
Model-based User Interface Design

Hallvard Trætteberg
Email: hal@idi.ntnu.no

Information Systems Group
Department of Computer and Information Sciences

Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and Technology

14 May 2002

URN:NBN:no-2353URN:NBN:no-2353

i

Abstract

This work is about supporting user interface design by means of explicit design representa-
tions, in particular models.

We take as a starting point two different development traditions: the formal, analytic, top-
down engineering approach and the informal, synthetic, bottom-up designer approach. Both
are based on specific design representations tailored to the respective approaches, and are
found to have strengths and weaknesses. We conclude that different representations should
be used during user interface design, based on their specific qualities and the needs of the
design process.

To better understand the use of design representations a framework for classifying them is
developed. A design representation may be classified along three dimensions: the perspec-
tive (problem- or solution-oriented) of the representation, the granularity of the objects
described and the degree of formality of the representation and its language. Any design
approach must provide representation languages that cover the whole classification space to
be considered complete. In addition, the transitions between different representations within
the representation space must be supported, like moving between task-based and interac-
tion-oriented representations or up and down a hierarchic model. Movements between rep-
resentations with different degrees of formality are particularly important when combining
user-centered design with a model-based approach.

The design representation classification framework has guided the development of diagram-
based modelling languages for the three main perspectives of user interface design, tasks,
abstract dialogue and concrete interaction. The framework has also been used for evaluating
the languges. A set-based conceptual modelling language is used for domain modelling
within all these perspectives. The task modelling language is designed as a hybrid of flow-
oriented process languages and traditional hierarchical sequence-oriented task languages.
Key features are tight integration with the domain modelling language, expressive and flex-
ible notation and support for classification of task structures. The language for modelling
abstract dialogue is based on the interactor abstraction for expressing composition and
information flow, and the Statecharts language for activation and sequencing. Parameter-
ized interactors are supported, to provide means of expressing generic and reusable dia-
logue structures. Modelling of concrete interaction is supported by a combination of the
dialogue and domain modelling languages, where the former captures the functionality and
behavior and the latter covers concepts that are specific for the chosen interaction style.

The use of the languages in design is demonstrated in a case study, where models for tasks,
dialogue and concrete interaction are developed. The case study shows that the languages
support movements along the perspective, granularity and formality dimensions.

URN:NBN:no-2353

URN:NBN:no-2353

iii

Preface

This is a doctoral thesis submitted for the degree “doktor ingeniør” to the Norwegian Uni-
versity of Science and Technology (NTNU). The work has been supervised by Professor
Arne Sølvberg at the Information Systems group, Dept. of Computer and Information Sci-
ences, Faculty of Information Technology, Mathematics and Electrical Engineering at
NTNU. The Research Council of Norway (NFR) has funded the work under Grant No.
116388/410.

My interest in abstract models for user interface design was initiated by practical experi-
ences with Lisp-based development environments at Center for Industrial Research (SI) in
Oslo. Arne Sølvberg was kind to let my work on this topic on my diploma thesis in autumn
-90 and spring -91, where I developed abstract dialogue modelling concepts very similar to
those presented later in this thesis. During my subsequent five years at SI (later part of SIN-
TEF), I got more practical experience with user interface design tools and continued toying
with ideas and concepts for model-based user interface design. In autumn ’96 I received
funding for a dr. project by NFR, and Arne Sølvberg again accepted to supervise me.

My starting point was abstract dialogue modelling and the initial work was on models for
interaction. However, the general interest in task-based design and the work of Arne’s stu-
dent Steinar Carlsen on workflow modelling, prompted me to look at task analysis and
modelling. This was an important transition, as it moved the focus from the user interface to
the user and his needs, goals and practice. Dag Svanæs then introduced me for user-centered
and iterative design, convinced me of the need for communicating with end-users by means
of concrete design representations and made me aware of different design traditions. This
gave rise to the framework for the thesis as a whole.

I want to thank my supervisor, Professor Arne Sølvberg, for his continuous support of my
work, both theoretical, practical and personal. Arne Sølvberg and his group have provided a
stimulating environment for me, for which fellow students Terje Brasethvik and Babak
Farshchian deserve special thanks. Steinar Carlsen has been an important colleague both as
my boss at SI/SINTEF where my initial inspiration was fostered, and as a fellow student
paving the way for part of my work. I am very grateful for his wisdom and humor.

I also thank Roald Kvamstad and Anita Kvamme, both part of the Gazelle team at Statoil,
who provided me with a realistic case for trying out my modelling languages.

Last but not least, I want to thank my wife Marit Reitan, for her love and support, and much
needed understanding when the project was delayed. My kids Jens and Anne, both born
during this work, also deserve hugs and kisses for providing me with alternative fun and
stimuli and helping me keep in touch with the real world.

URN:NBN:no-2353

URN:NBN:no-2353

Table of Content

Chapter 1 Introduction ..1
1.1 Problem statement and objectives ..2
1.2 Approach ..3
1.3 Contributions ..4
1.4 Outline of the thesis ..5

Chapter 2 State of the Art ..9
2.1 User interface modelling ..9
2.2 Obstacles to formal interface design and development ..13
2.3 Informal vs. formal representations ..15
2.4 User interface design within a systems development context ..16

2.4.1 UML and interaction design ..17
2.5 Summary...20

Chapter 3 Design and representation..21
3.1 High-level view of People, Actions, Information and Tools. ...21
3.2 Engineering and designer traditions ...24
3.3 Three dimensions of design representations...26
3.4 A fourth dimension: user - system? ..31
3.5 The role of design representations ..33
3.6 Representations and process ...35
3.7 Formal representations revisited...39

Chapter 4 Task modelling ..41
4.1 Introduction ..41
4.2 Workflow and task modelling...42
4.3 Aspects of work and its description..43
4.4 Workflow and task models ...49
4.5 Towards a task modelling language..50
4.6 The domain modelling language: RML..52

4.6.1 Concepts and instances ..52
4.6.2 Relations between concepts ...54
4.6.3 Dynamics..58

4.7 The Task Modelling Language - TaskMODL ..59
4.7.1 Tasks and subtasks ...61
4.7.2 Resources ...63
4.7.3 Subtask sequence constraints...66
4.7.4 Subtask cardinality...68
4.7.5 Explicit pre-conditions and post-conditions ..69
4.7.6 The task life-cycle, resource binding and data flow...71
4.7.7 Task classification ..73
4.7.8 Generalisation and specialisation ...75

URN:NBN:no-2353

4.8 Conclusion ..79
4.8.1 RML and TaskMODL and the representation framework ..80

Chapter 5 Dialogue modelling ..83
5.1 Introduction ..83
5.2 Interactors as information mediators ..84

5.2.1 Gates, connections and functions...86
5.2.2 Basic device interactors ...91
5.2.3 Set-oriented device interactors ..93

5.3 Interactor content ..95
5.3.1 Interactor control ...95
5.3.2 Interactor composition ...98

5.4 Modelling system functionality ..100
5.5 Interactor resources and parameters ...101
5.6 Acts and functions ..105

5.6.1 Acts...106
5.6.2 Act classification ..108
5.6.3 Act invocation ..109
5.6.4 Function and gate decomposition .. 111

5.7 Conclusion .. 114
5.7.1 DiaMODL and the representation framework ... 115

Chapter 6 Concrete interaction ... 119
6.1 Introduction .. 119
6.2 Window-based interaction objects..120
6.3 Simple interaction objects ..123

6.3.1 Labels and icons...123
6.3.2 Buttons ...124
6.3.3 Popups dialogs, dropdown listboxes and menus..126

6.4 Composite interaction objects ..129
6.4.1 Composition of function ...129
6.4.2 Composition of control...132
6.4.3 Composition of structure..134

6.5 Direct manipulation and mouse gestures..135
6.5.1 Structure of recognisers ...137

6.6 Composition of gestures ...142
6.7 Conclusion ..144

6.7.1 Concrete interaction and the representation framework ...145

Chapter 7 Case study...147
7.1 The IFIP case ..147
7.2 The ‘Organize’ task ..148
7.3 The domain model ..152
7.4 The main subtasks ..153

7.4.1 Task A.2, Record response..153
7.4.2 Task A.3, Choose reviewers..154
7.4.3 Task A.4, Perform review ...155
7.4.4 Task A.5, Collect review results ...155

7.5 Dialogue-oriented domain model - considerations...156
7.6 Designing a dialogue for each main subtask ..157

7.6.1 Registering a paper ..158
7.6.2 Assigning a set of reviewers to a paper ...159

URN:NBN:no-2353

7.6.3 Collecting and summarizing review results ...160
7.7 Composing the dialogues - considerations ...162
7.8 From abstract dialogue to concrete interaction...163
7.9 Completing the design ..166
7.10 Conclusion ..168

Chapter 8 Experiences and feedback ..169
8.1 External presentations and teaching ...169
8.2 The Statoil case...170
8.3 Tools and implementations ...174

8.3.1 Designing the notation and drawing diagrams with Visio...174
8.3.2 Garnet and CLIM-based GUI-builder prototypes ...175
8.3.3 Java-implementation of Statecharts for direct manipulation...177

8.4 Concluding remarks..177

Chapter 9 Conclusion and Future work ..179
9.1 Main contributions..180
9.2 Limitations and Future work ..181

9.2.1 Model-based design patterns ...182
9.2.2 UML integration ..183
9.2.3 Building User Interfaces with interactors..187
9.2.4 Summary...190

URN:NBN:no-2353

1

Chapter 1

Introduction
This work is about integrated methods for model-based
development of user interfaces, in the context of information
systems development. Information systems (IS) are composi-
tions of information processing entities, working together in
the pursuit of goals. Most organisations can be considered an
information system in this sense, since reaching their busi-
ness goals normally requires decision making and informa-
tion processing. A Computerised Information Systems (CIS)
is the part of a larger IS that is implemented by a Computing
System (CS), built as a tool for aiding the human or organisa-

tional part of an IS. Figure 1 illustrates that the CIS is the overlapping part of an Informa-
tion System and a Computer System.

The users of a CIS interact with it through its user interface
(UI) in the pursuit of organisational goals. By letting the UI
in Figure 1 partly overlap the IS, CIS and CS, we indicate
that the user in the pursuit of personal goals, may interact
with other parts of the CS, as well as non-computerised arti-
facts that may or may not be part of the IS. In all cases, peo-
ple use tools to perform the actions judged necessary for
reaching their goals, as illustrated in Figure 2. However, the
context and scope of the goals and actions are of course dif-
ferent.

Information systems construction and user interface design have traditionally been under-
taken using different methods and techniques, and the people taking part in these activities
have often been part of different academic traditions. Such a separation is unfortunate, since
every information system has a user interface which for many purposes is perceived as the
whole system. For the user, the distinction between interface and system is, for most practi-
cal purposes, meaningless. In addition, most application usage is part of a larger informa-
tion processing context, whether computerised or not. Thus, isolating the design of the
application’s user interface from the information system development is clearly undesirable.
However, the conceptual distinction between user interface and information system remains
useful and interesting. The proliferation of different connected electronic devices necessi-
ties the development of many front-ends for the same information system. The different
capabilities of these devices result in differing interfaces, while the information system
remains essentially the same. Furthermore, many future products may serve as new inter-

IS

UICS

Figure 1. Information System
(IS), User Interface (UI) and

Computer System (CS)

CIS

Figure 2. People use
information and tools to perform

actions

Information

ActionsActionsPeoplePeople

ToolsTools

URN:NBN:no-2353

2 Chapter 1 Introduction

faces for existing and largely unchanged systems. Hence, speaking about the information
system and its separately attached user interfaces is clearly meaningful.

The concept of an interactive system seems to appreciate the duality and the need for inte-
gration between systems development and interface design. Managing this integration as
well as their separate concerns is key to successful development of interactive systems.

1.1 Problem statement and objectives
Within the tradition of information systems engineering and building on the work within
model-based user interface design methodology, this work addresses the following prob-
lem:

How can models be used as a representation tool in the development of
interactive systems and provide a means of integrating information sys-
tems development with user interface design?

The established models of information systems engineering have many important proper-
ties, where formality has perhaps been the most appreciated one. However, the underlying
conceptual abstractions of entities and properties, events and transformations, are perhaps
more important than their formalisation, because they support mental synthesis and analysis
within a domain. In addition, the use of graphical representations or diagrams (“a drawing
that shows arrangement and relations (as of parts)”) for depicting relations and composition,
is seen as important, as it enhances the understanding of the complex structures that are
needed to solve complex problems. Hence, basing our work on models from the field of
information systems engineering seems like a sound approach.

On the other hand, current methods and techniques for user interface development within
more design(er)-oriented traditions, show that there is a need for flexible representations
that stimulate creativity and enhance communication. By flexible we mean the ability to
combine different aspects of the domain in one representation, without constraining the
allowed content or form.

This leads up to the following aims of this work:

1. To provide a framework for understanding the use of user interface design repre-
sentations in general, and more formal models in particular.

2. To design an integrated family of flexible diagram-based languages for specifying/
describing both the problem domain and the interface solution. The languages
should be interoperable with or based on languages used in information systems
engineering.

3. To outline how models using these languages can be used for capturing design
knowledge for reuse across problems and projects.

URN:NBN:no-2353

1.2 Approach 3

1.2 Approach
The main topics of this work are user interface modelling and model-based design of user
interfaces, which both are established fields. Two identified needs have motivated this
work, both having to do with integration of models and methods:

• The integration of model-based design of user interfaces with information systems
development methods.

• The integration of the various modelling languages used within model-based
design of user interfaces.

A third concern is based on the differences between information systems engineering and
user interface design traditions, and provides an important constraint:

• Making the user interface models more accessible to developers untrained in for-
mal modelling.

All these points can be discussed along two dimensions, process and representation. The
process dimension is concerned with how organisations choose to structure the develop-
ment, what activities are included, their timing and dependencies, who participate and
which practical techniques that are used. The representation issue is concerned with how
knowledge, problems and solutions are articulated and expressed, and the specific content
and form of these explicit expressions. Process and representation is interrelated, as certain
activities rely on a certain kind of representation, and certain representations are fit for cer-
tain processes. We choose to approach the integration problem along the representation
dimension and focus on the development of modelling languages. We do not wish to
endorse a particular process, as this is more of an organisational issue.

Being agnostic about the development process still means that the role of representations in
the process must be taken into account. We do this by first characterising the engineering
and designer traditions and identifying their strengths and weaknesses. This is used as the
basis for suggesting a framework for classifying representations, with dimensions for con-
tent and form. Furthermore, we identifying processes necessary during development for use
and transformation of representations.

Integration of models and methods must happen along both the content and form dimen-
sions. Along the content dimension, we approach integration by taking representative lan-
guages from the informations systems engineering tradition as a starting point for our user
interface modelling languages:

1. Our task modelling language TaskMODL is based in the APM workflow language
[Carlsen, 1998], whose main concepts are interpreted in the context and tradition
of task analysis and modelling. The traditional simplicity and hierarchical tree
style of existing task languages is in TaskMODL integrated with APM’s contain-
ment style, to better support both traditions.

URN:NBN:no-2353

4 Chapter 1 Introduction

2. The Referent domain modelling language [Sølvberg, 1999] developed by our
group, is integrated with both TaskMODL and the proposed dialogue modelling
language (DiaMODL), acting as a a glue both between system and interface, and
between different interface perspectives.

3. The dynamic part of DiaMODL, is a hybrid of the classical interactor-with-gates
interface component abstraction and the hierarchical state formalism Statecharts.

Along the form dimension, we approach the problem of integration in two ways:

1. We try to design flexible languages, with support for stepwise refinement in a
meaningful way. This should make the use of these languages less constraining.

2. We provide a direct mapping from abstract DiaMODL constructs to concrete
design-oriented elements, and suggest a way of interchanging abstract and con-
crete elements to make the dialogue models more understandable and mentally
stimulating.

The integrated use of our proposed languages is tested on the same case study used for vali-
dating APM. This prompts a discussion of which knowledge is needed for doing design. We
propose a design pattern approach to the management of design knowledge. Design patterns
relate model fragments in our languages, and provide guidance for how to move within the
design space.

Our focus is on supporting the expression of statements about the problem and the elements
and structure of its proposed solution. Therefore we downplay the formal aspects of our lan-
guages. Still, prototype implementations of the dialogue modelling language, are used to
validate that our approach can be used for interface prototyping and implementation pur-
poses.

1.3 Contributions
The major contributions of this work are:

• We identify different roles of design representations during interface development
and proposed a framework for classifying design representations. Both contribute
to an enhanced understanding of when and how different design representations
should be used in the development process.

• We propose a task modelling language that comprises:

- An advanced domain modelling language, which is used for modelling the static
part of the problem domain. The language is simple and expressive, and inte-
grated both conceptually and visually with the dynamic part.

- Comprehensive support for modelling resources, such as performing actor,
required information and tools, which gives uniform treatment of information
and resource flow and parameterization.

URN:NBN:no-2353

1.4 Outline of the thesis 5

- Support for generalisation/specialisation, providing support for capturing gen-
eral and specific task structures.

- A flexible visual syntax supporting a hybrid of hierarchical tree structure and sur-
face containment, and integrating the static and dynamic aspects of the domain.

• An interactor-based dialogue modelling language has been proposed, featuring:

- Generic functional abstraction with scalable support for composition.

- Simplified activation semantics through integration with Statecharts [Harel,
1987].

- Integration with task modelling, through the use of dynamic constructs similar
to the task modelling language and the same domain modelling language.

- Straight forward concrete interpretation in terms of concrete dialogue elements,
supporting a smooth transition to concrete design

- Parameterized interactors, supporting generic dialogue structures

• Models of concrete interaction, based on the dialogue modelling language:

- elements of standard window-based interfaces and their composition

- the direct manipulation style of interaction

1.4 Outline of the thesis
This work has the goal of building bridges and crossing boundaries between different
design representations and traditions. There are two major boundaries that are targeted. The
first concerns the use of informal and formal representations, which have different form and
focus and differing values attached to them. Building a bridge between these two will make
it easier to support different modes of work and enable practitioners within different tradi-
tions to work better together. The second boundary is found between representations with
different focus and content, which exists in the formal tradition. Building bridges between
these, will make it easier to support iterative processes, with a mix of prototyping, forward
and backward engineering and top-down and bottom-up design.

In Chapter 2, “State of the Art”, a framework for classifying design representations is pre-
sented. The framework defines a design representation space with three axes, within which
different design representation are placed. It is suggested that the process of design requires
moving within this space, i.e. using design representations with different characteristics,
content and focus. Several design representations are needed, both to move from high-level
goals and problem statements to suggestions for solutions, but also to support different
modes of design, e.g. synthesis and analysis, creativity and critique. The need for using a
particular design representation depends on its characteristics and the role we want it to play
within the development process, i.e. the requirements we have to the design representation,
which may vary considerably during the development of a software product. The chapter
will conclude by reviewing work within different areas covered by the design representation
space.

URN:NBN:no-2353

6 Chapter 1 Introduction

In the chapters 4, 5 and 6, we focus on three particular perspectives of user interface design.
Throughout these chapters we will present many models with named model elements.
When using these names as (implicit) references to the model elements, we will use a spe-
cial CHARACTER FONT, to distinguish them from other words. In Chapter 4, “Task model-
ling”, we discuss the problem-oriented perspective, combining static modelling of the
domain with models of human action. The goal is to provide a modelling language with a
clear focus, so the designer naturally expresses the problem and not its solution. In addition,
a flexible notation is important, to avoid hindering the designer in the process of expressing
constraints on action sequences. First, a domain language is presented, based on a concep-
tual modelling language previously used for meta-modelling, problem analysis and require-
ments engineering. Second, a task modelling language is presented, based on a combination
of a dataflow-oriented workflow language and more traditional hierarchical task analysis
model. The static domain language is used both together with the dynamic task language to
model the task domain, and for defining the meaning of the task modelling constructs.
However, the goal in the latter case is not to give a fully formal definition of the task lan-
guage, but rather to explain the notation in terms of the underlying concepts of the task
domain.

In Chapter 5, “Dialogue modelling”, the topic will be the solution-oriented perspective of
the dialogue between human and interactive system, i.e. the abstract design of how human
and system cooperate in performing the desired tasks. A modelling language based on the
interactor abstraction for information mediation is presented. The goal of the language is to
simplify stepwise refinement of design and ease the transition to and from more concrete
representations. The resulting language has weaker compositional characteristics than pre-
vious interactor definition, but should be easier to use and provide more suitable means of
abstraction.

In Chapter 6, “Concrete interaction”, we focus on the concrete building blocks which are
used when composing user interfaces. Models of the dialogue elements which are part of
some concrete interaction styles are presented, and we take a more detailed look the corre-
spondence with the previously presented interactor model. Based on the interactor model
and how it provides abstract elements from which dialogues are composed, we discuss the
constraints for composing concrete elements within particular interaction styles.

In Chapter 7, “Case study”, we present a design case and show how the modelling lan-
guages presented in chapters 4 and 5 may be used for modelling and design. The goal is to
show how the languages support moving forward along the perspective axis of the design
representation classification framework, i.e. moving from problem to solution. We first
develop a domain and task model and show how they may inform the designer and guide
the development of the abstract dialogue model. We then choose an interface style and pro-
ceed by developing a concrete design, again guided by the more abstract model.

As a further validation of our approach, we in Chapter 8, “Experiences and feedback”,
present examples from a case study undertaken at Statoil. We also describe proof-of-con-
cept prototypes that have been implemented to evaluate our approach.

In the final chapter, we summarize our work and contribution and consider directions for
further work and research. We focus on three areas:

URN:NBN:no-2353

1.4 Outline of the thesis 7

1. Model-based design patterns: as a means of supporting movement in the design
representation space described in Chapter 3, “Design and representation”.

2. UML integration: how the RML, TaskMODL and DiaMODL languages may be
integrated with UML

3. Development tools: how the DiaMODL language should be supported by develop-
ment tools, to combine the advantages of abstract user interface modelling and
concrete design in traditional GUI-builders.

URN:NBN:no-2353

8 Chapter 1 Introduction

URN:NBN:no-2353

9

Chapter 2

State of the Art
In this chapter we give an overview of the trends in user interface modelling and model-
based user interface design methods. Then we discuss two possible directions for making
user interface modelling and model-based design more relevant and widespread for indus-
trial use.

2.1 User interface modelling
A possible definition of “user interface” is “all the directly experienced aspects of a thing or
device”. With such a definition it is difficult to exclude aspects, highlighting the fact that
almost everything contributes to the user’s experience of a product. For instance, the user
interface of a screwdriver includes its shape, weight, grip and colour. The user interface of a
computer in general comprises its input and output devices, like bitmapped screen, key-
board and mouse. Since a computer that is running an operating system and a set of applica-
tions is a dynamic system, its user interface includes the way it outputs information and
interprets the user’s actions over time. From the point of view of the end-user, the dynamic
state of the computer will limit the actions that may be performed, and this affects the tasks
the user needs to perform in order to reach his goals. The extent to which the user is able to
understand an interface will affect his or her performance when using it. From the point of
view of the user interface designer, the user’s world-view, goals, and abilities determine
which functions the interface should provide, which dialogue it should support and how this
is achieved in terms of concrete dialogue elements for the chosen platform.

The highlighted words can all be considered to represent more or less directly experienced
aspects of a device or considerations of the designer. In principle, all these aspect must be
considered when performing user interface design. Various approaches will in practice put
more focus on some aspects than on others. For instance, user-centred design (UCD) puts
more emphasis on understanding the user, his environment and goals/tasks, than on guiding
the design of presentation and behaviour for specific interaction techniques. In this work we
focus on the use of models for capturing knowledge, ideas and suggested solutions for the
interface design.

Historically, it seems that models in HCI belong to two different traditions, which we will
call the engineering and cognitive traditions. The engineering tradition has its roots in for-
mal methods within software engineering and implementation technology. In its infancy, the

URN:NBN:no-2353

10 Chapter 2 State of the Art

focus of tools for user interface development was on making it practical to code the inter-
face. Hence, toolkits with programming interfaces in various languages were developed,
with more emphasis on flexibility and control than on ease of use. Higher-level frameworks
were then built to make the developer more productive, with the most advanced systems
hosted by powerful Smalltalk and Lisp environments. Then programming became more
declarative and grew into powerful User Interface Management Systems (UIMS), with sup-
port for constructing and running complex interfaces. These tended to be self-contained and
closed systems, without the control and integration provided by lower-level toolkits.

The declarative and abstract nature of UIMS languages
can be seen as the forerunner of today’s model-based
tools and systems, e.g. Humanoid ([Szekely, 1990] and
[Szekely, 1992]) and UIDE ([Foley, 1988] and [Sukavir-
iya, 1993]). The differences among them have to do with
their foci: while the UIMS architectures and languages
were designed to create executable specifications, model-
ling languages focus on providing support for analysis
and reasoning. Later work on dialogue modelling and
user interface architectures attempted to formalise previ-
ous work on interaction objects, and improve reasoning
support, e.g. for mapping from abstract interaction mod-
els (AIM) to concrete interaction models (CIM) as illustrated in Figure 3.

The second tradition, labelled cognitive, is based on cognitive psychology and the work on
formalising human cognition and behaviour. Its roots [Olson, 1990] are the Model Human
Processor (MHP) [Card, 1983] and the GOMS [Card, 1980] formalisms, which provide a
frameworks for evaluating how humans behave and perform when using a particular inter-
face design. In a GOMS model, task performance is analysed in terms of goals, operators,
methods and selection rules, structured in a hierarchy. GOMS models include mental opera-
tions and can be interpreted as programs executed by our cognitive machinery, as modelled
in MHP or other cognitive architectures (see [John, 1996] for a comparison of various
GOMS methods).

The two traditions meet in their interest in task analysis
and modelling, and many of the GOMS ideas live on in
contemporary task modelling approaches. TKS [Johnson,
1991] is an early attempt at bridging the gap between
cognitive science and engineering. [Markopoulos, 1994]
introduced the LOTOS process algebra notation as a for-
malisation, upon which the later ConcurTaskTrees (CTT)
[Paterno, 1997] is also based. The interest in task model-
ling in the model-based approach seems partly to be due
to methodological shortcomings of standard engineering
approaches to design: Although functionally complete
user interfaces may be built and even generated from e.g.
object models [Balzert, 1995], they will not be very usable unless the users’ tasks are taken
into account. Hence, it is important to introduce task knowledge into the development proc-
ess. ADEPT [Johnson, 1993] was an early demonstration of a visual tool for task-based
interface design in the model-based tradition. ADEPT supported both task and abstract

AIM

CIM

Figure 3. Alternative concrete
interface models (CIM), based on an

abstract interface model (AIM)

CIM

CIM

TM

AIM

AIM

AIM

Figure 4. Alternative abstract
interface models, based on a task

model.

URN:NBN:no-2353

2.1 User interface modelling 11

interface models and mapping from the former to the latter (see Figure 4). Although similar
to Figure 3, going from task models to abstract interaction models is far more difficult than
going from abstract to concrete interface models. Abstract and concrete interaction objects
(AIOs and CIOs) are essentially the same things at different abstraction levels, both repre-
senting a component of the artefact domain, while tasks are something actors perform, not
part of the artefact itself, and may be both observed or designed.

The two mappings, from tasks to abstract dialogue to concrete dialogue, as well as evalua-
tion, are the main steps in a model-based and iterative design process ([van der Veer, 2000]
and [Paterno, 2000b]). In addition to task and dialogue models, these three steps rely on
additional supporting models that capture knowledge of both the problem and solution

Kind Content Representation
Task what the user does or

wants to do and why
There are two main kinds of task models: hierarchical: order/
sequence-oriented models and process/data flow models. The
former stresses the constraints on the sequence of subtasks in a
hierarchy, the latter how data is used in tasks for control and
processing. Task models are used both for describing current
practice, to judge potential for improvements, and for envi-
sioning or prescribing future tasks for which a new user inter-
face is to be designed.

Domain/data: concepts, object and
operations etc.
describing the domain

Tasks use and operate within and on the domain. Main formal-
isms are entities with attributes and relations, and objects with
attributes, relations and operations and aggregation hierar-
chies.

Dialogue/
conversation

the structure of dia-
logue between human
and computer.

Behaviour-oriented abstractions like interactors, Petri Nets,
flow charts, UML Activity and Sequence Diagrams, and state
transition diagrams are used.

Concrete
interaction

details of interaction, usually split into presentation and behaviour as follows:

- Presentation the structure of output
and mapping to data
and operations

Usually represented by generic but concrete dialogue elements
and graphics

- Behaviour means of inputting
data and invoking
operations

Describes how the dialogue is driven by the user’s (physical)
interaction and includes the link between presentation and dia-
logue, such as clicking a button to pop up a viewer.

Control the application’s serv-
ices that task perform-
ance rely on

Usually a list of functions or object operations that may be
invoked, and their pre- and post-conditions. Can be used as
functional requirements for the application.

Platform input and output capa-
bilities of the device

Attributes and qualities may be defined, which can be refer-
enced by interaction object mapping rules.

Environment the physical and cul-
tural context of inter-
action

Informal descriptions

User characteristics and
abilities of end-user
not captured by other
models

Classification hierarchy of user stereotypes, containing
attributes and qualities that can be reference by e.g. mapping
rules.

Table 1. Kinds of user interface models

URN:NBN:no-2353

12 Chapter 2 State of the Art

domain. [Vanderdonckt, 1999a] lists nine different (kinds of) models that may be used in
interface design, as shown in Table 1.

As indicated in the table, the main steps from tasks and domain models, via abstract interac-
tion or dialogue, to concrete interaction, are supported by models about the application core,
target platform, working environment and user characteristics. The actual content and
requirements of all these models depend on how they are used within the design process,
and hence are somewhat ambiguous. For instance, a task model targeted at automatic gener-
ation of interface architecture will need to be more formal and complete than one focusing
on mutual understanding among human participants in a design group. The focus of a
method will also implicitly depend on the tradition, engineering or cognitive, within which
it was conceived. Although there may be consensus concerning the relevant models, the
details of a method may vary considerably.

Early tools for model-based design focused on generating all or parts of the user interface,
either based on hard-coded algorithms, as in JANUS [Balzert, 1996], or knowledge-bases
containing mapping rules, as in TRIDENT [Vanderdonckt, 1993] or design templates, as in
Humanoid [Szekely, 1990]. A large body of rules for selecting concrete dialogue elements
based on domain data was developed in the TRIDENT project, but a problem of this
approach is managing the knowledge and handling specific domains [Vanderdonckt,
1999b], as well as scaling to larger dialogue structures. The work of Puerta has gone
through an interesting transition from a mainly generation approach in MECANO [Puerta,
1996], via less emphasis on automation and more on design support through management
of design knowledge with MOBI-D [Puerta, 1997], to integration of the model-based
approach in an interface builder in MOBILE [Puerta, 1999], with more control given to the
designer. I seems that two motivations are working together:

• the limitations of automating design by using model-based reasoning are handled
by giving the designer more responsibility and work

• the constraints of a top-down model-based approach are relaxed to liberate the
designer

Implicit in both is the fact that user interface modelling and model-based user interface
design have not reached the mainstream software developer. One possible answer, the engi-
neer’s, is that we need to make our languages and tools more formal and with more reason-
ing power, so more of the design task can be given stronger supported. After all, design is
reasoning about the problem and solutions domain, tasks and information, dialogue and
interaction, respectively. A second answer, the designer’s, is that here are human and organ-
isational obstacles to the use of formal methods in user interface design, so we need differ-
ent tools, tools that provide better support for the creative aspects of design. Since humans
do not actually think in terms of abstractions and formalisms, we should build more flexible
and concrete languages, as well as tools with better usability. The practitioner would per-
haps give a third answer, that we need languages and tools that are better integrated with
industrial methods for systems engineering and development, e.g. user-centred design and
object-oriented analysis and design. The last two answers will be treated in the following
sections.

URN:NBN:no-2353

2.2 Obstacles to formal interface design and development 13

2.2 Obstacles to formal interface design and
development
The limited acceptance of the model-based approach to interface development may be a
sign of fundamental problems of using formal approaches in interface design in particular,
and systems development in general. This section will review and discuss the critique and
suggest alternative approaches, with a focus on the role of design representations as a
medium for communication and capturing of design ideas.

[Hirschheim, 1989] presents two dimensions along which development approaches are clas-
sified, giving four different categories. The epistemological dimension concerns whether
we view the domain (including human affairs) as something we can get objective knowl-
edge about, or view it as subjectively interpreted and socially constructed. The ontological
dimension concerns whether the social world is characterized by order e.g. stability and
consensus, or conflict e.g. change and disagreement. The four resulting categories are
named Functionalism (objective, order), Social Relativism (subjective, order), Radical
Structuralism (objective, conflict) and Neohumanism (subjective, conflict). With respect to
the first dimension the role of a representation is to capture knowledge about the problem
domain, that is, what is covered by the users, tasks and objects perspectives. Formal repre-
sentations are targeted at consistent, complete and precise descriptions, which are character-
istic of the objective view. The ambiguity, incompleteness and inconsistency of the
subjective view are poorly supported, and the analytical power is correspondingly reduced.
For instance, different views, whether ambiguous or inconsistent, has to be formulated in
separate models and incomplete models are more difficult to analyse. With respect to the
order/conflict dimension the design representation’s support of the development activity is
important, as this dimension concerns dialogue, power relations and conflict resolution.
Formal representations are considered hard to read and write, and support only those edu-
cated and trained in them. Thus, they can be viewed as conserving power and considered
less democratic. It could be argued that formalisms are useful for discovering conflicts, and
hence helpful in an environment where consensus is valued, although the process of conflict
resolution is not directly supported. In summary, formal representations used as a medium
for human-human communication, seem most appropriate for the Functionalism approach,
while in Social Relativism it may be helpful as long as the dialogue is not hindered.

[Bansler, 1989] divides development approaches into three traditions: System theoretical,
Socio-technical and Critical. The System theoretical tradition views the domain including
organisation as a cybernetic system and attempts to use engineering methods “...to rational-
ise work processes by introducing computer based information systems...”. As mentioned
above, many of the existing formalisms for user interface modelling are descendents from
this tradition, although the scope and details have changed. The Socio-technical tradition
views organisations as composed of interrelated social and technical systems, and has
greater focus on human behaviour and needs. The Critical tradition focuses on the inherent
conflict that exist between different groups like workers and managers with opposing inter-
ests. These three traditions correspond in many respects with the Functionalism, Social Rel-
ativism and Radical Structuralism categories of Hirschheim’s, respectively, and the
reasoning about formal vs. informal representations is similar. However, one of the crucial
points of the Socio-technical tradition is that the technical system should not be optimized
at the expense of the social, but rather balance the focus. This suggests that formal represen-

URN:NBN:no-2353

14 Chapter 2 State of the Art

tations are problematic only to the extent that they cause a shift of focus from the social sys-
tem, i.e. a bias towards the technical system. Many of the current formalisms are targeted at
analysing human activities and behavioural patterns, with the aim of supporting these in the
user interface design, so this may not necessarily be a problem. However, the point that the
formal representations are difficult to validate for many stakeholders, still applies.

[Floyd, 1987] presents two paradigms of systems development, what she calls the product-
and process-oriented views. The product-oriented view is characterized by its focus on rep-
resentations of the product, and the development of a program is a “...controlled transition
between increasingly formalized defining [representations] leading eventually to computer-
executable code...” The formal representations are used to ensure that the transitions are
correct, so this view not only allows the use of formal methods but heavily relies on them.
Although this was a natural reaction to the software crisis, the problem with this approach,
according to Floyd, is that the product development is de-coupled from the users’ work
environment. Part of the problem is that the formal representations make it difficult to sup-
port learning and communication between developers and users, and validation by the
users. As a reaction, the process-oriented view is designed to complement the product-ori-
ented one by relating program development to the work environment. Programs should be
designed within and through its usage, to ensure relevant functionality and usable design.
While Floyd’s distinction is similar to the objective/subjective dimension of Hirschheim’s,
she seems to be more focused on end-users rather than end-user organisations. This suggest
that using formal representations of user interface design is even more problematic than for
systems in general, because its need for validation by end-users is greater. I.e. if system
functionality is validated through the user interface representations, these must be accessi-
ble to the end-user. Hence, concrete and informal representations like sketches and proto-
types should be used and not abstract and formal diagrams or models.

The use of end-user oriented prototypes for validation is typical of Participatory Design and
User Centred Design, which can be considered process-oriented approaches. By making use
of concrete design representations, end-users are enabled to validate both the abstract sys-
tem functionality and concrete design, either by direct participation in the design process or
through user testing. In addition to resulting in more effective and usable systems, these
approaches reduce end-user resistance to a new system, and possibly increase workplace
democracy, since the affected stakeholders may have a greater feeling of control of the
process and ownership of the product [Bjerknes, 1995]. Efficiency, usability, and accept-
ance are practical and pragmatic arguments that are compatible with the Social Relativism
and Socio-technical paradigms. From such a point of view, the use of formal representations
to increase effectiveness and usability should be more acceptable, as long as it does not con-
flict with the use of informal ones. In a complementary approach, informal representations
may be used for dialogue and validation and formal methods used for analysis and verifica-
tion. On the other hand, the democracy argument which is characteristic for the Radical
Structuralism and Critical approaches, can be viewed as incompatible with formal represen-
tations of functionality and design, as these are unlikely to be understood and appreciated
by end-users.

URN:NBN:no-2353

2.3 Informal vs. formal representations 15

2.3 Informal vs. formal representations
As the discussion above indicates, the conditions for using formal representations vary con-
siderably with the chosen development approach. Structured engineering approaches are
focused on systems building favour use of formal representations, since they support the
analysis and transition to implementation that is needed for making effective, efficient and
reliable software. Approaches that rely on participation of people unskilled in formal meth-
ods, naturally favour informal representations, as they enhance the dialogue with end-user
and support validation. Unless political arguments are used, it should be possible to com-
bine formal and informal representation, to get the benefits of both. In the end, the system
description will have to be executable, so a formal representation must eventually be
derived from the informal ones. Another important argument for formal representations is
that of scale, to bridge the gap between stakeholders at higher organisational levels, some
formalisation is desirable to ensure proper understanding and agreement.

[Ehn, 1993] discusses participatory design and suggests an approach of design-by-doing,
while acknowledging the power of systems thinking and rational methods. He stresses the
importance of involvement of end-users and developers in each others work, i.e. developers
must enter the end-users work environment to appreciate and learn their skills, while end-
users must participate in the design activity. I the language-game of design which he pro-
poses, design representations are not used as models of proposed designs, they are rather
viewed as tools for discussing and envisioning possible designs. If design representations
are to be used as “typical examples” and “paradigm cases” they must be effortless to relate
to the current work and design context, and hence should be concrete and informal and not
abstract and formal models. [Arias, 1997] discusses, in the context of urban design, the use
of both physical and computational media in design, and the strengths and weaknesses of
both. Physical representations have the advantage of being natural and intuitive to manipu-
late, and may easily become an implicit part of communication. Computational representa-
tions are more dynamic and visualise behaviour better, while being less intuitive and
invisible in use. Concrete and computerised representations should be able to inherit both
these sets of advantages, although the usability of tools still represents a problem. The con-
clusion of [Arias, 1997] is that they should be synergistically combined. It seems that we
have two different and complementary uses of design representations: that of stimulating
the creative design process or language game, with a focus on aiding communication and
that of supporting software engineering, with a focus on reflection, analysis and transition
towards an executable system. The natural conclusion is to use informal representations for
the former and formal ones for the latter.

The advantages of informal representations include their visual and concrete nature.
Although most suggested user interface modelling languages are graphical, they tend to be
quite abstract. The roughness of many informal representations seems to be considered an
advantage. [Landay, 1995] stresses that the roughness of a pencil sketch is important and
that the lack of detail is a key feature of such sketches: “What designers need are computer-
ized tools that allow them to sketch rough design ideas quickly”. [Gross, 1996] similarly
identifies ambiguity/vagueness, abstraction, precision and uncertainty/commitment as
important characteristics of design (representations): “[design tools] should capture users’
intended ambiguity, vagueness, and imprecision and convey these qualities”. Formal mod-
els, on the other hand, focus more on being “concise”, “complete” and “final” representa-
tions. Both Landay and Gross have made pen based systems, SILK [Landay, 1995] and The

URN:NBN:no-2353

16 Chapter 2 State of the Art

Cocktail Napkin [Gross, 1996] respectively, that recognize pen strokes according to a pre-
defined domain language. The key characteristics of sketches are handled in two ways:
First, when trying to recognize the intention of the pen strokes, they keep track of alterna-
tive interpretations and are careful not to jump to any conclusions. Second, even after the
interpretation is narrowed down to one possibility, the pen strokes may be kept in their
fuzzy form. This ensures that the intended ambiguity, imprecision and uncertainty remains
available for the reader to sense. There are few possibilities for expressing these characteris-
tics in formal diagrams. The problem is that 1) diagram languages lack support for explic-
itly omitting syntactic elements and for encoding the process state of the design, and/or that
2) tools for drawing diagrams lack this possibility. There is an important difference between
explicitly expressing few constraints, and not expressing any. Consider a data modelling
tool where the default cardinality of a relation might be set to “zero-or-more”. Logically this
may make sense, since this is the least constraining value. However, from the modeller’s
point of view, there is a big difference between “undecided” and “unconstrained”, and this
information is lost when the value is filled in by default. Note that this problem is not spe-
cific for diagrams, also GUI builders makes it difficult to be vague. For instance, when cre-
ating or resizing a dialogue box its dimensions cannot be set to “big”, it will be fixed to the
one drawn. It may seem that the focus on helping to make syntactically complete and cor-
rect representations, actually works against the designer.

[Landay, 1995] cites an observation that “rough electronic sketches kept [the designers]
from talking about unimportant low-level details” and that “[the] finished-looking inter-
faces caused them to talk more about the ‘look’ rather than interaction issues.” The inten-
tion put into the rough sketch or prototype and the polished one may be the same, but for the
dialogue among developers and with the end-user, the former is more stimulating and less
constraining. [Jones, 1998] notes that informal representations “has the advantage that it
does not impose any conceptual constraints on those drawing”. However, to ensure that
agreement is really based on a proper (and common) understanding, it is suggested that
more formal representations are used, especially in the later stages of design, when it is
important to be able to share the design with people outside the context within which the
design was conceived. Such communication is necessary in the larger context of system
development and engineering.

2.4 User interface design within a systems
development context
The user interface design activity will usually be part of a larger systems development proc-
ess, the goal of which is to produce both the back-end system and the user-visible tools. As
argued in Chapter 1, “Introduction”, this distinction is usually irrelevant for the end-user,
but important from a development and engineering perspective. There are several reasons
for integrating system and interface design and modelling, e.g:

• the end-user organisation may require that certain features of an existing “legacy”
system be supported and remain unchanged in certain ways,

URN:NBN:no-2353

2.4 User interface design within a systems development context 17

• system specification may run in parallel to the user interface design activities and
hence must be coordinated with it,

• the user interface design must eventually be integrated with the rest of the system
specification, and

• at the least, the user interface must be implemented by engineering tools

The difference between these is the direction of requirements between system and user
interface. In the first case, the system forces the user interface design to satisfy certain con-
straints, the second case is more symmetric and allows more negotiation, while the user
interface design in the third case may dominate. In all cases, it is vital that the design repre-
sentation can be compared with the system specification, and inconsistencies be identified.
In addition, a more constructive use of representations is possible, where one is directly
used as a starting point for the other. All in all, it would be an advantage if design represen-
tations in some way were aligned with system representations, e.g.:

1. the same modelling languages are used, e.g. the various sub-languages of UML,

2. an integrated family of languages is used, divided into perspectives in the same
way as UML, i.e. languages for concepts, functions, behaviour and architecture

3. it must at least be known how to find inconsistencies and incompletenesses
between design and system representations

The interest in the first and second option is growing, e.g. the TUPIS workshop
[TUPIS’2000] discussed integration of user interface modelling with UML, and the
CADUI’2002 conference has a uniform user interface modelling language as a special
theme. The second option implies an integrated set of concepts for the nine models listed in
Section 2.1, while the first option means interpreting or using the UML languages within
the domain of user interface design. Although UML is not the only family of modelling lan-
guages used for systems development, it serves to illustrate the possibilities and problems of
integrating user interface design and systems engineering from a language point of view.

2.4.1 UML and interaction design

UML [UML, 1998] is a family of languages based on a unified set of concepts described in
a meta-model. Several diagram types are defined with a concrete syntax or notation for the
abstract (meta) concepts. UML includes a light-weight extension mechanism, as an alterna-
tive to augmenting the meta-model. Sets of related extensions can be used for defining pro-
files for specific domains, such as interactive systems. UML provides diagrams for static
domain modelling (class and object diagrams), functional requirements (use case, sequence
and activity diagrams), behaviour (sequence, collaboration, state and activity diagrams) and
deployment (component diagram). These could in principle be made to cover the nine sub-
domains from [Vanderdonckt, 1999a] in the list above, but it is an open question how easily
and well UML cover them.

[Markopoulos, 2000a] discusses how modelling of domain, tasks, high-level dialogue and
low-level dialogue is supported by UML. Domain modelling is directly handled by class
and object diagrams. Task modelling is a natural target for the functionally oriented dia-

URN:NBN:no-2353

18 Chapter 2 State of the Art

grams, which include use case, sequence and activity diagrams. A use case describes a class
of sequences of actions that a system may perform when interacting with an actor. An
accompanying textual scenario often provides a more concrete description of a use case
instance, while a sequence diagram may detail the sequences. Both [Markopoulos, 2000a]
and [Constantine, 2001a] note that the traditional use of scenarios within interface design,
that of capturing the context, goals, intentions, values of a user and the use of artifacts, is
quite different from how use case diagrams and scenarios are used. The focus of the former
is individual users, while the latter focuses on the system and multiple actors. Hence,
instead of capturing the user’s goals and how the user intends to reach them by means of the
user interface, it models the system interface and the required system functions. Hence, use
cases are not designed nor useful for understanding and identifying with the user.1 This is
consistent with a general problem of UML: the focus is on technically-oriented design,
including architectural and implementation issues [Nunes, 2000a], not human-centred spec-
ification of functionality and behaviour. By including design-oriented concepts, like opera-
tions and methods and mixing attributes and relations, it becomes less suitable for
modelling of real-world domains, whether object-oriented or not [Embley, 1995].

Both sequence and activity diagrams are behaviour-oriented languages and hence, are can-
didates for modelling the sequence of tasks. Sequence diagrams show how a group of actors
or objects operate and communicate over time. When used for detailing use cases, the actors
are either users or system functions, and communication is interpreted as interaction, infor-
mation flow and/or message passing. Later, in the design phase, the sequence diagram is
given a more concrete interpretation, that of describing the life-cycle of objects, and how
they invoke each other’s services or methods. [van der Veer, 2000] suggests that we reuse
the visual notation of sequence diagrams in the context of task modelling. The actors in
such a “task sequence” diagram would be users or roles and the system as a whole, while
operations and message passing would be interpreted as task activation and information
flow. Although the sequencing will be visible, the focus will be moved from task structure
to actor interaction, which is only part of what task models should cover. A more fundamen-
tal problem is the way the visual notation is borrowed, without integrating the underlying
meta-concepts of the sequence diagrams, i.e. actors/objects and messages/operations, with
the task concepts. The other candidate for task modelling, the activity diagram, is also used
for both analysis and design, e.g. for modelling business processes or control flow, respec-
tively. [Markopoulos, 2000a] notes that activity diagrams “tend to bring in excessive
detail”, perhaps because activity diagrams are more focused on executable behaviour than
on observed human activity. However, the biggest problem of activity diagrams, which it
shares with sequence diagrams, is its lack of support for hierarchies, and hence, hierarchical
task structures.2 Instead, the model must either be flattened or split into separate diagrams
to explicitly indicate nesting. A possible way of realising the latter option, is to model tasks
by using objects that are nested by means of UML’s aggregation relation. Each activity dia-
gram will be part of the class definition of an aggregated class. Unfortunately, inheritance of
activity diagrams of classes in hierarchy is not well-defined in UML [Bergner, 1998]. In
summary, task modelling is not particularly well supported by UML.

1. Note that this is a problem shared with most process-oriented modelling languages like Dataflow Diagrams (DFD): the
user is just another external entity at the boundary of the system.

2. This may perhaps come as a surprise, since activity diagrams are defined in terms of Statecharts, which are hierarchical.

