under development is the URN scheme [44, 140],
which is an attempt to establish a global and uniform scheme that can be used to
encode all persistent identifiers that exist.

The identity of metadata records and collections is somewhat less evident in the
management of information. Metadata records stored in a database usually have
some kind of record identifier, but this identity is often not revealed to end users or
other systems. Identifiers are, however, equally important for metadata records and
collections to provide for exchange and reuse in digital library systems. One
example on the use of metadata identifiers is the URI based identification of
metadata in the Open Archives Initiative Protocol for Metadata Harvesting [157].

2.2.6 A Digital Library Information Model
Primary content, metadata, collections and compound objects together make up the
“business model” of digital libraries. These entities are merely conceptual classes,
:no-3403

14 2 Digital Libraries

URN:NB
and within each of these there will be numerous formats and subtypes in use. In this
thesis the entities are further abstracted into the rather general and neutral concept of
information objects. The object part of the expression emphasizes that digital
libraries contain units (objects or entities) with a certain identity of their own. The
information part of this expression emphasizes the fact that these objects are
informative – they are capable of being used as a source of information or
knowledge. The term information object is additionally quite domain independent
and will most likely imply comparable entities in different application domains.

To be able to extend upon and enrich the information objects of digital libraries it
is required that we are able to communicate and refer to these entities, and the use of
identifiers is the primary mechanism for this.

Figure 2.1 summarizes the various entities that have been discussed so far as a
class diagram in the Unified Modeling Language [176]. The information object is
the most generic concept, and other objects are considered as subclasses of the
information object. The only shared feature that is introduced for the information
object super-type is that it has identity in the form of an identifier that is associated
with the object.

The relationship between metadata and the information object is illustrated by
the use of a “description” relationship between metadata and information object.
This includes a metadata record which describes another metadata record, or a
metadata record which describes a collection or compound document.

As a computational structure, the collection is simply an aggregated set of
objects where each item in the collection is a subpart of the parental collection.
Collections may very well be present in the digital library as objects in their own
rights, and as such they can be considered as a specific kind of information object
that aggregates other information objects. Collections do not have to be collections
of content objects, but may as well be collections of metadata records (catalogues),
etc.

Compound information objects can be modelled using an aggregation
relationship equal to the modeling of a collection. A main difference between a
compound and a collection is that a collection is constrained to aggregate objects of
the same type, whereas a compound may aggregate objects of different type, such as
a metadata record combined with a content object.

The model does not focus on the typing of information objects to expresses
different media, storage and interchange formats, but is based on the assumption
that this is transparently managed by the underlying infrastructure of the digital
library.
N:no-3403

2.3 A Relationship Centric Approach 15

URN:NBN
2.3 A Relationship Centric Approach

2.3.1 Motivation
A relationship centric approach to information management is not a new idea in the
context of libraries, whether they are digital or not. In the 1945 essay “As We May
Think”, Vannevar Bush urges scientists to engage in research and development of
technology that would make the increasing body of recorded knowledge more easily
available. Vannevar Bush criticized the artificiality of the rigid hierarchical
classification indexes of libraries. He suggested the use of associations as the main
organizing mechanism when filing and retrieving records of information, and
described a future system based on the use of associative “trails” to retrieve
information – the memex [29].

Vannevar Bush is often referred to as one of the early pioneers of what later
emerged into hypertext systems and the World Wide Web. One of the main reasons
for the success of the World Wide Web is the ability to create links between
resources and in this way enable the creation of an integrated information space
from the resources of many. In hypermedia, links are often said to assert or express
relationships and can be considered as the implementation of a relationship
instance.

The need for relationship technology in future digital libraries is quite evident in
the library and digital library community through various requirements for

Figure 2.1: A digital library information model.

description

Information Object

aggregation

Metadata

Content

Collection

Compound

aggregation

Identifier
:no-3403

16 2 Digital Libraries

URN:NB
relationship support and linking technology. The International Federation of Library
Associations and Institutions – IFLA – has suggested a new bibliographic
information model in order to support increasing user expectations and needs [100].
The model defines the set of entities that are of main concern in the bibliographic
universe and includes a rich set of relationships that can exist among them:

In the context of the model, relationships serve as the vehicle for depicting the
link between one entity and another, and thus as the means of assisting the
user to “navigate” the universe that is represented in a bibliography,
catalogue, or bibliographic database.

The Dublin Core metadata element set is another contribution and recognizes
relationships to be a basic element in the description of a resource [60]. The
“relation” metadata element is used to express the relationships that may exist
between the described resource and other resources. A comparable solution can be
found in the IEEE Learning Object Metadata standard [99], as well as in other
metadata formats.

The requirement for relationship and linking technology can be derived from
many of the issues that are raised in digital library development and the projects that
this community is engaged in. One of the main themes that Dagobert Soergel
identifies as part of the overall framework for digital library research is concerned
with links [185]:

Digital libraries need linked data structures for powerful navigation and
search.

Soergel argues that digital libraries need semantic structure. The use of links is
considered as a special case of this and can be used to support a range of usage
scenarios for the contents of digital libraries. Furthermore, Soergel emphasizes the
importance of link semantics and suggests the development of link taxonomies. He
concludes by stating that:

..there should be links across disciplines and across digital libraries.
A comparable recognition of linking as a main research topic can be found in [54],
which identifies linking as one of the key research topics for collection building.

2.3.2 Relationships Among Information Objects
The abstract information model presented in Chapter 2.2.6 mainly focuses on the
core entities of digital library information. The model includes certain basic
relationships that are used to express the structure of the model:

• The inheritance relationship; which is used to show that the information
object is a general super-type for the other entities.
N:no-3403

2.3 A Relationship Centric Approach 17

URN:NBN
• The description relationship; which is the relationships that exist between
metadata and the information object that is described by the metadata.

• The aggregation relationships; which are the relationships that express the
more structural aspects of how the information objects of a digital library are
organized.

In addition, numerous other relationships will exist among information objects in
digital libraries, and various categories identified are further described in Chapter
3.6. The use of relationships to extend and enhance digital library collections can be
characterized as a relationship centric approach to digital libraries and the promises
of such an approach are many:

• Relationships enrich the information objects in digital libraries. Information
objects are not atomic entities. In the real world, we rather find that informa-
tion objects are related to each other in a number of ways as well as being
related to a number of other entities. The actual usage of information is
heavily depending on the relationships that exist among the entities of infor-
mation. Semantically rich and inter-linked information spaces require rela-
tionships.

• Information discovery by navigation. Relationships are a main contributing
element for enabling navigational facilities in digital libraries. Navigation is
information seeking that proceeds incrementally based on feedback from the
system [133]. In the context of information discovery (or information seek-
ing), navigation can be considered an alternative to the set-based query and
retrieve paradigm, but in most cases these strategies are complementary
rather than competitive.

• Relationships may cross boundaries. Relationships are not bound by collec-
tion and information ownership, but may cross boundaries. A research article
in a scientific journal can be related to many other articles because it directly
cites or contains references to other articles. The article can further be related
to other information, such as the data sets from experiments or surveys. These
interrelated entities can be managed by different organizations and can be
stored in different repositories.

• Relationships as a tool for integration. Integration is a key issue for digital
library systems and can be considered along two different axes – the vertical
or horizontal integration axis – depending on how the information sources are
aligned. A vertical integration promotes a heterogeneous view on possibly
homogenous information. Horizontal integration is a different approach to
integration that implies a view on heterogeneous resources as complementary
resources that each contribute with different information and functionality to
support complex tasks, such as searching for metadata using one service,
:no-3403

18 2 Digital Libraries

URN:NB
using the metadata to locate and retrieve the information from another serv-
ice, and finding complementary information using a third service.

2.3.3 Relationship Support in Digital Libraries
The availability of relationships is what makes a digital library a rich and interactive
information space, and relationship mechanisms are already an element in many
digital library systems. Facilities like reference linking [32, 123, 187] and the
interactive use of information based on hypermedia technology [4, 42, 211, 213] can
both be seen as applications of relationship mechanisms in digital libraries.

One example that illustrates the use of relationships to achieve horizontal
integration of multiple repositories is the digital library of the National Centre for
Biotechnical Information1 [148]. This digital library combines the resources of
various databases like GenBank – the primary repository for DNA sequences, PDB
– the protein databank, and Medline – a reference database for medical publications.
One type of relationship that can be found within this system is the relationships that
exist between entries in the GenBank or PDB, another kind of relationships exists
between the abstracts in Medline that describe articles and the entries in the
GenBank or PDB that these articles are related to. These and other relationships that
are available in the system enable a rich and interactive information space that adds
a significant value to the information they relate.

The main theme, however, when developing digital libraries is the search and
retrieve paradigm with an emphasis on manual or automatic indexing of information
– metadata versus information retrieval techniques. The support for relationships
that can be found in many digital library systems is more in the shape of an added
feature or extension of other information objects, and the way it is implemented is
highly heterogeneous. Different solutions for relationship representation can
broadly be categorized as:

• Relationships expressed in metadata. The Dublin Core metadata format con-
tains different elements that can be used for this purpose (like source and rela-
tion). Other metadata formats include elements with other syntax and
semantics that can be used for the same purpose.

• Relationships as part of the content. Documents may contain a rich set of
relationships as part of the content. Relationships can be expressed as text,
such as the references in scientific articles, or they can be expressed using
specific purpose structural elements of a document, such as the links of
hypermedia documents. Whereas markup languages like HTML and XML
have standardized structures for expressing links, other formats like Micro-

1. http://www.ncbi.nlm.nih.gov/
N:no-3403

2.3 A Relationship Centric Approach 19

URN:NBN
soft Word, Adobe’s Portable Document Format use more proprietary solu-
tions for the same kind of information.

• Relationships can be external to both metadata and content. Relationship
information may even exist as first class information in its own rights – as
explicit relationship information detached from both metadata records and
content. This can be implemented by the use of internal ad hoc data structures
or open information structures like RDF, Topic Maps, hypermedia links, etc.

2.3.4 Explicit Relationships
The heterogeneous relationship representation used in current digital library
technology is a fundamental problem in the development of service-oriented digital
libraries. It discourages the development of reusable software solutions for
navigation and disables horizontal integration based on relationships. For this
reason, this work focuses on the support for relationships in digital libraries by
promoting explicit and generic relationship information.

An explicit relationship is characterized as being a first class object – a distinct
unit of information that has an identity of its own. The main advantage of explicit
relationships can be summarized as the ability to support relationships in a flexible
way. Some advantages can be:

• By revealing the relationships as explicit information independent of the
related information objects, they can be processed without the additional
overhead of accessing and interpreting other information objects.

• Explicit relationships can be managed and processed as an independent
source of information. Different users can access and view different subsets
of relationships, and relationships can be interpreted differently in different
contexts.

• Explicit relationships are inherently multi-way and can be accessed and navi-
gated in both directions.

A different motivation for the work presented in this thesis is the focus on a generic
relationship solution. A generic solution focuses on the core and common aspects of
all kinds of relationships, and such a solution will enable:

• Software reuse. A generic solution for relationships enables the use of the
same software solution in a range of applications. Different types of relation-
ships within the same application can be managed and processed by the same
software. Furthermore, different applications can be developed by the use of
the same software component for the management and processing of relation-
ships.
:no-3403

20 2 Digital Libraries

URN:NB
• Interoperability and integration. The use of a common format for relationship
information will be a main enabler for interoperability and integration along
the horizontal axis, comparable to how common metadata formats have
enabled interoperability and integration along the vertical axis.

• Information reuse. Generic relationship support additionally enables reuse of
relationship information across applications. Relationships that are captured
and stored with a particular usage in mind can easily be accessed and reused
in other contexts. This also enables a more generic solution to digital libraries
by enabling repositories to store and maintain a structured information space
that can be used in different end user applications.

In the abstract information model for digital libraries, the explicit relationship object
can be depicted as a subtype of information object, as shown in Figure 2.2 where the
relationship object is modelled using the association class construct of UML.

The use of explicit relationships is explored in many disciplines such as hypermedia
and object-oriented systems, and a motivation for this work is to adapt such
technology to the digital library environment as a general purpose relationship
service. Explicit relationships and the management and use of this information is an
immature area in digital libraries. The support is often closely connected to specific
applications and the various solutions already deployed are based on many different
technologies. This work rather emphasizes a uniform and flexible solution. A
uniform solution is needed to enable reuse and interoperability between different
digital library systems and applications. A flexible solution is needed to enable the
use of the uniform solution in different applications. This can be achieved if the
relationship support is a lower level structuring facility that easily can be adapted to
a broad range of relationship types as well as a broad range of relationship
applications.

Figure 2.2: Explicit relationships.

Relationship Information Object
N:no-3403

2.4 Digital Library Services 21

URN:NBN
2.4 Digital Library Services

2.4.1 The Global Information Infrastructure
Support for cooperation and integration is a major concern in digital library research
and development, and the digital library is by many envisioned as a global
information infrastructure [19, 178].

Sharing and reuse of resources is already an established practice in traditional
libraries, and the need for users to access remote services predates the invention of
digital libraries. The Library of Congress started as early as 1901 to offer their
bibliographic descriptions to other libraries. The motivation was to provide
bibliographic information to libraries that could not afford the creation of such
information themselves, and a significant advantage of this was the uniformity of
the same bibliographic description in different catalogues. During the 1960s the
Machine Readable Cataloguing format (MARC) became the default format for
exchange of bibliographic records [108]. The need for remote access to catalogues
is another requirement that was early recognized in the library world, resulting in
the standardized information retrieval protocol Z39.50 [110].

Today, digital information communicated over the Internet is the main enabler
for information sharing and reuse in digital libraries. The Internet, however, is more
than a medium for users to retrieve information from remote servers in the
traditional client/server setup. The widespread use of the Internet protocols enables
more complex applications of distributed digital library systems based on the vision
of world-wide integration and cooperation between the various vendors and users of
digital library content and services.

2.4.2 Digital Library Architectures
The vision of the global information infrastructure emphasizes digital libraries as
distributed and open information systems. A distributed system can be defined as a
collection of autonomous computers linked by a network, with software designed to
produce an integrated environment. A distributed system, in general, enables
cooperation and sharing of resources, and a well designed distributed system should
perceive a single, integrated computing facility [41, 192]. Openness implies that
system use established and well-defined protocols. A distributed digital library
should be considered a distributed application or a specific type of distributed
information system. It uses the underlying distributed system of networks, machines
and other resources to provide an integrated environment where data and
functionality are located on multiple computers that communicate through a
network but appear as a coherent resource.
:no-3403

22 2 Digital Libraries

URN:NB
According to [54], the current typical client-server and 3-tier architectures
frequently found in digital library systems are not adequate to provide the
functionality required to achieve the high-level vision for the digital libraries of the
future. The basic system architecture should rather explore open architectures that
are component-based and multi-tier:

The Digital Libraries of the future will be ever-expanding systems. An open
architecture implies that the overall functionality of the Digital Library will
be partitioned into a set of well-defined services. A Digital Library will
consist of smaller independent systems that will each provide different
functionality or access to different contents.

Digital library architectures have been explored in many different projects. The
University of Michigan Digital Library focused on the use of cooperating agents in
a heterogeneous digital library system. A different metaphor was investigated in the
Stanford Digital Library Project, by the definition of a set of protocols commonly
referred to as the Infobus [160, 172]. The Dienst protocol [51] and its descendants
like NCSTRL [128] and OpenDLib [35] are other systems for distributed digital
libraries, and more recently the Open Archives Initiative [120] has emerged as a
possible framework for sharing and reuse of metadata in a range of applications.

2.4.3 Components and Services
Researchers in digital library architectures often interchangeably use the terms
component and service, although they actually denote quite different concepts. A
component is typically a software artefact, whereas a service is a resource that a
client can make use of in a dynamic way.

The component expression has a background in reusable and replaceable units of
software or hardware. A reusable component is an asset that can be deployed as a
subpart of different composites [191]. A replaceable component is a component for
which another component can be substituted without substantial modification to the
new component or existing system [180].

Service, on the other hand, is a more ambiguous term. In the client-server model
of distributed systems a server is the process or machine that manages and makes
available shared resources. In this context, a service can be interpreted as equivalent
to a server process, but most uses of the term “service” imply a decomposition of a
larger application into smaller units for the purpose of reuse and dynamic
integration. Software components promote reuse and substitution of software
artefacts, whereas services promote the reuse of network accessible resources or
functionality.
N:no-3403

2.4 Digital Library Services 23

URN:NBN
Service-oriented computing has recently emerged as the new computing paradigm
for a networked world. According to the call for papers for the First International
Conference on Service Oriented Computing1, service-oriented computing is:

..the new emerging paradigm for distributed computing and e-business
processing that has evolved from object-oriented and component computing
to enable building agile networks of collaborating business applications
distributed within and across organizational boundaries.

Steve Vinoski defines service-oriented architectures in [204] as a three-step
interaction model:

... the concept is actually quite trivial: A service with a well-defined interface
and data interchange characteristics advertises itself in a distributed
directory service where applications can look to find the details for
interacting with the service.

Although the notion of service-orientated digital libraries tends to be more
ambiguous, research projects that are exploring service-oriented digital libraries are
based on the same core idea of dynamic discovery and integration of services.

The most typical service a digital library provides is that it enables the users to
search and retrieve information, but a more complete list needs to include many
other services as well. Examples on services relevant in digital libraries can be:

• Search services that facilitate search for information and returning the result
of a search.

• Browsing and navigation facilities that provide for information discovery
based on informal and heuristic information seeking strategies.

• Name resolution, which can facilitate the transparent resolution from location
independent and persistent names to locators that end users will retrieve the
content from.

• Retrieval services that facilitate the evaluation of search results and/or the
retrieval of the actual content from repositories.

• Authorization and access management, which is related to the authorization
of users and the verification of their access rights for the use of the service or
the retrieval of content.

• Personalization services that can support the user with services to maintain
personal collections, personal profiles, etc.

• Services for building digital library collections by harvesting and indexing
available information.

1. http://www.unitn.it/convegni/icsoc03.htm
:no-3403

24 2 Digital Libraries

URN:NB
• Archiving, storing, and conversion of information to facilitate long-term per-
sistence.

• Automatic or manual generation of metadata, including services to convert
between metadata formats.

Reuse of services is a natural consequence of the general evolution of distributed
systems. Today, a vast number of machines are connected to the Internet which
provides a convenient platform for reuse of resources and functionality. Just as
software components are meant for composition into software artefacts, services
promote composition or extension of applications through the runtime integration of
network accessible services. The combination of services into a specific digital
library application can either be preconfigured to solve a well-defined need, or the
services can dynamically be discovered at runtime and support adaptive
applications that will meet the changing and individual needs of users. A service-
oriented architecture, however, requires an underlying infrastructure that supports
this modularity in a plug-and-play fashion.

2.4.4 Middleware
Middleware is a common term used to refer to a broad range of software and
associated protocols that provide platform independent development and
deployment of distributed applications. Middleware is connectivity software that
allows multiple processes running on one or more machines to interact across a
network [102]. Middleware additionally enables the development of applications
that will run on multiple platforms, and they include high-level services that mask
much of the complexity of networks and distributed systems [14]. In essence,
middleware is the software that resides above the network and below the business
aware application [201]. In the context of digital library architectures, the
middleware is an important part of the infrastructure that enables easy and dynamic
integration and deployment of services without requiring extensive implementation
efforts. However, middleware is a vague term that includes solutions based on
different computing paradigms:

• Message oriented middleware; which is based on the use of asynchronous
and indirect calls between the client and server applications – messages.

• Remote procedure calls; which implement network communication in a way
that resemble the procedural calls of programming languages.

• Remote data access; which provides protocols and APIs for communicating
with database servers by sending data manipulation language statements and
receiving the results.
N:no-3403

2.4 Digital Library Services 25

URN:NBN
• Distributed objects; which are based on the object-orientated paradigm and
implements distributed software as objects that are accessible over the net-
work.

• Distributed transaction processing; which implements client/server interac-
tion with transactional execution semantics.

Orthogonal to the above categories is the need for additional general purpose
functionality that is common for many distributed applications, such as directories
that can be used to discover and locate available resources. Such general purpose
services are not bound to specific applications and can even be independent of the
computing paradigm of various middleware solutions.

Available middleware solutions can be categorized as middleware components,
middleware environments or compound middleware environments [201]:

• Middleware components are solutions (products) that provide only one serv-
ice, such as a solution for security or a naming or directory service.

• Middleware environments provide an integrated environment that includes
both the protocols and APIs for network communication and the set of serv-
ices needed for distributed applications. One example is CORBA which is an
integrated complete solution for distributed applications. It includes a basic
platform for inter-object communication (the Object Request Broker) and a
suite of generic services needed for developing and deploying distributed
applications.

• Compound middleware environments are frameworks for distributed comput-
ing that combine different protocols and middleware components into a
single framework for distributed application development and deployment.

Any distributed solution, however abstract and implementation independent it
initially is intended to be, is bound to be influenced by the underlying middleware it
is built upon. Categories of middleware solution appear quite different in their
abstraction of the distributed system, and different middleware solutions are often
not interoperable. A main problem for digital library interoperability is the
heterogeneous usage of middleware in current digital library architectures.

2.4.5 The World Wide Web
The World Wide Web (WWW) was initially designed as a global hypertext system
by Tim Berners-Lee, and since its introduction it has gained enormous popularity
and has greatly influenced the way information is made available in the global
network of the Internet [30, 126]. As a distributed application, the World Wide Web
is initially information centric rather than functionally oriented. It is motivated by
the goal of providing location-transparent access to information for a global
:no-3403

26 2 Digital Libraries

URN:NB
community. The World Wide Web is defined as the abstract space of information
that is interconnected by the use of links. The success of the World Wide Web is
based on the use of:

• The Internet as the “backbone”
• The Hypertext Transfer Protocol
• The Hypertext Markup Language document format
• The addressing mechanism of URI
• The web browser as a universal client

During the last decade, the World Wide Web has grown exponentially, and this
growth is not only in terms of the number of web sites, web pages, and web users.
The World Wide Web has additionally expanded in terms of web-related technology
and web-enabled applications. The World Wide Web as an information space and
application environment is by no means limited to HTML documents accessed over
the HTTP protocol. Through the support for forms in HTML and the data passing
mechanisms of URI and HTTP, numerous interactive services have been developed
that extend the initial information centric nature with service capabilities.

Service-oriented computing is considered by many as a further extension to
current web technology – Web services. The core of Web services is the use of XML
based network protocols like SOAP – a lightweight protocol intended for
exchanging structured information in a decentralized, distributed environment
[225]. Additional facilities are the XML-based Web Service Description Language
[228] and the UDDI1 directory service for locating web services [154].

Current digital library systems are often well integrated with the World Wide
Web in different ways:

• Digital libraries use the web-protocol HTTP and the hypertext markup lan-
guage HTML as the main communication medium between client applica-
tions (web-browsers) and the digital library. Additionally, many distributed
digital libraries use the HTTP protocol as a communication channel for multi-
tiered solutions.

• The World Wide Web may in itself be viewed as a digital library. Users are
able to access and browse the interlinked web pages that are made available
on web servers, and they can search for information using the numerous web
indexes that are available.

A main feature of the World Wide Web is the linking capabilities of HTML, which
is the glue that creates a coherent information space out of the web pages provided

1. Universal Description, Discovery and Integration.
N:no-3403

2.4 Digital Library Services 27

URN:NBN
by numerous web servers. Current digital library systems are faced with the
problem that ordinary HTML linking is a shallow solution for relationships in
information management. The one-way embedded links of the Web are well suited
for the presentation of interlinked information in user interfaces, but do not address
the need for relationships between a rich and heterogeneous body of information
formats and the reuse of this information across applications. The use of web links
is mainly for processing in a web browser and is limited to media that are capable of
containing such links.

2.4.6 CORBA
CORBA is a middleware that provides for a mature and stable architecture and
infrastructure for distributed applications [82]. CORBA is an abbreviation for the
Common Object Request Broker Architecture, and its specifications are developed
by the Object Management Group (OMG). CORBA is object-oriented, and the
objects of CORBA are conceptually comparable to the objects of programming
languages like Java and C++. A main difference, however, is that the CORBA
middleware (the ORB – Object Request Broker) and the standardized protocol IIOP,
allows for CORBA objects to interoperate over the Internet regardless of
programming language, operating system, or hardware.

What constitutes an object in CORBA is a design decision similar to the design
of other object-oriented applications. A text document or an image can be modelled
and implemented as an object as well as a search system for a bibliographic
database. CORBA objects are typed by the use of OMG’s Interface Definition
Language (IDL) – a strongly typed declarative language. IDL is used to specify the
interface of objects, which in essence is a formal description of the methods of an
object. In practice IDL also serves other purposes. When developing a client
application the IDL file is used as input for the automatic generation of the
programming language code that lets the client communicate with server objects as
if they were local objects.

CORBA provides for more or less the same environment for distributed
computing as Web services. The IIOP network protocol of CORBA is comparable
to the SOAP protocol and IDL is the CORBA equivalent to WSDL. CORBA
provides for directory and naming services through the CORBA Trading Object
Service. A major difference is that Web service is based on the use of XML and may
for that reason be easier to integrate with web-applications. At current, CORBA is
on the other hand a more mature solution that is highly integrated with
programming environments.
:no-3403

28 2 Digital Libraries

URN:NB
2.5 A Relationship Service for Digital Libraries

This work envisions a service oriented view on relationship information in digital
libraries. Relationships are utilized in many of the tasks conducted in digital
libraries, and this work explores the support for managing, making available and
interacting with relationship information. A relationship service tailored to the
environment of digital libraries can enable solutions that otherwise are difficult to
support in an interoperable way due to the heterogeneous ways relationships are
represented at current.

As described in Chapter 2.3, the use of relationships is a major element in the
structuring of digital library information. By exposing this information through a
specific purpose service that implements a uniform view on relationship
information, the structural aspects of digital library contents can be made available
and in this way promote integration along axes that are less supported in current
digital libraries.

A general relationship service can be depicted as an intermediate level between
the application dependent presentation and processing of relationships and the lower
level repository dependent data structures that are used to represent relationships at
the data storage level, as illustrated in Figure 2.4.

The lower level of this model is the actual storage of relationship information.
Current solutions for representing relationships include a range of solutions.
Relationships can be explicit and stored as part of the metadata, as part of the
content objects, or separate from both. Other relationships can be implicit and
require processing to be discovered, e.g. the topical equality of documents that can
be discovered by information retrieval techniques.

Figure 2.3: The Common Object Request Broker Architecture.

Application
objects

Runtime
Environment

Network

Host A Host B

ORBORB
N:no-3403

2.5 A Relationship Service for Digital Libraries 29

URN:NBN
The depicted service layer can be used to represent a uniform view on relationships
by implementing a common logical information model for relationship information.
This is required in order to represent a generic view on the lower level
heterogeneous relationship data storage level. An additional requirement for the
relationship service level is to provide for a uniform processing of relationships.
Both these aspects are required to support a generic solution that can promote
interoperability.

At the top level is the application specific processing and presentation of
relationships. Relationships are used in many different tasks and appear on the user
interfaces of digital libraries in many different shapes. The service layer should not
presuppose a specific application or presentation of relationships, but rather be
based on a generic model and a set of lower level behaviours that can be used to
implement support for relationships in user interfaces and other processes that are
clients of the relationship service.

This work uses CORBA as the basis for the architecture of a relationship service
for digital libraries. The main objectives for this solution can be summarized by the
following:

• CORBA is a mature and stable platform for developing distributed applica-
tions, and it is readily available for the most common software and hardware
platforms.

Figure 2.4: A service for relationships.

Relationship Storage

Presentation/Processing Application specific layer

Service layer

Repository specific layer

Relationship
Behaviour

Relationship
Information Model
:no-3403

30 2 Digital Libraries

URN:NB
• The object-oriented nature of CORBA provides for a clear conceptualizing
method for any domain of discourse – objects and the behaviour of objects.
Explicit relationships are essentially distinct information units with their own
identity, and the use of objects is an approach for modeling and implementing
such information.

• CORBA supports the notion of persistent objects, which is a necessity if rela-
tionship information is to be represented as distributed “information objects”.

• CORBA is tightly integrated with the programming environment. The devel-
opment of CORBA based applications enables a focus on the application
rather than on network messaging. This is an important feature in a research
context (as well as in ordinary development), because it conveniently enables
a high level of iterative development and experimenting with different solu-
tions.

• The network transparency of CORBA enables a high level of location trans-
parency and basically supports any degree of distribution, which corresponds
well with this work’s objective of exploring the distribution of relationship
information and service.

• The CORBA environment has defined a set of services that are common
across many different distributed applications, which means that commonly
needed basic level functionality like transactions, security, etc., can be avail-
able “off the shelves” as components.

Although CORBA has been used as the infrastructure of several digital library
projects, such as [160, 162, 217], the possible use of CORBA as the underlying
infrastructure for digital libraries is not very well explored.
N:no-3403

URN:NBN
3 Relationship Knowledge

3.1 The Term and the Concept

When using the term relationship we assume that there is an implicit and common
understanding of what this term actually means. Although most people have a
certain understanding of this term, we nevertheless find that it is difficult to be
specific when explaining its meaning. The actual understanding is often vague and
sometimes even diverse. When exploring relationships – what they are and how
they can be represented – there is however a need to be precise by using definitions
or explanations that express or describe the essential nature of the concept.

When examining the actual meaning of a term, it is often useful to refer to Ogden
and Richards’ triangle of meaning depicted in Figure 3.1 [156]. The triangle of
meaning is a model that distinguishes between symbol, thought or reference, and
referent. The model states that the connection between a symbol and what the
symbol refers to, is an indirect one that depends on the meaning that each person
associates with the symbol.

A symbol has both intension and extension [17]. The extension of a symbol
means the referent – the object or the set of objects in the real world to which the
symbol indirectly refers. The intension of a symbol is its sense: that which a person
normally understands by the expression. A major problem when discussing
relationships in information technology is that neither the intension nor the
extension is clearly defined. The term relationship is merely a symbol that denotes
the idea of relationships – an idea that can be highly personal and domain
dependent. The extension of this term is all the possible relationships that may exist
– a rather large set since almost anything can be related to everything else in the real
world. For this reason, an extensional analysis of relationships is a difficult task. An
analysis of relationships rather has to be based upon the intension of the term – what
is generally understood by this term and how this influences the expressing and
processing of relationships in information systems.
:no-3403

32 3 Relationship Knowledge

URN:NB
A main problem in human discourse is that we use different terms with the same
intension (synonyms), or that we use the same term but with different intension
(homonyms). This problem is highly relevant when examining literature and
theories concerned with relationships. Terms like association, relation, and
relationship denotes, in many cases, the same concept, while in other cases they
represent different views or different concepts. When referring to ideas and
solutions from different domains, this work will conveniently use the original
authors’ terminology, despite the problem that two domains may use different terms
for the same concept. When referring to theories and solutions developed in this
work, the term relationship is the preferred one. Correspondingly, the term related is
used to describe the idea of relationship participation. If a there is a relationship
between two objects, these objects are related to each other. The term link often
occurs in computer science, and this work interprets link as the implementation of a
relationship instance.

3.2 Relationship as Knowledge

Understanding human knowledge and reasoning has occupied scientists for
centuries, but despite the efforts to understand knowledge and cognition there is no
consensus understanding in this field. Rather, there is a set of theories emphasizing
the various capabilities of human cognition and discourse where each theory is
coloured by the context it is developed in and the purpose it serves. The concept of
relationships is, however, present in many of these theories.

In the field of science philosophy as it is presented by M. Bunge in [27, 28],
knowledge and meaning are defined by the notion of concepts. Concepts can be
defined as a unit of thought, and accordingly the theory of concepts should be the

Figure 3.1: The triangle of meaning.

Thought or Reference

Symbol Referent
N:no-3403

3.2 Relationship as Knowledge 33

URN:NBN
philosophical equivalent to the atomic theory. Like for the atoms of atomic theory,
we are not able to see concepts, but concept theory exists because it is a convenient
model of the world of human knowledge according to available evidence. Bunge
makes a further distinction between different concept types and includes relation
concepts as one of the four categories:

• Individual concepts
• Class concepts
• Relation concept
• Quantitative concepts

Individual concepts apply to individuals, whether definite (specific) or indefinite
(generic), like the concept of the definite person “Einstein” or the concept of the
mathematical indefinite symbol “x”.

Relation concepts apply to relations among objects and can further be divided
into comparative and non-comparative relations. A relation pairs the elements of
two (or more) sets and comparative relations, like <, are relations that reflect a
specific ordering of elements; 2 is less than 3, John is higher than Paul, based on
some measurable quality of the individuals.

A comparable model of knowledge can be found in the field of artificial
intelligence exemplified by Han Reichgelt’s two main categories of knowledge in
[170]:

• Domain knowledge
• Strategic knowledge

Domain knowledge is the information about a domain that a computer needs to
manipulate to reason about this particular domain. Strategic knowledge, on the other
hand, is knowledge about how to use the domain knowledge to solve particular
problems in the domain. One can further distinguish between two kinds of domain
knowledge:

• Structural knowledge
• Relational knowledge

Domain knowledge often has a very specific structure that consists of entity types
possibly arranged in a classification hierarchy – structural knowledge. Relational
knowledge is concerned with the relations between the entities that are
distinguished in the structural knowledge.

Statements comparable to Bunge’s analogy to the atomic theory can be found in
the artificial intelligence discipline as well. According to Davis et al. in [52], all
knowledge representations are surrogates of the real world. Reasoning, whether it is
in a program or in the human mind, is an internal activity, while most things that are
:no-3403

34 3 Relationship Knowledge

URN:NB
reasoned about exist only externally. Representations are imperfect approximations
to reality, and each approximation attends to some things and ignores others. In
selecting representation, we are necessarily making a set of decisions about how and
what to see in the world.

The above examples from science philosophy and artificial intelligence both
indicate that relationships are a fundamental category of knowledge that is different
from the knowledge we have about atomic entities. Ronald W. Langacker argues in
[122] that this distinction is reflected in language itself by the distinction between:

• Nominal predications which designate things and correspond to nouns.
• Relational predications which designate states and processes and correspond

to adjectives, adverbs, prepositions, and verbs.
Relationships may be considered a fundamental aspect of knowledge in the sense
that it enables higher-level, coherent and complex knowledge to be constructed
from the knowledge we have about singular entities. The existence of relationships
as a specific category of knowledge, however, is not based on physical laws or
neutral observations, but is determined by our inclination to categorize and
distinguish between different types – in this case different types of knowledge. The
distinction between relationships and the entities they relate is fundamental in many
fields of computer science. This is reflected in information and knowledge
representation models like:

• The nodes and arcs of semantic nets
• The terms and propositions of the first order predicate calculus
• The entities and relationships in data modeling
• The objects and relationships in object-oriented modeling

This is equally important for the field of digital libraries where we may distinguish
between the basic entities that we deal with and the numerous relationships that may
hold between them. Relationships are the main enablers for building larger
knowledge or information structures from the more atomic entities of documents
and other content objects.

3.3 Where Do Relationships Come From?

Despite this presence of relationships in knowledge models, there is no well-
accepted account for the origin of relationships. What are relationships made of?
How are they made? This is emphasized by Gasser et al. in [67] by the presentation
of five common facts about how relationship knowledge is adapted and interpreted
by humans:
N:no-3403

3.3 Where Do Relationships Come From? 35

URN:NBN
• Fact 1: Language matters. The relational knowledge we develop is influ-
enced by language. The fact that different languages contain different spatial
relation concepts is one proof of this. The German language distinguishes
between an and auf where the English uses the single term on. The Korean
language, on the other hand, uses the concept of tight fit and loose fit. These
and similar discrepancies between the relational terms of different languages
show that the various relational concepts are learned, and it seems clear that
the individual languages determine the possible relations that can be
expressed.

• Fact 2: Object categories are easier and earlier than relational categories. In
the process of language acquisition children tend to learn object terms earlier
and more easily than relation terms. This is not evident in all languages, but
all in all there is a bias towards learning nouns over relational terms in early
word learning. Studies on other aspects of language acquisition show that
common categories are for the most part trivial for children to acquire
whereas relational terms exhibit a protracted and erroneous course of devel-
opment.

• Fact 3: Understanding relations is dependent on the specific objects entering
into those relations. Children’s attention to relations is at first highly depend-
ent on the objects involved but becomes less so with development. The
understanding of relational terms is an understanding that develops from a
specific similarity-based knowledge at an early stage and then towards a
more abstract understanding across diverse kinds of objects and settings.

• Fact 4: Object properties are relevant to understanding relations. Studies
have shown that object properties matter when people make relational judg-
ments. The real-world use and recognition of relations requires an under-
standing of the objects that participate in the relationship.

• Fact 5: Relational concepts have a category structure. Research indicates
that relational concepts seem to be like object concepts in having a graded
similarity structure. Studies of how both children and adults perceive rela-
tions like higher and lower show that some instances of a relation are better
instances, even with respect to relations that do not appear to be graded.

Together, these facts reflect some general observations of how relationships are
learned and interpreted by humans. One general conclusion is that there is no
predefined set of relationships that are globally understood. Relationships are highly
influenced by learning which for instance should imply that relationship
mechanisms need to be support ways in which users can learn the meaning of
unfamiliar relationships. Another observation is that the understanding of a
relationship is depending on the participants of the relationship, which should imply
:no-3403

36 3 Relationship Knowledge

URN:NB
that first-class relationships need to include relevant information about the
participants if this information is unavailable by other means.

3.4 The Mathematical Relation

One contribution that strongly has influenced the notion of relationships in
computer science is the mathematical relation which can be viewed as a formal
abstraction of order among things. In contrast to other approaches, we find that in
mathematics the relation primitive is defined in terms of other more fundamental
elements in the mathematical set theory [206].

A relation is a set of ordered sets. In this context, ordered means that the
elements of the set are positioned. The first coordinate stands in a particular order to
the second etc. Ordered sets are usually referred to as tuples, and the size of the
tuple is referred to as the degree. A binary relation is a set of ordered pairs, a ternary
relation is made up of ordered triples, etc. For sets , any subset of the
Cartesian product is called a relation from to . Any subset of is
called a binary relation on . Whereas the Cartesian product represents all possible
unique combinations with one element from each set, the relation is a subset that
reflects the actual truth conforming combinations. A relation corresponds to the
extension of a predicate. Given a domain of discourse containing all humans, called

, the Cartesian product is formed. The predicate , interpreted as x is
the father of y, is true for certain ordered pairs in and false for others. The set
of ordered pairs for which are true is called the extension of the predicate

 or the relation of fatherhood in H. A function is a specific kind of relation. A
relation in can be called a function when every member of occurs
exactly once as the first coordinate in the set of ordered pairs of the relation from
to .

A mathematical relation does not necessarily correspond to a relationship as a
conceptual knowledge primitive. The coordinates of a tuple may be attribute values
from different domains used to describe an entity, in which case each tuple
represents an entity, alternatively the coordinates may be keys – entity identifiers –
in which case the relation reflects a relationship. This is quite evident in the
implementation of data using database relations. The database relation is a lower
level structure that can be used to represent many kinds of information in an
organized way.

In mathematics a relation is said to specify the set of tuples for which the relation
holds. Each tuple can be interpreted as instances of the relation. In mathematics,
however, the set is the relation. When discussing relationships in the context of
information systems a comparable distinction can be made between the relationship

A B, U⊆
A B× A B A A×

A

H H H× F x y,()
H H×

F x y,()
F x y,()

F A B× A
A

B

N:no-3403

3.5 The Relationship as a Modeling Primitive 37

URN:NBN
as a class-level definition or set and the instances of the set – relationship instance.
The Unified Modeling Language defines the individual connection among two or
more objects as a link – a tuple of object references [176]. This corresponds to how
a link generally is understood in other disciplines such as hypermedia. Links,
however, are not always explicitly belonging to a particular class or set other than
the universal set of all links.

3.5 The Relationship as a Modeling Primitive

 The introduction of the relationship as a distinct modeling primitive in computer
and information science can be traced back to the emerging of the semantic data
modeling languages of the 1970-80’s. Unlike the earlier data models, such as the
hierarchical data model and the network model, which mostly were used to specify
the structure of data for storage in record based file formats, the essence of semantic
modeling is that the model should reflect the way humans conceptualize a domain.
To achieve this many modeling languages have introduces a relationship modeling
primitive, and the ability to describe relationships is by several described as one of

Figure 3.2: Relation and Cartesian products.

 The Cartesian product:

The relation of fatherhood:

Peter Peter

Peter Paul

Paul Paul

Paul Peter

Peter Paul

C H H×=

Fatherhood H H×⊆
Humans

Peter

Paul
:no-3403

38 3 Relationship Knowledge

URN:NB
the main characteristics of semantic data models [164, 166]. A major contribution
was given by P. Chen with the introduction of the Entity-Relationship model [37],
which distinguishes between entities and the relationships they participate in.

In semantic modeling languages and the later object-oriented modeling
languages, relationships are supported by specific primitives. One example is the
Unified Modeling Language which defines different relationship primitives
including aggregation and generalization. The expression of user defined
relationships is supported by the generic association primitive. Relationship
modeling follows a comparable pattern in many languages. Aspects of a
relationship commonly expressed in models may include:

• Related entities; Entities or classes are in most cases prior and the relation-
ships are specified between specific entities or classes.

• The relationship degree is the number of participating entities or objects of a
relationship. A relationship between 2 entities – by far the most frequently
occurring incident – gives a relationship with the degree of two; a binary rela-
tionship. Relationships, as well as mathematical relations, can however
include more than two entities, e.g. a ternary relationship that relates three
entities. Any degree higher than two is often referred to as relationships of n-
ary degree.

• Cardinality, also called multiplicity, is another characteristic used when mod-
eling relationships. The cardinality constraint indicates the number of rela-
tionship instances that a given object is allowed to participate in. If an object
only can participate in one relationship of a specific kind, the cardinality con-
straint is 1. Other numbers may be used to specify other cardinality con-
straints. If the number is undefined, the cardinality constraint is often said to
be N.

• Participation is a constraint that is used to express whether the entity is
required to participate in a relationship or may exist within the system
without participating in a relationship. It can either be expressed using spe-
cific notational symbols for this purpose, or it can be combined with the car-
dinality constraint by the specification of a cardinality ratio. The cardinality
ratio of 1..N expresses that an object has to participate in at least one relation-
ship. The participation constraint 0..N defines that relationship participation
is optional.

• Names are often used to express the meaning of a relationship. A single name
for the relationship can be used and rolenames can additionally be used to
enrich the relationship with additional semantics that describes the participant
of the relationship.
N:no-3403

3.6 The Meaning of Relationships 39

URN:NBN
• Relationship may additionally be defined with class-like capabilities. The
difference between a relationship and an entity is not a very distinct one, and
intermediary solutions may include the modeling of relationships that include
attributes and methods of their own.

A more comprehensive support for relationship modeling can be found in other
languages like the Referent language for conceptual modeling [186]. This language
supports the formal definition of a rich set of conceptual structures and includes the
ability to model relational compositions and derived relationships.

