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ABSTRACT

Operation and maintenance costs are significant for large-scale wind turbines, and particularly so for offshore. A well-

organized operation and maintenance strategy is vital to ensure the reliability, availability, and cost-effectiveness of a

system. The ability to detect, isolate, estimate and perform prognoses on component degradation could become essential

to reduce unplanned maintenance and downtime. Failures in gearbox components are in focus since they account for a

large share of wind turbine (WT) downtime. This study considers detection and estimation of wear in the downwind main

shaft bearing of a 5 MW spar-type floating turbine. Using a high-fidelity gearbox model, we show how the downwind

main bearing and nacelle axial accelerations can be used to evaluate the condition of the bearing. The paper shows how

relative acceleration can be evaluated using statistical change detection methods to perform a reliable estimation of wear

of the bearing. It is shown in the paper that the amplitude distribution of the residual accelerations follows a t-distribution

and a change detection test is designed for the specific changes we observe when the main bearing becomes worn. The

generalized likelihood ratio (GLR) test is extended to fit the particular distribution encountered in this problem, and closed-

form expressions are derived for shape and scale parameter estimation, which are indicators for wear and extent of wear

in the bearing. The results in this paper show how the proposed approach can detect and estimate wear in the bearing

according to desired probabilities of detection and false alarm.
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1. INTRODUCTION

Renewable energy can meet our ever-increasing need for energy. Among renewable resources, the use of wind energy1

has increased spectacularly in recent decades [1]. Wind turbines (WTs) are exposed to highly variable and at times2

severe environmental disturbances and, for floating turbines, also the fluctuating mechanical loads due to waves. These3

external factors contribute to large amount of downtime and high operation and maintenance (OM) costs during WT4

typical operational lifetime of 20 years [2]. OM costs are estimated to be 10–15% for onshore and 20–25% for offshore5

turbines of the total cost [3]. Thus, OM costs represent a substantial share of the total cost of energy for offshore wind [4].6

Maintenance, in general terms, is classified into reactive (run to failure), preventive (periodic) and predictive7

maintenance (condition-based) [5, 6]. Efficient condition monitoring (CM) can greatly increase WT reliability and8

availability by decreasing the number of events where faults remain unnoticed and develop into failures [7]. WT global9

response to fault and possibly failure of different subsystems has been thoroughly investigated in literature [8–10]. A10

review of wind turbine condition monitoring techniques and challenges was presented in [5]. Some approaches are model-11

based, [11] showed model-based fault detection for the blade pitch system. Other methods are model-free, an example of12

model-free diagnose of rotor system fault was suggested in [12].13

Statistics show WTs undergo the largest amount of downtime related to drivetrain failures [13]. While a very few14

drivetrain full-scale dynamometer tests and field tests are available [14], numerical analysis and modeling play an important15

role for adaptation of condition monitoring techniques for WTs. Gearbox failures being initiated, in many cases, from16

bearings degradation [15, 16]. Since the main shaft bearing protects the gearbox from non-torque loads, diagnosis of main17

shaft bearing integrity is of particular interest. Wear detection and estimation of the main shaft bearing is therefore the18

main topic of this paper. Since model-based techniques can have high complexity and the modeling part can be a significant19

engineering effort, signal-based is prefered in industry. A signal-based frequency domain approach was investigated in [17],20

showing how fault in bearing and gearbox could be detected using Hilbert transform and cepstrum technique. Frequency21

domain analysis of stator current was employed to detect a bearing fault in [18]. The frequency domain techniques are22

readily applicable to detection of wear, once it has developed, but these methods have difficulty in assessing gradual23

developments in wear and are difficult to use for prognosis. Moreover, frequency domain techniques usually are not capable24

to provide a measure of the detection performance, i.e., probabilities of detection and false alarm for a given fault.25

In this paper, statistical change detection is employed to estimate the magnitude of wear in the downwind main bearing.26

The relative axial motions between axis and housing is scrutinized, and it is shown that relative acceleration follows a27

t-distribution with parameters that can describe the signal in the entire range from no wear to significant wear conditions.28

The paper shows how two t-distribution parameters, scale and shape, describe the development of wear, and a dedicated29

statistical test is developed that estimates wear through assessment of these parameters. A GLR test methodology is30

employed using closed form expressions for estimation of t-distribution parameters that are derived in the paper. Earlier31

results by the authors [19] showed that there was a correlation between wear and distribution, but did not assess the32

direct relation to wear, and did not consider a design with guaranteed diagnostic performance, both of which are essential33

to achieve reliable estimation and prognosis for wear. A salient feature of the suggested methodology is the ability to34

estimate both wear and the wear rate.35

The remainder of the paper is organized as follows. Section 2 introduces the relevant modeling for WT and the drivetrain.36

Different fault scenarios and their classifications are discussed in Section 3. Section 4 derives the extension to the well37

known GLR test that makes it possible to estimate the degree of wear in the bearing, and Section 5 presents and discusses38

the results. Finally, conclusions are drawn in Section 6.39
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2. WIND TURBINE AND DRIVETRAIN MODELS

A 5 MW reference gearbox [20] mounted on the floating OC3 Hywind spar structure [21, 22] was used in this study. This40

WT is a 3-bladed upwind WT with characteristic features shown in Table I. The spar-floating structure is column shaped41

and connected by mooring lines to the seabed. The spar structures have a large draft and a small waterline area. The details42

of the spar structure used in this paper were described by Nejad et al. [23].43

Table I. Wind turbine specifications [21,22].