URN:NBN:no-2353

2.4 User interface design within a systems development context 19

Given UML’s focus on the specification of software artefacts, it seems better fit for model-
ling interaction objects, both abstract and concrete. The Statecharts language [Harel, 1987]
is a formalism supporting hierarchical state machines, and UML includes a variant of State-
charts with a somewhat more practical notation than the original.1 Statecharts is designed
for describing the behaviour of reactive systems, of which modern event-based user inter-
faces is a kind, and has been used for implementing a UIMS [Wellner, 1989] and for user
interface design [Horrocks, 1999]. The strength of Statecharts is the support for hierarchical
states, but this hierarchy may unfortunately not cross object boundaries. A hierarchical
object structure where each object’s life-cycle is described by a state machine, can be con-
sidered a large composite state machine. But each object’s state machine is isolated from the
others’, and must communicate through the standard object-oriented mechanisms of rela-
tion traversal and method invocation. [Markopoulos, 2000a] suggests using Statecharts for
high-level navigation and activation of dialogues, but it is unclear if Statecharts could also
be used for the internals of each dialogue. This seems desirable and feasible, since it will
make the interaction model more uniform. This will however, require a suitable representa-
tion in UML of the static structure of interaction objects and their relations, like hierarchical
containment, data values, and value constraints, for which the class diagram is a natural
candidate.

If UML does not provide direct support for a user interface modelling perspective or lan-
guage, it may be extended by means of its stereotype mechanism. This mechanism provides
a way of deriving new model element classes or meta-concepts from the existing meta-
classes in UML, such as Classifier and Association. Model elements may be marked as
being an instance of this stereotype, to highlight that the standard interpretation of the ele-
ment must be augmented by the stereotype’s. The WISDOM approach [Nunes, 2000a] (see
[Nunes, 2000b] for details) uses this mechanism to extend UML with a family of user inter-
face modelling concepts. With the <<Entity>>, <<Task>> and <<Interaction space>>
(view) class stereotypes, the UML modeller can build user interface models including
domain objects, tasks and structures of presentation and interaction objects. Association
stereotypes are used to relate elements in ways specific for the participating stereotypes, and
rules may constrain the allowed associations. For instance, task and presentation hierarchies
are modelled using the <<Refine task>> and <<Contains>> (aggregation) association stere-
otypes, respectively. <<Navigate>> association stereotypes are used between <<Interaction
space>> model elements, to express how the user can move among them. WISDOM
includes ConcurTaskTrees in its extension of UML by providing stereotypes for all its con-
structs, including sequence constraints. The main problem is that although the abstract syn-
tax of ConcurTaskTrees is covered, the semantics of the underlying LOTOS process
concepts cannot be expressed. Instead, the new constructs may inherit features from their
base meta-class, that may not fit or have a natural interpretation. For instance, the <<task>>
stereotype must allow methods to be added and sub-classes to be defined, since it is a class
stereotype. Finally, although the main reason for extending UML is to ease the integration
of new sub-languages, the concrete syntax or notation cannot easily be extended. Hence, the
usability of the integrated language suffers.

In [da Silva, 2000] a similar approach is presented. Existing user interface modelling lan-
guages are integrated with UML’s standard diagrams, by means of stereotypes. However, in
a parallel effort, UML’s own semantics is defined in terms of LOTOS [da Silva, 2001]. This

1. However, no tool we know includes full support for UML’s Statecharts dialect.

URN:NBN:no-2353

20 Chapter 2 State of the Art

provides UML with a more complete and formal meaning, supports retaining the original
semantics of LOTOS-based modelling languages and enables formal analysis of the inte-
grated languages. This approach has its own problems, e.g. gaining acceptance for a com-
peting semantics, but it is an interesting way of handling the semantic mismatch between
UML and user interface modelling languages.

2.5 Summary
In this review we have identified several problems of current approaches, some of which we
hope to target in our own work.

• The modelling languages should be based on few and simple basic concepts and
constructs, to make them easier to read and write. The languages should not force
the modeller to be more specific and formal than the development process requires.
(Section 2.2).

• The languages should not force the modeller to include details before they are actu-
ally needed. They should support a gradual transition from general to more specific
and formal statements. The visual notation should be flexible (Section 2.3).

• There is a need for combining task models with models of the user interface’s
structure and behaviour, while still keeping them separate conceptually
(Section 2.1).

• Tools for modelling the user interface’s structure should build on the functionality
of existing tools for “drawing” user interfaces, and hence the models of abstract
interaction objects should provide a natural transition to and from concrete interac-
tion objects (Section 2.1).

• The formalisation of the modelling languages should allow for integration with
existing languages used in software engineering (Section 2.4).

All these problems can all be considered integration issues. The first two list items concern
integrating along the design process activities, as both of them target the level of formality
and detail of models (or design representations in general). The third and fourth list items
concern integration across sub-domains, -languages and -models; the third the relation
between and integration of task and (abstract) dialogue and the fourth abstract dialogue and
concrete interaction. The last list item concerns integration across user interface design and
systems development.

Tackling these issues requires a deeper understanding of how design representations in gen-
eral and models in specific are used. In the following chapter, Design and representation, we
will therefore introduce a framework for classifying design representations. These issues
will be discussed and reinterpreted in this context. Chapter 4, “Task modelling”; Chapter 5,
“Dialogue modelling” and Chapter 6, “Concrete interaction” will all return to these issues in
the context of the classification framework.

URN:NBN:no-2353

21

Chapter 3

Design and representation
In this chapter we present a high-level view of information systems, with the main elements
that engineers and designers must relate to and understand when building systems. We place
ourselves within the engineering tradition, and note that the systems engineering and user
interface designer traditions represent different approaches to information system develop-
ment. This tension must be taken into account when designing methods and tools for devel-
oping information systems, so that these are usable also for non-engineers. Although the use
of models distinguishes these traditions, we suggest that diagram based models may never-
theless be used to integrate them. We then take a closer look at representations used when
designing user interfaces. Representations with different characteristics have different roles
and can be used for different purposes. We introduce three dimensions for classifying these
representations and use this classification in a discussion of the role of representations in the
design process. Formal representations can play only some of these roles, and hence must
be integrated with other representations.

3.1 High-level view of People, Actions,
Information and Tools.
Human beings are distinguished by intellectual abilities for
information processing and knowledge creation and manage-
ment. We not only use advanced tools, but build advanced
tools and build tool-developing tools. Both the information
and the tools are used for performing actions, both individu-
ally and collectively, as illustrated in Figure 5. When design-
ing tools it is crucial to understand the relations among this
quadruple, whether the tool to be designed is a Personal
Information Manager (PIM) hosted by a Personal Digital
Assistant (PDA) or an Enterprise Resource Planning (ERP)
system accessed through specialised clients or web browsers.
For instance, it is important to know why people perform certain actions, how people use
information and tools to perform these actions, how tools can represent and process infor-
mation, and last but not least, what additional support people can be given for performing
actions by new tools.

Figure 5. People use
information and tools to perform

actions

Information

ActionsActionsPeoplePeople

ToolsTools

URN:NBN:no-2353

22 Chapter 3 Design and representation

The figure illustrates that these entities, i.e. people, information, tools and actions, are all
related. For instance, people perform actions in the pursuit of goals, they seek information
that these actions require, tools present and process information and achieve goals. These
entities can all be considered complex entities, with structure and internal relations, as well
as relations among each other. People combine into organisations, information is collected
in databases, tools are constructed out of components and actions are part of activities and
processes. The simplest model of these structures is the hierarchy, as illustrated in Figure 6,
but a hierarchy reveals only part of the picture. Although an organisation may have a formal
hierarchical structure, important relations like communication, power and authority may
cross the hierarchical boundaries. Similarly, information can be extensively cross-linked
like in the World Wide Web or related through arbitrary relations as in relational databases.
Triggering or enabling of actions in a process may follow complex patterns, and the sup-
porting tools may be even more complicated. Part of the problem of designing useful tools
stems from this complex relationship. In addition, a single tool must often support a hetero-
geneous user population in the performance of many different actions, as part of processes
at many levels.

Many different disciplines have approached the problem of understanding this complex pic-
ture. Different disciplines and fields study different parts of the picture, different relations
among the entities and at different levels in the hierarchies, as suggested in Figure 7.
Although it is impossible to be fair to any discipline within such a simple framework, it may
be enlightening to place them in this concept space. In the figure we have placed sociology
and psychology by the people structure, since that is their primary focus. This does not
mean that they are not concerned with action, information and tools, but that these are
viewed from people’s point of view. Similarly, semantic data modelling primarily study the
structure and nature of information, but is also concerned with actions upon data. Other dis-
ciplines study several entities and their relations. For instance, functional analysis is con-
cerned with both information, action and how these are related. Similarly, the figure
suggests that the object of study in Business Process Reengineering (BPR) is the relation
between organisation and their use of information for reaching their business goals and
driving high-level processes. Some disciplines differ mainly on the level of focus. For
instance, task-based user interface design may simplistically be viewed as the study of how
people use computer-based tools for reaching goals and performing actions, with a primary
focus on small groups and individuals and the applications they use. This is analogous to

InformationInformation

ActionsActionsActions

ToolsToolsTools

PeoplePeoplePeople

Figure 6. People, information, tools and actions are complex entities

URN:NBN:no-2353

3.1 High-level view of People, Actions, Information and Tools. 23

what a workflow study is about, although the goal of applying a workflow view is more lim-
ited and the focus is on groups, application suites and processes.

This high-level view reveals boundaries that exist among entities and levels. This is impor-
tant, since once the boundaries are identified and conceptualised, they become better targets
of investigation. For instance, usability is related to the separation of people and their tools.
The user’s abilities and expectations may, differ from the tool’s requirements and actual
behaviour, and this may lead to usability problems. The classical difference between system
analysis and design is concerned with the difference between what we want to do with a
tool, i.e. functional requirements, and the construction of the tool itself, i.e. its design.1
Boundaries may also exist between entity individuals and the levels within each entity hier-
archy. People may have different world-views, goals and opinions, and tasks performed by
them may not always, when composed into processes, contribute to the collectively stated
goal. Information sources may use different names for the same concepts (synonym) and
the same for different ones (homonym), and user interface components may be incompati-
ble and impossible to integrate. These are all important problems to be aware of and to
study.

1. The word “design” is used in two different ways, either meaning technically oriented construction as here, or as the
specification of the behavior and form of a user interface.

Figure 7. Different disciplines study different parts of the picture

InformationInformation

ActionsActionsActions

ToolsToolsTools

PeoplePeoplePeople

Workflow

BPR

Task-based
UI design

Sociology,

Psychology

Systems engineering

Semantic data modelling

CSCW

Functional analysis

InformationInformation

ActionsActionsActions

ToolsToolsTools

PeoplePeoplePeople

requirements vs.
design

usability

concepts,
vocabulary

constructivity,
compositionality

integration,
tailoring

Figure 8. Boundaries are interesting and difficult to handle

URN:NBN:no-2353

24 Chapter 3 Design and representation

Some boundaries are introduced by limiting a discipline to the study of only part of this
high-level view, and can be a source of critique and conflict. Systems engineering may be
criticised for ignoring the organisational and human aspect of information systems, while
sociological approaches on the other hand give little guidance for how to build flexible,
scalable and robust systems. The cognitive and designer traditions discussed in Chapter 2,
with their focus on humans, have traditionally been in opposition to the engineering tradi-
tion, with its focus on implementation technology, rather than on the people and the activi-
ties that the technology is supposed to support. Hopefully, by being aware of these
boundaries, we can both prepare ourselves to handle the problems caused by them, and uti-
lize research results from different disciplines. The mentioned difference between workflow
and task-based design may for instance be used constructively, by basing a task analysis on
the workflows that the relevant user groups participate in, as suggested in [Trætteberg,
1999].

3.2 Engineering and designer traditions
Today’s structured methods for developing information systems, can be considered an
answer to the “software crisis”, which was the name given in the late 70’s, to the problems
experienced with developing complex software. The remedy was to turn software develop-
ment into a structured engineering discipline, where the overall goal was to develop high-
quality software for supporting information systems, at a lower cost and resource consump-
tion and with predictable results. Although the engineering approach has been successful
for constructing the software, it is not known for delivering good user interfaces. It seems
that designing usable software is different from designing functionally sound and complete
software [Kim, 1995].

One of the main motivations for this work is to extend the engineering tradition into the
domain of user interface design. Our approach is to do this through integration with existing
non-engineering methods, instead of replacing these. Engineering methods should and will
be used side-by-side with traditional designer methods. Since proper integration requires
understanding both of the approaches and in particular appreciating the differences, we will
try to characterise and contrast the approaches. We have deliberately exaggerated the differ-
ences, so the description may be seen as caricatures of how they are really practised. Note
that we use the terms “design” and “designer” in a restricted and specific sense here, as the
activity of conceiving the appropriate user experience and shaping the user interface accord-
ingly, and as the developer who performs this activity. The second established usage of
“design”, as in “software design”, is instead referred to as “construction”. The construction
material is objects and processes, rather than directly experienced elements of concrete
interaction.

Fundamental to the engineering approach is its use of formal methods. To better control the
quality of the final product and the development process, these were introduced for

1. describing the problem of the customer organisation

2. specifying the functional requirements for the computerised solution and

URN:NBN:no-2353

3.2 Engineering and designer traditions 25

3. ensuring that the solution’s construction fulfilled the functional requirements, in
addition to non-functional and architectural requirements.

The use of the term engineering (systems or software) is no coincidence, as the success of
structural engineering is seen as both an inspiration and goal. Crucial to this field is the
decoupling of deriving the required characteristics, constructing a solution according to the
requirements and actually building it. Using a bridge as an example, first the required
strength and agility would be derived from the required span and the load and weather con-
ditions it should sustain. Second, based on the characteristics of the basic constructional ele-
ments like beams and cables and the behaviour of their composition, a construction for the
whole bridge could be derived. Characteristics of the parts and the whole of the construction
could be verified against the constraints of the requirements, based on mathematical meth-
ods. Finally, the bridge could be built with the confidence that the construction was sound,
both technically and economically. With a formal description of the construction, it would
be considered safe to let someone else build it on contract.

The engineering approach to systems development has a strong focus on specifications and
descriptions of the problem and solution, and on methods for moving from the former to the
latter. The approach is inherently top-down from problem to solution, since the formal
descriptions derived in each of the steps above can be seen as a specification or a set of
requirements for the next step. In addition, the specification is supposed to drive the devel-
opment of the solution, in addition to being verified against it. Verification, i.e. checking
that various representations of the same domain are consistent, increases the confidence that
a solution is sound. The stronger and more complete the theory of the domain is, the less
need there will be for validation, since more can be formally checked. There are limits to
what a theory can cover, and hence, there will still be a need for iterating through problem
specification and solution construction. However, basic assumption of the engineering
approach is that with comprehensive modelling and careful analysis the number of itera-
tions needed can be minimize, and hence the total development time.

The designer tradition constraints the engineering tradition in several ways. [Löwgren,
1995] suggests that there is a fundamental difference between the requirements of creative
design vs. software engineering: “Engineering design work is amenable to structured
descriptions and seen as a chain of transformations from the abstract (requirements) to the
concrete (resulting artifact).” This is in accordance with the model-based design tradition,
as presented in Chapter 2. In contrast: “Creative design work is seen as a tight interplay
between problem setting and problem solving.” Hence, the medium from which the
designer builds the solution, becomes more important. The construction medium not only
provides the potential for solving a stated problem, it also represents a way of interpreting
and understanding the problem in the first place. Hence, understanding and experimenting
with this medium during the development becomes very important, and goes hand-in-hand
with understanding and specifying the original problem. The importance of experimenting
with the medium affects how the designer tradition represents design suggestions. Although
the representations can be seen as abstractions of the real design, they use the same visual
language, perhaps with a different scale, fidelity and scope. Whereas engineers abstract
away technical details to better concentrate on the essence of problems and solutions,
designers prefer to deal with concrete representations, as representatives for more general
solutions. In addition, designers prefer not to split the representation into parts covering dif-
ferent aspects like structure and graphics, since the design must be validated as a whole.

URN:NBN:no-2353

26 Chapter 3 Design and representation

Another important difference is the role of values, which is used both when interpreting the
real-world problem and for validating a solution. There is a strong solidarity with the end-
user, which quite often is different from the customer paying for the development project.
This user focus is different from the system view that is natural in the engineering tradition,
and will often lead to designs that are more usable from the end-user’s point of view, while
not necessarily easier to manage or implement, from a development point of view. The User
Centred Design (UCD)1 and Participatory Design traditions require end-user participation
in the development process that goes beyond that considered necessary in the engineering
tradition, both for eliciting requirements and for validating the solution.

The major differences between the engineering and designer traditions give rise to a two-
dimensional classification, based on formality of the approach and the focus, as shown in
Table 2. We see that information systems engineering and the designer tradition occupy
opposite corners of the matrix, system focus and formal approach and user focus and infor-
mal approach, respectively. The two remaining cells can be seen as two possible paths for
bridging the gap between the engineering and designer traditions. From the information sys-
tems engineering cell, we can either 1) change the focus to users by using the approach of
model-based user interface design and then decrease the formality of the approach, or 2)
employ a less formal approach like extreme programming (XP), and then change the focus.
XP is interesting, since this approach is driven by use case descriptions and is centred
around on rapid delivery and validation of new iterations. This is similar to user-centred
prototyping, although with a system focus. In this work, we take the first of these paths, i.e.
we try to make the models and techniques of information systems engineering and model-
based user interface design, easier to work with as a whole, and within the approach of the
designer tradition.

3.3 Three dimensions of design
representations
Design of user interfaces is a complex and difficult task. It is usually a creative and collabo-
rative process, in which several participants must both generate design suggestions and
evaluate the suggestions with respect to both functional and usability requirements. The
goal of the user interface development activity is a user interface with a certain usability,
while the primary product of the user interface design process is a specification of a user
interface meeting this goal, from which an implementation will be engineered. It is natural

1. This acronym is sometimes used for the seemingly similar approach of Usage-Centered Design, which is better short-
ened to UsageCD.

Focus
System User

Approach Formal Systems engineering Model-based UI design
Informal Extreme programming (XP)? Designer tradition

Table 2. Classifying development approaches

URN:NBN:no-2353

3.3 Three dimensions of design representations 27

to make and use many kinds of representations during this process, to make design knowl-
edge accessible to the designers, to record the current state of development and to move
towards the final specification.1 The representation language can be seen as a tool for mak-
ing this specification and must be able to capture the elements needed for designing a usable
interface. [ISO 9241, 1997] defines usability as:

“The effectiveness, efficiency, and satisfaction with which specified users
achieve specified goals in particular environments.”

It is clear that the developers need an understanding of who the user is (“specified users”),
the environment she lives and acts within (“particular environment”), the goals (“specified
goals”) she wants to reach and what task she therefore needs to perform. To be able to cap-
ture and preserve the understanding of all these aspects of a specific design problem, a
designer will need to write it down in a suitable form, i.e. represent this knowledge. As
mentioned above, various kinds of formal descriptions and specifications play an important
role in the engineering approach. The same is true for the model-based approach to user
interface design.

Table 1, in Chapter 2, shows nine kinds of models used in model-based design. The models
represent different views or perspectives of the domain of user interface design, by covering
different aspects of it. Some of these can be considered problem-oriented, since they
describe requirements of the domain or of the goals we want to achieve with the design,
while others are solution-oriented since they describe aspects of the artefact that we are
designing and the environment within which the artefact will operate. We understand the
differences between problem and solution to be:

• problem/domain: the characteristics of the different kinds of users, and the struc-
ture of the work or tasks the user wants to perform or will be performing, and the
user’s view of the domain

• solution/artefact: the structure of the dialogue between user and system, and the
concrete interaction which details the visualization and interaction

The distinction between problem- and solution-orientation is not always clear, as some
models may be considered to be both a solution for a specified problem and a specification
for a problem to be solved further on in the development process. For instance, an abstract
dialogue model can be considered a solution to the problem of supporting a set of tasks,
while at the same time representing requirements for the design of concrete interactions.
Hence, we introduce a problem/solution dimension for classifying user interface design rep-
resentations, as shown in Figure 9.

1. In this context we are mainly interested in representations external to our mind. Although mental models are important
to understand, it’s the external form we focus on here.

problem/requirements solution/design

Figure 9. The problem/solution dimension for classifying design representations

URN:NBN:no-2353

28 Chapter 3 Design and representation

The three main user interface models, 1) tasks/domain, 2) abstract and 3) concrete interac-
tion, can be placed along the problem-solution axis, as shown in Figure 11, as can the other
models in Table 1, Chapter 2. For instance, the physical environment and design platform is
part of concrete interaction, and may span several levels, from room layout, via desk design
to input device ergonomics. One interpretation of this dimension is that it represents the
extent to which the final user interface design is constrained, the number of constraints
increasing when moving to the right of the axis. According to this interpretation, many dif-
ferent user interfaces can be designed to satisfy specific domain and task models, while
fewer design proposals will satisfy the constraints represented in a solution-oriented dia-
logue model. Note that this interpretation does not suggest that the constraints are explicitly
expressed, only that the different models provide different levels of freedom for subsequent
design. Neither does it mean that the design process proceeds monotonously from left to
right, although many methods seems to suggest or assume this.

The languages that have been suggested for modelling user interfaces, tend to focus on only
one perspective each.1 The task perspective focuses on work structure, the dialogue per-
spective on the life-cycle and activation of dialogue elements, and the interaction/presenta-
tion on the look & feel of the user interface. In the course of designing an interface, several
languages have to be used to cover all the needed perspectives.

Within each perspective, a language will typically be used to model objects of various gran-
ularities2, e.g. as a hierarchy. A particular design representation may target only part of this
hierarchy, and correspondingly a representation method/language may be designed and
suited for only this part. For instance, a workflow modelling language is targeted at high-
level, group-oriented tasks, while a task modelling language typically is targeted at individ-
ual lower-level tasks. The granularity of the objects described is our second way of classi-
fying representations.

Note that the level dimension is similar to the concept of abstraction, i.e. a high-level view
is more abstract than a low level view. However, the concept of abstractness is also related
to the perspectives dimension discussed above, e.g. a dialogue model is more abstract than a
concrete interaction model, since it abstracts away lower level and often platform specific
details. Therefore we will avoid using that term for classification.

The perspective and the granularity of objects gives a space of two dimensions, i.e. prob-
lem/solution and low/high granularity, as illustrated in Figure 11. Any particular design rep-
resentation or modelling method/language will cover only part of this plane. As shown,
vertical representations cover objects of one perspective at several granularities, which is
typical for formal models. Informal representations like scenarios, sketches, snapshots and
storyboards, as well as natural language, are usually not targeted at specific perspectives.

1. The advantage is that each formalisms can be tailored to the part of the domain it covers, the disadvantage is that the
different sub-domains become more difficult to combine in one model.

2. We choose to use the word granularity instead of level, because the latter suggests that the points along the axis are
well-defined and aligned across perspectives.

high level/high granularity low level/low granularity

Figure 10. The level/granularity dimension for classifying design representations

URN:NBN:no-2353

3.3 Three dimensions of design representations 29

For instance, a storyboard can contain elements of users, tasks, objects and both abstract
and concrete interaction. Since such informal representations may cover several perspec-
tives at once, these are considered horisontal, as illustrated in the figure. The various levels
may be treated differently by different languages, and may not be aligned across perspec-
tives. Usually, a representation method/language family will use the same concepts across
all levels of a perspective that it covers, and align levels across perspectives. For instance, a
workflow language will typically use the same formalism for processes, activities and
actions, the different terms corresponding to different levels. In addition, if the supporting
tools are modelled by concepts like application suites, applications and components, these
will likely be aligned with the work oriented ones. A task modelling language may be simi-
larly structured, although its focus may only partially overlap in the granularity dimension.

Using the same concepts for describing a perspective across levels has many advantages,
both practically and theoretically. For instance, the possibility of deriving aggregated char-
acteristics for one level and comparing it with those specified by the level above, i.e. the
compositionality/constructivity of the constructs, is easier/only possible when similar/
equivalent concepts are used. Typically, the more solution-oriented a perspectives is, the
more difficult will it be to treat the levels uniformly, since it will be more difficult to hide
the perceived differences among design elements at each level. For instance, a toolbar but-
ton is sufficiently different from an application window to require different treatment, while
both may be designed to support the same concept of task, albeit at different levels.

Figure 12 suggests one interpretation of the granularity level across different perspectives.
The main point is not the absolute placement, but rather the relative position within and

Problem Solutionperspectives

High

granularity

Low
Task/ Abstract

vertical

Figure 11. Design representation space: perspective and level

horizontal
representation representation

interaction
Concrete
interactionDomain

cognitive models/

(business) goals

component

element

application

pane

widget

frame

Figure 12. The level/granularity dimension interpreted across perspectives

perspective

granularity

workflow/

task models/task

action

problem/requirements solution/design

low

high

URN:NBN:no-2353

30 Chapter 3 Design and representation

across perspectives. For instance, a task is performed to achieve a goal, and is often sup-
ported by a specific component1 composed of dialogue elements, which is placed in a pane
containing widgets. The figure also indicates how different task-oriented models cover the
granularity dimension. As can be seen, workflow is mostly problem-oriented at a high level,
with a touch of solution aspects. Task models are medium level, with a large span, and even
more problem-oriented. Cognitive models fill the bottom of the granularity dimension, as it
is mostly concerned with low-level perception and goal-setting.

The perspective and the granularity level dimensions, cover the whole of the domain, i.e.
everything that should be represented about design can be placed within this space. The
form of the representation is not considered, however, and we will capture this in a third
classification dimension. The question remains what aspect of the form of the representa-
tion is crucial in our classification. Based on the discussion in the Section 3.2 we have cho-
sen to focus on the level of formality of the representation. There are two aspects of
formality we are interested in, related to machine and human understanding, respectively.
First, there is the extent to which a development tool can understand the representation, ana-
lyse and manipulate it. This requires some formalised meaning that can be programmed into
a tool and some structure of the representation that is accessible. The second aspect is tar-
geted at human understanding, analysis and manipulation and is concerned with how the sit-
uation or context is used to give meaning to the representation. A completely formal
representation does not depend on a specific context for correct interpretation, while an
informal one can only be understood given the appropriate meaning-giving context[Non-
aka, 1998]. Figure 13 show the formality dimension and the two characterising features at
each end of the axis.

These two distinguishing features bring our attention to the difference between man and
machine, the former having access to the real world and hence the context for “really”
understanding, the latter having great power for syntactic processing but little more. When
we contrast machine-understandable with context-dependent, we may seem to suggest that
formal representations are not humanly accessible, since they are oriented towards syntactic
manipulation2 and that informal ones cannot be usefully manipulated by machines, since
the meaning-giving context is inaccessible to them. However, one of the main points of this
work is that, yes, humans can fruitfully utilise the power of formal representations, and oth-
ers have argued for and built systems that are based on machine manipulation of informal
representations. While full consistency and completeness analysis are beyond our abilities,
we can still use formal representation for guiding our thoughts, and while machines cannot
give meaning to informal representations they can still support structuring, filtering, view-
ing and navigating them. The key is understanding how the representation can be used by us
and machines, and focus on the relevant reasoning and manipulation for both. This will be
further discussed later when the development process is considered, in Section 3.6.

1. The term “component” has been used for both atomic dialogue elements, task-oriented groups of elements or semi-
autonomous mini-applications. Here we have chosen the second of these interpretations.

2. Formal systems are by nature syntactic, semantic reasoning is done be means of symbol manipulation.

formal, i.e. machine-understandable

Figure 13. The formality dimension for classifying design representations

informal i.e. context-dependent

URN:NBN:no-2353

3.4 A fourth dimension: user - system? 31

The desired level of formality for a particular type of representation is highly dependent on
usage. It is possible to use a fully formal language informally. This happens when the for-
mal meaning of a representation does not match the intention of its users, and the context of
usage makes this apparent. For instance, a notation can be (re)used for a different purpose or
domain than defined for, or a diagramming tool can be used solely for the graphical appear-
ance, not for the underlying meaning (surface/concrete vs. deep/abstract meaning/syntax).
The opposite situation is perhaps more relevant, that of using an informal representation
formally. This typically occurs when the cultural context is enough to give meaning to a
representation, i.e. social and cultural conventions that are taken for granted take the place
of a formal definition of the representation language. For instance, a pencil sketch of a dia-
logue window may be perfectly understandable, although the exact notation differs from
sketch to sketch. It might be argued that the notation really is formal, the definition has just
not been written down. However, its users may not be able to describe the notation, even
though they use it without ambiguity problems, and for any particular definition examples
of perfectly understood but uncovered/illegal representations can be made. Hence, there
really is no formal language, but rather a formal usage of an informal one.

3.4 A fourth dimension: user - system?
The three dimensions introduced for classifying design representations can also be used for
more system- and engineering-oriented representations. First, our distinction between prob-
lem- and solution-oriented perspectives was motivated by the discussion within engineering
on analysis vs. design. Although it may be difficult to know the difference in practice, the
distinction is conceptually important. Second, the languages and methods used within engi-
neering are often hierarchical, or may at least be interpreted as containing levels. For
instance, dataflow diagrams are nested, and although few databases support nested tables,
they may be viewed as three-level entities consisting of logical databases, tables and fields.
Third, methods and languages have varying degree of formality, and the level of formality
may even vary within the same method. For instance, UML use case diagrams are consider-
ably less formal than UML state diagrams. As for user interface design, the level of formal-
ity may vary, both because the sub-domain is difficult to formalise, or because the
participants do not have the need or ability to manage them.

The task, dialogue and concrete interaction perspectives all have correspondences to the
functional/process, behavioural and data perspectives of systems engineering. Throughout
the development process, the coupling that exists between the system and its interface will
show up as mutual design constraints that must be identified and managed. For instance,
processes provide a context for tasks, and tasks will have to be performed according to the
process dynamics. Similarly, a requirement for progress feedback during database search,
will translate to a requirement of the underlying implementation in terms of SQL database
queries. Formal representations may play a key role, depending on the development
approach chosen and the conditions it provides for using them, as discussed in Section 2.2,
Chapter 2.

It seems that a fourth dimension along the user (interface) - system dimension is straight-
forward to integrate into the presented framework. The main motivation for doing so is to

URN:NBN:no-2353

32 Chapter 3 Design and representation

coordinate specification and development of the user interface and the underlying back-end
system. Whether a separation between user interface and system issues is meaningful con-
ceptually or practically, depends on the application. Several reasons can be given for such a
separation: 1) to isolate the user (organisation) from issues and details they have no interest
in, and 2) to split the development into parts, suitable for parallel development or develop-
ment by different teams. In case of 2), adding a fourth dimension may be helpful for coordi-
nating development and to manage changes in each part to ensure consistency. This requires
that the user and system planes are suitably aligned, to allow identifying representations
covering the same issue. For instance, during the presentation of a medium-fidelity proto-
type of an expenditure application, the user may ask where the currency symbol is. This
may reveal the need for handling several currencies, which in turn affects the design of the
database. The relation between the window component presenting the monetary value and
the database field that stores it, is represented by a path between the user and the system
planes, as illustrated in Figure 14. Without knowledge of this relation, it is difficult to keep
the user- and system-oriented representations of the total system consistent.

Moving along the user - system dimension is easiest if the same or compatible representa-
tion languages are used. In our work presented in the following chapters, we have chosen to
base several of the languages on languages from the engineering tradition, partly to provide
better support for moving along this dimension. With the same languages, it is easier to see
how two models differ, e.g. how a conceptual system-oriented model integrates several pos-
sibly inconsistent user-oriented models for different user groups, or alternatively, how a sin-
gle user’s model may be a filtered and simplified version of the system model. Differences
may be due to several factors, e.g. that a focus on organisational, cost or technical issues
leads to different decisions, and that the system must integrate models and often resolve
inconsistencies. Although we have chosen not to detail the user - system dimension, we
hope to show, in the following chapters, how the user interfaces languages correspond or
relate to their system-oriented cousin, whether it is the languages or their typical usage that
differs.

User
plane

System

money
text field

corresponding

column
database

Figure 14. Correspondence between user and system views of the design

plane

URN:NBN:no-2353

3.5 The role of design representations 33

3.5 The role of design representations
In Section 3.2 we noted the difference between engineering and creative designer traditions.
The engineering tradition stresses the “chain of transformations from the abstract (require-
ments) to the concrete (resulting artifact).”, while the creative designer tradition focused
more on the “tight interplay between problem setting and problem solving” [Löwgren,
1995]. Accordingly, from the software engineering point of view, it is useful to partition the
domain into perspectives, e.g. to structure the process, provide better tool support and sup-
port formal analysis. The natural process to follow is indicated by the “smooth” path in
Figure 15, i.e. a linear transition from abstract and high level to concrete and low level. The
creative designer, on the other hand, needs integrated representations, not separation of con-
cerns, so the idea of separate perspectives may seem artificial and constraining. The
“erratic” path through the design space in Figure 15 illustrates a more “creative” design
process. This difference suggests that the representation plays a different role in engineering
design work than in creative design. Although we are focusing on user interface design rep-
resentations, the roles that are identified and discussed in these sections, are relevant for
design in general.

The role that the engineering approach has focused on is what we may call the semantic role
of design representations. The purpose of this role is to capture the full semantics of the
domain, whether problem- or solution-oriented, low or high granularity. This essentially
means covering the two dimensional space shown in Figure 11, e.g. by using one of the nine
models in Table 1, Chapter 2.

No designer works on her own; different knowledge and skills are needed for both under-
standing the problem and deriving a suitable solution, i.e. a usable interface. To be able to
discuss their understanding of the problem and its proposed solution, designers need to
communicate by means of some representation medium. Later, when proceeding with the
realisation of the designed interface, the implementers must be able to understand the
design. A physical representation of the design is needed, to support the dialogue and asyn-
chronous communication. This will be called the communicative role of design representa-
tions.

Based on an understanding of the problem (and its representation), a solution must be
derived. The problem-solving process may proceed through many steps, where each step
provides increased understanding, concreteness and detail, from high-level goal statements
to task-descriptions, from tasks to dialogue structures, and from dialogue to interaction

Problem Solutionperspectives

High

granularity

Low
erratic

smooth

Figure 15. Smooth and erratic paths through the design space

URN:NBN:no-2353

34 Chapter 3 Design and representation

details. Crucial to each step is an understanding of how the decisions at each step affect the
usability of the product. Important questions are: How can different user interface elements
support the user in reaching the relevant goals by performing the desired tasks? How do
individual user interface elements affect the usability of the interface, and how are they
composed into a usable whole? How are abstract dialogue elements mapped to concrete
ones, to preserve the consistency of the platform? Clearly, a representation of both the prob-
lem and its proposed solution for each step can be useful in supporting such synthesis, both
as a source of creative inspiration and as a constraining guide. As we focus on constructing
a complete design from many parts, we will call this the constructive role of design repre-
sentations.

The designer’s understanding of the problem will be influenced by the current organisation
of work, i.e. the current practice, and a solution to the observed problems may both be new
ways of working and new tools to support work. Identifying problems with both current
work practice and current (use of) tools requires analysis of the current state of affairs, as
captured in the design representation. Similarly, a proposed design solution must be evalu-
ated against the goal and task structure resulting from the task analysis and against stated
usability goals and metrics. In general, the representation of the result of each design step
must be analysed and compared with the requirements and constraints from previous steps.
This is the analytic role of design representations.

The realisation of the “physical” user interface requires a representation that is understanda-
ble by the deployment platform. This normally involves encoding the interface behaviour in
a suitable programming language, and transforming this into a lower-level executable repre-
sentation using appropriate tools, but may also be handled using higher-level executable
specification languages. Ideally it should be possible to evolve the design representation
into an executable a form, with little human effort. This is the executor role of the design
representation. Note that this role is different from the semantic role, since the executable
representation need not explicitly represent the whole design, like goal and task.

The identified roles, as summarized in Table 3, are related to different ways of using repre-
sentations. [Wieringa, 1989] in contrast, suggest three roles of models, descriptive, norma-
tive and institutionalizing, that are related to different ways of interpreting representation
with respect to their intention and force similar to speech acts. The idea that representations
have different roles can be related to the quality framework of [Krogstie, 1995], and his
notion of (aspects of) quality. Krogstie introduces five model qualities, physical, syntactic,
semantic, pragmatic and social, defines the goal/measure of each quality and suggests how
high quality models can be attained through different activities. Our semantic role corre-
sponds to his semantic quality, i.e. the extent to which the domain is fully and correctly cov-

Role Objective
Semantic Capture domain knowledge
Communicative Communicate domain knowledge as represented
Constructive Guide and constrain the further development of

(solution oriented) representations
Analytic Interpret and evaluate current representations
Executor Support finalisation and execution of solution

Table 3. Roles of design representations

URN:NBN:no-2353

3.6 Representations and process 35

ered by a model, or rather, to perceived semantic quality, which is the semantic quality
relative to a particular actor’s personal understanding of the domain. The semantic role is
also related to one part of (the dual) physical quality, i.e. the extent to which the designers
knowledge is (faith)fully externalized. The communicative role is related to the other part of
physical quality; the extent to which others can internalize the representation, as well as
pragmatic quality; the extent to which others can understand the representation. The con-
structive and analytic roles are related to how the representation supports reasoning, and is
similarly related to pragmatic quality, since understanding is a requirement for reasoning.
The difference between constructive (synthetic) and analytic reasoning is whether the rea-
soning is directed towards completing the design or validating or verifying the design.
Finally, the executor role is related to the pragmatic quality with respect to technical actors,
i.e. the extent to which computer-based tools understand the representation.

Krogstie’s discussion of modelling language quality is related to our effort at understanding
the usage of design representation, where classes of representations corresponds to model-
ling languages. The goal is both to understand which qualities are important for various
ways of using representations or models, and how (well) different classes of representa-
tions/languages can play various roles or be used for different purposes. To fill a particular
role a representation may focus on a particular model quality, and similarly, a method focus-
ing on a particular role should focus on the corresponding modelling language quality.

3.6 Representations and process
The absolute and relative placement of the areas of interest, tells us something about what
part of the domain is covered by a particular approach, and how formal it is. In the process
of designing a user interface it is expected that more than one approach and representation
is needed. The representation used must be chosen according to the needs of the process and
the participants, and the intended role of the representation, at any particular moment.

The change in usage of design representations can be interpreted as movements in the three-
dimensional representation space defined by our classification framework. These move-
ments are indicated in Figure 16 by the thick arrows, and are detailed below. The engineer-
ing way of proceeding from problem to solution corresponds to a series of movements from
back to front, i.e. increased formality, left to right, i.e. problem to solution and top to bot-
tom, i.e. low to high granularity. The creative process includes movements in all six direc-
tions. This was illustrated by the path labelled “smooth” in Figure 15. For instance, a shift

Figure 16. Movements in the representation space

perspective

granularity

formality

change formality

change detail

problem vs. solution

URN:NBN:no-2353

36 Chapter 3 Design and representation

of focus from creative idea generation to design consolidation may require a corresponding
shift from informal to formal design representations. Validating a design together with an
end-user representative, may instead require a more informal (non-executable) representa-
tion, which requires the opposite movement.

With three dimensions and two directions, we get six different basic movements.

Problem/solution dimension

1. A solution to a specified problem is derived, through the use of some kind of
design knowledge. This is the “textbook” flow of a problem solving process, first
define/specify the problem, then solve it according to the constraints provided by
the problem specification. The representation should support looking “forward”
towards constructing one or several solutions, i.e. play a constructive role. Since
this movement represents a shift in focus or perspective, the support given by the
modelling language(s) alone may be limited.

2. The problem that a solution solves is derived. This can be thought of as recon-
structing the explicit constraints that a solution satisfies, and may be regarded as
reengineering a specification, or analysing a solution for the purpose of comparing
it against a previously formulated specification. The representation should support
looking “backward”, i.e. play an analytic role.

Granularity dimension

3. From a high-level description details are constructed. This is similar to movement
1, in that it requires satisfying the constraints given by a more abstract specifica-
tion. Accordingly, the representation should play a constructive role. However, it
will normally be easier to match a description against some constraints within than
across perspectives.

4. A higher level description is derived from a lower level one, i.e. the aggregated
characteristics are constructed from an analysis of one level, e.g. to compare
against the higher level specification. Similar to movement 2, the representation
should play an analytic role. This depends on the compositionality/constructivity
of the language used, i.e. the ability to derive aggregated characteristics of the
whole from the characteristics of the parts and their configuration.

Formality dimension

5. A representation of some problem or solution is made more formal. As for move-
ments 1 and 3, this is the “normal” movement, in that vague ideas and knowledge
are transformed into less ambiguous and more precise descriptions. To ensure
proper formalisation, it is important that the meaning and common understanding
present in the context of the process, be made explicit through communication
among participants, hence the representation should play a communicative role.

6. A formal representation is given a less formal form. This may seem like an unnatu-
ral movement, but may make sense in a context where participants are unfamiliar
with formal notations. It will be important to create a context for giving meaning to

URN:NBN:no-2353

3.6 Representations and process 37

the less formal representation, based on the original, more semantically rich one.
The representation should play a semantic role, since the meaning must be clear
before being transferred to a meaning-giving context for the participants.

The last dimension and corresponding movements deserve additional comments. Propo-
nents of the model-based approach typically describe their method as moving from top to
bottom and left to right in the formal plane, i.e. high-level models are decomposed into
lower level ones, and the problem is specified at one level before a solution for the same
level is derived. This is a naive view of what actually happens during problem solving and
design. As discussed in Section 3.2, the creative designer approach makes active use of the
solution media/material in the search of a fruitful understanding of the problem and solu-
tion. Concrete representations are used instead of abstract ones, and hence, informal
descriptions like sketches are favoured since they stimulate the creativity better than
abstract models. Later, these must be made more formal to be useful in the further develop-
ment.

In [Nonaka, 1998], a model of organizational knowledge creation is presented. Based on
the distinction between tacit and explicit knowledge, four modes of knowledge transfer that
the knowledge management process should support, are described. The distinction between
explicit and tacit knowledge is closely linked to the relationship between formal and infor-
mal representations. Explicit knowledge is knowledge that has or can be codified such that
it is available to others, given that they understand the “code”. The code can be natural lan-
guage or any formal or semi-formal notation. The more formal the representation, the more
objective, context-independent and explicit the knowledge will be. The main point is that
the representation is external to the originator, independent of context and can be stored and
transmitted (to others). Tacit knowledge, on the other hand, is personal, context-specific and
subjective and cannot be stored or transmitted directly to others. Tacit knowledge is made
explicit through a process of externalization, while explicit knowledge is made tacit through
a process of internalization. The latter is often needed for actually using knowledge crea-
tively, instead of mechanically. According to this theory, any problem solving process
implies knowledge creation and hence, there must be a constant conversion of knowledge
between the tacit and explicit forms, as shown in Figure 17 (from Nonaka, 1998).

As mentioned earlier, the role of the representa-
tion is both to capture knowledge and to support
the design process, which in the context of this
knowledge creation model means the four transfer
modes:

• Socialization - Tacit knowledge is shared
with others, through dialogue. The main
purpose of the representation is not capture
of knowledge in explicit form, but rather
support of social interaction, with the goal
of getting familiar with the design context
and with design alternatives, analogous to
the language game of design. Informal representations like scribblings and
sketches are best suited, since they support story-telling, annotations and physical

Socialization Externalization

CombinationInternalization

Figure 17. Nonaka’s modes of knowledge
transfer

URN:NBN:no-2353

38 Chapter 3 Design and representation

interaction. The process (people, time, place) provides the context for giving
meaning to the representation, without which the informal representation has no
meaning. After the transfer, the meaning is embodied in the process’ participants.

• Externalization - Tacit knowledge is made explicit, by verbalizing in a dialogue
among designers. Again the representation should support this dialogue, since
externalisation often is a social process, although it could take the form of an
“inner dialogue”. Throughout the process, the representation will shift from infor-
mal to formal, e.g. from sketches to screen definitions or diagrams. The authoring
process may be supported by tools for checking or increasing the representation’s
syntactic and semantic quality.

• Combination - New explicit knowledge is created by linking existing explicit
knowledge. This process depends on representations that supports analysis,
whether by humans or machines, i.e. the main advantage of formal models. Differ-
ent perspectives may be combined, or representations of various levels of detail.
The reader’s understanding of the representation language is important, and a vari-
ous tools/aids may be used to increase the pragmatic quality of the representation.

• Internalization - Tacit knowledge is created by acting upon explicit knowledge in a
process of “learning-by-doing”. Again the process of reading the formal represen-
tation is important. However, the learning environment, e.g. prototyping or simula-
tion tools, is equally important, since the tacit knowledge requires a personal
experience with sensational and emotional engagement.

Throughout the design process there will be a drift towards more explicit and formal repre-
sentations, as the design is committed to and the need for transfer to “outsiders” increases.
Subsequent analysis and evaluation corresponds to “combination” in that elements of
design are considered as a whole and new characteristics are derived, e.g. to judge complex-
ity, learnability and usability. The last transfer mode can be compared to validation by
means of (usability) testing of prototypes, since it means experiencing the specification in a
more physical way.

When using informal user interface design representations the intended meaning will
depend on the design context. The process of formalising the representation requires inter-
preting the informal representation. If the original design context is not available, e.g. is for-
gotten, it may not be clear how to disambiguate the informal representation. Suppose a
design document includes a labelled text field with a date in it followed by a “Change” but-
ton, a probable interpretation may be given within several of the main perspectives dis-
cussed above:

• task/domain: that the user needs to change a date at some point of a task or that
the object attribute named by the text label will refer to a date

• dialogue: that at some point the user will need to interact with a date field and that
the button is a means of changing an object attribute

• concrete interaction: that this particular date attribute should be input using a text
field, that this date field should be laid out according to this particular position and
dimension or that a button should be used instead or in addition to a menu item for
activating the change (?) function.

URN:NBN:no-2353

3.7 Formal representations revisited 39

These are not mutually exclusive interpretations, the sketch may in fact imply all of them.
In general, to make it possible for others to interpret the informal representation correctly,
the design team must either include others in a suitable context for understanding their
design representations, or remove the need for establishing this context by making more
explicit and formal representations.

3.7 Formal representations revisited
Although the user interface design community has been reluctant to use formal representa-
tions for design, work within the field of model-based user interface design shows that for-
mal representations can be valuable, also from a “pure” user interface design perspective
[Szekely, 1996]. Among others, models of tasks, objects and dialogue can support both the
design and evaluation of user interfaces, based on several important characteristics of for-
mal representations:

• The meaning is well-defined and independent of the context, i.e. user, time, place.

• Important characteristics can be derived or checked, like consistency and com-
pleteness.

• Different parts and aspects of a system can be compared and analysed as a whole

What is actually considered formal (enough) varies, e.g. a critic of UML is its lack of for-
mality [Bergner, 1998], while from the perspective of user interface designers, UML is very
formal indeed. The characteristics above require a mathematical foundation, e.g. algebra or
logic, which most of UML lacks, but which is supported by many existing formalisms for
information systems engineering and user interface design. It is instructive to look at the
domain of structural engineering and some of the properties we consider crucial for its suc-
cess with utilising formal models:

1. A limited number of characteristics are needed to describe the basic elements of
the construction, as well as compositions of these elements. For a bridge this
includes weight, mass distribution and strength.

2. These characteristics may be computed for a composite construction, based on the
elements and how they are composed. Weight is a simple sum of the parts, while
mass distribution is easily calculated from each part’s mass and position.

3. Requirements for the construction could be formulated in terms of these character-
istics. The forces the bridge must withstand may e.g. be translated to a required
strength.

In short, these properties ensure that the domain remains conceptually simple, even though
any specific construction may be very complex and require advanced methods of design.
For practical purposes it is important that the mathematics used for computing and analys-
ing the characteristics is well understood and practical to use for any reasonably sized prob-
lem. This is true for structural engineering, e.g. by using the Finite Elements Method to
partition the computational problem.

URN:NBN:no-2353

40 Chapter 3 Design and representation

Within the engineering approach to systems development, the terms compositionality and
constructivity have been used for characterising theories which “provides rules for reason-
ing on compositions of specification modules without knowledge or anticipation of the
implementations of these modules” [Gaudel, 1994]. This means that the characteristics of a
system only depends on the components’ characteristics and how they are composed, simi-
lar to item 2) in the list above. The concept of compositionality originated in the philosophy
of logic and language and referred to the property that the meaning of a statement was the
“sum of its parts”, i.e. could be derived by looking at the parts and their composition only,
while ignoring the context of the statement or interpretation and the interpretand [Dict-
Mind@]. Natural language does not in general have this property, but formal languages in
general do.1 The original concept of compositionality makes it possible to understand parts
of a model of a domain, in the form of a set of formal statements, without the need of con-
sidering how other parts may affect it. In other words, adding a statement would not change
the meaning of existing statements, although it may of course change what can be derived
from the whole, e.g. by making it inconsistent.