In the context of modeling languages, the relationship primitive is merely one
out of several primitives. Together these primitives make up the vocabulary that is
used when capturing and describing the domain of discourse in the software
engineering process. The actual usage of these primitives can, however, be diverse.
A marriage may be defined as a relationship between the two involved persons, but
a marriage may also be defined as a class. Choosing between the relationship and
the class primitive to represent a specific kind of information is, in this case, a
design issue.

A more extreme approach can also be used in modeling by rephrasing other
commonly used constructs as relationships. Compound objects and collection
objects like lists, bags or sets can be interpreted as specific relationship constructs,
with each object as a participating member in a relationship. The objects
participating in an aggregation are typically of different types, whereas for a
collection object the participating objects are typically of the same type.

3.6 The Meaning of Relationships

The emphasis so far has been on the general concept of relationships. However, in
real-world applications the focus is on specific relationships with specific
semantics. The mere notion of things being related to each other is quite useless
without knowing the meaning of the relationship, as pointed out by Rebecca Green
in [73]:

To specify a relationship, we must be able, first, to designate all the parties
bound by the relationship and, second, to specify the nature of the
relationship.

In mathematics, the relational operators like equals (=), less than (<) or greater than
(>) express specific and precise meaning that is well understood by those who are
familiar with numbers and mathematics. The ideal solution for any deployment of
relationship knowledge is to be able to interpret relationships at the same level of
preciseness. This is, however, far from the situation when it comes to common
:no-3403

40 3 Relationship Knowledge

URN:NB
knowledge and information. As argued by Gasser et al. [67], there is no universal set
of innate relations hard-wired into biology. The relationship vocabulary is
determined by the language and the interpretation of a relationship is depending on
the objects involved. Relationship types that are considered fundamental in
modeling languages include categories like:

• Classification and instantiations which are used to specify the relationship
between an entity and the class that this entity belongs to.

• Generalization/specification which is used to express the relationship
between classes where one class is a more general super-type and the other is
a more specific subtype.

• Aggregation and composition that are used to express the relationship
between the higher level whole and its subparts.

• General associations that are used to model application specific relationships.
The development of relationship vocabularies in other domains may conclude with
other fundamental relationship categories, or the interpretation of what constitutes
the fundamental categories can be a variation over the same theme. In thesauruses,
relationships are used to express the various dependencies and connections between
the terms of the thesaurus. Three general classes of fundamental relationships have
been established [39]:

• The equivalence relationship that denotes the relationship between a pre-
ferred term and the non-preferred term.

• The hierarchical relationship that represents pairs of terms in their superordi-
nate or subordinate status. The superordinate term represents the whole and
the subordinate represents the part. This includes both whole/part relation-
ships and categories of generalization hierarchies.

• The associative relationship denotes the relationships between terms that are
neither hierarchical nor equivalence.

In domains related to digital libraries there have been quite many attempts to define
typologies of application-specific relationships. The ACM/SIGIR1 workshop
“Beyond Word Relations” examined a number of relationship types significant for
information retrieval systems and concluded with the following list of relationship
types [94]:

• Word-based relationships that denote documents that share the same vocabu-
lary or word.

1. Association of Computing Machinery/Special Interest Group in Information
Retrieval.
N:no-3403

3.6 The Meaning of Relationships 41

URN:NBN
• Attribute-based relationships that denote relationships based on shared char-
acteristics as same author or same place of origin etc.

• Document-document hierarchical relationships that denotes situations where
one document is a sub-set or super-type of the other.

• Document-document topological relationships that are conceptual extensions
to the hierarchical relationship and include relationships that denote concep-
tual equivalence, sequences, etc.

• Document-to-document influence relationships that denote relationships
where one document has affected the writing of another.

• Topic-based relationships that exist between documents that are related
through less obvious topical resemblances.

• Usage-based relationships that exist between documents that are related
through the use of the documents.

The field of relationships between bibliographic entities has been examined by
Tillet in [196, 197] and by Leazer in [125]. Tillett identifies the following
categories:

• Equivalence relationships which hold between exact copies of the same
object.

• Derivate relationships which hold between the original and the modified ver-
sion.

• Descriptive relationships which hold between a bibliographic entity a
description, criticism evaluation, or review.

• Whole-part relationships which hold between a bibliographic entity and a
component part of that entity.

• Accompanying relationships which hold between a work and the accompany-
ing material.

• Sequential relationship which holds between bibliographic entities that con-
tinue or precede one another.

• Shared characteristic relationships that hold between entities that happen to
have the same subject, author, etc.

A rich set of bibliographic relationships partially based on this is in the
bibliographic information model proposed by the IFLA Study Group on the
Functional Requirements for Bibliographic Records [100].

A different discipline that has a comparable concern in relationship typologies is
hypermedia. Several taxonomies for hypermedia link types have been proposed and
overviews are given by Kopak in [119] and by Verbyla in [203]. A hypermedia link
:no-3403

42 3 Relationship Knowledge

URN:NB
is essentially only a connection between hypermedia nodes. A link type is needed to
express the semantics of the link and in this way enable the link to become a
meaningful relationship. One early attempt to define a link typology for hypermedia
can be found in the TEXNET system [199] which included a list with over seventy
different link types. This extensive list was motivated by the desire to provide for a
sufficiently rich set of link types that users could select among, and to prevent the
need for users to create new user-defined types. A more general categorization of
link types is identified by Lisa Baron in [131]. She identifies two general types of
links:

• Organizational links that are used to describe the “surface” structure of docu-
ments, for example the links used to organize the presentation of documents;
links to and from the table of contents, and previous and next links to browse
sequential structures.

• Content-based links that deals with the relationships between nodes of the
text.
Content-based links can further be categorized as:

• Semantic links that describe the semantic association between words or con-
cepts.

• Rhetorical links that are used by the author to lead the reader through a
sequence of information elements.

• Pragmatic links that are concerned with practical results like warnings and
errors.

A different concern in the field of relationship semantics is how to express the
meaning of a relationship. When modeling a relationship it is often labelled with a
single term that denotes the intended semantics of the relationship. The mere
purpose of this label is to capture and signal the semantics of the relationship to the
principals and to the implementers.

Figure 3.3: Relationship naming.

Fatherhood

Father

Child
Person
N:no-3403

3.6 The Meaning of Relationships 43

URN:NBN
Certain modeling languages introduce a richer semantic typing of relationships by
allowing for roles to be associated with the participants of a relationship. If two
persons are related to each other by the Fatherhood relationship, it is difficult to
determine who is the father and who is the child without any further knowledge of
the persons. The role type denotes the role the participant plays in the relationship,
e.g. that one participant is the father and that the other is the child as illustrated in
Figure 3.3 The use of more complex typing of links has been explored in the field of
hypermedia as well [143]. A different convention found in both modeling languages
and hypermedia is the use of direction to indicate the origin and the target of a
relationship.

As pointed out by Gasser et al., the understanding of relations is dependent on
the specific objects entering into those relations. This implies that a relationship
type can be insufficient for expressing the full semantics of a relationship. In
addition to rolenames, there can be a need for even more information about the
participants if information about the objects of the relationship is unavailable or
insufficient for the proper interpretation of a relationship.
:no-3403

44 3 Relationship Knowledge

URN:NB
N:no-3403

URN:NBN
4 Relationship Representation

4.1 The Implementation of Relationships

The ways relationships are actually represented in information and software
artefacts are highly diverse. Different application areas emphasize different features
and different environments offer different primitives that can be used to express
relationships, examples are:

• Textual descriptions of relationships in text documents.
• Metadata elements in metadata formats.
• Keys and foreign keys in database relations.
• Embedded references and external link objects in hypermedia.
• Object attributes holding pointers to other objects in object-oriented systems.
• Specific purpose relationship mechanisms in object-oriented systems.
• Predicates in symbol manipulation languages.

This review starts with certain general characteristics of relationship
implementations followed by a review of more specific solutions that are in use or
have been explored in object-oriented systems, hypermedia and descriptive
solutions. The selection, however, is not complete, but it is based on examples that
are considered to be relevant as relationship mechanisms in digital libraries.

4.2 Extensional and Intensional Relationships

A first major distinction that can be made between relationship mechanisms is
whether relationships are implemented by extension or intension.

An extensional implementation is based on explicit information about existing
relationship instances. This can be tuples of entity keys stored in a database relation,
:no-3403

46 4 Relationship Representation

URN:NB
the use of references in object-oriented systems, the use of hypermedia links in
documents, or any other information representation that can be used to store
relationship information in an explicit form. In such cases, the relationship
implementation can be defined as extensional because the set of truth conforming
relationships are defined by the extension of the relationship concept.

The contrary to an extensional implementation is an intensional implementation.
The intension of a relationship may be defined through rules that express when an
asserted relationship is true or not. In digital libraries this solution can support the
discovery of relationships within or between defined sets by determining the truth of
an asserted relationship given two (or more) entities as input. Examples are the
evaluation of equivalence between two or more text documents and the evaluation
of shared characteristic relationships between documents.

These two distinctions are quite different in nature and serve different purposes.
They may, however, coexist within the same system and can be used in
combinations or as complementary solutions. The motivation for one or the other
may be different in different environments based on both formal and more
pragmatic aspects. In general the extensional solution will be used to capture
relationship information that otherwise would not be present within the system.
Intensional implementation is more likely to be used if relationships are to be
discovered dynamically based on some well-defined evaluation criteria.
Comparative relations are typical candidates for intensional relationship
implementations.

Documents and the various relationships between documents may serve as an
example of both of these two implementation techniques. For documents that share
the same topic, there is a certain topical equality between them that can be useful for
the users of an information retrieval system. If they find one relevant document,
they may have an interest in other documents on the same topic. Topical equality
may be computed automatically by comparing the terms and term occurrences of
documents in the set, such as information retrieval techniques like document
clustering [168]. Another kind of relationship detection mechanism is citation
extraction, where scientific articles are examined for citations and references to
other articles [123].

However, the field of document relationships consist of numerous relationship
types that will be hard to express as rules and implement as methods. Relationships
like one document being the translation of another or one document being a revised
version of another can be difficult to express as they may rely on external
knowledge.

The domain of document relationships can also illustrate other pragmatic
considerations of extensional versus intensional relationships. The evaluation or
extraction of intensional relationships introduces a significant processing overhead
N:no-3403

4.3 Property or First-class Object 47

URN:NBN
compared to an extensional approach. It is less likely that a system is capable of
performing such evaluations continuously at runtime without significantly reducing
the overall performance of the system. A more likely solution is to perform these
computations once and then store the discovered extension of the relationship. In
other situations, the cost of storing the relationship extension may by far exceed the
cost of computing the relationship. An example of the latter is the general
mathematical relation of x < y. Determining whether the less than relationship is
true for a given set of numbers can efficiently be computed. Solving this by the use
of a relationship extension would, on the other hand, require an infinite amount of
storage space.

4.3 Property or First-class Object

Another distinction that can be made between relationship implementations is
whether a relationship is implemented as in integral part of the participating entities
or whether the relationship is implemented as a distinct and first-class information
structure separated from the participants. In certain environments this distinction is
of minor importance, such as in relational databases. A typical mapping of the
relationships expressed in an E-R model to a relational storage structure is to use a
separate relation for N:M relationships and otherwise add foreign keys to entity-
relations for 1:1 and 1:N relationships [62]. Due to the easy access to data and the
flexibility in which data can be queried and retrieved in such storage systems,
different relationship implementations do not introduce significantly different
application features.

In other systems such as object-oriented databases and hypermedia applications
this distinction is of greater importance because it reflects quite different solutions
with different strengths and limitations. In object-oriented systems, objects are the
major implementation construct for representing real-world entities, and the use of a
property to hold a reference to another object is often the only mechanism for
implementing a relationship instance. On the one hand this is an efficient
mechanism because it is easy to implement. On the other hand this can be a limited
solution because relationships only can be accessed and manipulated through the
participating objects. There is no inherent mechanism for managing and
manipulating the extension of the class-level relationship, and a bi-directional
relationship need to be implemented with a corresponding inverse reference on the
opposite object. The use of properties and references to implement relationships is
to some degree based on the assertion that relationships not are real-world entities,
although it can be argued that relationships represent real-world entities that are
:no-3403

48 4 Relationship Representation

URN:NB
intangible and as such they should be considered as candidates for objects equal to
other real-world entities [150].

The distinction between relationships as property or first-class object is
additionally quite evident in hypermedia solutions where the use of links embedded
within the content is considered to be quite different from the use of first-class link
objects [45, 48]. The main advantage of embedded links is that the hypermedia
document and the links from this document form a self-contained object that easily
can be moved or edited. Embedded links do not require any specific support for
storing and managing relationships, but the expressed relationship is maintained and
used along with the document. The disadvantages are comparable to the use of
references in object-oriented systems: links are inherently one-way, only the
document that contains the link knows about the link, and access to the link requires
accessing and parsing the document. The use of first-class link objects is a different
tradition in the field of hypermedia. The advantages of storing links external to the
documents they link between is; the inherent support for bidirectional links, the
possibility to use third-party applications for creating and accessing links, and the
dynamics of this solution that enable applications to retrieve and display only the
links that are relevant for a particular user or in a particular context.

Properties can be used to express both the aspects of an entity and the
relationship that the entity participates in. As a knowledge primitive, however, the
relationship is often perceived as a connection or association between equally
important entities that each has a certain identity of their own. A value that merely
describes an aspect of an entity on the other hand is subordinate to the entity it
describes and should not be considered a proper relationship.

4.4 Relationships in Object-Oriented Systems

4.4.1 Object-Oriented Systems
The introduction of object orientation is one of the major achievements in modern
computing. The notion of object and classes, as they are used in the object-oriented
paradigm, is comparable to Bunge’s individual and class concepts, and object
orientation is often promoted as a preferable abstraction when modeling and
implementing information systems, because it correspond to how we actually
interpret the real world [18, 216].

Although the initiation of object orientation can be related to programming
languages [15], the object-oriented paradigm has later been adopted by many other
disciplines as well, like object-oriented databases and object-oriented analysis.
Object-oriented analysis is based on the assertion that it is intuitive to describe a
N:no-3403

4.4 Relationships in Object-Oriented Systems 49

URN:NBN
given domain of interest as a set of interrelated objects that encapsulates
information and behaviour. Furthermore, using the same conceptual model in the
analysis, design and implementation ensures an easy and seamless transition
between these phases of systems engineering.

In practice, object-oriented development is not as seamless as it appears. Object-
oriented programming languages do not provide support that corresponds to the
relationship primitive of the analysis and design (except for the inheritance
relationship), and rather relies on this to be incorporated manually into the objects
using properties and references. This solution is problematic for a number of
reasons [21, 118, 144, 150, 175]:

• Traceability: At the design level relationships are represented using explicit
primitives for this purpose. Since this usually is implemented in an ad hoc
fashion in the code, the relationship abstraction is often lost in the transition
from design to implementation, which leads to a traceability problem. It may
be hidden in implementation details and/or aspects of the relationship can be
distributed over different classes.

• Complexity: Implementing relationships by the use of object references can
introduce a significant complexity in the code. Behaviour and information
related to the relationships need to be supported by all class implementations
that instantiates objects that potentially will participate in relationships.

• Duplication of information: For reference-based relationships each object is
the master of the relationships it participates in, and relationship information
only exists as part of each object. A unidirectional relationship requires an
inverse reference on the opposite object. This inevitably leads to duplication
of both information and behaviour, and dispersion of relationship knowledge
across objects.

• Lack of reuse: Relationships and associated methods embedded and con-
cealed in class implementations disable the reuse of generic mechanisms for
relationship behaviour and attributes. Applying a generic operation to a rela-
tionship or set of relationships requires that the relationships are uniformly
implemented.

• Management problems: The access point for reference-based relationships is
through the objects of the relationship. The creation and deletion of relation-
ships require access to the objects as well as knowledge about how this is per-
formed for all classes. This disables management and access to the extension
of the relationship that otherwise would have enabled the selection of subsets
of the extension or the iteration over the entire extension.

The general solution proposed by many is to enhance the software environment with
a specific mechanism for relationships. One of the first contributions on this was
:no-3403

50 4 Relationship Representation

URN:NB
given by Rumbaugh in [175] and later contributions have explored numerous
solutions including solutions where the relationship mechanism is transparent to the
application and solutions where relationships are explicit and first-class objects that
directly can be accessed and manipulated. Relationship mechanisms are often
explored as a feature of object-oriented databases, but the support for relationship
mechanisms as an implicit part of object-oriented programming languages has
additionally been explored.

• DSM (Data Structure Manager) [182] is a programming environment that
adds a number of extensions to C, including object orientation and the
support for inter-object relationships. Relations are used to represent the rela-
tionships between objects and are declared in parallel to classes. Rolenames
are defined for the participating classes, and each class is extended by gener-
ating relation access methods using the rolename as a pseudo-attribute. The
relationship construct supports the definition of binary relationships and the
participation constraint for the relationship.

• MOPS (Metaobject Protocol for Reflective Systems) [117, 118] provides for
a full-fledged relationship support implemented in the Common Lisp Object
System. Metaclasses are used to endow relationship classes and relationship
instances with properties and behaviour. Relationships are defined with
minimum and maximum cardinality constraints and the system supports
derived relationships.

• OORM (Object-Oriented Relationship Data Model) [98] relationships are
represented as separate classes similar to other classes representing entities.
The relationship class is specified both by listing the participating classes and
by defining constraints, attributes and methods of the relationship.

• Adam [57] is an object-oriented database system that provides support for
metaclasses that can be used to support application-defined relationships of
n-ary degree with constraints, attributes and behaviour.

• FOOD (Fully Object-Oriented Database) [24] is an object-oriented database
with support for relationships. A relationship is defined as a tuple of roles and
attributes, and the role definition consists of a name, a type and a cardinality.
A relation is considered to be a set of relationships of the same type and a
single relation object exist for each relationship type. Subtypes of relation-
ships can be defined and are contained within the relation object of the parent
type. The relation objects have system-defined operations to manage and
query the relationships.

• The object data model of ODMG (The Object Data Management Groups)
[36] is a standardized object model with for object-oriented databases. The
object data model defines a specific relationship property for binary relation-
ships. The names and traversal paths for a relationship can be specified by the
N:no-3403

4.4 Relationships in Object-Oriented Systems 51

URN:NBN
use of the object description language (ODL) as shown in the example of
Figure 4.1.

• OSCAR [179] is an object-oriented database system which uses relations to
model relationships. A specific construct is used to specify relationships that
include the definition of cardinality constraints and relationship attributes.
Each column of the generated relationship relation has a type and the
columns of class type are called roles and hold the objects that are related to
each other. Other columns are used to store attributes of the relationship.

• SADES (Semi Autonomous Database Evolution System) [167] is an approach
to relationships in object-oriented databases that supports dynamic relation-
ships between classes. Relationships between classes can be changed at run-
time and do not need to be fixed at compile time.

As the above examples show, the field of relationship mechanisms for object-
oriented systems is highly diverse with respect to how the relationship mechanism is
implemented and what features it support. With the exception of the ODMG
standard, these systems are mainly research projects and current practice in
commercial applications is still generally based on the use of reference-based
mechanisms. This can be due to the dominance of programming languages that do
not support a specific relationship construct (like C++ and Java), but may
additionally be caused by other factors, like the assumption that a relationship
construct will be less efficient in terms of processing speed and capacity. Another
reason can be that the gains of using such solutions are less obvious in the
implementation of software but more prominent in the context of maintenance and
reuse.

Figure 4.1: Relationships in the object data model of ODMG.

class Person (extent persons){
attribute string name;
relationship set<Person> parents inverse Person::children;
relationship set<Person> children inverse Person::parents;

}

Person

+parents

*

+children

*

:no-3403

52 4 Relationship Representation

URN:NB
4.4.2 The OMG CORBA Relationship Service
Support for relationships can also be found for distributed objects. As a part of the
general framework for distributed object applications, OMG has defined various
services that implement features that are commonly required for distributed object
applications. These are generally referred to as the Common Object Services or
CORBA Services, and include a service for defining and managing relationships
between distributed objects – the CORBA Relationship Service [77].

The basic architecture of CORBA defines object references that clients use to
issue requests on objects. These object references can be stored persistently and can
be used in reference-based relationships. The Relationship Service is a different
solution and is specified to support applications that need capabilities like:

• Multidirectional relationships
• Creation, deletion, and manipulation of relationships between third-party

objects
• Traversal of graphs of related objects
• Relationships that can be extended with attributes and behaviour
• Relationships with relationship-specific semantics

The Relationship Service of CORBA allows for relationships to be explicitly
represented using a set of object instances that together represent the relationship
instances in an application. The specification defines three levels of service: base,
graph, and specific.

The base level defines the interfaces for the role and relationship objects that
implement a relationship. Relationships are navigated by invoking the methods of
the role and relationship objects. Role and relationship objects are created when
needed by the use of factory objects. A role object represents an entity in a
relationship and is created by passing the reference of the entity object to a role
factory. A relationship object, on the other hand, aggregates the participating roles
of a relationship and is created by passing a set of roles to a relationship factory.

The Relationship Service allows for relationships of arbitrary degree. A
relationship can contain two roles as in a binary relationship, or it can contain three
or more roles and thus support relationships of higher degree. A role can participate
in any number of relationships, only constrained by the minimum and maximum
cardinality. Roles and relationships can further be constrained by the type of objects
they expect. The constraint mechanism is an integrated functionality of the object
implementations and erroneous situations are handled by raising exceptions.

Since a role object only holds a reference to the entity object, it may represent a
third-party object and in this way allow for relationships to be created without
inferring with the related objects.
N:no-3403

4.4 Relationships in Object-Oriented Systems 53

URN:NBN
The graph level extends the base level by adding the concept of a node object as
well as other interfaces for graph traversal. The purpose of the node is to tie the
various relationships into a graph by aggregating the roles of an entity object. The
node interface may be inherited by entity objects or it may only contain a reference
to the entity object it represents.

Specific relationships are defined at the third level by the definition of interfaces
for the two important relationships containment and reference. Additional
application specific types of relationship and role objects can be provided by
inheriting the basic interfaces, and this also enables the implementation of
relationships with application-specific methods and attributes.

The use of the Relationship Service in applications comparable to digital
libraries is reported in [183] and [116], and in the initial phase of this project the
CORBA Relationship Service was evaluated to determine whether this service was
appropriate for supporting relationships in digital libraries. The features of the
service related to a potential use in this context can be characterized with the
following:

• The service defines a well-considered object model that can support all kinds
of relationships with respect to semantic types, structural features like degree,
and constraints on cardinality and type. The service allows for relationships
between third-party objects to be defined.

• The service assumes a predefined and static information model where the dif-
ferent kinds of relationships have to be specified in advance, prior to the
implementation of the application. For each kind of relationship there is a
need to define and implement specific interfaces for role and relationship
objects as well as their respective factories.

The main motivation for this evaluation1 was to explore the potential use of the
CORBA Relationship Service in a digital library environment. This is one of the
few existing open solutions for a relationship mechanism that is based on
established middleware. The potential advantages of this service are that the object
model it implements is a well considered solution for relationship representation.
Non-CORBA entities such as the information objects of digital libraries can be
related for instance by the use of an intermediary object with a URI that references
the actual information object. This means that the object model of the service

1. The evaluation was based on available implementations of the service and partly
by implementing the base level of the service. The CORBA Relationship Service
is available as part of the MICO CORBA implementation (http://www.mico.org)
and has been available earlier from PrismTechnologies (http://www.prismtech-
nologies.com/).
:no-3403

54 4 Relationship Representation

URN:NB
potentially is highly usable to represent and navigate relationships between the
information objects in digital libraries.

The current design of the service, however, only supports static definitions of
relationship types. Additional relationship types other than the specified
containment and reference, needs to be specified and implemented. The service is
thus more a toolkit for adding relationship support to applications rather than a
service for managing and using arbitrary relationship types. The use of a specific
factory object for each object type is an additional disadvantage. With a large
number of relationship types this will introduce an undesired level of complexity. A
final problem discovered is an ambiguous use of IDL types and named objects.
Objects both have an IDL type and additionally need to be assigned names. These
names can potentially be used to create a more flexible relationship typing
mechanism, but this is contradicted by the lack of support for dynamic definition of
cardinality and degree.

4.5 Hypermedia Systems

4.5.1 Hypertext and Hypermedia
The term hypertext was initially introduced by Ted Nelson to describe a system for
non-linear reading and writing of text [146]:

By “hypertext” mean nonsequential writing - text that branches and allows
choice to the reader, best read at an interactive screen.
In computer science, hypertext has become a metaphor for interlinked content

where users can view and navigate between nodes of information in an interactive
way. Vannevar Bush is often referred to as the originator of hypertext, represented
by the associative trails of the future system that he described in 1945 – the memex
[29]. Early forerunners of modern hypermedia systems include the HyperText
Editing System (HES) developed at the Brown University in 1967 [33] and the
oNLine System (NLS) introduced by Douglas Engelbart in 1968 [63].

With the introduction of multimedia support in computers, hypertext technology
is naturally expanded to support content other than text, and the broader term
hypermedia is sometimes preferred, although hypertext and hypermedia are
interchangeably used and should be considered as synonyms. The development of
hypermedia solutions includes a range of challenging problems, such as the
modeling and representation of the nodes and links that make up the hypermedia
application (the hyperbase), the storing, addressing and retrieval of multimedia
information, authoring and reading hypermedia information, interacting with
hypermedia information in user interfaces, etc.
N:no-3403

4.5 Hypermedia Systems 55

URN:NBN
4.5.2 Linking
Linking has always been the heart of hypermedia, and a link is often said to describe
or express a relationship [34, 129, 173]. Although the links in hypermedia
applications basically are used to represent inter-linked text and multimedia content,
the more expanded notion of hypermedia intersects with other applications that
utilize relationship information. Isakowitz et al. describe hypermedia as a vehicle
for managing relationships among information objects [113]. An even more
visionary approach is the field of structural computing [151, 152, 153] where the
basic idea is to generalize the concept of hypermedia linking as a structural
abstraction, and to support the need for structure in general rather than focusing on
links primary as a vehicle for reading information.

Unfortunately, hypermedia infrastructure is not a uniform platform. A major
distinction can be made between the use of links implemented as embedded
references within the information, such as the use of anchors in HTML documents,
and the use of links that are external to the content. Advanced hypermedia solutions
often utilize external links and the benefits of this arrangement are [47, 87]:

• Links that can be followed in both directions.
• Links can be created between read-only information.
• Alternative link sets may exist for the same information, e.g. created by dif-

ferent users or for different usages of the same information.
• Third party applications can create, access, use and process links.

Hypermedia infrastructure has evolved significantly from the monolithic
applications of the earlier systems that included all the information and functionality
within one tightly integrated application [212]. The first major step was the
introduction of client/server based solutions that separated the client application that
was used to author or read the hypertext from the server process that was used to
store and serve documents and links. The later generation of hypermedia
infrastructures have explored more open and component-based solutions where the
functionality is further decomposed. This often includes a separate process that
manages the content, a different process to manage the linking information (the link
server), as well as other processes to server other functionality. The Flag taxonomy
[159, 215], which often is used to depict the openness and interoperability of
hypermedia application, distinguishes between:

• Open hyperbase systems that provide integrated content storage and struc-
tural services. Examples are Hyperdisco [214], Sepia [188] and HURL [96].

• Link server systems that provide only structural services. Examples are Sun’s
Link Service, Multicard, Microcosm and Chimera, which will be further
described in the following.
:no-3403

56 4 Relationship Representation

URN:NB
One of the earliest systems to provide for linking as a separate service is the Sun
Link Service [163] that includes a protocol specification and a link server program.
The link server only stores representation of nodes, rather than the nodes
themselves. Links are explicit and bidirectional relationships between nodes, and
applications can create and retrieve links by using the Link Service protocol.
Applications that integrate with the link service register the class of nodes they are
able to handle, and stores in the link database unique keys for their objects (node
representations) along with the class the node belongs to. This enables the link
server to identify what registered applications can handle requests about each
object.

Multicard [171] adopts a similar approach to the Sun Link Service by defining a
protocol for an open hypertext system, but differs in terms of the more powerful
environment it provides for storing and managing hypermedia objects. Multicard
distinguishes between node structures which are handled by Multicard and node
content which can be handled by different editors. Nodes can be grouped in a
hierarchical way. Anchors represent specific portions of the content of a node and
carries links, scripts, and other hypermedia properties. Links in Multicard are
viewed as event/message communication channels between two endpoints and the
supported messages includes an activation message which typically will open and
map the destination object. Link endpoints can be anchors, nodes or groups. The
M2000 protocol defines the basic access mechanisms in a storage independent way
and the actual storage management is implemented trough a back-end mechanism.

Microcosm [46, 87, 88, 49] distinguishes between the application layer, the link
service layer and the hyperbase storage layer. The application layer consists of
programs that are used to view and edit information and programs can be integrated
with the link service in different ways. All linking functionality of Microcosm is
provided by filter processes. Filters can respond to the message it receives or the
message can be passed on to other filters. This enables a dynamic system; filters can
be installed, removed or the chain of filters can be rearranged. A typical filter is the
linkbase, which provides a database of available links. The use of filters as the units
of distribution in a distributed version of Microcosm is explored in [97].

Microcosm maintains a database of all files it is aware of, known as the
Document Management System (DSM). The DSM stores information about the
document which is not known by the operating system and associates a unique
identifier with the document. The unique identifier is the key used in the link base,
and the DSM is used to resolve from the unique identifier and to the file name when
a link is navigated.

Chimera [7, 8] uses the concept of a hyperweb which is defined as a collection of
objects, viewers, views, anchors, links, clients and users. An object is a named,
persistent entity and its internal structure is unknown and irrelevant to Chimera.
N:no-3403

4.5 Hypermedia Systems 57

URN:NBN
Viewers are entities that display objects, and the association between an object and
the viewer is defined as a view. Anchors are defined and managed by viewers in the
context of a view and tags some portion of a view as an item of interest. Links are
sets of equally related anchors which imply a support for multi-directional
relationships of higher degree. A client is program that contains one or more
viewers. Chimera implements a server process that clients can communicate with
trough RPC requests. The mapping between the concepts of object, view and anchor
is a responsibility of the viewer which needs to utilize the Chimera API.

Relationships between entities are major elements when modeling and
implementing all information systems, and in a very generic sense hypermedia links
are not different from other applications in this matter. Although applications of
hypermedia span a variety of uses, a common feature is the presentation of explicit
hyperlinks to support non-sequential reading. In the development of such
applications the hypermedia tradition has taken an instance-oriented approach to
relationships rather than the model-based approach where relationships are
identified and determined in the design phase. In hypermedia all documents and
parts of documents are uniformly characterized as nodes that can participate in any
kind of link. Links and the semantics of the link are specified at run time. The
dynamic nature of hypermedia linking is a feature that corresponds well to how
relationships need to be supported in digital libraries. A major problem with
hypermedia, however, is the use of proprietary protocols and the lack of support for
constraints that can be used to ensure consistent and logically correct relationships.

4.5.3 Link Models
The link models of several hypermedia systems are reviewed and compared by E. J.
Whitehead in [210] using the Containment Modeling Language, and some of the
models are reproduced in Figure 4.2 and Figure 4.3. Containments are relationships
used to represent how a container contains a particular entity. The physical inclusion
of one item within another is called inclusion and is depicted with a filled arrow.
Containments where identifiers are used to reference the members of the contained
set are called referential and are depicted with dotted arrows. This way of presenting
link models reveals many of the differences that exist. As these figures show,
hypermedia solutions are on the one hand highly heterogeneous, but on the other
hand there are elements that appear in many of the models, in particular the use of
node, anchor and link entities:

• A node is the basic information entity of the hypertext. This will typically be
a larger information structure such as a document stored in the file system or
in a database.
:no-3403

58 4 Relationship Representation

URN:NB
Figure 4.2: Hyperbase systems.

link

Sepia

node link anchor

container

2

M
N

1 1

M

N

M

N

N

HURL (SP3/HB3)

applicationlink anchor

side

bridge

component

association

persistent

selection

1

1 1

MM

M

1

M

1

M M

N

M

N

M N

1

1

HyperDisco
composite

M
N

node

anchorendpoint

link

1

N

M

N

2

1

trigger

1

1 M

N

M N
N:no-3403

4.5 Hypermedia Systems 59

URN:NBN
Figure 4.3: Link server systems.

object

link

Chimera

anchor

viewer

view

hyperweb
external

object

(file)

application

program

1
1

1

1

1

1

M
N

Chimera database

filesystem

N

1
1

N

1

N

1

N

M N N M

1

1

M

N

objectlink

Sun’s Link Service

2M

N

file

1

M

1

filesystem

link database

1 1

Multicard

group
M

N

node

link

anchor

M

N

M
N

M

N

M

N

M 1 file
1 1

filesystem

Microcosm

filesystem

link database

filelink

N

1

M 1

link offset

1

1

component

attributecontent

1

M

1

1

anchor

1

N

presentation

specification

1

1

link

endpoint

specification

1

2

M 1

composite

M

N

M

N

presentation

specification

direction

1

1 1

1

N

1

Dexter Model
:no-3403

60 4 Relationship Representation

URN:NB
• An anchor is a specific selection within the content of the node. The anchor
addresses a sub-element of the document such as a particular paragraph or
word.

• A link is the actual connection between anchors that in most cases are imple-
mented as a tuple of anchor references.

Despite the fact that hypermedia systems at the generic level resemble each other,
they are still quite heterogeneous with respect to the details of the link model they
implement and the features they support. One aspect is the heterogeneous solutions
for mapping between the hypermedia structure and the coarser-grained documents
by the use of anchors and endpoints. Another aspect is the integration and
communication with applications that in some cases influences the link model. As
for many other applications, the use of names and addresses is a fundamental and
heterogeneously solved problem in hypermedia [177, 200]. Other elements that
influence the link models are the attributes and features that are associated with the
links and other elements. The use of link types to express the semantics of the link is
described in Chapter 3.6. Additionally explored features include; versioning and
time-stamping of links [87, 149], the use of context to determine the behaviour of a
link [89, 90], and the use of annotated links to enrich the hypermedia structure [31].

4.5.4 Open Hypermedia
The need for openness, interoperability, and support for distribution of both service
and content is widely recognized in hypermedia development and research [71, 139,
173, 174, 202]. The Dexter Hypertext Reference Model [86] was a first attempt to
establish a common model for hypermedia systems. The Dexter model distinguishes
between the run-time layer, the storage-layer and the within-component layer. The
storage-layer models the basic node/link network structure that is the essence of
hypertext. A link is a component at the storage layer that aggregates a sequence of
two or more endpoint specifications. Unique identifiers are the basic mechanism for
addressing any component of the hypertext. Although many systems claim to be
Dexter compliant because they implement the same layers, the model never resulted
in any significant degree of interoperability.

More recently, there has been other effort in bringing hypermedia over to an
open component-based platform that allows for interoperability between
hypermedia applications and services [34, 139, 212]. In this context, the linking
component is often perceived as a network accessible link service that can be shared
by many users and applications. The Open Hypermedia navigational protocol
(OHP-Nav) is an attempt to define a standardized solution for link services [50, 138,
169]. The proposed link model for this protocol is illustrated in Figure 4.4, and it
defines a link as a collection of endpoints that further can be a collection of data
N:no-3403

4.6 Descriptive Solutions 61

URN:NBN
references. Although the use of this protocol is reported to be successful, e.g. in
[208], it may seem that the move towards distributed hypermedia applications based
on standardized protocols and models, is a slow process.

The use of the traditional client/server model for link services is the main
paradigm explored in distributed hypermedia applications. This, however, is a
limited solution. A single link server may only serve a finite number of users and/or
be bound to a specific usage, and multiple link servers will naturally occur in a
distributed environment. The distribution of filters in Microcosm is one example of
a more flexible distributed link service infrastructure, and the transparent access to
multiple link servers by query routing mechanism is another example [174]. The
more collaborative construction of hyperwebs that is envisioned in e.g. [7],
however, remains an issue that requires further research.

4.6 Descriptive Solutions

4.6.1 Metadata Formats
Typical elements in metadata formats include entries for title, author, date of
publication and subject, but additionally metadata can include entries describing the
relationships that exist between the described resource and its related resources.
One example of a metadata format that supports the description of relationships is
the Dublin Core format [60]. Dublin Core defines the Relation and Source elements
which both can be used to describe relationships:

• The source element can contain a reference to a resource from which the
present resource is derived; which implies a specific kind of relationship.

• The relation element can contain a reference to a related resource; which
implies a more general purpose element for relationship information.

By using element refinements the semantics of the relation element can be made
more explicit than the default interpretation. The DCMI Usage Board maintains a
list of element refinements that can be used for refining Dublin Core elements [59],
and for the relation element this list includes the following labels:

Figure 4.4: The link model of OHP-Nav.

Link Endpoint Datareference

1 0..* 0..* 0..*
:no-3403

62 4 Relationship Representation

URN:NB
• Has Format / Is Format Of
• Has Part / Is Part Of
• Has Version / Is Version Of
• References / Is Referenced By
• Replaces / Is Replaced By
• Requires / Is Required By
• Conforms To

The relationship types that Dublin Core supports, however, are not limited to this
list but can be extended by defining application- or domain-specific vocabularies
that expresses other relationship semantics.

The Dublin Core metadata format serves as a good example of how relationship
information can be expressed in metadata. A comparable solution can be found in
the IEEE Learning Object Metadata standard [99], whereas other metadata formats,
like the various dialects of the MARC format, may have quite different conventions
for such information. The way metadata supports relationships will depend on
issues like:

• The availability of specific metadata elements for relationship information.
• The ability to specify relationship meaning.
• The ability to address the related resource.
• The level of syntax, such as free text versus highly structured data.

These aspects illustrate some of the characteristics and possible limitations that exist
for relationships expressed in metadata. The semantics of a relationship can either
be expressed through the use of a general field that contains additional information
about the semantics of the relationship (relationship types), or it can be based on the
use of different metadata elements where each element expresses a different
relationship type. Identification can be made by bibliographic information or by
identifiers. The ability to automatically process relationships will depend on the
level of syntax. Relationships that merely are expressed as uncontrolled free-text
e.g. in note fields will be difficult to process automatically, but the information can
still be highly useful for end users when it is displayed.

Relationships expressed as metadata are inherently limited to one-way reference-
based relationships if the metadata primarily is intended to describe a single
document. If multi-way relationships are required, this must be implemented by
adding the inverse reference on the metadata record that describes the opposite
resource. Metadata, however, is usually records external to the content they
describe, and the inverse relationship can often cost-effectively be determined at
runtime if the storage system supports this. A different approach is to implement
N:no-3403

4.6 Descriptive Solutions 63

URN:NBN
metadata that explicitly defines the relationships between documents without
specific focus on one or the other of the participants, like the use of metadata to
express the structure of digital objects described in [61]. Such solutions are
comparable with the explicit link objects of hypermedia.

4.6.2 The Resource Description Framework
The Resource Description Framework (RDF) is a specification developed by the
World Wide Web Consortium (W3C) [221, 227]. RDF is initially designed as a
foundation for representing and processing metadata about web resources in an
interoperable, and it is considered to be the foundation for the Semantic Web. RDF
defines a uniform mechanism for describing resources, and makes no assumptions
about a particular application domain. It is based on simple data model for
representing named properties and property values:

• Resources. All things that are described by RDF expressions are called
resources. A resource is anything that can be identified by the use of an URI.
Examples are a web page, a web site, a person, or an abstract concept.

• Properties. A property is a specific aspect or characteristic used to describe a
resource. The definition of a property is not a part of the core RDF model but
can be defined by the use of the RDF Vocabulary Description Language
(RDF Schema), which is a specification for the formal declaration of the
resource classes and properties [226].

• Statements. A specific resource together with a named property plus the value
of that property is an RDF statement. These three individual parts of a state-
ment are called the subject, the predicate, and the object respectively. The
object of a statement (the property value) can be another resource identified
by a URI or it can be a literal like a simple string or number.

The structure of any expression in RDF can be viewed as a directed graph that
consists of nodes and labelled, directed arcs that link pairs of nodes. RDF can be
said to express a relationship if the object of a statement is a distinct resource with
an identity of its own. On the other hand, if the object is a literal it is more natural to
consider the predicate and object as an attribute/value pair. RDF does, however,
have some limitations as a relationship description language. The statements of
RDF are directed, and a property only captures one side of the relationship
semantics – as it is seen from the subject. However, the inverse relationship
semantics can be inferred by the use of an ontology.
The main advantage of RDF is the simple but still expressive data model. The data
model is independent of any specific serialization syntax, but the main platform for
exchanging and storing RDF is XML.
:no-3403

64 4 Relationship Representation

URN:NB
4.6.3 Topic Maps
Another relevant descriptive solution that implements support for relationship
knowledge is the International Standard ISO 13250 Topic Maps [112, 165]. Topic
Maps is a model and exchange format for semantically rich index-like information.
It is based on a data model that consists of three concepts:

• Topic. A topic can be anything, such as a web page, a book, a person, an event
or any abstract entity. The main purpose of a topic is to reify the concept that
the topic is about. It is used to make any kind of abstract or concrete concept
into an identifiable entity that can participate in the machine processable
knowledge structure of a topic map.

• Association. In Topic Maps, an association asserts a relationship between two
or more topics. Each topic that participates in an association plays a role in
that association called the association role. Associations are inherently multi-
directional.

• Occurrence. A topic may be linked to one or more information resources that
are related to the topic. Such resources are called occurrences of the topic and
can include a web page, an image or any other external source of information
that is related to the topic in one way or the other. Occurrences are generally
external to the topic map document itself, but can also include textual infor-
mation embedded into the topic map.

In Topic Maps the relationships between things are expressed using associations.
Any number of topics can participate in an association, and the participation
semantics is defined by the role type. Topic Maps defines a typing mechanism that
can be used to specify the type of topics, associations, association roles, and
occurrences. This typing mechanism is itself based on the use of topics, which
implies that a topic map can be a self-describing multi-level representation of
knowledge.

The Topic Map specification was initially based on SGML [105], but is later
adapted to the XML platform [198]. A topic map can be implemented as a single
file or set of interrelated files that together make up a semantically rich map over
any universe of discourse. A simple example that shows a topic map of the persons
and relationships of a family is illustrated in Figure 4.5.

4.6.4 HTML
The by far most dominating format for hypertext is the Hypertext Markup Language
– the publishing language of the World Wide Web [220]. The basic and most
commonly used linking capability of HTML is the use of the anchor element A to
embedded one-way references in the source document. The href attribute of the
N:no-3403

4.6 Descriptive Solutions 65

URN:NBN
Figure 4.5: A family expressed as a topic map.