Parameter Value
Type Upwind/3 blades
Cut-in, rated and cut-out wind speed (m/s) 3, 11.4, 25
Hub height (m) 87.6
Rotor diameter (m) 126
Hub diameter (m) 3
Rotor mass (×1,000 kg) 110
Nacelle mass (×1,000 kg) 240
Hub mass (×1,000 kg) 56.8

The 5 MW reference gearbox used in this study was developed by Nejad et al. [20] for offshore WTs. The gearbox44

consists of three stages: two planetary and one parallel stage gears. Table II shows the general specifications of this45

gearbox. Figure 1 shows the gearbox and drivetrain layout. The gearbox topology is shown in Figure 2. The gearbox46

was designed with a 4-point support with two main bearings to reduce non-torque loads entering the gearbox.47

Figure 1. 5-MW reference gearbox layout [20].

Table II. 5-MW reference gearbox specification [20].

Parameter Value
Type 2 Planetary + 1 Parallel
1st stage ratio 1:3.947
2nd stage ratio 1:6.167
3rd stage ratio 1:3.958
Total ratio 1:96.354
Designed power (kW) 5000
Rated input shaft speed (rpm) 12.1
Rated generator shaft speed (rpm) 1165.9
Rated input shaft torque (kN.m) 3946
Rated generator shaft torque (kN.m) 40.953
Total dry mass (×1000 kg) 53
Service life (year) 20
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Figure 2. 5-MW reference gearbox topology [20].

In mutli-body simulation (MBS) model of this gearbox, the motions are applied on the bed plate and the external loads48

on the main shaft. The generator torque and speed are controlled on the generator side [20].49

3. METHODOLOGY

3.1. De-coupled Approach & Environmental Condition50

A decoupled approach was employed in this study for dynamic response analysis of the drivetrain. First, the forces and51

moments on the main shaft are obtained from the global response analysis. Second, they are used as inputs to a detailed52

gearbox MBS model in which simulations with a higher fidelity model and smaller time steps are performed.53

The global analysis was conducted using an aero-hydro-servo-elastic code, SIMO-RIFLEX-AeroDyn [24]. Simulations54

were carried out at the rated wind speed with wave conditions characterized by a significant wave height HS = 5 m and a55

peak period TP = 12 s (modeled by a JONSWAP spectrum). The turbulence intensity factor of the wind speed was taken to56

be 0.15 according to IEC 61400-1 [25]. The long-term environmental data used in this study were generated by a numerical57

hindcast model at the National and Kapodistrian University of Athens (NKUA) [26]. To minimize statistical uncertainties,58

six 3,800 s simulations were performed for each cases studied. The first 200 s of data were removed during post-processing59

to eliminate the transient effects associated with start-up.60

In the MBS analysis, the bearings were modeled as force elements and obey force-deflection relations. The gears were61

modeled with compliance at the tooth and incorporate detailed tooth properties [20]. Earlier works on WT gearboxes based62

on the decoupled method include [27–29].63

3.2. Main Bearing Damage64

As stated in Section 2, the 5 MW reference drivetrain model consists of two main bearings. The second main bearing65

(INP-B) carries the axial force induced by the wind thrust force. The performance of this bearing is crucial to the gearbox66

life [23, 30]. As this bearing undergoes degradation and wear, additional non-torque loads are transmitted to the gearbox67

and reduce the life of other components, particularly other bearings inside the gearbox. As highlighted in [16], most of the68

gearbox failures in WTs originate in the bearings. It is, therefore, important to monitor and evaluate the condition of this69

main bearing during operation.70
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In this study, the bearing was considered as one element whose lifetime can be modeled by the Lundberg-Palmgren71

equation [31], as specified by ISO 281 [32]. The life of roller bearings is limited to the fatigue life of the material from72

which they are made and is governed by the lubricant used. Extensive tests carried out by Lundberg and Palmgren in73

the SKF bearing manufacturing company in Sweden revealed that bearing life can be estimated directly from the applied74

loads [31]. Today, the Lundberg-Palmgren equations still form the basis of bearing selection and design and have been75

incorporated into the ISO 281 standard.76

From the Lundberg-Palmgren hypothesis, the bearing life is expressed as follows [31–33]:77

L = (
C

P
)a (1)

in which L is the bearing basic life defined as the number of cycles that 90% of an identical group of bearings achieve78

under certain test conditions before fatigue damage appears, and C is the basic load rating that is constant for a given79

bearing. The parameter a = 3 for a ball bearing, and a = 10
3

for roller bearings. The variable P is the dynamic equivalent80

radial load calculated as follows:81

P = XFr + Y Fa (2)

where Fa and Fr are the axial and radial loads on the bearing, respectively, and X and Y are constant factors obtained82

from the bearing manufacturer [32].83

Equation (1) is a form of an SN curve formulation, which is used to estimate the fatigue damage on a bearing84