Compositionality alone does not, however, guarantee that the aggregated meaning of a set
of statements can be derived in practice. For instance, there may not be a limited set of char-
acteristics for defining the meaning, nor a practical mathematical theory for deriving char-
acteristics. However, when compositionality is used in modelling literature, the former
seems to be implied and the latter at least hoped for. Constructivity seems to be given a sim-
ilar meaning, i.e. a limited set of characteristics are used both for specifying desired proper-
ties and describing elements of the domain, to be verified against the specification. For
instance, the port interface of a process and conditions for flow of data, might be derived for
any level of a process hierarchy and compared to the specified requirements. Hence, the
advantages of compositionality, seems to require both:

1. conceptual abstractions of a domain according to the three properties listed above

2. practical mathematical theory on which the concepts are based

The latter requirement presents several obstacles, e.g. it requires precise, complete and con-
sistent models. In addition, the current mathematical theories are intractable for realistic
problems, so that only parts of a model may be fully analysed. While this may seem disap-
pointing, the conceptual abstractions alone may provide advantages as an analytical tool for
the developer, even without using the power of (computer-based) mathematical analysis.
This is the stand we take in this work: Models based on conceptual abstractions of the prob-
lem and user interface domain are useful tools for developers, given that they support the
necessary roles in the development process, as identified above.

1. The former is due to cultural and social conventions, while the latter is by design.

URN:NBN:no-2353

41

Chapter 4

Task modelling
Task modelling can be viewed as a way of formalising the results of a task analysis, the goal
of which is to understand and capture the nature and structure of user population, their envi-
ronment, goals and work activities. When used for evaluating existing user interfaces, the
task model should and will be highly dependent on the existing user interface. If, on the
other hand, the task model is focused on design, it should try to remove the constraints
embodied in the existing user interface by avoiding reference to the artefact. Hence, in the
former case, the task modelling will be more solution-oriented, while in the latter case, it
will be more problem-oriented. It is the latter usage that is the target of our work, i.e. task
modelling used for designing a new user interface, rather than evaluating an existing one.

4.1 Introduction
Task models were in Chapter 3, “Design and representation”, classified as a medium-level,
formal design representation, with a problem-oriented perspective. According to the same
classification, workflow models were considered a higher-level representation within the
same perspective, whereas dialogue models were similarly levelled, but more solution-ori-
ented. Hence, one may view a task model as being in-between workflow and dialogue mod-
els, in the sense that a workflow model will provide a context for task modelling, and the
task model a context and a set of constraints for the dialogue model. In a top-down process,
a workflow model will play a constructive role with respect to a task model, since a task
model will have to be constructed as a decomposition of the worklflow model. Relative to
the workflow model, the task model will play an analytic role, since it must be interpreted
and evaluated with respect to the workflow context. For both roles, it will be an advantage if
the respective modelling languages are based on similar concepts and constructs, while still
being adapted to the appropriate level within their common perspective. The relation
between task and dialogue models is similar, in that they play similar constructive and ana-
lytic roles with respect to each other. However, since they represent different perspectives, it
is not desirable to base a task modelling language on a dialogue modelling language and
hence, more difficult to relate the models.

In this chapter, we therefore take a look at task modelling in the context of workflow model-
ling and suggest a task modelling language based on interpreting a workflow language
within the task modelling tradition.1 We first motivate integration of workflow and task

URN:NBN:no-2353

42 Chapter 4 Task modelling

modelling and then present and compare workflow concepts with those used in task model-
ling. The workflow concepts are shown to have task modelling correspondences, and possi-
ble benefits of integrating them are suggested. We show how a workflow model can be
utilized when modelling the tasks of a workflow participant and illustrate how end-users
can benefit from task enactment as a practical result of workflow and task integration. Our
task modelling language TaskMODL is subsequently presented, and in Chapter 5, “Dia-
logue modelling”, the relation to the more solution-oriented dialogue model will be dis-
cussed.

4.2 Workflow and task modelling
Understanding the nature and structure of work is crucial for building successful informa-
tion systems (IS) for organisations, for at least two reasons. First, for an IS to be understand-
able for the organization it is part of, it must take current work practices into account.
Second, because an IS to a certain degree determines both what work can be done and how
the work can be performed, it must be designed according to the organization’s objectives
and goals. An organization’s IS must support work being performed at three levels, the
organizational, group and individual levels. This notion of level corresponds to the granu-
larity dimension of the classification framework introduced in Chapter 3. Work performed
at the organizational and group level is often described using workflow modelling lan-
guages. Workflow models are useful for IS development, both as a tool for capturing and
formalizing knowledge about current and desired work practices, and for the design of the
computerized information system (CIS). For describing small-team and individual work
task models are used, based on a task analysis.

As argued in [Traunmüller, 1997], we need to integrate the various levels to actually build
useful software for supporting work, i.e. bridging the gap between organisational, group and
individual work. In the following sections, we look at integration of workflow and task
modelling language and models. The main goal is to study how workflow concepts can be
useful for task modelling:

• At the language level, workflow modelling concepts can be used for task mode-
ling.

• At the model level, making the interaction between individual and group work
explicit can help us make task models that take the work context into account.

• At the enactment/performance level, having an integrated approach to workspace
design and user interface execution may result in better human workplaces, where
the values and foci of the workflow and task based approaches are balanced.

Section 4.3 will introduce important aspects of work, as identified by the workflow commu-
nity and found in workflow modelling languages. The aspects will be interpreted in the con-
text of task modelling and integrating these into task modelling languages will be discussed.
Section 4.4 will show how workflow models might influence task modelling, and suggest

1. Part of this work has previously been published in a shortened version in [Trætteberg, 1999].

URN:NBN:no-2353

4.3 Aspects of work and its description 43

how the theory of speech acts might be used in user interface design. As a conclusion and
direction for further work, we in Section 4.5 turn to how an integrated machinery for work-
flow enactment and user interface execution might benefit the end user. Throughout the
paper, we will use the Action Port Model (APM) [Carlsen, 1998] workflow modelling lan-
guage and a workflow example, both to illustrate the concepts and show how workflow
models can aid the design of user interfaces for workflow participants.

4.3 Aspects of work and its description
Work can be described along several dimensions, your choice of dimensions depending on
your goal. In traditional workflow modelling, the goal has been threefold:

1. process understanding, e.g. as a basis for business process reengineering (BPR)

2. workflow management, including work allocation and monitoring

3. work support and enactment, including workspace design, client support.

[Marshak, 1997] identifies four dimensions for describing work: the action structure, the
actors that perform the work, the tools that are used and the information (sources) that are
needed. To illustrate these workflow dimensions and the potential use for task modelling,
we first take a look at a workflow example and its APM model, as shown in Figure 18. A
person (USER) must write a report upon return from a travel. He has to his aid a group of
persons (SUPP) and we would like to further support him by designing a piece of software
(APP). These three entities are modelled as resources of the top-level WRITE TRAVEL
REPORT task, by including them in the resource bar. The action structure is based on the
decomposition of how USER works on the report and how he interacts with the SECRETARY
and MANAGER to fill in details and gather and respond to objections. This workflow model
will be used as a starting point for a task model for the APP software that USER uses to per-
form the main task and interact with the others. Now we will present the workflow con-
cepts, detail the notation and discuss the relation to task modeling.

The most fundamental concept is the action, depicted in Figure 18 as a rounded rectangle,
although different names like task and act are widely used. Actions are the causes of all
change and constitute the small steps leading to the goal. For an action to be possible, cer-
tain implicit and explicit pre-conditions must be satisfied, e.g. the action should be relevant
for the goal and necessary resources like information and tools must be available. The pre-
conditions of an action may depend on other actions, making it natural to view all the
actions as a structure of dependencies.

The dependency structure of workflows is usually based on dataflow and/or speech acts
[Searle, 1985]. The former defines necessary constraints on action sequences by specifying
what input data are required. In the example, the manager must receive the report to be able
to sign it or return objections. Explicit pre-conditions or control flow can also be included,
as in the example were the return from the travel triggers the workflow. In the speech act
approach, action sequences are defined on the basis of institutionalized dialogue patterns,
whether formal (legal) or informal (social). This normally gives more restrictive pre-condi-

URN:NBN:no-2353

44 Chapter 4 Task modelling

tions than the dataflow approach. For instance, the secretary may be required to always
check the travel report even if no details are missing.

The full semantics of an action is rarely formalized in workflow modelling languages, since
it may be far too complex. However, support for describing the action dependency structure
is normally strong. To reduce complexity the structure can be made hierarchical by defining
composite actions, like A1 in the example. Such actions are often denoted by a distinct
term, e.g. “job”, “process” or “activity”, highlighting that these are complex and longer last-
ing actions. Composite actions can be abstract, by defining the external characteristics and
leaving the internal structure unspecified until needed.

The action concept corresponds to the task concept, and the action hierarchy to the task/sub-
task structure, found in task modelling languages. At the model level, we believe low-level
workflow actions may correspond to high-level tasks. Several task modelling languages are
based on dataflow, e.g. the Activity Chaining Graphs used by TRIDENT [Bodart, 1995],
giving action dependencies similar to some workflow languages. However, most task mod-
elling languages are based on explicit sequencing primitives like ordered/unordered
sequence, repeat and choice for defining action sequences. The primitives are used in two
ways, similarly to speech act based dialogue patterns: 1) prescriptively, by specifying/limit-
ing how actions must/can be performed, or 2) descriptively, by describing how actions are
performed in practice. In such a task model it is not explicitly expressed whether a particu-
lar sequence is due to a necessary pre-condition or simply is socially conditioned.

A1 Write travel report

A1.1

Write
report

User App

A1.2

Provide

Secretary

details

A1.3
Sign

Manager

report Adm.

USER

name

resources

output

description/
definition/

decomposition

Figure 18. The APM example model.

REPORT

“FINAL”
REPORT

FINAL

DETAILS

OBJECTIONS

REPORT

returned
from
travel

SUPP APP

dataflows

condition

The A1 decomposition defines how writing a travel report is performed. As can be seen, the
definition of an APM action consists of four parts: the identifier and name, the definition of the
action as a decomposition, the driving information as input and output, and the required
resources like actors and tools.

URN:NBN:no-2353

4.3 Aspects of work and its description 45

Actors are the beings that intentionally perform actions. Actors have a (mental) state guid-
ing their behaviour, e.g. a purpose or goal state to reach, responsibilities and commitments.
Actors both perform actions and decide which actions to take. In the example, two kinds of
actors of A1 are externally visible, while three are defined internally (see notation in
Figure 19). Technically, actors can be viewed as resources with certain characteristics and
abilities that are required by the actions. By listing the needed characteristics, like rights and
privileges, knowledge and abilities, actions implicitly define who can perform them.

As with actions, actors can be composed, giving a group. While groups usually match for-
mal organization structures, they can be defined to contain arbitrary individuals. Although it
is not always meaningful to say a group performs a particular action, it may be to say that an
unspecified and able member of a group will perform it. Alternatively, a whole group may
take part in a composite action, i.e. the group is the aggregate of the performers of the com-
posite action’s subactions. In the example, the composite SUPP actor models the group of
individuals supporting the USER actor.

While groups are defined extensionally, by listing their members, roles define sets of actors
intentionally, by listing their common characteristics. The characteristics are typically those
that are required by actions, i.e. roles are used to define/summarize sets of necessary
requirements of actions, like authority, knowledge and capability. Roles can be treated as
(composite) resources required by actions, that must be filled by actors before allowing
them to perform an action. Actions are then said to be performed by these roles. A particular
actor can play several roles, although not necessarily for all actions or in all contexts.

The most natural task modelling interpretation of the actor and group concepts are users and
user groups. Users and user groups represent concrete individuals, and are referred to when
describing how tasks are actually performed (by this group), i.e. the current work practice.
Roles correspond naturally to user stereotypes, i.e. particular kinds of typical users, since
they refer to characteristics that some but not necessarily any individuals might have. Stere-
otypes are typically introduced when there is no useful definition of a single “generic user”,
so instead several definitions are used.

Objects are the material, mental or representational things constituting the domain that
actions are performed within. Objects are used both when representing the information that
is acted on or upon and for modelling contextual information used in actions. The term
‘object’ is used informally, since the formalism used for describing the domain is not neces-

Role Person

Roles Group

Actor

Abstract Concrete

Simple

Composite

Generic

Figure 19. The APM actor and tool symbols

Abstract Concrete

Tool

Software Software

Software Suite

product

suite product

Both type of symbols have a generic variant, as well as specific symbols for
simple/composite and abstract/concrete actors. The role is a simple and abstract
actor, while specific persons are simple and concrete.

URN:NBN:no-2353

46 Chapter 4 Task modelling

sarily object-oriented. In the example, the REPORT could be a text document, the DETAILS a
spreadsheet and the OBJECTIONS a natural language email. Objects are created, destroyed
and modified by actions, whose semantics may be described in terms of objects’ state, e.g.
by pre- and post-conditions. The objects granularity can range from whole databases and
documents to records and words. The detail of the object model may similarly vary, depend-
ing on the goal of the model.

Most task models assume there is a model of the domain or the application data, that tasks
use or operate on. The tasks’ semantics may be fully defined in terms of these objects, e.g.
using algebraic equations, or just refer to the main domain concepts. As for workflow, the
level of formality and detail may vary, although it is common to use object-oriented or sim-
ilar models with concepts, relations and attributes. We expect workflow objects, if further
detailed to a relevant level, to be directly usable in task models.

A tool is a special case of the general term resource, which has been used for every prereq-
uisite for performing actions, including the actors performing the them, the objects acted on
and additional contextual information needed. At the granularity of workflow, tools are typ-
ically applications or components in integrated systems. A tool can be concrete or abstract,
where the former names a specific application, e.g. ‘Eudora’, and the latter refers to an
application class, like ‘email client’. In addition, tools can be composite by listing several
applications (classes) or components in a suite or referring to the suite as a whole, e.g.
‘Internet access tools’ or ‘office package’.

The enactment engine of a workflow system has the task of bringing the work(flow) to the
worker, by providing the relevant information and activating the relevant tools for an action.
Extending this principle to user interface tasks requires a suitable interpretation of the tool
concept in the task modelling context. Tools are software elements supporting the perform-
ance of actions, which at the granularity of user tasks correspond to dialogue elements. The
tool concept provides the link from the (problem-oriented) specification of what support the
user interface should provide, to the user interface (solution-oriented) design elements actu-
ally providing it. The idea of task enactment will be further discussed in Section 4.5.

Workflow concept Task interpretation

Generic Abstract Composite
Action: basic unit of
work, data flow or
speech act based

Delayed defini-
tion, action tem-
plate parameter

Provides hierarchi-
cal composition,
also called process,
job, activity

Task, task/subtask hierarchy
• Data availability defines neces-

sary pre-conditions
• Work practice as additional con-

straints
Actor: intentional
beings performing
actions

Role: Intension-
ally defined set of
actors, often based
on actor charac-
teristics

Group: Extension-
ally defined set of
actors

User, user group, stereotype
• Multi-user task models
• Multiple work practices
• Design targeted at different user

groups

Table 4. Workflow and task modeling concepts

URN:NBN:no-2353

4.3 Aspects of work and its description 47

Table 4 summarizes our analysis of Marshak’s four dimensions of workflow, their corre-
spondences with and opportunities for task modelling. The (re)interpretation of Marshak’s
four dimensions in a task modelling context, suggests that workflow concepts have natural
correspondences in task modelling languages. For further evidence we take a look at the
ontology or meta-model for task modelling presented in [van Welie, 1998] and shown in
Figure 20 as a UML class diagram. The ontology is an attempt at clarifying the concepts
and relationships of existing task modelling frameworks.

The main concept and structure is the task hierarchy, analogous to our action structure. Var-
ious kinds of task sequencing is provided by the ‘Task uses Object’, ‘Event/Task triggers
Task’ and ‘Task pre/post Condition’ relations, covering both dataflow, data triggered and
explicit sequencing. Our actor concept is covered by their agent and role concepts, although
there are some differences. Most notably, agents can be software components, and roles
have an explicit relation to the task they (can) perform, instead of implicitly by listing the
resources that tasks require. The object model is simple, allowing for attributes, actions and
a hierarchical is-a and containment structure. The task semantics is partly defined in terms

Object: part of (rep-
resentation of)
domain

Part-of hierarchy Object
• Operated upon
• Contextual information

Tool: software
needed for perform-
ing actions

Application class Application suite,
integrated compo-
nents

Dialogue element
• Link between task description

and interface design
• Task based enactment
• Component composition

Workflow concept Task interpretation

Generic Abstract Composite

Table 4. Workflow and task modeling concepts

Figure 20. Ontology or meta-model for task modelling languages [van Welie, 1998]

URN:NBN:no-2353

48 Chapter 4 Task modelling

of objects; they are triggered by attribute changes, can perform attribute changes and pro-
vide post-conditions referring to objects’ states.

When designing multi-user applications there is a need for introducing concepts for describ-
ing cooperation and interaction between tasks. ConcurTaskTrees [Paterno, 1997] targets
applications for small groups where cooperation is required. The main idea is allowing
explicit cooperation and communication tasks, which span the task hierarchies for individu-
als. In addition to the usual task hierarchies for the individuals’ tasks, a hierarchy for the
cooperation and communication tasks is modelled, that refers to the individual task hierar-
chies. The modelling concepts are consistent with the ontology in Figure 20, as well as our
idea of moving up from individual work to multi-user group and group work, by adding lev-
els of abstraction.

The main difference between the task and workflow approach is this task ontology’s lack of
a tool concept, i.e. the software artifact supporting the user when performing tasks.
Although we have system operations, these are part of the domain model and not the user
interface is to be designed. The difference is due to the focus of each approach: task analysis
and modelling focuses on what the user does or should do and not by which means it is
done. It is considered important to separate the act of understanding goal/action structures
and designing for its support. Workflow modelling on the other hand has a strong focus on
bringing to the user the tools necessary for performing the required actions. Although we
agree that separating “what” from “how” is important, we believe including the concept of
design objects could aid the transition to design. Existing approaches have included a tool
concept as a way of integrating task and dialogue models in a fully task and model based
approach to interface design, e.g. MOBI-D and MOBILE ([Puerta, 1997] and [Puerta,
1999]).

Workflow modelling’s focus on active computer support, has lead to the introduction of
concepts for more dynamic flow of work than the ones presented above, including routing
and rules. The performance of specific actions is normally initiated by data flow or explicit
control directives, which will determine the possible action sequences. There may be good
reasons for delaying some decisions with respect to information and control flow. First, the
actual performing actor may not be decided until the latest possible time during enactment.
Second, each potential actor may have a different preferred way of performing actions.
Third, there may exist several versions of the same abstract action, and which concrete
action to actually perform may best be determined based on the actual information flow
content or other contextual information. In a workflow model, routing defines which tasks
that will receive and maybe be triggered by information, the actual information content and
who will perform the task. Rules are used to specify how choices are made, i.e. in what situ-
ations the various routes are taken. In a task modelling context these choices are similar to
method selection (the M in GOMS) [Card, 1980] that actors perform. Such selection occurs
when there are several action sequences leading to the same goal, with important qualitative
differences concerning speed and effort. Expressing the reasons for choices in rules should
increase the utility of the task model. In workflow, routing and rules can also be used for
selecting the appropriate tool for a task. Based on our interpretation of tools as interface dia-
logue elements, this naturally corresponds to dynamic selection of dialogue elements, e.g.
automatic mapping from abstract to concrete elements. There already exists systems that
choose concrete elements during runtime, based on space requirements, e.g. Mastermind
[Szekely, 1995]. Selecting the abstract and concrete interaction objects based on the

URN:NBN:no-2353

4.4 Workflow and task models 49

dynamic task context seems like a natural consequence of applying the routing and rules
concepts to task modelling and enactment.

4.4 Workflow and task models
We have shown that workflow and task modelling languages have much in common, and
based on the classification framework from Chapter 3 it seems worthwhile to consider inte-
grating actual models, in addition to the modelling languages. Such vertical integration is
based on the idea that workflow and task models essentially describe the same domain, but
at different abstraction levels. Hence, when designing user interfaces for participants of a
particular workflow, e.g. USER in the A1 workflow in Figure 18, it makes sense to use the
workflow model as a context for the task model, i.e. the workflow model example. The
advantage should be threefold:

1. The relevance of the task structure should be ensured, since it is motivated by goals
shared by the organization.

2. In addition to using the low-level actions as the top-level tasks, most of the ele-
ments of the task model, like roles, information and tools are already identified.

3. Special workflow concepts, like speech acts and exceptions, may be given special
treatment in the decomposition, e.g. by using special task structures.

Vertical integration can be done from two views, the whole workflow and the individual
workflow participants. The former concerns building collaborative environments for
groups, where the focus is on providing tools for communication and coordination, as well
as the actual work. While such workspace design certainly is interesting, we are currently
more concerned with the individual participant view. Since workflow models are system
oriented, care must be taken when moving to the user-oriented perspective of individual
workflow participants. Several roles of the workflow may be played by single users, so all
of the tasks performed by these roles should be taken as a starting point for task modelling.
This means that processes that are far apart in the high level structure may have to be tightly
coupled in the task model, because the same individuals participate in them. The mapping
from system to user views of the workflow is essential for task analysis, and both the task
modelling process and task modelling tools must support it.

In our example, USER performs one low-level action, A1.1, which can be used as the top-
level task. The three ways of starting and resuming this task, based on the single control
flow and two dataflows, are defined as sub-tasks, as shown in Figure 21. The latter two are
decomposed into tasks for sending, receiving and handling the relevant information. Further
decomposition of information handling tasks, will depend on how the various kinds of
information are acted upon, and hence, requires a decomposition of the REPORT, DETAILS
and OBJECTIONS “objects”.

We see that the workflow model can provide both initial task model elements and opportu-
nities for further refinement. The tasks that require communication suggests that speech act
patterns like Winograd and Flores’ “Communication for Action” [Winograd, 1986] might
be relevant to include, together with specific communication tools.

URN:NBN:no-2353

50 Chapter 4 Task modelling

A different synergy between workflow and task models is that of reusing workflow model
patterns in task models. Pattern reuse is based on the idea that human-problem-human inter-
action patterns, embodied in workflow models, may also be relevant for human-problem-
machine interaction. If you view the machine as a problem solving partner, it may be natural
to structure the man-machine dialogue similarly to human-human dialogue patterns, like the
ones found by speech act research. Indeed, the installation wizards found in desktop appli-
cations, seem to use the preparation-negotiation-performance-acceptance cycle that e.g.
Action Workflow [Medina-Mora, 1992] is based on.

4.5 Towards a task modelling language
We have shown that Marshak’s four dimensions [Marshak, 1997] for describing workflow,
i.e. action structure, actors, tools and information, have direct correspondences in the task
modelling domain. Suggestions for how these can be used in task modelling have been pre-
sented, and we have shown how a workflow model can be used as a context and starting
point for a task model for a workflow participant. As the APM modelling language is based
on the above mentioned workflow concepts, it should provide a good starting point for a
task modelling language, given that existing task modelling concepts and practices are cov-
ered.

Task modelling is a the process of representing and often formalizing the findings of the
task analysis activity. The exact information that is captured by a task modelling language
heavily depends on the goal of the overall process [van Welie, 1998]. Traditional notations
like hierarchical task analysis (HTA) focus on the relation between tasks and goals and hier-
archical task decomposition. The GOMS family of models [Card, 1980] have a strong focus
on evaluation of task performance and are deeper and more detailed. More recent task mod-
elling languages like ConcurTaskTrees [Paterno, 2000b] are designed with computer sup-
ported design of user interfaces in mind, and hence are more formal and have tighter links to
user interface dialogue architectures and languages.

We are firmly placed in the latter tradition, and have particular interest in utilising task mod-
els in the user interface design process and the overall systems engineering process, includ-
ing worflow modelling as discussed above. Consequently, we need a strong coupling with

A1.1 Write report

User App

Make initial report Add details Handle objections

Submit Receive
report objections

Request Receive
details details

React to
objections

Fill in
details

Figure 21. Task model for USER based on the workflow model example

Secretary ManagerSecretary Manager

URN:NBN:no-2353

4.5 Towards a task modelling language 51

other systems engineering models, support for reuse of task models and an explicit link to
user interface dialogue models. In designing the language we want to:

1. narrow the gap between workflow and task modelling, by integrating modelling
concepts, while retaining the flavour of task modelling that developers are used to,

2. provide a flexible notation for representing tasks, without requiring completeness
in breadth or depth, and

3. support the transition between task and dialogue modelling, by making it possible
to relate constructs and models between perspectives

The second point requires further comment, since task models are used for several different
purposes. Task models were initially focused on describing how tasks are performed with
the current tools, so their effectiveness and efficiency could be evaluated. The basis should
be observations of actual usage, which were then generalised into a common task model.
We believe it is useful to capture the individual instances in a model, to make it easier to
perform the needed generalisation. After task based design was introduced, as an extension
of model based design, task models have additionally been used for representing how tasks
will be performed with the new and/or improved tools, often called the designed or envi-
sioned task model. The difference between the current and envisioned task models, is prag-
matic rather than semantic. The current task model will have the current tool as its context,
and many smaller tasks in the model will be an artifact of the current design, rather than
user/problem-oriented goals. When using task models for design, such artificial tasks
should first be removed altogether, for later to be reintroduced in the context of the new
design, where the corresponding design model serves as a pre-condition for the task. Task
models can be quite complex and it is often necessary to a focus a task model on a specific
(context of) use, e.g. a scenario more suitable for user validation. Such a model will be the
design equivalent of user observations, the tasks performed by a particular user (type) in a
certain context. These four different task models are summarized in the table below, with a
suggested correspondence with Nonaka’s knowledge creation process [Nonaka, 1998].

The problem-oriented perspective is usually split into a domain and a task modelling lan-
guage. Although the task modelling language needs to be tightly coupled with the domain
modelling language, surprisingly few modelling approaches provide an integrated visual
notation for both. Our modelling languages are coupled in two ways:

Tasks
models User/usage specific Generic

Current

Observations of usage
(Interpretation of the domain through
social interaction and dialogue)

Current work practice or task
(Creation of generic knowledge by means
of explicit representation)

Future

Usage scenarios
(Interpretation and validation of new
knowledge in usage context)

Envisioned tasks
(New knowledge is created, by combining
current task and design knowledge)

Table 5. Four kinds of task knowledge

URN:NBN:no-2353

52 Chapter 4 Task modelling

1. A task model defines the tasks the user wants or needs to perform within an appli-
cation domain. The domain will itself limit the possible tasks, and although the
task semantics need not be defined fully in terms of the domain, support for pre-
and post-conditions will require the ability to reference the domain model.

2. The concepts found the in TaskMODL can themselves be described in the domain
modelling language. I.e. the domain modelling language is used for expressing the
meta-model of TaskMODL.

In the following section, our domain modelling language RML is presented, with a focus on
the former usage. Our task modelling language TaskMODL is designed as a blend of the
above mentioned APM workflow language and traditional task modelling languages, with
the goal of supporting the four kinds of task knowledge shown in Table 5. TaskMODL is
described in Section 4.7.

4.6 The domain modelling language: RML
In this section we detail our Referent Modelling Language, which is used to model the work
domain, together with the task modelling language. RML will also be used with the dia-
logue modelling languages presented in the next chapter and for modelling aspects of con-
crete interaction. We have chosen to design a new language instead of adopting UML, since
we find UML too informal, design-oriented and complex (both meta-model and notation).
Since UML for many purposes will be a more realistic modelling language candidate in
industry, we will nevertheless compare and contrast the two throughout this presentation.

4.6.1 Concepts and instances

The Referent Modelling Language (RML), is based on language and set theory. The basic
assumption is that the real world is populated by instances which we observe. These
instances have identity, and to be able to speak about them and refer to them we use symbols
that refer to their real-world counterpart called referents, hence the language name. By

Figure 22. Conceptual modelling constructs and notation

Relations

Concept/
set

Instance/
element Attributes

is-a
relation

one-to-one

named
relation

many-to-one

one-to-many

many-to-many

full-full

full-partial

partial-full

partial-partial

∈

{}

⊆

Specific and arbitrary elements

Disjoint and overlapping sets

N-ary aggregation relation

Relation sets

Constrained DAG aggregation

URN:NBN:no-2353

4.6 The domain modelling language: RML 53

introducing concepts like persons, animals and fruit we are able to refer to sets of instances
having things in common, by defining the characteristics that distinguish them from others.
When an instance is classified as being of a particular concept, it implies that it shares these
common characteristics, and the fact that these characteristics are shared, is the main reason
for defining the concept. The set of distinguishing characteristics is called the concept’s
intention, while the set of instances that exhibit these characteristics is the concept’s exten-
sion.

These two basic constructs of RML, concept and instance, is shown in Figure 23. In the
example in Figure 23, we see four concepts, ‘Person’, ‘Man’, ‘Woman’ and ‘Limb’, and
two instances, “Hallvard” and “a woman”. In the example, every person is defined as hav-
ing two attributes, ‘Name’ and ‘Birthdate’. Usually we only include the characteristics that
are important for design, and rely on naming to convey the full intension. For instance, there
is more to being a person than having a name and a birth date, we all know that, but this
may be sufficient for the purpose of our model

The philosophical basis is not unlike the object-oriented view that instances have identity
and that a class corresponds to the set of its instances. Hence, a concept is similar to a UML
class(ifier) and our instances correspond to UML’s objects. However, within object-oriented
software design the class is viewed as a cookie-cutter or template from which instances are
created. This implies that the relation between an instance and it’s class is static, and that the
set of characteristics is fixed. According to the RML model, however, the classification of a
particular instance, i.e. the concepts it is of/belongs to, may change many times during the
instance’s lifetime. Reclassifying an instance may imply changing the set of characteristics
attributed to it, like relations and attributes, but does not change its identity. Such reclassifi-
cation should be considered a way of updating our model to reflect real-world changes, not
forcing a change in the instance. In addition to this distinct philosophical difference
between RML and UML, RML supports grouping attributes in several attribute sets, while
the attributes in UML all reside in a single flat set.

There are two kinds of instances, specific/particular ones like “Hallvard”, and generic ones
like “a woman”, the difference indicated by the element or curly braces symbol, respec-
tively. Specific instances are used to name and possibly classify known instances, and are
useful when modelling observations and scenarios. Generic instances are used in contexts

Figure 23. RML example model

Person/
persons

Name
Birthdate

Hallvard

Woman/
women Man/menmarriage

{}∈

a woman

Head

Dog
bites/
biting/

bitten by

husband/
bachelor

Limb

URN:NBN:no-2353

54 Chapter 4 Task modelling

where anonymous instances are needed, e.g. in invariant expressions or pre- and post-condi-
tions for tasks where they show up as variables.

The set of instances belonging to a concept’s extension depends on how real-world behav-
iour is modelled in terms of the life-cycle of instances. Take the person concept as example:
A real-world person is born, lives and dies. The instance that represents the idea of a partic-
ular person may however, have a different life-cycle, and in particular may outlive the real
person. For instance, the concept or idea of former King Olav still lives, although he does
not, so we may choose to think of the RML instance as still existing. In most cases, we think
of the RML instance as tracking the real-world life-cycle, but it may also be limited. In the
context of task and dialogue models, we usually limit the scope of a concept’s extension to
the instances accessible for the modelled tasks or dialogues, which in case of the person
concept may be the persons included in an organisations payroll system.

Since the extension is a set, an instance is said to be a member of the concept’s extension.
When focusing on the set aspect of concepts, we often refer to instances as “elements”. The
set view of a concept makes the dynamic nature of instance classification more obvious,
since set membership is normally viewed as dynamic and independent of the member ele-
ments. Being a member of several sets simultaneously is no problem, and compared to
using UML’s multiple inheritance feature, gives the modeller greater freedom to attach ad-
hoc attributes to instances.

The dual nature of concepts as sets, has motivated a convention for naming, to indicate a
focus on either the concept or set nature. The concept is often named using a singular in
upper case, e.g. “Person”, while the set nature is named in plural using lower case, e.g. “per-
son”. When both names are needed, we use the convention of including the extension’s
name separated from the concept’s by a slash (“/”), as we have done for “Person/persons” in
the example model.

4.6.2 Relations between concepts
Concepts can be related to each other in two ways: through generalisation/specialisation,
i.e. is-a relations, and through named relations. Is-a relations introduce more fine-grained
concepts and are used to define characteristics that are common to a subset of a concept’s
extension, in addition to the ones already defined. Named relations are used to relate ele-
ments among sets. In the example, we see that ‘Man’ and ‘Woman’ both are specialisations
of ‘Person’, alternatively that “men” and “women” are subsets of “persons”. All “men” and
“women” have in common the potential of establishing a ‘Marriage’ relation to “women”
and “men”, respectively. Note that the example model excludes gay and lesbian marriage,
and as we will se, polygamy.

When introducing subsets, we may find it useful to be more specific in two different ways,
by expressing that:

1. a set of subsets are (necessarily) disjoint or (potentially) overlapping

2. a set of subsets is a complete partitioning of the (common) superset

URN:NBN:no-2353

4.6 The domain modelling language: RML 55

In the example, “men” and “women” are defined to be disjoint sets, by means of the ‘+’-
sign in the circle, i.e. a person cannot be an element of both “men” and “women” at the
same time. We also have expressed that a person is either a ‘Man’ or a ‘Woman’, by means
of a black dot at the circle-box attachment point, i.e. that the sets “men” and “women” fully
partition “persons”. In cases where there is only one subset in a model fragment, it is a mat-
ter of taste whether to use the disjoint (+) or overlapping symbol (<), to indicate the there
may be other unmentioned subsets, or just a simple unfilled subset arrow without the circle.
As a shorthand, we also allow indicating the superset in the name of a subset, in cases where
it is undesirable to include the superset symbol and subset arrow, by appending ‘<superset’
to the name or prepending ‘superset>’, as in ‘Man<Person’ or alternatively ‘Person>Man’.
A similar ‘name:concept’ shorthand can be used for indicating concept/set membership, e.g.
‘Hallvard:Person’.

As shown in Figure 30 on page 60, we can make several orthogonal specialisations of the
same concept, in this case a ‘Task’. According to this model fragment, a ‘Task’ can be any
combination of ‘Action’/‘Supertask’ and ‘Toplevel task’/‘Subtask’, i.e. the cross product of
two pairs, since there are two independent disjoint specialisations/subsets.1 A ‘Method’ is
further defined as being both a ‘Supertask’ and a ‘Subtask’, implying that it both contains
“subtasks” and is contained in a ‘Supertask’. Orthogonal classification is very useful when
modelling several differing points of views, e.g. based on interviews of different user
groups. Different classification hierarchies may comfortably reside in the same model, and
can later in the development process be integrated if desirable and possible. UML supports
this through the use of multiple inheritance and the two disjoint/overlapping OCL con-
straints. These are however, cumbersome to use for this purpose and we have in fact never
seen these constructs used this way.

When introducing a specialisation of a concept, there should
be a trait distinguishing it from the general concept, and from
the other disjoint subsets, e.g. the participation in a relation. In
the example model it is not clear what distinguishes men from
women, since the marriage relation is symmetric. It would be
necessary to introduce a sex attribute or, as shown in Figure 25,
introduce an explicit type concept naming the distinguishing
trait. In addition to being subsets of “persons”, “women” and
“men” are also specific member of the set of “sexes”. In some
cases, we must define the test for classifying elements using a
predicate or natural language statement, e.g. a ‘Man’ is a
‘Short man’ if his length is less than 170cm. As a last resort,
we can let the social and cultural context provide the distinc-
tion. A natural consequence is that although the set of such
classes in a model is fixed, the classification of particular individuals need not be. For
instance, while “Hallvard” is a ‘Person’ forever and currently a ‘Man’, he may very well
become a ‘Woman’ by changing sex, i.e. by moving from the “men” set to the “women” set.
The rules and timing for movements among sets is covered by the behavioural model,
which will briefly be discussed in Section 4.6.3.

1. The “full coverage” marker (black dot) on the disjoint subset symbols, in addition express that there are no other alter-
native combinations.

Figure 24. Defining sex
(types) as distinguishing trait

Person/
persons

Woman/
women Man/men

Sex/sexes

{}

URN:NBN:no-2353

56 Chapter 4 Task modelling

Relations like ‘marriage’ among “men” and “women” relate pairs of elements from two
sets. Each pair is made by forming a binary tuple with one element in each set. All such
pairs of a particular named relation constitute a set, which necessarily is a subset of the two
participating sets’ cross product. This means that in principle any combination of elements
from the two sets can be paired, and an element in one set can be related to zero or more ele-
ments in another set, by being (or not) part of several pairs. Relations correspond to associ-
ations in UML, but RML do not support “implementing” them as attributes. Relation
instances may be included in models, as lines connecting individual concepts, e.g. to state
that ‘Hallvard’ is related to ‘Marit’ through ‘Marriage’.

It is possible to express limitations to the general case through three cardinality related con-
structs:

1. A filled arrow indicates that any element in the set pointed from can be related to
at most one element in the set pointed to, i.e. the relation is a function and has at
most cardinality 1.

2. A filled circle where a relation attaches to a set, indicates that all the elements of
that set are related to at least one in the other set, i.e. a full relation membership and
at least cardinality 1 in the other end.

3. The cardinality can be explicitly given, for limited cardinalities greater than 1.

In the example in Figure 23, a ‘Person’ must have one, and only one “head”, and zero, one
or more “limbs”. Both “heads” and “limbs” can belong to at most one “person”, thus, ruling
out Siamese twins. “Men” and “women” need not be married, and if they are it can only be
to one ‘Woman’ or ‘Man’ at a time. Individual relations cannot have coverage constraints,
since these only have meaning for sets of relations, but may have cardinality to indicate the
number of actual relations. In UML’s class diagrams the cardinality is indicated by text
labels at each end of the relation, possibly using * and + to distinguish between the 0 and 1
cardinality case. The reason we have chosen to introduce the arrowhead and circle, is to
“force” the modeller to consider these two cases separately: is the relation functional and is
it complete with respect to the participating sets.

Relations are sets of tuples and may be subject to specialisation through the subset con-
structs, and in fact serve as full fledged concepts. The typical usage is restricting the range
and/or coverage/cardinality of a relation, for special domains, or providing a special inter-
pretation and name for a specific range. Figure 26 models that in Norway, any pair of indi-
viduals can establish a legal dependency relation called ‘Partnership’. However, if the two
individuals have opposite sex this relation is called ‘Marriage’, hence ‘Marriage’ is a spe-
cialisation of ‘Partnership’, as modelled in the figure. Including circles with ‘+’ or ‘<‘ signs
and unfilled arrows may clutter the model, so the ‘Marriage < Partnership’ shorthand used
for subsets, may as indicated be a good alternative.

Often the relation name will suggest a direction for reading it, although this may lead to
ambiguities, like ‘bites’ for “men” and “dogs”. It may be useful to provide up to three
names, one neutral and two directional, and we use the convention of separating them with
a slash (“/”), as in the example: (man)”bites”(dog)/“biting”(among men and dogs)/(dog
is)”bitten by”(man).

URN:NBN:no-2353

4.6 The domain modelling language: RML 57

In many cases, it is natural to give a specific name to a concept that necessarily takes part in
a relation, similar to the role concept used in many modelling languages. For instance, a
man that is married is a ‘Husband and an unmarried man is a ‘Bachelor’. This can be indi-
cated by adding a name to the attach point, with a slash (“/”) separating the two, as in the
example. Figure 26 shows the full meaning of this notation: The ‘Husband’ and ‘Bachelor’
concepts are specialisations of ‘Man’, and ‘Husband’ fully participates in the ‘marriage’
relation. This is similar to annotating associations with role names in UML.

Adding extra names to a model, using either of these naming conventions, may seem like
overloading the model. However, it is important to be able to relate everyday language
usage to the concepts formalised in a model, to validate the modellers’ understanding of the
concepts. Whether a shorthand like “husband/bachelor” or the more verbose model frag-
ment is used, is a matter of taste and practicalities.

N-ary relations are modelled using a circle with an ‘x’1, and is most often used for the (tran-
sitively) irreflexive aggregation/part-of relation. In the example, the (unnamed) relations
between ‘Person’ and ‘Head’ and ‘Limb’ ares such a part-of relation. Aggregation should
be reserved for concepts that are a necessarily integral parts of the containing concept. Can-
didates for aggregation is typically physical containment and relations you would like to
name “has/ownership/belongs-to” or “contains”. Each of the binary relations forming an n-
ary relation may be have coverage and cardinality constraints. In the example model, any
‘Head’ must belong to a ‘Person’, and every ‘Person’, must have one and only one. When
modelling individuals, the aggregation symbol and individual part-of relations may be used
to connect them, representing individual n-ary relations. As mentioned, these can indicate
cardinality, but not coverage. UML provides a binary aggregation relation, for capturing the
special coupling that exists between a container and its parts. Little distinguishes the weak-
est variant from ordinary relations, while the strongest implies that objects cannot be part of
more than one container and in addition should be deleted when this container is. We have
similarly included in RML a more restrictive aggregation relation, a diamond in a circle as
shown bottom right in Figure 22, which should be used when the relation is acyclic, i.e. the
relation graph is a DAG. Our experience is however, that this constraint usually is assumed
anyway, and is mainly interesting for supporting reasoning tools.

1. ‘x’ for cross product, since the extension of the n-ary relation is a subset of the cross product of the relation participants.

Figure 25. Named relations and membership Figure 26. Specialisation of relations

Person

Woman Manmarriage

partnership

Woman Manmarriage
< partnership

=
Woman/
women

Man/men

marriage BachelorHusband

Woman/
women Man/menmarriage husband/

bachelor

=

URN:NBN:no-2353

58 Chapter 4 Task modelling

In some domains, many named relations are defined in terms of others, e.g. an aunt is the
sister of a parent. Such derived relations can be defined by the sequence of relations that
must be traversed from one end of the derived relation to the other. For instance, the ‘Aunt’
relation is the sequence ‘Sister’ and ‘Parent’ or alternatively, the composition of ‘Sister’ and
‘Parent’, often written as ‘Sister o Parent’. Derived relations are useful both for formally
defining real world relations and for providing shorthands for commonly traversed
sequences of relations. Based on set theory, the coverage/cardinality of derived relations is
easily computed. In the latter case, the derived relation is used as a (one-way) function from
elements to sets, since it is used only in one direction. We are considering using a subset of
the XPath language [XPath@2002] for defining functions from elements in a source set to a
target set. The idea is to map the RML model to XML’s hierarchical data model by viewing
the RML model as a tree with the source set as the root. The stepwise navigation and filter-
ing syntax of XPath may then be used for traversing the relations down the tree. For
instance, a function for computing the set of dogs bitten by a woman’s husband may be
defined as “function(woman) = $woman/marriage/biting”. I.e. starting from the woman
parameter (indicated by the ‘$’ prefix), the MARRIAGE and BITING relations are traversed to
give a set of DOGS. Since we in the context of task modelling want to focus on the user’s
tasks and not the system’s we postpone the discussion of functions to Chapter 5, “Dialogue
modelling”.

4.6.3 Dynamics
RML focuses on the static aspects of a domain, and currently lacks extensive features for
describing the dynamics. We have however, touched upon the subject in our discussion of
classification of individuals as instances of concept, or alternatively, elements as members
of sets. Such set membership can naturally vary over time, although the degree will depend
on the actual concepts in a model and the criteria for classification. Even the relatively static
classification in terms of gender is in reality dynamic, as mentioned above. We will interpret
a change in set membership as a state change, e.g. the sex change operation necessary for
turning a man into a woman represents an event triggering a transition from the state of
being a man, to the state of being considered a woman. The stippled lines in Figure 27 illus-
trates the correspondence between moving from one set to another and a state transition, as
the result of a reclassification. According to the rules of disjoint subset membership, a per-
son can only be member of one of the subsets at any time, and accordingly, must leave one
state and enter the other when the sex change occurs. In the state machine interpretation the
transition is labelled with the happening, i.e. the sex change operation. Similarly, a man
would transition from bachelor to husband when his wedding occurs, and back in the event
of a divorce.

In the Statechart diagram language described in [Harel, 1987] and later incorporated into
OMT and subsequently UML, hierarchical and parallel states are supported. Parallel states
provides a way of expressing that different parts of a system are mostly independent, i.e. is
best modelled by separate state diagrams. The aggregation construct has a corresponding
meaning in RML, as illustrated in Figure 28, where the body and mind of a person are mod-
elled as parallel states and separate parts.1 If combined with the model in Figure 27, we
would get three parallel substates, one for the man-woman classification substate and one
for each of the two parts, as shown in Figure 29. Each part could in turn be decomposed if
desired, and the state diagram would grow accordingly.

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 59

4.7 The Task Modelling Language -
TaskMODL
The previous sections presented the domain modelling language that is used for the static
part of the task domain, and which may be considered the static part of the task modelling
language. In this and the following sections, we turn to the dynamic modelling constructs of
the task modelling language. Before introducing the underlying meta-model, we take a brief
look at the basic language constructs, as shown in Figure 30.

The rounded rectangle is our notation for tasks, and includes a top compartment for the
identifier (number) and the name. The middle compartment is optional and may contain a
textual description or the task’s decomposition into subtasks. The bottom compartment is
also optional and may contain a set of resources that are needed by the task. These resources
include the user (type) performing the task and contextual information represented by
domain elements and sets. A task may also require information as flow resources, either
domain elements or sets of such elements, which are used to indicate triggering behaviour.
A task may have an explicit goal or post-condition, which is indicated by the round state
symbol, as shown. Alternatively, an output flow may show that certain domain elements or
sets will be available as the result of performing the task, but this is not shown in the figure.

A task may be decomposed into a set of subtasks, that may be performed as part of perform-
ing the containing supertask. In the tree style notation used in Figure 30, subtasks are

1. The classic Statecharts notation is different, and in particular the parallel substates of an and-decomposition are repre-
sented by separate compartment in a rounded rectangle. We have chosen to use circles and introduce an additional level,
to make states easier to distinguish from other “boxes”.

man

woman

Person Man

Woman

∈

∈
aPerson

∈

sex change
operation

Figure 27. Specialisation and Or-decomposition

Person

Body

Mind

aPerson

∈body

mind

Figure 28. Aggregation and And-decomposition

body

mind

man

woman

sex change
operation

Figure 29. Combining
specialisation and aggregation

URN:NBN:no-2353

60 Chapter 4 Task modelling

included outside their supertask and typically below it. This notation is meant to have the
look & feel of traditional HTA-like task models. The subtasks are grouped and connected to
the supertask through a small circle attached to the rounded task rectangle. This circle duals
as a placeholder for a sequence constraint symbol. The four possible ways of constraining
the sequence of subtasks are shown in Figure 31. In the alternative task hierarchy contain-
ment style, the subtasks are included in the middle compartment of the rounded task rectan-
gle, as shown in Figure 32. This notation is meant to be similar to dataflow, process and
workflow notations. In this case, the grouping is obvious and the small circle is only
included for the purpose of constraining the sequence. In Figure 32, a control flow arrow is
used to indicate sequence, instead of the constraint symbol for strictly sequenced subtasks.

We now proceed with a deeper description and discussion of the TaskMODL constructs.

Figure 30. Basic TaskMODL constructs

Task description

1 Supertask

1.1 Subtask 1 1.2 Subtask 2

required
resources

Set
Actor

Element

task name

subtasks

sequence
constraint

task hierarchy
(tree style)

Element

flow
resource

condition

post-
condition

unconstrained

non-overlapping
sequenced
choice

Figure 31. The four sequence constraints

1 Supertask

Subtask 2

task hierarchy
(containment style)

Subtask 1

Figure 32. Alternative task
hierarchy containment style

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 61

4.7.1 Tasks and subtasks
Supertasks and subtasks are specialisa-
tions of the general task concept, and the
actual classification depends on the
task’s position within a task hierarchy.
Figure 33 shows that these two types of
tasks are related through an aggregation
relation, and that a supertask necessarily
contains one or more subtasks, and that a
subtask necessarily is contained in a
supertask. In addition, action is defined
as a non-decomposed task, and for com-
pleteness the concept of a toplevel task is
included. The task hierarchy need not be a strict tree, but it must be acyclic. The former
freedom is among others useful in GOMS-like models, where methods are expressed as
alternative ways of composing a common set of subtasks.