<topicMap>

<topic id="Ann">
<instanceOf><topicRef xlink:href="#person"/></instanceOf>
<baseName><baseNameString>Ann Johnson</baseNameString></baseName>

</topic>
<topic id="Joe">

<instanceOf><topicRef xlink:href="#person"/></instanceOf>
<baseName><baseNameString>Joe Johnson</baseNameString> </baseName>

</topic>
<topic id="Pete">

<instanceOf><topicRef xlink:href="#person"/></instanceOf>
<baseName><baseNameString>Pete Johnson</baseNameString></baseName>

</topic>
<topic id="Mary">

<instanceOf><topicRef xlink:href="#person"/></instanceOf>
<baseName><baseNameString>Mary</baseNameString></baseName>

</topic>

<association id="Johnsons">
<instanceOf><topicRef xlink:href="#family"/></instanceOf>
<member>

<roleSpec><topicRef xlink:href="#mother"/></roleSpec>
<topicRef xlink:href="#Ann"/>

</member>
<member>

<roleSpec><topicRef xlink:href="#father"/></roleSpec>
<topicRef xlink:href="#Joe"/>

</member>
<member>

<roleSpec><topicRef xlink:href="#child"/></roleSpec>
<topicRef xlink:href="#Peter"/>

</member>
<member>

<roleSpec><topicRef xlink:href="#child"/></roleSpec>
<topicRef xlink:href="#Mary"/>

</member>
</association>

</topicMap>
:no-3403

66 4 Relationship Representation

URN:NB
anchor element contains the reference to the target document. The anchor element is
intended for links that should be displayed as part of the document content.

A different linking capability is provided by the LINK element which can be
used to express document relationships. Unlike the A element, it may only appear in
the HEAD section of a document. Links specified by the LINK element are not
rendered with the document's content, but it can be used to convey relationship
information that may be rendered by user agents in other ways.

A more precise meaning of A and LINK elements can be expressed by using the
rel and rev attributes to specify the roles of the link. For instance, links defined by
the LINK element may describe the position of a document within a series of
documents. In the example of Figure 4.6, links within the head of the document
entitled Chapter 5 point to the previous and next chapters and this way describe the
position of this document within a series of documents. The link type of the anchor
element specifies that the target document contains a definition of the term that the
A element encloses. The HTML specification defines a set of recognized link types
that includes the prev and next link types as well as other types that can be used to
express different relationships between documents. Additional link types not
described in the HTML specification can be defined by authors.

Although the linking elements and the link types of HTML can been used to
create a semantic and uniform web structure, the actual structure of interlinked web
pages is to a large extent based on ad hoc usage of un-typed anchor elements. The
semantics of these links are mainly expressed through the content they enclose and
most links are intended for human inspection and not for automatic interpretation.
The lack of support for navigation tools that use the LINK element can be one
reason why few authors use this element to organize information. The additional
overhead this introduces in the creation of documents is another. By the introduction
of XML [218], the W3C envisions that most markup-based document formats in the
future will based on XML and for this reason HTML is reformulated in XML, and
all future development of this hypertext format will be based on XHTML [223].

4.6.5 XLink
The Extensible Markup Language (XML) is a generic markup language specified
by the World Wide Web Consortium. It is derived from SGML and was originally
designed to meet the challenges of large-scale electronic publishing, but XML is
also playing an increasingly important role in the exchange of a wide variety of data
on the Web and elsewhere. W3C has defined a rich set of XML-based formats for a
range of applications. A main contribution for hypertext applications is the XML
Linking Language (XLink) [224]:
N:no-3403

4.6 Descriptive Solutions 67

URN:NBN
An XLink link is an explicit relationship between resources or portions of
resources. It is made explicit by an XLink linking element, which is an XLink-
conforming XML element that asserts the existence of a link.

The XLink specification defines six XLink element types; only two of them are
considered linking elements. The others provide various pieces of information that
describe the characteristics of a link:

• Simple. A simple link is comparable to the linking elements of HTML.
Simple links offer shorthand syntax for an outbound link with exactly two
participating resources, and they have no special internal structure.

• Extended. An extended link is a link that associates an arbitrary number of
resources. The participating resources may be any combination of remote and
local. Their structure can be fairly complex, including elements for pointing
to remote resources, elements for containing local resources, elements for
specifying arc traversal rules, and elements for specifying human-readable
titles.
The extended-type element may contain a mixture of the following elements
in any order, possibly along with other content and markup:
– Locator-type elements that address remote resources participating in the

link.
– Resource-type elements that supply local resources that participate in the

link.
– Arc-type elements that provide traversal rules.
– Title-type elements that provide human-readable labels for the link.

Figure 4.6: Link elements and link types in HTML documents.

<HTML>
<HEAD>

<TITLE>Chapter 5</TITLE>
<LINK rel="prev" href="chapter4.html">
<LINK rel="next" href="chapter6.html">

</HEAD>
<BODY>

<P>This is a test
document<P>

</BODY>
</BODY>
:no-3403

68 4 Relationship Representation

URN:NB
The XLink architecture does not define specific XML elements for these element
types, but rather defines a set of attributes and conventions that can be used to
define application-specific xlink elements from the same basis.

Simple xlinks are typically used to embed simple reference links in XML-based
content comparable to how HTML links are used in HTML documents. Extended
xlinks, on the other hand, are typically stored separately from the resources they
associate (for example, in entirely different documents). Thus, extended xlinks are
important for situations where the participating resources are read-only, or where it
is expensive to modify and update them but inexpensive to modify and update a
separate linking element. Additionally, extended xlinks can be used to link between
resources with no native support for embedded links.

The semantic attributes role, arcrole, and title, can be used to enhance the
various parts of a link with information that enables human and automatic
interpretation of the semantics of the link elements and its various participating
resources.

The actual relationships between the resources involved in a link are specified
using arc-type elements and label attributes. Traversal rules can be defined by the to
and from attributes. The behaviour attribute show can be used to determine the
desired presentation of the ending resource, for example whether the source
resource should replace the current content or whether it should be displayed in a
new window. Timing of traversal is determined by the value of the actuate attribute,
for example whether the ending resource should be loaded once the starting
resource is found or whether this should be initiated on request, for instance when
the user clicks on the link.

A simple example that shows the persons and relationships of a family as an
extended xlink is illustrated in Figure 4.7.

4.6.6 HyTime
A more historical attempt to define a standardized hypertext format was the
specification of the International Standard ISO 10744 Hypermedia/Time-based
structuring language (HyTime) [109]. HyTime provides facilities for representing
static and dynamic information that is processed and interchanged by hypertext and
multimedia applications. It is defined as an SGML application with different
markup-modules like the location address module and the hyperlinks module.
HyTime was published in 1997, but the sheer complexity of the specification has
not encouraged implementers to support the specification. Many of the modules of
HyTime have later been captured in XML-based counterparts like XPath/XPointer
[222], XLink [224] and SMIL [219].
N:no-3403

4.6 Descriptive Solutions 69

URN:NBN
Figure 4.7: A family expressed as an extended xlink.

<!ELEMENT family (person*, relationship*)>
<!ELEMENT person (name)>
<!ELEMENT relationship EMPTY>
<!ELEMENT name (#PCDATA)>

<!ATTLIST family
xlink:type (extended) #FIXED "extended"
xlink:title CDATA #IMPLIED>

<!ATTLIST person
xlink:type (resource) #FIXED "resource"
xlink:label NMTOKEN #IMPLIED
xlink:role CDATA #IMPLIED>

<!ATTLIST relationship
xlink:type (arc) #FIXED "arc"
xlink:arcrole CDATA #IMPLIED
xlink:from NMTOKEN #IMPLIED
xlink:to NMTOKEN #IMPLIED>

<family xlink:title="Johnsons">

<person xlink:label="p" xlink:role="roletypes/mother">
<name>Ann Johnsen</name>

</person>

<person xlink:label="p" xlink:role="roletypes/father">
<name>Joe Johnsen</name>

</person>

<person xlink:label="c" xlink:role="roletypes/child">
<name>Peter Johnson</name>

</person>

<person xlink:label="c" xlink:role="roletypes/child">
<name>Mary Johnson</name>

</person>

<relationship xlink:from="p" xlink:to="c"
xlink:arcrole="arcroles/IsParentOf" />

<relationship xlink:from="c" xlink:to="p"
xlink:arcrole="arcroles/HasParents" />

</family>
:no-3403

70 4 Relationship Representation

URN:NB
4.7 Overview

The relationship representation technologies reviewed in this chapter covers
technologies that are distinctively different, but they all share a common focus on
relationships mechanisms and relationship information.

Support for relationships in object-oriented systems has in common the objective
to provide implementation support for the relationships captured in the design
phase. An additional focus that can be found in many projects is the support for
management of relationships at runtime as uniform solutions for adding and
deleting relationships, and constraint checking. A typical solution is that the
different relationships of the design are fixed to at run-time. The extensions of the
various relationship types often exist as different, possibly heterogeneous,
implementation units. The implementation of a ternary relationship can be different
from the implementation of a binary relationship. The object-oriented paradigm
includes the encapsulation of data and functionality which also is applicable to the
relationship constructs. Relationship information and relationship behaviour is a
coherent solution. The use of object-oriented systems in digital libraries is
frequently found, including a few examples on systems that implement explicit
relationship objects such as the MARIAN digital library [69, 70] and Intersect_DL
[207].

Hypermedia linking solutions – and in particular external link objects – can be
considered as comparable constructs to the explicit relationship objects of certain
object-oriented systems. They are equal in the sense that the relationship
information is externalized from the entities that participate, and that the system
provides for a uniform solution to add, delete and use relationships. A major
difference, however, is that hypermedia external link objects often are accessible for
third-party applications. Another feature is the instance-oriented nature of
hypermedia linking. In hypermedia, links do not have to be predefined in terms of
what objects they can relate and what meaning they convey. A uniform construct is
used to instantiate any kind of link between any documents. This implies that the
extension of hypermedia links is a structurally uniform set with individual loosely,
typed semantics. Hypermedia link services, however, lack the focus on database-
like features that can be found in object-oriented systems, and do not provide for
features that can be used to ensure the integrity and consistency of the link-base,
such as constraints. The use of hypermedia link services in digital libraries is
explored in e.g. [4, 42, 211, 213].

One exception that exists in-between the object-oriented solutions and the
hypermedia solutions is the CORBA relationship service which can be used to
create relationships between third-party distributed objects. The use of distribute
objects to implement relationship instances enables the relationships to be available
as sharable resources for other applications. The ability to create a relationship is
N:no-3403

4.7 Overview 71

URN:NBN
detached from the entities that participate in the relationship and the applications
that manage entities. The CORBA relationship service additionally implements an
object model that is somewhat equal to the link models of certain hypermedia link
services. A major problem with the CORBA Relationship Service, however, is that
it only supports predefined relationship types. Each application needs to define and
implement the relationship types it requires. Another exception that exists in-
between the object-oriented solutions and the hypermedia solutions is the SADES
system that supports dynamic relationships between the classes and instances of an
object-oriented database [167].

The descriptive solutions examined are quite diverse in their purpose. They
represent formats for interchangeable information but target different applications.
Relationships can be expressed as metadata; exemplified by Dublin Core elements
like relation and source. Metadata can be interpreted as relationship statements, as is
the case for RDF; and even as links, as explored in [142]. RDF, Topic Maps and
XLink are all based on graph-like models and are all intended for describing
relationships between entities with identity [141]. The focus of XLink is mainly to
support hypertext-like applications, whereas RDF and Topic Maps are formats in
the metadata tradition and support semantically rich descriptions of information
resources including relationships.

All reviewed solutions can be used to express relationships in digital libraries, in
one way or the other. However, certain formats like specific metadata formats and
RDF merely support relationships with one-directional semantics, whereas
extended XLinks and Topic Maps support multi-directional relationship semantics.

Dublin Core, RDF, Topic Maps, and XLink can provide a flexible instance-
oriented typing of relationships, while other features are more related to the specific
application domain the various formats are targeting. All formats are envisioned to
exist in a distributed environment where applications may access different records
from different repositories. A particular problem is the lack of support for
consistency and integrity solutions for such information in a distributed context.

The format that most directly focuses on explicit relationships is XLink. Its main
influence is standards like HTML, HyTime, and the Text Encoding Initiative
Guidelines, but it is also informed by various hypermedia systems. The extended
links of XLink provides a well-defined and comprehensive support for expressing
relationships, but the target application is text based (XML) encoding of
relationship information with a certain focus on hypertext applications. The use of
metadata formats is a fundamental element in many digital library systems, and
RDF is gaining acceptance as a platform for syntactic and semantic metadata
interoperability for all descriptive information, including relationship information.
However, when the application focus is on the support for explicit relationships and
linking information, it seems like XLink is favoured. Examples and suggestion for
the use of XLink for this purpose can for instance be found in [22, 23, 40, 134, 135,
147].
:no-3403

72 4 Relationship Representation

URN:NB
N:no-3403

URN:NBN
5 A Generic Relationship Model

5.1 A Model for Explicit Relationships

This chapter presents a conceptual reference model for the explicit representation of
relationship information. The model is used to formally express the various aspects
of explicit relationship information that this work emphasizes. The definition of this
model is the first step to establish a generic solution for managing and navigating
relationships in digital libraries. It is influenced by the various solutions and models
reviewed in Chapter 4, but attempts to generalize the those features that this work
considers important.

The model is generic in the sense that it defines an abstract model that can be
used to capture all kinds of relationships regardless of their meaning and structure.
The model reflects the information related to the relationship in focus and represents
this information in an explicit form. The model is abstract in the sense that it does
not specify any preferred data structure for its implementation.

5.2 Requirements

The definition of the model is based on a set of requirements for what a generic
construct for relationship information needs to support. These requirements will be
explained in detail in the following sections, but can be summarized with the
following list:

• Participants. Explicit relationships express information about the relation-
ships that exist between participants, and needs to express the list of partici-
pants it relates.

• Relationship semantics. Relationships are highly semantic elements that
express knowledge about the structure of things. A generic relationship
:no-3403

74 5 A Generic Relationship Model

URN:NB
model needs to be able to express the semantics of different relationships
using relationship types.

• Relationship structure. Relationships can have different structures, both in
terms of degree and cardinality. A generic relationship model must be able to
represent any kind of structure within the same extension.

• Constraints. The ability to structure knowledge by the use of relationships
needs to be complemented with the ability to constrain the relationship
instances. Constraints are the rules defined for the relationship type that can
be used to ensure logically correct relationships.

• Identity of a relationship. Management of relationships requires the relation-
ship to be addressed as a unit. To support this there is a need to provide rela-
tionships with identity, either through one identifier for the relationship as a
whole or by providing identifiers for the various part of a relationship.

5.2.1 Participants
Any extensional relationship construct needs to store information about the entities
the relationship relates. The relationships in class diagrams specifies relationships
between classes, but at the instance level each relationship needs to be implemented
as a connection. Entities can be represented in relationship instances by any kind of
name, identifier or other reference that uniquely identifies the related entities.

Relationship can additionally be generic and relate logical units rather than
specific entities, such as the use of generic links in Microcosm where the endpoints
can be specific words independent of what documents they occur in [87].

Certain relationship representations allow for the entity to be included within the
relationship instance. In XLink an extended xlink can include a resource element
that exists within the xlink.

The model presented in this chapter does not presuppose any specific addressing
scheme or constrain the interpretation of what a participant is. Participants are
simply interpreted as anything that can be referenced.

5.2.2 Relationship Semantics
The semantics of a relationship is the meaning of that relationship. Without
meaning, a relationship is merely a connection that in many cases will be of no
value, or would require the context to be examined for semantic indications.
In an instance-oriented relationship construct, the relationship itself should be able
to express the meaning of the relationship it implements. Support for semantically
rich information is a complex issue, but a common initial requirement is to support
the naming of things by symbols such as human readable terms. Relationships are
N:no-3403

5.2 Requirements 75

URN:NBN
often said to be of a specific type. By supporting the identification of relationship
types by a typename, further support for semantics can be handled at the application
level: if a specific relationship type is recognized it can be interpreted correctly; if
the relationship type is unrecognized, the application at least knows that it is faced
with an unknown relationship and may act accordingly. Even though the
relationship is unrecognized, the application may still be able to process the
relationship in certain ways, if the overall structure of all relationships is uniform.

The symbol required to identify relationship semantics can be any symbol
implemented as a unique simple or complex data value. For the relationship of
Fatherhood, the string “Fatherhood” may be used to identify this particular kind of
relationship. Other identifiers are of course also possible. Readable strings may be
intuitive and easy to interpret by humans, but other tokens like numbers or strings
can be selected for computational reasons. If the requirement is efficient comparison
of two symbols an integer number would be better than an extensive string. An
additional requirement is that names have to be unique within the context of the
application. A local system may solve this in a pragmatic way, whereas a global
cooperative environment would require globally unique identifier like URIs or
UUIDs.

The use of roles has emerged as an important element when expressing and
modelling relationships. This can be found in current modeling languages such as
UML, it is used in many object-oriented relationship mechanisms, and occurs in
many of the descriptive solutions such as Topic Maps and XLink.

Figure 5.1: Naming relationships.

Joe Pete
Father ChildFatherhood

Combined solution

Joe Pete
Father Child

Role names

Simple relationship name
Joe PeteFatherhood
:no-3403

76 5 A Generic Relationship Model

URN:NB
Roles provide for participation semantics. The use of role names is an efficient
guidance when interpreting relationships; e.g. to determine which endpoint is the
Father and which endpoint is the Child in a Fatherhood relationship instance. The
use of roles in a relationship specification diminishes the need to have knowledge of
the entities to understand the relationship. For this reason, the use of role names is
an important element. Role names may replace the general relationship name, or
both may be used as shown in the object diagram of Figure 5.1. There may even be
cases where the full semantics of a relationship (both relationship type and role
types) is required to interpret the meaning of the relationship.

5.2.3 Relationship Structure
A generic relationship must be able to support the different structural shapes a
relationship may have, and the major variable aspect of relationship structures are
degree and cardinality. In the relationship mechanisms of object-oriented systems,
different degrees and cardinality constraints often lead to differences in how the
relationship is implemented. The generic constructs of e.g. Topic Maps and XLink,
supports the representation of arbitrary relationship structures with the same
construct. .

Some relationships are of binary degree; they relate two entities, other
relationships are of higher degree; they relate three, four or even more entities as
shown in Figure 5.2

A different aspect of relationship structure is cardinality. Cardinality is by
definition the size of a set, which in the context of relationship modeling is the set of
relationship instances an object participates in. Relationship participation is in
general a dynamic aspect of a system, and at the modeling stage cardinality is
usually defined as a cardinality ratio constraint. A specific entity may be related to
several other entities by different relationship instances of the same type. The
entities in Figure 5.3 are only allowed to participate in one relationship instance;
which is resulting in a single link between the objects at run time. In Figure 5.4 the
model expresses that E1 is allowed to participate in multiple relationship; which is
resulting in multiple links at run time. These two examples can be implemented by
different solutions. In an object-oriented mechanism, the relationships may be
implemented using pointers referencing to the related object(s). If the cardinality
ratio is 1, it will be sufficient to use a simple attribute to store a single reference to
the related object. If the cardinality ratio allows for multiple participation, it is
required that the attribute implements support for a set of references. The set based
solution is more general since it also can be used to implement the singleton.
The above example may seem trivial, but the problem of managing multiplicity in a
uniform way is a pertinent problem as exemplified by the interoperability problems
N:no-3403

5.2 Requirements 77

URN:NBN
between the different link networks of hypermedia systems [127]. Different
solutions that are used include:

• The use of multiple links.
• The use of multi-destination links.
• The use of single link that points to an intermediate node having multiple

links to the target.
RDF, Topic Maps, and the ISO HyTime specification are all examples of solutions
that implement a data structure where a single instance of respectively association
and link may have an endpoint that actually is a set of participants. In HTML the
same information needs to be represented as multiple links. In XLink, arcs can be
defined between locators in a generic way by indicating to and from. These
differences can be quite equal in expressiveness and appearance to end users, but
will differ in terms of how the relationship information must be processed.

Figure 5.2: Relationships of different degree.

Rdegree=2E1 E2

E2

Rdegree=3E1 E3

E2

Rdegree=4E1 E3

E4

Degree = 2

Degree = 3

Degree = 4
:no-3403

78 5 A Generic Relationship Model

URN:NB
Representing multiplicity by the use of multiple relationship links appears to be
the most generic solution, and it can for this reason be preferred as the basis of a
generic relationship model. In case there is a need to establish a single relationship
instance from/to a collection of participants, this can always be solved by creating a
collection and otherwise treat this collection equal to other singleton entities.

5.2.4 Constraints
The semantics and the structure of relationship instances are often bound by rules
that define what is logically correct or not. When modeling information, constraints

Figure 5.3: Binary 1:1 relationship.

Figure 5.4: Binary 1:N relationship.

E1 E2

I1 I2

Modelling level

Instance level

1 1

E1 E2

I1 I3

Modelling level

Instance level

1 1..*

I2

I4
N:no-3403

5.2 Requirements 79

URN:NBN
are used to define additional aspects the relationship structure needs to conform to at
run-time.

If the structure is generic, but the instances are specific in terms of structural
constraints like degree and cardinality ratio, we have to be able to define constraints
on each relationship type in order to prevent instances of this particular type from
being structured in an erroneous or unwanted way.

In the design of a generic relationship structure, the ability to support constraint
definitions is an important issue. This topic has particularly been in focus in the
development of relationship mechanisms in object-oriented systems [98, 132, 175,
179], but is rarely found in link models of hypermedia and descriptive solutions.

Although constraints can be defined for any dynamic aspect of a system, the
most commonly used constraints when modeling relationships are cardinality and
total/partial participation; either as two separate constraint elements or combined
with the use of cardinality ratios e.g. where the first number indicates the required
number of participation (0 or 1) and the latter indicates the maximum (1, 2 ...,N).

In the development of a generic relationship model, however, there are
additional constraints that need to be considered. The first is the ability to express
degree as a constraint. If the generic relationship structure allows a relationship to
be instantiated with any degree, a degree constraint can be used to specify the
correct degree for a type. The second is the ability to specify constraints on the
semantic aspects of a relationship type. If a relationship is expressed in terms of the
roles of the participating entities, we have to be able to specify e.g. that a role only is
allowed to occur in combination with the use of other specific roles on the opposite
end of a relationship.

5.2.5 Relationship Identity
The identity of a relationship may be based on either:

• Identity by value
• Identity by name

The first approach assumes that the relationship identity can be established by
looking at certain values; like the set of participating entities, relationship type, etc.
Identity by name, on the other hand, implements identity by assigning unique
identifiers to relationships. The first solution may be difficult to implement and
process at runtime, but requires no specific assignment at creation time. The latter
approach is easier in e.g. comparison operations, but introduces a certain overhead
by the required assignment of relationship identifiers. This overhead may differ in
different implementation and runtime environments, e.g. in a distribute environment
this would require the use of globally unique identifiers like UUIDs. The use of
identifiers and implementation of an identification scheme, however, is more an
:no-3403

80 5 A Generic Relationship Model

URN:NB
implementation issue. At the conceptual level it is sufficient to state that relationship
identity is required for the relationship as a whole and/or on subparts of the
relationship.

5.3 Developing a Model

5.3.1 An Initial Model
Relationships are often formally explained with the mathematical relation. A
generic relationship expression can be defined as a relation of any degree
over the domain of discourse P, where P is the universal set of all possible
relationship participants in a domain; like all objects in an object-oriented
application, all documents of a digital library, all persons, or any other set of
entities. This can be expressed by the generic statement:

This approach, however, is not transformable into a single, common relational
representation for the extension of all possible relationships. Relationships that
differ in terms of different degree will inevitably lead to different relations. A
concrete mathematical relation is per se of a fixed degree; it is a relation over a fixed
number of sets. A generic relationship construct must, however, be capable of
representing any kind of relationship within one structural extension. A generic
statement can, on the other hand, as a fist step be represented as a set of sets, where
each instance of a relationship – the relationship link – is viewed as a set, and the
overall relationship extension is viewed as a set of such sets:

 This straight-forward representation is however a simplification of relationships, as
it has weak support for relationship semantics. A type can be assigned to each
relationship instance, but a major drawback is the problem of semantic ambiguity;
how to determine what list position corresponds to what participation role. Using
ordered sets does not contribute any meaningful mechanism because each
relationship instance may have a different number of elements. The model needs for
that reason to be further enhanced by:

• Adding typed participants
• Adding a generic type system

ℜany

ℜany P P P× … P××⊆

Ssets p1 p2,{ } p1 p3,{ } p1 p2 p3, ,{ } p4 p5 p6, ,{ }, ,,{ }=

pn P∈
N:no-3403

5.3 Developing a Model 81

URN:NBN
• Defining support for constraint

5.3.2 Embedding Role Semantics
The semantic ambiguity problem can be solved by modeling a relationship as an
aggregation of compound role expressions, and adding support for semantic labels –
names – to the model. In the following section we will be using a specific
terminology when referring to the model. The term relationship will be used when
referring to the overall relationship structure, and the terms link and roles will be
used when referring to the specific parts of the model that are named in this way.

A participant together with the participation rolename can be viewed as the role
of a relationship. A role structure can be modelled as an ordered pair having the
participant as one coordinate and the rolename as the second coordinate:

The use of such a role construct can be found in certain object-oriented relationship
mechanisms like the CORBA Relationship Service [77]. Similar solutions are found
in both Topic Maps [112] and XLink as well [224]. Based on this solution, a generic
relationship can now be defined as a relation of relationship instances – links –
where each link as the first coordinate has a set of roles drawn from the set of all
possible roles. The name of the relationship instance is introduced as the second
coordinate:

Some examples based on this model are given below (parentheses are used to
delimit ordered tuples and curly braces are used to delimit sets):

Additionally, support for relationship attributes and even role attributes can be
added without altering the basic principles of the model. Attributes that are common
for the whole relationship construct can be added as additional coordinates to ,
and attributes on the roles can be added to , following the same pattern as
attributes on the link. Finally, both role and link tuples can be identified using the
values they contain or additional coordinates can be introduced if there is need to
add specific identifiers.

Role p nrole,() p Pparticipants∈ nrole∧ Nrolenames∈{ }=

ℜlink r nlink,() r Role⊆ nlink Nlinknames∈∧{ }⊆

Peter Father,() Paul Child,(),{ } Fatherhood,() ℜlink∈

Mary Wife,() Bill Husband,(),{ } Spouse,() ℜlink∈

John Friend,() George Friend,(),{ } Friendship,() ℜlink∈

ℜlink
Role
:no-3403

82 5 A Generic Relationship Model

URN:NB
5.3.3 Adding Types and Constraints
The relationships we have considered so far have all been unconstrained. In the
examples above, relationships that make sense have been shaped, but there are no
rules that govern the constellation of roles and links, the number of roles allowed in
a link, etc. To support this, there is a need to add a typing scheme that can be used to
specify which relationship instances are valid.

The set of all role and link typenames that are valid for a given domain can be
partitioned into respectively a set of role typenames and a set of link typenames as
in the following example:

Each rolename can be associated with a minimum and maximum value to express
the cardinality constraints. Together this information makes up a role type
definition:

A link type can be defined as a tuple that contains the a set of role types as the first
coordinate, the link type as the second coordinate and the degree as the third
coordinate:

The use of degree in the definition is essentially not necessary, because the degree
can be inferred from the number of role types that are allowed for a link type. The
use of a specific degree constraint, however, is a more flexible solution because for
instance if the link only accepts one role type but allows two participants of this role
type.
The set of all link and role types that are allowed within a domain can be
characterized as a relationship typology:

Nrole Rolenames Child Father Wife Husband Friend …,, , ,{ , }= =

Nlink Linknames Fatherhood Spouse Friendship …,, ,{ }= =

ℜroletypes trole cmin cmax, ,() trole Nrole∈ cmin Z cmax Z∈∧∈∧{ }⊆

ℜlinktypes r tlink d, ,() r ℜroletypes⊆ tlink Nlink∈ d∧ ∧ Z∈{ }⊆

Typology ℜroletypes ℜlinktypes,{ }=
N:no-3403

5.3 Developing a Model 83

URN:NBN
Together this typology defines the basic typing scheme for relationship instances:
• Role types are defined by:

– A role typename
– A value for maximum cardinality
– A value for minimum cardinality

• Link types are defined by
– A link typename
– The degree of the relationship
– A list of allowed role types

5.3.4 Overview
The model presented in this chapter includes a formal representation of relationship
instances and the typing scheme that can be used to specify what relationships are
logically correct. The basic relationship model is comparable to the flexible
relationship scheme that e.g. is implemented in both Topic Maps and XLink, and
reflects an instance-oriented view on relationships. The use of roles to represent
participants combined with a linking element that aggregates roles, is additionally
found in certain object oriented relationship constructs, such as the CORBA
Relationship Service.

The use of the typology to control the creation of relationship instances is a
deployment issue. As long as the names used in the relationship instances
correspond to the names used in a type definition the application should be able to
control that the relationship instances adheres to the type definition. An
implementation of this model may further consider adding additional constraints to
the typology schema. The schema is generic in the sense that it defines the core
structure of a relationship typology. It allows for a range of different solutions to be
implemented depending on what the requirements are for typing and constraints.
:no-3403

84 5 A Generic Relationship Model

URN:NB
N:no-3403

URN:NBN
6 Design and Architecture

6.1 Supporting Relationships in Digital Libraries

A major element of the work presented in this thesis is the design and development
of a system for supporting relationships in digital libraries. This system is coined the
Digital Library Link Service (DL-LinkService), and as the name of the system
indicates, the target application domain is digital libraries. However, digital libraries
are a broad category of systems that deal with information in a variety of ways.
Rather than focusing on a specific application of relationships applied to a specific
class of information, the system addresses relationship support in a generic and
flexible way by providing a core solution for creating and maintaining a consistent
network of relationship instances.

In digital libraries, the extension of the information object concept is at the
general level highly homogenous – all objects are identifiable units of information.
On the lower representation level this extension can be heterogeneous, but this is
often transparent to the way information is managed and organized. The
relationships an information object potentially can participate in are not a
predefined and static aspect of the object, but it is rather a dynamic aspect that
evolves as information is used and the meta-level knowledge that makes up an
information space evolves. This leads to a requirement for a dynamic solution
where arbitrary relationship instances can be added at run-time between any set of
objects.

The system that further will be explored in this thesis combines features from
different disciplines into a dynamic and flexible relationship service for digital
libraries. The system implements an object-oriented interpretation of the abstract
relationship model specified in Chapter 5. The system is partly influenced by the
CORBA Relationship Service, whereas other aspects, such as the dynamic nature of
the system, are inspired by hypermedia systems. The design of the system will be
described in detail in the following section, but the main characteristics of the
system can be summarized by the following:
:no-3403

86 6 Design and Architecture

URN:NB
• Object-oriented representation of relationships. The DL-LinkService imple-
ments relationships by the use of a compound structure of node, role, and link
objects. An object-oriented solution allows for encapsulation; the grouping of
data and the operations that affect the data into objects. One example of the
advantage of this is the implementation of mechanisms for constraint check-
ing. In an object-oriented solution, the constraint mechanisms can be dele-
gated to the object instances; a solution that facilitates transparent constraint
checking on a fine-grained per object level.

• Relationships are explicit and detached from the information object level. In a
digital library environment, as well as many other applications, the potential
relationship participants cannot be assumed to have inherent properties for
expressing relationships to other entities. To support the creation of explicit
relationships for all kinds of information objects stored in any kind of system,
it is necessary to separate the relationship layer and the information object
layer. Another motivation for this separation is that it allows relationships to
be defined between third-party objects.

• Support for relationships of any structure. The DL-LinkService supports rela-
tionships of any degree to be defined, and supports the definition and man-
agement of any cardinality constraint.

• Typing. All relationships created by the DL-LinkService are instantiated
using the same core set of object classes (interface definitions). Relationships
can, however, be of different types. The type of a relationship is specified by
the client when relationship instances are created; by the use of typenames.
The motivation for this solution is to enable a reusable system that is inde-
pendent of compile time knowledge of all relationships types.

• Support for relationship typologies. A typology is used to specify typenames
and structural constraints for specific categories of relationship instances.
This is a flexible system for typing. The same software can be used with dif-
ferent typologies in different domains or for different purposes, and the typol-
ogy can dynamically evolve by adding new types if needed.

• Support for distribution. The DL-LinkService is implemented as CORBA
distributed objects and uses Uniform Resource Identifiers to address and
identify the information objects participating in a relationship. This solution
allows for distribution along many different axes: The interrelated informa-
tion objects can reside on different systems independent of the location of the
service. The relationships and other components of the service can be served
as a standalone system on one machine or as a set of transparently cooperat-
ing systems distributed across any number of machines.
N:no-3403

6.2 The Core Tasks 87

URN:NBN
In the following sections the architecture and design of the DL-LinkService is
outlined. Additional application issues are discussed in Chapter 7, and
implementation level issues are described in Chapter 8. Although this chapter is
devoted to the general patterns and architectural issues of the service, certain
implementation level solutions will be touched upon to describe the general ideas of
the design that are influenced by the implementation.

6.2 The Core Tasks

The DL-LinkService addresses the general and core tasks needed to manage and use
relationships. These tasks are illustrated in the UML use case diagram of Figure 6.1
and include:

• The management of relationships; which is defined as the tasks of creating
and deleting relationships. Both these tasks inherently depend on the system
being able to ensure the consistency of the overall relationship structure.

• The navigating of relationships; which is the iterative task of traversing the
relationship network. To be able to support navigation, the system must
support the discovery of what relationships exist for a specific information
object. In addition, the system must support basic methods that can be used to
retrieve the opposite entities of the relationship.
The tasks defined in the diagram should be considered a basic set of features.

Relationship management and the use of relationships in a specific application can
be achieved by relying on the basic tasks defined. Other issues would require
extensions to the system, like support for relationship indexing and querying, but
this can be achieved without altering the core model.

6.3 The Object Model

The DL-LinkService implements relationship instances by the use of a compound
structure of node, role, and link objects. A UML class diagram illustrating the object
model is presented in Figure 6.2. Only a subset of the available operations defined
in the prototype version of the DL-LinkService is shown for the sake of simplicity.
In the following we will be using the term relationship when referring to the
composite structure of objects that makes up an explicit relationship instance. The
various objects will be referred to as node object, role object, or link object. The
following list describes the main responsibilities for these objects. Dynamic aspects,
for example how relationships are created and deleted and how constraints are
handled, is described later in this chapter.
:no-3403

88 6 Design and Architecture

URN:NB
Figure 6.1: Use case diagram of the DL-LinkService.

User

Manage
relationships

Create
relationships

Delete
relationships

Ensure integrity
and consistency

Navigation

Discover
relationships

Retrieve opposite
entitites
N:no-3403

6.3 The Object Model 89

URN:NBN
• The node object is an intermediary for an information object. A node object
should be considered as a proxy for the actual information object because it
implements the functionality that is required for dynamic relationship partici-
pation. A node can be of a specific type in order to express the classification
of the object it represents. The mapping between the node and the informa-
tion object is implemented as an attribute on the node object that holds the
URI that identifies the actual information object. For each of the information
objects there should be only one node. The node is further responsible for
maintaining a list of references to its associated role objects, one unique role
for each type of relationship it participates in. By aggregating a set of roles
for the same information object, the node serves as the connecting element
between relationships of different types. This is used to create a network
structure of entities and relationships – this will be referred to as the relation-
ship network. Additional responsibilities of the node are to support navigation
by returning the list of all roles when requested or a single role of a requested
type. The title attribute can contain any user assigned value e.g. for display
purposes.

• A role object reflects the participation of the node in one or more relationship
instances of the same type. The semantics of this participation is determined
by the value of the type attribute that uniquely identifies a specific kind of
role. If a node participates in a relationship with the role of references, then
there has to be one (and only one) role object connected to the node for this
kind of relationship. If the same node also participates in a semantically dif-
ferent relationship there will be an additional role object to represent that par-
ticipation semantics, for instance a defines role. The role object is responsible
for maintaining a reference to the node as well as maintaining the list of refer-
ences to link objects. When new links are added or removed, the role is
responsible for checking the participation ratio constraints that are specified
as minimum and maximum cardinality. Furthermore, the role is responsible
for returning node-references or the list of link references upon request.

• A link object is the main connection point between the nodes participating in
a relationship instance. For each relationship instance between two partici-
pants (or more for higher degree relationships), there will be only one link
object. If the relationship is binary, then the link object holds two role object
references. For relationships of higher degree, the number of role object ref-
erences held by the link object is three or more, corresponding to the degree
of the relationship. For a node that participates in multiple relationships (car-
dinality > 1), there will be a corresponding number of link objects. The link
object is responsible for returning the set of role references it holds upon
request.
:no-3403

90 6 Design and Architecture

URN:NB
Figure 6.2: The objects used to implement a relationship.

Figure 6.3: The use of node, role and link objects.

* *1 *

+getTitle()
+getType() : String
+getNode() : Node
+getLinks() : Links
+getOppositeURIs() : URIS
+getOppositeNodes() : Nodes
#bind()
#unbind()
+destroy()

-title : String
-type : String
-min_cardinality : Integer
-max_cardinality : Integer
-node : Node
-links : Links

Role

+getTitle()
+getType() : Role
+getURI() : URI
+getRoles() : Roles
+getOppositeURIs() : URIS
+getOppositeNodes() : Nodes
#bind()
#unbind()
+destroy()

-title : String
-type : String
-uri : URI
-roles : Roles

Node

+getTitle() : String
+getType() : String
+getRoles() : Roles
+getOtherRoles()
+destroy()

-title : String
-type : String
-roles : Roles

Link

type : String = Is referenced by
R2 : Role

type : String = Reference
L1 : Link

uri : String = http://a.b.c/Doc2
N2 : Node

type : String = Is referenced by
R3 : Role

type : String = Reference
L2 : Link

uri : String = http://a.b.c/Doc3
N3 : Node

uri : String = http://a.b.c/Doc1
N1 : Node

type : String = References
R2 : Role
N:no-3403

6.4 Navigating Relationships 91

URN:NBN
An example of the occurring object structure is shown in the UML instance diagram
of Figure 6.3. This example shows how a reference relationship between the
documents Doc1, Doc2, and Doc3 is instantiated as a set of objects at runtime. The
actual documents are identified by URIs and represented through the use of the node
objects N1, N2 and N3. This instance diagram reflects that Doc1 references Doc2
and Doc3. If we view this relationship from the opposite viewpoint it shows that
Doc2 and Doc3 is referenced by Doc1.

6.4 Navigating Relationships

Navigation is the process of retrieving the opposite target nodes (and the URIs they
contain) given a specific start node. The node, role, and link objects are connected
to each other by the use of two-way reference-based connections, and the basic get
methods on objects are the main enablers for navigation across a relationship.

Direct invocation of these methods by the client application, however, is a
complex solution for navigation and a pattern that has to be repeated for each
relationship that is navigated. A more intuitive design of the navigation task is to
support navigation as a single method invocation on the start node –
getOppositeURIs(). When this method is invoked it causes a chained method
invocation to occur behind the scene as illustrated in Figure 6.4. Navigation of a
relationship, as a task performed by a client, can then be executed in two ways:

• The client can use the basic methods on node, role, and link objects to navi-
gate the compound structure of the relationship, by a series of stepwise and
sequential method invocations.

• The client can invoke a single operation on a node object to retrieve the oppo-
site node objects or opposite URIs of that relationship.

6.5 Creating Relationships

Because of the distribution of objects across various address spaces, CORBA does
not inherently support creation of objects in contrast to object-oriented languages
where this is natively supported by the class construct. In CORBA the mechanism
for instantiating objects has to be specifically implemented into the distributed
object application. The instantiation of objects in the DL-LinkService follows the
frequently used pattern of factory objects [66, 93]; specific objects that implement
create methods and return object instances. One factory object is specified for each
of the respective node, role, and link objects as illustrated in Figure 6.5. The process
of creating a relationship requires the following steps:
:no-3403

92 6 Design and Architecture

URN:NB
Figure 6.4: Navigation as a chained method invocation.

Figure 6.5: Factory objects.

Node 1 Role 1 Link

getOppositeUris()

User

Role 2 Node 2

getOppositURIs()

getOtherRoles()

getNode()

getUri()

* *1 *

«instantiate»

+create() : Role
RoleFactory

Role

«instantiate»

+create() : Node
NodeFactory

Node

«instantiate»

+create() : Link
LinkFactory

Link
N:no-3403

6.6 The Type Service 93

URN:NBN
• Creating nodes. Nodes are created by invoking the create method on a node
factory, passing a typename, title and the URI of the information object as
parameters. The create method returns a reference to the created node. If a
node for this information object already exists, this step can of course be
skipped.

• Creating roles. Roles are created by invoking the create method on the role
factory, passing the role type, title and a node reference as parameters. The
create method returns a reference to the created role. If the node already is
associated with a role of the requested type, the role factory forwards the
exception that the node throws.

• Create a link. A link is created by invoking the create method on the link fac-
tory, passing the link type, title and a set of participant roles as parameters.
The create method returns a reference to the created link. If the requested link
creation will cause link duplication or other errors, the link is not created and
an exception is thrown.

Because of the compound structure of objects that are used to represent a
relationship, the DL-LinkService implements a “behind the scene” mechanism to
establish a synchronized multi-way relationship. The basic pattern for this is
illustrated in Figure 6.6. A node is notified whenever a role object is created so that
the node can update its list of connected roles. This is implemented by the use of a
protected bind method on the node. When the create method is invoked on the role
factory, the factory is responsible for invoking the bind operation on the node
reference that it receives. The bind method on the node is invoked with the role
reference as a parameter. A similar mechanism is designed to establish the two way
connection between link and roles. Additional unbind operations are specified for
the reverse process of deleting a relationship.

6.6 The Type Service

The DL-LinkService is based on the assertion that the semantic and per instance
structural aspects of relationships should be separated from the design and
implementation of the server. The system implements a basic structure that initially
can be used to create any relationship instance, logically correct or not. As described
in 5.2.4, a typing scheme is required to enforce a formally correct relationship
structure to emerge according to the rules that may exist.

All objects that the DL-LinkService uses to implement a relationship instance
are associated with a specific type. When objects are created, the client specifies the
requested type of object in the parameters of the create method. Each created object
:no-3403

94 6 Design and Architecture

URN:NB
stores its typename as a string, and clients can later request the typename to
determine the semantics of the various objects. Link typenames reflect the general
relationship type and role typenames reflect the participation semantics.
Additionally, the use of node typenames is introduced to enable a more expressive
system than the mere relationship instance is able to express. The proper
interpretation of an information space often requires additional knowledge of the
node in addition to the relationship semantics. Node types can for example be used
to distinguish between information objects that are metadata records and
information objects that are documents.

An XML-based typology is used to define the various types and their constraints.
The rules and syntax of the format is specified using the XML Schema that is listed
in Appendix A.3, and a simple example typology is listed in Figure 6.7:

Figure 6.6: The bind pattern.

Node

Role

Link

createNode(nodetype,uri)

bind(Role)

"create"

NodeFactory RoleFactory LinkFactory

createRole(roletype, node)

"create"

createLink(linktype, roles)

"create"

bind(Link)

Manager
N:no-3403

6.6 The Type Service 95

URN:NBN
• A type is identified by its typename. All type definitions have a TypeName
element that contains the type-name string. All typenames within a typology
is bound to a namespace that is identified by the TypologyName element.