[23, 30, 34, 35].85

The roller bearing contact is often modeled using the Hertzian contact theory [36]. In most bearing models, it is assumed86

that the bearings operate at moderate speeds, meaning that the effects of centrifugal, gyroscopic and frictional forces may87

be neglected and that the force on the rollers is expressed in the form of a load-deflection relationship [37–39]. This88

force is a function of the rollers material and hardness, the geometry and the applied load. If q represents the relative89

bearing deflection between the inner and outer races and F the applied forces and moments, the bearing stiffness matrix90

in nonlinear form may be expressed as follows [38]:91

K =
∂F

∂q
(3)

A finite element method to calculate bearing stiffness was developed by [38]. Analytical methods for bearing stiffness92

calculation have also been published by Houpert [37]. New bearings often have relatively large stiffness values, in the order93

of 108, and as the bearing wears and the surface hardness decreases, the contact zone increases, and the bearing stiffness94

decreases. Such decreases were observed in the experimental studies conducted by Qiu et al. [40].95

This properties of a bearing provide a practical method for testing the damage detection methods using MBS models.96

Due to bearing complexities, bearings are modeled as a force element in an MBS model based on the bearing stiffness97

[20,39]. Bearing wear or damage can then be modeled by varying the stiffness matrix of the bearing, and the responses can98

be used for detection. This modeling approach has been used to model bearing faults in land-based wind turbines [41,42].99

The remaining life of a worn bearing primarily depends on the load level at which the gearbox operates. The100

experimental tests conducted by Ocak et al. [43] on roller bearings indicate that the time from the initial observation101

of high vibrations until the ultimate failure can be as short as 10% of the total bearing life.102

In this paper, the INP-B bearing, the downwind main shaft bearing Figure 2, wear is studied through monitoring the103

level of stiffness of the bearing for six different fault cases, as shown in Table III. The variable Kx is the axial stiffness104

and f and nf represent the fault and non-fault cases, respectively. The use of the root mean square (r.m.s) value of the105

vibration signal is one of the methods used in the industry [44–46]; therefore, the vibration level of the INP-B bearing is106

exploited to explain the physical meaning of change of the bearing stiffness. According to ISO 20816-1 [46], the vibration107

velocity is often found to be sufficient for evaluating the severity of the vibration. ISO 20816-1 classifies four vibration108

zone boundaries based on the operational class of the machinery:109
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Zone A: new machines,110

Zone B: acceptable zone for long-term operation,111

Zone C: unacceptable for long-term operation,112

Zone D: can cause severe damage.113

114

The r.m.s values of the velocity for the INP-B bearing in different fault cases are calculated and evaluated based on115

the limits suggested by ISO 20816-1 [46] (see Table III). The jump in r.m.s observed for FC5 is due to a side band mesh116

frequency resonance at this fault case.117

Table III. Velocity r.m.s of the INP-B in different fault cases.

Fault case Kxf (N/m)
Kxf
Kxnf

× 100 % r.m.s (mm/s) vibration zone boundary

FC0 4.06× 108 100 0.8 A/B
FC1 3.86× 108 95 0.9 A/B
FC2 3.45× 108 85 0.9 A/B
FC3 2.84× 108 70 2.2 B/C
FC4 2.03× 108 50 2.4 B/C
FC5 1.22× 108 30 8.3 C/D
FC6 4.06× 107 10 7.7 C/D

There are two different criteria to determine the critical level of stiffness (wear) of the INP-B bearing, the effect of the118

bearing wear on itself, represented by the level of vibration, and its degradation effect on other components. We note that119

the wear or damage in an INP-B results in additional loads being transferred to the bearings inside the gearbox. Thus,120

in addition to the INP-B vibrations, another appropriate indicator is the relative life of the bearings inside the gearboxfor121

instance, the planet carrier bearings in the first stage that carry the axial load. Based on the vulnerability map described122

by Nejad et al. [20, 30], the PLC-B is selected for the life study. Table IV presents the remaining life of this bearing for123

different FCs. In this table, the remaining life is presented in normalized terms with respect to the nominal life, life at the124

FC0. The level of vibration at FC4 is acceptable for long-term operation; however, the PLC-B life reduces by almost 70%.125

Accordingly, FC4 is selected as the critical fault case in this study.126

Table IV. Fault cases & PLC-B relative life.

Fualt cases
Kxf
Kxnf

× 100 % PLC-B relative life

FC0 100 100
FC1 95 93
FC2 85 78
FC3 70 57
FC4 50 33
FC5 30 14
FC6 10 3

4. STATISTICAL FAULT DIAGNOSIS

Signal-based fault detection has long roots in the field of rotatory machinery, as it is straightforward to implement, and127

wear propagation is a complex stochastic phenomenon that is challenging to model. The proposed signal-based fault128

diagnosis method in this paper tracks the physical degradation of the main shaft bearing based on detecting changes in129

the statistical properties of the relative acceleration of the bearing and nacelle. Statistical change detection in a linear130

stochastic continuous/discrete system has been addressed by Blanke et al. and Kay [47, 48]. Statistical fault diagnosis has131

been exploited in several applications [49–51] in which the GLRT was applied for detecting changes in the estimated132

parameters.133
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A GLR test can decide between the so-called null hypothesisH0 and the alternative hypothesisH1 using the probability134

distribution functions (PDFs) for each hypothesis. Without prior knowledge of the occurrence probabilities of H0 and H1,135