In the TaskMODL example in Figure 34, we see six tasks, READ EMAIL, GET NEW EMAIL,
MANAGE EMAIL, MANAGE MESSAGE, READ MESSAGE and TRANSFER MESSAGE. Both READ
EMAIL and MANAGE MESSAGE contain two subtasks. READ EMAIL is classified as a toplevel
and supertask, MANAGE EMAIL and MANAGE MESSAGE are both supertasks and subtasks
and the other three are subtasks and actions. Two different notations are used for the super-
task/subtask relationship, one hierarchical and one utilising containment. In the figure, the
first is used in the top-level task, i.e. 1 - 1.1 and 1.2, while the second is used in the bottom
task, MANAGE MESSAGE. By supporting both notational styles, TaskMODL should be easier
to for both the traditional hierarchical tradition and the workflow-oriented tradition.

Figure 33. The four basic task types

Task

Toplevel
task

Subtask

SupertaskAction

messages

message

Mailbox

Message

{}
In

Out

1 Read email

User
Email
client Mailboxes

1.1 Get new email

In

1.2 Manage email

messages

Manage message

Transfer
message

Read
message

Figure 34. TaskMODL example model

• A ‘mailbox’ contains “messages”
• ‘User’ performs ‘Read email’ using

‘Email client’
• The current set of “mailboxes”

provides the task context
• ‘Get new email’ uses the “In” mailbox

and provides ‘Manage email’ with a
set of messages

• ‘Manage email’ implies acting on each
individual message in the input set

• A message is transferred after it is read

URN:NBN:no-2353

62 Chapter 4 Task modelling

A task model is a static picture of the dynamic relationship between supertask and subtask
instances. The dynamic nature of task performance is captured by how the life-cycle of task
elements is mapped to the actors’ performance of tasks. Each time an actor starts perform-
ing a task, a task instance comes into existence. When the task is considered performed by
the actor, the task instance ceases to exist, i.e. its life-cycle corresponds to the actor’s per-
formance of the task. For subtasks, i.e. tasks other than toplevel tasks, a part-of relation
instance is, in addition, established to the task’s supertask, with a corresponding lifecycle.
At any point in time, there will exist part-of relations linking every actual subtask instance
to its supertask.1 When the subtask ends and a following subtask starts, the first part-of rela-
tion vanishes and a second is established. In case of overlapping subtasks, more than one
subtask can be part-of related to the common supertask. Section 4.7.3 will introduce con-
structs for constraining the subtask sequence.

Tasks are performed by actors, when these decide to do so. We distinguish between the pos-
sibility of performing a task and the actual act of (starting to) perform it. The former is con-
cerned with satisfying the task’s pre-conditions, e.g. that necessary resources are available.
The latter is defined by the actor’s intention, and corresponds to the creation of the task
instance. Similarly, there is a difference between starting to perform a supertask and starting
to perform the first subtask of it. Although the subtask often can start at once, when the
resource are provided by the supertask’s context, the actor decides when to start the subtask,
i.e. when the subtask instance and corresponding part-of relation is created.

The relation between RML and TaskMODL becomes even tighter when we consider task
classification. Each task instance that exists during the performance of a task, is of course
classified as either toplevel/subtask and supertask/action. In addition, the task instance is
classified according to the task model, e.g. as a READ EMAIL, GET NEW EMAIL or MANAGE
EMAIL task. The effect is that each task in the task model introduces a new RML task con-
cept, as a specialisation of two of the four general task concepts. We see that the meaning of
a task model is directly defined in terms of the RML language, in fact, each task model can
be seen as a shorthand for a conceptual model in RML. While Figure 33 shows a model of
the domain of general tasks, each task model is a model of a more specific set of task,
implicitly specialising the general model. Hence, the task model notation can be seen as a
task-oriented shorthand for RML, rather than a full language of its own, defined by its own
meta-model.

Figure 35 shows how a simple task hierarchy in the task-specific notation is mapped to an
RML fragment coupled with the general task model. The 1. SUPERTASK and 1.1 SUBTASK
pair on the left is a shorthand for the two specialised task concepts SUPERTASK-1 and SUB-
TASK-1.1 on the right. The part-of relation within the pair, is correspondingly a specialisa-
tion of the general part-of relation between SUPERTASK and SUBTASK, in this case
expressing that instances of SUPERTASK-1 can only contain SUBTASK-1.1 instances, or alter-
natively that SUBTASK-1.1 instances can only be performed in the context of a SUPERTASK-
1 instance.

1. We see that the (re)use of the aggregation symbol from RML is no coincidence, the symbol connecting READ
EMAIL and GET NEW EMAIL really is aggregation.

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 63

4.7.2 Resources
Besides the performing actor, a task can require other resources, like presence of informa-
tion and tools for performing the action. The toplevel READ EMAIL task in Figure 34, is per-
formed by the USER actor using a tool labelled EMAIL CLIENT. In addition, the task is
performed in the context of a set of the MAILBOXES, i.e. the current extension of the MAIL-
BOX concept in the domain model of the example. Each task defines the resources it needs,
and the resources are pre-conditions for performing the task, hence it cannot be performed
until the declared resources are bound to actual ones. In Figure 36, we have augmented the
generic task model with three different resource types, actors, tools and the information
context. Note the more compact form of definition for the four task types.

The requirement relation between task and resource acts as pre-conditions and can, for each
kind of resource, i.e. actor, information and tool, be interpreted as ‘performance’ (as indi-
cated), ‘context’ and ‘uses’, respectively. When including resources in the bottom resource
bar of a task, as for READ EMAIL, this relation is implicitly specialised, to indicate that this
particular kind of task requires these specific resources. Figure 37 shows the corresponding

Figure 35. TaskMODL - RML correspondence.

1.1 Subtask

1 Supertask Supertask-1

Subtask-1.1

= Task⊆

Supertask

Subtask

GenericSpecific

Figure 36. Generic TaskMODL model

Actor

Task

subtask/
toplevel

supertask/
action

Resource

Concept/
sets Tool

requirement

achievement

performance

• Tasks are hierarchically structured.
• Tasks have pre- and post-conditions, i.e. requirements and achievements.
• Conditions are specified in terms of resources, which are required for

performing tasks and made available by performing them.
• Actors are required for performing of tasks.
• Information and tools are additional resources that may be required for

performing tasks

URN:NBN:no-2353

64 Chapter 4 Task modelling

RML model for the READ EMAIL task. The USER and EMAIL CLIENT resources are speciali-
sations of the appropriate resource concepts, and have specialised requirements relations.
The small filled circles at the left attachment point indicates that the relation is indeed
required, as it specifies that the cardinality is at least one.

The achievement relations represent the goals or results of performing a task, i.e. post-con-
ditions, and consists of a set of resources in a particular state, which are made available after
performing a task. These resource relations are established during the task’s performance
and hence, are available when the task is considered finished.

Actors are the entities that perform tasks, and are defined in actor models that are structured
in classification and instance hierarchies. The actor model has two main uses. First, the hier-
archy of concrete actors models the actual user population, and the organisational structures
they work within. This part of the model is typically used when representing observed work
practice, to indicate who does what and how. Second, the abstract actors or roles are defined
in the classification hierarchy, where the key user types are identified and their characteris-
tics defined. I.e. the classification hierarchy provides intensional definitions of sets of actors
corresponding to user groups/classes/stereotypes. The specialisation mechanism is the same
as used in the conceptual modelling language, i.e. based on groups of subsets, which can be
disjoint or overlapping. The two hierarchies will be linked by the classification of the con-
crete actors. For design, it is important that the model of the abstract actors focus on design-
oriented characteristics and abilities, like experience and cognitive skills, and not more
abstract or less relevant characteristics like age, size and gender. The model of the concrete
actors gives an impression of (the relative) size of each set of abstract actors and is useful
for setting design priorities. Figure 38 shows a typical actor model containing both hierar-
chies, with the concrete actors on the left and abstract actors on the right.

The meaning of the actor model is defined by a transformation to a RML model. As for
tasks, actors are implicitly interpreted as concepts (and instances) extending the generic
model shown in Figure 40 in Table 6. As in APM, actors with round heads are abstract and
correspond to RML concepts, while those with rectangular heads are concrete and corre-
spond to RML instances. The RML fragment corresponding to the example in Figure 38 is
shown in Figure 39. Table 6 summarizes the resulting four actor types and the correspond-
ing RML model fragment. Note that since actors are resources, they can be used as task
parameters and information flow, e.g. as the result of an allocation task. In this case a con-
crete actor symbol will be used, since it refers to sets or elements which are actual/existing
users, and not roles.

Figure 37. Interpreting the resource bar notation as an RML model fragment

Read email
< Toplevel

task

User
< Actor

performance < requirement

Email client
< Tooluse < requirement

Mailbox

domain < requirement

1 Read email

User
Email
client Mailbox

resource bar

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 65

Tools are the elements that the user interface is constructed from and correspond to abstract
interaction objects or dialogue elements or structures of such. Tools are structured in an
aggregation hierarchy, normally mirroring the task hierarchy. When a task model describes
current practice, the tool resources link to the dialogue elements used for performing the
tasks. When designing new tools, the tool resources record design decisions, i.e. provides a
link from requirements to design. We will return to the tool concept when discussing dia-
logue modelling in Chapter 5.

Domain elements, i.e. concepts/sets, instances/elements, relations and attributes, are used
both as contextual information and operated upon. Contextual information is typically used
as mental support, e.g. for making decisions about which tasks to perform. When operated
on, domain instances are typically transformed, run through a series of states and otherwise
modified, including created or destroyed. As resources they will eventually be bound to
actual sets, instances and data. Hence, in this context the extension of a concept implicitly

Actor
types Concrete Abstract RML model

Simple

A real, named person
will perform this task.
Corresponds to a particu-
lar instance of ‘Person’.

A person playing this role or
having these characteristics will
perform the task. Corresponds
to concept specialising ‘Role’.

Composite

One or more persons
from this named group
will perform this task.
Corresponds to concepts/
sets specialising ‘Group’.

Persons playing these roles will
perform the task. Corresponds
to concepts/sets specialising
‘Person’.

Table 6. The four actor types

IS-group

Hallvard

Lisbeth

Geek

Normal

Scientist

Dept.

Secretary

IDI-group
< Group

Scientist
< Person

Secretary
< Person

Geek

Normal

Hallvard

Lisbeth

IS-group

{}

{}

Figure 39. Corresponding RML model fragment

Figure 38. Typical usage of actor modelling

Figure 40. Generic
actor model

Actor

Group/
Person

URN:NBN:no-2353

66 Chapter 4 Task modelling

means the actual extension at the time of performing the task, i.e. those elements that are
available for relating to the task. The integration of the domain and task model is straight-
forward, since the task model can be transformed to an ordinary RML domain model, as
described above.

In the context of task models, RML model fragments may refer to a more limited universe
of discourse than when used alone. For instance, the ‘Person’ concept may in an RML
model refer to every dead, living or future person. In a task model used for describing
actions within an organisation, the same concept may instead refer to the all the employees
and customers of the organisation. Hence, the ‘universe’ is implicitly reduced to the organi-
sation and its surroundings. There will also be a need for referring to arbitrary subsets of a
concept’s extension, e.g. a set of instances containing only “persons”, as distinguished from
the all “persons” in our universe. In the context of task models, we may introduce conven-
tions of like using the extension name, e.g. “persons”, for referring to arbitrary subsets and
the concept name, e.g. “Person”, for referring to the full extension. When we need to refer
to singleton sets, we may similarly use the instance/element symbol and the singular name
in lowercase, e.g. “person”. Such conventions may reduce the need for specialised con-
structs in the language, and make it easier to use for those who know the conventions. On
the other hand, tools that are not programmed to use these conventions will not be able to
correctly interpret models using them.

4.7.3 Subtask sequence constraints
The set of subtasks of the supertask may be sequentially constrained by introducing data or
control flow or explicit sequence relations. In the example model in Figure 34, we see that
GET NEW EMAIL provides input to MANAGE EMAIL, and hence must precede it. The two
tasks READ MESSAGE and TRANSFER MESSAGE are sequenced, too, by means of an explicit
sequence relation. As shown in Figure 31, there are four different sequence constraints (the
symbol in parenthesis indicates notation):

• Aggregation (x cross): No constraint at all, meaning any order of overlapping sub-
tasks. The aggregation symbol is used for the tree-like notation, to connect the
supertask to its subtasks.

• Order (- dash): Indicates non-overlapping subtasks, without any specific order con-
straint. More precisely, it means that the supertask cannot participate in more than
one part-of relation with a subtask at a time, i.e. the part-of relation is in practice
binary. This sequence relation is mostly used to stress the non-parallel nature of the
subtasks.

• Sequence (> arrow): An explicit sequence is given, usually based on graphical left-
right or top-bottom ordering. In terms of the part-of relation, this not only means
that it is binary, i.e. implies order, but also expresses that the subtask end of the
part-of relation will go through the same specific sequence for each performance of
the supertask. In other words, the supertask goes through a sequence of states, each
requiring a part-of relation to a specific kind of subtask. The actual reason for the
specific sequence may be data dependencies, mental or physical constraints, or just
an observed habit. In case of data dependencies, a special dataflow notation may be
used, as shown in Figure 34, where a set of messages “flow” from left to right.

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 67

• Choice (+ plus): Either-or constraint, meaning that only one of the related subtasks
will be performed during the current performance of the supertask. I.e. the super-
task will only participate in one part-of relation throughout its lifetime. This rela-
tion has an important use for classification, as will be discussed later. Choice could
be modelled as two (or more) optional subtasks with complementing (disjoint)
conditions, as discussed in Section 4.7.4, but a special construct is more expres-
sive. To better support the design process, each arrow can be annotated with a per-
centage, to indicate how relatively often each subtask usually will be performed.

The four sequence constraints are of strictly increasing strength, so replacing e.g. order with
sequence will limit the number of different task sequences. It is important to note the order
and sequence constraints only provide constraints in one time direction. I.e. they state that
some subtask cannot be performed until a certain time, but say nothing about how soon or
late they are performed, if performed at all. In particular, other tasks from other parts of the
task hierarchy may be performed in between, and as we will see when discussing task clas-
sification and specialisation, new ones can be inserted.

To express a specific complex constraint, the relations may have to be combined in a
directed acyclic graph, usually a strict tree. In Figure 41, subtasks a, b, c and d can be per-
formed in one of the following sequences: a-b-c, a-b-d, c-a-b and d-a-b. If c or d in addition
was to be allowed to occur in between a and b, we would have to make a constraint graph,
as shown in Figure 42.

A constraint tree of the former kind, is equivalent to grouping each subtree into subtasks,
containing one sequence constraint each, as indicated by the stippled box in Figure 41. The
possibility of introducing such anonymous/invisible subtasks, greatly simplifies modelling,
since one avoids cluttering the model with artificial subtasks and inventing names for them.
Since an arbitrary name may be worse than no name, explicit anonymous/untitled subtasks
are allowed, too.

The four sequence constraints are illustrated by the model shown in Figure 43. The example
uses anonymous tasks to simplify the model. The USE PHONE task model expresses that:1

• The toplevel USE PHONE task is a sequence of two anonymous subtasks.

• The first subtask is a choice between a CALL or RECEIVE task.

• The second subtask consists of an unconstrained and possibly overlapping combi-
nation of STORE NR. and CONVERSATION tasks.

1. This particular model resulted from an elicitation session in a lecture on task modelling.

Figure 41. Example 1:
order(sequence(a,b),
choice(c,d)

a b c d a b c d

Figure 42. Example 2:
sequence(a,b) and order(a,b,
choice(c,d))

URN:NBN:no-2353

68 Chapter 4 Task modelling

• The FIND NR. task must precede the DIALING TONE and TYPE NR. tasks, and the two
latter may not overlap. In addition, the number that TYPE NR. requires, may result
from performing the FIND NR. task.

• The STORE NR. task requires a number, which may be provided by either the
RECEIVE or the TYPE NR. tasks. Since these two latter tasks are in disjoint subtrees,
only one of them will be performed, and hence provide the value.

• Storing a number is performed by either a MAKE NOTE or a REMEMBER task.

4.7.4 Subtask cardinality
The part-of relation is n-ary and can include several members of each related set. For
instance, in the RML example model, a person can have several limbs. In the general case
of the supertask subtask part-of relation there is no specific cardinality constraint, unless
specifically introduced. In many cases it is relevant to limit the subtask cardinality. For
instance, children are taught to look in both directions along a street until it is clear two
times in a row, before crossing it. In some cases, the cardinality may depend on contextual
information, e.g. a task may be performed once for each element in a set that is provided as
a resource, to give the effect of iterating through the set.

Cardinality constraints are expressed as for ordinary relations in RML, i.e. full coverage is
indicated using the small filled circles, and limiting the cardinality to one is indicated using
the filled arrows. A specific cardinality may also be directly specified using a number or
interval, and conditions, rules or formulae for determining actual cardinality may be added.
In the case where no sequence constraints are specified, the cardinality constraints have the
same meaning as in RML. However, when specific sequence relations are used, the cardi-
nality constraint will be given a different interpretation. All the sequence constraints besides
aggregation (x) already limit the cardinality to at most one at a time. Hence, there is little
point in adding cardinality constraints. It makes more sense to relate such additional cardi-
nality constraints to the lifetime of the supertask, rather than to any instant in time. Our
interpretation of a cardinality of n is similar to having n explicit part-of relation in the
model. However, it must be taken into account that all the subtasks connected to a particular

Figure 43. Use Phone task example

Use phone

Dialing tone

Find nr. Type nr.

Store nr.

ConversationCall Receive

nr
Make
note

Remember

nr

nr

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 69

sequence constraint may have cardinality constraints. This gives the following interpreta-
tions:

• Aggregation: The standard constraint, i.e. at no point in time will more (or less)
than this number of the subtask be performed.

• Order: The cardinality constraint is related to the lifetime of the supertask. I.e. dur-
ing the performance of the supertask, no more (or less) than this number of the sub-
task will be performed. Note that the other subtasks connected to the same order
symbol may be interleaved with these ones.

• Sequence: Similar reasoning to the order relation, i.e. no more (or less) than this
number of the subtask will be performed together in sequence, and in this case, not
interleaved by other subtasks.

• Choice: If chosen, the subtask will be performed more (or less) than this number of
times.

The cardinality constraints may very well be computed
based on contextual information, like the size of sets or
value of instance attributes. A variant of the former is
shown in Figure 34, where the number of MANAGE MES-
SAGE subtasks is constrained by the number of message
instances available. I.e. each subtask instance will have a
corresponding message instance as an information
resource. The general way of doing this is shown in
Figure 44. In this model fragment, the SET TASK takes a set
as input, and is decomposed into a set of tasks taking an
element as input, giving one element-oriented subtask for
each element in the set. The naming of the set and the element is the same, to implicitly
express what is also explicitly expressing using the element-of notation (encircled e).

Repetition or iteration of a task can be achieved with cardinalities greater than 1, which is
the reason we have no explicit looping construct in TaskMODL. A special case of con-
strained cardinality is optional tasks, where a condition determines whether a task is per-
formed or not. This condition in effect distinguishes between the 0 and 1 cardinalities. A
subtle point is worth noting: an optional task may very well be initiated, being optional
means that it will not necessarily be completed or alternatively, that its post-condition will
not necessarily be satisfied. This interpretation is similar to allowing a task to be inter-
rupted, which ConcurTaskTrees handles with a special interrupt operator.

4.7.5 Explicit pre-conditions and post-conditions
The sequence constraints provide a limited way of specifying under what circumstances a
task may be performed, i.e. conditions that must be satisfied before performing a task.
These conditions all refer to task performance and timing, e.g. that a certain task has already
been performed, and each constraint may be expressed as a (composite) precondition in
terms of the performance of some tasks. There is also a need for expressing more general
conditions in terms of the domain, by referring to the extensions of the concepts and indi-
viduals defined in the domain model.

Figure 44. Decomposing set- and
element-oriented tasks

Set task

input

Element
task

input∈

URN:NBN:no-2353

70 Chapter 4 Task modelling

First, there is a need for making explicit the post-conditions by formulating the result of per-
forming a task, besides the fact that it has been performed. Second, we need to model the
motivation for a particular task sequence, by using the post-conditions of one task as pre-
conditions for a following task. When a task is triggered by another, the deeper reason may
be the state of the domain achieved by the first task. If this state is entered for some different
reason than performing the first task, the second task may be performed even though the
first one is not actually completed or performed at all. Figure 45 shows examples of
sequence constraints reformulated using explicit conditions or states. In the top model, a
binary sequence constraint is translated to a post-/pre-condition in between the two tasks. In
the bottom model, sequence constraints are made more explicit by introducing labelled con-
ditions. The next step would be to formalize the conditions, e.g. define what “new message”
really means in terms of the domain model.1

By using the domain model, new kinds of conditions are possible to express, e.g. a task may
be relevant only when a particular individual or relation comes into existence, or when an
attribute of any or a certain individual attains a particular value. In general, there will be a
need for both referring to the current state of the domain and comparing the current with a
past state for noting changes, i.e. creation, reclassification or deletion of individuals and
relations, and change of attributes. We have chosen to use RML model fragments to formu-
late states and chains of states to express change events. The arbitrary element symbol is
used for defining variables and existential qualification. In many cases, the pre-condition
fragment will include a qualified variable that is used as input to a task, and in this case
there is no need for an explicit state symbol. In other cases, the domain model fragment will
be enclosed in a condition symbol (circle) which will be linked to an enabled task or follow-
ing state.

Figure 46 shows two examples of pre-conditions. The top fragment shows that the MARRY
task requires (possibly as an actor resource) a MAN individual, which must also be a bach-
elor, while in the bottom fragment the MARRY AGAIN task requires MAN to first have been a
husband, then become a bachelor, before the task can be performed. Note that with differing

1. RML currently has no constraint language like UML’s OCL, but we are considering using XPath [XPath@2002] as a
starting point, as it is set-based and is supported by many open-source tools.

Task1 Task2

Task1 Task2
Task1.performed

Get
message Read Delete

~

~
Figure 45. Sequence constraints and corresponding control structure using conditions

Get
message

Read

Delete

new
message

inter-
esting

spam

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 71

variable names in the two states, the meaning would be totally different, i.e. only requiring
that some HUSBAND and some BACHELOR exists, without being the same individual.

4.7.6 The task life-cycle, resource binding and data flow
All tasks besides the toplevel task are performed in the context of a supertask. The subtask
may only be performance during the performance of the supertask, with the actual timing
depending on the explicit sequence constraints present in the model, and on the availability
of the required resources. Note that a task may be a subtask within several different super-
tasks, and hence may be performed in different contexts. Each context must provide the
resources required by the task, in addition to satisfying the local sequence constraints.

When an actor starts performing a subtask, the required resources must be bound to the sub-
task. This is a natural consequence of how a task model is interpreted as a referent model
fragment, and in particular how the resources are interpreted as relations between the sub-
task and appropriate instances. I.e. resource binding corresponds to establishing the pre-
condition relations shown in Figure 37, and happens when the task instance is created,
based on information in the task’s context. In some cases, the binding is static, i.e. the set of
elements for which a pre-condition relation is established is pre-determined in the model.
For instance, within an organisation some tasks will always be supported by the same tool,
so the tool will be a constant in the model. While there technically is no difference between
statically and dynamically bound resources, since they anyhow are created just-in-time for
the new task, the static ones are normally placed together in the resource bar of the task. In
the dynamic case, the resource will be derived (dynamically) from the supertask context and
is typically indicated using dataflow (arrows).

The resources that are bound to a subtask, can be provided by its context, in two ways:

1. The current resources of all the supertasks within which the new subtask will be
performed, can be used by this subtask. Think of the subtask as being performed
inside a set of semi-transparent supertask containers. To locate its resources, the
performing actor looks outwards at and through each supertask, until it finds a suit-
able candidate for each resource. The nearest resources are more visible and hence
more likely candidates, while the distant ones are less visible, may be shadowed
and are considered less relevant. If the resource bar of each supertask is thought of
as its parameter list, this is similar to how static or lexical scoping is used in pro-
gramming languages, where inner constructs see the bindings in outer ones. When
a subtask uses the same resources as those defined in its supertasks, we usually do

Marry
manBachelor ∈

Marry
againman:Husband man:Bachelor

Figure 46. Pre-condition examples

URN:NBN:no-2353

72 Chapter 4 Task modelling

not bother to declare them explicitly. However, for supporting reuse of tasks in a
new context, it is important to declare the requirements explicitly, so it can be
ensured that a set of supertasks provides a suitable context for the subtask.

2. The preceding subtasks provide a more dynamic context for the new subtask,
through the results of performing them, as defined by their post-conditions. These
conditions typically express that some element or configuration of elements exist
in a particular state, and represents a guarantee about the domain for following
subtasks. In the model, this can be explicitly expressed by inserting the circular
state symbol in between subtasks, or using the dataflow arrow, as used for the
“messages” resource from the ‘Get new email’ task, in the example. The supertask
can be thought of establishing a set of temporary bindings with local scope, which
are set to the result of corresponding subtasks, when these are ready.1

Note that there is no notion of “data transfer” from one task to another, ruling out the tradi-
tional interpretation of dataflow. The binding of resources is indirect through the task’s con-
text, i.e. its supertasks. The motivation for this is twofold: First, although one task may be
triggered by another, nothing prevents the actor from waiting before performing it, if at all.
Hence, opening a “data channel” for the transfer of information from the first task to the
second, makes little sense. Second, we do not want to rule out other means of providing
resources, e.g. because of unexpected or exceptional events. By always looking in the con-
text for resources, the actor (or modeller) is given more freedom for alternative ways of
making them available. This freedom may also be used in specialised versions of a task, as
discussed below in Section 4.7.7.

Splitting dataflow into a sequence part and an information availability part is similar to how
[Malone, 1999] models dataflow. In the context of business processes, flow dependencies
are “viewed as a combination of three other kinds of dependencies: prerequisite constraints
(an item must be produced before it can be used), accessibility constraints (an item that is
produced must be made available for use), and usability constraints, (an item that is pro-
duced should be “usable” by the activity that uses it). Loosely speaking, managing these
three dependencies amounts to having the right thing (usability), in the right place (accessi-
bility), at the right time (prerequisite).” In our task-oriented context, the reasoning is simi-
lar, resources are produced by tasks, made available to other tasks through their common
context, and validated by the actor before being bound to future tasks, although the last step
is not made explicit in our approach.

In many cases, the actual resources used by a subtask differs from its supertask’s, and must
either be derived from those provided, e.g. by a function, or be declared explicitly. In the
example, the GET NEW EMAIL task provides its own context, which is the IN mailbox
instance from the domain model. The MANAGE MESSAGE TASK derives its MESSAGE
resource from the MESSAGES set of its supertask. There are two ways of deriving resources,
corresponding to the two kinds of relations we have.

1. The programming language model mimics the two main binding constructs in Scheme. “let” establishes a set of bind-
ings with values, so contained constructs can use these at once. This is similar to how the resource in the supertask’s
resource bar are immediately available for the subtasks. “letrec” on the other hand, established the bindings but not the
values, hence, they must be given values before being used. This is the way the results of subtasks are handled, since
the scope is introduced by the supertask, but the values are provided later by the contained subtasks.

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 73

1. When specialisation is used, a subtask is declared to use resources of a more spe-
cialised type than the supertask, as a filter on the available resources.

2. When named or n-ary relations are followed, the resources used by the subtask are
those related to the supertask’s resources through the particular relation. Since
derived relations can be used, quite complex functions can be used for deriving
resources.

The typical ways of deriving resources will depend on the kind of resource:

• Actor resources are typically derived by traversing down the actor hierarchies, i.e.
specialising or detailing the actor resource. In a workflow or high-level task model,
it will also be natural to traverse relations among actors, e.g. power relations can be
used for formulating delegation.

• Deriving one tool resource from another is typically used to select a concrete tool
from an abstract specification of the tool’s function. The choice can be made by the
designer, the tool itself or the user, depending on the design, and it may be more or
less formalised in a rule that the user/designer uses for selecting the tool for per-
forming/supporting the task. For instance, the user may choose to send a short mes-
sage using the ICQ instant messaging client instead of the mobile phone, if the
receiver is expected to be continuously connected to the internet.

• The possibilities for deriving domain elements from a context are partly given by
the conceptual language constructs and partly by the actual domain model. From a
given concept or set, one can derive subsets of particular specialisations and the
members of the extension/set. Using relations, including derived ones, one can
derive subsets based on participation, e.g. deriving the husbands subset of a set of
men, and sets based on traversal, e.g. deriving the wives of a set of men/husbands.
If these mechanisms are insufficient, functions for complex traversal and filtering
can be defined.

As discussed above, resources are used for expressing pre-conditions for performing tasks.
Some resources, like actors, usually do not change within the same context, since most sub-
tasks in a task model are performed by the same actor as the top-level task. Other resources,
especially information resources, will necessarily vary from each performance of a
(sub)task. The crucial point in both cases is that the resource must be present at the time the
actor wants to perform the task, when it is bound to the task instance. Being present, in turn,
means that the resource is available in the task’s dynamic context, i.e. its supertask or fur-
ther up the task hierarchy.

4.7.7 Task classification
The choice (+) sequence relation is used to indicate that several subtasks are mutually
exclusive, i.e. either can be performed, but only one of them. The reason why only one of
the subtasks can or will be chosen, depends on the actual situation. There exists several dif-
ferent usages of this construct:

URN:NBN:no-2353

74 Chapter 4 Task modelling

• The selection of the actual task to perform is deterministic, and is given by an
explicit condition. The actor is seemingly given no choice, but it may be that the
condition is just a formalisation of the actor’s own task knowledge. The point is
leaving the choice to the supporting tools and not the performing actor, Or rather,
making them capable of choosing on behalf of the actor, a kind of actor - tool dele-
gation.

• Each task represents one way of reaching the same goal, i.e. the choice relation
represents method selection. The choice will depend on the nature of the available
resources, constraints on the time left for the task, the quality needed or cost of per-
forming each task, or just a matter of the actor’s preference or mood. Method
selection is used when several effectively equivalent methods have different effi-
ciency or ergonomic characteristics. Although the choice may possibly be encoded
and utilized by supporting tools, it should always be up to the performing actor to
decide.

• The subtasks have different goals, and the choice is a matter of making a strategic
decision. The distinction between this and the previous case is the well-known
question of “doing the thing right vs. doing the right thing”. The performing actor
will make a choice, depending on the context or other conditions, and since the
goals will differ, the following tasks will generally do so too, and it may be most
practical to flatten the hierarchy, as shown in Figure 47.

• The supertask represents an abstract and possibly incomplete tasks, and the sub-
tasks are specialisations of the generic supertask. In this case the commonalities of
the subtasks are explicitly represented as part of the supertask, and only the differ-
ences are defined in the subtasks.

For all these cases, there must exist a decision procedure for selecting the appropriate sub-
task, although the procedure may not be possible to express or formalise. The choice sym-
bol suggests an analogue to the disjoint subset construct of RML, and indeed, the choice
structure will often mirror a similar structure in the domain or actor model. In a task ori-
ented development method it is natural that distinctions that are important for task perform-
ance, are made explicit in the domain model. For instance, in many contexts and cases,
there are different ways of handling men and women, so these two disjoint subsets of per-

Figure 47. Task classification
• Left: Same goal, but different methods
• Right: Different goals

Provide folder
for file

1 Get folder

Find existing
folder

1.1 Find folder

Create new
folder

1.2 Create folder

folder Create new
file in folder

2 Create file

Feasibility
study

1 Feasibility

Go for it!

3 Continue

Give up

2 Quit

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 75

sons, can be motivated by the task model, as well as conceptually. Similarly, if two sets of
concrete actors have consistently different ways of acting, it is natural to define correspond-
ing roles in the actor model. In the task model, these roles will be used in the resource bar in
mutually exclusive branches in the task tree.

An important aspect of the choice relation is the context the choice is made in. During task
performance, the choice will be made within a task context, and the chosen task can be per-
formed as soon as the necessary resources are available, In fact, sometimes the available
resources will decide which choice to make. However, to reason about the availability of
resources, the choice must be made in the context of the supertask, not the subtask. This dis-
tinction is made by including the choice relation within the supertask, instead of abstracting
it away. In figure 44, three model fragments, each with a choice relation, are shown. The
rightmost notation, with the choice symbol inside the supertask just above in the hierarchy,
is used to narrow the scope for making the choice. This is equivalent to the middle frag-
ments, where the choice is made in the context of the immediate supertask of the two mutu-
ally exclusive subtasks. However, in the leftmost fragment, the choice is made one level
above, in the super-supertask.

Narrowing the scope is desirable for several reasons. First, it makes the model easier to
understand. Second, it promotes model reuse by reducing the interaction between frag-
ments. Hence, the middle or right notation is preferable.

4.7.8 Generalisation and specialisation
The notation used in the middle fragments of Figure 48, indicates that two mutually exclu-
sive subtasks can be performed when performing the supertask. The border around them
indicates two important facts:

1. The choice must be made in the context of the immediate supertask, and because of
the rules for inheriting resources, in the context of resources common to both sub-
tasks. This means the choice is abstracted away from the outside of the supertask,
i.e. that the choice of subtask is due to local conditions, e.g. some characteristics of
available resources.

2. The subtasks must be equal for the purpose of the supertask’s context, i.e. they
have the same pre- and post-conditions. This means that the supertask can be seen
as a generalisation of the two subtasks, or alternatively, that the subtasks are spe-
cialisations of the supertask.

Figure 48. Choice context
• Left: The choice is made in the context of the super-supertask.
• Middle and right: The choice is made in the context of the immediate supertask.

Super-supertask

Supertask

Subtask 1 Subtask 2

Supertask

Subtask 1 Subtask 2

Supertask

Subtask 1 Subtask 2

URN:NBN:no-2353

76 Chapter 4 Task modelling

If the subtasks in addition to these two points, have a common internal structure it is natural
to consider them specialisation of a single general case, i.e. an instance of generalisation/
specialisation structure. The commonalities will be part of the definition of the general task,
while the differences will be described in each subtask.

In Figure 49 a quite common case is shown, where a single application, in this case the
Eudora email client, provides several related functions, which from a task perspective gives
rise to similar task structures. Since the NEW MESSAGE, REPLY TO MESSAGE and FORWARD
MESSAGE tasks are so similar, the AUTHOR MESSAGE generalisation has been defined. As
can be seen, this task provides a message element and consists of two subtasks, which by
definition must be performed as part of the three specialisations. However, each of these
may perform the two subtasks differently. For instance, the recipient of a reply is normally
the sender of the replied-to message, while a forwarded one introduces a new recipient. In
addition, both these will usually have a subject and body which includes part of the subject
and body of the source message, respectively. The NEW MESSAGE task, on the other hand,
will provide a fresh subject, an arbitrary recipient and a body authored from scratch.

Generalisation and specialisation has both a formal and a conceptual meaning. As before,
the formal meaning of the construct is partly defined by the transformation to an RML frag-
ment connected to the generic task domain model shown in Figure 35. In this case the trans-
formation is very simple, choice corresponds to disjoint subset, i.e. the RML concepts
introduced by the supertask and subtasks are related through the standard RML specialisa-
tion construct. In addition, all the task sequence constraints must be valid in each specialis-
ing subtask.1 For the example in Figure 49, this only means that each specialisation, must
include the same two subtasks. In general it means that the actual ordering of the specialisa-
tion’s subtasks must satisfy the constraints defined in the generalisation, in addition to new
ones that are introduced in each respective specialisation.

For a specialisation to make sense conceptually, there must be some deeper commonality
that makes it natural to view a set of subtasks as the specialisation of the same general

1. Although this cannot be expressed in RML, it is a natural consequence of how invariants for a general concept must
hold for the specialised ones.

Figure 49. Generalising several common subtasks of using Eudora

1 Use Eudora

Provide Recipient
and Subject

Author
Body

Author Message

1.1 New Message 1.2 Reply to Message 1.3 Forward Message

message

URN:NBN:no-2353

4.7 The Task Modelling Language - TaskMODL 77

supertask. First, the commonality must have some significance, since any set of tasks can be
generalised, by introducing a common supertask with no structure! Second, although it is
possible to use anonymous generalisations, indeed any use of the choice relation can be
interpreted as generalisation, it should be easy to find a sensible name. If no common mean-
ingful name can be found, the observed commonalities may be purely coincidental.

In the example of authoring messages in Eudora, it could be argued that it makes more
sense to generalise REPLY TO MESSAGE and FORWARD MESSAGE, since they both require a
source message, while NEW MESSAGE does not. However, we could introduce another gen-
eralisation named REACT TO MESSAGE, which would include a message resource in its def-
inition. This illustrates another important point: Generalisations should have a purpose
beyond noting similarities.

For the purpose of design, the similarities of several tasks identified in generalisation may
give directions for a common design. I.e. if several tasks are classified as similar in a con-
ceptual sense, it seems reasonable to have a similar design for them. For instance, the noted
generalisation could be used to design a common interactor for the three authoring tasks,
with variants for each specific one. This should make the design less complex, easier to
learn and cheaper to make. From a knowledge management point of view, a generalisation
can be viewed as improving the structure of a model. In an organisational context, it pro-
vides support for reuse of knowledge across projects. For instance, the two suggested gener-
alisations above, makes the differences and commonalities among the three subtasks easier
to note and understand. Design patterns represents a combination of the previous two, pro-
viding a certain approach to managing design knowledge. For instance, the idea that a set of
specialisations could be supported by a common design, can be captured in a design pattern.
Model-based design patterns will be discussed in Section 9.2.1.

A generalisation consists of two parts, the common characteristics identified and included
in the general supertask, and the differing characteristics of the subtasks. The latter may fur-
ther be divided in two: the distinguishing/differentiating characteristics which represents the
reason for the differences, and the those that are the consequences of the distinction. For
instance, a certain subtask may be optional in one subtask because a certain class of
resources deems it unnecessary. The subtasks may specialise the general supertask in sev-
eral ways:

• Sequence constraints and tighter post-conditions may be added, to reduce the
number of allowed combinations of task performances. For instance, a set of non-
overlapping subtasks (-) may be constrained to a specific sequence, using the
sequence relation.

• Subtask cardinalities may be reduced, by shrinking the allowed interval. For
instance, a task can be forced to be performed at least once by setting the lower
bound, or in effect removed by zeroing the upper bound.

• Subtasks can be added and linked to existing task by introducing new sequence
constraints. For instance, an extra validation task may in certain cases be per-
formed, based on the costs of error.

• Additional resources may be required, or may be constrained to more specialised
concepts. For instance, an additional resource may be needed to satisfy an added
subtask, or a dynamic resource may be replaced by a constant.

URN:NBN:no-2353

78 Chapter 4 Task modelling

The overriding principle is that the invariants of the supertask expressed as pre- and post-
conditions should be preserved in the specialisation. Hence the constraints that are added in
the specialisation must be consistent with the constraints that are already expressed in the
supertask. Without consistency no actual task performance, i.e. task instance, could be clas-
sified as both being an instance of the general and special tasks at the same time. In addi-
tion, by adding the constraints, we ensure that any task classified as being an instance of the
subtask will also be an instance of the supertask, but not vice versa.

Figure 50 shows another example of a specialised task, with pre- and post-conditions, in the
form of two input elements, one actor resource and one output element i.e. post-condition.
This particular model states that there are two different ways of wedding people, and that
there are certain conditions that must be met for either of these. In the general case, two per-
sons are wed by an actor (of a generic kind), resulting in the establishment of marital rela-
tion. If both the involved parties are women, the relation is called a partnership and the
performing actor cannot be a priest. The other special task involves two of opposite sex, can
in addition be performed by a priest, and results in a (traditional) marriage relation.1 The
accompanying domain and actor model fragments illustrate how a task specialisation often
mirrors other specialisations, in this case, the input resource, actor and output elements. We
can see that the two special tasks really are specialisation of the generic task, since they both
require more constrained resources. That the output is more constrained too, is typical
although not a necessity. The subtask structure is not involved in this particular specialisa-
tion, but it would be natural to include a “ceremony” task inside “Wedding”, with special
variants in each branch of the main specialisation.

Different kinds of characteristics of a set of tasks, may be the basis for generalisation. Since
a generalisation consists of two part, the general and the specific, it can be classified in two
ways, according the common characteristics gathered in the supertask, or based on the dis-
tinguishing characteristics found in each subtask. In our experience, the typical generalisa-
tion will focus on the common structure of a set of subtasks, and include extra sequence

1. The third case of gay “wedding” is left out for brevity, as we have no compact notation for expressing that two elements
be the instance of the same concept, relative to a certain specialisation.

"Wedding"

p1:Person

p2:Person

X

marital
relation

Lesbian "wedding"

p1:Woman

p2:Woman
Y

"partnership"

Trad. wedding

p1:Man

p2:Woman
X

marriage

Person

Man

Woman

X

Priest

Y

Marital
relation

Marriage

Partnership

Figure 50. Task specialisation and specialisation of resources, actors and output / post-condition

URN:NBN:no-2353

4.8 Conclusion 79

constraints in each subtask, based on characteristics of one or more resources. Based on
observations of a set of users, one can model the personal preferences of a set of concrete
actors. Using generalisations, a common action structure can be derived and provide a valu-
able understanding of more or less universal characteristics of a task. This is important for
segmenting the user population and designing a common user interface for each segment. It
can also be used for judging the need and potential for tailoring, i.e. to what extent each seg-
ment or user group should have a specialised user interface and how the variants of the user
interface should differ.

4.8 Conclusion
We have presented a language for modelling tasks, TaskMODL, which is designed as a
hybrid of traditional hierarchical task languages with sequencing constraints, and work-
flow-oriented languages with resources and dataflow. As a hybrid, TaskMODL provides
concepts and notation from both worlds, making it a highly flexible notation. TaskMODL is
tightly integrated with the RML domain modelling language, which is also used for defin-
ing the TaskMODL language. This makes TaskMODL an expressive language with a rela-
tively simple interpretation.

In [Limbourg, 2000] several task modelling approaches and languages are analysed and
compared. A commaon meta-model (henceforth shortened to CMM) is developed which
includes the common concepts for hierarchical goal and task decomposition, temporal con-
straints, roles and objects and system actions (operating on objects). TaskMODL corre-
sponds well with the common meta-model, with some differences:

• In CMM, goals form an explicit hierarchy with “accomplishing” relations into the
task hierarchy. In TaskMODL, goals are part of the definition of a task, as post-
conditions (and as pre-conditions of subsequent tasks), and are not themselves
decomposed. A separate goal hierarchy may be built by collecting all explicit goals
in the task hierarchy.

• In TaskMODL roles are modelled as actor classes in a hierarchy. Actual users or
groups of such are instances of these classes. In CMM there is only a set of roles
and no concrete users.

• The domain modelling part of CMM only includes an “object” concept, to express
how tasks use and manipulate information. Our RML domain modelling language
is much richer, although it does not include actions for manipulating the domain
objects.

The main weakness of TaskMODL with respect to CMM is concerned with what [Lim-
bourg, 2000] calls the operational level and operationalisation. This is due to our focus on
expressing how tasks are performed without reference to a system, and RML’s lack of a data
manipulation language. The DiaMODL language presented in Chapter 5, “Dialogue model-
ling”, will shift the focus to the user-system dialogue and include support for system
actions.

URN:NBN:no-2353

80 Chapter 4 Task modelling

4.8.1 RML and TaskMODL and the representation
framework
RML and TaskMODL are designed for modelling the static and dynamic part of the task
domain, respectively. In terms of the classification framework introduced in Chapter 3, they
cover the problem-oriented perspective, by focusing on the task domain, rather than how a
particular software solution support the tasks. RML is not a hierarchically structured lan-
guage, e.g. there is no RML concept for domain and sub-domains, so the granularity dimen-
sion has no direct interpretation in RML. However, if we define concepts/sets as the objects
of investigation, RML spans all levels from general concepts, via fine-grained concepts to
specific instances. In addition, RML lets the modeller make precise and formal statements
of the domain. TaskMODL is hierarchical and thus targets several levels of granularity. By
basing the design on the APM workflow language, we believe it covers at least the bottom
level of workflow. Since it contains the main elements of traditional task modelling lan-
guages, it should handle individual tasks down to atomic actions. TaskMODL includes con-
structs with varying formal strength, in the sense that more or less of the task domain is
captured in precise and constraining statements. I.e. it is possible to formalise little or much
by using weak constructs or more constraining ones, respectively.

Below we will discuss how RML and TaskMODL supports the 6 movements in the design
representation space introduced in Section 3.6:

• Movements 1 and 2, along the perspective axis: From problem to solution and
from solution to problem, respectively.

• Movements 3 and 4, along the granularity axis: From down the hierarchy from
high-level descriptions to lower-level ones, and up the hierarchy from lower-level
descriptions ones to higher -level ones, respectively.

• Movements 5 and 6, along the formality axis: From informal descriptions to more
formal ones, and from formal descriptions to less formal ones, respectively.

For RML the relevant movements within the representation space are movements to and
from design-oriented data-models, up and down in concept granularity and to and from
informal natural language usage.

Movements 1 and 2

RML has no particular support for moving to more design-oriented data models, such as
implementing relations as attributes, defining traversal directions, ordering av sets or add-
ing operations and methods. There is however a natural mapping to UML for most models.
Going from data-models to RML, i.e. reengineering the domain concepts, requires stripping
out design-oriented elements. RML provides no particular support for this.

Movements 3 and 4

RML provides good support for defining finer-grained concepts, based on existing ones,
through the two variants of the specialisation/subset construct. A special shorthand notation

URN:NBN:no-2353

4.8 Conclusion 81

is provided for defining concepts that require relation participation, like ‘Husband’ in
Figure 25. Specialisation of relations is also supported. Several orthogonal specialisations
may be defined, allowing different parallel classification hierarchies. It is similarly easy to
define general concepts based on more special ones, whether normal concepts or relation
concepts. In addition, individuals may be classified as belonging to a concept.

Movements 5 and 6
The rich constructs for concept modelling mentioned in movement 3) are important when
formalising a domain, e.g. based on natural language text. In addition, RML support anno-
tating the model with variants of the same concept, like singular/plural for concepts/sets and
different reading directions for relations. These annotations may also be used for generating
natural language paraphrases of RML models.

The support of the six movements is fairly good, and as we will see, this support is inherited
by the task modelling language, based on how it is defined in terms of RML.

For TaskMODL the relevant movements within the representation space are movements to
and from models of dialogue and abstract interaction objects, up and down the task hierar-
chy, and to and from informal scenarios.

Movements 1 and 2

TaskMODL provides the necessary constructs for moving to dialogue models. TaskMODL
includes the information that is used by or in some sense is relevant for a task, and hence
should be made available for the user through abstract interaction objects. The goals of a
task can be made explicit, so that system functions can be designed for reaching those goals.
TaskMODL also includes sequencing constraints, which are necessary for navigating
between and activating and deactivating abstract interaction objects. Since TaskMODL is
not designed for describing precise procedures, it does not necessarily provide enough
information for automatically moving to or generating the abstract dialogue. It should simi-
larly be possible to express in TaskMODL the possible task sequences for a particular dia-
logue, by using sequence constraints of varying strengths. The flexibility provided by non-
strict trees of sequence constraints makes this easier than in other task modelling languages.
This will of course depend on characteristics of the dialogue modelling language, but our
Statechart-based approach described in Chapter 5, “Dialogue modelling”, provides similar
constructs (parallel and disjoint composition) that fits fairly well with those of TaskMODL
(aggregation and sequencing).

Movements 3 and 4

TaskMODL provides good support for hierarchical modelling. Information present at one
level, are available on the level below, and constraints expressed at one level, translate to
constraints in a decomposition. The flexible notation and support for anonymous tasks,
make it easy to add or remove levels in the hierarchy. The flexibility to include flows and
constraints that span subtrees makes reasoning about task composition more complicated,
however, as each task may interact with other than sibling tasks.

URN:NBN:no-2353

82 Chapter 4 Task modelling

Movements 5 and 6

The tight coupling between TaskMODL and RML provides good support for expressing the
relation between tasks and the domain concepts, e.g. when formalising verb-noun state-
ments. RML unfortunately lacks features for expressing more dynamic conditions within
the domain, which may be necessary when formalising pre- and post-conditions for tasks.
The varying strengths of the sequence constraints and the flexible constraint notation, pro-
vides good support for expressing weak and strong statements about how tasks are per-
formed. Similarly, the support for classifying and specialising tasks, makes it possible to
express general and specific statements about tasks, and conditions for when to perform
variants of a task. Each construct can be translated to natural language statements about
tasks. Complexity may be reduced by replacing several strong constraints with fewer
weaker ones. Generating scenarios or task traces within the constraints expressed, is com-
plicated by the flexible constraint notation.