• The node type definition consists of a list of AllowedRole elements that con-
tains the name of the role types that are valid for this type of node.

• The role type is used to define cardinality constraints and what link types this
role can be used in combination with. The MinCardinality and MaxCardinal-
ity elements are used to express the cardinality ratio. The letter N can be used
to specify an undefined value, but otherwise the element needs to contain 0 or
a positive integer. One or more occurrences of the AllowedInLink element can
be used to list the link types this role type can be used in combination with.

• The link type definition is used to specify the degree of the link, what role
type definitions it can accept as participants, a role uniqueness property and a
link uniqueness property. The Degree element contains the defined degree for
this link type as a number that needs to be greater than 1. The degree can
additionally be unspecified which is expressed using the letter N. The roles
this link type may contain are specified using a set of AllowedRole elements.
The RoleUniqueness element is used to indicate whether the same role type
may occur multiple times in a link instance or whether they must be unique
within the scope of a link. The LinkUniqueness element indicates whether the
system needs to verify that instances of the link are unique within the whole
relationship network.

The example typology shows the WholePart link type and its corresponding
IsPartOf and HasPart role types. The Document node type can participate in
relationships using the IsPartOf and HasPart role types. The Metadata node type
can only participate in WholePart links using the IsPartOf role type.

The use of an XML Schema enables the definition of specific data types and
integrity rules that together enforces the typology to be consistent with respect to the
data values of elements, key integrity and referential integrity. The XML Schema
defines that all link and role definitions must contain unique names within the scope
of the parent typology, and that the definitions maintain referential integrity, which
in this context means that the AllowedRole and AllowedLink elements must refer to
existing type definitions. The basic format can be further extended to support
additional features like inheritance and reuse of type definitions across typologies.
:no-3403

96 6 Design and Architecture

URN:NB
Figure 6.7: XML format for type definitions.

<Typology>

<TypologyName>DLLS</TypologyName>

<NodeType>
<TypeName>Document</TypeName>
<AllowedRole>HasPart</AllowedRole>
<AllowedRole>IsPartOf</AllowedRole>

</NodeType>

<NodeType>
<TypeName>Metadata</TypeName>
<AllowedRole>IsPartOf</AllowedRole>

</NodeType>

<RoleType>
<TypeName>HasPart</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedInLink>WholePart</AllowedInLink>

</RoleType>

<RoleType>
<TypeName>IsPartOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedInLink>WholePart</AllowedInLink>

</RoleType>

<LinkType>
<TypeName>WholePart</TypeName>
<Degree>2</Degree>
<AllowedRole>HasPart</AllowedRole>
<AllowedRole>IsPartOf</AllowedRole>
<RoleNameUniqueness>true</RolenameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

</Typology>
N:no-3403

6.7 Constraints 97

URN:NBN
Typenames can be identified independent of the XML file that stores type
definitions. Names are represented as URIs that encodes the typology name and the
typename. The purpose of this is to support the definition of globally unique
typenames and to support possible reuse of type definitions across typologies etc.
This work suggests the definition of a specific purpose URI scheme based on the
following syntax:

Generic syntax: type:<typologyname>:<typename>
Example: type:DLLS:WholePart

The types defined are actively used in the creation and management of objects at
runtime. Type definitions are served by a type service – the TypeLookUp object.
The typeservice is used by the factory objects to retrieve type definitions. When e.g.
a role is created by invoking the create method on the role factory, the typename
passed as a parameter value in the create operation is used by the factory to look up
the definition of this role type in the type service. The returned type definition is
then used to configure the role with the corresponding predefined values for
minimum and maximum cardinality. A corresponding procedure is performed for
the creation of link and node objects. Type definitions are retrieved from the type
service as CORBA data structures rather than XML fragments in order to avoid
parsing of XML whenever a type definition is retrieved. The type service supports
the retrieval of a type definition by their URI-encoded typename. Additionally it can
be used to dynamically discover available type definitions by first accessing all
typology names and then retrieving a list of all typenames that are available within a
typology.

6.7 Constraints

The typing system introduced in the previous section defines a mechanism for
assigning types to objects. The mechanisms for validating the creation of objects
and the runtime structuring of the relationship network, however, is a responsibility
that is delegated to the various objects.

• Node factories are responsible for the creation of nodes. This includes verifi-
cation that the requested node type exists.

• Node objects are responsible for ensuring that the roles associated with the
node during run-time is of the proper type, if the node type defines such con-
straints. The bind method is responsible for this functionality.
:no-3403

98 6 Design and Architecture

URN:NB
• Role factories are responsible for the proper creation of roles. This includes
verification that the requested role type exists, and that the role instances are
configured with the predefined minimum and maximum cardinality ratio
values.

• Role objects are responsible for ensuring that the cardinality – the number of
link objects it is bound to – is within the range of its minimum and maximum
cardinality ratio. The bind and unbind methods are responsible for this.

• Link factories are responsible for the degree constraint. The number of roles it
is passed in the create method invocation must be equal to the degree of the
requested type. In addition, the link factory is responsible for the typename
constraints, for example ensuring that role types are allowed for this link type
and that all role types are unique.

• Link objects are, opposed to role and node objects, static objects that once
they have been created do not change their state in any way. They may, how-
ever, be deleted, and have to catch exceptions from role objects, e.g. if the
minimum cardinality constraint of the role will be violated by the deletion.

A diagram showing the basic design the DL-LinkService, including the typeservice,
is given in Figure 6.8. The formal specification of the service in IDL is listed in
Appendix A.1 and Appendix A.2.
N:no-3403

6.7 Constraints 99

URN:NBN
Figure 6.8: The levels of the DL-LinkService.

«use»Relationship
creating

Relationship
representation

Relationship
typing

* *1 *

«instantiate»

+getNodeTypeDef() : RoleTypeDef
+getRoleTypeDef() : NodeTypeDef
+getLinkTypeDef() : LinkTypeDef

TypeServer

«use»

+create() : Role

RoleFactory

+getTitle()
+getType() : String
+getNode() : Node
+getLinks() : Links
+getOppositeURIs() : URIS
+getOppositeNodes() : Nodes
#bind()
#unbind()
+destroy()

-title : String
-type : String
-min_cardinality : Integer
-max_cardinality : Integer
-node : Node
-links : Links

Role

«instantiate»

+create() : Node

NodeFactory

+getTitle()
+getType() : Role
+getURI() : URI
+getRoles() : Roles
+getOppositeURIs() : URIS
+getOppositeNodes() : Nodes
#bind()
#unbind()
+destroy()

-title : String
-type : String
-uri : URI
-roles : Roles

Node

«instantiate»

+create() : Link
LinkFactory

+getTitle() : String
+getType() : String
+getRoles() : Roles
+getOtherRoles()
+destroy()

-title : String
-type : String
-roles : Roles

Link

«use»
:no-3403

100 6 Design and Architecture

URN:NB
N:no-3403

URN:NBN
7 Application Issues

7.1 Distribution

The support for distribution in the DL-LinkService is highly flexible and can be
configured in many ways due to the use of distributed objects and the use of URIs to
reference information objects. The various axes of distribution are:

• Distribution of relationships and information. The service is detached from
the information object layer by the use of Uniform Resource Identifiers to
identify and address information objects. This inherently enables the interre-
lated information objects to be remote with respect to the service.

• Interrelated information objects can be distributed with respect to each other.
URIs identifies networked resources in a uniform way and thus inherently
supports interrelated information objects that reside on different systems and
machines.

• The relationship structure can be distributed. The use of a compound struc-
ture of distributed objects to represent relationship instances enables the rela-
tionship itself to be distributed across the network. This feature is an
important element because it facilitates federated and consistent link net-
works to be created.

• Multiple distinct relationship networks. Rather than using multiple deploy-
ment of the DL-LinkService to create a cooperative relationship network, it is
also possible to use multiple instances of the service to create multiple sepa-
rate relationship networks that e.g. can be simultaneously accessed by end-
users.

A distributed deployment of the service, along any of the above listed axes, is in the
DL-LinkService supported by realizing the object interfaces as a set of components.
Due to the transparent object references of CORBA an object needs to be served by
the same process as the factory that was used to create the object reference. This
:no-3403

102 7 Application Issues

URN:NB
inevitably requires that for instance nodes need to be served by the same process as
the node factory. This also guides the possible decomposition of the service into
deployable components, as illustrated in the UML component diagram of Figure
7.1. The node factory and node interfaces are realized by the node component, the
role factory and role interfaces are realized by the role component, and the link
factory and the link interfaces are realized by the link component. The type
component realizes only the TypeLookUp interface. The components are coupled as
illustrated by the dependency arrows.

These components can be used to create executables that fully or partial support
the interfaces of the service, or components can be used if the service is integrated
with other digital library software. The runtime realization of a relationship network
is independent of the component layer because of the location transparency of
distributed objects. The deployment diagram of Figure 7.2 shows an example
executable (DLLinkserver.exe) that materializes the node, role and link components
which is deployed on three hosts’ machines, whereas a single instance of the
TypeServer.exe that materializes the type component, is deployed on only a single
host. An example of the possible network of relationships that may emerge as
relationships are instantiated using the services of these three hosts is given in
Figure 7.3.

Figure 7.1: DL-LinkService components.

TypeComponent

TypeLookUp

LinkComponentRoleComponentNodeComponent

NodeFactory

Role

Node

RoleFactory LinkFactory

Link
N:no-3403

7.1 Distribution 103

URN:NBN
Figure 7.2: Deployment diagram.

Figure 7.3: Distributed network of relationships.

LinkComponentNodeComponent

Host 1 Host 2 Host 3

RoleComponent

DLLinkServer.exe

TypeComponent

TypeServer.exe

L LLLL

R R R RR R R R

N NN NN N

Host 1 Host 2 Host 3
:no-3403

104 7 Application Issues

URN:NB
7.2 Using CORBA

The main enabler for distribution in the DL-LinkService is the use of the CORBA
object architecture (Common Object Request Broker Architecture) described in
Chapter 2.4.6. The motivation for selecting the CORBA environment for
implementing the DL-LinkService can be summarized by the following:

• The use of objects to model and implement explicit relationships is an intui-
tive approach.

• The encapsulation of data and functionality gives a coherent solution for
users to access and navigate relationships.

• The location of an object in the network is transparent. All objects may poten-
tially be distributed with respect to each other, whereas they in a runtime
environment appear as local objects.

• An object-oriented solution enables an intuitive distribution of responsibility
across the objects and accordingly across the network.

• CORBA is a well established and mature environment for developing and
deploying distributed applications with well defined support for commonly
needed services.

• CORBA has an adequate and flexible support for issues like runtime manage-
ment of objects and object persistency.

7.3 Service Integration

The functionality and information7 that the DL-LinkService provides is not
intended to be a standalone application. Relationship information is rather useless
without access to the information objects the relationships relate. The integration
and deployment of the DL-LinkService in specific applications, however, is highly
dependent upon the general architecture of the overall digital library system it is a
part of.

A main motivation in the design and development of the DL-LinkService is to
meet the requirements for relationship support in a general way. Rather than
focusing on a specific application or particular digital library system, the service
tries to be generic. This requires, however, that it is possible to integrate the service
with other digital library service or to make use of the service in client applications.
Different integration scenarios will be discussed in the following subsections, and a
major distinction can be made between:

• Integration with the information object layer.
• Client-side integration at runtime.
N:no-3403

7.3 Service Integration 105

URN:NBN
7.3.1 Integration with Information Objects
Many different digital library research projects have explored specific information
objects models. A common denominator is that an information object is seen as
more than stream of binary information. Information needs to be supported by
object models that can represent the structure and complexity of compound
information and the behaviour that is associated with the information. The DL-
LinkService can be integrated with existing and future information object models in
various ways; either based on the loose coupling that the node interface provides or
by implementing a tighter coupling between information object and node when this
is possible.

Information objects that are based on the CORBA architecture can be tightly
integrated with the DL-LinkService by inheriting the Node interface. In this case,
the information object itself will provide the methods of the Node interface. The
only requirement for this solution is that the uri-attribute needs to be a reference to
the object itself to ensure interoperability with nodes that references external
information objects. This can be accomplished by e.g. using the ior or corbaname
URI schemes.

A different case is the deployment of the DL-LinkService with non-CORBA
information objects, but the service can still be integrated with the information
object layer in this scenario. The information object will in this case be a client with
respect to the node object, but can still embed a reference to the node in order to
support DL-LinkService aware functionality. This, however, requires that the
subsystem of the information object implements support for CORBA.

The above two examples are both illustrated in Figure 7.4. System 1 and System
2 implement different information object models, but they use the DL-LinkService
in an interoperable way.

The potential advantage of integrating the DL-LinkService with the information
object layer is to support the use of the service in a way that is transparent for end-
users. Available relationships can easily be accessed by the information object and
dynamically be integrated into the content on the server side. If the information
object disseminates its content as HTML document, the relationships can be
transformed to embedded HTML links.

Role and link objects are not included in this illustration and may transparently
exist on both systems, on only one system, or on a third system externally to the
system that implements the information objects.

Both solutions assume that the information object is a runtime entity with the
ability to integrate relationships into the information it disseminates. Most
information objects that exist, however, are still static structures, for instance files
that are stored in file systems and retrieved from a web server.
:no-3403

106 7 Application Issues

URN:NB
7.3.2 Client-side Integration
The DL-LinkService basically supports the integration between information objects
and relationships by the use of a uri attribute on the node. This attribute holds a
reference from the node and to the information object. This design is chosen in
order not to lock the service to specific document formats or information systems,
but it also introduced the problem of how to integrate relationships and information
objects at run time. The previous section described how the service can be
integrated with specific information object models, and a different scenario is the
use of the service when the connection from information object and to the node
needs to be is discovered at runtime. This is a necessary solution in all deployments
where the information repository and the DL-LinkService are separate services.

If an application is processing an information object and wants to know which
relationships exist for this information object, it needs somewhere to look in order
to find available nodes. This problem must be solved by using some kind of registry
that maps from the information object identifier and to the node object that
represents the information object in the relationship network.

The CORBA architecture specifies two different ways of discovering objects at
runtime. The first is the CORBA Naming Service which is used to associate and
resolve human readable names to objects [79]. A name in CORBA can be
hierarchical and is somewhat comparable to the use of directories and file names in
file systems. A set of simple names can be associated to a named context which
again can be associated to another context to form a hierarchical name. Contexts are

Figure 7.4: Integration with information objects.

System 1 System 2

Node

CORBA_InformationObjectOther_InformationObject

Node2::InfObj2Node1InfObject1

«instance» «instance»

«instance»

infobj node node node infobj
N:no-3403

7.3 Service Integration 107

URN:NBN
implemented as objects, which mean that the hierarchy of contexts may be
distributed over different instances of the naming service.

The second service defined by OMG is the Trading Object Service which is used
to discover objects based on features [78]. The Trading Object Service is a directory
where an object reference can be registered along with properties that describe this
object. Object traders can be linked to form a distributed solution for object trading.

Both services can be used to support the runtime discovery of node objects. The
URI of a node object can be registered as the CORBA name of this object. This
solution enables clients to retrieve the appropriate node for a specific URI. This
solution, however, does not include the ability to find object references that for
instance are registered under different contexts; and for that reason this is not a very
convenient solution. A better solution is to use the Trading Object Service to
support the runtime discovery of objects. A node object can be registered with the
URI of the information object it represents as a property. Applications that need to
resolve a URI into a node object can then query the Trading Object Service and
retrieve the node object reference. Both solutions, however, do require that node
objects are registered when they are created, either by the node factory or by the
client.

Other directory and naming services may be appropriate for this purpose as well,
including LDAP [229] and the Handle System developed by CNRI [189, 190]. The
use of naming systems allow for direct translation from an identifier and to the
object reference, whereas directory services allow for looking up references based
on features, where one feature needs to be the URI.

Figure 7.5: Runtime integration.

DL-LinkService

Integrated Application

Repository

Trading Object Service
:no-3403

108 7 Application Issues

URN:NB
A UML diagram that shows the dependencies for applications with runtime
integration is shown in Figure 7.5. The integrating application is depending on both
a digital library repository, the DL-LinkService and the Trading Object Service.
There is no dependency, however, between the repository and DL-LinkService in
this case.

Accessing the Trading Object Service (or any other directory service) may be an
operation that is performed once per session, or it can be an operation that needs to
be executed more often. Applications that merely follow the relationships that are
available from the DL-LinkService initially need to find a starting point in the
relationships network. All other nodes and information objects can be accessed by
using the references they discover when they traverse the relationship network. In
case the application’s retrieval of information objects is following other control
paths, the application will have to look up nodes more often; the worst case would
be the need to look up all nodes for all documents.

A directory may serve other purposes in applications as well. Hypermedia links
are often relationships from one document fragment to another document fragment;
like the link between a term and its definition. A node may be used for each
fragment, leading to a set of nodes that are associated with the same parent
information object. A user that views a hypermedia document often needs to
retrieve all the nodes associated with the hypermedia object. This can be achieved
by using a richer description of the node in the directory; like what parent document
it is associated with. This can enable applications to retrieve a set of nodes for a
specific document, rather than a single node for a fragment of the document.

7.4 Import and Export

A main motivation for the DL-LinkService is to serve as a tool for representing and
processing relationships. Relationship information is, however, served in many
ways in digital library systems and a certain level of interoperability with
descriptive solutions is required. The most relevant formats to consider
interoperability with are RDF, XLink and Topic Maps.

Interoperability with descriptive solutions implies the capability to import
relationship statements from a specific format and the capability to export a
relationship expressed in the DL-LinkService to a specific format.
The mapping between a binary 1:1 relationship as it is represented in the
DL-LinkService and the more logical levels of respectively RDF, Topic Maps and
XLink is exemplified in Figure 7.6.
N:no-3403

7.4 Import and Export 109

URN:NBN

This mapping shows that the objects of the DL-LinkService have corresponding
counterparts in both XLink and Topic Maps. This is because both these formats
define the possibility to specify multi-way semantics through the use of roles. This
is not the case for RDF because it is based on directed labelled graphs where the
nodes in a statement fulfil different roles; one is the subject and the other is the
object. Interoperability with RDF in this matter, however, can be achieved by
relying on an available ontology that can provide the required semantic conversions,
such as a DAML/OIL based typology [114] or the DL-LinkService’s own
typeservice and typology.
Additional aspects of interoperability include:

• Higher degree relationships.
• Support for multiple participation and endpoints that reflect collections.
• Resource identification.
• Type scheme interoperability.
• Format specific features.

The DL-LinkService supports relationships of higher degree, which means that the
number of nodes participating in a relationship may be greater than two. This is well
supported by XLink and Topic Maps, but RDF is based on the use of triples, and
each statement will only contain one subject and one object. Any higher degree
relationship may be transformed into a set of triples, and a certain degree of
interoperability can be achieved by converting to and from such representations.

RDF, XLink and Topic Maps all support unconstrained participation. Any
resource can participate in any number of relationships, and the participation in

DL-LinkService RDF XLink Topic Maps

Node Subject Locator/resource Topic

Role

Property

Role of locator/
resource

Topic’s role in
the association

Link Arc Association

Role Role of locator/
resource

Topic’s role in
the association

Node Object Locator/resource Topic

Figure 7.6: Mapping to various descriptive formats.
:no-3403

110 7 Application Issues

URN:NB
various relationships can be distributed across different statements even though the
participation semantics are equal. The DL-LinkService aggregates the participation
within one distinct occurrence of a role object. This, however, is more a processing
issue, and interoperability simply requires the proper transformation.

The support for aggregated endpoints can be found in both RDF and Topic
Maps. An RDF subject or object may be an aggregate in the form of a list, bag or set
of alternatives. Topic Maps allows for multiple topics to be enclosed within the
same role. The DL-LinkService does not allow multiple nodes to be defined as the
endpoint of a relationship, but a similar solution can be supported by defining a
single node that aggregates other nodes by the use of relationships.

The mapping between the entities of the DL-LinkService and the various entities
that are related in RDF, XLink and Topic Maps are rather straightforward. They all
use URIs to identify the entities of a relationship, with the exception that XLink can
have local resources as the participant of a link by means of special subelements that
appear inside the extended link.

All formats support typing conventions that are compatible to the DL-
LinkService. RDF and XLink both define the use of URIs for type identifiers,
whereas Topic Maps uses topic identifiers. However, in the XTM format, a
corresponding solution is used, since topics types are identified by topic references
of subject indicators that can be expressed as URIs. The use of the same type of
identifiers, however, does not imply actual interoperability for the type definitions.
The possibility of dealing with type identifiers should however yield a possible
interoperability, but the main problem will be the mapping between type schemes.
One specific problem is the support for cardinality constraints that are part of the
typing scheme of the DL-LinkService. This, however, can be solved by applying the
most unconstrained cardinality constraints for “foreign” types.

A different problem is the more exclusive features that are found in the
descriptive solutions. This is particularly a problem for Topic Maps and XLink, as
they contain many elements with very specific intentions. The use of titles can be
found in both of these and is supported by the DL-LinkService as well, but
examples like scope and the various names defined in Topic Maps is not supported.
A comparable problem is found in XLink where applications of XLink may define
subelements and additional attributes.

The problems discussed above illustrates that full interoperability between the
DL-LinkService and various other relevant formats only to a certain degree is
possible. The relationships represented in the DL-LinkService can be transformed
and exported to any of these formats, and the import of the basic information stored
in these formats is considered to be possible. Full import and representation of all
the information in any XLink or Topic Maps is not supported, however, since these
formats may contain additional information not included in the DL-LinkService
model. Import of RDF additionally requires an ontology that can be used to infer
unknown typenames based on the available property name.
N:no-3403

7.5 Identifiers and Uniqueness 111

URN:NBN
7.5 Identifiers and Uniqueness

7.5.1 Information Objects
The information objects of digital libraries are identified using many different
identifier schemes and accessed using a range of different access methods. The use
of a node object that merely references the information object it represents, is a
generic solution that can easily be used to relate information that resides in different
systems independent of the conventions that are used to store, access and identify
this information. This merely requires that information objects can be identified in a
uniform way, and the URI framework is a convenient way to deal with this
addressing and identification diversity in a uniform way [13].

The generic URI scheme defines a syntax for identifiers that associates a scheme
name to an identifier. This enables different schemes to be dealt with in a uniform
way without explicitly stating how. The burden of interpreting the URI is delegated
to the clients that retrieve this value who may or may not have knowledge of how to
interpret the scheme.

At current the most frequent use of URIs is to encode the information that is
necessary to retrieve documents by the use of HTTP and other protocols that
mainstream browsers support. Other location based URI schemes have been
developed to encode the communication identifiers of other systems. This includes
the schemes for encoding stringified CORBA object references (ior) and CORBA
names (corbaname).

 URIs are defined as identifiers for both physical and abstract resources, and
anything that can be identified can essentially be encoded as a URI if there is a
scheme name defined for this purpose. As such, the use of URIs is not limited to
identify only information objects, it can – at least in theory – be used to identify
abstract entities as well. The main intended purpose of the DL-LinkService is to
relate information objects, but in certain applications the URI attribute can be used
to reference abstract entities as well; as a subject or a person. The use of URIs to
identify conceptual units and objects inaccessible over the network is still an open
issue [136], but may nevertheless be considered a viable solution based on current
practice in different areas. Many recent developments in computer science
presupposes the ability to deal with abstract objects using a globally valid
identification system, and the use of the URI for this purpose is the most adaptive
solution.

7.5.2 CORBA Objects
The DL-LinkService is depending on persistent references to enable referential
integrity identity within the relationship network, and additionally requires that each
:no-3403

112 7 Application Issues

URN:NB
object has a unique identity within the network. CORBA supports persistent
references but these references are basically communication identifiers and cannot
be used for instance to compare objects.

Identifying objects by their value is not an option for the DL-LinkService
because the state of an object is not sufficient to serve as a reliable and persistent
identifier. The solution suggested in this work is to add a specific application
defined property that holds a value that is guaranteed to be unique.

The CORBA Relationship Service addresses the issue of object identity by
specifying the CosObjectIdentity module [77]. This module defines an attribute for
a random numeric identifier and specifies a method that can be used for comparison
of two objects. This, however, is a weak solution to identity. The value of this
attribute is not guaranteed to be unique; that is, another object can return the same
value. If objects return different identifiers, clients can determine that the two
identifiable objects are not identical. An additional cost comes from an evenly
randomized generation of numbers, which requires a centralized and shared
generator of random numbers.

A better solution to this problem is to use Universal Unique Identifiers (UUID)
[124, 137, 195]. A UUID is an identifier generated and represented according to a
scheme that ensures uniqueness across both space and time. UUIDs are fast to
generate and can efficiently be compared by arithmetically comparing the bits of
two UUIDs in the order of significance.

In the DL-LinkService, the node, role and link objects are all equipped with a
UUID. This is achieved by defining a UUIDObject interfaces which is inherited by
the node, role and link interfaces as illustrated in Figure 7.7. The UUIDObject
interface simply defines the read-only uuid attribute which holds the UUID as a
sequence of octets. The UUID is used for different purposes; the most important is
that it enables comparison of two objects to determine whether they are equal or not.

7.5.3 Link Uniqueness
Consistency in the DL-LinkService involves preventing that duplicate link objects
are created. The link factory may not have knowledge of already existing
relationships, and if a new link duplicates an already existing Link, this causes a
redundancy in the overall relationship network that may lead to errors.

If the DL-LinkService is running as a standalone application, without any
depending external instances, this can be solved by keeping track of the
relationships that already have been created. Whenever a link factory is requested to
create a new link, identified by a set of roles, it can easily verify whether this link
already exists or not. In a distributed environment where multiple link factories may
exist, this solution is unfortunately not applicable. A specific instance of the DL-
N:no-3403

7.5 Identifiers and Uniqueness 113

URN:NBN
LinkService will only have partial knowledge of all the link objects that exist in the
overall relationship network

This must be solved by relying on the role objects that are passed in the create
request. A role object will have knowledge of what already relationship instances it
participates in. A uniqueness method implemented in the link factory is used to
query one of these role objects for the already existing link objects it is associated
to. This information can then be used to determine whether the requested link object
is unique or not. It is sufficient to query a random role object for link objects,
because the criterion for a uniqueness error is that all of the roles in the set are equal
to all of the roles in an already existing link object. A simplified presentation of this
procedure is presented in Figure 7.8. The actual comparison is based on the UUID
that each object is assigned.

This process, however, may severely affect the performance of the DL-
LinkService if it is conducted using remote method invocations directly. If a role is
already participating in 1000 relationship instances, then the process of testing for
uniqueness by this method will cause a very large number of remote method
invocations. The problem can fortunately be solved by relying on cached
information on role objects. The implementation of this solution is described in
Chapter 8.3.

Figure 7.7: The UUID object.

* *1 *

RoleNode Link

+getUUID() : UUID
UUIDObject
:no-3403

114 7 Application Issues

URN:NB
7.6 Relationship Attributes

Relationships sometimes involve attributes. Relationship attributes may be used for
different reasons. Sometimes they are distinct features of the relationship, as the
case is if we define relationships that resemble entities or events. A relationship that
is used to express the marriage between John and Mary may include a date for when
this marriage started – and maybe even a date for when the marriage ended if they
have divorced. A major distinction that can be made between different categories of
relationship attributes is whether they are:

• Cardinal attributes
• Non-cardinal attributes

Cardinal attributes are crucial to the identity of a relationship instance and implies
that the value of the relationship attribute is an integral part of the relationship. Two
relationships that are equal with respect to the participating entities can be
considered as distinctively different relationships, because their attribute values
differ. Consider again the marriage relationship between Mary and John. If they
divorce and marry again – which occasionally occurs – an additional marriage
between these two persons expresses a different marriage with respect to the date
they marry.

Non-cardinal attributes refers to a different situation. Relationships may hold
values that do not contribute to the identity of the relationship. Examples are the use
of values to indicate the strength of similarities between two documents, or the use
of values to indicate the popularity of relationship instances in terms of how often
they have been navigated. In hypermedia applications, the use of link attributes
occasionally is used to express various things like the originator of a link, or they
may contain link annotations added by users of the hypermedia application. The
reification of relationships into manageable concrete objects actually invites

Figure 7.8: Testing for uniqueness.

Link create(Role[] roles) throws DuplicateLink {
Link[] links = roles[0].getLinks()
for (i = 0; i <existingLinks.length; i ++){

boolean duplicate = compare(roles, links[i].getRoles());
if duplicate {

throw new DuplicateLink();
}

}
}

N:no-3403

7.6 Relationship Attributes 115

URN:NBN
exploration of the use of link annotations and other attributes. If the relationship is
an identifiable resource, it is natural to assume that it can be enriched with
additional information.

The support for relationship attributes is a typical “per application” requirement
with respect to the kind of attributes to support and their purpose. For the DL-
LinkService this needs to be solved in an application independent way, in order not
to lock the DL-LinkService to a specific application. Additionally, the distributed
environment further complicates this. The support for attributes needs to be flexible
due to the distributed and cooperative environment. The same relationships may
serve different purposes for different users, or different relationships may have
different sets of relationship attributes.

This work suggests a solution based on different, but complimentary ways to
implement support for relationship attributes. The first is the use of a specifically
designed object to hold both cardinal attributes and other attributes. The second is
the use of the CORBA Property Service, and the last is to use the DL-LinkService by
treating a link object as an information object.

The design of a data structure for cardinal attributes and non-cardinal attributes
must be a flexible and generic solution that provides for any kind of single or
composite value. Flexible support for arbitrary values can be solved by many
techniques, including the use of XML encoded data or a variable length list of
named attribute-value pairs. CORBA defines the universal type Any that can hold a
value of arbitrary IDL type. The use of the Any data type combined with the
DynamicAny module of CORBA is a convenient way to deal with data structures in
a dynamic and general purpose way.

If the values of a relationship are cardinal, it means that they are significant and
should be taken into account when comparing link objects for uniqueness. This can
be illustrated by, once more, referring to the example of John and Mary that are
married twice. If expressed using the DL-LinkService’s construct of role and link
objects, this situation implies that two instances of link objects between these
entities should be allowed; if and only if their date of marriage is different. This
means that the support for attribute values must be implemented by a data structure
that contains information about whether an attribute is a cardinal value or not. A
possible solution is illustrated in Figure 7.9. This method may solve most problems
that may occur; cardinal data types can be extracted and compared both by their
type code and their value. The method does not, however, guarantee that data
structures that express the same information in different ways are discovered. The
proposed data type can be used in the declaration of an additional attribute on the
link interface. The use of such an attribute should be restricted to relationship
attributes that are known at creation time, and the attribute should be read-only, as
:no-3403

116 7 Application Issues

URN:NB
the altering of such data may cause unpredictable behaviour when it comes to
uniqueness of relationship instances.

The support for enriching relationships with non cardinal attributes is an easier
solution to provide for. The first solution is to use the DL-LinkService itself. By
creating a node that represents a link object these objects themselves may be
allowed to participate in relationships as entities, e.g. by having a relationship to an
annotation that is stored elsewhere. The usability of this solution, however, is
questionable if the information is just a set of data values or the information is
outside the scope of proper maintenance etc.

A far better solution that can serve a broad range of usages is to implement
support for the CORBA Property Service [84]. This service provides the ability to
dynamically associate properties with objects. The properties of the Property
Service are typed, named values that exist outside the CORBA type system. The
server side requirement is that the distributed object must implement the interfaces
defined in the Property Service. Clients can then create and manage properties using
the interfaces that this service defines. This solution should be sufficient for the
many specific purpose uses of link properties that for instance are found in
hypermedia applications. This feature may equally well be applied to role and node
objects in order to implement an even more expressive solution for user enrichment
of relationships.

7.7 Performance and Scalability

The development of distributed object applications requires that the design and
implementation considers the infrastructure the application is using. An important
characteristic of distributed applications is the existence of network communication
that severely constrains the efficiency of method invocations, both in terms of
capacity and speed:

Figure 7.9: Relationship attributes.

struct RelAttributeType{
boolean cardinal;
any attribute;

}

sequence<RelAttributeType> Attributes:
N:no-3403

7.7 Performance and Scalability 117

URN:NBN
• Latency is the minimum time cost of sending any message [93], and is a func-
tion of both the physical characteristics of the circuit as well as intermediate
devices involved in the transfer of messages, such as routers.

• Bandwidth is a capacity measure of the amount of data that can be transferred
during a period of time; often measured as megabits per second.

• Marshalling rate is the additional cost of transmitting and receiving parame-
ters (data) over the network. This is caused by the middleware transformation
between the data structures of the application and the message format of the
network communication.

The difference between the speed of local calls and network calls is highly
significant. A remote call is several orders of magnitude slower than a local call. An
application developed in Java or C++ can easily achieve a number of calls per
second in the order of millions. The call latency over a network connection is
significantly slower, and additionally it will be different depending on the physical
distance and routing between the network nodes. Some examples of network
latency are illustrated in the table of Figure 7.10. The values are obtained by using
the UNIX ping utility to obtain the roundtrip times for datagrams from a computer
on the network of the Norwegian University of Science and Technology in
Trondheim, Norway to various web hosts around the world. The performance on the
local network is measured using the netperf1 utility. The table illustrates that
although all hosts are remote, some hosts are more remote than others. The actual
call latency, as it is perceived at the application level, is the sum of the network
latency, the marshalling rate and the bandwidth, and it will vary among different
configurations of network, hardware, operating system and software. The basic
performance of remote CORBA invocations in the specific setup that is further
described in Chapter 8, shows a baseline performance of 4 milliseconds. This test
was performed on computers communicating through a local network connection,
and in this environment the middleware layer is a significant bottleneck since the
actual network latency is approximately 0.2 milliseconds. In the context of global
computing, however, the performance of the ORB is insignificant because the main
bottleneck will be the network latency.

With a basic call latency of 2 milliseconds, a distributed application on a local
network will be able to perform 500 invocations per second. A worst case scenario
for wide-area computing yields only 2 invocations per second, based on the table
above. Both numbers are significantly different from a local application that easily
can achieve a million or more calls per second.

1. http://www.netperf.org/
:no-3403

118 7 Application Issues

URN:NB
Techniques for improving performance and scalability of distributed applications
can be categorized as either design level or implementation level. At the design
level, the performance of a CORBA application can be addressed by designing
objects and object interactions in such a way that the number of method invocations
is reduced [25, 93, 184]. This can be achieved by:

• Coarse grained object models. A distinction can be made between coarse-
grained and fine-grained object models. Object systems that consist of a large
set of interdependent objects where each holds a limited set of attributes, can
be considered as fine-grained object models. Interacting with fine-grained
object models by, remote method invocations, can result in a slow system. By
reducing the granularity of the object model and representing a higher level
abstraction of the resource, a coarser object model can be achieved that may
involve a simpler and more efficient invocation pattern. A coarser grained
model, however, may conflict with the general design if the model cannot be
generalized without losing important features.

• Fat operations. The use of fat operations is another way to reduce the number
of invocations required to perform a task. Rather than accessing the state of
an object using a set of methods that each returns a specific property, the use

Target host name Institution and geographical location Ping result

Local 100Mb network 0,2 ms

www.uio.no University of Oslo,
Oslo, Norway

7 ms.

www.su.se Stockholms Universitet,
Stockholm, Sweden

15 ms.

www.uni-frankfurt.de Johann Wolfgang Goethe-Universität
Frankfurt am Main, Germany

43 ms.

www.cam.ac.u University of Cambridge,
Cambridge, UK

54 ms.

www.mit.edu Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA

127 ms.

www.stanford.edu Stanford University
Stanford, California, US

186 ms.

www.unisa.ac.za University of South Africa,
Pretoria, South Africa

459 ms.

Figure 7.10: Ping response time.
N:no-3403

7.7 Performance and Scalability 119

URN:NBN
of fat operations implies that the full state of an object is retrieved using a
single method that returns a complex value. This approach will reduce the
overall number of operations required, but may introduce overhead by
passing redundant data.

• Objects as values. Not all objects implement functionality, and what initially
is considered an object can sometimes equally well be specified as a complex
data structure without embedded functionality. This implies that the client
retrieves the data structure and can access and manipulate its data values
locally rather than remotely. An extension to this approach is the CORBA
support for objects as values – valuetypes – which is a mechanism for
sending a copy of the object to the client. This implies that the client can
access and manipulate the object locally. A main limitation of both solutions
is that changes to the local state are not reflected on the remote object.

Efficiency improving techniques at the implementation level are techniques that can
be deployed without changing the general object model and invocation pattern of
the design. These include caching mechanisms and other run-time improvements at
the ORB level, including the performance of the ORB implementation itself:

• Caching can be used to improve the scalability, performance and predictabil-
ity of distributed systems and serves the same purpose for distributed object
applications. By caching, the state of the remote object is transparently stored
in a cache local to the client. Subsequent calls to the same remote object are
solved by retrieving the value from the local cache rather than from the actual
remote object. Main problems in caching are the efficient implementation of
a caching mechanism and the issue of maintaining a local state that is syn-
chronized with the actual state of the remote object. Solutions for caching dis-
tributed objects in the CORBA environment are reported in several research
papers [38, 65, 193, 194, 205], but are not yet available as commercial prod-
ucts.

• Local invocation on local objects. CORBA enforces network transparency.
At the application level, on both server and clients, the application does not
know whether the object is remote or located within the same memory space
– in the same process. The request/response processing of a method through
the ORB is far more expensive compared to local calls, and the performance
of calls between same process objects can significantly be improved if such
objects are enabled to communicate more directly. This feature can be found
in many ORB implementations and will significantly improve the communi-
cation between objects that reside in the same address space. This is, of
course, only supported for objects that are local with respect to each other.
:no-3403

120 7 Application Issues

URN:NB
Nevertheless, it is a relevant feature, e.g. for applications with chained
method invocations on the server side.

• Iterators to implement predictable response time for variable sized data
structures. As a message increases in size the response time will increase due
to the bandwidth limitations and the required marshalling. If the message
contains data structures that are of a variable size, like lists of strings or docu-
ments passed as octet sequences, this may result in unpredictable behaviour.
In such cases the use of the iterator pattern is a commonly used technique.
Rather than retrieving a list of unpredictable size, the client of the invocation
can retrieve an iterator that is used to sequential retrieve a limited set of list
members. This does not improve the overall performance of retrieving and
sending large data structures, but it can be used to establish a more predicta-
ble behaviour of applications. The client may stop iterating a data structure
when the relevant information is found, or it may stop iterating the data for
other reasons.

The DL-LinkService implements a fine grained and highly coupled object model,
and the problem of performance and scalability is inherent in the initial design as it
is laid out in Figure 6.8. This might imply problems in performance, and this is
addressed by the use of fat operations and a caching scheme that is described in
Chapter 8.2.

7.8 Transactions and Concurrency

Transactions and concurrency are well established fields and are widely supported
by many existing systems, including data-oriented systems and process oriented
systems. The purpose of transactions is to group a set of operations into one logical
execution unit called a transaction, to enforce ACID properties – Atomicity,
Consistency, Isolation and Durability [192]. Concurrency control is the ability to
cope with conflicts between operations in different transactions on the same data
[41].

The support for transactions and concurrency is equally important in distributed
object applications as it is for other applications. If the system allows a set of read/
write operations to be executed that may leave the system in an inconsistent state if
one operation fails, then the system requires support for transaction. If the system
allows for concurrent, possibly conflicting access to its data, then the system
requires support for concurrency.

In the CORBA architecture transactional support is through the CORBA Object
Transaction Service [85], and concurrency is supported by the CORBA
Concurrency Service [75].
N:no-3403

7.9 Security 121

URN:NBN
Support for transactions and concurrency are relevant features of the DL-
LinkService due to the design of relationships as a compound structure. The
creation or deletion of a relationship instance is a compound task that inevitably
requires a minimum level of support for transactions when the link object is created
or deleted:

• The creation and deletion of node objects are atomic operations that do not
leave the system in an inconsistent state in case of failure.

• The creation and deletion of role objects depends on the success or failure of
the bind/unbind operations on the corresponding Node. A well implemented
system will, however, catch the exceptions that are thrown in case of bind and
unbind failure, and the use of further transactional control is not necessary.

• The creation and deletion of link objects depends on the successful invocation
of the bind/unbind methods on the set of role objects that are connected to the
link object, and needs to be executed as a transaction. Transactional support
for the creation has to be implemented in the link factory, whereas transac-
tional support for the deletion of a link can be supported in the implementa-
tion of link objects.

• Clients creating relationships. The client task of creating or deleting all the
various parts of a relationship instance may not require transactional execu-
tion depending on what is perceived as an inconsistent system. If the system
allows for “empty” roles and nodes to exist, and the link factory and link
objects implement support for transactions as described above, then there is
no further need for transactions because the clients will not be able to intro-
duce inconsistency. If a specific application of the DL-LinkService e.g.
requires constraints like existence dependency expressed as the cardinality
ratio 1:1, then this needs to be solved through the use of transactions. An
example of this is illustrated in the listing of Figure 7.11.

Support for transactions and concurrency is an implementation issue that needs no
further considerations in the design of the DL-LinkService. Implementations of the
CORBA Transaction and Concurrency services are available from different
commercial vendors and as open source freeware and can easily be implemented
into the service.

7.9 Security

Designing and implementing any kind of vulnerable information system, distributed
or not, inevitably requires security to be considered. Security is in general a
complex issue involving both the definition of security policies – the general
:no-3403

122 7 Application Issues

URN:NB
security requirements – and the implementation of these policies using security
mechanisms.

Security is the protection of assets. Assets can be physical components, like
personal computers, or they can be intangible, like information and usage of a
resource [121]. The OSI security architecture [158, 106] distinguishes between five
classes of security services that address different aspects of a distributed system:

• Authentication services
• Access control services
• Data confidentiality
• Data integrity
• Non-repudiation services

A typical scenario in a client/server environment is that a user (principal) identifies
himself to the server by a user name and then authenticates this identity by the use
of a password. A protected network link, for instance encrypted, is then established
to ensure data confidentiality and data integrity of the communication. An access
control service is used to decide whether the client has the proper rights
(credentials) to invoke the requested method or retrieve the requested information.
The non-repudiation service may be a log that records and stores invocations to
document the events of the session.

Security for distributed object systems is just as important for distributed object
applications as it is for traditional client/server applications. The nature of
distributed object applications makes security a complex issue for different reasons:

• An application may involve numerous distinct objects. The number of objects
in a distributed object application may range from a single object to an unlim-
ited number of objects.

Figure 7.11: Transaction.

begin transaction

nodeA = nodefactory.create(uriA)
nodeB = nodefactory.create(uriB)
roles[0] = rolefactory.create(nodeA, roletypeA)
roles[1] = rolefactory.create(nodeB, roletypeB)
link = linkfactory.create(roles, linktype)

end transaction
N:no-3403

7.9 Security 123

URN:NBN
• Objects may switch between the role of a server and client. A specific object
may play the role of a server for one request and play the role of a client when
it invokes methods on other objects.