Neyman-Pearsons approach provides a solution that maximizes the ratio of the probability of detection over the probability136

of a false alarm [48].137

The residuals were generated by subtracting the bearing acceleration from the nacelle acceleration to determine a138

residual that is relatively robust to input disturbances, such as wind and waves. To find proper PDFs of the residual139

different distributions are examined, and the t-distribution is selected as the best fit. In the following sections, x is used to140

elaborate the theory, whereas z= (z(1), ..., z(i)) represents the measured residual.141

4.1. P-Variate t-distribution142

A p-dimensional random vector x= (x1, ..., xp)
T is said to have the p-variate t-distribution with ν degrees of freedom if143

its joint probability density function is given by:144

f(x;µµµ,R, ν) =
Γ((p + ν)/2)

Γ( ν
2
)(πν)p/2 |R|1/2

× [1 +
1

ν
(x−µµµ)TR−1(x−µµµ)]−

p+ν
2 (4)

where Γ(z) =
∫∞
0
tz−1e−1dt is the gamma function,µµµ is the mean vector (location parameter) andRRR is the correlation145

matrix. The degrees of freedom parameter ν is also referred to as the shape parameter, because the peakedness of equation146

(4) may be diminished, preserved, or increased by varying ν . The distribution is said to be central if µµµ = 0. For ν > 1,147

E(xxx) = µµµ and for ν > 2, V ar(x) = R× ν/(ν − 2). If each parameter is considered individually, a univariate t-distribution148

with p = 1 can be used to represent the distribution of the estimated parameters. If changes to all parameters are considered149

simultaneously, the p = Nθ multivariate distribution is implemented. Note that if ν = 1 or ν →∞ equation (4) is the p-150

variate Cauchy or p-variate Gaussian distributions, respectively [52].151

4.2. GLR test for unknown change in degree of freedom (ν), and scale (σ) of a univariate t-distribution152

The problem at hand is to detect the unknown change in the distribution of the residual signal. With unknown magnitude153

of change, a GLR test offers the possibility to maximize the probability of detection over the probability of false positives,154

and is able to estimate the magnitude of change. A GLR test with Gaussian distribution of the probe signal is thoroughly155

treated in the literature [47,48]. The test was derived for a mean value change in a t-distributed signal in [51]. In the problem156

at hand, data follow a univariate t-distribution but the indicator for wear is two other parameters of the distribution: the157

degrees of freedom (ν) and scale (σ).158

The method proposed in this paper is an extension of the likelihood ratio test; the data follow a univariate t-distribution159

,in which changes occur over multiple variables for a different hypothesis, given a sequence of independent and identically160

distributed (IID) observations of a vector z={z(1),...,z(k)}. At time k, a test should indicate if it is likely that a change161

occurred in the past, such as at time k0. As time passes and more data are acquired, (i.e., k increases), relatively early data162

in this sequence do not provide any information on the change. Thus, it is more computationally efficient to examine the163

last M samples to decide between the hypotheses in equation (5):164

H0 : p(z(i)) ∼ t(µ0, σ0, ν0) for k −M + 1 ≤ i ≤ k

H1 : p(z(i)) ∼ t(µ0, σ0, ν0) for k −M + 1 ≤ i ≤ k0 − 1 and

p(z(i)) ∼ t(µ1, σ1, ν1) for k0 ≤ i ≤ k (5)

where the GLRT test statistic, g(k), and the univariate t-distribution are presented in equations (6) and (7), respectively:165

g(k) = max
k−M+1≤j≤k

Sup
σ1,ν1

ln

∏k
i=k−M+1 f(z(i);µ, σ1, ν1)∏k
i=k−M+1 f(z(i);µ, σ0, ν0)

(6)
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f(z(i);µ, σ, ν) =
Γ((1 + ν)/2)

Γ( ν
2
)(πν)0.5 σ

× [
ν + ( z(i)

σ
)2

ν
]−

1+ν
2 (7)

Furthermore, when an accurate estimation of the change time is not necessary, a cheaper approach from a computational166

point of view is possible by considering M as a fixed-size moving window consisting of last M samples. In this practical167

approach, the hypotheses change with equation (8), and the test statistics change from equations (6) to (9):168

H0 : p(z(i)) ∼ t(µ, σ0, ν0) for k −M + 1 ≤ i ≤ k

H1 : p(z(i)) ∼ t(µ, σ1, ν1) for k −M + 1 ≤ i ≤ k (8)

g(k) = Sup
σ1,ν1

ln

∏k
i=k−M+1 f(z(i);µ, σ1, ν1)∏k
i=k−M+1 f(z(i);µ, σ0, ν0)

= Sup
σ1,ν1

lnGkk−M+1(σ1, ν1) (9)

We note that if a change is detected by equation (9), at ka, where the subindex a stands for the alarm time, the only169

information about the change time, k0, is that it lies over the interval of ka −M + 1 ≤ k0 ≤ ka, which is acceptable170

in many industrial applications. However, it is also possible to estimate the change time, k0, more accurately using the171

same approach as in equation (6). For each window size M of data, change detection and estimation are performed172

simultaneously. The variable Sup
σ1,ν1

represents the change magnitude estimation used to determine the best PDF fit to the173

new group of data, which gives the highest value for the test statistics. Generally, there are two approaches used to estimate174

the change magnitude, namely, the ME and the MLE. Both approaches are addressed for the t-distribution in the next175

section.176

4.2.1. GLRT with Moment Estimator177

Different moments of the t-distribution are listed in Table V. The second and fourth moments can be used to estimate178

the change magnitudes, whereas σ and ν are characteristic parameters.179

Table V. The t-distribution moments [52]