The support of the six movements is in general fairly good. The flexibility of the constructs
and notation provides good support for formalising the task domain, but on the downside it
makes reasoning more difficult.

URN:NBN:no-2353

83

Chapter 5

Dialogue modelling
In Chapter 2, “State of the Art”, we suggested three main user interface design perspectives,
the task/domain perspective, the abstract dialogue perspective and the concrete interaction
perspective. The former was described as a problem-oriented perspective, while the latter
two where described as solution-oriented. In this chapter we focus on dialogue, and its rela-
tion with task and concrete interaction, i.e. the two neighbouring perspectives. In our view,
dialogue modelling is concerned with dataflow, activation and sequencing, while concrete
interaction focuses on the dialogue’s relation to input and output devices, e.g. windows,
widgets and mice. Although we distinguish between these two perspectives, they are partly
integrated in one modelling language.

5.1 Introduction
In the following sections we will present the DiaMODL language which is used for model-
ling dialogue, and later some aspects of concrete interaction. The language is based on the
Pisa interactor abstraction as presented in [Markopoulos, 1997]. The interactor abstraction
was chosen because it has been revised several times and is a mature abstraction [Duke,
1994]. More precisely, the interactor abstraction presented in this chapter is close to the
extensional (black-box) description of Pisa interactors in [Markopoulos, 1997], but our
interactors do not have the same white-box structure. In addition, we use Statecharts instead
of LOTOS for formalising the behaviour. This choice is based on our two-fold goal: 1)
defining a language that can be used as a practical design tool, and 2) make it easier to build
runtime support for executing interactor-based interfaces, e.g. through the use of UML.
While we appreciate LOTOS’ support for machine analysis, we feel the simplicity and the
look & feel of Statecharts makes it a better candidate for our purpose. In addition, the corre-
spondence between Statecharts’ and/or decomposition and RML’s aggregation/disjoint sub-
sets, can be utilised for combining static and behavioural modelling of interaction, as
indicated in [Trætteberg, 1998]. Finally, since Statecharts is part of the UML standard, we
believe an implementation based on Statecharts is more realistic and practical for industrial
use.

However, the most important aspect of interactors is not their formalisation in terms of
either LOTOS or Statecharts, but rather how it lets the designer decompose the user inter-
face into similarly looking components, or alternatively, compose a user interface from

URN:NBN:no-2353

84 Chapter 5 Dialogue modelling

components. These components have the same generic structure, but can be tailored to have
different functionality within a very large behavioural space. This is the main reason for
using the interactor abstraction in the first place. In addition, interactors provide an abstract
view of the concrete interaction objects found in existing toolkits, and hence can be used for
abstract design and analysis of interface structure and behaviour.

Different types of interaction objects have different capabilities and each type will typically
be oriented towards a particular role in the implementation of the abstract dialogue. We
have identified three roles: information mediation and flow, control and activation and com-
positional structure. These roles correspond to the three main parts of an interactor’s func-
tion and behaviour:

• Information mediation: The user interface can be seen as a mediator of information
between a system and its user, as well as a tool for performing actions. Each inter-
actor defines the information it can mediate and in which direction the information
flows.

• Control and activation: Interactors have an internal state space controlling its
behaviour, which includes sending and receiving information, activating other
interactors and triggering the performance of application specific functions.

• Compositional structure: Interactors can be composed into new interactors, to
make it possible to build higher-level behaviour and abstract away details.

In addition to these three aspects of the interactors’ definition, interactors can be parameter-
ized to provide tailorable behaviour that is suitable for a large range of applications.

5.2 Interactors as information mediators
A user interface can be seen as communication chan-
nel between a system and a user. As illustrated in
Figure 51, the information can pass through the chan-
nel in either direction. Information passing from the
system to the user will typically indicate the system’s
state, including the actions the user is allowed to take.
Information passing from the user to the system will
typically be actions with attached data, which is meant
to modify the system’s state. The pattern of informa-
tion flow depends on the dialogue style of the applica-
tion, but will typically alternate between system-user
and user-system.

A dialogue model should describe the structure and behaviour of the user interface, so we
need to be more explicit about this communication channel. In an alternative view illus-
trated in Figure 52, the user interface is given a more active role as that of a mediator of
information. The system can output information to the user, by sending it out of the system
into the user interface, which in turn may pass it on to the user in some form suitable for

Figure 51. System-user communication

UserSystem

user interface

URN:NBN:no-2353

5.2 Interactors as information mediators 85

both the user and the target platform. The user can input information to the system, by send-
ing it into the user interface, which may pass it on in a form more suitable for the system.

The information flowing to and from the system will be based in the task model, since it
captures the domain the user interface provides access to. However, the information flowing
between the user interface and the user must be based on the target platform’s devices, e.g.
the output may be text, graphics and pictures, and the input may be keypresses and mouse
clicks. Since these are outside the scope of an abstract model, we leave out from our model,
the terminal flow of information between the user interface and the user, as indicated in
Figure 53. We will still model information flow to and from parts of the user interface in the
direction of the user, since this is part of the structure and behaviour we want to capture in
an abstract dialogue model.

The interactor concept can be seen as such a generic mediator of information, between the
system and user, in both direction, or the generic component from which such a mediator is
built. I.e. an interactor mediates both input from the user to the system as well as output
from system to the user, a illustrated in Figure 53.1

The information mediation aspect of interactors and structures of interactors is defined by

1. a set of gates defining the interactor’s external interface to the system, user and
other interactors,

1. In all the figures the system side is to the left and the user side is to the right. These correspond to the abstraction and
display side in the ADU process in [Markopoulos, 1997].

Figure 52. Mediation between system and user

input direction

UserSystem

output direction

Figure 53. User interface only

Interactor

is

or os

ir

output/
receive

input/
receive

output/
send

input/
send

gates

Figure 54. Generic interactor

User interface

InterfaceSystem

User interface

Interface UserSystem

URN:NBN:no-2353

86 Chapter 5 Dialogue modelling

2. a set of connections that carry data between gates, and

3. the control structure that trigger or inhibit dataflow between gates on the interac-
tor’s in and outside and along connections.

Together these provide dataflow between interactors, synchronization and activation of
interactors.

5.2.1 Gates, connections and functions
An interactor receives and sends information through a set of gates, i.e. the gate is the
mechanism by which information flows into and out of interactors. Each gate consists of
two parts, the base and the tip, each holding a value. The gate receives values in the base
and sends values from the tip. The values in the base and tip may differ, and in particular,
the tip’s value may be computed from the base’s value. Both the base and tip are typed, and
are constrained to only hold values of that type. Each gate is attached to one interactor, and
the base and tip will be on different sides of the interactor’s boundary. As can be seen in
Figure 54, there are 2x2 kinds of gates, for sending and receiving in each of the two direc-
tions. Their role and names1 are as follows:

1. Input/send (is): Input originating from the user’s interaction with input devices,
results in information flow towards the system, out of the interactor.

2. Output/receive (or): Output information flow towards the user, into an interactor
responsible for outputting it to the user.

3. Input/receive (ir): Information in the direction from the user to the system, flows
into the interactor for further processing/meditation. As discussed above, informa-
tion from devices will be left out of the model.

4. Output/send (os): Information in the direction from the system to the user, flows
out of the interactor for further processing/meditation by other interactors. As dis-
cussed above, information to devices will be left out.

Gates may be labelled by the abbreviation (“is”, “or”, “ir” or “os”), to make the models eas-
ier to interpret. The inner workings of a gate will be detailed in Section 5.6.4, for now it suf-
fices to say that its function may be monitored and controlled by connections to its side. The
base and tip are normally on opposite sides of the boundaries of an interactor.2 For instance,
an input/send gate will have the tip on the outside and the base on the inside of the hosting
interactor, while the opposite is the case for output/receive gates. Most interactors will have
only input/send and output/receive gates, like those that correspond to elementary concrete
interaction objects or compositions of them. In fact, few interactors will have all the four
kinds of gates, like the generic interactor in Figure 54 has. The difference and usage of var-
ious interactors becomes apparent when we look at composition of interactors.

Figure 55 shows an interactor for the output and input of integers, implemented as a compo-
sition of a string interactor and an integer-string/string-integer converter. As can be seen, the

1. Their names are similar to the ones of the Pisa interactor, as presented in [Markopoulos, 1997].
2. The base and tip are graphically separated by a line, which sometimes looks as if it is the interactor boundary.

URN:NBN:no-2353

5.2 Interactors as information mediators 87

interactor abstraction is compositional, i.e. the composition is itself an interactor, and from
the outside, the INTEGER INTERACTOR is just another interactor. Both the inner STRING inter-
actor and the composite INTEGER INTERACTOR are examples of what we term interactor
devices; interactors used for the output and input of one datatype. Such devices have gates
only on the left/system side, i.e. input/send and output/receive gates, since they interact
directly with the user through platform devices (physical or window system objects) and not
through other interactors. Pure input devices like mice have only input/send gates, while
pure output devices only have output/receive gates. The INTEGER2STRING interactor works
as an adaptor, by mediating/converting values in both directions: In the output direction, the
conversion increases the semantic content or understandability of data for the user, while
decreasing it for the system. For instance, the character string “123” is more understandable
to the user than the 111011 bit pattern corresponding to the 123 integer. In the input direc-
tion the semantic content increases for the system, while it decreases for the user. For
instance, “123” is converted to the integer 123 represented by the 111011 bit pattern.

The connections inside the INTEGER INTERACTOR and the control logic within
INTEGER2STRING ensure that values are mediated from the outer output/receive gate
STRING’s output/receive gate, and converted to a string that is presented to the user. Simi-
larly, the string input by the user through interaction with STRING is converted and mediated
to the outer input/send gate. Note that the nature of interaction provided by STRING and the
language supported by INTEGER2STRING is not represented in this particular model. For
instance, STRING INTERACTOR may be a simple text field, a full word processor or a speech
synthesizer and analyser. Similarly, INTEGER2STRING may support Arabic or Roman
numerals, or natural language numbers in Norwegian or Sanskrit. Since the base and tip of
gates are typed, the connections between the gates can be verified to ensure consistency at a
syntactic level. This will typically be checked by model editing tools, when the gates of
interactors with know type signature are connected. For instance, it can be checked that the
connections between the INTEGER2STRING and STRING interactors are valid. Alternatively,
connections may constrain the type of gates that do not yet have a type. For instance, the
gates in the left hand side of the INTEGER and INTEGER2STRING interactors must have the
same type, since they are directly connected, although the actual type may not be defined
until later.

Integer interactor

Parsing and
unparsing of

integers

Integer2String

String
interactor

String

or

is

Figure 55. Integer interactor composition

Interactor
device:
Direct
interaction
through

Super-interactor &
device:
Gate interface mediates
values to and from

Generic
interactor: All
four gate types,
and hence is used
for supporting
other interactors,
rather than

URN:NBN:no-2353

88 Chapter 5 Dialogue modelling

Based on our prototyping experience, we have added a type to connections, to filter out val-
ues. For instance, if the input/send gate of the INTEGER integer should only emit values
below 10, the connection at its base could include a type specification that constrains the
values it may mediate to such integers. A set of connections with disjoint filters may thus
act as a kind of case switch.1

The concepts introduced so far may be modelled in RML as shown in Figure 56, and the
notation is summarised in Figure 57. The INTERACTOR is an aggregation of a set of GATES,
each of which must belong to one and only one INTERACTOR. Each GATE is classified in two
different ways, giving the four classes listed above. A (SUPER-)INTERACTOR can further con-
tain other (SUB-)INTERACTORS. The interactor symbol is a rectangle with up to three com-
partments: the name (mandatory), the textual description or decomposition and its
resources. Figure 55 exemplifies the notation for interactor decomposition, while resources
will be discussed in Section 5.5.

As can be seen from the model, the GATE concept is based on an underlying FUNCTION con-
cept, which takes a set of input ARGUMENTS and computes an output value RESULT, based
on a function mapping. The two-part triangle symbol is used for FUNCTIONS, too, labelled
by the mapping (name). The input values are visually represented by the base and the output
value by the tip. A GATE differs from a FUNCTION by only having one input value, and by
mediating values across an interactor’s boundary, according to the 2x2 classification. The
CONNECTION concept is shown to be related to the RESULT from a FUNCTION and a function
ARGUMENT, indirectly connecting two FUNCTIONS (and/or gates).2 In addition, a CONNEC-
TION provides support for mediation and filtering of one value (at a time), by being related
to a TYPED VALUE of its own. A connection is constrained to only connect functions within
or at the boundary of the same interactor, hence a connection may not cross an interactor’s

1. This will be similar to the XOR-splitter construct of APM, described in figure 5.17, p. 130 in [Carlsen, 1997]
2. Since there is no visual indication of a separate connection point for each input value on a base, it may be difficult to

differentiate between several connections to the same input value, and separate connections to different values.

Figure 56. Interactor concepts

Interactor

sub-
interactor

super-
interactor

Connection
from

Gate

Typed
Value

input

Type
Value

output

Send

Receive

Input

Output

Function
inp

ut

to

mapping
Result

Argument

flow

Name
Description

URN:NBN:no-2353

5.2 Interactors as information mediators 89

boundary. This ensure that the interactor’s gate signature fully captures the information
flowing into and out of the interactor.

The need for including generic functions is apparent, as the structure of connected gates
provides information flow from user to system and back, but does not provide a way of
computing new values. For that we need access to domain or application specific function-
ality, like the integer parsing and unparsing functions which are needed by the
INTEGER2STRING interactor. By modelling gates as special functions, we get a more com-
pact and flexible notation, particularly since gates often can make good use of the function
mapping (which defaults to the identity function).

Figure 58 shows three ways of implementing the INTEGER interactor using functions. In the
left variant, standalone functions are inserted the perform the necessary parsing and unpars-
ing of strings. To make the notation less verbose and more practical, connections can be
labelled with unary functions instead of inserting the function symbol. This is shown in the
middle variant. Finally, functions can be used at the boundary of interactors as special gates,
as shown in the right variant. I.e. the left model in Figure 58 can be simplified by either 1)
removing the function symbols and adding them to the connection, as in the middle, or 2)
replacing the two output/receive and input/send gates with the integer2string and
string2integer function gates, respectively, as on the right. As a final notational conven-
ience, a stippled connection is interpreted as the complement function, typically used for
inverting boolean values.

Although a function may be considered atomic for some purposes, it may nevertheless be
complex, run through a series of steps, require interaction and take considerable time to
compute. To indicate that a function may have a more complex behaviour than instantane-
ous computation of a value, a variant of the function symbol is used, where the base and tip
are ripped apart, as shown bottom right in Figure 57. Note that if the result is not used
(locally), the ripped of tip may be left out. Complex functions will be further discussed in
Section 5.6.

tipbase

Figure 57. Summary of the notation for interactors, connections and functions

f

function
mapping

complex
function

Interactor
description

1.1 Interactor

os

Interactor
description

1.2 Interactor
device

orf

(binary)
function

gates

interactors

connections
os

resources

name

decomposition
or description

URN:NBN:no-2353

90 Chapter 5 Dialogue modelling

By comparing the signature of the function with the types of the connected gates, some
level of consistency can be ensured. However, an appropriate domain language is needed
for expressing (part of) the semantics of the functions. We will be using RML as our domain
language, and this will allow us to express mappings from instances to attribute values,
mappings between instances using (derived) relations and filtering of sets. Such functions
can be automatically defined from an RML model, and hence be made available for use in
our interactor-based dialogue models. The following are useful functions that should be
automatically defined:

• For each concept, a predicate <concept>?(element) => boolean for testing
whether an element is a member of the concept’s extension.

• For each concept/set, a function <concept>(set) => set of <concept> for extract-
ing elements in that class. This is particularly useful for extracting one of a set of
disjoint subsets of a general concept, e.g. the “men” subset of “persons”.

• For each concept, a function make-<concept>(...) => element of <concept> for
creating new element for a concept. The argument list may either be empty, or
could at least include all required attributes and the elements needed for establish-
ing the required relations. For relation concepts, the argument list must include ele-
ments for each end.

• For each concept, a function change-into-<concept>(element of <concept>, ...)
=> element for re-classifying an element to that concept. The argument list may
either be empty, or could at least include all required attributes and the elements
needed for establishing the required relations.

• For each attribute of a concept, two functions <concept>-<attribute>(element)
=> <attribute type> and set-<concept>-<attribute>(element of <concept>,
<attribute type>) for returning and setting that attribute of an element.

• For each relation, two functions for mapping from each end to the other. The signa-
ture will depend on the cardinality, but will in general be (element) => set. Their
names can be based on either the relation name, the relation and concept names, or
the (role) name defined for each end.

• For each relation that has incomplete coverage, a predicate for testing whether an
element participates in the relation.

Figure 58. Functions: standalone (left), on connections (middle) and on gates (right).

Integer interactor

String

string2
integer

integer2
string

Integer interactor

String

string2
integer

integer2
string

Integer interactor

String

string2
integer

integer2
string

URN:NBN:no-2353

5.2 Interactors as information mediators 91

5.2.2 Basic device interactors
Most concrete interaction objects are interactor devices, i.e. they are used for input and out-
put of specific data types with direct interaction with the user. In this section we will present
the basic interactors and the various ways they can be implemented in a standard toolkit.
Although these interactors may be decomposed into a set of controlling states, they are
atomic with respect to input and output of values.

The simplest interactor device is for boolean input and output and the prototypical toolkit
equivalent is the checkbox. As shown in Figure 59, the checkbox has two states correspond-
ing to the two possible values, false and true, usually indicated by a check mark or cross.
The checkbox label is used for relating the boolean value to its interpretation with respect to
the underlying domain model, and does not affect the checkbox behavior.

The typical usage of the boolean interactor is for classifying an instance, or for editing the
value of a boolean instance attribute. It may also be used as an action modifier by selecting
between variants of the same action, corresponding to (task) instance classification.

The same function as a checkbox, can be achieved using an icon button, where the pressed
and released states indicate true or false, respectively. The button has the same toggling
behaviour as the checkbox. In Figure 60, the three (independent) character attributes bold,
italic and underline are controlled using icon buttons, each button implementing a single
boolean interactor. The main advantage compared to checkboxes, is that they require less
space and the icon may be easier to recognize than the label. A quite different solution is
using a pair of radiobuttons or a pulldown listbox with two elements, as a special case of
selecting one of a set of (mutually exclusive) options. For both, the two states are indicated
using two different wordings with opposite meaning. This is typical example of how the
same abstract function, in this case the model in Figure 59, may be implemented using dif-
ferent concrete interaction objects. Which concrete interaction object to actually use
depends on a number of factors, like user’s mental model of the domain (is true/false more
intuitive than yes/no or on/off), user capabilities (do not use red/green lights for indicating
stop/go if they are colour-blind), and space requirements (checkboxes require less space
than radiobuttons).

All these interaction objects use screen space and mouse clicking as main resources. An
interesting variant is a time based one, where a(ny) particular event triggered by the appro-
priate device in a certain time interval, is interpreted as true, with no event corresponding to
false. This is portable to any device or modality, and illustrates the extent to which concrete
implementation of the abstract interactor definition can vary.

Bold

Figure 59. Boolean interactor device (left) and the
corresponding concrete interaction object (right)

Boolean
input/output

Boolean

or

is Bold

URN:NBN:no-2353

92 Chapter 5 Dialogue modelling

The icon button is an example of a concrete interaction object that may be used for imple-
menting several abstract behaviours. For instance, two-state icon buttons can be grouped
and controlled so only one is down at a time, to implement selection among a fixed and lim-
ited set of choices. The seven icon buttons at the top right in Figure 60 behave as two
groups of four and three, and are used for setting horizontal and vertical paragraph align-
ment, respectively. Both alignment group work as a unit, implementing a selection interac-
tor, as modelled in Figure 62.

The string device interactor can be used to implement interactors for almost any basic data
type, like integer, real, time/date etc., provided suitable parsers and unparsers. In addition,
there exists many special purpose interactors for these types, some of which are shown in
Figure 61. The date device is another example of an interactor built from simpler ones, like
number range (year and day) and option selection (month) devices. In principle, each part
could be replaced by functionally equivalent interactors, without changing the composite
interactors definition, e.g. radiobuttons for the months, a slider for the day and even a calcu-
lator or spreadsheet for the year.

Yes NoDelete after forwarding?

Deletion after forwarding On Off

Delete after
forwarding?

Yes

Yes
No

On

On
Off

Deletion after
forwarding:

Figure 60. Other concrete interaction objects
implementing the boolean interaction device

Radiobuttons

Dropdown listboxes

Icon buttons

Integer devices

Figure 61. Various special purpose interaction objectsDate device

Time device

12

Multiple
line
input

Single line string

String devices

URN:NBN:no-2353

5.2 Interactors as information mediators 93

5.2.3 Set-oriented device interactors
The general function of groups of radiobuttons and (dropdown) listboxes is element selec-
tion, the interactor definition of which is shown left in Figure 62. The output to the user
(output/receive of the interactor) is a set, and the input to the system (input/send) is an(y)
element of this set. The manner of selection is unspecified, and will depend on the look &
feel of the concrete interaction objects, e.g. radiobuttons and listboxes, as shown right in
Figure 62. As noted above, any set of boolean interactor devices can be encapsulated to
implement element selection, by ensuring that exactly one boolean device represents the
true value at a time, and this is essentially the function of (groups of) radiobuttons. The pro-
totypical element selection interaction object is the dropdown listbox, shown in Figure 62 in
the dropped state. Again the choice of concrete dialogue for the abstract interactor depends
on the circumstances, like the space constraints, the number of elements in the set, and
whether the set is static or dynamic. In the standard case, where an element of a concept’s
extension is to be selected, the listbox is a natural choice, since it provides good support for
long and dynamic lists. Many toolkits support typing for quickly locating elements with a
specific prefix, and can be used for very large sets. For short and static sets, a group of radi-
obuttons is a reasonable alternative, the main advantage being that all elements are directly
visible. In many cases, a table with many columns and potentially non-string fields, may be
used for element selection, especially when its elements are used as the primary object of a
task.

It can be argued that text fields can be used for ele-
ment selection, too, especially if the text field is aware
of the set of options, and provides completion. How-
ever, there is actually a subtle difference between this
case and the one modelled by Figure 62. Since a text
field does not directly show the whole set, but only
the current selection, we should use the model shown
in Figure 63, instead. We see that the output value in
this case is a single element, as is the input value.
Similarly, input-only interaction can be achieved by
removing the output/receive gate. This may relevant for input of familiar domain values
using input-only devices. For instance, when inputting your birth date using speech, there is
really no need to spell out the alternatives, as the date interactor shown in Figure 61 does.
The need for explicitly modelling such nuances, will vary and may be a matter of taste. The
model in Figure 62 may work well as an idiom, and the model in Figure 63 may be used in
the case where such a distinction matters.

Element 1
Element 2

Element N

...

Element 1

Element 1
Element 2
...
Element N

Group of radiobuttons Dropdown listbox

Selecting one element
from a set

Element selection

or

is

Set

Element

∈

Figure 62. Element selection interactor (left) and
two corresponding concrete interaction objects (right).

or

is

Set

Element2

∈

Element1

Figure 63. Alternative selection
interactor

URN:NBN:no-2353

94 Chapter 5 Dialogue modelling

A less common selection task is multiple selection, an interactor for which is defined in
Figure 64. The prototypical interaction object is the listbox, shown in Figure 65.

It is perhaps surprising that subset selection is far less common than element selection, since
many functions can be defined to take set arguments, e.g. object deletion, copying and print-
ing. However, it may be confusing if only some functions have this feature, so subset selec-
tion is often deliberately avoided. As for element selection, the subsets can include (sets of)
sets or categories, which is useful in search applications. While most list oriented interac-
tion objects can be configured to support multiple selection, the dropdown listbox used for
single element selection cannot function as a subset selection interactor. Similarly, groups of
radiobuttons must be replaced by checkboxes if the abstract requirements change from ele-
ment to subset selection.

More complex domain model structures require more complex interactors. The hierarchy is
a very common structure, an interactor for which is shown in Figure 66. Using RML we can
define a hierarchy in terms of one generic node concept, and two more specific ones, for
interior and leaf nodes, the difference being that the former contains other nodes, while the
latter does not. The output/receive gate of the interactor receives a set of interior containers,
which are presented for the user. One of the leaf nodes in the hierarchy may be selected and
emitted from the input/send gate of the interactor.

The prototypical interaction object for hierarchical selection is the twist down tree (Mac
Finder) and the folder view (MS Windows), as shown at the right of Figure 66. Different
variants exist, and most toolkits lets the designer control if interior nodes also can be
selected, corresponding to attaching the element symbol in the model to the INTERIOR sym-

Figure 65. Listbox subset selection

Element 1
Element 2
Element 3

Element N

...
Element 4

Figure 64. Subset selection interactor

Selecting a subset
of a set

Subset selection

or

is

Set

⊆

Subset

Figure 66. Selecting a leaf element from a hierarchy

Selecting a leaf
element from a

hierarchy

Hierarchical selection

or

is

Leaf

Element

∈

Node

Interior

URN:NBN:no-2353

5.3 Interactor content 95

bol instead of the LEAF symbol. The folder list shown in the figure, may present the whole
hierarchy to the user, while other hierarchy interactors show only one level at a time and let
the user drill down and back up. One way of capturing this difference is by adding an out-
put/receive gate for the aggregation relation itself, in the case of the folder list. This high-
lights the fact that both the set of elements and their container/part relations are output to the
user. As for the case of selection elements from sets, the need for modelling this difference
may vary.

For information mediation, the power of the dialogue modelling language depends on the
data modelling language used. The range of data values that may be output or input through
an interactor, is not limited to the constructs of RML. For instance, the concept of state will
be used to model how functions compute values, and this state is something the user should
be aware of, and hence could be an input to an interactor. Similarly, data arrays and indices
are data modelling concepts that RML lack, that are natural values to output to the user and
receive as input. UML, with its focus on modelling software rather than the concepts of a
domain, is a good candidate for the data modelling counterpart of dialogue modelling lan-
guage. This is particularly true if UML is used for data modelling within the system or
application perspective. For the same reason, Java or the CORBA’s Interface Description
Language (IDL) are probable data modelling languages.

5.3 Interactor content
In the previous section the interactor definition of a set of standard interaction objects were
presented. Each interactor can be viewed as the specification of a certain input and output
functionality, and the concrete interaction objects are the implementation of this functional-
ity. In the case where a suitable interaction object exists, the implementation reduces to the
mapping from the abstract interactor to the concrete interaction object. In cases where no
corresponding interaction object exists, there will be a need for specifying the behaviour in
more detail, and composing more complex interactors from simpler ones, or making a con-
crete implementation according to this specification from scratch. To understand how such
composition is performed, we will in this section discuss the control and composition aspect
of interactors.

5.3.1 Interactor control
The control aspect is concerned with triggering of information flow and activation and
deactivation of interactors. In our interactor language, we have chosen to use the Statecharts
language for this purpose. As shown in Figure 67, each interactor can be considered a State-
chart super-state, which is entered when the interactor is activated. Alternatively, when an
interactor is entered, it is considered active, and may respond to information propagated
into its input/receive and output/receive gates and may emit data through its input/send and
output/send gates.

The interactor may be decomposed into a hierarchy of substates, according to the State-
charts language. The main Statechart constructs are exemplified in Figure 68. The left part

URN:NBN:no-2353

96 Chapter 5 Dialogue modelling

of the figure, shows our notation for an interactor decomposed into a hierarchy of substates.
The right part shows a tree view of the same hierarchy.

The interactor is decomposed into two “compartments” divided by a stippled line, to indi-
cate and-decomposition. In the tree view, this is indicated by the “and” label by the top S0
node. Each compartment is in fact a substate of the top-level interactor, as shown in the tree
view. Because they are and-composed they will both be active at the same time. The left
substate compartment is further or-decomposed into states S1, S2 and S3. These substates
are drawn using the traditional round state symbol and are connected with transitions,
shown as arrowed lines. Or-decomposition implies that one and only one of the substates is
active at any point in time, including initially, when the or-decomposed super-state is
entered.

Transitions lead from one state to another, and when it is triggered and followed, the state
machine will exit the from-state exit and enter the to-state. Transitions may be labelled with
events that triggers it, a condition that controls if it can be triggered and actions that are per-
formed when the transition is followed. The notation used is event[condition]/action. If no
event is given the transition always triggers when the condition becomes true. The condition
defaults to true, so if no condition is given, the event will trigger the transition by itself. The
action is either an event that may trigger other transitions in the state machine, or a call to an

Interactor

super-
interactor

State

Super-
state

And Or

sub-
interactor

Figure 67. State-oriented interactor concepts

Figure 68. Main Statechart constructs.
• Left: our notation.
• Right: corresponding state hierarchy

s0

s4

s6 s7

s5

or

and

or

or
s1 s2 s3

s0

s1

s2

s3 s4
s5

s6 s7

And-composed substate
compartments

Or-composed
substate circles

Default transitions

URN:NBN:no-2353

5.3 Interactor content 97

application specific function. Note that a transition may cross state boundaries and may
only lead to a substate of an or-composition.

States may be referenced in both the event and condition part, and the traditional dot-nota-
tion will be used to refer to substates. The event corresponding to a state is emitted when the
state is entered. When a state is used as a (predicate in a) condition, it refers to whether the
state is active or not. Gates may similarly be used as events and conditions. The event corre-
sponding to a gate is emitted when it either receives or sends a value, depending in whether
it is a /receive or /send gate, respectively. When a gate is used as a (predicate in a) condition,
it refers to whether it holds a value or not.

If a transition leads to (and not into) a state that is or-decomposed, a default substate is
entered by means of a default transition with no originating state. In the example in
Figure 68, both the left and right parts of the S0 interactor is automatically entered when S0
is activated. The left default substate S1 is then entered through the default transition
attached at the left of S1. The right substate compartment is or-decomposed into two states
S4 and S5, the latter of which is further or-decomposed into S6 and S7. The default transition
in the right compartment leads to S7 within its superstate S7, which implies entering S5 first.
There are two transition that will result in exiting S7, the one leading to S6 and the one lead-
ing from S5 to S4. If the transition from S5 to S4 is followed, both S7 and S5 will be exited,
before S4 is entered.

A special selection transition support explicit selection of the tar-
get state of a transition. The transition leads to several potential
target states, and the input to the special selection symbol, an
encircled S, specified which target state to actually enter when
the triggering event happens. Figure 69 shows an or-decom-
posed MODES state, with four sub-states S1 to S4. A selection
transition leads from S4 to S1, S2 and S3. Which of these three
states to actually enter is determined by the value emitted by the
function at the right. This mechanism is useful in cases where a
user interface element is directly linked to the state of an object,
e.g. the minimized/normal/maximized state of a window frame.

The checkbox in Figure 59 has a behaviour that may be modelled by decomposing it into a
set of states. By operating it and observing the appearance and behaviour, we can deduce
the Statechart model shown in Figure 70. The main features are: 1) the gates representing
the input and output values at the left, 2) the control state in the middle, and 3) the 2-part
visual appearance at the right. These three parts are and-composed, i.e. operate in parallel
and coordinate/synchronise through events and conditions. The gates part is mandatory for
all interactors, while the two other parts are specific for this particular model. It is however
natural to isolate the main logic from the visual appearance, as has been done in this model.

The GATES part defines how input and output values are propagated or synchronized, in this
case the checkbox input/send value is connected to and hence equal to its output/receive
value. If the toggle action occurs, a new input value is computed by a complement connec-
tion (the stippled line indicates an inverter function). The toggle action originates in the
CONTROL substate, when a mouse button is pressed (transition from 1 to 2) and subse-
quently released (transition from 2 to 1). Note that the pointer must be INSIDE the checkbox

Figure 69. Selection
transition

S

modes

s1

s2

s3

s4

URN:NBN:no-2353

98 Chapter 5 Dialogue modelling

for both the press and release, but may be OUTSIDE in-between. In general, a connection
may be labelled by both an event and a condition that states at what point in time it will
propagate or synchronise a value. Events are used to trigger propagation, while conditions
are used to limit when propagation may occur. The visual appearance is controlled through
the CHECKMARK and ARMING substates, where the latter is used to indicate to the user if the
toggle action will occur upon releasing the mouse button, i.e. the difference between states
2 and 3. The model can be simplified by removing the pair of ON/OFF states and inserting
corresponding transition actions in the CONTROL part, for controlling the visual appearance,
instead. However, this model makes the three parts, gates, control and appearance more
explicit.

Two aspects of this state machine is left implicit: The meaning of the external events and
conditions, like press, release and inside, and the correspondence between two pairs of on/
off states and the visual rendering of the interaction object. I.e. where do the events origi-
nate, which external states and functions can be used in conditions, and how may external
output devices be controlled? To make the model explicit and executable, we would have to
link the state machine to the mouse device and window rendering function, after which this
can be considered a complete implementation of the desired boolean input/output device.
This will require interactor resources, which will be discussed in Section 5.5.

5.3.2 Interactor composition
A different way of implementing a new interactor is building one from available parts, by
utilising the compositionality of the interactor abstraction. Suppose we need an interactor
for selecting an element from the set of elements SET2 that is related through RELATION to a
member of another set SET1. One possibility is to 1) let the user select an element from
SET1, 2) generate the set of related elements i.e. SET2, and finally 3) to let the user select
one of SET2’s elements. If we already have an interactor for element selection, we can com-
pose the desired interactor from two of these, as shown in Figure 71. The SELECTION1 inter-
actor implements step 1, the RELATION connection between the input/send and output/
receive gates implements step 2, and the SELECTION2 interactor step 3. At this point there
are still some design choices left, both at the abstract and concrete level. For instance, at
what point SELECTION1 is deactivated and SELECTION2 is activated, and which concrete
interaction objects are used for each selection interactor.

Activation and deactivation of SELECTION1 and SELECTION2 is controlled by the way they
(or their (sub)control states) are composed, as shown in Figure 72. Each interactor is con-

Figure 70. The checkbox behaviour

Checkbox

or

toggle

1 2

3

press[inside]
release/
toggle

outside

inside

release

off on

[input/send]

[~input/send]

off on

enter 2

exit 2

check mark

arming

controlgates

is

URN:NBN:no-2353

5.3 Interactor content 99

sidered a state in a hierarchical Statechart, where each level in the interactor hierarchy cor-
responds to at least one level in the Statechart. Or rather, each interactor can be considered a
multi-level Statechart. Activating the interactor corresponds to entering it as a state, and
visa versa. In the active state, the gates of the interactor are ready to receive and emit values,
and the internal control structure executes. The left model in the figure uses and-composi-
tion, giving parallel/simultaneous activation of the two selection interactors, while the right
model uses or-composition, giving alternative/sequential activation. In the former case,
both sub-interactors are always active as long as their super-interactor is, while in the latter
case SELECTION1 is deactivated and SELECTION2 is activated when the transition’s condi-
tion is satisfied, in this case when SELECTION1’s input/send gate is fired.1 In both models,
the initial sub-state in an or-decomposed super-state is defined by the standard default tran-
sition mechanism in Statecharts, which is used when no direct transition exists. In the left
model each default transition is redundant since there are only one sub-state in each com-
partment, while in the right model, SELECTION1 is preferred over SELECTION2 as the default
start state.

1. In most cases, the lines separating the substates in an and-decomposition can be deduced, since there anyway cannot be
transitions across the lines. Hence, we adopt the rule that each connected subgraph of states are implicitly separated by
such lines.

Figure 71. Selection of related element

Relation selection

or

is

Set2

Related
element

∈

Set1
Selection1

Selection2

relation

relation

Relation selection

or

is

Selection1

Selection2

Relation selection

or

is

Selection1

Selection2

Selection1.input/send

Figure 72. And- (left) and or-composition (right)

URN:NBN:no-2353

100 Chapter 5 Dialogue modelling

It might seem that and- and or-composition gives limited freedom to control activation, but
since interactors and ordinary states can be freely mixed, any control structure can be real-
ised. For instance, in the and-composition case, the activation of SELECTION2 can be
delayed by inserting a new initial state and a transition with an appropriate condition, to
give a behaviour somewhere in-between parallel and alternative activation. As shown left in
Figure 72, the SELECTION2 interactor will be activated once SELECTION1’s input/send gate
emits a value, while keeping SELECTION1 activated. In the right model, the delay is accom-
plished by wrapping an interactor with another interactor with the same gate interface. The
activation of the sub-interactor is controlled by the two transitions from the delay state. By
coupling the events of the two transitions to appropriate interaction objects and the actions
to window activation, the effect of popping up the interactor can be achieved.

In principle an interactor is independent of its implementation, i.e. it is a specification of a
certain behaviour, which the implementation in terms of concrete interaction objects must
adhere to. For instance, the composed interactors in Figure 72 may be realised in terms of
frames or panes. If and-composition is used, separate panes may provide the appropriate
behaviour, while or-composition can be implemented using either popup-windows or a sin-
gle pane which is (alternatively) shared. In practice, the degree to which the concrete design
affects the abstract interactor structure will vary, often a certain interaction style will war-
rant a certain interactor structure. For instance, the delayed activation shown above, is typi-
cal for menu based dialogues, where menu items are available for popping up dialogues.
Sometimes the interaction style may even affect the task model for which the interactor
structure is the solution. Hence, may be relevant to go backwards, i.e. derive the interactor
specification of a concrete interaction object.

5.4 Modelling system functionality
Functions are mostly used for mapping between values, along connections or in-between
the base and tip of gates. It is however possible to include standalone functions inside an
interactor, either without arguments or with constant input. This is useful for providing
access to global attributes or application services, i.e. information coming from the runtime
context of the interface on the target platform, and not from the user.

Figure 73 shows two typical usages: The top standalone DISKDRIVES function provides the
set of disk volumes, e.g. as input to a file browser. In the bottom left, a set of functions
G1...GN are disguised as output/send gates of the GLOBALS interactor. These gates mediate
a set of global attributes and the interactor is only used for grouping them in the model.
Such an interactor mirrors the use of input devices, which provide values out of nothing, by
providing the user interface with values from “nowhere”, that may be emitted by an input/
send gate.

Application or object services may be modelled in a similar way, as shown in Figure 74. An
interactor provides a set of methods by means of pairs of gates, the input/receive gate in the
pair accepts a set of arguments and the output/send gate returns the result. We may compare
this interactor to an object, where each pair of gates corresponds to a message (port), or it
may just be viewed as a set of global functions grouped together for clarity. By having sep-
arate argument and result gates, we suggest that the computation may be asynchronous.

URN:NBN:no-2353

5.5 Interactor resources and parameters 101

5.5 Interactor resources and parameters
An interactor may be seen as a specification of a design problem to be solved by composing
existing interactors or by assembling concrete interaction objects from a toolkit. It may also
be seen as a specification of an already solved problem, using the mentioned techniques, in
the hope that it may match a future design problem. In both cases, the interactor may require
support from the runtime context it will operate within.

The checkbox model shown in Figure 70, can be seen as one possible
realisation of a boolean interactor. It is however not a complete solu-
tion, as there are two important parts missing: 1) an input device for
driving the CONTROL states and 2) an output device for visualising
the CHECKMARK and ARMING states. These parts must be provided by
the context of the interactor, before the interactor will be completely
executable. However, the checkbox model does not explicitly state
that such devices are needed. In our interactor model, these should be
defined and provided as resources or parameters of the interactor.
Interactor resources are similar to the task resources described in
Chapter 4, in that they define requirements for parts, that may be provided by the context. In
the case of the checkbox, we would define two resources, e.g. called MOUSE and WINDOW as
shown in Figure 75, detailing capabilities, like state space and sequences, that are used or
needed by the checkbox implementation. The two resources are state resources, hence the
state symbol is used.

Interactor resources are typically used in two ways. First, they provide a link to the concrete
interaction perspective by stating the specific requirements that must be fulfilled by its
implementing toolkit interaction objects. As requirements, they limit the context in which a
particular interactor may be used, e.g. only within a particular window-based runtime envi-
ronment or on a pen-based system. This usage is suitable for cases where the interactor rep-
resents a particular native implementation, and the requirements should be stated in terms of
native concepts, e.g. Java classes or COM interfaces. Alternatively, resources can be used to

Volumes

DiskDrives

Figure 73. Standalone functions

Global
attributes

Globals

os

os

G1

Gn

...

Object
API

os

Method 1

...

ir

Method n
os

ir
Mn

M1

Figure 74. COM-like object

Checkbox

mouse window

Figure 75. Interactor
state resources

URN:NBN:no-2353

102 Chapter 5 Dialogue modelling

define parts of the interactor implementation that must be provided and can be replaced
before using it, e.g. supporting functions or sub-interactors. This makes the interactor
implementation more widely useful, since its behaviour to a certain extent can be adapted to
a new context. In both these cases we need some way of defining the requirements of the
resource and how a bound resource fulfills those requirements.

In the checkbox case, the mouse and visual resources could be used in either way, i.e. either
limiting the use to a specific mouse device or widening its use by letting the context provide
the input device as a parameter. As the first kind, we would require that there be a specific
mouse and window pair providing the required set of events for the CONTROL states and a
window pane capable of visualising the CHECKMARK and ARMING states. For instance, in a
Java implementation we could require a java.awt.Panel for the window and use a
java.awt.event.MouseListener for driving the mouse part. In addition, a pair of bitmaps
could be required for the checkmark and two background colours for the arming. These
objects would provide a link to the underlying Java runtime platform. If the mouse and win-
dow resources instead where used to define the formal type or characteristics of the param-
eters, i.e. the second usage, we would need to gather the requirements assumed by the
model, or state them explicitly.

From the checkbox model in Figure 70, it can be seen that the mouse resource should (at
least) provide a state space including states for the PRESS/RELEASE and OUTSIDE/INSIDE con-
dition pairs in the model, and the visual resource should distinguish between two pairs of
ON/OFF states. If analysed more closely, we can see that the checkbox model assumes that a
certain (temporal) sequence of the states or conditions is possible, e.g. that PRESS & INSIDE
can be satisfied together and that RELEASE may follow PRESS. In this particular case, both a
mouse and pen can satisfy the requirements, e.g. with models as shown in Figure 76. Differ-
ent behavioural requirements might however, make the mouse the only candidate. For
instance, if the checkbox needed to distinguish between INSIDE and OUTSIDE for both PRESS
and RELEASE to provide appropriate feedback, only the mouse could be used, since the pen’s
INSIDE state is only defined in the PRESSED state, according to this model.

To be able to ensure that a provided resource is compatible with the requirements, we would
first have to completely spell out the requirements and then prove that the provided resource
is a complete and consistent implementation. In the case of the checkbox and the mouse, we
would first have to derive a state machine that could “drive” the control part of the check-
box through all its states. This machine would represent our resource requirements and
would actually be close to the pen interactor shown in Figure 76. To make sure it was safe
to use the mouse interactor instead, we would have to show the correspondence between
states and transitions in the respective interactors. In the general case, it is very hard if not

Figure 76. Mouse and pen models

released

insideoutside

Pen

pressedreleased

insideoutside

Mouse

URN:NBN:no-2353

5.5 Interactor resources and parameters 103

impossible to prove that one state machine can replace another.1 As a complicating factor,
we cannot expect every relevant resource to be naturally described in terms of state machine
concepts, so even if a general proof procedure exists, it would not completely solve the
problem of defining and replacing parts of a state machine. Instead, we would have to rely
on the developer to provide a mapping or interface to glue a replacement resource into
place.

The checkbox model is rather simple, since it only involves states, conditions and transi-
tions: no values, gates, connections and dataflow. To make it practical to give a similar
treatment of interactor resources, with formally defined requirements and proofs of substi-
tutability, we limit the essential characteristics of interactors to the set of gates, their types
(input/receive, output/send, input/send and output/receive) and the types of the resources
(interactors, functions and domain sets and elements). These are the static part of the inter-
actor definition, leaving out sequencing. Limiting the essential characteristics in this way
has three implications: First, a composite interactor should only rely on the gates of sub-
interactors and the values they emit. Second, to be able to replace a resource, an interactor
need only have the same gate and resource signature. This makes it practical to perform
static consistency checks. Third, by reducing the analysis to static characteristics, we might
unfortunately accept a parameter substitution that should be rejected.

This simplification of the essential characteristics of interactors still leaves some problems
concerning substitutability, consistency and completeness. Consider Figure 77, where a
simple concept hierarchy C1, C2, C3 and chain of interactors I1, I2, I3 is shown. All the
gates in the chain of interactors are labelled with C2, to indicate that they have the C2 type.
The question is which of candidates interactors a) and b) at the bottom of the figure, can
replace I2? The b) interactor is consistent with the context of I2, since it may receive any
value provided by I3 and will only send acceptable values to I1. However, the resulting
model will not be complete, since some acceptable and expected values of I1 can never be
sent to it. Candidate a) has the opposite problem: it receives a too limited set of values from
I3 and sends a too wide range of values for I1. However, it will at least fulfill I1’s needs and
accepts all values received from I3. The case where an interactor is too generic for a given
context, is actually quite typical, e.g. an integer device interactor may be used in a context
where only integers in a given range are acceptable. The standard way of handling this is
either to design and implement a new special-purpose integer range interactor or to provide
a validation function that alerts the user if the value is outside the acceptable range.

An example of a useful generic interactor is shown in Figure 78. This is a parameterized
version of the integer interactor in Figure 58, where the two functions have been defined as
replaceable resources or parameters. The generic interactor is a device interactor for any
type, given appropriate replacement functions. Although not explicitly shown in the model,
the unparsing and parsing functions must accept and emit the same value type, and the two
input and output gates must accordingly receive and send this same type.2 This is truly a

1. As long as there is finite state space and a finite set of loops, it is possible to use exhaustive search to perform the proof.
However, this is not practical for larger state machines.

2. This means that an explicit formal interactor definition must rely on a type variable to relate the gate and function sig-
natures, e.g. something like interactor(output/receive:<type>; input/send: <type>; resources: parser(string)=><type>,
unparser(<type>)=>string).

URN:NBN:no-2353

104 Chapter 5 Dialogue modelling

very generic interactor, and has been used to handle diverse types like date & time, colour,
email addresses and contact names, by appropriate instantiation.

Interactor resources are placeholders for values, much in the same way that gates hold val-
ues. The interactor defining a resource may provide a (default) value for it, which may be
replaced by the context in which it will be used. Hence, the resource provides support for
customising the interactor’s functionality, since the model is complete but modifiable.
Alternatively, the interactor may require that the context provides the value, before the
interactor is used. In this case, the interactor and resources are used to provide a template
mechanism, since without suitable parameter instances the model will not be complete.

The generic PARSER INTERACTOR interactor in Figure 78 is a template in this sense, and the
simplest way of instantiating it is by providing replacement resources, in this case two func-
tions, in a wrapper interactor. To implement the previously shown integer interactor, we
have to provide integer parser and unparsing functions, as shown in Figure 79. We see that
the composite interactor contains the generic interactor (signature), and provides two spe-
cial-purpose functions as replacements, to achieve the desired functionality of integer input
and output. The two functions are constants that are bound to the parser and unparser
resources, within the context of the outer interactor. The PARSER INTERACTOR signature and
the bindings collectively represent a new interactor instance, built from the (template) defi-
nition shown in Figure 78.

C1 C2 C3

Figure 77. Problem of substitution:
Which of interactors a) and b) may replace I2?

a)
C3C1

b)
C1C3

I1
C2

I2
C2C2

I3
C2

Figure 79. Interactor
instantiation, through the use

of resource binding

Figure 78. Generic string parsing
and unparsing interactor

Parser interactor

or

is
String

interactor

String

parser

parser

unparser

unparser

Integer interactor

or

is

Parser interactor

parser unparser

string2
integer

integer2
string

URN:NBN:no-2353

5.6 Acts and functions 105

Interactor and gate resources are typically bound to actual values during model editing, like
in the above case. The template can be seen as a convenience for the designer or developer,
while not providing the end-user with any functionality or power. However, just as custom-
isation of a product may happen during build, deployment or while in use, resources may be
provided through model editing, interface configuration, or dynamically during use. To sup-
port the latter kind of customisation, the designer must provide the end-user with special
interaction objects that operate on the dialogue/interactor domain instead of the application
domain.