• Method invocations may be chained. When a client invokes a method on a
remote object this may include a chain of remote invocations to be called on
other objects in order for the servant objects to process the request from the
client.

• Different granularity of access control. Some applications can use a peer to
peer access control, others may require a per object access control or a per
method access control.

For a local systems running on a single computer or a distributed system on a closed
network, the surrounding environment may provide for the needed security.
Systems that rely on the use of open networks to share resources, like the Internet,
do however require security in order not to expose the assets to unrestricted access
and other threats.

The security requirements of the DL-LinkService are highly dependent on the
environment it will be deployed in. Security is an implementation and runtime issue
and should not affect the design of a distributed application. The most relevant and
complex security requirements are concerned with access control. Some security
scenarios that illustrate alternative security policies to deploy with the DL-
LinkService are:

• Unrestricted access to the service. The DL-LinkService may not require any
implemented security mechanisms if the service is deployed in a closed envi-
ronment where all clients are trusted and reliable and for that reason do not
represent any threat.

• Access control to the service in general. This policy implies that a client may
be granted access to all methods on all objects – or not.

• To prevent unauthorized access to specific objects. This policy requires that
the server side of the invocation is able to control access on a per object basis.
All users may be granted access to node, role and link objects in order to
allow the navigation of an already existing relationship. Additionally, other
users may be allowed to create objects by being granted access to the factory
objects.

• To prevent unauthorized access to specific methods. This policy requires that
the server side is able to control access on a per method basis. All users may
be granted access to read-only operations on the node, role and link objects in
order to allow the navigation of an already existing relationship. A limited set
of trusted users may additionally be granted access to those methods that are
:no-3403

124 7 Application Issues

URN:NB
used to create or delete a relationship instance. This is, in fact, a more rele-
vant policy than the per object policy described above.

• To constrain the invocation of chained method invocations. Method invoca-
tions may be chained, and this may require the support for credential delega-
tion. An example of this is the creation of a role object in the DL-
LinkService. If a client is invoking the create method on a role factory this
causes the factory object to invoke the bind operation on the specified node
object. Whether or not the node should grant access to this method can be
depending on the factory objects credentials, the client credentials or the cre-
dentials of both. The latter two solutions are depending on the support for a
credential delegation mechanism.

One feature of the DL-LinkService that needs special attention is the bind and
unbind methods on the node and role objects. These methods are used to establish
and remove the two-way references that exist between objects, and the proper use of
these is particularly important to prevent disruption of the overall relationship
network. This inherently imposes the requirement that only the proper clients
should be allowed to call the bind and unbind methods. In the class diagram of the
service this is, for convenient representation, specified as a method that has limited
visibility1. CORBA does not, however, have support for restricting access to objects
like what can be found in programming languages like Java and C++. This issue
needs to be solved by the use of security mechanisms.

Security for CORBA distributed objects is supported by the CORBA Security
Service. This service defines the core security facilities and interfaces required to
ensure a reasonable level of security of a CORBA-compliant system as a whole
[81]. The implementation of access control into an application can be either
security-unaware or security-aware [121]. A security-unaware application deals
with access control in the ORB layer. In a security-aware application the credentials
are exposed to the application, and the application can enforce its own application-
specific access control policies.

An additional CORBA specification that deals with security is the Common
Secure Interoperability Specification (CSI) that defines the Security Attribute
Service protocol (SAS). The protocol provides client authentication, delegation, and
privilege functionality that may be applied to overcome corresponding deficiencies
in an underlying transport [82]. Finally, the specification of the Resource Access
Decision Facility (RAD) defines a mechanism for obtaining authorization decisions
and administrating access decision policies. This facility enables a common way for

1. In the UML terminology a visibility value of protected indicates that the given
element is visible outside its own namespace only to descendants of the name-
space [76].
N:no-3403

7.9 Security 125

URN:NBN
security-aware applications to request and receive an authorization decision [80].
The facility is intended to be used by security-aware applications.

Support for security in the DL-LinkService is an implementation issue and does
not need to be included in the design. Compared to the availability of the transaction
and concurrency service, the implementations of the complete security architecture
of CORBA is, at present time, sparser. This may be caused by the inherent
complexity of this architecture and the following costs in developing
implementations. Some implementations, however, are available. The support for
core level peer to peer security by the use of IIOP over Secure Socket Layer (SSL)
is, on the other hand, more widely supported.
:no-3403

126 7 Application Issues

URN:NB
N:no-3403

URN:NBN
8 Implementation and Testing

8.1 The Prototype Implementation

A prototype of the DL-LinkService is implemented as a part of this work. The
prototype is the main tool to verify that the proposed architecture is an applicable
solution, and this work attempts to achieve such verification by documenting that
the proposed solution:

• Can be implemented.
• Does not have severe performance or scalability problems.
• Can be used to solve a real world problem.

 The first two bulleted items are examined in this chapter by describing the
implementation of the service and the testing that has been performed. The latter
item is the topic of Chapter 9.

8.1.1 Supported Features
The developed prototype reflects the proposed solution by implementing the
functionality needed to verify the core features of the DL-LinkService architecture.
The prototype implements the following:

• The core object model of node, role and link objects and their corresponding
factory objects.

• A type service that serves type definitions.
• An XML based typology format for the definition of types.

The prototype implements only a subset of the features discussed in previous
sections. Certain features like support for transactions and security have not been
addressed because these are generic services that have been designed to work with
any CORBA distributed object application. Other features like the support for
relationship attributes by the use of the CORBA Property Service are not
:no-3403

128 8 Implementation and Testing

URN:NB
investigated, because they are regarded as extended features. A simple directory
lookup mechanism, however, is included in the prototype and is based on an ad hoc
solution for convenient reasons. It can be viewed as a simplified front end to other
lookup services.

The performance of the DL-LinkService is addressed in the implementation of
the service by the use of:

• Fat operations to delimit the number of required remote method invocations
to perform specific tasks.

• Role objects that cache information about the roles at the opposite end of a
relationship in order to reduce the need for chained method invocations.

8.1.2 Interface Definitions
The formal specification of the DL-LinkService is based on the use of the CORBA
Interface Definition Language. Design diagrams of earlier chapters have mainly
been used to present the actual objects involved, but the proper specification of the
service, as it is implemented in the prototype, is the IDL definitions listed in
Appendix A.2 and Appendix A.1.

The sole purpose of the Interface Definition Language is to allow object
interfaces to be defined in a way that is independent of particular programming
languages. It is a declarative language for specifying interfaces and types and can
not be used to define application behaviour. An interface is the object’s contract, it
defines the object’s method signatures; the name of the methods and the parameter
types of the methods.

The DL-LinkService is specified as a set of IDL modules that together makes up
the formal description of the DL-LinkService. The module construct of IDL is a
convenient way to group logically related interfaces within a common namespace.
The DL-LinkService is defined using two modules:

• The Typology module is used for the interfaces and data structures that are
defined for the type system.

• The LinkService module defines the node, role and link interfaces and their
corresponding factories as well as other related data types.

This does not directly reflect the possible layout of runtime components, but is
convenient to avoid an unnecessary use of namespaces and redeclarations that are
caused by the coupling between these interfaces. The prototype additionally
includes a node lookup module which simply defines an ad hoc directory service.
This is kept as a separate module since it is not considered to be a part of the service
and is not included in the documentation of the service.
N:no-3403

8.1 The Prototype Implementation 129

URN:NBN
Each module consists of a set of definitions that declares:
• Type definitions that define application dependent compound data types that

are used across several interfaces. Certain data types are mere redefinitions of
basic types to signal a stricter semantics for the data type.

• Interfaces definitions that define the object types of the DL-LinkService.
• Attributes definitions. Attributes are used to define only readable attributes.

Such attributes are converted to get methods by the IDL compiler.
• Operation definitions that define the name of the method and its signature in

terms of what attributes it accepts and the direction these attributes are
passed.

• Exceptions are declared for certain operations and are used to exit from erro-
neous situations, e.g. to signal that an operation is not carried out.

IDL definitions are the initial starting point in the implementation of all CORBA
applications. The file or set of files that are containing interface and other type
definitions are used as input to an IDL compiler that generates source code in the
form of stub and skeleton code.

• The stub code is the client side implementation of a remote object reference –
the local object through which the clients make requests. Often this is referred
to as a proxy object, since the stub is the client side surrogate for the real
(remote) object. Stub objects appear as ordinary objects that the client can
invoke methods on – in the same manner as methods on local objects are
invoked. The actual use of a remote object is transparent, and there is nothing
for the engineer to implement in the stub code.

• The skeleton code is the server side equivalent of the stub. The skeleton code
is the basis for the implementation of the behaviour of objects. The task of
implementing object behaviour is merely a question of implementing the
behaviour of the methods defined on the interfaces. An actual implementation
instance of a CORBA object is often referred to as a servant, and the imple-
mentation of applications that serves object servants often has to have consid-
ered other issues like the runtime management of servants and object
persistency.
:no-3403

130 8 Implementation and Testing

URN:NB
8.1.3 Implementation Issues
The implementation of the prototype DL-LinkService included the following tasks:

• Implementing object behaviour.
• Implementing support for persistent objects.
• Implementing run-time management of servants.

The implemented behaviour of objects basically followed the design that is
described in Chapter 6. Additional behaviour and responsibilities are introduced by
the caching scheme as described in Chapter 8.2. The implemented support for
persistent state and run-time management of servants is described in the following
sections.
The DL-LinkService prototype is implemented in Java for various pragmatic
reasons:

• Java produces platform independent byte code, and the same software can be
run on different platforms without having to be recompiled.

• Java natively supports garbage collection that recycles unused objects in
order to free the memory they occupy.

• Java has a well documented and broad support for various basic level needs
like string processing, dynamic arrays, etc. There are a great number of com-
ponents available for additionally needed functionality. One such component
that is used in the prototype is the Java UUID Generator (JUG)1.

• Java applications can easily be integrated with database back-ends through
the use of the Java Database Connectivity API (JDBC).

Other programming languages may to some degree produce better performing
executables than Java. The efficiency of the internal within-servant processing,
however, is not an important feature for the DL-LinkService. The major problem in
many distributed object applications is the invocation pattern, rather than the
internal performance of methods.

When using an object-oriented programming language in the development of
distributed objects, implementers can choose between inheriting the generated
skeleton classes when implementing the behaviour of objects or to use the tie
mechanism of CORBA if inheritance is unwanted. The prototype makes use of
inheritance.

The DL-LinkService prototype consists of a set of classes that includes those that
are automatically generated by the IDL compiler, those classes that implements the
behaviour of the system, and additional classes the prototype is dependent of.

1. http://www.doomdark.org/doomdark/proj/jug/index.html
N:no-3403

8.1 The Prototype Implementation 131

URN:NBN
The decomposition of the system into units for later composition is only delimited
by the CORBA constraint that the creation of object references is coupled with the
POA that created this reference. Different executables or components can for this
reason be constructed by combining one or several of the following indivisible
components:

• A type service that supports the type service interface
• A node service that supports the node and node factory interfaces
• A role service that supports the role and role factory interface
• A link server that supports the link and link factory interfaces

Motivation for using finer grained components can e.g. be if a digital library
repository would like to support the ability of information objects to participate in
relationships, but would like to rely on an externally maintained type service, and
does not want to maintain the role and link objects that users of the repository will
create.

The prototype developed as part of this work is based on one executable that
implements node, role and link interfaces and their factories. A standalone
executable is used for the type service. The setup that was used during the testing of
the service is shown in Figure 8.1. The figure shows a client and two DL-
LinkServers that are running on different machines but uses the same database
server. The type service is running on a separate machine.

8.1.4 The Object Request Broker
The CORBA runtime environment is usually referred to as the Object Request
Broker (ORB). The ORB is essentially the software component that is needed for
transparent communication in distributed object applications. Additionally, the
ORB supports the runtime management of object implementations on the server
side and other core tasks that are needed in the deployment of distributed
applications. Object Request Brokers are developed by a range of different vendors,
and are available both as commercial and free software. Java and C++ are major
target platforms, and there is a range of options to choose from for these
programming languages. Most ORB implementations include an IDL compiler and
other tools that are necessary to develop and deploy CORBA applications.

Later versions of CORBA have addressed many of the portability problems that
were discovered with earlier versions of CORBA. ORB implementations that
support version 2.2. and higher are generally portable. This means that CORBA
applications can switch between different ORBs (in the same programming
language) without requiring adaptations of the code. ORBs may, however, differ in
terms of what CORBA version they support, and as new versions of CORBA
:no-3403

132 8 Implementation and Testing

URN:NB
introduce new features there may be a corresponding difference in which feature of
CORBA different implementations support. Other features that may be different are
the performance of the ORB.

This project has been using different ORBs in the implementation of the
prototype. The final version of the prototype is using the OpenORB1 software,
which is open-source with a BSD-like license that supports version 2.4.2 of the
CORBA specification.

Figure 8.1: Test setup.

1. http://openorb.sourceforge.net/

Host 4 Database host

Oracle

JDBC

Host 1

DLLServer.class

Host 2

Host 3

TestApp.class

DLLServer.class

TypeServer.class

TypeLookUp

NameService

NamingContext

Node NodeFactory

Role

RoleFactory

Link LinkFactory

NodeFactoryNode

Link LinkFactory

RoleFactory

Role
N:no-3403

8.1 The Prototype Implementation 133

URN:NBN
8.1.5 Runtime Management of Servants
The object servants are the runtime implementation counterpart to what the client
perceives as the distributed objects. The mapping between object references and the
runtime servants are in CORBA supported by the Portable Object Adapter. The
main responsibility of the Portable Object Adapter is to ensure that an invocation,
whether local or remote, reaches the correct servant. The POA is a highly flexible
architecture that can be tailored to specific solutions through the use of policies. The
main responsibilities for the POA are [93]:

• The POA is responsible for the creation of object references. Object refer-
ences can be created when servants are instantiated, or they can be created
independently on the instantiation of servants.

• Objects are identified by object identifiers within the scope of the host POA.
The generation of object identifiers can be managed by the application, or
unique identifiers can be assigned automatically be the POA.

• The mapping between servants and object reference can be managed by the
POA, or it can be conducted by the application itself by using servant manag-
ers. The POA defines interfaces for two patterns that can be used; servant
locators and servant activators.

When a DL-LinkService factory object receives a create method request, it fetches
the type definition from an available type service and performs the necessary checks
to verify that the object it is about to create conforms to the type. The factory then
generates a UUID for this object and creates an object reference with the UUID
value as the object identifier. Then it updates the database with the initial state of the
object it has created a reference for, and returns the object reference as part of the
handle data type in the response to the client. The actual instantiation of a servant
for this object is deferred until the client invokes a method on the object.

The DL-LinkService prototype uses servant locators to manage the mapping
between servants and object references, which enables a high level of control over
the management of servants. The servant locator object provides a method that is
called whenever the POA receives a request and a method that is called before a
response is returned. The servant locators implemented in the DL-LinkService
maintain a map of active objects. If a servant locator receives a request to an object
that is not “alive”, it is responsible for the incarnation of this object. This includes
the instantiation of a servant with the proper state. The servant object is passed back
to the POA which then is able to call the correct method on the correct object. If the
object is already “alive”, the servant locator finds the correct servant and passes this
back to the POA.

Any server has limited capabilities in terms of memory and other resources. If
the number of objects that the factory has created is large, then there is a need to
:no-3403

134 8 Implementation and Testing

URN:NB
manage the memory usage of the process. This requires that unused servants must
be deleted in order to avoid the consumption of memory as new objects are created.
In the DL-LinkService prototype this is solved by the use of an evictor pattern,
which is commonly used for this purpose in CORBA applications [93, 16]. The
evictor pattern is a general strategy for limiting memory consumption, and basically
means that certain objects are removed from memory. The main difference between
various evictor patterns is the policy that is used to determine what objects to delete.
Example eviction strategies are LRU (Least Recently Used) and LFU (Least
Frequently Used). The DL-LinkService implements the LRU eviction pattern by
keeping track of which servants are least recently used. This is implemented by the
use of a Java Hashtable that contains the mapping between object identifiers and the
servant object. An additional Java Vector is used to track what objects to evict.
When objects are invoked they are moved to the last available position of the vector.
When the capacity of active servants is reached, in terms of a predefined limit, the
servant manager will evict the least recently used servant from the beginning of the
vector, to make space for a new servant to be incarnated.

8.1.6 Persistent Objects
CORBA supports both transient and persistent objects. The lifetime of a transient
object is limited by the lifetime of the serving process. A persistent object, on the
other hand, outlives the operating system process that serves the object. This means
that the same object reference can be used independent of the lifetime of the server
process. Objects that represent persistent information, or for other reasons need to
be persistent, must be implemented as persistent objects, whereas objects that do not
have persistent state can be implemented as transient objects.

The notion of a persistent CORBA object involves both the persistent object
references and the mechanism that is used to maintain the persistent state of the
objects. The first is a feature supported by the basic CORBA environment; the
second needs to be implemented using an appropriate solution for storing and
retrieving the state of objects.

The feature that enables persistent references in CORBA is the ability of object
references to hold information that the server process can use to uniquely identify
the state of the object: object identifiers. In the DL-LinkService the UUID of objects
are used both as keys in the database backend and as object identifiers.

Persistent objects additionally require some kind of persistent storage solution
that outlives the processes that creates and serves object servants – typically by the
use of the file system or a database. CORBA defines the Persistent State Service
that can be used to add transparent persistency to object implementations [83], but
persistency can equally well be implemented ad hoc.
N:no-3403

8.2 Performance and Scalability 135

URN:NBN
In the DL-LinkService the node, role and link objects are highly persistent. Each
of these objects represents information that needs to be persistent for an undefined
length of time. Objects may be deleted, but the creation and deletion of objects need
to be independent of the activation and deactivation of the process that serves these
objects.

The various factory objects and the type service, on the other hand, can be
transient objects. They represent functionality rather than information and clients
need not be able to reference these objects using the same object reference, but can
acquire these references for instance from a naming service.

The DL-LinkService supports persistent objects by the use of an Oracle database
backend. The initial state of an object is stored in the database when the object is
created, by its corresponding object factory. When a request arrives for this object
the servant locator uses the object identifier of the reference to retrieve the state of
the object from the database and instantiate a servant object. Some methods include
the altering of the object’s state (bind/unbind methods), and requires that the
database is updated accordingly. The state of the object is removed from the
database when it is properly deleted.

8.2 Performance and Scalability

The DL-LinkService implements a fine-grained object model for relationship
instances that potentially can cause performance and scalability problems. This is
mainly due to the complex invocation pattern that certain tasks require. Early test
performed on the service showed that for instance uniqueness testing performed
badly as the cardinality of roles increased. Two techniques were applied to solve
this problem:

• The use of fat operations.
• The use of a caching mechanism.

In the following, the abbreviation RMI will be used as a general expression for a
remote method invocation; which is the call to a distributed object from a client.
The client of the invocation can be another distributed object or a client application.
The real cost of an RMI is highly dependent on the network latency and can
additionally be different between ORB implementations. One way to determine a
performance measure of a distributed object system is to calculate the number of
RMIs for a given task. An additional performance cost due to bandwidth and
marshalling limitations, is the size of the passed data structures. This, however, is a
less apparent problem in this prototype due to the small data structures that are
:no-3403

136 8 Implementation and Testing

URN:NB
passed in method invocations. An additional technique that needs to be
implemented for certain operations is iterators.

8.2.1 Fat Operations
Fat operations can be characterized by having parameters that send rich information
structures, and the main purpose is to prevent the use of an excessive number of
method invocations to perform a task. Rather than sending single data values to and
from operations, methods in the DL-LinkService pass richer data structures that
contain information about the essential characteristics of an object. Attributes, like
UUID, title, and type, are static throughout the lifetime of an object. When such
attribute values are assigned to objects they do not change during the lifetime of the
object, and can conveniently be passed to clients for later use without causing
consistency problems:

• Static attribute values for the node object are
UUID, URI, Title, Type

• Static attribute values for role objects are
UUID, Reference to related node, Title, Type

• Static attribute values for link objects are:
The list of role references, Title, Type

The DL-LinkService passes the state of node, role and link objects as compound
data structures. The IDL types NodeHandle, RoleHandle and LinkHandle is defined
for this purpose. Information does not have to be obtained through handles, but can
additionally be obtained by accessing each distinct attribute whenever needed.

Other aspects of the objects are more dynamic, such as the dynamic list of
references to associated objects that the node and role objects maintain, this data is
not included in the handle types to prevent possible inconsistencies.

One example of how the use of fat operations can improve performance is in the
navigation task. If the navigation includes iterating the retrieval of the three
attributes of title, type and URI from a set of 10 target nodes, the total number of
RMIs adds up to 30 RMIs. By using fat operations that rather return the state of each
node object as a compound data structure, the same information can be obtained
from the opposite nodes using 10 RMIs. In terms of distributed computing, the
reduction from 30 to 10 remote method invocations is a considerable improvement.
In this case, the total size of the attributes does not introduce any significant
increase in the transferred data.
N:no-3403

8.2 Performance and Scalability 137

URN:NBN
8.2.2 Caching
An important function of the handle data types in the DL-LinkService is that they
enable caching. Caching is an important element to establish a solution which is
both well performing and predictable in terms of scalability. The DL-LinkService
prototype implements a simple but highly efficient caching scheme. Caching only
occurs on the role objects, and the main principles of the caching scheme are:

• The role object stores information about the node it is associated to. This
information is passed from the node to the role as a return parameter of the
bind method on the node.

• The role object stores information about the opposite roles and nodes of the
relationship instances it participates in. Link factories receive role handles as
a parameter of the create method. Each role handle includes a node handle as
a subpart. This information is forwarded to each of the roles in the bind
method invocations that the link factory invokes on the roles.

• Whenever a role is deleted it returns the role handles of the opposite roles and
can delete the corresponding entries in the cache.

The use of the bind/unbind methods to update the cache ensures that the cache
always reflects the right state of the system. Figure 8.2 depicts the flow of
information in the caching scheme as dotted arrows. Role objects R1, R2, R3 and R4
cache the information about the node they represent. Role object R1 caches
information about R2, R3 and R4 including the node information that is already
cached in these roles. R2, R3, and R4 cache information about R1. The effect of the
cache is that each role can return for instance the opposite node’s URI without
having to use a chained sequence of invocations to perform this as shown in Figure
8.3.

Without the cache, retrieving the URI of the opposite node of a relationship
basically requires 5 RMIs. For relationships of higher complexity, navigation is
depending on both the participation cardinality of the starting node and the degree
of the relationship instance expressed as:

By using the cached information the same task can be achieved by 2 RMIs. This
solution is independent of the number of opposite roles and nodes, because it only
requires, first, that a reference to the role is retrieved from the node and, second, that
the list of endpoints (roles, nodes or URIs) is retrieved from the role.

The cache can additionally be used to efficiently implement a link uniqueness
test. Without this, the only way to determine whether a link is unique is by examine
one of the roles to see if this role already participates in such a relationship instance.

2 3 cardinality degree 1–〈 〉×〈 〉+
:no-3403

138 8 Implementation and Testing

URN:NB
Figure 8.2: The flow of information in the caching mechanism.

Figure 8.3: The direct references that the cache enables.

R1

N1

N2 N3 N4

R2 R3 R4

L1 L2 L3

R1

N1

N2 N3 N4

R2 R3 R4

L1 L2 L3

L R NN R

L R NN RDoc 1 Doc 2

Doc 2Doc 1

Basic reference pattern

References available when the
caching scheme is used
N:no-3403

8.2 Performance and Scalability 139

URN:NBN
This introduces a severe bottleneck if the role participates in many relationships
instances, and uniqueness testing has to be verified against all the relationship
instances it participates in. If this testing can be performed using the cache, a
significant performance gain can be achieved.

There are other positive side effects of using such a cache as well, and the
benefits can be summarized by the following:

• It enables efficient uniqueness checking.
• It improves navigation significantly.
• It enables a fallback navigation in case remote objects are unavailable.

The main drawbacks are that each role host now has to store additional data, for
each role object and that the solution requires more data to be passed in bind and
unbind methods.

8.2.3 Object Locality
The location of objects is transparent when using CORBA. The client of a
distributed object does not have to deal with the locality of the object, since methods
are invoked on distributed objects in the same way as methods are invoked on local
objects. This transparency, however, is sometimes a bottleneck because it forces all
communication to pass through the ORB. This is particularly a problem for objects
that exist in the same memory space of the same operating system process where the
communication overhead introduced by the ORB is quite superfluous. This is
addressed in many ORBs by implementing support for transparent local calls when
objects are within the same memory space. The deployment of the DL-LinkService
can take advantage of this by configuring the system in such a way that collocated
objects are promoted. This should indicate that the use of one executable for the
node, role and link component is more favourable than running distinct processes
for each component.

The question of locality is additionally important with regard to improving the
pattern of frequently occurring tasks. The caching mechanism of the previous
section is based on the principle that all roles should cache the state of opposite roles
and nodes. For a single instance of the DL-LinkService this information is already
available, because the state of objects is persistently stored in the database. The
database can then be queried to obtain information about opposite ends of
relationship, and the database can be used to determine the uniqueness of links at
creation time without invoking methods on any object. This, however, is not a
flexible solution because the DL-LinkService is based on the idea of multiple
cooperating link services with a resulting distributed storage of information.
Combined use of the persistent storage of local objects and the cache can, on the
:no-3403

140 8 Implementation and Testing

URN:NB
other hand, be combined to reduce redundant storage of information. The same
database tables can be used to store cached information and the state of local objects
in a transparent way.

8.3 Performance Testing

The main motivation for the testing of the DL-LinkService was to evaluate the
design with respect to the scalability and performance of the model. Evaluating the
scalability and performance of an actual service is an extensive issue that includes
all levels of processing that occur in software and hardware as well as the way
different components work together. The testing described in this section is merely
concerned with certain aspects of performance and scalability – the ones that are
related to the design. The performance test attempts to answer questions like:

• How does the distribution of objects affect performance of navigation?
• How does the service behave when the cardinality of a relationship increases?
• How does the service behave when call latency between objects increase?
• How does the use of bind/unbind operations in the creation/deletion of rela-

tionships behave with respect to the distribution of objects?
The absolute measurement values that are made are highly related to the specific
test environment and the specific prototype implementation. A better overall
performance can be achieved in numerous ways, such as a more efficient database
backend, using C++, and running the system on more well performing machinery.
Performance is in the following test measured only for the purpose of comparing
different configurations.

8.3.1 Test Setup
The test environment consists of two machines dedicated to run the Java based DL-
LinkService software. The computers used for this purpose are deliberately on the
lower level of performance compared to what is available today1. Client
applications are run on a better performing machine2 in order to contribute as little
as possible to the measures that have been made. All machines are on the same
100Mb Ethernet local area network. An Oracle database on a dedicated machine is
accessed by the use of JDBC in order to store and retrieve the state of objects.

1. 450 Mhz pentium single processor, 256 Mb memory and Windows XP Profes-
sional.

2. 1,8 Gb pentium single processor, 256 Mb memory and Windows XP Professional
N:no-3403

8.3 Performance Testing 141

URN:NBN
The basic network latency for a round-trip ping operation is approximately 0,2
milliseconds, and is measured with the netperf1 utility. The actual performance of
CORBA in the test setup is more difficult to determine. A roundtrip operation that
sends and receives a sequence of 256 characters is 4 milliseconds, measured as the
average of 1000 operations performed in a loop. In general there are many factors
that will affect the basic performance:

• The ORB implementation from different vendor will behave differently, some
ORBs are performing better than others due to e.g. more efficient marshal-
ling.

• The type and the size of data transferred. Primitive types like a sequence of
octets involve less marshalling than complex structures. Sending a small
chunk of data is considerably faster than transferring larger chunks of data.

• Whether methods receive and send return data. Methods that do both typi-
cally perform slower, because there is marshalling involved when the client
submits a message, when the server object receives a message, when the
server sends a return value and finally when the client receives this value.

• The persistency mechanism that is used to store, update and retrieve the state
of objects.

• The behaviour of the Java Virtual Machine involves the loading of classes
when new object classes are first used, which significantly can slow down
first time performance of a method.

The various methods implemented in the DL-LinkService typically have call
latencies in the range of 1-20 milliseconds. These numbers are specific to the setup
and are highly related to the performance of the underlying software, hardware, the
database that is used, etc. Additional latency is added by the use of servant
interceptors that halts the passing of request and response messages for a specified
amount of time. This is used to simulate 20, 40, 60, and 80 milliseconds latency.
The simulated latency is added in such a way that it does not add a delay for local
invocations.

Most tests have been performed using loops of variable size to diminish the
effect of performance peaks and other sources of errors. The use of loops that
perform the same operation 100 or 1000 times is sometimes necessary to achieve
stable results from one test to another. This does introduce the problem, however,
that the sequential execution of an operation typically performs better – mainly due
to performance of the Java runtime environment and the performance of the
database backend.

1. http://www.netperf.org/
:no-3403

142 8 Implementation and Testing

URN:NB
The following tests are based on four different patterns of distribution across two
host machines:

• Local: Two nodes and their interrelating role and link objects are situated on
the same machine. The total set is distributed evenly across the machines and
there are no object references from the objects on one host to the objects on
the other host.

• Partial: This configuration uses a partial distribution of the relationship
instances across the two machines. A node and its associated role are on the
same host, but the opposite node and its associated role are on the other host.
The link objects are evenly distributed across the two hosts.

• Full: In the full distribution of a relationship all the objects of the relationship
instance are remote with respect to each other.

• Random: In the random configured test setup, the objects are randomly dis-
tributed across the two hosts.

These different configurations may reflect different uses of the service with respect
to distribution. The local setup represents a typical client/server setup and the
relationship network does not include any real distribution of the relationships.
There are no paths from the relationships of one network to the other and each host
maintains separate relationship networks. The partial setup represents a distribution
where the endpoints are on different hosts, but each relationship only contains one
reference across hosts. This could be a typical use of the DL-LinkService for a
collaborative use of the service to create a shared relationship network. The full
distribution setup is a typically worst case scenario where all objects are remote

Figure 8.4: Different distribution of the objects in test setup.

Local

N

R

L

R

N

Partial

N

R

L

R

N

N

R

L

R

N

Full

N

R

L

R

N

N

R

L

R

N

Random
Host A

N

R

L

R

N

Host B

N

R

L

R

N

N

R

L

R

N

N:no-3403

8.3 Performance Testing 143

URN:NBN
with respect to each other. The random setup is included for testing purposes. If the
testing had included more hosts the random setup would have behaved more like the
full distribution, but when including only two machines the chances that an object
reference points to a truly remote object is 50%.

8.3.2 Navigation Performance
The design of the DL-LinkService outlines two different implementations of the
navigation task:

• Sequential
• Indirect

The sequential way of navigation simply implies the client follows each relationship
instance as a linked list of objects from the start node to the target node. The
drawback of using this technique is that it cannot make use of possible “behind the
scene” performance enhancements such as caching or object locality. Another
disadvantage is that it requires the same set of operations to be performed over and
over again, possibly by the use of some client side defined method. The advantage is
that clients are in full control over the navigation process.

The second technique is the definition of a single-step navigation facility by
using indirect operations on the objects as outlined in Figure 6.4. The initial
purpose of this was to facilitate easy navigation for client applications. Clients issue
a single navigation request to a node object and a list of opposite URIs is returned.
An additional advantage of this technique is that it delegates the navigation process
to the servants and enables the servants to provide for other and more efficient
implementations. The tests include results from two different implementations of
this pattern that explores respectively the use of the cache and the use of object
locality:

• The first implementation is coined chained and implies that the node invokes
methods on the role which further invokes methods on other objects.

• The second implementation uses the cache on the role and is coined cached.
This implies that the client invokes a method on the node and that the node
invokes a method on the role. The role can then directly return the requested
information because it caches information about target roles and nodes.

The results of the navigation tests are shown in Figure 8.5. The first test shows the
basic performance of navigation over a local area network. The cached navigation
technique is the most efficient one, which is quite natural since this implies fewer
RMIs than other techniques. The chained and the sequential navigation patterns
have equal performance. In this test, the network latency is insignificant compared
to the internal processing of methods and the marshalling involved.
:no-3403

144 8 Implementation and Testing

URN:NB
Figure 8.5: Testing the performance of navigation.

0ms

5ms

10ms

15ms

20ms Sequential

Chained

Cached

RandomFullPartialLocal
Test 1: Average navigation time for the test setup

0ms

100ms

200ms

300ms

400ms

500ms Seqential

Chained

Cached

RandomFullPartialLocal

Test 2: Average navigation with increasing latency: 0,2 - 80ms

Test 3: Navigation performance as the number of opposite nodes
increases from 1 - 100.

0ms

200ms

400ms

600ms

800ms

1000ms Sequential

Chained

Cached

RandomLocal
N:no-3403

8.3 Performance Testing 145

URN:NBN
The second test shows the cost of these navigation techniques as the latency
between distributed servants increase. The performance of the cached navigation
pattern is still by far the most efficient. For local and partial distribution the cost of
navigation is equal to the increased latency. An interesting observation is that the
use of the chained navigation technique in the local setup is more or less equal in
performance to the cached approach, and otherwise performs better than the
sequential navigation technique. This is caused by the ORB’s efficient
implementation of local calls between same process objects. The chained navigation
technique can take advantage of this when objects are local with respect to each
other. In the full distribution setup the cost of the chained navigation technique will
be higher than the increased latency (x2), because of the remote node-to-role call.

The third test shows the scalability of navigation in terms of an increasing
number of relationship instances that a single node participates in. This test is
performed without added latency because the general performance decrease
introduced by latency will follow the same pattern as the second test. The graphs
show that the cached method is by far the most scalable one for both setups. The
sequential and chained navigation patterns do not scale well due to the increase of
RMIs that occurs when the number of relationship instances increases. An
interesting observation is that the chained navigation pattern performs better than
the sequential in the local setup, but behaves significantly worse in the random
setup. The chained navigation pattern can take advantage of the efficient inter-
object calls between same process objects that the ORB supports in the local setup.
On the other hand, the possible gain of using chained method invocations is
contradicted in the random setup mainly due to the increased marshalling that
occurs. Data need to be marshalled and demarshalled for each intermediary object it
passes through. This is not significant for small chunks of data, but is a cost that
increases when the size of the data increases. Only the results from the local and
random setup are included in the diagram. The partial and full configurations show
the same pattern, but not as apparent as for the random setup.

8.3.3 Creating Relationships
The task of creating a relationship instance includes the creation of nodes, the
creation of roles and the creation of a link, and the underlying binding mechanism
that creates two-way references. The bind pattern for creating a relationship
instance is illustrated in Figure 6.6, and graphs from testing the performance and
scalability of the create methods are shown in Figure 8.6.

The basic performance of the create methods is shown in the first test. The
difference in performance between the factories is caused by the bind pattern. The
node factory does not have to invoke any bind method, the role factory has to
invoke a single bind method on a node, whereas the link factory has to invoke the
:no-3403

146 8 Implementation and Testing

URN:NB
bind method twice on the two role objects of a binary relationship. An additional is
the persistency mechanism. Role and node factories store complex data whereas the
node factory only stores a single tuple. The basic test shows that there are no
significant differences between the different setups. One should actually assume
that the local configuration would perform better due to the ORB being able to call
bind methods to same process objects in a more efficient way. The possible gain of
this is probably contradicted by the fact that the same process has to serve all
operations.

The second test shows the performance of the create methods when latency
increases. The main criterion for performance is the bind method; whether it is
called on a same process object or is called on a remote object. The effect of
increased call latency is most significant for the link factory because of the two bind
operation that this factory has to invoke whenever an object is created. Calling a
bind method on a same process object is not affected by increased call latency and
the local setup is for this reason the most efficient one.

The third test is used to illustrate the scalability of different uniqueness testing
methods. The first alternative is to implement a uniqueness testing procedure on the
link factory that does a direct search in the available relationship network. This
alternative is actually acceptable for the local setup because of the efficient calls
between same process objects. In a distributed relationship network, however, this
solution does not scale well. The second alternative is to delegate uniqueness testing
to the role objects. Each role stores information in the cache about opposite roles,
and this can be used to efficiently detect whether a bind request would cause a
duplication of an already existing link. The benefit of this method, however,
depends on the existence of the cache. Without the cache the role would not be able
to perform this more efficiently than the link factory.
N:no-3403

8.3 Performance Testing 147

URN:NBN
Figure 8.6: Testing the performance of creating relationships.

0ms

10ms

20ms

30ms

40ms

50ms Link factory

Role factory

Node factory

RandomFullPartialLocal
Test 1: Basic performance

0ms

50ms

100ms

150ms

200ms

250ms Link factory

Role factory

Node factory

RandomFullPartialLocal

Test 2: Creating objects when latency increases: 0,2 - 80ms

Test 3: Testing for link uniqueness

0ms

200ms

400ms

600ms

800ms

1000ms

Using the role cache

Direct search in distributed
relationship network

Direct search in local
relationship network

10050
:no-3403

148 8 Implementation and Testing

URN:NB
N:no-3403

URN:NBN
9 The FRBR Application

9.1 Introduction

Information about books, journals, and other knowledge carrying items, is today
contained in numerous bibliographic catalogues that together make an impressive
record of the intellectual and artistic endeavours of mankind. Despite the
comprehensive bibliographic universe contained in these catalogues, the main focus
of the catalogue is the identification and description of “atomic” publications. As
such they represent a quite limited view on the bibliographic universe. The need for
a more complex model of bibliographic entities and the relationships that exist
among these entities is recognized in e.g. [125, 196, 209]. The definition of the
entity-relationship based model commonly referred to as the FRBR model [100] is a
major contribution recently provided by the IFLA Study group on the Functional
Requirements for Bibliographic Records. The FRBR model identifies the set of
entities and relationships of main concern to users of bibliographic information.

The FRBR model, however, is only an initial step towards the ''next generation''
of bibliographic systems. The next issue is the validity of the model. The model is at
present mainly a theoretical solution, and further research and experience is
required to validate the model in terms of user benefits, costs, consequences for
current cataloguing practice, etc. Another issue is how to apply the model to already
existing catalogues that aggregate decades of cataloguing work. Altering the
millions of records that already have been created is a risky affair, and sometimes
the costs of conversion will be unmanageable for many libraries.

One possible approach to these problems is to implement support for the FRBR
model in such a way that it does not alter already existing catalogues. The DL-
LinkService is a highly relevant candidate for this by providing support for the
FRBR model as a network of nodes and relationships that is detached from the
catalogue.

By implementing the FRBR model in a separate level external to the catalogue,
support for the FRBR model can be achieved with several potential benefits:
:no-3403

150 9 The FRBR Application

URN:NB
• Multidirectional relationships. Relationships in the DL-LinkService are
inherently multi-way, which means that if an expression is recognized as the
translation of another the inverse relationship will be available too.

• Consistent relationships. The DL-LinkService provides for a consistent rela-
tionship network, which prevents redundant duplication of information and
conflicting participation.

• Generic support for navigation. The various relationships of the FRBR model
can be accessed in a generic way, which means that it should be easy to
implement applications that deal with the complexity of the FRBR model.

• Support for distribution. Relationships can be implemented between cata-
logues. Works and expressions may be described in a national bibliography
served by one system, and the manifestation and item entities can be
described in the catalogues of specific libraries.

The DL-LinkService would additionally enable experience with the FRBR model to
be obtained without intervening with the existing catalogues. Further research and
experience with the FRBR model can be obtained by using the DL-LinkService as a
test-bed environment to address issues like:

• Alternative implementations of the FRBR model. How can the model support
user interfaces that provide for information discovery along the paths laid out
by the FRBR model? What entities and relationships are important to end
users, and what entities and relationships are less frequently used?

• Abstractions of the model. Is the model too complex for end users? Are end
users able to deal with concepts like expressions and works? If so, what gen-
eralizations or abstractions can be made to the model to improve its usability?

• Alternative models. Can alternative models or a simplified version of the
FRBR model provide for the same functionality with less complexity?

9.2 Current Bibliographic Catalogues

Catalogues have for centuries been the main tool for librarians to create order in the
holdings of the library and in the bibliographic universe in general. A catalogue can
reflect the holdings of a specific library, or it can be a national bibliography that
aggregates information about all publications produced within a country or in a
specific language. Other catalogues intend to collect information about all the
publications of a single person or publications on a specific subject. While library
catalogues reflect the holdings of the library, other biographic catalogues rather
reflect what exists; regardless of whether it is available or where it is available from.
N:no-3403

9.2 Current Bibliographic Catalogues 151

URN:NBN
The primary intention of a catalogue is to enable persons to find what they are
looking for by author, title or subject. The bibliographic record contains the data
that is used to create the indexes of search systems, and it contains the information
that is presented to the user when he or she uses the catalogue to find relevant
books, journals and other items of interest. Catalogues have also provided a
surrogate for navigating among the materials in a library’s collection, or the entire
bibliographic universe, by indicating relationships among the various materials
[197]. Major problems, however, are that the relationship information is primarily
intended to be readable by humans; it is fragmented across various records and
entries within records, and can be both inconsistent and incomplete.

As a “data structure”, the bibliographic catalogue can be interpreted as a set of
bibliographic records. The bibliographic record aggregates descriptive data
elements such as those defined in the International Standard Bibliographic
Descriptions (ISBD) [103, 104]. The creation of a bibliographic record is usually
referred to as cataloguing, and the cataloguing principles and rules of the library
society is a remarkable pioneer in the area of standardized information. This is
motivated by an emphasis on reuse and exchange of bibliographic information
across system and organizational boundaries. Bibliographic catalogues based on the
International Bibliographic Book Description standards and the Anglo American
Cataloguing Rules [72] are often captured and exchanged by the use of the MARC
format [108, 130]. Although there are numerous “dialects” of the MARC format in
use, they are usually crafted on the same basis and are interoperable with each other
– to a certain extent. The various data entries of bibliographic catalogues encoded in
the MARC format are identified by the use of fields and subfields. Field identifiers
are three-numbered values, whereas subfields are identified by a single letter. Some
Norwegian example records are found in Figure 9.1.

Today, numerous bibliographic catalogues are maintained by a comprehensive
number of institutions all over the world. These catalogues are often made available
to the public as Web Based Public Access Catalogues (WEBPACs). A general
observation is that these WEBPACs often are similar and usually include a search
dialogue, a result set browsing mechanism and a record display facility. WEBPACs
are mainly based on the set-based search and retrieve paradigm. Users are required
to formulate a query and inspect the result set to discover possibly relevant
information. Navigation is sometimes additionally made available, but in most cases
this is limited to looking up other records by the same author, subject, etc. The
uniform architecture of these systems is mainly caused by the common
understanding of catalogues and searching in catalogues that exists within the
library community.
:no-3403

152 9 The FRBR Application

URN:NB
Figure 9.1: Example MARC records.