Mean Variance Skewness Excess kurtosis

E(x) = µ V ar(x) = σ2 ν
ν−2

0 κ = 6
ν−4

ν > 2 ν > 4

Accordingly, σ̂1 and , ν̂1 may be estimated using equations (10) and (11), where the subindex ME indicates the moment180

estimator.181

ν̂ME =
6(

1
k−j+1

k∑
i=j

( zi−µ
σ

)2
)
− 3

+ 4 (10)

182

183

σ̂ME =

(
1

k − j + 1

k∑
i=j

(zi − µ)2
)
× (ν̂ME − 2)

ν̂ME

(11)

High order statistical moments are highly sensitive, as they are based on the tails of the distribution, where only a small184

percentage of the data carry useful information for high order moments. Consequently, a large window size is needed to185

determine a robust estimation.186
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4.2.2. GLRT with maximum likelihood estimator187

Maximum likelihood estimates of the two parameters, σ1 and ν1 are found by equating
(
∂Gkk−M+1(σ1,ν1)

∂σ1

)
and188 (

∂Gkk−M+1(σ1,ν1)

∂ν1

)
to zero. The G(σ1, ν1) function, which is defined by equation (9), can be rewritten as:189

lnGkk−M+1(σ1, ν1) = ln

k∏
i=k−M+1

f(σ1,ν1)︷ ︸︸ ︷
Γ( 1+ν1

2
)

Γ( ν1
2

)σ1
√
πν1

h(σ1,ν1)︷ ︸︸ ︷[
1 +

( z(i)−µ
σ1

)2

ν1

] 1+ν1
2

k∏
i=k−M+1

Γ( 1+ν0
2

)

Γ( ν0
2

)σ0
√
πν0

[
1 +

( z(i)−µ
σ0

)2

ν0

] 1+ν0
2

︸ ︷︷ ︸
Const

(12)

lnGkk−M+1(σ1, ν1) =

k∑
i=k−M+1

ln f(σ1, ν1)− (
1 + ν1

2
)

k∑
i=k−M+1

lnh(σ1, ν1) + Const. (13)

The derivative with respect to σ is:190

∂ lnGkk−M+1(σ1, ν1)

∂σ1
=

k∑
i=k−M+1

[
∂ ln f(σ1, ν1)

∂σ1
−
(

1 + ν1
2

)
∂ lnh(σ1, ν1)

∂σ1

]
(14)

=

k∑
i=k−M+1

− 1

σ1
+

1 + ν1
ν1σ

3
1

z2i
+ σ1

=

k∑
i=k−M+1

ν1
σ1
× z2i − σ2

1

σ2
1ν1 + z2i

(15)

⇒
k∑

i=k−M+1

1

σ2
1ν1 + z2i

=
M

σ1(1 + ν1)
. (16)

Similarly, the derivative with respect to ν is:191

∂ lnGkk−M+1(σ1, ν1)

∂ν1
=

k∑
i=k−M+1

∂

∂ν1

[
ln

Γ( 1+ν1
2

)

Γ( ν1
2

)
√
πν1

+ ln
1

σ1
− 1 + ν1

2
ln

(
1 +

( zi
σ1

)2

ν1

)
+ Const

]
(17)

=

k∑
i=k−M+1

∂

∂ν1

[
ln Γ(

1 + ν1
2

)− ln Γ(
1 + ν1

2
)− 1

2
ln(πν1)− lnσ1 −

1 + ν1
2

ln

(
1 +

( zi
σ1

)2

ν1

)]
(18)

k∑
i=k−M+1

1

2

[
ψ(

1 + ν1
2

)− ψ(ν1)− 1

2ν1
− ln

(
1 +

( zi
σ1

)2

ν1

)
+

(
1 + ν1
ν1

)(
1

1 + ν1(σ1
zi

)2

)]
= 0 (19)

⇒M ×
{
ψ(

1 + ν1
2

)− ψ(
ν1
2

)− 1

ν1

}
=

k∑
i=k−M+1

[
ln

(
1 +

( zi
σ1

)2

ν1

)
+

(1 + ν−1
1 )

ν1(σ1
zi

)2 + 1

]
, (20)

where ψ(x) is the digamma function, which is the derivative of the gamma function:192

ψ(x) =
d

dx
ln (Γ(x)) = Γ′(x)Γ−1(x). (21)

When x is real and positive, which is the case here, the digamma function can be represented as:193

ψ(x) =

∫ ∞
0

(
e−t

t
− e−xt

1− e−t

)
dt. (22)

A set of nonlinear equations (16) and (20) must be solved simultaneously to derive the MLE estimates of the σ1 and ν1.194
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4.3. GLR test statistics approximated by Weibull distributions195

If the GLR test inputs are IID and Gaussian (or as an asymptotic property for infinite window size, M →∞), the196

distribution of the test statistics g(k) may be determined analytically and follows the Chi-squared distribution [47, 48].197