An example would be an interactor used for selecting the
format or language to use for inputting integers, e.g. a drop-
down listbox. The selected value would be bound to the
resource of the integer interactor, hence changing the
accepted syntax of integers. An interactor model for such a
pair of interactors is shown in Figure 80. The PARSING
INTERACTOR in the figure is assumed to be a parameterized
version of the model in Figure 55, now with a PARSER
(interactor) resource responsible for converting to and from
the string representation. The PARSER resource has a dual
use in this particular model. First, it serves as the definition
of a type of interactor with a specific signature, or in RML
terms, an interactor concept. The extension of this concept
is used as input to the selection interactor in the figure. Second, it is a named resource,
which is bound to the value of the input/send gate of the selection interactor. The effect is
that the user may use the INTERACTOR SELECTION interactor to select the parser used by
PARSING INTERACTOR. Many kinds of customisation can be modelled in this way: A generic
interactor with a resource parameter, which is bound to the input/send value of the interactor
used for customisation.

5.6 Acts and functions
The goals that the user wants to achieve and the tasks he believes are necessary is repre-
sented in the task model. The dialogue model on the other hand, describes in detail how a
design solution allows the user and system to cooperate in reaching these goals by perform-
ing the tasks. Many tasks are better left to the system/functional core, and some will neces-
sarily have to be performed by it, since some parts of the real world is not directly within the
reach of the users. The users’ main role with respect to these tasks will be to indicate that
the system should perform them. For instance, to send an email, it is clear that the system
has to set up the network connection and transfer the message for the user, since the user
cannot physically perform these tasks. The user on the other hand should indicate the recip-
ient, author the message, and tell the system when to send or queue it. The system’s work
will be partly performed by interactors, as mediators of information between the user and
system in both directions, and partly by functions, which operate on domain objects and the
underlying infrastructure. Functions were introduced in Section 5.2 and will be detailed in
Section 5.6.4, while we at this point will discuss the act of activating functions.

Figure 80. Interactor
customisation

Parsing
interactor

Parser

Select
interactor

Interactor
selection

Parser
interactor

∈

URN:NBN:no-2353

106 Chapter 5 Dialogue modelling

5.6.1 Acts
Interaction can be viewed as a dialogue between a conscious user and a system, driven by
the dialogue component’s interpretation of the user’s manipulation of the input devices. In
the Arch model an interactive system is divided into four conceptual parts, as shown in
Figure 81. The functional core and its adapter contains the main domain specific function-
ality, while the dialogue and presentation parts implement the abstract and concrete dia-
logue structure and elements. Finally, the interface toolkit provides the platform’s devices
for input and output. According to the Arch model, input events from an input device are
interpreted by the dialogue component and may result in the activation of a function in the
core. This is illustrated by the left-pointing lower arrow in Figure 81. The result may ripple
back through the dialogue and presentation components, before being sent to the output
device, as illustrated by the right-pointing upper arrow.

Different interaction styles make this dialogue view more or less explicit, e.g. a command
line interface is based on a repeated two-step dialogue of typing in calls to the functional
core and displaying the result. The activation of a function is in this case explicitly repre-
sented by the command line string. A direct manipulation interface, on the other hand, lets
the user visually manipulate domain objects, and makes the dialogue implicit by replacing
the linguistic utterance with mouse manipulation. It is nevertheless useful to explicitly rep-
resent what the act of typing or mousing means, since functionality like undo and redo will
need to make function activation explicit.

We define an act to be an object that represents the user’s desire to have the system perform
a function in order to reach some goal, or in more concrete terms, to apply a function to a set
of arguments. An act will usually correspond to the goal of a user task, even if this goal has
not been explicitly modelled, either because the task model is of high granularity or because
the goals themselves are not explicitly modelled. Acts are used when we need an explicit
representation of a function and a set of arguments as an element, to capture the systems
interpretation of interaction. Many functions may be applied without such an explicit repre-
sentation, either because they are not very domain specific and need not be transmitted all
the way to the functional core, or because they have little relevance for the user. This is typ-
ical of standard services like directory queries and string parsing, which are more or less
taken for granted. Conceptually they may still be part of the functional core, but they are not
“worthy” of much attention from the user or the dialogue modeller. In other cases, function
invocation is more apparent for the user and more complex, and there is need for introduc-
ing the concept of an act:

• The user interacts with a visual representation of an act or command.

Figure 81. The four components of the Arch model

functional
core & adapter

dialogue presentation

interface toolkit / deviceoutput
input

URN:NBN:no-2353

5.6 Acts and functions 107

• The function’s arguments may not be fully provided at once, and may need to be
completed by either using contextual information or prompting the user.

• The function should be executed in a different context, which is detailed in a differ-
ent part of the model.

• The function should not be applied to its arguments, but instead handled as a piece
of executable data, e.g. if macro recording or scripting is turned on.

We have chosen to use the function symbol without a tip for indicating an act, as the base
may be thought of as representing (the presence of) the arguments while the removed tip
suggests that there is no result (yet), whether slightly or indefinitely delayed. The corre-
sponding function definition will be separately specified, as discussed in Section 5.6.4. The
tipless function symbol may represent a possibly incomplete function application and is
similar to a curried function, i.e. a function where some of the arguments have been pro-
vided, and some remain to be. Technically, an act consists of a function name, and a set of
named and typed arguments, some of may already be bound to a value. The actual perform-
ance of the function must be delayed until all arguments have been collected. For the pur-
pose of handling the return value, an act in addition contains a reference to its origin/
context.

An act is used in diagrams in two ways. First, it may replace a function, when we want to
make the act of activating a function more explicit, e.g. when the user is conscious of the
function application. In this case of act invocation, the act is connected to a standalone tip,
to create the impression of a base and tip torn apart, or an exploded function, as shown in
Figure 82. The arguments are still attached to the base, while the output is attached to the
(dislocated) tip. The main difference is that a function is activated immediately, while the
act represents a potential function activation. When the act is triggered, e.g. by the availabil-
ity of input, the function (name), arguments and origin are combined into an act (instance).
This instance is attached to an asynchronous Statechart event or action, that may be
received by a corresponding function specification/implementation in the originating inter-
actor’s context.

When the result of invoking an act is not used, the tip will not appear at all, and the act sym-
bol will seem like a dead end. The result of the act may however be used in the context
where the act event is received and invoked. Figure 83 shows a model of a button used for
invoking a save function by emitting a Save act. Presumably the act will be received in a
context where the data or document to save is available.

Figure 82. The Retrieve Messages act
modelled as a torn-apart function

Profiles

Inbox

Retrieve
Messages

Messages

Profile

Select
redo

Act

Act

Redo

Figure 83. Act
input device

 ButtonSave

Figure 84. Act as set and element

URN:NBN:no-2353

108 Chapter 5 Dialogue modelling

The second way of using the act, is as an ordinary data element, e.g. when selecting a previ-
ously performed act to undo or redo it, as shown in Figure 84. In this case, the ordinary set
and element symbols are used, to avoid confusion. To execute such an act, it must be fed
into a second order function, i.e. a function taking another function (or act) as input. In the
figure, this is an ordinary function, but the act symbol could have been used, e.g. to indicate
that redo is itself a conscious action, which later may be redone (or undone).

5.6.2 Act classification
These two alternative mechanisms allow either executing a specific named function, by
emitting and receiving an act as an event, or any function by giving a higher-order function
an act as argument. A combination of these is also possible, by making a higher-order func-
tion selectively receive act events within a certain class. We treat acts as ordinary RML con-
cepts, which may be classified and generalised/specialised using the standard RML
constructs. Several act classifications may be relevant, as shown in Figure 85.

• We may classify acts based on their role in standard tasks, e.g. copy, cut and paste
acts support the task of editing documents and hence can be considered special edit
tasks. This classification may be the basis for grouping acts in menu bars.

• The arguments may be used for classification, e.g. every act taking a message as
the ‘message’/first argument, or the whole argument list may be used for defining a
classification hierarchy.1 This classification may be the basis for contextual menus,
which are activated by clicking on the main argument of an act.

• The result or the goal achieved may be used for classification, e.g. creation acts for
all acts creating new objects, from initial values. This classification is relevant for
understanding how tasks may be accomplished.

The possibility of classifying acts makes it possible to augment similar acts with appropri-
ate functionality. For instance, an email client may default a missing mailbox argument of
an act to the one currently selected in a contextual mailbox interactor. Another possibility is
defining interface frameworks or templates for invoking standard classes of acts, within a
certain interaction style. Classification of acts is similar to classification of tasks as dis-
cussed in Section 4.7.7, and provides a means for building generic models that may be
instantiated with domain dependent elements.

1. This is similar to how generic functions are partially ordered in the method invocation mechanism in Common Lisp.

Edit

Cut Copy Paste

Message

Send Delete Archive

Instance
creation

New Relate

Figure 85. Act specialisation, based on task, argument type and result

URN:NBN:no-2353

5.6 Acts and functions 109

5.6.3 Act invocation
The functional core, which conceptually resides outside the user interface, is usually
responsible for performing the acts, or rather, applying the function to the parameters speci-
fied by the act. In a flow-oriented model, the functional core can only be reached by propa-
gating values along connections out of the layers of interactors, i.e. up through the top of the
interactor hierarchy. In an event-oriented model, the functional core can alternatively be
reached by sending events, which are received outside the user interface. We will adopt a
hybrid model for invoking functions: acts are attached to events that are broadcasted, the
events may be received and re-broadcasted by functions in the containing layers of interac-
tors and finally may be received by the functional core. Hence, the effective implementing
function is a combination of the layers of functionality provided by the layers of interactors.
In the simple case, the function corresponding to the act will be applied to the arguments
directly. Alternatively, the act may transformed, arguments may be added or replaced, and
the act may be re-broadcasted attached to a new event, to be received by a different func-
tion. An alternative way of viewing this is to think of the functional core as consisting of
layers which add, replace or modify (existing) functionality, some of which are added by the
user interface, as parts of interactors.1

Since each act may be handled by several function, the effective functionality correspond-
ing to an act is a combination of several parts of the model. The order of execution of these
parts, is most likely important for the result, hence the broadcast mechanism must be pre-
dictable. In classical Statechart, events are broadcast throughout the whole state machine,
and may trigger any transition. Outer states have priority, presumably because sub-states
should not be allowed to change the higher-level behaviour. Giving outer states priority
ensures that adding a sub-state does not prevent transitions in its super-state from being trig-
gered by an event. Hence, invariants that are specified at one level, are preserved when the
model is decomposed into an additional level. In UML the rule is the opposite: lower-level
transitions may “override” higher-level ones, presumably to allow a sub-state to change
inherited behaviour.2 This may however, invalidate invariants from the level above, and
makes it difficult to analyse the state machine. We have adopted a mixed rule: an event is
first broadcast within the immediately containing super-state of the state emitting the event,
then to the super-super-state at the higher level, etc., until it triggers some transition. At
each level the top states have priority, so a transition in the super-state of the originating
state will have priority above a transition in a sibling state. With this rule it is only possible
for a sub-state to grab locally generated events i.e. those originating within that sub-state.
Hence, it cannot change the behaviour specified at the level of its super-state.

The difference between these three priority rules is illustrated in Figure 86. The E1 event
will trigger the transition from S1 to S2, which will generate the E2 event. With the priority
rule of classical Statechart, this will trigger the transition from S0 to S7, since this is outer-
most transition labelled by the E2 event. UML’s priority rule will trigger the transition
between S4 and S5, since this is the innermost transition labelled by this event. With the rule
we have adopted, the transition between s3 and s6 will be triggered, since this is the outer-
most transition inside the first super-state containing a E2-triggered transition. As men-

1. The mechanism is inspired by the inner mechanism in Simula and the method combination feature in the Common Lisp
Object System, the full meaning of a function is defined by a combination of individual method bodies.

2. Section 2.12.4.7 of UML Semantics

URN:NBN:no-2353

110 Chapter 5 Dialogue modelling

tioned, our choice of rule is something in-between the classical Statechart and UML. We
want to limit the interaction between distant states, while preserving the possibility to rea-
son about invariants in the machinery.

The act symbol looks like a torn-apart function, and we want
the behaviour of act invocation to be as similar to function
application as possible, in the way argument values are
received at the base and the resulting computed value is sent
out of the tip. Hence, although the computation may be per-
formed in the functional core, the flow of values should hide
this. Figure 87 illustrates the flow of acts and return values.
The top (1) two-part act symbol generates the first act event,
which is received by a second (2) two-part act symbol in the
context. The act event is re-broadcasted and this time it is

received by an ordinary function (3), which finally performs (the core of) the desired func-
tion. The stippled arrows indicate the act event flow. Since the tip and base pair, represent-
ing act invocation, can replace a simple function application, it must eventually emit a
return value. This means that the receiver of an act event, must feed its return value back to
the originating act invocation, as shown in the figure. The flow of return values will be the
reverse of the flow of events. At each act invocation tip, the return value may be manipu-
lated before being propagated further. Note that the result value will also be propagated
along the connections of a tip, so in the case of the middle act invocation in Figure 87, the
result will both travel out of the tip to the left and up to the initial act invokation.

Although this adds some complexity to the model, there are advantages of letting several
function implementations combine to give the full meaning of an act:

1. The whole hierarchical context of the act may determine its interpretation.

2. Contextual information may be added to the act at each level.

3. The core function may be adapted or wrapped to provide more flexibility.

Consider the case where a non-graphical functional core is to be extended with a graphical
user interface. Many core functions will have to be augmented, either by adapter functions
or by a complete functional layer. The new graphics-aware functions will perform its part,
pass the relevant arguments on the existing functions and adapt the result to the graphical
context. For instance, a Make New Folder act will include an icon position in the graphics
layer, but only pass on the name to the existing functional core. The resulting folder object
may be annotated with the position, before being presented to the user.

s1

s2

e1/e2

s0

s3

s4

s5

e2

s6
e2

s7e2

Figure 86. The effect of different transition
triggering priorities

Figure 87. Cascading acts

1)

2)

3)

URN:NBN:no-2353

5.6 Acts and functions 111

5.6.4 Function and gate decomposition
Functions may for most purposes be considered atomic actions, with no structure. In some
cases however, the user may perceive the function execution more as a process than as a
simple computation, and the designer may want to detail the function’s behavior. There are
several reasons for making the computational process transparent, for instance:

• The function may find that some arguments are invalid and notify the user,

• it may reveal its computation state by updating the user interface and

• it may interact with the user, to let him control the functions execution, normally to
provide a means of cancelling or skipping it.

All these considerations suggest that functions are atomic for some purposes, but for other
purposes should be considered to be complex, not unlike interactors. Accordingly, we must
provide constructs for describing the aspects of functions that are necessary to expose to the
user.

The objective of a function is to compute a typed result from a set of typed arguments. In
our dialogue model, the argument values are provided through connections attached at the
function’s base, while the result is received by another connection through the tip. For sim-
ple functions there is little reason to monitor the computational process, but for more com-
plex functions this may be important for the user. To monitor and control the function’s
computational process, connections may additionally be attached to the side of the function.
The crucial question is whether the user should be aware of the state of the computational
process, e.g. through a progress dialogue. If the answer is yes, the function’s computational
process may be modelled as a state machine as shown in Figure 89.

The idea is that the function cycles through three main states, each of which is related to one
connection in Figure 88. The three states have been given special function icons, to suggest
which part of the computation they are concerned with. Throughout this cycle, the current
state may be monitored through the fourth connection labelled “comp.state” in Figure 88.

Figure 88. Function usage:
input arguments, trigger,

monitoring and result output

arguments

trigger

comp.
state

result

Figure 89. Function decomposed into
three main states

trigger
[valid?]

error

compute
result

emit result

accept
arguments

URN:NBN:no-2353

112 Chapter 5 Dialogue modelling

1. ACCEPT ARGUMENTS: Values are collected through the connections at the func-
tion’s base, i.e. the connection labelled “arguments” in Figure 88. The empty base
and tip of the function icon suggests that it is in the beginning of the computational
process. Arguments may be “eagerly” validated as they are received and the user
notified if something is wrong.

2. COMPUTE RESULT: After a trigger event is received, through the connection
labelled “trigger” in Figure 88, and the all the arguments are validated, the compu-
tational process begins. The filled base and empty tip of the function icon suggests
that the arguments are present. This process either results in an error or a value in
the tip. The trigger corresponds to the value entering through the connection
attached to the function’s side, at the top left in Figure 88.

3. EMIT RESULT: The arguments have been consumed and the tip has been filled, as
indicated by the function icon. The value is emitted to the receiving connections
attached to the function’s tip, i.e. the one labelled “result” in Figure 88. The func-
tion returns to the state of accepting arguments.

Figure 90 shows how a complex function, RETRIEVE MESSAGES, can be used and decom-
posed. In the left fragment, the function receives a PROFILE element which is input by the
user and returns a set of MESSAGES which is output by the INBOX interactor. The decom-
posed function at the right contains the same three main states as those shown in Figure 89,
and in addition decomposes the COMPUTE RESULT step into two sub-states. The computa-
tion either results in a value in the tip, is aborted by the server or aborted by the user. During
the execution, the user is presented with the status of the main states, modelled by connect-
ing the COMPUTE RESULT state to the output/receive gate of an interactor. I.e. the computa-
tional state the function is in, is presented to the user. In addition, the user may select the
passive ACCEPT ARGUMENTS state to abort the operation. This is modelled using the State-
chart select transition mechanism, using a circle with an “S” inside. This mechanism sup-
ports explicitly selecting the state to enter, rather than using some other triggering event.

All functions must contain the three main states, and these may include substates detailing
their behaviour. Interactors may be included to present the state of execution to the user and
provide means of controlling it. Although not shown, domain fragments including concepts,
elements, relations and functions may be included to specify how the tip’s value is com-
puted, based on the input. Note that the goal of decomposing functions is not to specify
algorithmic details of how values are computed, but rather describe the parts of the process

Figure 90. Use (left and decomposition (right) of Retrieve Messages function

conn-
ecting

retrie-
ving

compute
result

S

Status
aborted

by server

accept
arguments

emit result

aborted
by user

Profiles

Inbox

Retrieve
Messages

Messages

Profile

URN:NBN:no-2353

5.6 Acts and functions 113

that must be exposed to the user. Hence, the ability to decompose functions should not be
used to model arbitrary computations.1

As described in Section 5.2.1, gates can be considered functions playing specific roles with
respect to an interactor. Although gates default to the identity function, they can perform
computations, be decomposed and refined if that is necessary for modelling an interactor’s
behaviour. Of particular interest is how gates receive, retain and emit values, corresponding
to when the output and input behaviour of the hosting interactor are active. Recall the four
main roles a gate can play, output/receive, input/send, input/receive and output/send, where
the first two are most important as they are more directly experienced by the user:

• Output/receive gate: The base value represents the requirement that the interactor
should make this value perceivable for the user. The tip represents the actual value
the user perceives.

• Input/send gate: The base value represents the user’s input value, while the tip
makes this input value available for the system.

Most window-based interaction objects constantly show both an output and an input value,
i.e. both the output/receive and input/send gates will have a value, which will often be the
same. For instance, a checkbox will always show either a true or false value; the initial
value is the system’s output and subsequent values the user’s input. In detail, the steps
should be as follows:

• The system’s output value is propagated to the base of the output/receive gate

• The interactor updates the checkbox state and sets the output/receive gate’s tip
accordingly. The output/receive base is cleared to indicate that the request for out-
put has been fulfilled.

• Since the output value at this point is also the input value, the base of the input/
send gate is also set.

• The first time the user clicks the checkbox, the output/receive gate’s tip is cleared,
since the checkbox’ value now is considered an input value.

• Each time the user clicks the checkbox, the base of the input/send gate is set
accordingly and the value propagated to the tip, so connected interactors can react
to the value change.

Most graphical device interactors should behave like this, while other behaviours or media
may behave differently. For instance, the press of a button is a one-time event, while stand-
ard interaction objects/widgets retain their value until explicitly modified by the user or sys-
tem. In the case of speech synthesis, the output value does not persistent as it does for
display based output, so the output/receive tip will quickly lose its value. To describe the
various possible behaviours we need to be more explicit about what happens when values
are propagated in terms of the state machine inside gates, using the technique described
above.

1. Other notations like Petri Nets or flow diagrams may be more suitable for a full specification.

URN:NBN:no-2353

114 Chapter 5 Dialogue modelling

Figure 91 shows two gates, the left an output/send gate and the other an output/receive gate,
in a four-step propagation sequence, as follows:

1. The base of the left interactor’s output/send gate holds a value, which is internal to
the hosting interactor.

2. This value is made available in the tip outside the interactor and propagated to the
base of the connected output/receive gate of the other interactor.

3. The tip of the right interactor’s output/receive gate has received the value, indicat-
ing that the user can perceive the value.

4. The right tip’s value is removed, if the output value is ephemeral.

The two gates and the connection in-between them cooperate in achieving this particular
behaviour. In step 1, the base of the output/send gate either receives a value from an internal
connection of the left interactor, or is directly controlled by the interactor. In step 2, this gate
emits the base’ value through its tip, and the connection propagates the value to the right
gate’s base. The connection may of course include a function which may or may not com-
pute a new value. In step 3, notice that although the internal value at the base is still in place,
the tip is not refilled. In the typical case this indicates that the value has not changed, hence,
there is no need to propagate it. Several other behaviours exist, e.g. re-propagate the value
at once, wait a certain time, or wait for a specific event internal to the hosting interactor. We
also see that in step 4), the value in the right gate’s tip is removed, indicating that output
medium is not persistent. In this case, the only other option is to retain it, which would
require the right interactor to let the user continuously perceive the value. As mentioned,
this is typical of standard widgets, while the first behaviour may be a better model of anima-
tion or sound.

Flow of values in the input direction is controlled in the same way. An input/send gate con-
trols when a value should be propagated as input to the system, the base reflecting the value
that an interactor represents as input, while the tip triggers the propagation of the input
value. Input/send gates often provide a buffering behaviour, either by waiting for the value
to change or a specific confirmation event, and validating the input using appropriate vali-
dation tests.

5.7 Conclusion
We have presented a language for modelling abstract dialogue, DiaMODL, which is
designed as a hybrid of a Pisa interactor and Statecharts languages. As a hybrid, DiaMODL
is a highly flexible notation with few basic concepts. DiaMODL is tightly integrated with
the RML domain modelling language, which is also used for defining the DiaMODL con-
structs.

Figure 91. Propagation of along connection

URN:NBN:no-2353

5.7 Conclusion 115

5.7.1 DiaMODL and the representation framework
DiaMODL is designed for modelling the abstract dialogue of the user interface. In terms of
the classification framework introduced in Chapter 3, it covers the left part of the solution-
oriented perspective, by focusing on the abstract structure of the software solution.
DiaMODL is hierarchical and thus targets several levels of granularity, and we have given
examples of using DiaMODL for modelling small and medium-sized parts of the user inter-
face. DiaMODL includes constructs with varying formal strength, in the sense that more or
less of the dialogue is precisely defined. For instance, it is possible to initially capture only
structural aspects and later specify sequencing.

Below we will discuss how DiaMODL supports the 6 movements in the design representa-
tion space introduced in Section 3.6:

• Movements 1 and 2, along the perspective axis: From problem to solution and
from solution to problem, respectively.

• Movements 3 and 4, along the granularity axis: From down the hierarchy from
high-level descriptions to lower-level ones, and up the hierarchy from lower-level
descriptions ones to higher -level ones, respectively.

• Movements 5 and 6, along the formality axis: From informal descriptions to more
formal ones, and from formal descriptions to less formal ones, respectively.

For DiaMODL the relevant movements within the representation space are movements to
and from task models and concrete interaction objects, up and down the hierarchy, and to
and from informal design descriptions like sketches. We will now discuss these movements
in turn, starting with the movements between models of task and dialogue, i.e. movements 1
and 2 between the problem- and abstract solution-oriented perspectives.

Movements 1 and 2
Task and dialogue models are similar in many respects, e.g. they both describe dynamic
processes, how processes enable each other through control and information flow. The
important difference is concerned with what processes they describe. In task models the
processes represent the actions that the users consider are necessary for reaching their goals.
The dialogue model, on the other hand, describe how software processes are driven by the
user’s interaction. In Chapter 3, “Design and representation” the task model was described
as problem-oriented, while the dialogue model was described as solution-oriented. Hence, it
is important to separate the two, to avoid using task modelling for dialogue design or visa
versa. Nevertheless it is important to be able to relate task and dialogue models to each
other.

First, during design the task model can be seen as representing a set of requirements for the
dialogue, and the dialogue model would need to meet these. Hence, it should be possible to
express how the dialogue supports a particular task, i.e. makes it possible to reach a certain
goal. Second, with the difference in focus in mind, it is important to ensure that the task
model does not implicitly assume a design that has not been decided upon. I.e. the task
model should not be used to describe action sequences that are forced upon the user by a
certain design, without having made that design explicit. We therefore need to be able to

URN:NBN:no-2353

116 Chapter 5 Dialogue modelling

refer to the dialogue that a task assumes. Using TaskMODL and DiaMODL, the relation
between task and dialogue may be expressed in several ways:

• The interactor that a task assumes may be included among the task’s resources.

• The pre-conditions for performing a task may be related to triggers of interaction.

• The post-conditions of a task and the result of an interactor may be related.

Figure 92 shows two ways of expressing how an interactor supports a task, by combining
elements from each language. The upper part of both the left and right fragments corre-
spond to Figure 62, and expresses that the SELECT MESSAGE interactor support selection of
an element in a set. Both fragments express that a set of MESSAGES is used as an enabler for
both the task and interactor. The left fragment in addition expresses that the interactor is
used to select the very MESSAGE element that is the goal of the task. The right fragment
instead expresses that the goal of the task is to trigger the input of the message element, by
means of the interactor. The difference is subtle: describing how the interactor supports the
task vs. the how the task of operating the interactor is structured. The former is relevant
when validating that a design fulfills the functional requirements, while the latter is relevant
when evaluating the usability of a design, including the efficiency.

For designing a functionally complete dialogue, it is important that the task model may be
actively used. A DiaMODL model can utilise most of the information provided in a Task-
MODL model. The static part expressed using RML, may be directly used and further
refined. Contextual information gives rise to interactor output devices, tasks that are per-
formed for each element in a set may be supported by a selection interactor and a task spe-
cific interactor, etc. Task sequencing can be implicit in interactor connections or translated
to explicit state sequences using transitions. Task goals may be reached by defining appro-
priate functions that receive their input from supporting interactors. Although DiaMODL
has no concept of specialisation, task classification may be utilised for designing generic
dialogues with structure and behaviour that are tailorable by means of interactor resources.

Moving from dialogue to task structure, is also relevant, particularly when evaluating a
design. As mentioned in Section 4.8.1, it should be possible to express in TaskMODL the
possible task sequences for a particular dialogue. The Statechart-based approach provides
parallel and disjoint composition that fits fairly well with the aggregation and sequencing

Figure 92. Combining task and interactor models

Select
message

messages message

Select message

is

or

Select
message

messages message

Select message
is

or

URN:NBN:no-2353

5.7 Conclusion 117

constructs used in TaskMODL. As shown right in Figure 92, a TaskMODL fragment may
be linked to a DiaMODL fragment, to indicate how a task includes actions for triggering
dialogue elements.

Movements 1 and 2 may also be performed to or from models of concrete interaction,
respectively. The examples in Section 5.2.2 and Section 5.2.3 shows that most concrete
interaction objects may be modelled as abstract interactors. Section 5.3 and Section 5.5
shows that it is possible to add detail if necessary, to capture special features of concrete
interaction objects. This means DiaMODL provides support for movement 2, i.e. moving
from concrete interaction to abstract dialogue. The topic of formalising concrete interaction
objects will be further discussed in Chapter 6, “Concrete interaction”.

As indicated in Section 5.2.2 and Section 5.2.3 most atomic interactors have a correspond-
ing prototypical concrete interaction object, i.e. a concrete interaction object that is a natural
candidate and typical choice when moving to concrete interaction. A GUI builder may for
instance visualise an abstract interactor as its prototypical concrete counterpart, if the devel-
oper has made no explicit choice. In addition, previous sections indicated many of the alter-
natives that exist, when moving from abstract to concrete interaction.

Movements 3 and 4
DiaMODL provides good support for hierarchical modelling., i.e. movements 3 and 4. The
gate interface at one level can be seen as the specification for the level below, and provides
some guidance for constructing the decomposition. Both the interactor concept and State-
charts support composition well. Given a set of interactors, it is easy to compute the compo-
sition and its minimal interface and later add gates and interactor resources, to provide
access to the internal structure. The flexibility of Statecharts to include transitions that span
subtrees makes reasoning about behaviour complicated, as triggering a transition may
requiring exiting and entering large hierarchical structures both above and below the transi-
tion.

Movements 5 and 6
Movements 5 and 6 are concerned with the interaction between formal and informal design
representations. DiaMODL is not targeted at capturing common sense understanding of
how user interfaces behave, and hence cannot be said to provide particular support for going
from informal representation of abstract design. DiaMODL is however based on few, sim-
ple and generic constructs, so there should be little possibility for conceptual mismatch
which would require complex translation from informal to formal concepts. With its
abstract nature, we expect most movements from the formal interactor-based dialogue mod-
els towards informal representations, to go through more concrete representation. This may
include generating concrete interface examples to highlight abstract features of the design,
such as containment structure. To indicate choice and sequencing it may require animating
the concrete example, to make the sequencing expressed at an abstract level understandable.

The support of the four first movements is in general fairly good, while movements 5 and 6
are more difficult to support well, due to DiaMODL’s abstract nature. In particular, we have
shown how the correspondence with concrete interaction objects supports moving back and

URN:NBN:no-2353

118 Chapter 5 Dialogue modelling

forth between abstract and concrete design elements. This will be further explored in Chap-
ter 6, “Concrete interaction”.

URN:NBN:no-2353

6.1 Introduction 119

Chapter 6

Concrete interaction

6.1 Introduction
In Chapter 5, “Dialogue modelling”, an abstract model of interaction was presented, with
the aim of providing a modelling approach that is independent of specific interaction styles
and end-user platforms. Although (proto)typical interaction objects for some basic interac-
tor were introduced and examples of such were given, there was little reference to specific
graphical user interface elements like buttons, menus or windows. The concrete interaction
objects were modelled as interactors containing gates and simple state machines, with little
regard to the capabilities and requirements of their underlying toolkit counterpart. While it
is important to be able to describe and analyse abstract characteristics of elements of the
user interface, we still need to implement the abstract elements and structures in terms of
the concrete platform and interaction style used for the final user interface, i.e. the elements
that the user interface is eventually made of. Hence, we need to understand how the con-
crete interaction objects may be combined within a certain interaction style and the limits or
requirements they put on composition.

The abstract dialogue represented by an interactor model can be seen as a specification for
an implementation in terms of specific interaction objects. When going from the abstract
specification to the concrete implementation, we take advantage of the capabilities of the
interaction objects, to compose an interface with the desired functionality. For instance, to
present a number to the user, we may combine a function from numbers to strings with the
ability of text label objects to present strings. This is an example of using an interaction
object for information output, and corresponds to the NUMBER OUTPUT interactor shown left
in Figure 93. However, be able to identify the text label interaction object as a way of
implementing the NUMBER OUTPUT interactor, we need a description of the capabilities of
the text label object, that helps us understand what is required for using it. In this case, we
could model the text label as shown middle in Figure 93, to express that it can present any
object given an appropriate function for making a string from it. In the case of number out-
put, we could supply a function that uses the arabic notation for the number, as suggested
right in the figure. In a sense, the specification equals the sum of the text label implementa-
tion and the function parameter, as indicated by Figure 93.

URN:NBN:no-2353

120 Chapter 6 Concrete interaction

The model of the text label in the middle is not necessarily a complete description of the
capabilities of the text label object. It is one of many possible abstractions of the text label,
and this particular one is suitable for identifying it as a candidate for presentation of objects.
The function parameter is an example of an object that must be provided by the context that
the text label is used in, and this is important to include in the model. The text label will
usually also require a window container and this window must be a frame or be contained in
a frame. These requirements should also be included in the text label model, to ensure that
the text label interaction object is provided with an appropriate context to operate within.

In the figure we have used the DiaMODL language presented in Chapter 5, “Dialogue mod-
elling” for modelling both the abstract specification (left) and the concrete interaction
object (middle). For the purpose of this chapter, the difference between abstract dialogue
and concrete interaction is not the language concepts or notation used, but rather the focus
of the model. For modelling concrete interaction, the focus is on capturing the specific
behaviour of concrete interaction objects and what is required for using them for imple-
menting the specified abstract dialogue.

In this chapter we will show how different concrete user interface elements and interaction
styles can be modelled. We will initially focus our discussion on standard graphical user
interface elements, as found in most desktop interfaces and in the forms-oriented interaction
style. Later, we will look at direct manipulation and mouse gestures, and show how the
same modelling principles can be used to model this interaction style. Since the focus is on
how these can be utilised for implementing the abstract dialogue specification, we will not
discuss issues like perception and motoric requirements. For modelling we will use the
same languages as used in Chapter 5, “Dialogue modelling”. RML is used for modelling
interaction object concepts, while DiaMODL is used for modelling structure and behaviour.

6.2 Window-based interaction objects
Different types of interaction objects have different capabilities and each type will typically
be oriented towards a particular role in the implementation of the abstract dialogue. Since
we are interested in how different concrete interaction objects support the implementation
of abstract interactors, it is natural to classify them in terms of the same three aspects as in
Section 5.1 on page 83, i.e. information mediation, control and activation, and composi-
tional structure. Any interaction object will typically have features of several of these, but

Figure 93. Using a text label for presenting numbers

Number
output

Number
output

Number Text label

Text label

Object to
String

Element Number to
Arabic= +

specification implementation

parameter

URN:NBN:no-2353

6.2 Window-based interaction objects 121

still have a distinct focus on one of them. For instance, although a push-button provides
information in its text label, its primary use is that of controlling other parts of the interface,
by means of the transitions between the pressed and released states of the button. Similarly,
although some windows provide information through its title that may reflect the contents,
the main role of a window is that of containing other interaction objects.

The information objects that an interactor supports input and output of, are usually domain
data that are described in the task model. However, not only the domain data, but also meta-
data may be manipulated in the user interface. For instance, a table may have column head-
ers referring to attributes names from the domain model, as well as showing the attribute
values of a set of elements. In fact, all the different user interface models may be the source
of input and output information:1

• The domain model is used to indicate what parts of the domain data that is pre-
sented. For instance, in fill-in forms, labels are typically used for presenting
attribute names from the domain model, left of or above the actual attribute values.
In list views for large sets of values, the user may be allowed to filter out values, by
selecting one of a set of concept specialisations that are defined in the domain
model. In tables support for sorting is often provided by letting the user click on
column headings containing attribute names, again part of the domain model.

• The action names used in task model are often used for labelling action-oriented
elements like buttons and menu items. Toolbars often group tools according to the
task structure, and “wizards” will typically support tasks that have been identified
as crucial during task analysis.

• The two solution-oriented models, i.e. dialogue and concrete interaction, may be
used for customising the interface, e.g. for tailoring views, toolbars and keyboard
shortcuts.

The RML language introduced in Chapter 4, will be used for classifying concrete interac-
tion objects and modelling their static structure. In particular, the aggregation construct/
part-of relation will be used for modelling the containment structure. The information medi-
ation role will be modelled using the interactor modelling constructs interactor, gates and
functions, and the required containers will show up as interactor resources. The control role
will be modelled using Statecharts constructs, and the alternative interpretation of aggrega-
tion as composition of dynamic state will be used for suggesting the Statecharts structure.

The model in Figure 94 shows the main abstract interaction object classes, based on distin-
guishing between different roles in the container-part structure. Looking down the hierarchy
we distinguish between those that do (CONTAINER) or do not (SIMPLE) contain other DIA-
LOGUE ELEMENTS. Looking up we distinguish between those that are (PART) or are not
(FRAME) contained in another DIALOGUE ELEMENT. We see that a PART may be ENABLED or
DISABLED, corresponding to two states, as shown in the right diagram. Although not
expressible in RML, the DISABLED state means that the dialogue element and its parts
ignore user actions like mouse clicks. This container-part structure is most evident in win-

1. It can be argued that a user interface should not only know the underlying domain, but also its own functionality and
behavior, e.g. to support interactive help. This represents a kind of self-reference that may complicate the interface and
presents an extra challenge for the designer.

URN:NBN:no-2353

122 Chapter 6 Concrete interaction

dow-based user interfaces, since it usually maps directly to the spatial structure. However,
other interaction styles can be interpreted in terms of these classes, e.g. by temporal
sequencing.

Specific classes of CONTAINERS may limit the kind of PARTS they may contain and certain
kinds of PARTS may only be contained in certain CONTAINERS. In Figure 95 we have mod-
elled the special CONTAINER called FRAME that is used as top-level window of most applica-
tions. This kind of window usually provides means of minimizing, maximizing or returning
to the normal state, and this is expressed right in the figure using a selection transition lead-
ing to corresponding states. According to the model, a FRAME is a CONTAINER that may
contain a MENUBAR and a TOOLBAR, and must contain one or more PANES. In addition,
MENUBARS, TOOLBARS and PANES, must be contained in FRAMES, and cannot be contained
in other kinds of CONTAINERS. Since this entails that a FRAME cannot directly contain other
DIALOGUE ELEMENTS than MENUS, TOOLBARS and PANES, other DIALOGUE ELEMENTS must
be placed within one of the FRAME’s PANES. Such constraints may both be due to technical
limitations built into toolkits or to design conventions. It is often technically impossible to
include MENUS in other CONTAINERS than FRAMES, and while TOOLBARS may technically
be PANES, they should be attached to the border of FRAMES, and hence must be immediately
contained within them. Since our goal of modelling concrete dialogue is to support design,
it may be desirable to include both kinds of constraints, technical and design rules, in our
model.

The overall goal is to capture the meaning of concrete dialogue composition in general, to
support composition of interactors. The model in Figure 94 is a start, since it defines the
basic containment structure. As discussed and shown in Figure 95, additional composition
constraints may be given. However, there are other attributes of DIALOGUE ELEMENTS that
constrain composition, in particular their location, size and layout. While size is an attribute
of an element alone, location and layout are relative to other elements, and to fully model

Figure 94. Dialogue container and element parts

Enabled Disabled

Part

Part
Enabled

Disabled

Frame

Dialogue
ELement

ContainerSimple

Figure 95. Frame and pane containers

Frame

Pane

Menubar

Toolbar Container

Normal Mini-
mized

Frame

Mini-
mizedS

URN:NBN:no-2353

6.3 Simple interaction objects 123

this, we need to introduce concepts like bounding boxes, an algebra for boxes and classes of
layout strategies. The right state diagram in Figure 95, models additional size-related
behaviour of FRAMES, where three states, NORMAL, MINIMIZED and MAXIMIZED are distin-
guished. These states all reflect a certain (strategy for determining the) size, and can be uti-
lised when composing DIALOGUE ELEMENTS. Similarly, many DIALOGUE ELEMENTS provide
various ways of gracefully adapting to space constraints, such as label truncation and scroll-
ing. Although all these concepts complicate dialogue composition, they provides fairly
good support for reasoning about composition, and hence support for interactor composi-
tion.

6.3 Simple interaction objects
In this section we take a look at the standard simple interaction objects typically found in
GUI builders, toolkits and object-oriented frameworks.

6.3.1 Labels and icons

The text label concrete interaction object is used for most short and static texts in a user
interface, like attribute names that proceed text input fields. One possible model of the text
label interaction object is shown in Figure 96. According to this model, a text label consists
of a 1) label string, 2) a font (specification) including the font family, size and bold and
italic flags, and 3) two colours, one for the text itself and one for the background. This
model is richer than the example in Figure 93, and is a better approximation of modern
toolkit implementations, like Java’s JLabel swing class.

In most cases, the label string itself carries most of the information for the user, and has a
dual use. First, it represents some datum in the domain of discourse, e.g. a name, date or
numeric value. Second, it may refer to elements of the underlying model, e.g. concept/class,
relation and attribute names, as an aid for making the interface easier to understand. The lat-
ter use is interesting since it highlights the user interface model as a source of output infor-
mation, as discussed in Section 6.2.

While the label string is considered the main part of the text label, the text label’s relations
and attributes represent a considerable state space that can be utilised for e.g. classification
purposes. The interactor model at the right illustrates this point, where three colours and

Figure 96. The text label concept and interactor

Text Label

Font

Color

fore-ground

background

{}

Family
Size
Italic?
Bold?

Yellow

Red

Green

label string

Element output

Element2
String

Y

R

G

I
~I

B
~B

Element

URN:NBN:no-2353

124 Chapter 6 Concrete interaction

each of the two boolean attributes are represented as and-composed states. The transitions
may e.g. be controlled by how the output/receive ELEMENT value is classified into speciali-
sations of a general concept, where each group of states may represent one disjoint speciali-
sation. Consider a three-axis classification of a process state, into either Normal, Abnormal
or Critical, either Cold or Warm, and finally whether the rate is Increasing or Decreasing. If
quantitative measurements are represented by the label string, the class membership may be
mapped to each of the state groups, with Normal, Abnormal or Critical mapped to the three
colours, Cold or Warm mapped to bold on/off and Increasing or Decreasing to italic on/off.
In an even more extreme model, the colours would be modelled by three orthogonal colour
components, which each representing one class membership. The point is not that this is a
good design choice, but rather that even the simple text label interaction object provides a
state space augmenting the label string, that may be fruitfully utilised when implementing
an abstract interactor.

A similar reasoning can be applied to sets of related icons. Each icon may be modelled as an
or-composition of colour states, like for text labels. A set of related icons may similarly be
or-composed with each other, and finally and-composed with the composite colour state,
giving a total state space of #icons times #colours. Icons are often combined with labels,
and it might seem that the label discussed above could be (and-)composed with an icon, to
give a total state space of #label states times #icon states. However, when composing con-
crete dialogues and state spaces with “physical” attributes like bounding boxes and colours,
we should consider whether merging would make more sense:

• If the two parts, the label and icon, are supposed to represent one element in the
domain, it seems reasonable to always use the same (background) colour

• Alternatively, if the label and icon represent independent domain elements, they
should themselves be independent, and an and-composition seems reasonable.

This example shows that composition of concrete interaction objects is not as simple as the
abstract model suggests, and that the concrete and “physical” aspects of the elements pro-
vide natural constraints for composition that must be considered.

6.3.2 Buttons
While text labels and icons are used for presentation only, buttons are interactive and can be
used for input. The basic behaviour of buttons is the switching between the released and
pressed states. When used for control purposes, the transition is typically triggered by a
hardware button, e.g. left mouse button, the return key or a special physical knob. The two
states may also be used for information mediation, where the pressed and released states are
mapped to the boolean values true and false, respectively, e.g. based on an attribute value,
element classification or the presence of a relation.

To understand the basis for the functionality of buttons, we again start with a model of the
static structure, as shown left in Figure 97. A BUTTON contains either an ICON or a TEXT
LABEL, as well as a border of which there are (at least) three kinds. This means that for pres-
entation purposes, the BUTTON’s maximum state space is the states of the border and-com-
posed with an or-composition of the ICON and TEXT LABEL, i.e. a considerable state space.
At a minimum, the BUTTON needs two states to distinguish between the two boolean values,

URN:NBN:no-2353

6.3 Simple interaction objects 125

while in practice, some additional intermediate states are used for user feedback. The right
model in Figure 97 shows one possibility, including the presentation-oriented states INTE-
RIOR and BORDER. These are driven by the CONTROL states, which limit the allowed state
sequences to those providing the desired interactive behaviour. The PRESS state/condition
resource in turn drives the CONTROL state and provides the link from some external state,
e.g. a mouse, keyboard or other physical button. In the typical button implementation, the
PRESS resource is bound to left-button and space-bar keystroke, the latter requiring that the
button has the keyboard focus. The typical state sequence is INACTIVE, ACTIVE.RELEASED,
ACTIVE.PRESSED, ACTIVE.RELEASED and INACTIVE. This corresponds to moving the mouse
pointer over the button element, pressing and releasing the mouse button and moving the
pointer away. By adding appropriate events and conditions to the transitions in the CONTENT
and BORDER states, variants of the basic look & feel may be implemented.

Two basic look & feel variants of the button are normally provided. In the first variant, the
border is instantly raised after the button is pressed, returning to the released state. This var-
iant is mainly used for control, by triggering other transitions when reentering the
ACTIVE.RELEASED state. The pressing of the button can be seen as an utterance or act, e.g.
“Save”, directed towards the application or the context of the button, e.g. the current docu-
ment. In the other variant, the button represents a boolean value that is toggled/inverted
when the button is released. The button will remain in this new state until either pressed
again or manipulated by the application. The button in this case reflects a state of the
domain, e.g. the boldness attribute of a region of text, and pressing it means changing this
state. If the context of the button is changed e.g. by moving the text cursor or selecting a dif-
ferent region of text1, the button must be updated to reflect the state of the new context.

1. In a text field or editor, a normal text cursor is normally interpreted as an empty selection.

Figure 97. Button structure and states

Button Text
label

Icon

Border {} lowered

raised

none

Button

off on

interior

border

control

press

raisedlower
ed

passive
released

enter

exit

active

pressed

press~press
none

URN:NBN:no-2353

126 Chapter 6 Concrete interaction

The interpretation of these two vari-
ants as either control- or information-
oriented, should be reflected in the
corresponding interactor model. The
control case is shown right in
Figure 97, while the information
interpretation can be indicated by
adding output/receive and input/send
gates. The input/send gate’s tip must
be connected using a complement
connection to its own base, as shown
in Figure 98. Table 7 shows the state
correspondences for one observed
implementation of this variant.1

This classification as either control- or information-oriented button can however be mis-
leading. As an act, the control case should be similar to speaking/uttering the button label,
which is better modelled as input of the information contained in the utterance. Hence, in
the case of the “Save” button, we should model this by adding an input/send gate emitting
the “Save” act, as shown in Figure 98, and receive this act value some other place in the dia-
logue model, as discussed in Section 5.6. The information-oriented model of the boldness
button may similarly be misleading, since both computing the current state and changing it
may be complex operations, requiring the creation and modification of many elements. For
instance, setting the boldness of the two middle words of “this partly italic string” to true,
may require both creating a bold region for “partly”, a bold italic region for “italic” and
shrinking the existing italic region to only contain “string”.2 Hence, pressing the button
should be considered a considerable act.

6.3.3 Popups dialogs, dropdown listboxes and menus

Menus and dropdown listboxes are special purpose composite interactors that implement a
neat way of quickly accessing functionality without using too much screen space. Menus
are typically used for providing access to the main application functions and are often hier-
archical, i.e. the menu items are themselves menus. Dropdown listboxes are used for select-
ing one of many values, where the set of possible values may be dynamic and large. Both

inactive active.released active.pressed

true
interior.off
border.lowered

interior.off
border.lowered

interior.on
border.lowered

false
interior.off
border.raised

interior.off
border.raised

interior.on
border.lowered

Table 7. Button control and presentation state correspondences

1. Visio Professional 5.0 on Windows 2000
2. A region is a (sub)sequence of characters with specific attributes, and are easier to handle if they are non-overlapping.

Hence, setting attributes of arbitrary regions may require creating, merging and deleting regions.

Button

toggle

interior

border

controlgates

press label

Figure 98. Boolean toggle (left) and act button (right)

 ButtonSave

URN:NBN:no-2353

6.3 Simple interaction objects 127

menus and dropdown listboxes are instances of the more general popup dialogue, where a
trigger is used for temporarily activating another dialogue. Figure 99 (left) shows how a
date field may be set by popping up (or dropping down) a complex calendar dialogue. This
date interactor consists of a value part, which is itself an editable text field, a trigger and the
popup dialogue, shown here in the active state.

Both menus and the dropdown listboxes are compositions of a trigger part and a selection
part, where interacting with the trigger makes the selection part ready for accepting a selec-
tion, as shown in Figure 100. Although their look & feels are similar, the interactor signa-
ture of dropdown listboxes and menus are different, since the former is used for inputting
data and the other for invoking actions. The model in the figure corresponds to the drop-
down listbox, while to model a menu, the items would be a set of acts, and the selected act
would be invoked, i.e. the input/send gate would be an act invocation. This is an example of
the difference between dialogue and concrete interaction: The latter is the implementation
of the former and similar implementations may correspond to very different functionalities.
The similarity unfortunately makes it easy to abuse these two element types, e.g. use drop-
down listboxes for act invocation. Note that according to the interactor signature, dropdown
listboxes can be used to select an act element without invoking it, e.g. to specify an act as an
element for later invocation by a higher-order function or scripting machinery.1

The POPUP DIALOG interactor model shown right in Figure 99 is a generalised variant of the
POPUP SELECTION interactor, i.e. it represents a generic popup dialogue. The interactor is
heavily parameterised, including the popup and trigger interactors as resources, as well as
resources that relate to these two sub-interactors. By providing calendar and arrow button
interaction object parameters, in addition to a set of months and a triggering state, the popup
calendar shown left in Figure 99 may be released.