*001961563842
*008 nor
*080c $a839.6
*082uv$a839.82s
*100 $aIbsen, Henrik
*245 $aEt Dukkehjem$bSkuespil i tre Akter$caf Henrik Ibsen$wDukkehjem
*260 $aKøbenhavn$bGyldendalske Boghandels Forlag$c1879
*300 $a180 s.
*096ga$aNBO$cIbsen/si$n80ga25604
*096ga$aNBO$cIbsen/si$n80ga25605

*001000476137
*008 eng
*015 $anf0006687
*020 $a0-553-21280-x$bh.
*082ga$d839.822[S]
*100 $aIbsen, Henrik
*245 $aFour great plays$cby Henrik Ibsen ; translated by R. Farquharson Sharp ;
with an introduction and prefaces to each play by John Gassner
*250 $aBantam classic ed.
*260 $aNew York$bBantam Books$c1981
*300 $aXIV, 306 s.
*440 $aBantam classic
*500 $aDenne oversettelsen, 1. utg. 1958
*500 $aInnhold: A doll's house ; Ghosts ; An enemy of the people ; The wild
duck. Originaltitler: Et dukkehjem ; Gengangere ; En folkefiende ; Vildanden
*740 $a4 great plays
*740 $aA doll's house$wdoll's house
*740 $aGhosts
*740 $aAn enemy of the people$wenemy of the people
*740 $aThe wild duck$wwild duck
*740 $aEt dukkehjem$wdukkehjem
*740 $aGengangere
*740 $aEn folkefiende$wfolkefiende
*740 $aVildanden
*096ga$aNBO$cIbsensenteret$n00ga04179

*001990244415
*008 g eng
*087uh$aVF Do$bEngland
*245 $aA doll's house$cproduced and directed by Joseph Losey$hvideogram$wA
doll's house
*260 $aU.K., Frankrike$bWorld film services$c1973 (videodistribusjon 1998)
*300 $a1 kassett (VHS) (NTSC) (106 min)$blyd, kol.
*500 $aRolleliste: Jane Fonda, David Warner
*500 $aFrom the play by Henrik Ibsen
*700 $aLosey, Joseph
*700 $aWarner, David
*700 $aFonda, Jane
*700 $aIbsen, Henrik
*096uh$aHIL$cVF Do$n99uh00417
N:no-3403

9.3 The FRBR Model 153

URN:NBN
9.3 The FRBR Model

The main objective of the FRBR model as stated in [100] is to provide a:
...to provide a clearly defined, structured framework for relating the data that
are recorded in bibliographic records to the needs of the users of those
records.

 To achieve this, the FRBR captures the entities, attributes and relationships needed
to support the generic tasks that are performed when searching and making use of
national bibliographies and library catalogues.

The core of the model is a group of entities representing the products of artistic
or intellectual endeavour; the work, expression, manifestation and item entities. This
part of the model is entitled Group 1 Entities and is illustrated in Figure 9.2.
Another group of entities represent those responsible for the content, and a third
group contains entities that serve as the subject of the works. The further focus in
this thesis will be on the Group 1 entities; work, expression, manifestation and item.

• The work is an abstract entity representing a distinct intellectual or artistic
endeavour.

• The expression entity is the specific intellectual or artistic form a work takes
when it is realized.

• A manifestation entity is a physical embodiment of an expression.
• The item is a single exemplar of the manifestation.

When we refer to the play by Ibsen entitled ''A Dolls House'', in a generic sense
without considering a specific translation, edition or performance, we are dealing
with the play as a conceptual work entity. This work can be realized in a various
intellectual or artistic shapes – as expression entities. The original Norwegian text is
one realization of this work; the English translation by Henrietta Frances Lord from
the 1880s is another realization. The latter English translation was published by
different publishers in England and in America, and these publications should be
considered different manifestations of this particular realization of the work. A
specific copy of the American edition, available in the shelves of a library, is an item
entity.

In addition to the entities, and the attributes that identify and characterize the
entities, the FRBR model emphasizes bibliographic relationships [100]:

In the context of the model, relationships serve as the vehicle for depicting the
link between one entity and another, and thus as the means of assisting the
user to ''navigate'' the universe that is represented in a bibliography,
catalogue, or bibliographic database.
:no-3403

154 9 The FRBR Application

URN:NB
The work, expression, manifestation and item entities are associated to each other
by a set of possible relationships. A work is realized through one or more
expressions. An expression is embodied in one or more manifestations and a
manifestation is exemplified by one or more items. In addition to these basic
relationships, the FRBR-model also defines relationships that may exist between the
various entities, orthogonal or parallel to the Group 1 relationships. One expression
can be the translation of another expression, or the relationship between
expressions may be that one is the adaptation of the other. Examples of the
numerous possible relationships that may exist between works, between
expressions, and between a work and an expression, are illustrated in Figure 9.3.

9.4 Enhancing Existing Catalogues

To some extent the current bibliographic record captures aspects of the FRBR
model, and mapping between the MARC fields and the FRBR model is provided by
Delsey in [55]. Experiences in the extraction of entities and relationships are
reported in [91, 95], and these studies show that this is a possible task, although
there are considerable problems on certain aspects of this mapping.

When comparing a MARC-based catalogue with the FRBR model, we generally
find a 1:1 association between the record and the manifestation entity of the FRBR

Figure 9.2: The Group 1 entities of the FRBR model.

WORK

MANIFESTATION

EXPRESSION

ITEM

Is embodied in

Is exemplified by

Is realized through
N:no-3403

9.4 Enhancing Existing Catalogues 155

URN:NBN
model. In a specific catalogue there will be one record for each manifestation, and
each manifestation will be described by one record. This does not imply that
manifestations are the only entities present in the catalogue, but rather that the
descriptions of other entities are distributed in a different way. Multiple item entities
can be listed in one record, and information related to the expression and work
entities can be found in multiple records. One example is the MARC field ''uniform
title'' – which is comparable to the work title of the FRBR model. The same work
title can be found in many records if there are many publications containing this
work, but the work is not present as a distinct and identifiable entity in the
catalogue.

Since the catalogue already contains aspects of the FRBR model, it is
theoretically possible to process the data in the catalogue and automatically extract
some of the entities and relationships of the model. The resulting information can be
characterized as an “index” over the entities contained within the bibliographic
catalogue as illustrated in Figure 9.4. This index reflects both the entities of the

Figure 9.3: Example relationships from the FRBR model.

WORK EXPRESSION

Adaptation

Complement

Imitation

Successor

Summarization

Supplement

Transformation

Whole/Part

Adaptation

Complement

Imitation

Successor

Summarization

Supplement

Transformation

Realization

Abridgement

Arrangement

Revision

Transformation

Translation

Abridgement
:no-3403

156 9 The FRBR Application

URN:NB
FRBR mode – works, expressions, manifestations and items – as well as the
extracted relationships that exist among the entities.

The interpretation of a record as a manifestation surrogate enables a convenient
alignment between manifestation entities and the catalogue. The manifestation
corresponds to one identifiable record in the catalogue, and the record corresponds
to one identifiable manifestation entity. A record in the catalogue is thus well suited
to serve as a representation of the manifestation entity.

The other entities – work, expression and item – do not, however, have a distinct
counterpart within the catalogue structure. Items and the relationship between a
manifestation and the item are somewhat easy to deal with because of the 1:N
relationship that exists between a relationship and the item. For each item there will
be only one source of information, and the item may be represented by defining a
limited view on this parent manifestation record. Works and expressions are, on the
other hand, conceptual entities at a higher level than the manifestation, and
additionally, the information about works and expressions can be fragmented across
multiple records. This is further complicated by the fact that a manifestation can
embody multiple expressions and correspondingly multiple works. The FRBR
model defines the attributes that can be used to describe these entities, but selecting
this information from the record can be difficult. This problem is particularly
difficult for the expression, as this entity is the least evident entity in existing
catalogues.

The actual requirements for the representation of entities will be different
depending on the actual use of these entities in the user interfaces of WEBPACs and
as processable units in the underlying information system(s).

• Entities can be represented by distinct records that describe these entities.
Work and expression entities can be maintained in authority files like the ones
used for personal and corporate names. The FRBR model defines the
attributes that can be used for this purpose, but since the model is not imple-
mented such records are unfortunately not available yet. A similar solution
can be used for item entities by maintaining a specific item record for each
item in the holdings of the library.

• Surrogates can be used to represent the entities. Work and expression entities
are abstract entities, but certain manifestations may serve as representations
for these. Candidates can be the earliest published manifestation of a work as
the work representation. This first edition in the original language of a text is
quite close to what we may interpret as the “real” work. Correspondingly the
manifestation of the first edition of an expression can serve as the expression
representation.
N:no-3403

9.4 Enhancing Existing Catalogues 157

URN:NBN
• Other solutions: User interfaces that only require records for the display of
manifestations can choose other solutions. Work and expressions can be rep-
resented in a graphical user interface using generic icons or other unlabelled
graphical symbols. Information about items is often available in the catalogue
record and may not need further representation.

A different issue is the task of enhancing current catalogues with the FRBR model.
In general this can be achieved in two different ways:

• Dynamically enhance the display of records with the FRBR model at run
time.

• The creation of a persistent “FRBR index” that is updated on a temporary
basis or in “real time”.

The FRBR model promotes a view on bibliographic entities that implies a
hierarchical view on bibliographic entities (the Group 1 entities). This interpretation
of the model can be used to organize the items of a result set into a hierarchical tree-
structure. This can be useful when users browse the result sets they are returned
from a search [155]. Such a hierarchy can be generated dynamically in a search
session by grouping manifestations based on the expression they embody and by
grouping expressions by the work they realize. This solution can be further
enhanced by the use of runtime routines that detects and presents other relationships
between the entities. However, the dynamic grouping and discovery of entities and
relationships is an extensive task. To be able to reflect all relevant entities and
relationships – not only those that are available in the result set – the system needs
to examine the whole catalogue for every search request. The sheer runtime cost
caused by the complexity of the FRBR model implies that this solution would be
highly inefficient for catalogues other than the ones which have a rather small
number of records.

A far more realistic solution is to consider the generation of an updateable
“FRBR index” that contains the entities and relationships of the FRBR model and is
updated whenever new records are added to the catalogue. Such an index is
visualized in Figure 9.4. The index can be implemented as a network of nodes and
relationships comparable to the organization of thesauruses and other graph-like
structures. The mapping between the index and the catalogue can be solved by
aligning the manifestation entities with the records they correspond to, e.g. by
implementing a function that resolves between record identifiers and manifestation
identifiers. The index can be integrated with the catalogue in many ways at the
WEBPAC tier to provide for a FRBR “enabled” view of the catalogue. The FRBR
index would additionally be a highly reusable resource that could be used for other
purposes as well; such as a tool in the creating of new records.
:no-3403

158 9 The FRBR Application

URN:NB
The DL-LinkService is highly relevant for the implementation of such a “FRBR
index”. The nodes can be used to represent the entities of the FRBR model, and the
explicit relationships of the DL-LinkService can be used to represent the
relationships of the FRBR model. The implementation of an application based on
this solution is described in the following sections.

9.5 Implementing the Index

The FRBR-index model is implemented in a fully functional prototype system
based on a test case that consists of a subset of records from the BIBSYS database.
BIBSYS is the Norwegian bibliographic database for university and college
libraries and contains approximately 3.5 million records and reflects the holdings of
the partaking libraries – approximately 9 million items.

The index was constructed by extracting and processing a set of bibliographic
records from this database. A test case consisting of the works by the Norwegian
playwright “Henrik Ibsen” was selected because it was likely to contain a rich set of
FRBR entities and relationships.

The resulting index is stored and managed by the use of the DL-LinkService. At
runtime the index is dynamically integrated with the BIBSYS web interface by
using a plugin developed for Internet Explorer. The plugin implements a standard
TreeView control in order to visualize the relationships and entities of the map and

Figure 9.4: The FRBR index.

W
orks

E
xpressions

M
anifestations

Manifestation - record
resolution

Catalogue

FRBR
index
N:no-3403

9.5 Implementing the Index 159

URN:NBN
enable users to browse the BIBSYS catalogue both by navigating the FRBR
relationships as well as using the functionality that already is available through the
BIBSYS web pages.

When a user views a record from the BIBSYS system, a complementary window
in the Internet Explorer browser shows the existing relationships and the entities
participating in these relationships that are relevant for the record in focus. The
index can be navigated by selecting any of the available entities, causing the focus
to shift to the selected entity. If a manifestation is selected, the corresponding record
is retrieved from the BIBSYS system and displayed in the main window of the
browser.

The DL-LinkService is fully capable of representing the entities and the
relationships of the FRBR model. The relationship structure can easily be navigated
by calling methods on the various objects, and the relationships are bidirectional. In
essence this means that from a node object all the relationships and opposite nodes
are accessible.

Once the general solution was settled, the actual development of the prototype
application was a straight forward task, but it included several problems that needed
to be solved:

• The definition of a typology that captures the entities and relationships of the
FRBR model.

• The identification and extraction of FRBR entities and relationships from the
BIBSYS catalogue.

• Choosing a naming convention or resolution mechanism to translate between
the record identifiers of the catalogue and the node identifiers of the DL-
LinkService.

• Determine how to present entities and relationships in the graphical interface.

9.5.1 Defining a Link Typology for the FRBR-model
For the purpose of this prototype we translated the entities and relationships defined
in the FRBR model into the format used by the DL-LinkService. Work, expression
and manifestation entities are defined as different node types in order to be able to
provide for different client side behaviour for the different entity types. Item entities
are not considered in the application, because information about items are already
present as a part of the bibliographic record, and the support for entities in the index
would not contribute any additional functionality.

The relationship types described in the FRBR model is listed in Figure 9.5. The
actual typology includes constraint definitions and is implemented in XML
:no-3403

160 9 The FRBR Application

URN:NB
according to the XMLSchema that is specified for the DL-LinkService. The
implemented typology is listed in Appendix A.4.

9.5.2 Extracting Entities and Relationships
The extraction of the FRBR entities and relationships turned out to be the main
challenge in the development of this application. Some fields/subfields in the
MARC format can be mapped directly to the FRBR model, such as 240$a and
241$a which correspond to the title of the work entity. In such cases the
identification of the FRBR entities and relationships is a question of straight
forward extraction of data. Other fields in the MARC format only indicate FRBR
entities or relationships. In such cases the identification of entities and relationships
can be both complicated and unreliable. The solution used in this application is
partly guided by [35, 36] and based on inspecting the test case records to uncover
alternative ways to solve problems that were caused mainly by records of low
quality – like records that were missing the mandatory language code, contained
misspelled work titles, etc.

The BIBSYS database uses the BIBSYS-MARC format which is based on the
standard Norwegian MARC format – NORMARC – with the exception of some
historically related deviations. The database also contains some records converted
from other systems, and the records are for that reason of varying quality.

The test case was based on records having ''Ibsen, Henrik'' as the main entry –
personal name. The size of the test case was 2535 records, and the test records were
extracted from the BIBSYS catalogue in the MARC format and inserted into a
relational database. This enabled a more advanced query facility than what was
supported in the native database of the catalogue. The processing of the records
turned out to be a rather complex task. The final solution was based on the set of
subtasks that are illustrated in the UML usecase diagram of Figure 9.6. A major
problem in the creation of the FRBR index was that the information about the
entities and relationships needed to be built in a series of sequential steps. In
addition to these main tasks, a series of less evident problems needed to be solved in
order to deal with problems such as the same kind of information having different
fields as the source in different records. Although it is theoretically possible to
extract many different works, expressions, and relationships from a MARC record,
the real world is somewhat different. The test records contained information rich
records well conforming to the MARC format, but many of the records contained
sparse information (few fields), and sometimes the information was inconsistent,
like the lack of language code or misspelled work titles.

Information regarding the BIBSYS-MARC fields of main concern for the
extraction of entities and relationships is listed in Figure 9.7. The column on the
right shows in how many test-case records a specific field occurs. Other fields in the
N:no-3403

9.5 Implementing the Index 161

URN:NBN
Node Role Link Role Node

Work Has adaptation Adaptation Is an adaptation of Expression
Work Has a complement Complement Complements Expression
Work Has an imitation Imitation Is an imitation of Expression
Work Is realized through Realization Is a realization of Expression
Work Has a successor Successor Is a successor of Expression
Work Has a summary Summarization Is a summary of Expression
Work Has a supplement Supplement Supplements Expression
Work Has a transformation Transformation Is a transformation of Expression
Work Has adaptation Adaptation Is an adaptation of Work
Work Has a complement Complement Complements Work
Work Has an imitation Imitation Is an imitation of Work
Work Has a successor Successor Is a successor of Work
Work Has a summary Summarization Is a summary of Work
Work Has a supplement Supplement Supplements Work
Work Has a transformation Transformation Is a transformation of Work
Work Has part Whole/Part Is part of Work
Expression Has an abridgement Abridgement Is an abridgement of Expression
Expression Has adaptation Adaptation Is an adaptation of Expression
Expression Has an arrangement Arrangement Is an arrangement of Expression
Expression Has a complement Complement Complements Expression
Expression Has an imitation Imitation Is an imitation of Expression
Expression Has a revision Revision Is a revision of Expression
Expression Has a successor Successor Is a successor of Expression
Expression Has a summary Summarization Is a summary of Expression
Expression Has a supplement Supplement Supplements Expression
Expression Has a transformation Transformation Is a transformation of Expression
Expression Has a translation Translation Is a translation of Expression
Expression Has part Whole/part Is part of Expression
Expression Is embodied in Embodiment Embodies Manifestation
Manifestation Is exemplified by Example Is an example of Item
Manifestation Has an alternate Alternate Is an alternate to Manifestation
Manifestation Has a reproduction Reproduction Is a reproduction of Manifestation
Manifestation Has part Whole/Part Is part of Manifestation
Item Has reconfiguration Reconfiguration Is a reconfiguration of Item
Item Has reproduction Reproduction Is a reproduction of Item
Item Has part Whole/Part Is part of Item
Item Has a reproduction Reproduction Is a reproduction of Manifestation

Figure 9.5: The FRBR typology.
:no-3403

162 9 The FRBR Application

URN:NB
MARC format could have been useful as well, but these fields generally had a very
low occurrence and for that reason could not be used as a reliable source of
information for this application. The following sections summarize the main
strategies used to achieve the final index.

9.5.2.1 Identifying work entities
Work entities are in this application mainly identified by the use of the work title.
This simplification is made possible by the uniform set of records in the test set – all
works are by the author Henrik Ibsen, and it can be assumed that all distinct works
by Ibsen have unique names. A more heterogeneous set of records would require a
more complex set of work attributes for proper identification; like form of the work,
the date of the work, and other distinguishing characteristics.

The most reliable source in a MARC record for the extraction of work titles is he
field 240$a – uniform title and the field 241$a – original title. These fields occur in
approximately half of the records, and other sources of work titles are needed to

Figure 9.6: Extracting entities and relationships.

Identify work
entitites

Create
work:manifestation relationships

Create expressions

Create expressions
for adaptations

Create FRBR index

«include»

«include»

«include»

Create expressions
for original publication

Create expressions
for translations

Create Group 1
relationships

«include»

Create "realizes"
relationships between Work and

Expression

Create "embodies"
relationships between Expressions and

Manifestations

Create "translation"
relationships between

expressions

«include»

Create "whole/part"
relationships between

manifestations

«include»
N:no-3403

9.5 Implementing the Index 163

URN:NBN
come up with a more complete set of work titles for the records. Relevant secondary
sources for work titles are the 740$a – uncontrolled title and 245$a – title. Due to
the occurrence of translated titles and more modern spellings in these fields, only
records in the original language of the works can be used for this purpose. 245$a
does not contribute any significant new titles other than titles with a more modern
spelling and was excluded in the final selection of work titles. The extraction
algorithm includes a set of queries that stepwise creates a table of work titles based
on the following sequence. The results from this procedure are listed in Figure 9.8:

• Examine all records and select distinct strings from 240$a
• Examine all records and select distinct strings from 241$a
• Examine only Norwegian records that do not have values in neither 240$a

nor 241$a and select distinct strings titles from 740$a.

Field Subfield Data Count(*)
008 c General information - language code 2339
020 a ISBN 448
100 a Main entry - personal name 2535
240 a Uniform title 1118
240 l Uniform title - language 907
241 a Original title 340
245 a Title statement - title 2535
245 c Title statement - responsibility 2295
250 a Edition statement - edition 367
260 a Publication - place 2513
260 c Publication - date 2527
440 a Series statement 737
500 a General note 894
700 a Added entry - personal name 1404
740 a Added entry - uncontrolled title 498

Figure 9.7: MARC fields and their occurrence in the test set.

240$a / 241 $a 740 $a Total
Records containing this field 1447 296 1743

Unique work titles 41 43 84

Figure 9.8: Extracted works and their origin MARC fields.
:no-3403

164 9 The FRBR Application

URN:NB
9.5.2.2 Identifying expressions
A number of expressions may exist for a specific work, but the identification of a
distinct set of expressions can be ambiguous. Expressions can be identified by a
range of fields and subfields as described in [55], but a major problem is that the
value of these fields only indicates an expression. The proper identification of an
expression additionally requires a certain degree of literary analysis, and the
required information may be unavailable in the bibliographic record or
inconsistently and vaguely described. Rather than attempting to identify the set of
expressions directly, the approach chosen for this application is based on the
assumption that if there are one or more relationships between a manifestations and
a work, then there has to be at least one expression in between them. The set of
relevant expressions for a work can be identified by clustering the manifestations
according to various information that is available in the records: all translated
manifestations in a given language can be grouped into an expression representing
the text translated into this language; if the translators name is available this can
further be divided into different translations, etc. The expressions that can be
identified in the test records are:

• The text in the original language based on the assertion that for each work
there is an expression in the original language.

• Adaptations that can be identified by the form of the work either by inspect-
ing the formcode of 008 or by certain keywords in other fields, such as
“sound recording” etc.

• Translations of the text in different languages based on the language code in
008. This was by far the most frequently occurring type of expression.

The numbers of expressions found are listed in Figure 9.9 and examples of the
expressions that can be identified are shown in Figure 9.10 and Figure 9.11.

Kind of expression No. of expressions

Original expression 122

Translations 452

Adaptations 183

Figure 9.9: Different categories of expressions found.
N:no-3403

9.5 Implementing the Index 165

URN:NBN
Figure 9.10: Example expressions I.

Expression Description
E1 Original Norwegian text of “Et dukkehjem”
E2 English translation of “Et dukkehjem”
E3 Video of a performance of “Et dukkehjem”
E4 German translation of “Et dukkehjem”
E5 Original Norwegian text of “Vildanden”
E6 English translation of “Vildanden”
E7 German translation of “Vildanden”
E8 Sound recording from a performance of “Vildanden”
E9 Original Norwegian text of “Gengangere”

E10 English translation of “Gengangere”
E11 German translation of “Gengangere”

Figure 9.11: Example expressions II.

W1
Et dukkehjem
Henrik Ibsen

W2

Vildanden
Henrik Ibsen

W3
Gengangere
Henrik Ibsen

Gespenster
Henrik Ibsen, 1981M12

M11
Ghosts
Henrik Ibsen, 1890

Gengangere
Henrik Ibsen, 1881M10

Vildanden
Henrik Ibsen, 2000M9

Die Wildente
Henrik Ibsen, 1994M8

The Wild Duck
Henrik Ibsen, 1997M7

Vildanden
Henrik Ibsen, 1884M6

Three plays
Henrik Ibsen, 1995M5

M4
Ein Puppenheim
Henrik Ibsen, 1910

A Doll's House
Henrik Ibsen, 1973M3

M2
A Doll's House
Henrik Ibsen, 1965

Et dukkehjem
Henrik Ibsen, 1879M1E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

”realization” ”embodies”
Works Expressions Manifestations
:no-3403

166 9 The FRBR Application

URN:NB
9.5.2.3 Identifying relationships
Once entities are defined it is possible to identify the relationships. Expressions are
directly intermediates in the already identified relationships between work and
manifestation, and the actual basic Group 1 relationships can directly be derived;
the relationship between a work and its expression is of type realizes, and the
relationship between an expression and the manifestation is of the embodies type.
Additional expressions identified are either translations or adaptations and are
related to the “original text” expression through either translation or adaptation
relationships.

An additional kind of relationship that can be identified is the whole/part
relationship between manifestations. The works of Ibsen are typically published as
multi-volume publications, each containing a single play or multiple plays. This is
easily captured because the BIBSYS database implements a record structure for
this. The “parent” publication is described in a separate record, and each volume is
described in separate records that are linked to the parent record.

The various kinds of relationships that are found are listed in Figure 9.12 along
with the number of relationship instances that occurred in the test set. Figure 9.13
shows the relationships that exist between the expressions of the previous example.
The whole/part relationships are exemplified in Figure 9.14.

9.5.2.4 Additional Issues
Although the procedure in theory is a sequence of intuitive steps, the actual
extraction required some additional problems to be solved. Missing work titles in
the records was a major problem for detecting entities and relationships – in
particular between translations and their corresponding work entities. This problem

From entity To entity Relationship
type

Number of
relationships

Work Expression Realization 757

Expression Manifestation Embodies 2469

Expression Expression Translation 1533

Expression Expression Adaptation 183

Manifestation Manifestation Whole/Part 453

Figure 9.12: List of identified relationships.
N:no-3403

9.5 Implementing the Index 167

URN:NBN
Figure 9.13: Example relationships.

Figure 9.14: Multi-part volumes and the expressions they embody.

adaptation

translation translation

E2 E4

E3

E1

adaptationtranslation

translation

E6 E8

E7

E5

translationtranslation

E11 E10

E9

The Collected Works of Henrik Ibsen
/ Henrik Ibsen, 1908M0

E

E

E

E

E

E

E

E

E

embodies

embodies

embodies

embodies

embodies

embodies

embodies

embodies

embodies

The Vikings at Helgeland

The Pretenders

Lady Inger of Östråt

The Feast at Solhoug

Love's Comedy

Brand

Emperor and Galilean

Peer Gynt

The League of Youth

Pillars of Society E

embodies

M6
The Collected Works of Henrik Ibsen
Volume 6 / Henrik Ibsen, 1908

M5
The Collected Works of Henrik Ibsen
Volume 5 / Henrik Ibsen, 1908

M4
The Collected Works of Henrik Ibsen
Volume 4 / Henrik Ibsen, 1908

M3
The Collected Works of Henrik Ibsen
Volume 3 / Henrik Ibsen, 1908

M2
The Collected Works of Henrik Ibsen
Volume 2 / Henrik Ibsen, 1908

M1
The Collected Works of Henrik Ibsen
Volume 1 / Henrik Ibsen, 1908

whole/part
:no-3403

168 9 The FRBR Application

URN:NB
was solved by the use of a translation table based on the combinations of known
manifestation titles and work titles that existed in other records. If one record
contains the English title ''A Doll's House'' in 245$a and the original title ''Et
dukkehjem'' in 240/241 or 740, this information could be applied to comparable
records where the work title was missing in order to associate this manifestation
with the correct work.

The identification of the language of a manifestation was another problem
caused by a missing language code in the 008 field. The language of a manifestation
can, however, be interpreted by looking for language in 240$l or by resorting to the
publication place in 260$e which is likely to reflect the language of the
manifestation. The number of language code occurrences in Figure 9.7 reflects the
total number of language cods after this procedure was performed.

9.5.3 The FRBR Index
The resulting data that was created based on the above procedure contained a rich
set of entities and relationships. After identification of the entities and the
relationships, a simple batch program was used to create the nodes and relationships
in a running instance of the DL-LinkService. Nodes reflecting the work entities
were created as nodes of type Work, using the title attribute to hold the work title,
author name and the term “work” in a compact representation. Unique URI-based
identifiers were created for work nodes, but these URIs are merely identifiers and
do not point to any specific resource.

Nodes representing the expression were created as nodes of type Expression. The
node title of the expression was based on the work title combined with the language
of the expression in order to indicate a translation, or the adaptation keyword to
indicate an adaptation. This simplification was necessary because it was impossible
to determine which translated title belonged to which expression. For
manifestations that contained multiple works both the translated title and the
original title were listed in the same field (e.g. 740), but without any precise
mapping from the original title to the translated title. As with work nodes, the URI
of expression nodes merely serves to uniquely identify the resource and does not
point to any specific resource.

Nodes for manifestations were created for each manifestation in a comparable
way, but the manifestation URI points to the actual record for the manifestation in
the BIBSYS database.
N:no-3403

9.6 A Client for Navigating Relationships 169

URN:NBN
9.6 A Client for Navigating Relationships

The DL-LinkService can be accessed by any kind of application that is able to
communicate with CORBA distributed objects, and the FRBR index can be
integrated with catalogues in different ways. As a part of this work, a client
application was developed that enables a user to interact with the BIBSYS catalogue
by the use of a web browser and the FRBR index. The application is an Internet
Explorer plugin that implements a CORBA client for talking to the DL-
LinkService. It is tightly integrated with the browser environment as an Explorer
bar – using the same window that otherwise is used for the favourite’s list, browsing
history, etc. The plugin communicates with the main window by sinking the events
of the explorer and sending events to the main application to initiate specific
actions.

The nodes and relationships of the FRBR index are visualized using a basic
TreeView control. Only a subpart of the graph is displayed at one time, using the
node in focus as the root and directly connected nodes as leaf nodes. FRBR entities
are displayed as squares with a letter inside indicating the kind of node they
represent. Relationships are displayed using a diamond shape to indicate that this is
a relationship. Relationships are only accompanied by the typename, but nodes are
labelled with the value of the title attribute. Nodes behave in a slightly different way
in the tree view window. In the BIBSYS WEBPAC neither work nor expression
entities has a record equivalent, so it is not possible to retrieve records that
corresponds to these entities. A double click is used to navigate in the index and
retrieve other entities and their relationships, and if the user selects a manifestation
node the plugin retrieves the corresponding record from the BIBSYS catalogue.

In addition to interactive retrieval of catalogue records using the TreeView
control the client application is notified whenever a new web page is loaded into the
browsers main window, for instance if a user has performed a search using the
BIBSYS search dialogue and retrieves a specific catalogue record from the result
set. The plugin uses the URL of the loaded webpage to look up a directory service
and retrieve the node object reference for this particular manifestation. It can then
access the DL-LinkService to retrieve the relationships that are available for the
manifestation.

A screen shot illustrating the client is shown in Figure 9.15. The record
displayed in the main browser window refers to a manifestation that embodies the
English translation of ''Little Eyolf''. The window on the left displays the
relationships and the entities available for this expression.
:no-3403

170 9 The FRBR Application

URN:NB
Figure 9.15: Screenshot of the client.
N:no-3403

9.7 Evaluating the Application 171

URN:NBN
9.7 Evaluating the Application

The main contribution of this application is a framework for adding the FRBR
model to current bibliographic catalogues based on the use of an external index. The
index is realized by using the DL-LinkService and is an example of the applicability
of the service proposed. Other than the definition of the typology and determining
how to identify the entities of the FRBR model, the actual use of the DL-
LinkService for this purpose was a straight forward implementation issue. The
client side implementation related to the use of the DL-LinkService is
approximately 40 lines of code, which illustrates the simple and efficient solution
for navigation in the DL-LinkService. The behaviour of the TreeView control and
the integration with the browser, however, is implemented by a more extensive
number of source-code lines.

The main challenge in the development of this application was the extraction of
the entities and the relationships according to the FRBR model. This was achieved
by using a variety of queries and manipulations on the test case data and
demonstrates quite clearly that the task of enhancing bibliographic catalogues with
the FRBR model requires an external index, because the dynamic generation of this
information at runtime will be too expensive in terms of recurrent processing. A
different alternative is to alter the existing records to reflect the same information
that the index contains. Such an approach, however, requires that the FRBR model
is determined to be the information model for future cataloguing and that the set of
expressions and manifestations applicable to existing records are available in
authority files.

The focus of this application has been on a specific subset of records describing
works by Henrik Ibsen. Parts of the overall procedure that are used to extract the
entities and relationships laid out by the FRBR model are general, in the sense that
they can be applied to the whole BIBSYS catalogue – and other catalogues as well.
Other elements of the procedure are more pragmatic ad hoc solutions that only will
be valid for this specific subset of records from this specific catalogue. The
identification of expressions for the original text is one example, and was made
possible by knowing that Ibsen was Norwegian and asserting that all his works were
originally published in Norwegian.

In general we found that the guidelines suggested by Delsey in [55] are valid, but
a major problem is the significant difference between the indication of an FRBR
entity and the proper identification of an entity. Expressions are, in particular, hard
to identify, and as the application shows, one will often have to rely on more general
expressions than what the FRBR model suggests. One example is the use of the
“English translation” as a common expression for all English translations, despite
the existence of different translations by different translators. A more concise and
information rich catalogue may, however, yield a better result in terms of identifying
:no-3403

172 9 The FRBR Application

URN:NB
a distinct set of expressions. The implemented application illustrates that the FRBR
model may not be as mature as it appears. The complexity of the resulting index is
quite apparent and the presentation of this complexity in user interfaces is a
challenging issue. One possible simplification that can be applied to the model is to
eliminate the expression entity by rather using work and manifestation entities and
relationships to capture the information that otherwise would have to be expressed
by using expression entities. The use of the DL-LinkService for the purpose of
developing and evaluating such variations over the FRBR model is an easy and
convenient solution.

The developed client is merely a first attempt to illustrate how the DL-
LinkService can be integrated into an application. The networked nodes are
presented using the Microsoft tree view control, which is a coarse simplification of
the actual structure of the relationship network. The tree only presents a simplified
subpart of the underlying graph of the stored index. A better presentation of the
index may be achieved by using other graph presentations with correspondingly
improved interaction techniques. A different problem is the labelling of nodes and
relationships in such a way that users easily can interpret the index. The entities
have to be presented using selected metadata elements, and a suitable balance has to
be made between the need for a compact, and yet informative presentation.

The test case used in this application does originate from a single bibliographic
catalogue, but this is not a limitation. The Digital Library LinkService supports
linking of distributed content, and the service itself may also be distributed. An
index that implements relationships between distributed records can easily be
constructed. The manifestations of the index may include records from different
catalogues e.g. with paths to digital facsimiles of the original manuscripts stored
elsewhere on the Internet. Work and expression entities may link to authority
records e.g. maintained by national libraries.
N:no-3403

URN:NBN
10 Evaluating the Service

10.1 Application Areas

The solution presented in this work is based on relationships as first-class objects
external to the participating entities. A relationship instance is implemented as a
compound structure of node, role and link objects that form a relationship network
detached from the information object layer. This is implemented as a CORBA
distributed object application which supports a high degree of flexibility in terms of
distribution. However, requirements for relationships solutions in specific
applications may vary, and the proposed solution primarily targets applications
where one or more of the following is needed:

• A reusable solution for relationships.
• Explicit relationships that can be accessed by third-party applications.
• Multi-way relationships.
• Dynamic typing of relationships.
• Distributed endpoints.
• Requirements for processing capabilities within the range the service pro-

vides.
A typical scenario for using the service is in user-initiated navigation tasks where
the user retrieves the complete set (or subset) of relationships for a particular node,
inspects the relationships, selects one of the targets and retrieves the content of this
target possibly along with the relationships that the target participates in. The usage
of the service is, however, not limited to user initiated navigation, but may very well
include automized tasks based on the traversal of relationships, such as automatic
retrieval of the subparts of a compound information object for integrated
presentation. Another scenario is to use the relationship network to propagate
operations, such as updating and indexing.
:no-3403

174 10 Evaluating the Service

URN:NB
With a subcategory of relationship applications other solutions would be more
beneficial. The use of reference based relationship implementation is frequently
found in many implementations, mainly because they are simple to implement
along with the implementation of the other aspects of an application. A different
motivation is that direct addressing mechanism often will be the most efficient
solution, because there is no additional overhead when navigating, creating or
deleting relationships. Such solutions will typically be used when one or more of the
following characteristics are applicable:

• High capacity requirements in terms of processing speed and rate.
• A predefined and delimited number of relationships between well defined

classes.
• No requirements for third-party access.
• Sufficient with one-way relationships.
• No requirement for distribution of the relationship information in a coopera-

tive environment.
A typical scenario where the proposed solution will not perform adequately would
be a search through the relationship network for all nodes (or the content that nodes
reference) that satisfies specific criteria. If the network consists of e.g. a million of
interrelated nodes, the mere time cost of searching the entire network will be
beyond the time requirements of most applications. The major bottleneck for such
applications is the use of remote method invocations to traverse fine-grained
information. More efficient solutions for specific tasks can, on the other hand, be
implemented by defining interfaces that support the efficient implementation of
these tasks on the server side, such as querying a server-side index.

10.2 The Object Model

The object model used in the DL-LinkService is a fined-grained representation of
relationships. The basic features of the model can be summarized as:

• Support for relationships of any degree. The link object can be used to aggre-
gate any number of role objects and in this way support relationships of arbi-
trary degree. All examples in the test-case application, however, are binary,
which is by far the most common kind of relationship. The extensive use of
binary relationships versus the use of relationships of higher degree can
simply be due to the lack of support for higher degree relationships or that
other solutions often are preferred, such as the use of compound objects or
collections. The importance of supporting higher degree relationships can be
N:no-3403

10.2 The Object Model 175

URN:NBN
discussed, but the DL-LinkService enables high degree of flexibility in the
structuring of information spaces within a uniform solution.

• Support for multi-way relationships. The model supports multi-way relation-
ship, and does not deal with one-way relationships in a particular way. The
use of one-way relationships can, on the one hand, be considered as a specific
kind of bi-directional relationship where the inverse direction is invisible
from the target. This can be supported by extending the typing system with a
direction constraint and extending the implementation with behaviour that
leaves the inverse direction inaccessible for clients. The basic model does not
directly address this, but the cache implementation of the prototype shows
that it is possible to implement reference-based relationships within the same
model.

• Support for relationship typing. Relationships are typed using a role-based
typing scheme that supports the proper interpretation of relationships regard-
less of what direction the relationship is navigated. Typologies are used to
define the allowed typenames, but the typing is detached from the implemen-
tation of the service in order to support a flexible use of the system. Deploy-
ment of the service only requires the definition of a typology or the reuse of
an already defined typology.

• Support for constraints. Constraints are defined at the type level, and con-
straint checking is integrated into the object servants. The constraint mecha-
nism is used to ensure a formally correct relationship network, such as
ensuring that associated objects satisfy type constraints and that relationships
conform to the cardinality constraints.

• Support for consistency. A role aggregates and maintains all semantically
equivalent relationship instances that a particular node participates in. This
means that the model can be used to prevent link duplication and in this way
enable a consistent relationship network. The testing performed on the proto-
type implementation shows that duplicate detection can be a significant bot-
tleneck, because it involves an unpredictable number of RMIs. However, the
caching scheme implemented in the prototype is used to solve this in a way
that yields a predictable and scalable solution.

In addition to the basic features described above, the model theoretically supports
relationship attributes. The only attributes implemented in the prototype is a
predefined set of attributes used to store title and type, but application specific
attributes can easily be supported by implementing support for dynamic data types
or by the use of the CORBA Property Service. Application specific attributes, in
particular if they are based on the use of the CORBA Property Service, will be
difficult to cache with the caching scheme that is implemented in the prototype. The
:no-3403

176 10 Evaluating the Service

URN:NB
use of application specific attributes may for this reason imply a less efficient access
to the relationship network, because it requires that objects are directly accessed
rather than through the use of optimized short-cut operations.

The methods defined for the interfaces (and implemented in the prototype) are
the basic operations required to navigate relationships either by directly traversing
chained objects or by using a server-side operation that allows for optimization
techniques like the caching scheme that is implemented in the prototype. The first
strategy gives clients full control over the navigation process. On the other hand,
due to the possibly large number of RMIs that this may involve, this can be a
performance bottleneck as the number or relationship instances grow. The latter
strategy, based on the use of a role that caches information about opposite ends, is a
more reliable access method that scales well.

The model can further be extended to support other commonly needed methods.
The model does not directly support application specific relationship methods
defined as part of the interface signature without requiring implementation efforts.
On the other hand, this can be achieved by extending the service, such as defining
application specific interfaces that inherit the interfaces of the basic object model.
Inherited interfaces can still be interoperable with other components, but client-side
access to application specific behaviour requires support for these methods either by
supporting this subtyped interface or by using the dynamic method invocation
facility of CORBA.

10.3 Distribution

The fine-grained object model provided by the DL-LinkService enables a flexible
solution for distribution that can be tailored to a range of different needs. The
service can be used as a standalone service in a traditional client-server setting, in
which case the relationship network can be “owned” by a single enterprise and will
not contain any cross-organizational dependencies. On the other hand, the service
can be used in a cooperative environment where multiple services are used to build
a network where the relationship information is distributed over any number of
hosts and enterprises. The degree of distribution is a deployment concern and needs
to consider issues such as trust, performance requirements, quality of service, etc.
The main contribution of the service is that it can be tailored to most configurations
in terms of distribution.

The testing performed on the prototype shows that the use of the fine-grained
object model can cause problems in terms of performance and scalability, but the
tests conducted also prove that this can be solved if certain techniques are used to
improve on the performance. The use of an ORB that supports efficient calls
N:no-3403

10.4 Reuse 177

URN:NBN
between objects that reside in the same memory space, combined with the use of
server side navigation, is a sufficient solution if the relationship network is served
by a single instance of the service. The proposed caching scheme is a significant
contribution to improve the performance and scalability of the service if it is
deployed as multiple cooperating instances in a distributed environment. This is
particularly evident for the task of navigation where this technique reduces the
number of RMIs from an unpredictable and possibly high number to a constant
number of 2 RMIs. In a multi-service setup, the best solution is to keep endpoints
(nodes and their associated roles) collocated with respect to each other.

The creation of objects is on the other hand not very efficiently solved in the
current design of the system. Creating relationship instances when there is a high
latency in between the objects, is a particular problem. Creating relationship is on
the other hand a task that can be solved in many other ways than the basic factory
pattern that is defined for the service. If clients need to create a large number of
relationship instances efficiently, a more batch-like solution would be appropriate.
The task of creating relationships can also benefit from the cache as this can be used
to implement a scalable uniqueness testing mechanism.

10.4 Reuse

The proposed service supports reuse with respect to:
• Reuse of software assets.
• Reuse of resources.

The main purpose of reusing software assets is to decrease the development efforts
and cost of building applications. A main problem with component deployment is
that components need to be integrated into the application and/or with other
components in some way. The DL-LinkService can be integrated in digital library
systems as a detached service that merely references the information object layer,
which is the kind of deployment explored in this work. The main motivation for this
solution is to overcome the problem that current digital library systems are based on
heterogeneous software architectures, and as such there is no uniform solution for
component deployment yet. URI-based referencing is a mechanism that can be used
to support integration with digital library systems in many ways. Unfortunately, the
use of URIs is not a global solution for all kinds of information addressing. Many
digital library systems only implement internal identification schemes for
information objects, such as internal record identifiers and file names.

Integration of the service into a digital library system can additionally be based
on a tighter coupling between the information object layer and the relationship
:no-3403

178 10 Evaluating the Service

URN:NB
layer. This can be achieved by implementing support for the interfaces of the DL-
LinkService directly into the digital library system. However, this solution requires
a more system-specific implementation of the service or adaptation of an existing
code in order to create the coupling between the information object layer and the
relationship layer.