This approach allows the determination of a threshold analytically based on desired values of probability of detection PD198

and probability of false alarm PF . However, in many industrial applications, data are often correlated [49–51, 53]. Thus,199

the actual distribution of the test statistics may be considerably different from the Chi-squared statistics obtained from the200

theory. One approach to address this issue is to approximate the test statistics from experimental data. Accordingly, several201

distributions were tested, the Weibull distribution was found to yield a good fit for the test statistics g(k) [53].202

5. RESULTS AND DISCUSSION

Based on the discussion in Section 3.2, FC4 is chosen as the critical wear case for the problem at hand, since this level203

of wear in the main shaft bearing significantly decreases the lifetime of the gearbox components. In FC4, the lifetime204

of the PLC-bearing is reduced by almost 70%, although the vibration level of the main shaft bearing (INB-P) is still205

acceptable according to the ISO 20816-1 standard. Accordingly, two levels of wear are selected to evaluate the proposed206

diagnostic method, the FC1 (minimum wear) and the FC4 (critical wear). The nature of mechanical systems is such that207

appreciable displacements only occur at low frequencies, i.e., displacement gives the low frequency components most208

weight. Velocity tends to have reasonably uniform response from low to medium frequencies. Acceleration measurements209

gives more weight to the high frequency components and is, therefore, the logical choice for monitoring components that210

generate high frequency vibration such as bearings and gears.211

Scrutinizing the power spectrum of relative displacement, velocity, and acceleration of the main shaft bearing and the212

nacelle, only relative acceleration does not have any appreciable components in wind and wave frequency range, meaning213

that the relative acceleration is more robust to input change of wind and waves and is relatively more sensitive to wear in214

the INP-B bearing. Thus, relative acceleration of the main shaft bearing and the nacelle is a well-suited measurement and215

is chosen to detect the wear in the bearing. Figure 3 depicts the relative acceleration time series and histogram for the FC0216

(fault-free, red), FC1 (green) and FC4 (blue) levels.217
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Figure 3. The time history and histogram of the relative axial acceleration for the FC0 (red), the FC1(green) and the FC4 (blue)
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Figure 4. Normal probability plot and fitted distributions to FC0, FC1 and FC4

The cumulative distributions of the data are plotted using a normal probability plot in Figure 4. A closer look at the fault218

cases distributions reveals heavier tails than for the normal distribution. Therefore, various distributions with the capability219

to capture both sides of the heavy-tailed data are considered to find the best fitting distribution. Visually, the t-distribution220

is the best fit. However, its goodness-of-fit (GoF) must be checked. There are several GoF tests to check the goodness of221

the estimated distributions. In the presence of nuisance parameters, the tests are usually constructed by first estimating222

these nuisance parameters from the data and then conducting a GoF test. Estimating the nuisance parameters and running223

GoF tests using the same data is a notable pitfall of empirical distribution function (EDF)-based GoF tests. The theory224

underlying the EDF-based test requires independence between the hypothesized theory and data. Any correlation causes225

the critical values to shift, and the asymptotic null distribution of the test statistic may depend in a complex way on the226

unknown parameters [54–56].227

However, the Chi-square GoF test is capable of handling this correlation through its degrees of freedom [54]; on the228

other hand, it is well known that EDF-based tests such as the Kolmogorov-Smirnov test (K-S test) are more powerful than229

the Chi-square test [50]. That is, EDF-based tests are usually more sensitive and capable of rejecting the hypothesized230

theory (distribution model), whereas the Chi-square test might lack the required evidence for rejection [53]. Moreover,231

the Chi-square test statistic is sensitive to the bin width. A smaller bin width increases the noise effect, and a larger bin232

width causes a loss of information since the data are replaced by the median of the bins during the calculation of the test233

statistics, and unfortunately, there is no analytic expression for the optimal bin width.234

Fortunately, the EDF-based GoF test statistics may still be modified and computed using several methods, such as235

the bootstrap method. Bootstrap resampling is conceptually simple but computationally expensive. In this approach, the236

critical values related to different significance levels may be estimated by bootstrap resampling of the original dataset, a237

data-based Monte Carlo method. The theory underlying the bootstrap method guarantees that the resulting significance238

levels are unbiased for a wide range of situations [55]. To save computational time, 10,000 samples are randomly selected239

from 720,000 samples (corresponding to a 1h simulation time with a 200 Hz sampling rate) of relative axial acceleration240

to conduct the K-S test, as shown in Table VI. Parametric bootstrap resampling is also used to construct the critical values241

for each type of distribution and each fault case, as shown in Table VII.242
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Table VI. K-S goodness-of-fit values and p-values for different distributions for relative axial acceleration

Fault cases Normal t-distribution Logistic Cauchy

K-S p-value K-S p-value K-S p-value K-S p-value

FC0 0.039 0.001 0.0067 0.154 0.0082 0.038 0.0636 0.001

FC1 0.024 0.001 0.005 0.660 0.0067 0.212 0.0618 0.001

FC2 0.015 0.001 0.0064 0.254 0.0121 0.001 0.0690 0.001

FC3 0.01 0.031 0.0061 0.407 0.0145 0.001 0.0658 0.001

FC4 0.048 0.001 0.0071 0.071 0.0087 0.022 0.06 0.001

FC5 0.021 0.001 0.0071 0.125 0.0070 0.169 0.067 0.001

FC6 0.014 0.001 0.0057 0.494 0.0143 0.001 0.0681 0.001

The K-S statistic (D-value) represents the maximum deviation between the cumulative EDF and the hypothesized243

distribution. A p-value is the conditional probability of experiencing an extreme or higher deviation than the D-value244

on the condition that the data follow the hypothesized distribution. Comparing the p-values and the K-S statistics with the245

critical values presented in Table VII show that the t-distribution is the best fit even for significance levels greater than246