The way that the menu trigger activates a hidden dialogue, is similar to other popup dia-
logues, like Open... and Save... dialogues, but there is one important difference: The func-

1. As discussed in Section 5.6 and above, the difference between selecting a new and different value for an attribute and
invoking an act for setting the attribute, is not that clear-cut. The main point is that the user doesn’t expect dramatic
things to happen when operating a dropdown listbox, while invoking an act is a more explicit request with potentially
dramatic consequences.

trigger

popup

value

Figure 99. A popup calendar.
• Left: concrete interaction object
• Right: generalised interactor model

Popup dialog

Trigger

hidden

~trigger.trigger

trigger.trigger

is Popup

Elements

or

is

Popup Trigger trigger

URN:NBN:no-2353

128 Chapter 6 Concrete interaction

tionality of menu items is limited, since it must be possible to both trigger and operate them
using a single device or event, typically a mouse button press, move and release. This
means that in general, menu items essentially are various kinds of buttons, e.g. boolean but-
tons, act buttons and sub-menu triggers. The model in Figure 98 includes this triggering
event explicitly in the form of a state resource.

Thus, a menu represents a composition of a trigger button and a set of item buttons, where
both control and layout is coordinated. The composition of the control aspect must ensure
that the trigger button activates the set of item buttons and that these reacts in a coordinated
manner. The layout must support the presentation of a uniform set of elements, e.g. a one-
or two-dimensional grid. However, the button model shown in Figure 98 cannot be used
directly for menu items, because of the way they are activated during a mouse drag.
Figure 100 shows an alternative menu item model, where conditions are used for triggering
transitions, rather than events. As can be seen, the button model will enter the PRESSED state
only when the press event occurs within the button, while a menu item will enter the
PRESSED state whenever the within and press conditions are both true. Hence, dragging the
mouse across several menu items will activate the pressed state of each item in turn.

Some menus support a mode of interaction, where the selection part remains open if the
mouse button is released while still within the trigger. The selection may then be operated
while the mouse button is released, with the menu items being activated as if the press con-
dition still was true. This leads to a second difference between buttons and menu items: The
menu item must give the same feedback for the active state as the button does in the pressed
state. Alternatively, the press state resource must remain true until the mouse button is
released outside the trigger. A similar behaviour may be observed for the set of top level
trigger buttons in the menu bar: Once one trigger is activated by a press, the others will
become activated just by passing the mouse button over them.

As shown in the figure, each menu item emits an act event, which is the result of interacting
with the menu as a whole. In case of checked menu items, this act must toggle the state of
the corresponding item button, while for dropdown menus, the menu trigger label should be
set to the selected value.

Figure 100. Popup selection and menu item interactors

Popup selection

Trigger
button

hidden

~trigger.active

trigger.active

List

Items

Menu item
control

press

passive
released

[within]

~[within]

active

pressed

[press]~[press]

interior

border

URN:NBN:no-2353

6.4 Composite interaction objects 129

The presented menu model is not be a complete and precise model of real-world menus, e.g.
it does not take into account keyboard navigation. However, it illustrates several important
points:

• Special purpose interactors may be modelled as tightly coupled simpler interactors,
as exemplified by the trigger and item buttons.

• Composition if interactors requires careful consideration of how each part contrib-
utes to the overall behaviour, as illustrated by how menu items differed from but-
tons.

• Abstracting away the details of the parts, may prevent the integration needed for
achieving the desired behaviour. For instance, the interactor signature of buttons
was too abstract for the purpose of using them as menu items, as we needed access
to their inner states.

Menus have a special role in desktop user inter-
faces, as it the main repository of predefined acts.
The menubar is the main container for menus,
which may contain either acts (buttons) or other
sub-menus. As Figure 101 shows, there are few
constraints for how the menu hierarchy is com-
posedcomposition. Hence, it is easy to add or
remove acts from this kind of container. In prac-
tice, there are two limiting factors: 1) The user
will have problems navigating in deep structure or menu with many entries, and 2) there are
conventions for naming and positioning menus, as well as populating them with acts.

6.4 Composite interaction objects
Dialogues may be composed in several ways, depending on space and time requirements for
the new dialogue. The dropdown listbox discussed above is an example of an element
designed for using less space, but trades ease and speed of operation by introducing the trig-
gering step for activating the main interaction object. It is expected that different user inter-
face and interaction styles support composition in different ways and according to different
formal and informal rules. According to the abstract dialogue/interactor model, any interac-
tor has properties related to information, control and structure. Hence, composition of inter-
actors may be discussed in terms of how the information, control and structure properties
are derived from its the corresponding properties of the parts. By analysing typical interac-
tor structures for a particular interaction style, heuristics for composition may be estab-
lished.

6.4.1 Composition of function

The composition’s functionality, i.e. interactor gate and resource signature, may be more or
less directly derived from all or some of its parts. In some compositions, most of the parts

Menubar

Menu
item

Menu Act

Figure 101. Menu aggregation/part
structure

URN:NBN:no-2353

130 Chapter 6 Concrete interaction

are used for controlling or supporting a main interaction object, the gates of which are con-
nected to the composition’s gates. Figure 102 shows how a specialised integer device may
be composed from smaller parts. The concrete interaction object is shown top left. Recall
from Section 5.2.1 that a device is an interactor with only input/send and output/receive
gates, with the same type. I.e. an integer device both outputs an integer and lets the user
input one.

The integer device is built around a main integer interaction object, in the example shown as
an integer text field holding the number 8. As shown in the model at the right, its output/
receive and input/send values are also the values of the composition’s output/receive and
input/send gates, and all the other elements support various ways of changing this value.
The composition supports three ways of changing the value in each direction. Two INTEGER
BUTTON interactors are used for setting it to the minimum (1) and maximum (10) values,
while two pairs of arrow buttons support single- and multi-stepping in each direction. The
integer button implementation is shown bottom left in the figure. The output/receive value
is used to set the button label, and the same value is emitted through the input/send gate
when the button is activated. The two pairs of arrow buttons are modelled as act input
devices (only one pair is shown), named “<“ and “<<“ for single- and multi-step. I.e. they
emit act elements, which in the right model in Figure 102 are used to trigger corresponding
functions which compute the new integer value.

The composition of information flow is shown right in Figure 102. The output/receive and
input/send values of the composition is fed in and out of the inner INTEGER text field inter-
actor. The input/send value is in addition fed through two stepping functions, the action of
which are triggered by corresponding buttons (only two of the four arrow buttons are
shown). The two INTEGER BUTTON interactors at the bottom, directly set the output/receive
value of the main INTEGER interactor to the minimum and maximum values that are pro-
vided as interactor resources. In this particular example, there is only one main value inter-
actor, the value of which is manipulated by the other parts. Such a composition is typical for

Figure 102. Integer (within interval) device
• Top left: concrete interaction object
• Bottom left: Integer button interactor
• Right: Composed integer device

8 101

Interval interactor

min

Integer
button

max

Integer
button

integer

integer

Integer

<<

<<<< <<

<
Integer button

Button

labeli2s

URN:NBN:no-2353

6.4 Composite interaction objects 131

values with a limited domain or a small set of relevant movements within the value space,
like stepping and jumping to the extreme values, as in this case.

In other compositions, each interaction object con-
tribute one of many essential data values, which are
combined into a composite value. The typical case is
a record or object with a set of fields that must be
filled in by the user, like a date composed of year,
month and day. An interactor for a record value will
be composed of interactors for each field, as illus-
trated in Figure 103, e.g. interactors for year, month
and day parts in the date value case. As shown in
Figure 103, the input/send values of each sub-inter-
actor would be connected to the input/send gate of
the composition, which would construct the compos-
ite value from the parts using an appropriate function, before emitting it. The output/receive
values of each sub-interactor would similarly be connected to the output/receive gate of the
composition, and each connection would include a function for extracting the field’s value
(this is not shown in the figure). These two styles of composition may of course be com-
bined. For instance, the integer interactor shown in Figure 102, could with appropriate min-
imum and maximum values, be used for all the parts of the date interactor.

By including sub-interactors of an interactor as parameters in the resource bar, we may
allow the context where the interactor is used to customise the interactor’s appearance and
behaviour. For instance, to allow presenting the minimum and maximum values of INTEGER
INTERACTOR in Figure 102, as roman numerals, we could include both the INTEGER BUTTON
sub-interactors as parameters in the resource bar of INTEGER INTERACTOR. When using
INTEGER INTERACTOR in a new context, we may bind these parameters to interactors that
output integers as roman numerals instead of arabic. A similar technique is used by the Java
Swing library, to allow a customisation of composite interaction objects. For instance, the
JTree component, which is used for presenting hierarchical object structures, may be given
a renderer component that is responsible for outputting each element in the hierarchy.1 The
JTree implementation will give this renderer each visible object in turn, and ask it to paint
the object at the appropriate position. If no renderer object is explicitly provided, a standard
JLabel component is used. The interactor corresponding to the JTree interaction object is
shown in Figure 104. As in Figure 66, Section 5.2.3, the model expresses that the interactor
may output hierarchical structures and support the selection of a leaf node. In addition, a
RENDERER parameter is included, which is bound to a JLABEL interactor by default. It is
explicitly stated that the RENDERER must be able to output any node in the hierarchy. If edit-
ing was to be allowed, the Renderer parameter would in addition need to include an input/
send gate. Although the model does not express exactly how the JTREE interactor uses the
provided parameter internally, the model does express the essential capabilities that the
parameter must provide.

1. Actually, a (different) renderer may be provided for each object in the hierarchy.

field1
field2
...
fieldN

Fill-in fields

field1

field2

fieldN

...
compose

values

Figure 103. Composing an input device
for a set of fields

URN:NBN:no-2353

132 Chapter 6 Concrete interaction

6.4.2 Composition of control

In the model shown in Figure 102, all the interaction objects were and-composed, as is typ-
ical for small-scale window-based dialogues. Alternative compositions may be appropriate
for different dialogue or interaction styles. Suppose we want to design a user interface for
performing the task of moving a mail message to a mailbox or folder. A simple solution is to
provide two selection interactors, populated with mail messages and mailboxes or folders,
respectively. The user may invoke the move function using an act interactor. An interactor
for this task would take the message and mailbox or folder sets as output/receive values and
emit the move act as the input/send value. A task model and a high-level interactor model is
shown in Figure 105. The sequence constraint in the task model is not a necessity, but has
been chosen because it represents the typical way of performing the task. From the task
model it can indeed be seen that we will need two interactors, one for providing or selecting
the message and one for the mailbox. Note that this interactor model does not enforce the
sequence constraint expressed in the task model, nor does it explicitly state at what point the
function is invoked based on its two inputs.

At this point, the interactor model is independent of any design target, so the next design
step would be to choose an interaction style for the interface, and refine the interactor model
accordingly. Since the functionality of a listbox corresponds to the selection interactor, as
discussed in Section 5.2.2 on page 91, we could design a straight-forward solution with two
listboxes populated by the set of possible values for each argument type. One design sug-
gestion shown left in Figure 106, may place the two listboxes and an “OK” button in a win-
dow. The user is supposed to select the message and the mailbox in respective listboxes and
press the button to perform the desired action. We have included a containing window and a
function mapping from element to string representation, as listbox resources, to indicate the
requirements of the listboxes with respect to the context it operates within. The composite
interactor provides the window resource through its own resources list, and binds the map-
ping functions to the specialised functions MESSAGESTRING and MAILBOXSTRING appropri-

Figure 104. JTree interactor with renderer interactor parameter

Show hierarchy and
allow selection of

element

JTree

Leaf

Element

∈

Node

Interior

RendererNode

∈

JLabel

URN:NBN:no-2353

6.4 Composite interaction objects 133

ate for the respective data types. The “OK” button is also shown in this figure, and is
assumed to have a state named ACTIVE.RELEASED which is entered (>) after pressing it, as
shown in Figure 97.1 Note that these three interaction objects are implicitly and-composed,
since none are connected by transitions. A second more sequential design suggestion should
also be considered. The two listboxes may be activated in turn before the act is triggered,
and to avoid errors navigation back and forth between the listboxes may be supported. A
model of such a dialogue is shown right in Figure 106. It includes the same two listboxes
and adds buttons for navigating between the listboxes. Note that the information flow is
unchanged, only the control/activation structure is different.

These two possibilities results from the underlying modelling concepts and constructs of the
dialogue/interactor modelling language. For this to be meaningful in the concrete interac-
tion perspective, both kinds of composition must be given a natural interpretation in terms
of the concrete resources used by the interactor parts, in this case WINDOWS and DIALOGUE
ELEMENTS. As shown in the RML model of these concepts in Figure 94, there is an aggrega-
tion relation between WINDOWS and DIALOGUE ELEMENTS, which naturally corresponds to
parallel composition. Since the cardinality has no upper bound, it seems that we can com-
pose an unbounded number of DIALOGUE ELEMENTS in a WINDOW. This may be a fair
approximation for some window types, e.g. scrolling frames. However, a deeper model with
concepts like bounding boxes, layout, scrolling and resizeability would reveal that different
design targets have different practical limitations. In the case of small fixed-sized panes this
could either be handled by using the same parallel composition with different smaller-sized
interaction objects, e.g. dropdown listboxes, or moving to the alternative wizard design.

The sequential design is based on activating and deactivating the interactors, and assumes
that the state interpretation is supported by the runtime, through dynamic manipulation of
the part-of relation between the WINDOW and DIALOGUE ELEMENTS. In more practical terms,
this means either removing DIALOGUE ELEMENTS from the WINDOW, or making them invisi-
ble, hence allowing several DIALOGUE ELEMENTS to share one WINDOW. An intermediate
solution is actually possible, as the “Disabled” state of the DIALOGUE ELEMENTS, i.e. disa-

1. In the figure, the two selection interactors are shown as stereotyped listboxes with gates, and the act trigger as a push
button. This is a useful hybrid notation which mixes abstract behavior with concrete interaction.

Move Message to Mailbox

Mailbox Message

Provide
Message

Provide
Mailbox

Figure 105. Task and dialogue model for moving messages among mailboxes

Mailbox

Message

Move Message to Mailbox

Mailbox

Message

Select Message

Select Mailbox

Message
moved

URN:NBN:no-2353

134 Chapter 6 Concrete interaction

bling instead of removing the dialogue, can give the same effect of sequential activation.
However, this would violate the wizard style and give no reduction in space requirements.

Apart from the overall structure, there are two smaller differences between the left and right
designs in Figure 106: 1) the use of “Next” and “Back” buttons for switching between
states, and 2) the label used for the committing button, “OK” and “Finish” respectively. The
first difference can be attributed to the structure, i.e. some event or condition is needed for
triggering the two transitions. The second difference is due to the “wizard” interaction style
which requires a clear indication of commitment.

6.4.3 Composition of structure

The third aspect of an interactor is the containment structure and the relation between inter-
actor characteristics at different levels in the hierarchy. In the context of window-based
interaction objects, this concerns how interactor resources are shared and divided between
sibling interactors, based on the resources provided by the parent interactor. This is partly
dependent on interactor and state machine composition, but is also highly dependent on the
concrete interaction objects. In the example shown in Figure 106, both the listboxes require
a containing window and this window is provided through the resources of the containing
MOVE MESSAGE TO MAILBOX interactor. In the case of the left design suggestion, the list-
boxes are active at the same time and hence require non-overlapping window areas. In the
right design suggestion, the listboxes are or-composed and mutually disjoint, and hence can
share window space. In both cases, the button(s) must also be allocated space in the win-
dow. Again, the main principle is that and-composed interactors must have non-overlapping
bounding boxes, while or-composed ones may share window space. There are however,
exceptions to this rule. It is not uncommon that all dialogue components at one level in the

Move Message to Mailbox

Listbox

Listbox

OK

>Move.active.
released

window f

window f

MessageString

MailboxString

window

Element 1
Element 2
Element 3

Element 1
Element 2
Element 3

Figure 106. The two Listbox designs: Left: dialogue box, right: wizard style

Move Message to Mailbox

Listbox

Listbox

Finish

Next

Back

>Next.Released>Back.released

>Finish.released

Element 1
Element 2
Element 3

Element 1
Element 2
Element 3

URN:NBN:no-2353

6.5 Direct manipulation and mouse gestures 135

interactor hierarchy are laid out together, whether they are and- or or-composed. Activating
or deactivating a component is either mapped to hiding/showing or dimming/highlighting it.
This makes the layout more stable, since hiding or showing an element will no change the
layout. Most modern object-oriented toolkits provide layout managers which are responsi-
ble for computing the position and dimensions for each component. In the example in
Figure 102, all the sub-components occupy the same container, with a horizontal left-right
layout. Such a simple layout may be formalised using two dimensional interval algebra
[Mukerjee, 2001]. To model complex layout strategies including wrapping and standard
layout tools like alignment and distribution, we must introduce side-effects, iteration over
sets of boxes and conditions/guards.

In the example shown right in Figure 106, each interactor was implemented by distinct list-
boxes. However, since these two interactors were or-composed, they could actually be
implemented by a single concrete listbox. This single listbox would be populated by differ-
ent sets of data, depending on which interactor was active, and the current selection would
flow out of the corresponding input/send gate. In this case, the MOVE MESSAGE TO MAIL-
BOX interactor would require a listbox as a resource, and this listbox would be provided to
the two selection interactors. In the general case, each interactor could require specific con-
crete interactors to handle the concrete interaction of themselves and their sub-interactors.
High-level interactors would require larger dialogue structure, i.e. instances of models like
those shown in Figure 94 and Figure 95, which would be divided or shared among their
sub-interactors, depending on the stated resource requirements, compositional structure and
control logic. The hierarchy of concrete interaction objects would provide a solution within
the concrete interaction perspective, of the hierarchical specification of abstract interaction,
as suggested by the framework shown in Figure 11 in Chapter 3, “Design and representa-
tion”.

6.5 Direct manipulation and mouse gestures
The previous sections showed how window-based interaction objects could be modelled
and analysed in terms of composition of interactors. The correspondence between the
abstract interactor model and the concrete interaction objects is quite easy to establish. The
rules for composition are relatively simple, as they are based on the language primitives and
2-dimensional surface layout. In this section we put our focus on the richer interaction of
direct manipulation and mouse gestures.

To introduce the various aspects of mouse gesture recognition in the context of direct
manipulation, this section presents a mouse gesture example. This kind of mouse gesture is
found in most desktop interfaces to file systems, and this particular variant is found in
Microsoft’s Active Desktop™. Table 8 illustrates and explains the main steps of the gesture.

This example reveals several important points about gesture recognition in general:

• The gesture was sensitive to the file and folder icons, i.e. a gesture can depend on
the set of displayed elements.

URN:NBN:no-2353

136 Chapter 6 Concrete interaction

• The gesture recognised the relation between mouse pointer position and icon area,
i.e. a gesture must be able to detect display element hits.

• The feedback included changing the cursor, highlighting displayed elements and
displaying copies of displayed elements, i.e. a gesture must be able to give visual
feedback.

• The gesture is completed by emitting an act, which is received by (an interface to)
the operating system.

The Active Desktop™ interface support two related gestures used for opening files and
applications and moving file icons. The relation between these three gestures, identify some
further points:

• If the mouse button was released outside of the folder icon, the file icon would
move and not the file itself, suggesting that a different command was issued.

• If the mouse button was released before having moved the file icon at all, a third
command would be executed, suggesting that not only the release target mattered,
but also the release timing.

Step User action Feedback
The mouse
pointer starts
outside both
icons.

The mouse pointer is
an arrow and no icon
is highlighted.

The user moves
the mouse
pointer over the
file icon.

The mouse pointer
changes from an arrow
to a hand and the file
icon is highlighted.

The user
presses the left
mouse button
and moves the
mouse pointer
towards the
folder icon

The mouse pointer
changes to an arrow
and a dimmed (copy
of the) file icon fol-
lows the mouse
pointer.

The user moves
the mouse
pointer over the
folder icon.

The folder icon is
highlighted.

The user
releases the left
mouse button.

The feedback is
removed, the Move
file to folder command
is executed and the
desktop is updated.

Table 8. Move file to folder gesture

URN:NBN:no-2353

6.5 Direct manipulation and mouse gestures 137

We have chosen to model the meaning of gestures as acts or commands as used in CLIM
[Rao, 1991], as opposed to a state or side-effect oriented one, as used in Garnet [Myers,
1990b]. In the former model the meaning of the gesture is only suggested by the feedback,
the actual semantic interpretation is implemented by a function outside the gesture recog-
niser, which is activated when the gesture (recognition) is completed. This gives a cleaner
separation of user interface functionality, and provides better support for e.g. macro record-
ing and scripting.

The gesture example and the two variants described above, demonstrate three important
points:

• The actual act that is issued is not necessarily determined until it is emitted, i.e.
after the last gesture step.

• The act parameters can be a function of several aspects of the gesture, e.g., mouse
position of button release, display elements that are hit when pressing or releasing
the button or the objects that these represent.

• The actual gesture aspects that are used as act parameters, can be determined both
at the same time as the act and not before.

The next section will introduce our approach to modelling the identified aspects and its role
within an application and its user interface.

6.5.1 Structure of recognisers

The previous section identified several important features needed in a gesture recogniser,
e.g. cursor feedback and highlighting, hit checks, commands and their parameters, mouse
handling, presentation and display elements. Figure 107 shows an RML model of these
aspects and elements.

The main features of Figure 107 are the hierarchy of GESTURES, the set of GESTURE parts
and their relation to DISPLAYELEMENTS. A generic GESTURE has a set of STEPS and MOU-
SEGESTURE additionally includes a MOUSE, KEYBOARD, HITCHECK and FEEDBACK.
DRAG’NDROP is a MOUSEGESTURE, for dragging from a source DISPLAYELEMENT to a tar-
get DISPLAYELEMENT. Our example gesture, MOVE FILE TO FOLDER, is a DRAG’NDROP
gesture. The FEEDBACK part can use VISUALS for feedback, while HITCHECK will indicate
which of the VISUALS it checks for hits on. The VISUAL concept provides the link to the
underlying application data, and is either an ATTRIBUTE or ELEMENT visual. The represents
relation is used to navigate from the visual layer to the underlying elements of the domain.

URN:NBN:no-2353

138 Chapter 6 Concrete interaction

The MOUSE and KEYBOARD con-
cepts refer to physical devices gen-
erating events and basic bits of
information, that drive the gesture
recognition machinery. Figure 108
expresses that MOUSE contains
BUTTONs, which can be either up or
down, two kinds of CURSORS, and
finally EVENTS, which have x and y
attributes for recording mouse
coordinates. EVENTS are of two
kinds, BUTTON and MOTION. The
difference between this model and
the one in Figure 76, is due to the
richer interaction provided by
direct manipulation As with the
static model of dialogue containers

Gesture

Mouse
Gesture

Drag'n Drop

Step

Command

Start

Mouse

Keyboard

HitCheck

Device

Miss

Hit

Feedback

Visual

target

source

Attribute Element

UoD Element

of

represents

feedback

checks-for has-hit
Figure 107. Aspects and elements of gesture recognisers

Mouse

Event

x, y

Cursor

Hand

Pointer

Button Down

Up
Motion

Figure 108. Mouse device

URN:NBN:no-2353

6.5 Direct manipulation and mouse gestures 139

and elements, these models can be interpreted as the state space within which the interaction
model defines the behaviour.

For a user, the behaviour of a gesture recogniser is visible through the feedback generated
during recognition of the primitive device events. In the table describing the gesture exam-
ple, we listed a sequence of steps that were identified by observing the relation between user
action and feedback. For our example, this amounts to five states, one for each step, includ-
ing the initial start state and the command issuing step completing the gesture. The relation
between user actions and feedback, i.e. feedback to the user actions, is modelled by adding
transitions that are triggered and controlled by appropriate (device) events and conditions,
respectively. An conceptual Referent model and a preliminary Statecharts model of the
main steps are shown in Figure 109 and Figure 110.

In the conceptual model, several special kinds of steps including the final move command
are shown, in addition to part of the file system domain. In the state machine, the user
actions performed with the mouse are only illustrated by the transitions. However, accord-
ing to the previous section, the MOUSE referent and its events can be modelled as State-

Step

Start

InVisual

InSource

InTarget

Dragging

Command

Move

Visual

Directory
element

visual

File

Folder

represents

moves

Icon

Figure 109. The structure of the five gesture steps

start inSource

dragging

inTargetmove

over file icon button pressed

over folder iconbutton released

move command issued

Move File to Folder

Figure 110. The behaviour of the five gesture steps

URN:NBN:no-2353

140 Chapter 6 Concrete interaction

charts states and transitions, and similarly for of hit checks and feedback. This will let us
provide a more formal and complete representation of the behaviour, as shown in
Figure 111. The notation “>state” and “<state” is short for “entering state” and “leaving
state”, respectively. The “hit” condition is short for a check for if the mouse cursor is in/on
one of the display elements that the hit state is related to through the checks-for relation.

The states in the top row are concerned with user actions, the unconditional double transi-
tion illustrating that these are controlled from outside the Statecharts machinery. These top
four states drive the transitions in the main state in the middle, which contains states for the
steps of the gesture. The four states at the bottom are concerned with feedback, with one
state for the cursor, two for highlighting and one for dragging icons. All these are driven by
the main state, hence ensuring that the steps are clearly visible for the user.

An important aspect of the dynamic behaviour still remains to be specified, the relations
between hit detection, feedback issued commands and the visual and domain objects these
refer to. Some of these relations are represented as static relations and properties in the
RML model. However, we also need to define when and how these relations and properties
are established, changed and used, as part of the dynamic behaviour.

Among others, we need to specify:

• what display elements the hitCheck states should detect hits on

Figure 111. The Move File to Folder gesture recogniser

start inSource

dragging

inTargetmove

hitSource.hit left.button.down

hitTarget.hitleft.button.up

Move File to Folder

button

motion

button

motion

miss

hit

event left hitSource

>event.
motion
[hit()]

>event.
motion
[~hit()]

miss

hit

>event.
motion
[hit()]

>event.
motion
[~hit()]

hitTarget

pointer

hand

>inSource<inSource

cursor

off

on

>inSource>start

highlightSource highlightTarget

off

on

>inTarget<inTarget

feedbackDragging

off

on

>inTarget<inTarget

hitSource.miss
hitTarget.miss

URN:NBN:no-2353

6.5 Direct manipulation and mouse gestures 141

• how the feedback states get to know which display elements to highlight or drag

• to what values the parameters of issued command are assigned

To handle these aspects, we will take advantage of the fact that in our Statecharts dialect,
states are also Referent elements, and hence can have relations and properties. The action
part of the state transitions will be used to set these relations and properties.

For some states, the relations and properties will be set by other components of the applica-
tion architecture, before entering the states. In our example, the x and y properties of the
button and motion event states are set by the devices, and the has-hit relation of the hit-
Source and hitTarget hit states are established by the presentation component. For other
states, the information is computed from existing relations and properties, as part of the
transitions’ action part, as shown in Table 9.

Compare the model in Figure 111 with the interactor model shown in Figure 112. The latter
contains one interactor for each of the two arguments to the MOVE FILE TO FOLDER func-
tion, i.e. a file and a folder. This interactor represents a straight-forward design for support-
ing the Move File to Folder act, similar to the ones shown in Figure 106. Mapped to the
main gesture steps, each of these sub-interactors corresponds to two of the steps, as shown
in the figure, while the last step corresponds to invoking the act, i.e. applying the MOVE
FILE TO FOLDER function to the file and folder arguments.

The interactor model can be seen as an abstraction of the gesture state machinery, focusing
on the information aspect, rather than the control aspect. We see that the two sub-interactors
provides one act argument each, in sequence, similar to model b) in Figure 106. Alterna-
tively, the interactor may be seen as the functional specification for which this state machine
is a solution in the direct manipulation interaction style. If the target was a wizard style, we
would probably suggest a design similar to model b) in Figure 106. In fact, both the wizard
style design and the direct manipulation gesture include basic states that can be grouped
according to which arguments it supports the selection of. However, the wizard model is
more hierarchical and simpler, while the gesture model is flatter and has a more complex

State Relation/Property Value
hitSource checks-for Move File To

Folder.source
hitTarget checks-for Move File To Folder.tar-

get
inSource visual hitSource.hit.has-hit
highlightSource.on feedback inSource.visual
feedbackDrag-
ging.on

feedback inSource.visual

inTarget visual hitTarget.hit.has-hit
highlightTarget.on feedback inTarget.visual
move file inSource.visual.repre-

sents
move folder inTarget.visual.represents

Table 9. Transition actions

URN:NBN:no-2353

142 Chapter 6 Concrete interaction

control structure. It is possible to make the gesture model more similar in structure to the
interactor and wizard models, e.g. if each icon is modelled as a button, we could compose a
list for each icon type and get a model very similar to the wizard. However, the models have
natural differences due to how different targets styles naturally require different models of
concrete interaction. Some reasons for the differences are:

• The presentation structure is more complex for the gesture case, since the folder
and file icons are spread out with no predefined layout

• The feedback for the gesture is richer and more complex

As noted, the standard interaction objects, e.g. the listboxes and buttons that were used in
the wizard design, are easy to compose, since there are few constraints for how they can be
grouped. They do not compete for other resources than screen space, and this problem is
solved with a suitable layout. If more functionality needs to be integrated, e.g. another act
must be supported, this would be fairly straight-forward. The complexity of the gesture
machinery, on the other hand, makes composition of gestures more difficult. This can be
seen in the model above, where the hierarchical structure of the interactor specification, was
somehow lost in the gesture solution. If we needed to compose several other acts, like the
mentioned MOVE FILE ICON, with MOVE FILE TO FOLDER, the complexity would grow and
the design would be more difficult.

6.6 Composition of gestures
The standard way of composing gestures in a graphical editor or drawing application is
through a toolbar or tools palette. Figure 113 shows an example of a toolbar and an interac-
tor model describing its behaviour. The main idea behind such a toolbar is showing the
available tools and letting the user select one for the duration of the next mouse gesture(s).

Figure 112. Move File to Folder interactor

Move File to Folder

File

Folder

start inSource

dragginginTarget

over
file
icon

button pressed

over
folder
icon

button released

move

act emitted

URN:NBN:no-2353

6.6 Composition of gestures 143

Each tool acts as a mode, since it determines how subsequent mouse presses, movements
and releases will be interpreted. In the figure, each mode is modelled as a state and the set of
available modes are or-composed into the MODES state. The TOOLBAR interactor is used for
mode selection and its input/send value controls the mode or state that is entered through
the selection (S) mechanism of Statecharts.

The alternative and-composition of modes would result in all modes being active simultane-
ously, with severe effects. In the case of the Visio modes shown in Figure 113, the user
would press the mouse and drag out a line, rectangle and circle at the same time. The prob-
lem is that the line, rectangle and circle drawing tools all react to the same mouse gestures,
so the solution is force the selection of one mode to avoid the conflict. By letting the user
freely select a different tool, all tools are in practice available, a kind of composition along
the time axis. The advantage is that each mode can be designed independently, but the dis-
advantage is that the user must constantly switch mode to perform the tasks he wants. The
disadvantage may however be reduced if we can compose more complex modes from sim-
pler ones. If done manually, this can help us make more of the tool functionality available in
fewer modes. If done automatically, this could let us assemble task-specific modes or let the
user select and activate several modes together, i.e. multi-selection of modes.

The mode identified by arrow in the toolbar in Figure 113 is in fact a quite complex mode,
and can be considered a composition of a set of sub-modes for object selection, translation,
rotation and resizing. In Figure 114, simplified models of the sub-modes are shown, follow-
ing the pattern of Figure 110. Note that these models reflect how these would be designed
without consideration of their composition. The SELECT mode detects mouse clicks on
objects and represents the current selection visually for the user. The MOVE and RESIZE
modes let the user drag objects and performs the actual move and resize operations, respec-
tively.

A model of the composite SELECT, MOVE & RESIZE mode is shown bottom in Figure 114.
The user may press the mouse button over an object and drag it to a new position. After
dragging or just clicking on it, the object will be selected and resize handles will be shown.
The handles are used for resizing the object. This model can be considered the result of a
structured process of composition, where several techniques are used for making the result-
ing mode usable.

Figure 113. The Visio 5 drawing tools (top) and interactor model of
toolbar functionality

Mode
selection

Toolbar

S

modes

URN:NBN:no-2353

144 Chapter 6 Concrete interaction

The MOVE and SELECT modes have been integrated, by merging the corresponding states
and transitions. The actions that are executed after the BUTTON RELEASED event triggers the
final transition, have been combined. This direct way of integration is possible since there is
no inherent conflict between moving and selecting an object. I.e. neither the feedback nor
resulting actions conflict. The RESIZE mode cannot be directly combined in the same man-
ner without conflicting with the MOVE mode’s functionality, so it has to be separated in
some way. The chosen technique is that of introducing visual handles, and adding condi-
tions for triggering different transitions into the respective INSOURCE states. The top path of
transitions correspond to the move case, while the bottom path is the resize path.

In the first integration step, the modes could be completely combined, while the second step
resulted in completely separate paths. Something in-between is also possible, since the split
is introduced to handle different cursor feedback for the two cases. If the INSOURCE feed-
backs were the same, we could have moved the splitting of paths past the INSOURCE state. It
is also possible to combine the paths later, if the subsequent actions are the same, but this is
seldom the case since distinguishing feedback should persist until the gesture act is commit-
ted to.

6.7 Conclusion
We have shown how the RML and DiaMODL languages may be used for modelling con-
crete interaction. Two interaction styles have been modelled, the traditional forms-based
style and direct manipulation. In both cases, we have shown how to link concrete interac-
tion to abstract dialogue, to make the transition smooth.

Figure 114. Composition of select, move and resize modes

+ +

=

start inSource

moving

over object

button pressed

button released/
move object

Move

start inSource

resizing

over object

button pressed

button released/
resize object

Resize

start inSourceover object

button released/
select object

Select

selecting

button pressed

start

movingover object & ! over handle/
change cursor

button
pressed

button released/select,
show handles & move object

Select, move & resize

over handle/
change cursor

resizing button released/
resize object

button
pressed

finish

moving.
inSource

resizing.
inSource

URN:NBN:no-2353

6.7 Conclusion 145

6.7.1 Concrete interaction and the representation
framework
RML is designed for modelling the static part of a domain, and has in this chapter been used
for the domain of concrete interaction elements. DiaMODL targets the dynamic part of the
user interface software, and covers both abstract and more concrete interaction elements. In
terms of the classification framework introduced in Chapter 3, RML and DiaMODL have
been used to cover the right part of the solution-oriented perspective, by focusing on the
software solution to a design problem. The models have been hierarchically structured, and
have covered a wide range of the granularity dimension. Both rough and detailed models of
the concrete interaction elements have been made, i.e. the models have formalised aspects
of concrete interaction of varying degree.

Below we will discuss how our usage of RML and DiaMODL in the context of concrete
interaction supports the 6 movements in the design representation space introduced in
Section 3.6:

• Movements 1 and 2, along the perspective axis: From problem to solution and
from solution to problem, respectively.

• Movements 3 and 4, along the granularity axis: From down the hierarchy from
high-level descriptions to lower-level ones, and up the hierarchy from lower-level
descriptions ones to higher -level ones, respectively.

• Movements 5 and 6, along the formality axis: From informal descriptions to more
formal ones, and from formal descriptions to less formal ones, respectively.

The relevant movements within the representation space is between concrete interaction and
abstract dialogue models, up and down the hierarchy of interaction elements, and between
formal and informal representations of interaction.

Movements 1 and 2
DiaMODL has been used for modelling most aspects of concrete interaction, in particular
the external interface of the standard concrete interaction objects. Hence, there is no con-
ceptual gap to bridge in the transition from abstract dialogue to concrete, as was the case for
the transition from task to dialogue. The transition involves matching the requirements of
the abstract dialogue/interactors, i.e. gate interface and internal state space, with that pro-
vided by concrete interaction elements. The concrete interaction objects may require param-
eters that must be provided by the context it is inserted into, like containing windows and
triggering conditions. Usually there will be several different concrete candidates, and the
specific requirements of each may be used to narrow the choice. For instance, a candidate
may only be allowed in a certain context, or may require to much window space.

Many standard concrete interaction objects have been given an interpretation in terms of the
DiaMODL language. An abstract view of a concrete design e.g. made using a GUI builder,
may be derived by using the DiaMODL interpretation of each element, and abstracting
away look & feel-oriented details, like window containment structure and layout.

URN:NBN:no-2353

146 Chapter 6 Concrete interaction

Movements 3 and 4
We have used RML to model the hierarchy of concrete interaction objects that are found in
standard window-based toolkits. The model includes constraints for which interaction
objects that may be contained in others, and hence provides guidelines for how to decom-
pose a concrete element. For instance, a FRAME may include a MENUBAR and several TOOL-
BARS and PANES. Models of more specific dialogue window types may be included and
additional constraints be added, to comply with explicit design guidelines.

The constraints expressed in the RML model of concrete interaction objects may also be
used for introducing containers, i.e. adding levels up in the hierarchy. For instance, a PANE
with a MENUBAR must necessarily be contained in a FRAME.

Movements 5 and 6
Informal representations are typically used the creative phases of design and when commu-
nicating with the end-user. This implies using concrete representations, i.e. representations
that are aligned in perspective dimension with the ones discussed in this chapter. Hence, the
translation from informal sketches to formal models of concrete interaction requires identi-
fying the concrete interaction objects, and using the corresponding model formulated in
DiaMODL. The opposite movement, from formal to informal, involves visualising the con-
crete interaction objects that are referred to in the formal model, e.g. building a GUI popu-
lated with objects that are instantiated from a specific toolkit.

The support of the six movements is in general fairly good. Additional support for move-
ments 3 and 4 may be given part by strengthening the RML model of the concrete interac-
tion objects and the constraints for how they are composed.

URN:NBN:no-2353

147

Chapter 7

Case study
This chapter presents a complete example of our approach to model-based user interface
design, using the modelling languages that have been presented in Chapter 4, “Task model-
ling” and in Chapter 5, “Dialogue modelling”. We illustrate the use of the task and dialogue
modelling languages and the design approach by employing them on a case.

7.1 The IFIP case
In this chapter we illustrate the use of our task and dialogue modelling languages and
approach to design, by employing them on a case, complementing the more fragmentary
presentation of the languages in the previous chapters. We have chosen to use the IFIP
working conference case, a case which previously has been used for comparing and evaluat-
ing IS design methods, including the APM workflow language which our task modelling
language is partly based on. The case concerns how a conference is arranged, and in partic-
ular how the review process is coordinated. The problem definition, as presented in Figure
7.1, p. 226 in [Carlsen, 1997], is shown in Figure 116 on page 149. This (formulation of the)
problem definition is not particularly suited for validating a user interface design method, as
it does not describe the problem of arranging a conference from a user’s or user role’s per-
spective. To be a realistic case of a model-based and user-centred development approach,
we would need access to real users, performing realistic tasks in a real environment. How-
ever, by taking the APM case study from [Carlsen, 1997] as a starting point and interpreting
it based on our own experience with the reviewing process, we are able to illustrate our
modelling approach and languages, and use it for discussing task and dialogue modelling in
general and its relation to workflow in particular.

In Figure 12 on page 29, we suggest that workflow and task models essentially view a prob-
lem with the same problem-oriented perspective, but at different levels: Workflow is con-
cerned with how actors within an organisation cooperate in reaching business goals, while
task models focus on individual actors or small groups, and the tasks they perform to pursue
their individual goals. This was part of the motivation for basing our TaskMODL language
on APM, as described in Chapter 4, “Task modelling”. In line with this reasoning, we take
Carlsen’s top-level workflow model, shown in Figure 117, as a starting point for our task
model, and choose to focus on the program chair role. This prompts the question: At what
level are the workflow and task models aligned? Figure 115 illustrates two alternatives: In
the left part the top-level task T.0 is aligned with the top-level process A.0, while in the right

URN:NBN:no-2353

148 Chapter 7 Case study

part the top-level task T.0 is aligned with the 1. level processes A.1, A.2 and A.3. In both
cases the task hierarchy will be a projection of the workflow model with respect to the cho-
sen focus on a particular role, in the sense that tasks performed by other roles are left out.
The choice depends both on the scope of the workflow vs. the task model, and to what
extent the workflow decomposition is allowed to constrain the task structure. The higher we
“lift” the task model, the greater freedom is given to redesign the work structure according
to the needs of the target user group, in our case the program chair. Biasing or balancing the
needs of different user groups is complicated and often a political issue, and will not be fur-
ther discussed here. It suffices to say that we have chosen the left alternative, i.e. our 1. level
tasks are at the same level as the ones shown in Figure 117.

7.2 The ‘Organize’ task
For the purpose of this case study, i.e. to illustrate how our user interface modelling lan-
guages are used together, we have chosen to focus on the program chair role. The case study
covers a subset of the tasks from the case: how the chair records responses to the Call for
Paper and invitations, chooses the reviewers and collect their reports. These tasks are based
on the processes of the overall workflow, as shown in Figure 117, and represent a subset of
the processes the CHAIR role performs or participates in. Two alternative task models are
shown in Figure 118 and Figure 119, where the numbering corresponds to the numbering in
Figure 117. In both cases, the tasks correspond to processes in Figure 117 of the same name,
but represent a reinterpretation according to the difference in focus: the goals and tasks of
the CHAIR role.

In the model in Figure 118, the ORGANIZE task is decomposed into a sequence of subtasks
(A.2-A.5) each taking a set of elements as input, processing them and delivering another set
as output, as a trigger for the next task. The initial trigger is the responses to the Call for
Paper and invitations, while the final result is a set of review summaries. As shown, the per-
forming actor role is the CHAIR, while a set of REVIEWER actors is provided as contextual
information. The responses are recorded in task A.2 and each of the papers are allocated to
a set of reviewers in task A.3. The relation between a paper and a reviewer is represented by
a review report, and the set of preliminary reports triggers both the reviewer’s performance
of the review (task A.4) and the task (A.5) for collecting the final ones. Task A.5 should poll
the parallel task A.4 and ensure that the reviews are performed before the deadline. A

T.0

T.1 T.2 T.3

A.0

A.1 A.2 A.3

A.2.1 A.2.2 A.2.3

T.0

T.1 T.2 T.3

A.0

A.1 A.2 A.3

A.2.1 A.2.2 A.2.3

Figure 115. Workflow process and task hierarchy alignment
• Left: 0. level process aligns with 0. level task.
• Right: 1. level process aligns with 0. level task.

URN:NBN:no-2353

7.2 The ‘Organize’ task 149

review summary for each paper is made from the set of reports for the paper, and the set of
summaries is the final result of the top-level ORGANIZE task. This would be the input to a
task A.6 for deciding which papers should be accepted or rejected.

Characteristic for the first ORGANIZE model is the batch-like processing of sets, each step
taking a set as input and outputting another set as a trigger for the following task. It may not
be realistic to finish one step completely before initiating the next, for two reasons:

Problem Definition
1. Background
An IFIP Working Conference is an international conference intended to bring together experts from all
IFIP countries to discuss some technical topic of specific interest to one or more IFIP working groups.
The usual procedure, and that to be considered for the present purposes, is an invited conference which is
not open to everyone. For such conferences it is something of a problem to ensure that members of the
involved IFIP Working Group(s) and Technical Committee(s) are invited even if they do not come.
Furthermore, it is important to ensure that sufficient people attend the conference so that the financial
break-even point is reached without exceeding the maximum dictated by the facilities available.
IFIP Policy on Working Conferences suggest the appointment of a Program Committee to deal with the
technical content of the conference and an Organising Committee to handle financial matters, local
arrangements and invitations and/or publicity. These committees clearly need to work together closely
and have a need for common information and to keep their recorded information consistent and up to
date.
2. Information system to be designed
The information system which is to be designed is that necessary to support the activities of both a
Program Committee and an Organising Committee involved in arranging an IFIP Working Conference.
The involvement of the two committees is seen as analogous to two organisational entities within a
corporate structure using some common information.
The following activities of the committees should be supported.
Program Committee:
• Prepare a list to whom the call for papers is to be sent.
• Registering the letters of intent received in response to the call.
• Registering the contributed papers on receipt.
• Distributing the papers among those undertaking the refereeing.
• Collecting the referees’ reports and selecting the papers for inclusion in the program.
• Grouping selected papers into sessions for presentation and selecting chairman for each session.
Organising Committee:
• Preparing a list of people to invite to the conference.
• Issuing priority invitations to National Representatives, Working Group members and members of

associated working groups.
• Ensuring all authors of each selected paper receive an invitation.
• Ensuring all authors of rejected papers receive an invitation.
• Avoiding sending duplicate invitations to any individual.
• Registering acceptance of invitation.
• Generating a final list of attendees.
3. Boundaries of system
It should be noted that budgeting and financial aspects of the Organising Committee’s work, meeting
plans of both committees, hotel accommodation for attendees and the matter of preparing camera ready
copy of the proceedings have been omitted from this exercise, although submissions may include some or
all of these extra aspects if the authors feel so motivated.

Figure 116. IFIP conference arrangement problem definition

URN:NBN:no-2353

150 Chapter 7 Case study

• When individual elements are available, it seems reasonable to enable the next task
for this item alone or together with other items already available, instead of waiting
for the whole set.

Figure 117. The process submodel from Figure 7.8, page 231 in [Carlsen, 1997].
Courtesy of Steinar Carlsen.

URN:NBN:no-2353

7.2 The ‘Organize’ task 151

• Although a step will for most practical purposes end before the next starts, there
may be exceptions, like allowing late-comers or misplaced papers to be processed.

In the alternative model, as shown in Figure 119, each task is triggered by a single element,
and produces its result based on this element alone. While the task flow is still sequential,
this constraint relates to the tasks for individual papers, giving a set of sequences for indi-
vidual elements, instead of a single sequence for sets of element. In the model this is
expressed by using the sequence relation (arrow) across the tasks for each paper and uncon-
strained aggregation across each paper sequence. The consequence is that different tasks for
different papers may be active at once, resulting in a more complex task structure. This
identified difference can have three effect on the design (process):

Figure 118. Sequence of set-processing tasks

Organize

A.3 Choose
reviewers

A.2 Record
response

Handle
paper

response

paper

Reviewer
Report

Reviewer
Report

Reviewer
Response

response

Chair

A.5 Collect
review
results

review
summary

A.4 Perform
review

reviewer:
Reviewer

Organize

A.3 Choose
reviewers

A.2 Record
response

Reviewer
Report

Review
Summary

ReviewerChair

A.5 Collect
review
results

Response

Paper

A.4 Perform
review

Reviewer

Figure 119. Aggregation of individual task sequences

URN:NBN:no-2353

152 Chapter 7 Case study

• The interface will become more complex, if it is designed to mirror the complexity
of the task structure.

• The interface must be designed more carefully, to keep it simple while supporting
the expressed task structure.

• The interface must be simplified by deliberately changing/forcing the task struc-
ture to that of the top model.

In the general case, there may be good reasons for each of these, depending on factors like
the users’ experience, dimensions of the target display, ergonomy of the target input device
and the development budget. In any case, we note the importance of considering the conse-
quences of different models of the “same” task domain.

In addition to allowing a more interleaved task performance, the second model has two
other notable features. First, it expresses that there is one particular variant of task A.2 that
produces a paper, and presumably others that do not. The full decomposition of A.2 should
show when and why a paper is produced. Second, it shows that for each paper there is a set
of review reports, i.e. the total set of review reports may be grouped by the paper it reports
on. The second model may seem more detailed than the first, since it shifts the focus from
the handling of sets to individual elements. For the first model, the details of how each ele-
ment is handled can be introduced in the decomposition of each top-level task, in the man-
ner shown in Figure 44, in Chapter 4.

7.3 The domain model
Both of the top-level models of Figure 118 and Figure 119 introduce concepts of the task
domain, e.g. REVIEWER, PAPER and REVIEWER REPORT. These and others are usually
described more explicitly in a conceptual model of the static domain. Some prefer to iden-
tify the concepts through the task model, while others prefer making the static domain
model first. A conceptual model of the IFIP case is shown in Figure 120.

The main features of this model are:

• The definition of several actor roles, with potentially overlapping populations.

• The PAPER concept, as a specialisation of RESPONSE (to a REQUEST), which con-
tains CONTENT.