Reuse of resources is a different kind of reuse that allows third-party applications
to access the functionality and information a specific service provides. The DL-
LinkService is based on CORBA distributed objects which implies that all
information inherently is accessible for external parties. The degree of accessibility
is determined by the implemented security policies. Support for the service at the
client side is merely a question of automatically generating the required code by the
use of ordinary CORBA tools, and further usage of the service is a client-side issue.
Digital library clients can even integrate dynamic support for the service if they
support the dynamic interface invocation facilities of CORBA. Whether this
actually is a feasible solution remains a question. The use of a complex service that
includes several interrelated interfaces without prior knowledge of the overall
behaviour is highly difficult to support.

A different aspect of reuse for digital library services is the capability they have
to integrate with common services such as security, naming and directory services,
transactions, etc. The service proposed in this work uses CORBA and can easily be
integrate available CORBA services.

10.5 Referential Integrity

The DL-LinkService is based on the use of persistent objects and relies on the use of
object references to accommodate the integrity of the system, which is not without
certain problems. Applications that are based on the use of distributed objects
require referential integrity – a requirement that they share with many other
applications. A system of CORBA objects and their object references has referential
integrity if there are no dangling references (references without objects) and there
are no orphaned objects (objects that cannot be contacted via a reference) [92].
Dangling object references are for example analogous to the dangling links that
(too) frequently occur on the Web – links that point to documents that do not exist
any more.

Referential integrity in CORBA is a potential problem, because object references
are permitted to propagate by uncontrollable means. Object references can be freely
passed around as stringified references, and they can be copied in a number of ways.
The object reference is merely a communication identifier which contains
information about where the object can be found in the network. The reference itself
N:no-3403

10.5 Referential Integrity 179

URN:NBN
is completely detached from the object it points to, which means that removal or
migration of the object will not be reflected in the reference.

 Digital libraries store information with a long-term persistence in mind, and it is
natural to assume that the information/knowledge that extends or builds on the
primary content is created with the same long-term persistence in mind. If a
relationship is created between two long-term persistent documents by the use of the
DL-LinkService, it is natural to assume that this relationship potentially should be
available for the same period of time. Whereas information tends to be persistent,
the hardware and software environment that is used to store and disseminate this
information is more likely to change over time. In the long term this will
unavoidably result in random failures and unpredictable changes that can
compromise referential integrity. This is further complicated if the relationship
network spans multiple independently managed hosts.

Unfortunately there is no universal solution that can be applied to prevent lack of
referential integrity. One way to deal with the lack of referential integrity is to live
without it and to have fallback behaviours to recover from the problem, such as
reacquiring an object reference when it fails as described in [93]. CORBA supports
forwarding of object references, and the use of the CORBA naming service targets
the use of logical names that can be resolved to actual references at runtime. Other
strategies include the garbage collection of references that refer to permanently
unavailable (deleted) objects. A similar problem with referential integrity is often
found in hypermedia applications as well [47], and the proposed solutions are
similar [101].

The current DL-LinkService prototype does not explicitly implement any
fallback behaviour to recover from referential integrity problems. However, the
system can easily be extended to support such behaviour in different ways:

• Objects are uniquely identified by their UUIDs. The actual references to
objects are based on ordinary CORBA object references, but clients may
additionally store the UUID of the target object. In case of dangling refer-
ences, the UUID can be used to reacquire a reference from a naming or direc-
tory service.

• A different problem is caused by permanently unavailable objects. The DL-
LinkService supports consistent deletion of relationships, but errors may
occur in a distributed environment if objects are removed without properly
deleting the relationships first. In order to recover from this it is required to
perform garbage collection of object references. In the DL-LinkService pro-
totype the caching mechanism is used to duplicate opposite endpoints, and
this information can be used to perform proper garbage collection of relation-
ship endpoints and in this way re-establish referential integrity.
:no-3403

180 10 Evaluating the Service

URN:NB
The problem of maintaining referential integrity may seem as an apparent problem
with the DL-LinkService, because it relies on a fine grained object model with an
extensive use of object references. This problem, however, is mostly appearing
when relationship instances are distributed over multiple independently deployed
instances of the DL-LinkService. Systems that are maintained by a single enterprise
usually have means to ensure the integrity of the system. The degree of this problem
will increase as the number of component instances deployed by independent actors
increase, and additionally increase with deployments of unpredictable reliability. A
service deployed by a responsible organization/company is naturally more reliable
than a service deployed by a private user on a private machine. Correspondingly, the
problem can be decreased by carefully considering the deployment of cooperating
instances. The DL-LinkService provides distribution in a highly flexible way, but
how the service is deployed to provide the needed balance between flexibility and
ensured level of referential integrity is a security policy issue.

The problem of maintaining long-term referential integrity is a problem that is
apparent in many other distributed digital library applications as well. The
referential integrity problem of URL-based identification is generally
acknowledged, and has led to persistent identifier solutions like the Handle System,
PURL [181], and the URN initiative. Many current technologies include the use of
URIs to identify resources at a level of granularity comparable to the DL-
LinkService, such as the use of URIs to identify the subject and object of RDF
statements, the use of URIs to identify types, ontology entries, etc. Although the use
of persistent identifiers for such purposes appears to be a promising solution, it is
merely a partial solution that provides for convenient maintenance of references,
global uniqueness, etc. These solutions, however, are not any more reliable than the
directory that contains the mapping between the persistent identifier and the actual
address. In this context, the possible referential integrity problem of the DL-
LinkService should be considered a general problem that will occur as federated
digital libraries with fine grained interdependency at the information level emerge.

10.6 Interoperability

The proposed service and the prototype that is explored in this thesis encompass
both the data storage level and the processing level of the service. The prototype
implementation stores information in a database using an ad-hoc database schema.
Although interoperability with specific formats that support relationship
information is described in Chapter 7.4, the implemented prototype does not attempt
to implement the use of a specific format at the bottom layer of the model depicted
in Figure 2.4.
N:no-3403

10.6 Interoperability 181

URN:NBN
The ideal solution for a digital library relationship service is a service that can be
used as a front end to relationship information that is locally stored in different
formats, such as Dublin Core metadata, XLink, Topic Maps, RDF, etc. Such formats
are, unfortunately, highly diverse, and a direct mapping between the relationship
model of the DL-LinkService and other formats has not been further explored in this
work. The implementation of such interoperability is a task that needs to be
explored for each of the relevant formats. In most cases this needs to be solved on a
per application basis. Furthermore, this is complicated by the possible distribution
of relationships information that the DL-LinkService allows for.
:no-3403

182 10 Evaluating the Service

URN:NB
N:no-3403

URN:NBN
11 Conclusions and Future Work

11.1 Conclusions

The motivation for this work is based on two generally recognized research issues
for digital libraries. One is the need for interlinked and semantically rich
information spaces in digital libraries. Relationship information is considered to be
an important element when developing such information spaces. The other is the
service-oriented architecture envisioned for future digital library systems, which
implies that the overall functionality of digital libraries will consist of smaller
independent services that can be reused in a federated and cooperative digital library
environment. These two orthogonal research issues lead up to the specific problem
statement explored in this research which is:

How to provide a service for using and managing relationships
in digital libraries.

This question is answered by exploring digital libraries with respect to the content
they store and disseminate, which at the general level can be interpreted as
information objects. Relationships among information objects are in current digital
library solutions based on a highly heterogeneous set of solutions. The approach
that is explored in this work is the use of an explicit and generic data structure for
relationship information and a service that implements the support for managing
and using such information.

This approach is explored by first examining relationship knowledge in general
and then examining specific conventions and solutions that are used for explicit
relationship information in technologies related to digital libraries. Based on this
understanding, an abstract but formal model of explicit relationships is developed
that captures the variable structural and semantic aspects of relationships within one
uniform construct.
:no-3403

184 11 Conclusions and Future Work

URN:NB
A specific solution – the Digital Library Link Service – is proposed which is
designed as a CORBA distributed object application. The service extends and
combines features from relevant existing solutions. It combines the detached
solution and instance-oriented approach to linking that is found in hypermedia link
services with the support for consistency and constraints that is inspired by object-
oriented solutions for explicit relationship objects. The object model of the CORBA
Relationship Service is used as the initial model, because it captures well the
generic model of relationship information that this thesis proposes. The result is a
coherent solution for managing consistent, multi-way relationships in a distributed
digital library environment. The use of a generic relationship construct in
combination with a flexible implementation-independent typing mechanism
provides a generic and reusable solution that can be applied in a range of different
digital library applications.

A prototype implementation that uses caching and fat operations is implemented,
and test results show that the proposed service is a feasible solution that yields
predictable performance in terms of response time and scalability.

The proposed service is a generic solution for using and managing relationships
that easily can be adapted to various applications by defining application-specific
typologies. Validation that it can be used to solve specific problems is provided by
the developed test-case application that implements the relationships of the FRBR
model as navigational paths on top of an existing bibliographic catalogue based on
the use of the DL-LinkService.

11.2 Summary of Contributions

• The thesis contributes to the understanding of relationships in digital libraries
by reviewing how relationships generally are understood and supported in
information technology. A general conclusion is that existing solutions for
representing and processing relationship information are highly diverse.

• An abstract model of explicit relationships is specified that provides a flexi-
ble solution for representing relationship information in a uniform way. This
shows that a generic data model can be used to capture the full range of rela-
tionship types that are relevant for digital libraries. This solution, however,
requires a relationship typing scheme to ensure logically correct relation-
ships.

• The thesis specifies and describes the Digital Library Link Service – an
instance-oriented solution for managing and using relationships in digital
libraries. The use of an object-oriented solution enables a coherent and flexi-
ble solution for the data, behaviour and constraints of explicit relationships.
N:no-3403

11.3 Related Work 185

URN:NBN
By separating the typing of relationships from the implementation, a reusable
and dynamic service for relationship support in digital libraries is achieved.
The DL-LinkService can be used to create complex relationship networks.

• This work shows that the use of a fine-grained relationship model imple-
mented as distributed objects enables distribution of the relationship network
while still being able to support constraints and maintain consistency. The
cost of this, however, is a certain complexity that can reduce performance and
scalability due to the call latency of network communication. A prototype is
developed that utilizes caching in order to solve this. Tests conducted show
that this technique significantly contributes to the scalability and efficiency.
This is particularly important when the relationship information is distributed
across different processes with high call-latency in between.

• The fine-grained relationship object model that is deployed enables distribu-
tion along many axes. The service can be used in a client/server fashion or it
can be used for peer-to-peer collaborative construction of a consistent, coher-
ent and highly distributed relationship networks. A general conclusion is that
relationship information can be distributed if this is needed. Implementing
long-term persistent information as distributed objects, however, is a chal-
lenging issue due to the possible lack of referential integrity that may occur.
This work suggests the use of globally unique identifiers as the main enabler
for implementing solutions to solve and prevent such problems.

• The proposed solution supports interactive traversal of the relationship net-
work. However, the main access paradigm explored in this work is user-initi-
ated navigation with a relaxed requirement for processing capacity. The need
for automatic and efficient processing of a large relationship network, e.g. for
the purpose of indexing, can be supported by extending the system with addi-
tional functionality.

• Furthermore, a prototype application for enhancing bibliographic catalogues
with a rich set of relationship types is implemented. This demonstrates the
applicability of the service as a flexible tool for associative organization of
information spaces and illustrates the potentially rich information structures
that relationships can enable in digital libraries.

11.3 Related Work

The solution proposed in this thesis is in many ways related to the works of others.
The various aspects of the proposed service are inspired by different solutions and
:no-3403

186 11 Conclusions and Future Work

URN:NB
can be interpreted as a novel combination of features that otherwise are fragmented
across various technologies.

Current relationship support in digital libraries is to a certain degree focused on
formats for structured information, such as particular metadata formats and RDF,
Topic Maps, XLink, and various document formats that support links. The formats
that are most comparable to the model proposed in this work are the XLink
specification and the Topic Maps specification. The major difference between this
work and the various descriptive solutions is a focus on both the processing and
representation of relationship information in a coherent solution. The use of object-
orientation enables the embedded support for features like consistency mechanisms
and constraint checking. The development of various processing environments for
Topic Maps, RDF, and XLink, is an emerging solution, but this is mainly focused on
the development of APIs for processing single repositories of such information.

The intention of the proposed typing scheme used in the DL-LinkService is
comparable to the use of types and ontologies in Semantic Web applications. The
implemented typology scheme is based on a specific XML Schema, but a
comparable scheme can for example be based on the DAML+OIL language [114] to
achieve interoperability with the typing schemes of other digital library services.
The advantages of the proposed typing scheme are that it is easily readable and easy
to generate manually.

Different solutions for relationships in object-oriented solutions are described in
[21, 24, 57, 36, 182, 179]. Comparable solutions for digital library systems can be
found in [70, 207]. This work proposes a solution that is comparable to solutions
that implement relationships as first-class objects. The main difference is that this
work does not consider relationships as a static feature at the class level, but rather
as a dynamic feature of instances. One object-oriented database solution with a
comparable dynamic approach is described in [167]. The ability to allow any object
to participate in any relationship without having this feature fixed at compile time is
considered to be important for digital libraries due to the heterogeneous nature of
digital library information objects and the unpredictable requirements for
relationship participation.

An additional difference is that the DL-LinkService directly exposes the
relationship information to third-party applications as distributed objects, which
seldom is the case for relationship constructs in object-oriented languages and
databases.

The DL-LinkService is based on the same object model as the CORBA
Relationship Service, and some of the features of the service are for that reason
comparable. The main difference is the use of the same interfaces and factories for
all types of relationships, which in the CORBA Relationship Service needs to be
specified as a distinct interface for each relationship type. The dynamic run-time
N:no-3403

11.3 Related Work 187

URN:NBN
typing of the DL-LinkService yields a quite different solution that can be deployed
without programming level adaptation. The use of fat operations extends a feature
that is used in the CORBA Relationship Service, whereas the caching scheme is
specific for the implementation of the DL-LinkService prototype and is an
important solution that improves the performance and scalability of the service.

Hypermedia link services have been a major source of inspiration in the
development of the solution proposed in this work. The links of hypermedia are
two-ways, they can be added or removed dynamically without interfering with the
information objects and certain hypermedia link services have a comparable
approach to dynamic typing. However, several aspects of the DL-LinkService are
different from hypermedia link services:

• The DL-LinkService supports relationships of arbitrary degree, whereas
many hypermedia link services are mainly concerned with binary links, such
as [87, 214].

• The support for constraints (and consistency) mechanisms are less apparent
in hypermedia.

• Hypermedia systems usually use simple labels when typing links, although
other more complex semantic structures have been explored, such as in [143].
The use of node-, role- and link typenames in the DL-LinkService is a more
powerful mechanism for expressing the semantics of a relationship structure.

• Hypermedia link servers are in most cases based on the client-server model.
Clients may retrieve links from multiple link repositories, but there has been
little research on integration of link repositories. This is supported signifi-
cantly differently in the DL-LinkService, because it can be used to build an
integrated relationship network that is distributed across multiple instances of
the service.

• The DL-LinkService addresses the need for relationships in many kinds of
applications. A hypermedia application can be based on the use of the DL-
LinkService, but this is merely one potential use of the service among others.
This feature is more comparable to the structure services of structural com-
puting [152, 153].
:no-3403

188 11 Conclusions and Future Work

URN:NB
11.4 Limitations and Further Work

The following issues have been identified as problems that should be addressed in
future work and extensions that can be considered in future development of the
service:

• Further development of the service to include support for features like trans-
actions, security and properties, as described in Chapter 7.

• A more advanced typology system e.g. based on the ontology languages that
are used for the Semantic Web. Features that can be included are the use of
type inheritance, the ability to import and reuse type definitions across typol-
ogies, more advanced constraints such as node-node constraints, etc.

• Supporting one-way references and multi-way relationships within the same
framework is another possible extension that can be added to the proposed
solution. The service emphasizes support for typed and constrained multi-
way relationships which can be interpreted as the most complex kind of rela-
tionships. However, certain applications simply do not need such an
advanced solution. The use of simple references can be adequate for many
purposes and can even be an advantage because it does not require any kind
of synchronization. Support for one-way and reference-based relationships
can be considered as a special case of the proposed model, and the system can
be extended to support the abstraction of a role as a one-way reference.

• The object model of the proposed service is based on strong coupling
between the various objects, which can be a possible problem if the service is
deployed as a highly distributed application, e.g. if numerous service
instances are used to create a cooperative relationship network. However, the
dependencies between various instances of the service can be reduced by
using an event-based mechanism rather than method invocations in the
implementation of the bind/unbind pattern.

• A different field that needs to be explored is the support of fallback behaviour
to referential integrity problems, such as reacquiring references through the
use of directories or naming services, or the use of garbage collection of ref-
erences to permanently unavailable objects etc. This is not only related to the
service proposed in this thesis but applies to the use of CORBA as the infra-
structure for distributed and interdependent long-term persistent information
in general. The use of location independent names as the primary addressing
mechanism, combined with a high performance resolution technique, is an
important research issue related to many digital library applications.

• The main application areas that the service addresses are tasks with a relaxed
requirement for efficiency in terms of processing capacity. Retrieval of all
N:no-3403

11.4 Limitations and Further Work 189

URN:NBN
relationships for a particular node is quite efficient and only affected by the
network latency of the client/server connection when a node and its associ-
ated roles are served by the same host/process. This means that the service
should perform equally as well as e.g. hypermedia link services. Automatic
processing of larger network structures, on the other hand, may exceed a rea-
sonable response time, because this implies multiple consecutive invocations,
such as when processing all relationships for a large set of nodes. However, a
solution that supports high capacity processing of relationships can be sup-
ported by extending the service with interfaces and server side implementa-
tions for specific tasks, such as querying an index for nodes that satisfy
particular criteria.

• Finally, further validation through implementation and experimentation is
required in order to properly eliminate unforeseen problems and improve on
the model. The test-case application presented in this work is only one out of
a range of applications that the service should be able to support. The main
design criterion of the service is that it should be adaptable to a variety of
applications by defining application specific typologies. In addition to the
test-case explored in this work, applications relevant for testing the service
could be:
– A traditional hypertext application where the nodes and relationships are

used to represent fragments of interlinked text or other hypermedia objects
and the dynamic discovery and integration of such links into the content at
runtime.

– An annotation service where users can create and store annotations and
personal relationship structures, and possibly annotate existing relation-
ships by the use of the CORBA Property Service. The challenge in such
applications would be to support relationship networks that are associated
to a specific person either by associating a context with the relationship
objects or by using multiple node sets for the same information where the
nodes are associated to particular users.

– Citation linking is another important application area in digital libraries.
The challenges of such applications would be to interoperate with other
initiatives that address the same problem like the repository independent
addressing scheme of OpenURL [53].

– Thesaurus browsing integrated with the document repository where the
thesaurus entries and the relationships between these are represented as
nodes and relationships, as well as the representation of the document to
thesaurus entries by the use of the DL-LinkService.
:no-3403

190 11 Conclusions and Future Work

URN:NB
– Explore the use of the service to represent compound information objects
and collections. Implementing a sorted collection can be achieved e.g. by
defining a relationship type of undefined degree and the use of relation-
ship properties to contain the data value that is used to sort the collection.
N:no-3403

URN:NBN
Appendix

A.1 The LinkService Module

module LinkService {

typedef octet UUID[16];
typedef string URI;
typedef sequence<URI> URIS;

interface UUIDObject {
readonly attribute UUID uuid;

};

// Forward declarations
interface Node;
interface Role;
interface Link;

typedef sequence<Node> Nodes;
typedef sequence<Role> Roles;
typedef sequence<Link> Links;

struct NodeHandle {
Node the_node;
Typology::Type the_node_type;
string the_node_uri;
string the_node_title;
UUID the_node_uuid;

};
:no-3403

192 Appendix

URN:NB
struct RoleHandle {
Role the_role;
Typology:Type the_role_type;
string the_role_title;
UUID the_role_uuid;
NodeHandle the_node_handle;

};

struct LinkHandle {
Link the_link;
Typology::Type the_link_type;
string the_link_title;
UUID the_link_uuid;

};

typedef sequence<LinkHandle> LinkHandles;
typedef sequence<RoleHandle> RoleHandles;
typedef sequence<NodeHandle> NodeHandles;

interface NodeFactory {
exception InvalidURI{string uri;};
exception NodeNotCreated{string reason;};
Node create (in string uri, in Typology::Type node_type,

in string title)
raises (InvalidURI, NodeNotCreated);

};

interface Node : UUIDObject{
exception UnKnownRole {};
exception UnKnownRoleType {};
exception DuplicateRoleType {};
exception RoleSetNotEmpty {};
readonly attribute RoleHandles role_handles;
readonly attribute string title;
readonly attribute Type node_type;
readonly attribute string uri;
RoleHandle get_role_handle (in Typology::Type role_type);
Nodes opposite_nodes(in Typology::Type role_type)

raises (UnKnownRoleType);
URIS opposite_uris(in Typology::Type role_type)

raises (UnKnownRoleType);
void destroy()raises (RoleSetNotEmpty);
NodeHandle bind (in RoleHandle a_role_handle)

raises (DuplicateRoleType);
void unbind (in RoleHandle a_role_handle);

};
N:no-3403

Appendix 193

URN:NBN
interface RoleFactory {
exception NilRelatedNode {};
exception UnknownRoleType {};
exception NodeError {string reason;};
exception RoleNotCreated{string reason;};
RoleHandle create (in Node entity_node,

in Typology::Type role_type,
in string title)
raises (NilRelatedNode, NodeError,
UnknownRoleType, RoleNotCreated);

};

interface Role : UUIDObject{
exception RoleError {string explanation;};
exception UniquenessError {string explanation;};
readonly attribute Node entity_node;
readonly attribute string title;
readonly attribute Typology::Type role_type;
readonly attribute unsigned long current_cardinality;
readonly attribute LinkHandles link_handles;
Nodes opposite_nodes();
URIS opposite_uris();
void destroy() raises(RoleError);
void bind (in LinkHandle link, in RoleHandles other_roles)

raises(RoleError, UniquenessError);
void unbind (in LinkHandle link)

 raises (RoleError);
};

interface LinkFactory {
Link create (in RoleHandles role_handles,

 in Typology::Type link_type,
 in string title)
 raises (TypeError, Role::UniquenessError);

};

interface Link : UUIDObject{
exception DestroyError {string explanation;};
readonly attribute string title;
readonly attribute Typology::Type link_type;
readonly attribute RoleHandles role_handles;
RoleHandles other_role_handles(in RoleHandle role_handle);
void destroy () raises(DestroyError);

};

};
:no-3403

194 Appendix

URN:NB
A.2 The Typology Module

module Typology {

// Typologies are identified by simple strings
typedef string TypologyName;

// A data structure for compound typenames
struct Type{

string typology_name;
string type_name;

};

// The declaration of various types
typedef sequence<TypologyName> TypologyNames;
typedef sequence<Type> LinkTypes;
typedef sequence<Type> RoleTypes;
typedef sequence<Type> NodeTypes;

// A data structure for link type definitions
struct LinkTypeDefinition{

Type link_type;
string degree;
RoleTypes allowed_roles;
boolean rolename_uniqueness;
boolean link_uniqueness;

};

// A data structure for role type definitions
struct RoleTypeDefinition{

Type role_type;
string min_cardinality;
string max_cardinality;
LinkTypes allowed_links;

};

// A data structure for node type definitions
struct NodeTypeDefinition{

Type node_type;
RoleTypes allowed_roles;

};
N:no-3403

Appendix 195

URN:NBN
interface TypeLookUp{
exception UnknownType {};
exception UnknownTypology {};
LinkTypeDefinition get_link_typedefinition

(in Type link_type) raises (UnknownType);
RoleTypeDefinition get_role_typedefinition

(in Type role_type) raises (UnknownType);
TypologyNames get_typology_names()

raises (UnknownTypology);
LinkTypes get_link_types (in string typology_name)

raises (UnknownTypology);
RoleTypes get_role_types (in string typology_name)

raises (UnknownTypology);
};

};
:no-3403

196 Appendix

URN:NB
A.3 The Typology Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
<xs:element name="Typologies">

<xs:complexType>
<xs:sequence maxOccurs="unbounded">

<xs:element ref="Typology"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="Typology">
<xs:complexType>

<xs:sequence>
<xs:element name="TypologyName" type="xs:string"/>
<xs:element name="NodeType" type="NodeTypeDefinition"

maxOccurs="unbounded"/>
<xs:element name="RoleType" type="RoleTypeDefinition"

maxOccurs="unbounded"/>
<xs:element name="LinkType" type="LinkTypeDefinition"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:unique name="NodeUniqueness">
<xs:selector xpath="NodeType"/>
<xs:field xpath="TypeName"/>

</xs:unique>

<xs:unique name="RoleUniqueness">
<xs:selector xpath="RoleType"/>
<xs:field xpath="TypeName"/>

</xs:unique>

<xs:unique name="LinkUniqueness">
<xs:selector xpath="LinkType"/>
<xs:field xpath="TypeName"/>

</xs:unique>

<xs:key name="LinkKey">
<xs:selector xpath="LinkType"/>
<xs:field xpath="TypeName"/>

</xs:key>
N:no-3403

Appendix 197

URN:NBN
<xs:key name="RoleKey">
<xs:selector xpath="RoleType"/>
<xs:field xpath="TypeName"/>

</xs:key>

<xs:keyref name="AllowedRolesInNodekeyRef" refer="RoleKey">
<xs:selector xpath="NodeType/AllowedRole"/>
<xs:field xpath="."/>

</xs:keyref>

<xs:keyref name="AllowedRolesInLinkKeyRef" refer="RoleKey">
<xs:selector xpath="LinkType/AllowedRole"/>
<xs:field xpath="."/>

</xs:keyref>

<xs:keyref name="AllowedLinkInRolesKeyRef" refer="LinkKey">
<xs:selector xpath="RoleType/AllowedLink"/>
<xs:field xpath="."/>

</xs:keyref>
</xs:element>

<xs:complexType name="NodeTypeDefinition">
<xs:sequence>

<xs:element name="TypeName" type="xs:string"/>
<xs:element name="AllowedRole" type="xs:string"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="LinkTypeDefinition">
<xs:sequence>

<xs:element name="TypeName" type="xs:string"/>
<xs:element name="Degree" type="xs:byte"/>
<xs:element name="AllowedRole" type="xs:string"

maxOccurs="unbounded"/>
<xs:element name="RoleNameUniqueness" type="xs:boolean"/>
<xs:element name="LinkUniqueness" type="xs:boolean"/>

</xs:sequence>
</xs:complexType>
:no-3403

198 Appendix

URN:NB
<xs:complexType name="RoleTypeDefinition">
<xs:sequence>

<xs:element name="TypeName" type="xs:string"/>
<xs:element name="MinCardinality" type="CardinalityType"/>
<xs:element name="MaxCardinality" type="CardinalityType"/>
<xs:element name="AllowedLink" type="xs:string"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:simpleType name="CardinalityType">
<xs:restriction base="xs:string">

<xs:pattern value="[0-9]*|N"/>
</xs:restriction>

</xs:simpleType>

</xs:schema>
N:no-3403

Appendix 199

URN:NBN
A.4 The FRBR Typology

<?xml version="1.0" encoding="UTF-8"?>
<Typologies xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="Typologies.xsd">

<Typology>

<TypologyName>FRBR</TypologyName>

<NodeType>
<TypeName>Work</TypeName>
<AllowedRole>HasAbridgement</AllowedRole>
<AllowedRole>Complements</AllowedRole>
<AllowedRole>HasComplement</AllowedRole>
<AllowedRole>HasSuccessor</AllowedRole>
<AllowedRole>HasSummary</AllowedRole>
<AllowedRole>HasSupplement</AllowedRole>
<AllowedRole>HasTransformation</AllowedRole>
<AllowedRole>HasAdaptation</AllowedRole>
<AllowedRole>HasImitation</AllowedRole>
<AllowedRole>HasPart</AllowedRole>
<AllowedRole>IsSuccessorOf</AllowedRole>
<AllowedRole>IsSummaryOf</AllowedRole>
<AllowedRole>IsTransformationOf</AllowedRole>
<AllowedRole>IsAdaptationOf</AllowedRole>
<AllowedRole>IsImitationOf</AllowedRole>
<AllowedRole>IsPartOf</AllowedRole>
<AllowedRole>IsRealizedThrough</AllowedRole>
<AllowedRole>Supplements</AllowedRole>

</NodeType>

<NodeType>
<TypeName>Expression</TypeName>
<AllowedRole>Complements</AllowedRole>
<AllowedRole>HasComplement</AllowedRole>
<AllowedRole>HasRevision</AllowedRole>
<AllowedRole>HasSuccessor</AllowedRole>
<AllowedRole>HasSummary</AllowedRole>
<AllowedRole>HasSupplement</AllowedRole>
<AllowedRole>HasTransformation</AllowedRole>
<AllowedRole>HasTranslation</AllowedRole>
<AllowedRole>HasAdaptation</AllowedRole>
<AllowedRole>HasAbridgement</AllowedRole>
<AllowedRole>HasArrangement</AllowedRole>
<AllowedRole>HasImitation</AllowedRole>
:no-3403

200 Appendix

URN:NB
<AllowedRole>HasPart</AllowedRole>
<AllowedRole>IsRealizationOf</AllowedRole>
<AllowedRole>IsRevisionOf</AllowedRole>
<AllowedRole>IsSuccessorOf</AllowedRole>
<AllowedRole>IsSummaryOf</AllowedRole>
<AllowedRole>IsTransformationOf</AllowedRole>
<AllowedRole>IsTranslationOf</AllowedRole>
<AllowedRole>IsAbridgementOf</AllowedRole>
<AllowedRole>IsAdaptationOf</AllowedRole>
<AllowedRole>IsArrangementOf</AllowedRole>
<AllowedRole>IsImitationOf</AllowedRole>
<AllowedRole>IsEmbodiedIn</AllowedRole>
<AllowedRole>IsPartOf</AllowedRole>
<AllowedRole>Supplements</AllowedRole>

</NodeType>

<NodeType>
<TypeName>Manifestation</TypeName>
<AllowedRole>HasReproduction</AllowedRole>
<AllowedRole>HasAlternate</AllowedRole>
<AllowedRole>HasPart</AllowedRole>
<AllowedRole>IsReproductionOf</AllowedRole>
<AllowedRole>IsAlternateTo</AllowedRole>
<AllowedRole>Embodies</AllowedRole>
<AllowedRole>IsExemplifiedBy</AllowedRole>
<AllowedRole>IsPartOf</AllowedRole>

</NodeType>

<NodeType>
<TypeName>Item</TypeName>
<AllowedRole>HasReproduction</AllowedRole>
<AllowedRole>HasPart</AllowedRole>
<AllowedRole>HasReconfiguration</AllowedRole>
<AllowedRole>HasReproduction</AllowedRole>
<AllowedRole>IsReconfigurationOf</AllowedRole>
<AllowedRole>IsReproductionOf</AllowedRole>
<AllowedRole>IsExampleOf</AllowedRole>
<AllowedRole>IsPartOf</AllowedRole>

</NodeType>

<RoleType>
<TypeName>HasAbridgement</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Abridgement</AllowedLink>

</RoleType>
N:no-3403

Appendix 201

URN:NBN
<RoleType>
<TypeName>IsAbridgementOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Abridgement</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasAdaptation</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Adaptation</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsAdaptationOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Adaptation</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasAlternate</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Alternate</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsAlternateTo</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Alternate</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasArrangement</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Arrangement</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsArrangementOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Arrangement</AllowedLink>

</RoleType>
:no-3403

202 Appendix

URN:NB
<RoleType>
<TypeName>HasComplement</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Complement</AllowedLink>

</RoleType>

<RoleType>
<TypeName>Complements</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Complement</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasImitation</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Imitation</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsImitationOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Imitation</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasPart</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>WholePart</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsPartOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>WholePart</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasReconfiguration</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Reconfiguration</AllowedLink>

</RoleType>
N:no-3403

Appendix 203

URN:NBN
<RoleType>
<TypeName>IsReconfigurationOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Reconfiguration</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasReproduction</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Reproduction</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsReproductionOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Reproduction</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasRevision</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Revision</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsRevisionOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Revision</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasSuccessor</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Successor</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsSuccessorOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Successor</AllowedLink>

</RoleType>
:no-3403

204 Appendix

URN:NB
<RoleType>
<TypeName>HasSummary</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Summarization</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsSummaryOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Summarization</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasSupplement</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Supplement</AllowedLink>

</RoleType>

<RoleType>
<TypeName>Supplements</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Supplement</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasTransformation</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Transformation</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsTransformationOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Transformation</AllowedLink>

</RoleType>

<RoleType>
<TypeName>HasTranslation</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Translation</AllowedLink>

</RoleType>
N:no-3403

Appendix 205

URN:NBN
<RoleType>
<TypeName>IsTranslationOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Translation</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsEmbodiedIn</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Embodiment</AllowedLink>

</RoleType>

<RoleType>
<TypeName>Embodies</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Embodiment</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsExemplifiedBy</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Example</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsExampleOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>1</MaxCardinality>
<AllowedLink>Example</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsRealizedThrough</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>N</MaxCardinality>
<AllowedLink>Realization</AllowedLink>

</RoleType>

<RoleType>
<TypeName>IsRealizationOf</TypeName>
<MinCardinality>0</MinCardinality>
<MaxCardinality>1</MaxCardinality>
<AllowedLink>Realization</AllowedLink>

</RoleType>
:no-3403

206 Appendix

URN:NB
<LinkType>
<TypeName>Abridgement</TypeName>
<Degree>2</Degree>
<AllowedRole>HasAbridgement</AllowedRole>
<AllowedRole>IsAbridgementOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Adaptation</TypeName>
<Degree>2</Degree>
<AllowedRole>HasAdaptation</AllowedRole>
<AllowedRole>IsAdaptationOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Alternate</TypeName>
<Degree>2</Degree>
<AllowedRole>HasAlternate</AllowedRole>
<AllowedRole>IsAlternateTo</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Arrangement</TypeName>
<Degree>2</Degree>
<AllowedRole>HasArrangement</AllowedRole>
<AllowedRole>IsArrangementOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Complement</TypeName>
<Degree>2</Degree>
<AllowedRole>HasComplement</AllowedRole>
<AllowedRole>Complements</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>
N:no-3403

Appendix 207

URN:NBN
<LinkType>
<TypeName>Imitation</TypeName>
<Degree>2</Degree>
<AllowedRole>HasImitation</AllowedRole>
<AllowedRole>IsImitationOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>WholePart</TypeName>
<Degree>2</Degree>
<AllowedRole>HasPart</AllowedRole>
<AllowedRole>IsPartOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Reconfiguration</TypeName>
<Degree>2</Degree>
<AllowedRole>HasReconfiguration</AllowedRole>
<AllowedRole>IsReconfigurationOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Reproduction</TypeName>
<Degree>2</Degree>
<AllowedRole>HasReproduction</AllowedRole>
<AllowedRole>IsReproductionOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Revision</TypeName>
<Degree>2</Degree>
<AllowedRole>HasRevision</AllowedRole>
<AllowedRole>IsRevisionOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>
:no-3403

208 Appendix

URN:NB
<LinkType>
<TypeName>Successor</TypeName>
<Degree>2</Degree>
<AllowedRole>HasSuccessor</AllowedRole>
<AllowedRole>IsSuccessorOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Summarization</TypeName>
<Degree>2</Degree>
<AllowedRole>HasSummary</AllowedRole>
<AllowedRole>IsSummaryOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Supplement</TypeName>
<Degree>2</Degree>
<AllowedRole>HasSupplement</AllowedRole>
<AllowedRole>Supplements</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Transformation</TypeName>
<Degree>2</Degree>
<AllowedRole>HasTransformation</AllowedRole>
<AllowedRole>IsTransformationOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Translation</TypeName>
<Degree>2</Degree>
<AllowedRole>HasTranslation</AllowedRole>
<AllowedRole>IsTranslationOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>
N:no-3403

Appendix 209

URN:NBN
<LinkType>
<TypeName>Embodiment</TypeName>
<Degree>2</Degree>
<AllowedRole>IsEmbodiedIn</AllowedRole>
<AllowedRole>Embodies</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Example</TypeName>
<Degree>2</Degree>
<AllowedRole>IsExemplifiedBy</AllowedRole>
<AllowedRole>IsExampleOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

<LinkType>
<TypeName>Realization</TypeName>
<Degree>2</Degree>
<AllowedRole>IsRealizedThrough</AllowedRole>
<AllowedRole>IsRealizationOf</AllowedRole>
<RoleNameUniqueness>true</RoleNameUniqueness>
<LinkUniqueness>true</LinkUniqueness>

</LinkType>

</Typology>

</Typologies>
:no-3403

210 Appendix

URN:NB
N:no-3403

URN:NBN
References

[1] Trond Aalberg. Linking Information with Distributed Objects. In Panos Con-
stantopoulos and Ingeborg T. Sølvberg, editors, Proceedings of the 5th Euro-
pean Conference on Research and Advanced Technology for Digital Libraries,
ECDL 2001, number 2163 in Lecture Notes in Computer Science, pages 149–
160. Springer-Verlag, 2001.

[2] Trond Aalberg. Navigating in Bibliographic Catalogues. In Maristella Agosti
and Constantino Thanos, editors, Proceedings of the 6th European Conference
on Research and Advanced Technology for Digital Libraries, ECDL 2002, num-
ber 2458 in Lecture Notes in Computer Science, pages 238–250. Springer-Ver-
lag, 2002.

[3] Nabil R. Adam and Yelena Yesha. Introduction. International Journal on Digital
Libraries, 1(1), 1997.

[4] Robert M. Akscyn and Donald L. McCracken. PLEXUS : A Hypermedia Archi-
tecture for Large-Scale Digital Libraries. In Proceedings of the 11th Annual
International Conference on Systems Documentation, pages 11–20. ACM Press,
1993.

[5] American National Standards Institute. Serial Item and Contribution Identifier
(SICI). ANSI/NISO standard Z39.56-1996 (Version 2), August 1996.

[6] American National Standards Institute. Syntax for the Digital Object Identifier.
ANSI/NISO standard Z39.84-2000, May 2000.

[7] Kenneth M. Anderson, Richard N. Taylor, and Jr. E. James Whitehead. Chimera
: Hypertext for Heterogeneous Software Environments. In Proceedings of the
1994 ACM European Conference on Hypermedia Technology, pages 94–107.
ACM Press, 1994.

[8] Kenneth M. Anderson, Richard N. Taylor, and Jr. E. James Whitehead. Chimera
: Hypermedia for Heterogeneous Software Development Enviroments. ACM
Transactions on Information Systems (TOIS), 18(3):211–245, 2000.

[9] William Y. Arms. Key Concepts in the Architecture of the Digital Library. D-Lib
Magazine, July 1995.

[10] William Y. Arms, Christophe Blanchi, and Edward A. Overly. An Architecture
for Information in Digital Libraries. D-Lib Magazine, 3(2), February 1997.
:no-3403

212 References

URN:NB
[11] Association of Research Libraries. Appendix II : Definition and Purposes of a
Digital Library. In Realizing Digital Libraries : Proceedings of the 126th Annual
Meeting. Association of Research Libraries, 1995.

[12] Donna Bergmark. Collection Synthesis. In Proceedings of the Second ACM/
IEEE-CS Joint Conference on Digital Libraries, pages 253–262. ACM Press,
2002.

[13] T. Berners-Lee, R. Fielding, U.C. Irvine, and L. Masinter. Uniform Resource
Identifiers (URI) : Generic Syntax. RFC 2396, The Internet Engineering Task
Force, August 1998.

[14] Philip A. Bernstein. Middleware : A Model for Distributed Services. Communi-
cations of the ACM, 39(2):86–97, February 1996.

[15] G. Birtwistle, O. Dahl, B. Myrthaug, and K. Nygaard. Simula Begin. Auerbach
Press, 1973.

[16] Fintan Bolton. Pure CORBA : A Code-Intensive Premium Reference. Sams Pub-
lishing, 2002.

[17] Magnus Boman, Janis A. Bubenko Jr., Paul Johanneson, and Benkt Wangler.
Conceptual Modelling. Prentice Hall Series in Computer Science. Prentice Hall,
1997.

[18] Grady Booch, Ivar Jacobsen, and James Rumbaugh. The Unified Modeling Lan-
guage : User Guide. Addison-Wesley, 1999.

[19] Christine L. Borgman. From Gutenberg to the Global Information Infrastructure
: Access to Information in the Networked World. Digital Libraries and Electronic
Publishing. The MIT Press, 2000.

[20] Christine L. Borgman, M.J. Bates, M.V. Cloonan, E.N. Efthimiadis,
A. Gilliland-Swetland, Y. Kafai, G.L. Leazer, and A. Maddox. Social Aspects of
Digital Libraries. Final Report to the National Science Foundation, 1996.

[21] Jan Bosch. Relations as Object Model Components. Journal of Programming
Languages, 4(1):39–61, 1996.

[22] Niels Olof Bouvin. Experiences with OHP and Issues for the Future. In S. Reich
and K.M. Anderson, editors, Proceedings of the 6th International Workshop on
Open Hypermedia Systems, OHS-6, number 1903 in Lecture Notes in Computer
Science, pages 13–22. Springer-Verlag, 2000.

[23] Niels Olof Bouvin, Polle T. Zellweger, Kaj Grønbæk, and Jock D. Mackinlay.
Fluid Annotations through Open Hypermedia : Using and Extending Emerging
Web Standards. In Proceedings of the Eleventh International Conference on
World Wide Web, pages 160–171. ACM Press, 2002.
N:no-3403

References 213

URN:NBN
[24] Svein Erik Bratsberg. FOOD : Supporting Explicit Relations in a Fully Object-
Oriented Database. In Robert A. Meersman, William Kent, and Asmit Khosla,
editors, Proceedings of the IFIP TC2/WG 2.6 Working Conference on Object-
Oriented Databases : Analysis, Design & Construction (DS-4), pages 123–139.
Elsevier Science Pubslisher, 1990.

[25] Gerald Brose, Andreas Vogel, and Keith Duddy. Java Programming with
CORBA : Advanced Techniques for Building Distributed Applications. John
Wiley & Sons, 2001.

[26] Michael Buckland. What is a ”Document”? Journal of the American Society for
Information Science, 48(9):804–809, 1997.

[27] Mario Augusto Bunge. Philosophy of Science : From Explanation to Justifica-
tion, volume 2 of Philosophy of Science. Transaction Publisher, 1998.

[28] Mario Augusto Bunge. Philosophy of Science : From Problem to Theory,
volume 1 of Philosophy of Science. Transaction Publisher, 1998.

[29] Vannevar Bush. As We May Think. Atlantic Monthly, 1945.
[30] Robert Cailliau. A Little History of the World Wide Web from 1945 to 1995,

1995. Available online at http://www.w3.org/History.html
[31] Licia Calvi and Paul De Bra. Improving the Usability of Hypertext Courseware

Through Adaptive Linking. In Proceedings of the Eight ACM Conference on
Hypertext, pages 224–225. ACM Press, 1997.