10% (probability level 90% = 1− α). A low p-value (regarding the significance level) indicates that under a hypothesized247

distribution, it is unlikely that we will observe a D-value equal or higher than the observed value. The Logistic distribution is248

also acceptable at the 1% significance level. Therefore, the t-distribution is selected. The estimated t-distribution parameters249

for different fault cases are shown in Table VIII.250

Table VII. Critical values resulted from bootstrap resampling

Bootstrap Critical Values
Distributions 90% 95% 99%
Normal 0.0084 0.0091 0.0106
t-distribution 0.0074 0.0080 0.0093
Logistic 0.0074 0.0081 0.0093
Cauchy 0.0081 0.0089 0.0104

Table VIII. Estimated t-distribution parameters for different fault cases

Fault cases µ(location) σ(Scale parameter) ν(shape parameter)

FC0 7.903× 10−5 0.06395 5.45911

FC1 3.255× 10−5 0.09694 7.64

FC2 3.491× 10−5 0.07399 10.50

FC3 −1.979× 10−7 0.23755 23.6446

FC4 4.305× 10−5 0.1687 4.6897

FC5 1.936× 10−5 0.6398 8.879

FC6 2.627× 10−5 0.45298 14.3145

Simulations were carried out at a sampling frequency equal to 200 Hz and for different window sizes, Mi, for different251

fault amplitudes. As the bearing wear becomes more severe, a smaller sample size is required to make a decision regarding252

the fault. Realization of the decision function (test statistics) for FC4 with M4 = 10000 samples (50 s) are shown in253

Figure 6. The decision function defers properly before and after fault occurrence (at 1,500 s), resulting in robust detection.254

Different approaches (ME and MLE) were used to estimate the characteristic parameters. For a small window size such as255

M4 = 10000, the ME failed to estimate σ and ν properly. Thus, the decision function could not be calculated for certain256

points after the fault occurrence. However, the use of a larger window size for both approaches (ME and MLE) provided257
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almost identical results. Figure 6 shows the decision function for FC1 with the ME and the window size set equal to 50,000258

samples (250 s).259

The test statistics in Figures 5 and 6 result from assumed abrupt changes in the wear severity, whereas in practice260

bearings undergo wear gradually. Unfortunately, it is not possible to simulate gradual changes in wear from one fault case261

to another one using the SIMPACK software. However, the efficiency of the proposed method is tested on relatively small262

wear sizes, such as the FC1 level (i.e., a 5% change in bearing stiffness).263

Figure 5. FC4 Decision function for M4 = 10000
using maximum likelihood estimator

Figure 6. FC1 Decision function for M1 = 50000
using moment estimator

The next step is to estimate the probability of detection and false alarm for the proposed method. It is too complicated264

to analytically derive an expression for the test statistics when the sample data are IID. Instead, the test statistics, gM (k),265

are approximated based on a long series of simulation data. The probability plot for the test statistics before and after fault266

occurrence for two window sizes (window size 1: 10,000 samples, 50 s and window size 2: 50,000 samples, 250 s) are267

shown in Figures 7 and 8, respectively. The decision functions for the FC4 level properly roll out after the fault occurrence268

in both window sizes. However, for a smaller wear severities (FC1), 10,000 samples do not carry sufficient information269

to result in robust detection, as shown in Figure 7. Therefore, a larger sample size is required to ensure robust detection270

for the FC1, as shown in Figure Figure 8. The decision functions can be approximated using the Weibull distribution, as271

presented in equation (23). The related estimated parameters are shown in Table IX. The corresponding probabilities of272

detection and false alarm according to equations (25) and (24) are presented in Table X for the FC1 and FC4 levels.273

Figure 7. Test statistics g(k) for FC0, FC1 and FC4
for window size1 equal to 50 s (10000 samples)

Figure 8. Test statistics g(k) for FC0, FC1 and FC4
for window size2 equal to 250 s (50000 samples)
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f(x|a, b) =
b

a

(x
a

)b−1

exp

{
−
(x
a

)b}
(23)

Table IX. Estimated Weibull distribution parameters for decision functions using different window sizes

Hypothesis â b̂

Window size1, 50 sec
FC0 107.75 1.17

FC1 1462.16 1.51

FC4 7931.12 2.58

Window size2, 250 sec
FC0 147.33 1.1

FC1 5608.38 6.10

FC4 35960.8 6.47

The selection of the detection threshold h and the window size (M) should be made based on our needs for the probability274

of false alarm (PF ) and probability of detection (PD), as shown in Table X. The window sizes may be decreased until they275

indicate the same fitting distribution. Otherwise, important information may be lost. The first row of Table X shows that for276

small wear severity (FC1), 10,000 samples do not contain enough information, resulting in a relatively high probability of277

false alarm. The results for the other fault cases are satisfactory and can be improved by increasing the window sizes. The278

assumed window sizes (50 and 250 s) are extremely short relative to the wear progress. We also note that the probabilities279

of detection and false alarm, which are presented in Table X, are underestimated approximations. Figures 5 and 6 show280

that the test statistics exhibit a sharp roll off under H1, such that detection is more sensitive; therefore, the probabilities of281

detection are higher than those predicted by approximation using the Weibull distributions.282