[32] Priscilla Caplan and William Y. Arms. Reference Linking for Journal Articles.
D-Lib Magazine, 5(7/8), 1999.

[33] S. Carmody, T. Gross, T. Nelson, D. Rice, and A. van Dam. A Hypertext Editing
System for the 360. In Proceedings Conference in Computer Graphics. Univer-
sity of Illinois, 1969.

[34] Leslie Carr, Wendy Hall, and David De Roure. The Evolution of Hypertext Link
Services. ACM Computing Surveys, 31(4es), 1999.

[35] Donatella Catelli and Paquale Pagano. OpenDLib : A Digital Library Service
System. In Maristella Agosti and Constantino Thanos, editors, Proceedings of
the 6th European Conference on Research and Advanced Technology for Digital
Libraries, ECDL 2002, number 2458 in Lecture Notes in Computer Science,
pages 292–308. Springer-Verlag, 2002.

[36] R.G.G. Cattell and Douglas K. Barry, editors. The Object Data Standard :
ODMG 3.0. Morgan Kaufmann Publishers, 2000.

[37] Peter Pin-Shan Chen. The Entity Relationship Model : Towards a Unified View
of Data. ACM Transactions on Database Systems, 1(1), 1976.
:no-3403

214 References

URN:NB
[38] Gregory Chockler, Roy Friedman, and Roman Vitenberg. Consistency Condi-
tions for a CORBA Caching Service. In Maurice Herlihy, editor, Proceedings of
the 4th International Conference on Distributed Computing, number 1914 in
Lecture Notes in Computer Science, pages 374–388. The International Sympo-
sium on Distributed Computing, Springer-Verlag, 2000.

[39] C. G. Chowdury. Introduction to Modern Information Retrieval. Library Associ-
ation Publishing, 1999.

[40] Paolo Ciancarini, Federico Folli, Davide Rossi, and Fabio Vitali. Linking Docu-
ments : XLinkProxy : External Linkbases with XLink . In Proceedings of the
2002 ACM Symposium on Document Engineering, pages 57–65. ACM Press,
2002.

[41] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems :
Concepts and Design. Addison-Wesley, 1998.

[42] Gregory Crane, David A. Smith, and Clifford E. Wulfman. Building a Hypertex-
tual Digital Library in the Humanities : A Case Study on London. In Proceedings
of the First ACM/IEEE-CS Joint Conference on Digital Libraries, pages 426–
434. ACM Press, 2001.

[43] Charles A. Cutter. Rules for a Dictionary Catalogue : Special Report on Public
Libraries. Government Printing Office, 1904.

[44] L. Daigle, D. van Gulik, and R. Ianella. URN Namespace Definition Mecha-
nisms. RFC 2611, The Internet Engineering Task Force, June 1999.

[45] Hugh Davis. To Embed or Not to Embed. Communications of the ACM,
38(6):108–109, 1995.

[46] Hugh Davis, Wendy Hall, Ian Heath, Gary Hill, and Rob Wilkins. Towards an
Integrated Information Environment with Open Hypermedia Systems. In Pro-
ceedings of the ACM Conference on Hypertext, pages 181–190. ACM Press,
1992.

[47] Hugh C. Davis. Referential Integrity of Links in Open Hypermedia Systems. In
Proceedings of the Ninth ACM Conference on Hypertext and Hypermedia :
Links, Objects, Time and Space : Structure in Hypermedia Systems, pages 207–
216. ACM Press, 1998.

[48] Hugh C. Davis. Hypertext Link Integrity. ACM Computing Surveys, 31(4es),
1999.

[49] Hugh C. Davis, Simon Knight, and Wendy Hall. Light Hypermedia Link Ser-
vices : A Study of Third Party Application Integration. In Proceedings of the
1994 ACM European Conference on Hypermedia Technology, pages 41–50.
ACM Press, 1994.
N:no-3403

References 215

URN:NBN
[50] Hugh Charles Davis, Siegfried Reich, and David Millard. A Proposal for a Com-
mon Navigational Hypertext Protocol, 1997. Available online at
http://www.ecs.soton.ac.uk/ hcd/ohp/ohp35.htm

[51] Jim Davis, David Fielding, Carl Lagoze, and Richard Marisa. Dienst : Overview
and Introduction, 2000. Available online at http://www.cs.cornell.edu/cdlrg/
dienst/
DienstOverview.htm

[52] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a Knowledge Rep-
resentation? AI Magazine, 14(1):17–33, 1993.

[53] Herbert Van de Sompel and Oren Beit-Arie. Open Linking in the Scholarly
Information Environment Using the OpenURL Framework. D-Lib Magazine,
7(3), March 2001.

[54] Digital Libraries : Future Research Directions for a European Research Pro-
gramme. Workshop report 02/W02, ERCIM, 2002.

[55] Tom Delsey. Functional Analysis of the MARC 21 Bibliographic and Holdings
Format, 2002. Available online at
http://www.loc.gov/marc/marc-functional-analysis/home.html

[56] Lorcan Dempsey and Rachel Heery. A Review of Metadata : A Survey of Cur-
rent Resource Description Formats, 1997. Available online at
http://www.ukoln.ac.uk/metadata/DESIRE/overview/

[57] Oscar Diaz and Norman W. Paton. Extending ODBMSs Using Metaclasses.
IEEE Software, 11(3), May 1994.

[58] Karen M. Drabenstott. Analytical Review of the Library of the Future, 1994.
Washington, DC, Council Library Resources.

[59] Dublin Core Metadata Initiative. DCMI Elements and Element Refinements : A
Current List, 2002. Available online at http://dublincore.org/documents/2002/
10/06/
current-elements/

[60] Dublin Core Metadata Initiative. Dublin Core Metadata Element Set, Version 1.1
: Reference Description. DCMI recommendation, 2003. Available online at
http://dublincore.org/documents/2003/02/04/dces/

[61] Naomi Dushay. Localizing Experience of Digital Content Via Structural Meta-
data. In Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital
Libraries, pages 244–252. ACM Press, 2002.

[62] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Benjamin/Cummings publishing Company, 1994.
:no-3403

216 References

URN:NB
[63] Douglas C. Engelbart and William K. English. A Research Center for Augment-
ing Human Intellect. In AFIPS Conference Proceedings of the 1968 Fall Joint
Computer Conference, December 1968.

[64] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions : (MIME)
Part Two : Media Types. RFC 2046, The Internet Engineering Task Force,
November 1996.

[65] Roy Friedman and Erez Hadad. Client-Side Enhancements Using Portable Inter-
ceptors. In Proceedings of the Sixth International Workshop on Object-Oriented
Real-Time Dependable Systems, pages 153–160. IEEE, 2001.

[66] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns : Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley, 1994.

[67] Michael Gasser and Eliana Colunga. Developing Relations. In Emile van der
Zee and Urpo Nikanne, editors, Cognitive Interfaces : Constraints on Linking
Cognitive Information, pages 185–214. Oxford University Press, 2001.

[68] Gary Geisler, Sarah Giersch, David McArthur, and Marty McClelland. Creating
Virtual Collections in Digital Libraries : Benefits and Implementation Issues. In
Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Librar-
ies, pages 210–218. ACM Press, 2002.

[69] Marcos Andre Goncalves, Robert K. France, and Edward A. Fox. MARIAN :
Flexible Interoperability for Federated Digital Libraries. In Panos Constantopou-
los and Ingeborg T. Sølvberg, editors, Proceedings of the 5th European Confer-
ence on Research and Advanced Technology for Digital Libraries, ECDL 2001,
number 2163 in Lecture Notes in Computer Science, pages 173–186. Springer-
Verlag, 2001.

[70] Marcos Andre Goncalves, Paul Mather, Jun Wang, Ye Zhou, Ming Luo, Ryan
Richardson, Rao Shen, Liang Xu, , and Edward A. Fox. Java MARIAN : From
an OPAC to a Modern Digital Library System. In A.L. Oliveira A.H.F. Laender,
editor, Proceedings of the 9th International Symposium on String Processing and
Information Retrieval, SPIRE 2002, number 2476 in Lecture Notes in Computer
Science, pages 194–209. Springer-Verlag, 2002.

[71] S. Goose, A Lewis, and H. Davis. OHRA : Towards an Open Hypermedia Ref-
erence Architecture and a Migration Path for Existing Systems. In Proceedings
of the 3rd Workshop on Open Hypermedia Systems, OHS-3, Scientific Report 97-
01. The Danish National Centre for IT Research, 1997.

[72] Michael Gorman and Paul W. Winkler. Anglo-American Cataloguing Rules.
Library Association Publ., 1988.
N:no-3403

References 217

URN:NBN
[73] Rebecca Green. Relationships in the Organization of Knowledge : An Overview.
In Carol A. Bean and Rebecca Green, editors, Relationships in the Organization
of Knowledge, number 2 in Information Science and Knowledge Management,
chapter 1, pages 3–18. Kluwer Academic Publishers, 2001.

[74] Stephen M. Griffin. Taking the Initiative for Digital Libraries. The Electronic
Library, 16(1):24–27, February 1998. Interview.

[75] Object Management Group. Concurrency Service Specification. OMG specifi-
cation, 2000.

[76] Object Management Group. OMG Unified Modeling Language : Specification.
OMG specification, 2000.

[77] Object Management Group. Relationship Service Specification. OMG specifi-
cation, 2000.

[78] Object Management Group. Trading Object Service Specification. OMG speci-
fication, 2000.

[79] Object Management Group. Naming Service Specification. OMG specification,
2001.

[80] Object Management Group. Resource Access Decision Facility. OMG specifica-
tion, 2001.

[81] Object Management Group. Security Service Specification. OMG specification,
2001.

[82] Object Management Group. Common Object Request Broker Architecture :
Core Specification. OMG specification, 2002.

[83] Object Management Group. Persistent State Service Specification. OMG speci-
fication, 2002.

[84] Object Management Group. Property Service Specification. OMG specification,
2002.

[85] Object Management Group. Transaction Service Specification. OMG specifica-
tion, 2002.

[86] Frank Halasz and Mayer Schwartz. The Dexter Hypertext Reference Model.
Communications of the ACM, 37(2):30–39, 1994.

[87] Wendy Hall, Hugh Davis, and Gerard Hutchings. Rethinking Hypermedia : The
Microcosm Approach. Kluwer Academic Publisher, 1996.

[88] Wendy Hall, Gary Hill, and Hugh Davis. The Microcosm Link Service. In Pro-
ceedings of the Fifth ACM Conference on Hypertext, pages 256–259. ACM
Press, 1993.
:no-3403

218 References

URN:NB
[89] Lynda Hardman, Dick C. A. Bulterman, and Guido van Rossum. Links in Hyper-
media : The Requirement for Context. In Proceedings of the Fifth ACM Confer-
ence on Hypertext, pages 183–191. ACM Press, 1993.

[90] Lynda Hardman, Dick C. A. Bulterman, and Guido van Rossum. The Amster-
dam Hypermedia Model : Adding Time and Context to the Dexter model. Com-
munications of the ACM, 37(2):50–62, 1994.

[91] Knut Hegna and Eeva Murtomaa. Data Mining MARC to Find : FRBR? BIB-
SYS/HUL, 2002.

[92] Michi Henning. Binding, Migration, and Scalability in CORBA. Communica-
tions of the ACM, 41(10):62–71, 1998.

[93] Michi Henning and Steve Vinoski. Advanced CORBA Programming with C++.
Addison-Wesley, 1999.

[94] Beth Hetzler. Beyond Word Relations : SIGIR ’97 Workshop. ACM SIGIR
Forum, 31(2):28–33, 1997.

[95] Thomas B. Hickey, Edward T. O’Neill, and Jenny Toves. Experiments with the
IFLA Functional Requirements for Bibliographic Records (FRBR) . D-Lib Mag-
azine, 8(9), September 2002.

[96] David L. Hicks, John J. Leggett, Peter J. Nürnberg, and John L. Schnase. A
Hypermedia Version Control Framework. ACM Transactions on Information
Systems (TOIS), 16(2):127–160, 1998.

[97] Gary Hill and Wendy Hall. Extending the Microcosm Model to a Distributed
Environment. In Proceedings of the 1994 ACM European Conference on Hyper-
media Technology, pages 32–40. ACM Press, 1994.

[98] Soochan Hwang and Sukho Lee. Modelling Semantic Relationships and Con-
straints in Object-Oriented Databases. In Proceedings of the 1990 ACM SIGBDP
Conference on Trends and Directions in Expert Systems, pages 396–416. ACM
Press, 1990.

[99] IEEE. IEEE Standard for Learning Object Metadata. IEEE standard 1484.12.1,
September 2002.

[100] IFLA Study Group on the Functional Requirements for Bibliographic Records.
Functional Requirements for Bibliographic Records. UBCIM Publications - New
Series, 19, 1998.

[101] David Ingham, Steve Caughey, and Mark Little. Fixing the "Broken-Link" Prob-
lem : The W3Objects Approach. In Proceedings of the Fifth International World
Wide Web Conference. Elsevier Science, 1996.
N:no-3403

References 219

URN:NBN
[102] Carnegie Mellon Software Engineering Institute. Software Technology Review
: Middleware, January 1997. Available online at http://www.sei.cmu.edu/str/
descriptions/middleware.html

[103] International Federation of Library Assosiations and Institutions. ISBD(G) :
General International Standard Bibliographic Description. UBCIM Publications
- New Series, 6, 1992.

[104] International Federation of Library Assosiations and Institutions. ISBD(M) :
International Standard Bibliographic Description. Standard 2002 Revision,
Approved by the Standing Committee of the IFLA Section on Cataloguing,
2002.

[105] International Organization for Standardization. Standard Generalized Markup
Language (SGML). International standard ISO 8879:1986, 1986.

[106] International Organization for Standardization. Information Processing Systems
: Open Systems Interconnection Reference Model : Part 2 : Security Architec-
ture, 1989. International standard ISO/IEC 7498-2:1998, 1989.

[107] International Organization for Standardization. International Standard Book
Number (ISBN). International standard ISO 2108, 1992.

[108] International Organization for Standardization. Information and Documentation
: Format for Information Interchange. International standard ISO 2709:1996
Third edition, 1996.

[109] International Organization for Standardization. Hypermedia/Time-Based Struc-
turing Language (HyTime). International standard ISO/IEC 10744:1977, 1997.

[110] International Organization for Standardization. Information Retrieval (Z39.50) :
Application Service Definition and Protocol Specification. International stan-
dard ISO 23950:1998, 1998.

[111] International Organization for Standardization. International Standard Serial
Number (ISSN). International standard ISO 3297, 1998.

[112] International Organization for Standardization. Topic Maps. International stan-
dard ISO/IEC 13250:2000, 2000.

[113] Tomas Isakowitz, Edward A. Stohr, and P. Balasubramanian. RMM : A Method-
ology for Structured Hypermedia Design. Communications of the ACM, 38(8),
1995.

[114] Joint US/EU ad hoc Agent Markup Language Committee. DAML+OIL. Lan-
guage specification, DAML, March 2001. Available online at
http://www.daml.org/2001/03/daml+oil-index.html
:no-3403

220 References

URN:NB
[115] Robert Kahn and Robert Wilensky. A Framework for Distributed Digital Object
Services, 1995. Available online at http://www.cnri.reston.va.us/home/cstr/arch/
k-w.html

[116] Hanna Kemppainen. Designing a Mediator for Managing Relationships between
Distributed Objects. In Andrej Vckovski, Kurt E. Brassel, and Hans-Jörg Schek,
editors, Proceedings of the Second International Conference on Interoperating
Geographic Information Systems, INTEROP’99, volume 1580 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

[117] Manuel Kolp. A Metaobject Protocol for Reifying Semantic Relationships into
Open Systems. In Proceedings of the 4th Doctoral Consortium of the 9th Inter-
nation Conference on Advanced Information Systems Engineering, CAiSE’97,
pages 89–100, 1997.

[118] Manuel Kolp. A Metaobject Protocol for Integrating Full-Fledged Relationships
into Reflective Systems. Ph.d. thesis, Université libre de Bruxelles, 1999.

[119] Richard W. Kopak. Functional Link Typing in Hypertext. ACM Computing Sur-
veys, 31(4es), 1999.

[120] Carl Lagoze and Herbert Van de Sompel. The Open Archives Initiative : Build-
ing a Low-Barrier Interoperability Framework. In Proceedings of the first ACM/
IEEE-CS Joint Conference on Digital Libraries, pages 54–62. ACM Press, 2001.

[121] Ulrich Lang and Rudolf Schreiner. Developing Secure Distributed Systems with
CORBA. Computer Security Series. Artech House, 2002.

[122] R. Langacker. Nouns and Verbs. Language, 63:53–94, 1987.
[123] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital Libraries and Auton-

omous Citation Indexing. IEEE Computer, 32(6):67–71, 1999.
[124] Paul J. Leach and Rich Salz. UUIDs and GUIDs. Internet draft, Internet Engi-

neering Task Force, February 1998. Work in progress.
[125] Gregory H. Leazer and Richard P. Smiraglia. Toward the Bibliographic Control

of Works : Derivative Bibliographic Relationships in an Online Union Catalog.
In Proceedings of the 1st ACM International Conference on Digital Libraries,
pages 36–43. ACM, 1996.

[126] Tim Berners Lee. Information Management : A Proposal. Conseil Europeen
pour la Recherche Nucleaire (CERN), 1989.

[127] John J. Leggett and John L. Schnase. Viewing Dexter with Open Eyes. Commu-
nications of the ACM, 37(2):76–86, 1994.

[128] Barry M. Leiner. The NCSTRL Approach to Open Architecture for the Confed-
erated Digital Library. D-Lib Magazine, December 1998.
N:no-3403

References 221

URN:NBN
[129] Paul H. Lewis, Wendy Hall, Leslie A. Carr, and David De Roure. The Signifi-
cance of Linking. ACM Computing Surveys, 31(4es), 1999.

[130] Library of Congress. MARC Standards, 2000. Available online at
http://www.lcweb.loc.gov/marc/

[131] Jean Tague-Sutcliff Lisa Baron and Marc T. Kinnucan. Labeled, Typed Links as
Cues when Reading Hypertext Documents. Journal of the American Association
for Information Science, 47(12):896–908, 1996.

[132] Li min Liu and Michael Halper. Incorporating Semantic Relationships into an
Object-Oriented Database System. In Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences, HICSS-32, pages 1–10, 1999.

[133] Gary Marchionini. Information Seeking in Electronic Environments, volume 9 of
Cambridge Series on Human-Computer Interaction. Cambridge University
Press, 1995.

[134] M. Mercedes Mart, Pablo de la Fuente, Jean-Claude Derniame, and Alberto
Pedrero. Relationship-Based Dynamic Versioning of Evolving Legal Docu-
ments. In J. G. Carbonell and J. Siekmann, editors, Web Knowledge Management
and Decision Support, Proceedings of the 14th International Conference on
Applications of Prolog, INAP 2001, number 2543 in Lecture Notes in Artificial
Intelligence, pages 290–305. Springer-Verlag, 2001.

[135] Mercedes Martinez, Jean-Claude Derniame, and Pablo de la Fuente. A Method
for the Dynamic Generation of Virtual Versions of Evolving Documents. In Pro-
ceedings of the 17th ACM Symposium on Applied Computing, pages 476–482.
ACM Press, 2002.

[136] M. Mealling and R. Denenberg. Report from the Joint W3C/IETF URI Planning
Interest Group : Uniform Resource Identifiers (URIs), URLs, and Uniform
Resource Names. RFC 3305, The Internet Engineering Task Force, August 2002.

[137] M. Mealling, P. Leach, and R. Salz. A UUID URN Namespace. Internet draft,
Internet Engineering Task Force, October 2002. Work in progress.

[138] D. E. Millard, S. Reich, and H. C. Davis. Reworking OHP : The Road to OHP-
Nav. In U. K. Wiil, editor, Proceedings of the 4th Workshop on Open Hyperme-
dia Systems, pages 48–53, 1998.

[139] Dave E. Millard, Luc Moreau, Hugh C. Davis, and Siegfried Reich. FOHM : A
Fundamental Open Hypertext Model for Investigating Interoperability Between
Hypertext Domains. In Proceedings of the Eleventh ACM Conference on Hyper-
text and Hypermedia, pages 93–102. ACM Press, 2000.

[140] R. Moats. URN Syntax. RFC 2141, The Internet Engineering Task Force, May
1997.
:no-3403

222 References

URN:NB
[141] Graham Moore. RDF and TopicMaps : An Exercise in Convergence. In XML
Europe 2001, 2001. Available online at http://www.topicmaps.com/
topicmapsrdf.pdf

[142] Graham Moore and Luc Moreau. From Metadata to Links. In S. Reich and K.M.
Anderson, editors, Proceedings of the 6th International Workshop on Open
Hypermedia Systems, OHS-6, number 1903 in Lecture Notes in Computer Sci-
ence, pages 77–86. Springer-Verlag, 2000.

[143] Jocelyne Nanard and Marc Nanard. Should Anchors be Typed too? : An Exper-
iment with MacWeb. In Proceedings of the Fifth ACM Conference on Hypertext,
pages 51–62. ACM Press, 1993.

[144] Rodolfo Nassif, Yuping Qiu, and Jianhua Zhu. Extending the Object-Oriented
Paradigm to Support Relationships and Constraints. In Robert A. Meersman,
William Kent, and Asmit Khosla, editors, Proceedings of the IFIP TC2/WG 2.6
Working Conference on Object-Oriented Databases : Analysis, Design & Con-
struction (DS-4), pages 305–329. Elsevier Science Publisher, 1990.

[145] Michael L. Nelson, Kurt Maly, Mohammad Zubair, and Stewart N. T. Shen.
SODA : Smart Objects, Dumb Archives. In Proceedings of the Third European
Conference on Research and Advanced Technology for Digital Libraries, ECDL
99, volume 1696 of Lecture Notes in Computer Science. Springer, 1999.

[146] Ted Nelson. A File Structure for the Complex, the Changing and the Indetermi-
nate. In proceedings of the ACM 20th national conference. ACM, 1965.

[147] Christian Nentwich, Licia Capra, Wolfgang Emmerich, and Anthony Finkel-
stein. xlinkit : A Consistency Checking and Smart Link Generation Service.
ACM Transactions on Internet Technology (TOIT), 2(2):151–185, 2002.

[148] Craig Nevill-Manning. The Biological Digital Library. Communications of the
ACM, 44(5):41–42, 2001.

[149] Tien Nguyen, Satish Chandra Gupta, and Ethan V. Munson. Versioned Hyper-
media can Improve Software Document Management. In Proceedings of the
Thirteenth Conference on Hypertext and Hypermedia, pages 192–193. ACM
Press, 2002.

[150] James Noble and John Grundy. Explicit Relationships in Object-Oriented Devel-
opment. In Proceedings of the 18th Conference on Technology of Object-Ori-
ented Languages and Systems, TOOLS 18. Prentice-Hall, 1995.

[151] P. J. Nürnberg. HOSS : An Environment to Support Structural Computing. Ph.d.
thesis, Department of Computer Science, Texas A&M University, 1997.
N:no-3403

References 223

URN:NBN
[152] Peter J. Nürnberg, John J. Leggett, and Erich R. Scneider. As We Should Have
Thought. In Proceedings of the Eighth ACM conference on Hypertext, pages 96–
101. ACM Press, 1997.

[153] Peter J. Nürnberg, Uffe K. Wiil, and John J. Leggett. Structuring Facilities in
Digital Libraries. In Proceedings of the Second European Conference on
Research and Advanced Technology for Digital Libraries, ECDL 98, volume
1513 of Lecture Notes in Computer Science. Springer, 1998.

[154] OASIS. UDDI Version 3.0 . UDDI Spec TC Committee specification, OASIS,
July 2002.

[155] Library of Congress. Displays for Multiple Versions from MARC 21 and FRBR.
Network Development and MARC Standards Office, Library of Congress, 2002.

[156] Charles Kay Ogden and Ivor Armstrong Richards. The Meaning of Meaning : A
Study of the Influence of Language upon Thought and of the Science of Symbol-
ism. Routledge & Kegan Paul, 1923.

[157] Open Archives Initiative. The Open Archives Initiative Protocol for Metadata
Harvesting, 2001. Available online at http://www.openarchives.org/OAI/2.0/
openarchivesprotocol.htm

[158] Rolf Oppliger. Internet and Intranet Security. Computer Security Series. Artech
House, 2002.

[159] Kasper Østerbye and Uffe Kock Wiil. The Flag Taxonomy of Open Hypermedia
Systems. In Proceedings of the Seventh ACM Conference on Hypertext, pages
129–139. ACM Press, 1996.

[160] Andreas Paepcke, Michelle Q. Wang Baldonado, Chen-Chuan K. Chang, Steve
Cousins, and Hector Garcia-Molina. Using Distributed Objects to Build the
Stanford Digital Library Infobus. Computer, 32(2):80–87, 1999.

[161] Sandra Payette, Christophe Blanchi, Carl Lagoze, and Edward Overly. Interop-
erability for Digital Objects and Repositories : The Cornell/CNRI Experiments.
D-Lib Magazine, 5, May 1999.

[162] Sandra Payette and Carl Lagoze. Flexible and Extensible Digital Object and
Repository Architecture (FEDORA). In Christos Nikolaou and Constantine
Stephanidis, editors, Proceedings of the Second European Conference on
Research and Advanced Technology for Digital Libraries, ECDL 98, number
1513 in Lecture Notes in Computer Science, pages 41–60. Springer, 1998.

[163] A. Pearl. Sun’s Link Service : A Protocol for Open Linking. In Proceedings of
the Second Annual ACM Conference on Hypertext, pages 137–146. ACM Press,
1989.
:no-3403

224 References

URN:NB
[164] Joan Peckham and Fred Maryanski. Semantic Data Models. ACM Computing
Surveys (CSUR), 20(3):153–189, 1988.

[165] Steve Pepper. The TAO of Topic Maps : Finding the Way in the Age of Infoglut.
In Proceedings of XML Europe 2000. GCA, 2000. Available online at
http://www.ontopia.net/topicmaps/materials/tao.html

[166] Walter D. Potter and Robert P. Trueblood. Traditional, Semantic, and Hyperse-
mantic Approaches to Data Modeling. Computer, 21(6):53–63, 1988.

[167] Awais Rashid and Peter Sawyer. Dynamic Relationships in Object Oriented
Databases : A Uniform Approach. In Trevor Bench-Capon, Giovanni Soda, and
A Min Tjoa, editors, Proceedings of the 10th International Conference on Data-
base and Expert Systems Applications, DEXA’99, number 1677 in Lecture Notes
in Computer Science, pages 26–35. Springer-Verlag, 1999.

[168] Edie Rasmussen. Clustering Algoritms. In William B. Frakes and Ricardo
Baeza-Yates, editors, Information Retrieval, chapter 16. Prentice Hall, 1992.

[169] Sigi Reich. Definitions and Examples of the Open Hypermedia Protocol (OHP),
1999.

[170] Han Reichgelt. Knowledge Representation : An AI Perspective. Ablex Publish-
ing Corporation, 1991.

[171] Antoine Rizk and Louis Sauter. Multicard : An Open Hypermedia System. In
Proceedings of the ACM Conference on Hypertext, pages 4–10. ACM Press,
1992.

[172] Martin Roscheisen, Michelle Baldonado, Kevin Chang, Luis Gravano, Steven
Ketchpel, and Andreas Paepcke. The Stanford InfoBus and Its Service Layers :
Augmenting the Internet with Higher-Level Information Management Protocols.
Technical report, Stanford, 1997.

[173] David C. De Roure, Leslie A. Carr, W. Hall, and G. Hill. A Distributed Hyper-
media Service. In Proceedings of the 3rd Workshop on Services in Distributed
and Networked Environments (SNDE’96). IEEE, 1996.

[174] David C. De Roure, Nigel G. Walker, and Leslie A. Carr. Investigating Link Ser-
vice Infrastructures. In Proceedings of the Eleventh ACM on Hypertext and
Hypermedia, pages 67–76. ACM Press, 2000.

[175] James Rumbaugh. Relations as Semantic Constructs in an Object-Oriented Lan-
guage. In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications, pages 466–481. ACM Press, 1987.

[176] James Rumbaugh, Ivar Jacobsen, and Grady Booch. The Unified Modelling Lan-
guage Reference Manual. Addison-Wesley, 1999.
N:no-3403

References 225

URN:NBN
[177] Lloyd Rutledge and Lynda Hardman. Applying the HyTime Model to the Open
Hypermedia Protocol LocSpec. In Uffe K. Wiil, editor, Proceedings of the 3rd
Workshop on Open Hypermedia Systems, CIT Scientific Report no. SR-97-01.
The Danish National Centre for IT Research, 1997.

[178] Peter Schäuble and Alan F. Smeaton. An International Research Agenda for Dig-
ital Libraries : Summary Report of the Series of Joint NSF-EU Working Groups
on Future Directions for Digital Libraries Research. DELOS, 1998.

[179] Jürgen Schlegelmilch. An Advanced Relationship Mechanism for Object-Ori-
ented Databases. Technical Report 19/1996, University of Rostock, Computer
Science Dept., 1996.

[180] Robert C. Seacord. Replaceable Components and the Service Provider Interface.
In J. Dean and A. Gravel, editors, Proceedings of the First International Confer-
ence on COTS-Based Software Systems, ICCBSS 2002, number 2255 in Lecture
Notes in Computer Science, pages 222–233. Springer-Verlag, February 4-6
2002.

[181] Keith Shafer, Stuart Weibel, and Jon Fausey Erik Jul. Introduction to Persistent
Uniform Resource Locators. OCLC Online Computer Library Center, Inc.
Available online at http://purl.oclc.org/docs/inet96.html

[182] A. V. Shah, J. H. Hamel, R. A. Borsari, and J. E. Rumbaugh. DSM : An Object-
Relationship Modeling Language. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications, pages 191–202.
ACM Press, 1989.

[183] Chien-Chung Shen and John Y. Wei. Network as Distributed Object Database. In
Proceedings of the 1998 IEEE Network Operations and Management Sympo-
sium, volume 2, pages 540–548. IEEE, 1998.

[184] Dirk Slama, Jason Garbis, and Perry Russell. Enterprise CORBA. Prentice Hall,
1999.

[185] Dagobert Soergel. A Framework for Digital Library Resaearch. D-Lib Maga-
zine, 8(12), December 2002.

[186] Arne Sølvberg. Conceptual Modeling in a World of Models. In R. Kaschek, edi-
tor, Entwiclungsmethoden für Informationssysteme und deren Anwendung :
EMISA ’99, pages 63–92. B.G. Teubner, 1999.

[187] Herbert Van de Sompel and Patrick Hochstenbach. Reference Linking in a
Hybrid Library Environment : Part 2 : SFX, a Generic Linking Solution. D-Lib
Magazine, 5(4), April 1999.
:no-3403

226 References

URN:NB
[188] Norbert Streitz, Jörg Haake, Jörg Hannemann, Andreas Lemke, Wolfgang
Schuler, Helge Schütt, and Manfred Thüring. Sepia : A cooperative hypermedia
authoring environment. In Proceedings of the ACM conference on Hypertext,
pages 11–22. ACM Press, 1992.

[189] Sam X. Sun and Larry Lannom. Handle System Overview. Internet draft, The
Internet Engineering Task Force, 2002. Work in progress.

[190] Sam X. Sun, Sean Reilly, and Larry Lannom. Handle System Namespace and
Service Definition. Internet draft, The Internet Engineering Task Force, 2002.
Work in progress.

[191] Clemens Szyperski. Component Software : Beyond Object-Oriented Program-
ming. ACM Press / Addison Wesley, 1999.

[192] Zahir Tari and Omran Bukhres. Fundamentals of Distributed Object Systems :
The CORBA Perspective. Wiley Series on Parallel and Distributed Computing.
John Wiley & Sons, 2001.

[193] Zahir Tari and Herry Hamidjadja. A CORBA Cooperative Cache Approach with
Popularity Admission and Routing Mechanism. In Proceedings of the Thirteenth
Australasian Conference on Database Technologies, pages 177–186. Australian
Computer Society, Inc., 2002.

[194] Zahir Tari, Herry Hamidjaja, and Qi Tang Lin. Cache Management in CORBA
Distributed Object Systems. IEEE Concurrency, 8(3):48–55, July–September
2000.

[195] The Open Group. DCE 1.1 : Remote Procedure Call. Technical Standard C706,
The Open Group, August 1997.

[196] Barbara B. Tillett. A Taxonomy of Bibliographic Relationships. Library
Resources & Technical Services,, 35(2):150–158, 1991.

[197] Barbara B. Tillett. Bibliographic Relationships. In Carol A. Bean and Rebecca
Green, editors, Relationships in the Organization of Knowledge, number 2 in
Information Science and Knowledge Management, chapter 2, pages 19–35. Klu-
wer Academic Publishers, 2001.

[198] TopicMaps.Org. XML Topic Maps (XTM) 1.0. Topicmaps.org specification,
2001. Available online at http://www.topicmaps.org/xtm/1.0/
xtm1-20010806.html

[199] Randall H. Trigg. A Networked Approach to Text Handling for the Online Sci-
entific Community. Ph.D. thesis TR-1346, University of Maryland, Department
of Computer Science, University of Maryland, College Park MD 20742, Novem-
ber 1983.
N:no-3403

References 227

URN:NBN
[200] Manolis Tzagarakis, Nikos Karousos, Dimitris Christodoulakis, and Siegfried
Reich. Naming as a Fundamental Concept of Open Hypermedia Systems. In Pro-
ceedings of the Eleventh ACM Conference on Hypertext and Hypermedia, pages
103–112. ACM Press, 2000.

[201] Amjad Umar. Object-Oriented Client/Server Internet Environment. Prentice
Hall, 1997.

[202] J. Verbyla and C. Watters. Cooperative Hypermedia Management Systems.
Journal of Digital Information, 1(4), January 1999.

[203] Janet Verbyla. Unlinking the Link. ACM Computing Surveys, 31(4es), 1999.
[204] Steve Vinoski. Web Services Interaction Models : Current Practice. IEEE Inter-

net Computing, 6(3):89–91, May/June 2002.
[205] Stephen Wagner and Zahir Tari. A Caching Protocol to Improve CORBA Perfor-

mance. In Proceedings of the 11th Australasian Database Conference, pages
140–148. IEEE, 2000.

[206] Robert Wall. Introduction to Mathematical Linguistics. Prentice Hall, Inc., 1972.
[207] Bing Wang. A Hybrid System Approach for Supporting Digital Libraries. Inter-

national Journal on Digital Libraries, 2(2/3):91–110, 1999.
[208] Mark J. Weal, Gareth V. Hughes, David E. Millard, and Luc Moreau. Open

Hypermedia as a Navigational Interface to Ontological Information Spaces. In
Proceedings of the Twelfth ACM conference on Hypertext and Hypermedia,
pages 227–236. ACM Press, 2001.

[209] Peter Weinstein. Ontology-Based Metadata: Transforming the MARC Legacy.
In Proceedings of the Third International ACM Digital Library Conference,
pages 254–263. ACM, 1998.

[210] E. James Jr. Whitehead. Uniform Comparison of Data Models Using Contain-
ment Modeling. In Proceedings of the Thirteenth Conference on Hypertext and
Hypermedia. ACM, 2002.

[211] Uffe K. Wiil and David L. Hicks. Requirements for Development of Hyperme-
dia Technology for a Digital Library Supporting Scholarly Work. In Proceedings
of the 2000 ACM Symposium on Applied Computing 2000, pages 607–609. ACM
Press, 2000.

[212] Uffe K. Wiil, Peter J. Nürnberg, and John J. Leggett. Hypermedia Research
Directions : An Infrastructure Perspective. ACM Computing Surveys (CSUR),
31(4es):2, 1999.
:no-3403

228 References

URN:NB
[213] Uffe Kock Wiil. Evaluating HyperDisco as an Infrastructure for Digital Librar-
ies. In Proceedings of the 1998 ACM Symposium on Applied Computing, pages
491–497. ACM Press, 1998.

[214] Uffe Kock Wiil and John J. Leggett. The HyperDisco Approach to Open Hyper-
media Systems. In Proceedings of the Seventh ACM Conference on Hypertext,
pages 140–148. ACM Press, 1996.

[215] Uffe Kock Wiil and Kasper Østerbye. Using the Flag Taxonomy to Study Hyper-
media System Interoperabilty. In Proceedings of the Ninth ACM Conference on
Hypertext and Hypermedia : Links, Objects, Time and Space : Structure in
Hypermedia Systems, pages 188–197. ACM Press, 1998.

[216] George Wilkie. Object-Oriented Software Engineering : The Professional
Developer’s Guide, chapter 4. Addison Wesley, 1993.

[217] Ian H. Witten, David Bainbridge, and Stefan Boddie. Greenstone : Open-Source
DL software. Communications of the ACM, 44(5):47, 2001.

[218] World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C
recommendation, February 1998.

[219] World Wide Web Consortium. Synchronized Multimedia Integration Language
(SMIL) 1.0 Specification. W3C recommendation, June 1998.

[220] World Wide Web Consortium. HTML 4.01 Specification. W3C recommenda-
tion, December 1999.

[221] World Wide Web Consortium. Resource Description Framework (RDF) : Model
and Syntax Specification. W3C recommendation, February 1999.

[222] World Wide Web Consortium. XML Path Language (XPath) Version 1.0. W3C
recommendation, November 1999.

[223] World Wide Web Consortium. XHTML 1.0 : The Extensible HyperText Markup
Language : A Reformulation of HTML 4 in XML 1.0. W3C recommendation,
January 2000.

[224] World Wide Web Consortium. XML Linking Language (XLink) Version 1.0.
W3C recommendation, June 2001.

[225] World Wide Web Consortium. SOAP Version 1.2 Part 1 : Messaging Frame-
work. W3C candidate recommendation, December 2002.

[226] World Wide Web Consortium. RDF Vocabulary Description Language 1.0 : RDF
Schema. W3C working draft, January 2003.

[227] World Wide Web Consortium. Resource Description Framework (RDF) : Con-
cepts and Abstract Syntax. W3C working draft, January 2003.
N:no-3403

References 229

URN:NBN
[228] World Wide Web Consortium. Web Services Description Language (WSDL)
Version 1.2. W3C working draft, March 2003.

[229] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol. RFC
1777, The Internet Engineering Task Force, March 1995.
:no-3403

230 References

URN:NB
N:no-3403

	1 Introduction
	1.1 Problem Statement
	1.2 Approaches and Objectives
	1.3 Contributions
	1.4 Outline of the Thesis

	2 Digital Libraries
	2.1 Defining Digital Libraries
	2.2 Digital Library Information
	2.2.1 The Primary Content of Digital Libraries
	2.2.2 Metadata
	2.2.3 Collections
	2.2.4 Compound Objects
	2.2.5 Identity
	2.2.6 A Digital Library Information Model

	2.3 A Relationship Centric Approach
	2.3.1 Motivation
	2.3.2 Relationships Among Information Objects
	2.3.3 Relationship Support in Digital Libraries
	2.3.4 Explicit Relationships

	2.4 Digital Library Services
	2.4.1 The Global Information Infrastructure
	2.4.2 Digital Library Architectures
	2.4.3 Components and Services
	2.4.4 Middleware
	2.4.5 The World Wide Web
	2.4.6 CORBA

	2.5 A Relationship Service for Digital Libraries

	3 Relationship Knowledge
	3.1 The Term and the Concept
	3.2 Relationship as Knowledge
	3.3 Where Do Relationships Come From?
	3.4 The Mathematical Relation
	3.5 The Relationship as a Modeling Primitive
	3.6 The Meaning of Relationships

	4 Relationship Representation
	4.1 The Implementation of Relationships
	4.2 Extensional and Intensional Relationships
	4.3 Property or First-class Object
	4.4 Relationships in Object-Oriented Systems
	4.4.1 Object-Oriented Systems
	4.4.2 The OMG CORBA Relationship Service

	4.5 Hypermedia Systems
	4.5.1 Hypertext and Hypermedia
	4.5.2 Linking
	4.5.3 Link Models
	4.5.4 Open Hypermedia

	4.6 Descriptive Solutions
	4.6.1 Metadata Formats
	4.6.2 The Resource Description Framework
	4.6.3 Topic Maps
	4.6.4 HTML
	4.6.5 XLink
	4.6.6 HyTime

	4.7 Overview

	5 A Generic Relationship Model
	5.1 A Model for Explicit Relationships
	5.2 Requirements
	5.2.1 Participants
	5.2.2 Relationship Semantics
	5.2.3 Relationship Structure
	5.2.4 Constraints
	5.2.5 Relationship Identity

	5.3 Developing a Model
	5.3.1 An Initial Model
	5.3.2 Embedding Role Semantics
	5.3.3 Adding Types and Constraints
	5.3.4 Overview

	6 Design and Architecture
	6.1 Supporting Relationships in Digital Libraries
	6.2 The Core Tasks
	6.3 The Object Model
	6.4 Navigating Relationships
	6.5 Creating Relationships
	6.6 The Type Service
	6.7 Constraints

	7 Application Issues
	7.1 Distribution
	7.2 Using CORBA
	7.3 Service Integration
	7.3.1 Integration with Information Objects
	7.3.2 Client-side Integration

	7.4 Import and Export
	7.5 Identifiers and Uniqueness
	7.5.1 Information Objects
	7.5.2 CORBA Objects
	7.5.3 Link Uniqueness

	7.6 Relationship Attributes
	7.7 Performance and Scalability
	7.8 Transactions and Concurrency
	7.9 Security

	8 Implementation and Testing
	8.1 The Prototype Implementation
	8.1.1 Supported Features
	8.1.2 Interface Definitions
	8.1.3 Implementation Issues
	8.1.4 The Object Request Broker
	8.1.5 Runtime Management of Servants
	8.1.6 Persistent Objects

	8.2 Performance and Scalability
	8.2.1 Fat Operations
	8.2.2 Caching
	8.2.3 Object Locality

	8.3 Performance Testing
	8.3.1 Test Setup
	8.3.2 Navigation Performance
	8.3.3 Creating Relationships

	9 The FRBR Application
	9.1 Introduction
	9.2 Current Bibliographic Catalogues
	9.3 The FRBR Model
	9.4 Enhancing Existing Catalogues
	9.5 Implementing the Index
	9.5.1 Defining a Link Typology for the FRBR-model
	9.5.2 Extracting Entities and Relationships
	9.5.3 The FRBR Index

	9.6 A Client for Navigating Relationships
	9.7 Evaluating the Application

	10 Evaluating the Service
	10.1 Application Areas
	10.2 The Object Model
	10.3 Distribution
	10.4 Reuse
	10.5 Referential Integrity
	10.6 Interoperability

	11 Conclusions and Future Work
	11.1 Conclusions
	11.2 Summary of Contributions
	11.3 Related Work
	11.4 Limitations and Further Work

	Appendix
	A.1 The LinkService Module
	A.2 The Typology Module
	A.3 The Typology Schema
	A.4 The FRBR Typology

	References