PF = P (g > h|H0) =
∫∞
h
p(g|H0)dg (24)

283

284

PD = P (g ≥ h|H1) =

∫ ∞
h

p(g|H1)dg (25)

Table X. GLRT probabilities of detection and failure for different window sizes and for different thresholds

window size Fault cases Threshold PD PF

50 sec (10000 samples)
FC1 320 0.9040 0.0282

FC4 1400 0.9939 2.7577e-07

250 sec (50000 samples)
FC1 2200 0.9967 3.9687e-09

FC4 7800 0.9999 2.3709e-34

The estimated parameters for σ and ν at the FC0, FC1 and FC4 levels using the ME and MLE are depicted in Figure 9.285

The estimated characteristic parameters are suitably isolated for the cases FC0, FC1 and FC4. Although the estimation of286

ν is poor, the detection algorithm provides robust detection. Poor estimate of ν occurs because of the correlation between287

the data and the fact that ν determines the peakiness of the t-distribution, which is much more sensitive than the σ value288

for a small data size. As an alternative approach, it is also possible to presume the ν value as its mean value depending on289

the problem. For instance, in this case ν = 8 is a sound assumption. Hence, σ is the only value that needs to be estimated.290

Therefore, the computational cost is reduced at the expense of a small degradation in the probabilities of detection and291

failure.292
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Figure 9. Estimated t-distribution parameters for FC0, FC1 and FC4

6. CONCLUSIONS

Owning to the fact that WTs undergo the highest downtime due to gearbox failures, and bearing degradation initiates293

most of the gearbox failures, wear detection in the main shaft bearing was investigated in this paper using statistical294

change detection. First, a 5 MW spar-floating wind turbine was modeled using SIMO-RIFLEX-AeroDyn to conduct the295

global analysis. The obtained forces and moments on the main shaft were then applied to a high-fidelity gearbox model,296

a multi-body simulation model using SIMPACK. Relative acceleration of the main shaft bearing and the nacelle was297

employed to detect wear and wear rate in the bearing. It was shown that residuals followed t-distribution in which scale298

and shape parameters characterized the bearing wear from no wear to significant level of wear. Both moment and maximum299

likelihood estimators (MLE) were investigated to estimate the extent of wear. Using MLE, closed form expressions300

for generalized likelihood ratio (GLR) test for t-distribution with multi-variable characteristic parameters were derived.301

Performing different simulations with different wear extent and different window sizes, MLE estimator showed a better302

performance than the moment estimator. High probability of detection and very low probability of false alarm demonstrated303

a fast and reliable detection at early stage of wear. The proposed method is believed to offer broad applicability; however,304

other applications may require adaptation of the distributions and parameters estimation.305
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45. P Večeř, Marcel Kreidl, and R Šmı́d. Condition indicators for gearbox condition monitoring systems. Acta

Polytechnica, 45(6), 2005.

46. ISO 20816-1. Mechanical vibration - evaluation of machine vibration by measurements on non-rotating parts - part

1: general guidlines, 2016.

47. Mogens Blanke, Michel Kinnaert, Jan Lunze, Marcel Staroswiecki, and J Schrder. Diagnosis and fault-tolerant

control. Springer-Verlag Berlin Heidelberg, 3rd edition, 2015.

48. Steven M Kay. Fundamentals of statistical signal processing: Detection theory,, volume v.2. Prentice Hall Upper

Saddle River, NJ, USA:, 1998.

Wind Energ. 0000; 00:1–18 © 0000 John Wiley & Sons, Ltd. 17
DOI: 10.1002/we

Prepared using weauth.cls



5-MW gearbox fault detection and isolation M. Ghane et al.

49. Roberto Galeazzi, Mogens Blanke, and Niels Kjølstad Poulsen. Early detection of parametric roll resonance on

container ships. IEEE Transactions on Control Systems Technology, 21(2):489–503, 2013.

50. Soren Hansen and Mogens Blanke. Diagnosis of airspeed measurement faults for unmanned aerial vehicles. IEEE

Transactions on Aerospace and Electronic Systems, 50(1):224–239, 2014.

51. Anders Willersrud, Mogens Blanke, Lars Imsland, and Alexey Pavlov. Drillstring washout diagnosis using friction

estimation and statistical change detection. IEEE Transactions on Control Systems Technology, 23(5):1886–1900,

2015.

52. Samuel Kotz and Saralees Nadarajah. Multivariate t-distributions and their applications. Cambridge University

Press, 2004.

53. Mogens Blanke, Shaoji Fang, Roberto Galeazzi, and Bernt J Leira. Statistical change detection for diagnosis of

buoyancy element defects on moored floating vessels. IFAC Proceedings Volumes, 45(20):462–467, 2012.

54. Michael A Stephens. Edf statistics for goodness of fit and some comparisons. Journal of the American statistical

Association, 69(347):730–737, 1974.

55. G Jogesh Babu and CR Rao. Goodness-of-fit tests when parameters are estimated. Sankhyā: The Indian Journal of
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