• The REVIEWER REPORT concept relating a REVIEWER to a PAPER.

• The REVIEW SUMMARY as an aggregation of a set of REVIEWER REPORTS.

• The CONTENT concept, which captures that there are different “physical” represen-
tations or formats of a paper, including the manual paper format and two file types.

Together the task and domain models represent important knowledge about the users’ uni-
verse of discourse, that must be supported by the user interface.

URN:NBN:no-2353

7.4 The main subtasks 153

7.4 The main subtasks
The level one subtasks will be decomposed in the following sections.

7.4.1 Task A.2, Record response

Task A.2, Record response, has the goal of registering a response and ensuring there is a
PDF version of the paper. Its decomposition is shown in Figure 121. Note the following:

• The RESPONSE element that is the input to A.2, is the same element as the one out-
put by the HANDLE PAPER task, as the name indicates. Note however, that the input
element may refer to an instance that is not yet represented in a system, e.g. physi-
cal letter or email. The output element, on the other hand, will presumably be
explicitly represented in the information system.

• The model specifies that several decisions must be made: Is the RESPONSE too late,
is it a letter of INTENT and is it a MANUAL PAPER that must be scanned? It should
not be too difficult to design an email or web interface, so that RESPONSES could be
handled automatically, but this may not be a relevant goal. The current model does
not commit to any particular way of making the decisions.

Figure 120. Conceptual model of the static domain

Reviewer Chair Member

Actor
⊆

PaperreviewsReviewer
Report

Review
Summary

Author

Response

Intent

Guest

Content

received

Request deadline

reviews

Session

File Call for
Paper

Invitation
pdf

doc

Manual
Paper

rev
iew

s

URN:NBN:no-2353

154 Chapter 7 Case study

• Registering paper data and converting to pdf are required subtasks, while the scan-
ning task is conditional/optional.

• The task model does not require registering the paper data before converting the
paper to pdf, which in turn means that the dialogue implementation must be able to
handle “dangling” files that are yet unrelated to a response.

7.4.2 Task A.3, Choose reviewers
In task A.3, the goal is to assign a set of REVIEWERS to a PAPER, by creating a set of REVIEW

REPORTS for the PAPER input element. Each REVIEW REPORT will initially be classified as
UNDECIDED. We have in addition included the sending of the PAPER and REVIEW REPORT to
the REVIEWER. A model of the task is shown in Figure 122. The first subtask (A.3.1) selects

Figure 121. Task A.2: Record response

A.2 Record
response

Handle paper

Notify too late

Scan
physical
paper

Convert
to pdf

Handle intent

response:
paper

pdf:
format

received data >
request.deadline

response

Register
paper
data

format =
paper

Figure 122. Task A.3: Choosing reviewers for a paper and sending the
review report

paper A.3 Choose reviewers

reviewer
report

A.3.1 Select reviewers
A.3.2 Coordinate

with reviewer

Send report Receive report

reviewer

reviewerchair

Reviewer
Reportreviewers

review
report

paper

review
report paper∈

reviewer report<
undecided paper

URN:NBN:no-2353

7.4 The main subtasks 155

the reviewers, based on the potential REVIEWERS and existing assignments represented by
the extension of the REVIEWER REPORT concept, e.g. to prevent assigning too many papers
to a single reviewer. The result is a set of newly created REVIEW REPORTS, which is used as
input to the other subtask (A.3.2). Then each PAPER and REVIEW REPORT is sent to the corre-
sponding REVIEWER. Note that the task of receiving is included, and that the performing
actor of this task is indeed the REVIEWER related to the REVIEW REPORT. As shown, we have
chosen to send each reviewer individual review reports. The alternative of sending them as
a set would perhaps have been better for the reviewer, and more natural if we had chosen to
decompose the set-oriented pipelined model in Figure 118.

7.4.3 Task A.4, Perform review

The goal of the review process is to classify a paper as either rejected or accepted, but this
distinction is not expressed in the static model in Figure 120. We first need to introduce the
different classifications, and define them as specialisations of REVIEW REPORT. Since a
REVIEW SUMMARY may belong to the same classes, we also introduce a REVIEW generalisa-
tion, which is specialised in independent ways, as shown left in Figure 123. In the right
model fragment we have expressed that the goal of the REVIEW PAPER task is to change a
REVIEW from the UNDECIDED state to the DECIDED state.

7.4.4 Task A.5, Collect review results

For the CHAIR actor, the main task related to review is collecting the REVIEW REPORTS for
each PAPER and making a REVIEW SUMMARY. The REVIEW SUMMARY is related to the corre-
sponding REVIEW REPORTS through an aggregation relation, and in addition it represents a
decision on its own, i.e. is classified as DECIDED (REJECT or ACCEPT) or UNDECIDED, accord-
ing to the policy of conference. The model in Figure 124 shows how this task may be
decomposed. As shown, the input is a set of REVIEW REPORTS and the output is a REVIEW
SUMMARY. After summarizing the reports one of three different subtasks is performed. The
case of an insufficient number of reports is give special treatment. If there is a clear majority
for REJECT or ACCEPT, the REPORT SUMMARY is classified accordingly, otherwise the CHAIR
must decide himself.

Figure 123. Refining the Review concept
• Left: Refined concept model.
• Right: Explicit pre- and post-conditions of task.

Perform
review

review:
undecided

review:
decided

ReviewReject

Reviewer
Report

Review
Summary

Accept

Un-
decided

Decided

confidence

URN:NBN:no-2353

156 Chapter 7 Case study

7.5 Dialogue-oriented domain model -
considerations
The conceptual model shown in Figure 120, is supposed to capture the users’ view of the
static domain. The task models presented in the previous sections, describe how the users’
work may be structured. Both models may be considered as strong requirements that the
user interface dialogue must fulfill. Alternatively, the two models may be taken as a starting
point from which a dialogue is designed, and in the process two dialogue-oriented concep-
tual and task models are derived. For instance, we may choose to remove constraints
expressed in the domain model to make the application more flexible, or simplify or con-
strain the task structure to make the interface easier to learn. In this case study we will limit
ourselves to pointing out some aspects of the domain model that should be considered when
designing the dialogue:

• The REVIEWER actor is defined as an actor that is necessarily related to a REVIEW.
This seems like a reasonable intentional definition, but may in fact be a problem in
the context of the dialogue design. The reason is that the model defines a
REVIEWER as someone who has already reviewed a paper, not someone who can.
According to the REVIEWER definition, an actor currently not assigned to a paper
will not become a REVIEWER until after A.3 has been performed. Hence, the inter-
face must allow selection among a set of potential REVIEWERS and not the current
ones, or the REVIEWER definition should be changed by including 0 (zero) in the
cardinality of the REVIEWS relation.

• Several concepts require a relation to at least one element of another concept. For
instance, a REVIEW SUMMARY must contain at least one REVIEW. Note however,
that a computer system may need to allow 0 (zero) such relations, since it may be
natural for the user first to create an empty SUMMARY and then to add the REVIEWS,
as they are provided by the A.5 task.

Figure 124. Task A.5: Collecting the review results and making a review summary

reviewer
report

A.5 Collect review results

review
summary

Summarize
review reports

Reject

Incomplete review?

Chair's
decision

review
summary:
Undecided

Accept
review

summary:
Reject

review
summary:

Accept

Handle
incomplete

reviews

C
le

ar
 m

aj
or

ity
?

URN:NBN:no-2353

7.6 Designing a dialogue for each main subtask 157

• Along similar reasoning, the RESPONSE elements need not in practice have a rela-
tion to a REQUEST element, since these are not used in the task. It may be the case
that INTENT responses need to be matched against invitations, but the CALL FOR
PAPER will not necessarily be represented explicitly in the user interface, although
it is part of the conceptual model.

These comments are related to the difference between focusing on the problem perspective,
i.e. task and domain, and the solution perspective, i.e. dialogue and concrete interaction.
The user may have a different understanding of the domain, than what is reflected in the
design. For instance, the PalmOS and Pocket PC have different ways of structuring data,
using categories and hierarchies, respectively and although the user may be used to hierar-
chies, a Palm application may stick to using categories. In addition, it may be desirable to
design a user interface with greater flexibility than what is required by the domain and task
models. Empty containers is one example; they may be useful as an intermediate state in a
dialogue, but rather pointless in a conceptual model. In sum, this means that the conceptual
model should be reconsidered and revised before using it as a basis for dialogue design and
implementation.

7.6 Designing a dialogue for each main
subtask
The tasks modelled above, are to be supported by a set of dialogues, which are composed
into a user interface. In terms of the representation space introduced in Section 3.3 and illus-
trated in Figure 11 on page 29, this corresponds to a movement along the problem-solution
axis, from problem to abstract interaction. One way of designing the user interface is to
design each dialogue separately, and then merge the dialogues using operators for composi-
tion. To avoid duplicating functionality, similar dialogues that are active together may be
combined into one. Powerful interaction objects provided by the underlying toolkit, and
modelled as suggested in Chapter 7 (e.g. Figure 104 on page 132), may further be utilised
for reducing the number of separate dialogue elements.

We present the user interface design as a top-down process, moving from task via abstract
dialogue to concrete dialogue. This is not the only way of conceiving a design, and should
not be considered a suggestion for “a best way” of designing. As discussed in Chapter 3,
“Design and representation”, it may be just as desirable to design using more solution-ori-
ented and concrete representations like sketches, low-fidelity prototypes and mock-ups, to
stimulate creativity and provide means of communicating with end-users. The abstract and
formal models may then be built, as part of the process of clarifying and making the design
more explicit. Alternative concrete design suggestions may further be made by moving
from abstract to concrete dialogue, in the manner presented below in Section 7.8.

URN:NBN:no-2353

158 Chapter 7 Case study

7.6.1 Registering a paper

Task A.2, RECORD RESPONSE has the goal of
making a new response element and in the
case of a paper response, preparing an elec-
tronic version of the paper content. We limit
our dialogue model to the handling papers,
and split it into four interactors and a func-
tion, as shown in Figure 125:

• REGISTER PAPER DATA supports enter-
ing data about a paper, e.g. the
author(s), received date, keywords etc.
The result of interaction is a PAPER
element.

• CONVERT TO PDF supports converting
the paper content to the pdf format,
e.g. by scanning in a physical paper or
running a file through a pdf filter. The
output is PDF element.

• The X (for aggregation) function
receives the PAPER and CONTENT and
creates an aggregation relation. The
output is the same PAPER, which is
presented to the user by means of the
third interactor.

• The PAPERS interactor is used for pre-
senting the set of PAPERS and high-
lighting one PAPER element in the set. This interactor is a variant of the one shown
in Figure 62 on page 93. The addition of an output/receive gate for the element,
makes it possible to control which element is highlighted from outside the interac-
tor. Hence, the selected PAPER element may be controlled by the user, and hence be
received as input on the input/send gate, and by a connection attached to the out-
put/receive gate. The content of the selected element, whether controlled by the
user or attached connection, is presented to the user by means of the fourth interac-
tor.

• The CONTENT interactor presents the content part of a paper, received through the
output/receive gate.

The first two interactors can be argued for based on the task model, since they represent
tasks that the user interface must support. The PAPER and CONTENT interactors are not nec-
essary in the sense that they are motivated from the task model, but they provide valuable
feedback from the result of interacting with the two former interactors. For instance, if the
task of registering a set of received papers is interrupted, the displayed set of papers can be
examined to find which paper to resume with.

Figure 125. Registering a paper

 x

paper

content:pdf

content:
pdf

Register paper data

is

Convert to pdf

is

Show papers and let
the user select one

Papers

or

or

is

papers

paper

∈

Content

or

URN:NBN:no-2353

7.6 Designing a dialogue for each main subtask 159

All these interactors are initially planned to be active simultaneously, which in Statecharts
terms corresponds to and-composition. This might change however, when an interaction
style and look & feel is chosen. For instance, the process of converting a file to pdf may be
implemented by a modal dialogue, due to Adobe’s implementation of the standard filtering
software. The display of the pdf content may similarly be difficult to compose into the same
window as the other interactors, given the size needed by the standard Acrobat Reader com-
ponent. Hence, the selection of concrete interaction objects may greatly influence the dia-
logue design.

7.6.2 Assigning a set of reviewers to a paper
According to the model of task A.3 in Figure 122, the input to the task of choosing review-
ers is a PAPER, while the set of (potential) REVIEWERS and current set of REVIEW REPORTS
are provided as contextual information. This means that an interactor for performing this
task, should present the corresponding domain data, and this is the basis for the interactor
models shown in Figure 126 and Figure 127.

The PAPER REVIEWERS interactor, receives and outputs to the user a set of PAPERS, while let-
ting the user select a PAPER. We have included the REVIEWER REPORTS set and REVIEWS
relation in the model fragment, to highlight the part of the domain model that the user is
interested in experiencing. The REVIEWERS interactor receives and outputs the set of (poten-
tial) REVIEWERS, and provides the user means for inputting a single REVIEWER. The input/
send gates for the selected PAPER and REVIEWER are connected to a function for creating a
REVIEW REPORT related to the selection. Another function takes the selected PAPER as input
and sends the PAPER and related REVIEW REPORTS to the REVIEWERS.1

1. To avoid sending the PAPER twice (to the same REVIEWER), the domain model should perhaps be revised to
include a REVIEW REPORT attribute indicating whether it has been sent or not.

Figure 127. Alternative design for
assigning reviewers to papers.

Paper
reviewersispaper

Reviewers

or

is

reviewer
⊆

reviewerreviews

or

set
reviews
relations

Figure 126. Assigning reviewers to papers.

Show papers and
the reviewers

Paper reviewers

or

is

papers

paper

∈

reviews
reviewer
reports

Show (potential)
reviewers and

select one

Reviewers

or

is

reviewer
∈

reviewer

create
reviews
relation

send paper and
review reports to

reviewers

URN:NBN:no-2353

160 Chapter 7 Case study

A problem of this design is that the REVIEW REPORTS must be made one by one. In addition,
the REVIEWERS interactor that is used for selecting reviewers does not indicate which
reviewer that already has been chosen. An alternative design targeting these problems is
shown in Figure 127.1 This alternative design is based on a more direct coupling between
the two PAPER REVIEWERS and REVIEWERS interactors and the domain data that these pro-
vide access to. The main difference is in the output/receive and input/send gates of the
REVIEWERS interactor. This interactor is now specified as capable of both outputting and
inputting a subset of the REVIEWERS, as well as outputting the whole REVIEWERS set. When
the REVIEWERS subset is controlled by the output/receive gate, the subset that the user sees
is the set of REVIEWERS related to the selected PAPER through the REVIEWS derived relation.
Hence, when the user selects a different paper using the PAPER REVIEWERS interactor, the
corresponding REVIEWERS subset presented by the REVIEWERS interactor will be updated.
When the REVIEWERS subset is instead controlled/changed by the user and reflected in the
input/send gate, it may be used for explicitly setting the set of review reports that exist and
are related to the selected PAPER. This is achieved by replacing the function for creating a
single REVIEW REPORT for a PAPER and REVIEWER pair, by a function for managing the set
of REVIEW REPORTS for a certain PAPER. This function must be able to both create and delete
review reports depending on how the user manipulates the value in the input/send gate of
the REVIEWERS interactor.

7.6.3 Collecting and summarizing review results
The final task that we are providing dialogue support for is concerned with classifying
review summaries. Recall from the domain model in Figure 120 that there is a one-to-one
relation between a PAPER and a REVIEW SUMMARY, as indicated by the bi-directional arrow.
Our design assumes that the review summary is automatically created when the review
reports start ticking in, so that classification reduces to selecting a review summary (or a
paper) and a review class and invoking a function. However, first we need to introduce the
concept of a REVIEW CLASS, i.e. an explicit concept for the different classifications of a
REVIEW, and relate it to the REVIEW SUMMARY, as shown top left in Figure 128. Then, as
shown right in the same figure, the user can select a REVIEW CLASS using the bottom CLAS-
SIFY REVIEW interactor, and (re)classify the REVIEW SUMMARY that is selected using the top
REVIEW SUMMARIES interactor.

In the task model three cases are distinguished, one for handling incomplete reviews, one
for automatic classification based on majority, and one where the CHAIR decides. In our
design, we want to help automate the classification process, while leaving the final decision
to the user. When a REVIEW SUMMARY is selected, a REVIEW CLASS value is computed by a
function (named “suggest class if undecided” in the figure), before being output by the
CLASSIFY REVIEW interactor through the output/receive gate. The function is supposed to
compute a suggested class if the current class is UNDECIDED, or else pass the current
(DECIDED) class through.

1. For the PAPER REVIEWERS only the input/send gate is shown, this interactor is the same as the one in Figure 126.

URN:NBN:no-2353

7.6 Designing a dialogue for each main subtask 161

A different view of the CLASSIFY REVIEW
interactor is shown in Figure 129. This
model relies on the duality between dis-
joint concept specialisation and or-decom-
posed states, as discussed in Section 4.6.3
and exemplified in Figure 27 on page 59.
The model is complementary to the model
in Figure 128, by more directly expressing
how the user changes the class of the
REVIEW SUMMARY element by means of
the CLASSIFY REVIEW interactor.

Each REVIEW SUMMARY is modelled as a
state hierarchy that corresponds to the
classification hierarchy for the UNDE-
CIDED, DECIDED, ACCEPT and REJECT
classes. The (current state of) the selected
REVIEW SUMMARY is attached to the out-
put/receive gate of CLASSIFY REVIEW, and
hence is presented to the user. The input/
send gate is attached to and controls a
Statecharts selection transition, to let the
user change the current state and hence
class of the selected REVIEW SUMMARY.

Review
summary

Review
class

{}

reject

accept

undecided

Figure 128. Classifying review summaries.
• Left: A review class concept is introduced to allow explicitly

outputting and inputting the classification of a review.
• Right: Selecting a review summary and a review class and

invoking a classification function.

Undecided,
reject or accept

Classify review

is

Review
summary

Review
class

Classify
review

summary

Show reviewer
summary

Review
summaries

or

is

Review
Summary

∈

reviewsPaper

or

Suggest class if
undecided

Figure 129. Classification as a state transition

review summary

Review summaries

is

S

reject
acceptun-

decided

decided

Undecided,
reject or
accept

Classify review

or

is

URN:NBN:no-2353

162 Chapter 7 Case study

7.7 Composing the dialogues -
considerations
The dialogue models presented in Section 7.6, may be composed in many different ways,
within the abstract dialogue perspective and modelling language. In terms of the representa-
tion space introduced in Section 3.3 and illustrated in Figure 11 on page 29, this corre-
sponds to a movement along the granularity axis, from medium to higher level. In our
Statecharts-based language, the basic composition operators are and- and or-composition,
as discussed in Section 5.3.2. The choice between these two depends on both the task mod-
els in Section 7.2 and Section 7.4 and the target platform, interaction style and look & feel.
In addition, if two or more interactors are similar, it may be possible to merge them, e.g.
because they perform the same function and anyway are active at the same time, or because
they have similar functions and there exists a concrete component support both at the same
time.

As discussed in Section 7.2, the set-oriented version of the ORGANIZE task shown in
Figure 118 is sequential and hence suggests using or-composition. The other variant shown
in Figure 119 has no such constraint on the top level, although it is sequential for each
PAPER. Since the subtask models have focused on the latter variant of the top-level model, it
seems that and-composition is best suited for our dialogue. We have nevertheless chosen
something in-between, based on the several observations:

• We want to make the most relevant tasks easiest to perform, and hence the sequen-
tial nature makes it natural to structure the dialogue into views that may be
switched between

• All the dialogues have one interactor that provides access to PAPERS and related
elements through the REVIEWS relations. Hence, it may be possible to combine
them and and-compose this merged interactor with more task specific dialogues/
interactor structures.

• The complexity of an and-composed dialogue may too high for the user and may
not be well supported by a standard display.

The model shown in Figure 130, illustrates our composed design. At the top level, two main
states are and-composed. The upper compartment contains an interactor for outputting a set
of PAPERS and other elements (REVIEW SUMMARIES and REVIEW REPORTS) that the PAPERS
are related to through the REVIEWS relation. The interactor also supports inputting or select-
ing one of the PAPERS. The lower compartment contains three or-composed (disjoint) sub-
states labelled with the section numbers where their corresponding dialogues are presented.
Each of the substates contains the same interactors as the previously presented dialogues,
excluding the PAPER interactors. The respective PAPER interactors have instead been merged
and placed into the top compartment. An interactor attached to a selection transition, has
been added in the lower compartment. Note that this interactor is actually and-composed
with both the upper and lower compartments, since it is not connected to other interactors or
states with a transition, although it has a data connection. Using this interactor, the user can
select among the substates, and hence one of three task-oriented sub-dialogues. For clarity,
the model in Figure 130 omits the connections that provide the other sub-interactors with
the selected PAPER element, and the functions that may be invoked. These should be added

URN:NBN:no-2353

7.8 From abstract dialogue to concrete interaction 163

to complete the model. In the case where a review summary is required instead of a paper, a
REVIEWS function must be inserted or the connection labelled with the REVIEWS relation.

7.8 From abstract dialogue to concrete
interaction
Our dialogue design is so far expressed in an abstract dialogue language, and when moving
to concrete design elements, the abstract design may be mapped to many different platforms
and concrete interaction objects. In terms of the representation space introduced in
Section 3.3 and illustrated in Figure 11 on page 29, this corresponds to a movement along
the problem-solution axis, from abstract to concrete interaction. Although the design model
until now abstracts away look & feel, it does require functional abilities that may rule out
limited platforms, such as PDAs. For instance, the PAPER AND REVIEW RELATIONS interac-

Figure 130. And-composition of common interactor with sets of task-oriented
interactors

Show papers and
review related

elements

Papers and review
relations

or

or

is

papers

paper

∈

revie
ws

review
reports

review
summaries reviews

7.1.4.1

Register
paper
data

Convert
to pdf

Content

7.1.4.2

Reviewers

7.1.4.3

Classify
review

S

Select
view

Views

is

URN:NBN:no-2353

164 Chapter 7 Case study

tor is expected to require some screen space (if the target platform is screen based), and in
addition must be active at the same time as either of the more task specific interaction
objects.

We choose a frame- and pane-based look & feel, based on standard interaction objects from
graphical desktop interfaces, like buttons, text fields, listboxes and menus. The and-com-
posed main dialogue of Figure 130, nicely maps to non-overlapping panes, and the or-com-
posed sub-dialogues map to totally overlapping panes (or a single shared pane with
interchangeable content) that the user may switch between. Each part of the composed
model must then be interpreted in terms of this look & feel. In terms of the representation
space introduced in Section 3.3 and illustrated in Figure 11 on page 29, this corresponds to a
movement along the granularity axis, from high to middle and low levels.

The PAPER AND REVIEW RELATIONS interactor of
Figure 130, focuses on the set of PAPERS and shows
the REVIEWS relation relative to these elements. A
concrete interaction object that supports this is a two-
level folder view, similar to the one used by Win-
dows Explorer. The set of PAPERS will occupy the
first level and the REVIEW REPORTS that are related
through the REVIEWS relation will occupy the second
level, as illustrated in Figure 131. For each PAPER the
classification of the corresponding REVIEW SUM-
MARY is indicated, and the number of REVIEW
REPORTS supporting this classification is shown. We
anticipate that such derived information will be use-
ful, but this should be validated in user tests. We
could also try out alternative designs for each kind of element. For instance, based on the
discussion in Section 6.3.1 we could use the background colour for indicating the REVIEW
CLASS, say green for ACCEPT, yellow for UNDECIDED and red for REJECT for both PAPERS/
REVIEW SUMMARIES and REVIEW REPORTS.

This illustrates an important point when going from abstract to concrete interaction. When
an appropriate concrete interaction object within the desired look & feel is chosen, we
should analyse the expectations the users have to this particular interaction object and the
capabilities provided by it. For instance, the folder view usually supports an element
dependent icon and foreground and background colouring, in addition to the text. The user
may also expect to have a set of actions available in a contextual menu, which may be
popped up by clicking on an element with a special combination of mouse button and key-
board modifiers.1 In our case, the task of classifying a PAPER/REVIEW SUMMARY may be
allocated to the contextual menu, i.e. the contextual menu would implement the CLASSIFY
REVIEW interactor. The act of clicking on a PAPER/REVIEW SUMMARY and selecting a
REVIEW CLASS in the popup menu, provides the necessary information for the CLASSIFY
REVIEW summary function included in Figure 128. To implement suggesting a default
review class, i.e. setting the value of the output/receive gate of the CLASSIFY REVIEW inter-
actor, we could position the popup menu so that the suggested class is selected by default.

1. In Windows the contextual menu usually is activated by the right mouse button, while on the one-button Mac a modi-
fier is used.

Figure 131. Folder view of papers and
related reviews

URN:NBN:no-2353

7.8 From abstract dialogue to concrete interaction 165

Each of the or-composed task-oriented interactors
must be interpreted in terms of the same look & feel,
as must a mechanism for switching between them. We
will use a tabbed pane for switching, since it imple-
ments the desired or-composition behaviour. Three

tabs are needed, e.g. labelled “Paper”, “Reviewers” and “Reviews”, as shown in Figure 132.
An alternative design is a “View” menu with three checked menu items corresponding to
the three tabs. However, since the tabbed pane has only this usage, while menu items are
generic action objects, we prefer the former. A third possibility is using a single selection
interaction object like dropdown listbox or group of radio-buttons. Such a design would
correspond to viewing a dialogue as a piece of data, i.e. a kind of meta-model of dialogs.
This view is more appropriate for a meta-task like tailoring/customisation so this third alter-
native is also discarded.

Designs for the three sub-dialogues of the tabbed pane are shown in Figure 133, Figure 134
and Figure 135. The “Paper” tab includes interaction objects for entering data about a
PAPER, i.e. a standard fill-in form. The interaction objects must be chosen according to the
underlying data type, in this case we have assumed all the three attributes have a text repre-
sentation and hence have used text input fields. The “Reviewers” tab contains a listbox
which must support highlighting (output) or selecting (input) one or more REVIEWERS. If the
list is expected to be large and scrollable, we should instead use a design where the selection
(subset of REVIEWERS) is shown in its own list. This case is similar to (excluding the filter)
the dialogue for gas contract selection discussed below in Section 8.2, so one of the designs
in Figure 139 may be used. The “Reviews” tab provides a drowdown listbox for selecting a
REVIEW CLASS. Since the set of REVIEW CLASSES is small, we might as well have used radi-
oboxes, since they have the same interactor signature as the dropdown listbox, as discussed
in Section 5.2.3. The list below the dropdown shows the related REVIEW REPORTS, as an aid
in deciding which REVIEW CLASS to select. A means of looking at each REVIEW REPORT in
detail should perhaps be added, either to this dialogue or the PAPER folder view.

The “Reviews” tab does not include any reference to the PAPER that the REVIEW SUMMARY
and REVIEW REPORTS are related to. This information has been left out, since the tabbed
pane is supposed to be laid out next to the folder interaction object where the corresponding
PAPER already is highlighted, as shown in Figure 136. If the tabbed pane instead was part of
a separate frame or model dialogue, an interaction object for indicating the PAPER should be
included, e.g. by using the frame title.

Figure 132. Tabs of tabbed pane

Figure 136. Folder view of papers and review reports provides a context for “Reviews” tab

URN:NBN:no-2353

166 Chapter 7 Case study

7.9 Completing the design
The structure of dialogues and interaction objects presented so far, provides the core user
interface of an application for managing papers and reviews. To complete the application,
we may extend the design in two directions.

The first direction concerns covering a larger part of the original process, as modelled in
Figure 117, e.g. designing dialogues for supporting process A.7, “Grouping Accepted
Papers into Sessions”. This design task will consequently require that we cover the SESSION
concept and the aggregation relation to sets of PAPERS, as shown in the domain model in
Figure 120. Incrementally adding functionality to an existing design indicates how well the
design scales, and may require us to reconsider the whole dialogue structure.

In the case of process A.7 and the SESSION concept, we need to be able to present the SES-
SION aggregation - PAPER part of the domain model. We will utilise the flexibility of the
folder view interaction object. The folder view shown in Figure 131 may be extended to

Figure 133. The “Paper” tab:
Text input fields for the paper’s attributes

Figure 134. The “Reviewers” tab:
Listbox supporting multiple
selection of reviewers

Figure 135. The “Reviews” tab:
Dropdown listbox for selecting a review
class for a paper/review summary, and the
corresponding list of review reports classes.

URN:NBN:no-2353

7.9 Completing the design 167

show this relation, by adding a session level in the hierarchy. I.e. the top level folder would
contain SESSIONS, the next level PAPERS/REVIEW SUMMARIES and the third level the REVIEW
REPORTS. The task of grouping PAPERS into SESSIONS could be supported through drag &
drop, which is an interaction technique that the folder view interaction object usually imple-
ments and gives the user expectations of be able to use. A dummy SESSION would be needed
to initially contain the PAPERS that have not yet been grouped into a SESSION. Alternatively,
we could mix PAPERS and SESSIONS at the top-level, and add icons, colouring and/or sorting
to avoid confusing the user. In both cases, the domain model would need to be reconsidered
and revised, as discussed in Section 7.5.

The second direction of extending the design, is concerned with making a complete applica-
tion for a certain look & feel or class of applications. First, the model of valid structures of
interaction objects and windows, like the one shown in Figure 95 on page 122, may require
the addition of an outer frame window containing a title and a menu bar with certain stand-
ard menus and menu items. Second, and more important, is choosing an appropriate class of
application for our tasks, and conforming to its often tacit rules. In our case, we may choose
to use the “Document” metaphor/application class, where the Document dialogue domain
concept corresponds to the workshop task domain concept (which should be added to the
domain model). Standard elements that must be included in the interface include a top-level
frame containing a menu bar with the standard “File” menu. The “File” menu in turn must
include the standard entries “New...”, for creating new workshops, “Open”, for managing an
existing workshop, “Save” and “Save as” for saving the current state, etc.

Figure 137 shows a model that captures many of the concepts required by the DOCUMENT
INTERFACE class of applications, which must be included in our design. The WORKSHOP
concept has been included and related to the DOCUMENT concept, to illustrate how this
model may be related to the domain model.

Document
Interface (DI)

Toolbar

Menubar

Menu
item

Menu

Multiple
DISingle DI

Document

File

New

Open

Save

Workshoppresents

Figure 137. “Document” interface and related concepts

URN:NBN:no-2353

168 Chapter 7 Case study

7.10 Conclusion
In this chapter we have shown how the RML, TaskMODL and DiaMODL languages may
be used constructively for deriving a concrete user interface design from a task model
through an abstract dialogue, with a workflow model as a starting point. By constructively
we mean that all features in a model may be used to guide the subsequent design steps
towards a concrete and detailed design.

With respect to the design representation classification framework presented in Chapter 3,
“Design and representation”, we have illustrated several movements:

• Movement 1, from problem to solution: From each sub-task of the top-level task
model we designed an abstract dialogue model. From each of these dialogue mod-
els we then considered corresponding concrete designs.

• Movement 3, from high-level to low-level: The task model was based on the proc-
esses in an existing workflow model (Figure 117), and was further decomposed
into sufficient level of detail.

• Movement 4, from low-level to high-level: Several interactors in the abstract dia-
logue model where merged into a more complex interactor, based on the availabil-
ity of a functionality rich concrete interaction objects. In addition, the dialogue
models corresponding to the sub-tasks of the top-level task, were composed into a
complete dialogue model.

• Movement 5, from informal to formal: Although not explicitly explained, the
informal textual description was interpreted and expressed using more formal dia-
gram-based notations.

• Movement 6, from formal to informal: To communicate our design in this docu-
ment, screen shots of the concrete interaction objects where used, i.e. informal pic-
tures representing specific classes of window toolkit elements.

URN:NBN:no-2353

169

Chapter 8

Experiences and feedback
This chapter presents the experiences we have and the feedback we have received from con-
crete usage of the languages, both in industry and by proof-of-concept implementation.

During our work, we have gathered experience and received feedback from practical usage
of both the TaskMODL and DiaMODL modelling languages. There are three differences
sources of experiences and feedback that have guided our work: external presentations and
teaching, an industrial case and proof-of-concept implementations. In the following sections
we will discuss these three in turn. Note that this discussion does not include the RML
domain modelling language, as this language was mainly developed prior to and in parallel
to the work reported in this work.

8.1 External presentations and teaching
Throughout the project, we have presented the representation classification framework and
the task and dialogue modelling languages in two different contexts: in industrial forums
and as part of (internal) teaching. In the former context, we have presented the work for pro-
fessionals from software engineering and consultancy firms, at sessions within those firms,
in public sessions arranged by the The Norwegian Computer Society1 and as an invited
presentation for a nationally funded industry-wide project on cross-platform user interface
design. The presentations have ranged from shorter ones to full-day sessions.

In the teaching context, all the main parts of this work have been introduced in courses
taught by the Information Systems group at our department. First, a general introduction to
user interface modelling has been given in our introductory information systems course. In
a second course we have focused on user interface modelling as one of a repertoire of tech-
niques/activities that are necessary when developing interactive information systems. The
design representation framework has been used to relate the models, and also to discuss the
relation between user interface modelling and systems modelling, including UML, in the
line suggested in Chapter 3, Section 3.4. Finally, we have given a more practical hands-on
introduction to user interface design, prototyping and modelling, as part of a systems devel-
opment course given to the National Office for Research Documentation, Academic and

1. DND (Den Norske Dataforening at www.dnd.no) is the Norwegian variant of IFIP and ACM.

URN:NBN:no-2353

170 Chapter 8 Experiences and feedback

Special Libraries in Norway1. This course is special since the students generally lack com-
puter science education, although they all use computers in their daily work.

The feedback from industry has been valuable for making the modelling languages relevant
and useful, and for understanding what it will take to gain acceptance for a (new) user inter-
face modelling method, in the first place. The student’s feedback has generally been useful
for understanding how to communicate the approach and make the languages easier to use.
The design representation classification framework presented in Chapter 3, seems to pro-
vide a useful overall vision of how different aspects of design and modelling fit together.
Both industry and students stress the need for visual and flexible notations, without a formal
focus. TaskMODL seems to be understandable, and both groups seem to appreciate the
more expressive and graphical notation, compared to Hierarchical Task Analysis (HTA) and
natural language text. The part of DiaMODL that is concerned with dataflow, i.e. the inter-
actor abstraction, gates and connections seems to be understandable, particularly the way
interactors can provide a more abstract description of concrete and atomic interaction. The
way a sketch can be given an abstract interpretation in terms of interactors and be used to
produce an alternative design with other concrete interactors, seems to be appreciated.
When combined with Statecharts, DiaMODL is often considered too abstract, complex and
“technical”. The relation to and possibility of using the languages with UML has been con-
sidered important, and from this point of view our use of Statecharts has been given favour-
able comments.

8.2 The Statoil case
As a more in-depth test of the modelling languages, the author has spent between one and
two days a week at Statoil’s2 research centre in Trondheim, during a period of three months.
The context for the stay was an in-house project within the field of natural gas sales. The
project participants’ had a general interest in user interface modelling and some experience
with modelling within the project. The project was in the process of delivering a second
increment of functionality and user interface, and the focus was on how models could have
been used in the analysis and design phases that already were completed.

The Statoil case was used for gaining experience with both task and dialogue modelling.
The company had already used a simple workflow notation for capturing important aspects
of how the gas sales department worked. When reviewing their workflow models, it became
clear that the models were not complete and precise enough for outsiders to gain the neces-
sary level of understand, without help from the developers. This problem was given two
interpretations, both of which were interesting, relevant and probable, and that have been
useful when working on the design of TaskMODL:

1. “Riksbibliotektjenesten” at www.rbt.no
2. Statoil is the national oil company in Norway

URN:NBN:no-2353

8.2 The Statoil case 171

1. The models had fulfilled their needs for communication with the users and among
developers, without requiring the precision and completeness that was needed for
fully documenting the tasks. This supported the requirement that a task modelling
language should have a flexible notation and not force the modeller to be more pre-
cise than needed.

2. The language they used was not precise enough for fully documenting the work-
flow and work practice. This supported the requirement that the task modelling
language have a formal basis, i.e. to give the modeller the possibility of being pre-
cise and formal enough.

Another aspect of the Statoil case was important for TaskMODL’s design. First, the domain
model was complex and had a strong influence on how tasks were performed. Second, it
was unclear which concepts were inherent in the domain and which ones were due to how
tasks were performed in practice, or whether this distinction mattered at all. For instance,
there were different ways of handling the various sales contract classes, and it seemed that
the basis for the classification was mostly due to the difference in handling them. The model
in Figure 138 is taken from the Statoil case and illustrates this situation. There are several
classes of both contracts and users, and these give rise to different ways of performing the
SELL GAS task. The need for handling this kind of situation prompted our work in task clas-
sification, and was part of the reason for trying to define TaskMODL in terms of RML,
since RML already was strong on classification.

An early version of TaskMODL language was well received in informal presentations, and
the constructs seemed to be understood by the developers1 when exemplified within their
project’s domain of gas sales. The language was considered expressive enough for replacing
the language they had used themselves, but it was difficult to judge what impact the use of
TaskMODL could have on the models’ precision and/or how this could have facilitated
communication and documentation of the knowledge.

The Statoil case was also used for gaining experience with our dialogue modelling lan-
guage. The gas sales application, was a database-intense three-tiered application, with a
Visual Basic user interface. The startup screen was used for navigating among a large
number of task-oriented screens and was structured as according to the workflow model.

1. The language was not discussed with the domain experts or end-users (these were partly the same).

Figure 138. The task of selling gas depends on the user and on the class of contract

1 Sell gas
1.1 Contracting

1.2 Deliver

1.3 Allocate

1.4 Invoicing

Contract

Contract
type B

Contract

Contract
type A

URN:NBN:no-2353

172 Chapter 8 Experiences and feedback

The current task, as defined by a monthly fiscal cycle, was automatically given focus, and
the user could choose among the set of subtasks, or navigate to a different main task. This
screen was in practice a two-level menu, although it was implemented in terms of a set of
dropdown listboxes with a waterfall layout. This was an immediate example of a very
explicit relation between the task and dialogue model, since the task model could be consid-
ered the domain of the startup screen. Based on our generic task model, as presented in
Chapter 4, Section 4.7.1, and our models of standard interactors from Chapter 5,
Section 5.2.3, we could suggest using a folder view instead. The advantage would be a more
generic interface, that could more easily cope with changes in the task model, and a more
compact layout, although the waterfall task structure would not be visually indicated.

The gas sales application was far too complex to be completely modelled without access to
powerful tool support, so instead we selected parts that were particularly interesting, e.g.
because of importance or potential for reuse. The process was similar to cycling through
Nonaka’s knowledge creation transfer modes. First, we externalised our understanding of
the implementation in a dialogue model. Then we combined it with our knowledge of the
relation between interactors and standard concrete interaction objects. The result was then
presented i.e. internalised and discussed with the developers to reach a common under-
standing of the models. There were two noteworthy recurring observations/discoveries:

• Based on the abstract interactor model of a concrete dialogue/interaction object,
we could suggest a different and often more standard/common way of implement-
ing the same functionality.

• By comparing models of different parts of the application, we could identify incon-
sistencies in the implementation, in the sense that the same abstract functionality
was implemented differently.

In both cases, the interactor model had made us more conscious of the abstract features of
the dialogue. In both cases, it let us improve the application by selecting the most appropri-
ate implementation in terms of concrete interaction objects. In the second case, the incon-
sistencies were usually due to different developers influencing the design, rather than
(subtle) differences in the design problem.

In one such case there were different ways of performing multiple selection, i.e. subset of
set, from structurally similar sets of elements (see model in Figure 64 on page 94). The two
alternative designs are illustrated in Figure 139. Since the main set was very large, both dia-
logues were based on a listbox at the left containing the main set, augmented with a filter
mechanism. A second listbox at the right contained the selected subset. However, one

Figure 139. Alternative dialogues for selecting elements from a large set.
Left: Adding to and deleting from selection. Right: Moving between lists.

Contract 1
Contract 3
Contract 5

Contract N

...
Contract 6

Contract 2

Contract 7->

<-

Filter:

Contract 4
Contract 1
Contract 3

Contract N

...
Contract 6

Contract 2

Contract 7

Add Delete

Filter:

Contract 5 Contract 4

URN:NBN:no-2353

8.2 The Statoil case 173

implementation was based on copying elements from the left listbox to the right one, and
deleting elements in the selection, in case of error. The other implementation was based on
moving elements between the left and right listboxes. Being able to identify that these
designs were functionally equivalent was very useful, but it did also point to the fact that the
interactor model did not help us decide which variant to use. Since the decomposed interac-
tor structure of both variants were similar, we were not able to argue one way or the other,
based on model characteristics. We eventually decided that the second variant did not work
well with the search/filter mechanism.1 In any case it would be an improvement to settle on
a single design to use in all places where this functionality was needed.

The identification of such inconsistencies in design within a single (albeit complex) appli-
cation, naturally led to considering dialogue modelling as a means for design knowledge
management and reuse. Statoil had already written a design guideline document for internal
use, and we had already begun working on model-based user interface design patterns.
Figure 140 shows an example of a highly reusable dialogue structure, derived from the Sta-
toil case. Without the models, this kind of structure would be difficult to describe precisely.
This particular model was accompanied with a Statecharts model which described the state
of each part, e.g. when there was anything to show, when an element could be viewed in
detail or deleted, etc. In hindsight, this pointed towards our current integrated version of
interactors and Statecharts, which at that point were used separately.

Summarised, the Statoil case helped us gain valuable experience with using the modelling
languages in general, and in particular to put focus on making the task and dialogue model-
ling languages and notation more flexible and easier to use. The industrial context sug-
gested a shift of focus from formal reasoning and analysis to documentation of design and

1. It was possible, in fact easy and common, to get the dialogue into a state where an element in the right listbox could be
moved to the left listbox, and at the same time disappearing because of the filter. This would happen if the filter had
been changed to exclude this element, and this situation could be difficult to interpret. For instance, the filter in the right
design in Figure 139, could be changed to exclude contracts with even number, and “Contract 4” could be moved from
the right listbox to the left.

Search Result

Detail 1

Detail 2

Search Result

Detail 1

Detail 2

Figure 140. Dialogue and layout pattern from Statoil case.
Above left: Interactor structure. Below right: Layout structure.

URN:NBN:no-2353

174 Chapter 8 Experiences and feedback

management of design knowledge. This is consistent with the feedback from most presenta-
tions: Most organisations are not ready to introduce formal modelling in user interface
design, but nevertheless they need a notation for describing, communicating and discussing
user interface design. Part of this need is experienced in the context of UML, and the lack of
support for user interface design in UML-based methods, as discussed in Chapter 2, “State
of the Art”. The rich graphical notation of our modelling languages seems to be appreciated,
since this is in accordance with UML’s own objectives. However, the context of UML is
also the main source of criticism: Since UML is becoming so popular in industry, why is our
work not based on UML diagrams? We will return to this question in Chapter 9, “Conclu-
sion and Future work”.

8.3 Tools and implementations
The results reported in this work are mainly theoretical. We have nevertheless built several
prototype tools, which will be briefly described in this section. The implementation of these
prototypes had two different goals:

• We wanted to support drawing diagrams in our TaskMODL and DiaMODL nota-
tions, both to make them accessible to students and industry and to experiment
with different notations.

• We wanted to check the feasibility and potential advantage of using the interactor
language as an implementation tool, both for visual editing of user interface look &
feel and behaviour, and for programming.

The former goal has been addressed with the Microsoft Visio diagramming tool. To validate
the feasibility of using the DiaMODL language and notation for implementing user inter-
faces, we have built two kinds of proof-of-concept prototypes. First, we have implemented
two prototype GUI-builders using two Common Lisp-based toolkits. Second, we have
implemented a Statecharts machinery in Java, and used it to implement basic direct manipu-
lation tools for a model editor. These efforts will be described in the following sections.

8.3.1 Designing the notation and drawing diagrams with
Visio
The support for experimenting with the notation and for drawing diagrams has been
achieved by using the Microsoft Visio diagramming tool. Visio allows the language
designer to define sets of custom shapes in “stencil” files, which are made available for the
modeller in palettes as dropable objects. Both 2-dimensional shapes and 1-dimensional rela-
tions can be defined, and the visual appearance can be programmed to depend on custom
properties. For instance, the “bundle” circles that are used for aggregation, specialisation
and element-of relations, have a type property that determines the symbol that is drawn
inside it. The end-user may change properties by interacting with the shapes in three ways:
through a contextual menu, by double-clicking on the shape or by invoking a popup fill-in
form with an interaction objects for each property. In our RML stencil, the type of the bun-
dle circles may be changed by using the contextual menu, while the TaskMODL stencil lets

URN:NBN:no-2353

8.3 Tools and implementations 175

the user change the name of a task through the properties fill-in form. More advanced func-
tionality and behaviour can be achieved by using Visual Basic for Applications, but we have
not tried this. All the models in this work have been drawn, using the stencils for RML,
TaskMODL and DiaMODL shown in Figure 141.

Visio is an interesting alternative to both CASE tools like Rational Rose1 and drawing tools
like Powerpoint, because of its flexibility. For instance, Visio gives the user more freedom
than CASE tools to mix formal notations with informal annotations, use text and colouring
to highlight elements and include graphics. With properly programmed stencils, diagrams
are quickly drawn using direct manipulation. The downside is of course the lack of support
for structural constraints and semantic editing operations. Initially, we planned to modify a
dedicated APM diagram editing tool, but found that the effort needed did not match the ben-
efit. It takes a lot of resources to build and maintain user-friendly custom editors, and the
Visio stencils provide a good user experience for a small cost. In addition, Visio’s flexibility
is particularly important in the exploratory phase, before the notation is decided upon.
Based on our experience and the reasoning in Chapter 3, “Design and representation”, we
believe Visio is a very valuable (and undervalued) tool for both language developers and
modellers.

8.3.2 Garnet and CLIM-based GUI-builder prototypes
To validate the feasibility of using the interactor abstraction and DiaMODL notation for
implementing user interfaces, we have built two prototype GUI-builders. The prototypes
have been implemented using the CLIM [Rao, 1991] and Garnet [Myers, 1990b] Common
Lisp-based toolkits, respectively.

Both GUI-builders provided support for drawing hierarchical structures of interactors with
connected gates. Model execution was implemented by propagating values along connec-
tions and invoking methods on the gate and interactor objects. Since CLIM is nicely inte-
grated with the Common Lisp’s type system,2 the CLIM version focused on making it easier
to build interactor structures by reasoning about gate types. Examples of functions include:

1. A professional version of Visio includes stencils for UML diagrams, and tools for analysing and generating code stubs.
2. We used the Common Lisp Object System (CLOS), an advanced and flexible class-based object system with multiple

inheritance and runtime support for changing objects and classes.

Figure 141. Visio stencils for RML (left) and TaskMODL and DiaMODL (right)

URN:NBN:no-2353

176 Chapter 8 Experiences and feedback

• Instantiation: Many interactor structures were reoccurring, so support for tem-
plates with type parameters were added, for quickly inserting interactor structures
or decomposing interactors. The type parameters could be complex, e.g. records or
sequences, and corresponding interactor structures could be generated by iterating
across elements of the type parameter expressions.

• Composition: The gates for an interactor composition could be automatically
computed, based on internal interactor structure. We found it easier to modify com-
puted structures, than building them manually from scratch.

• Connections: Instead of manually connecting several gates on two interactors, we
supported “smart” connections, whereby the most likely set of connections
between two interactors were automatically inserted. The modeller could cycle
through a set of suggestions sorted by “likelyhood”.

• Functions: When inserting connections between differently typed gates, conver-
sion functions and filters on these connections, would be automatically inserted.
I.e. instead of rejecting a seemingly contradicting (type mismatch) model, we tried
to correct it.

We found that a lot could be done to simplify and reduce the effort needed for building
interactor structures, based on analysis of syntax and types that would be feasible to imple-
ment in less flexible languages than Common Lisp.

The Garnet version1 instead focused on linking interactors and gates to concrete interaction
objects and support for mixing model editing and use. Several functions were supported:

• Abstract to concrete mapping: The user could select an interactor with typed
gates and get a menu of the concrete interaction objects implementing the desired
interface. To explore design alternatives, the user could cycle through different
alternative concrete interactions objects for an interactor.

• Model views: The modeller could choose to see only the abstract interactor view,
and edit the model. He could select a more concrete view, where the (currently
chosen) concrete interaction object was shown within the interactor symbol, and
hide the interactor notation altogether, and only show the concrete interaction
objects.

• Modes of operation: Independently of whether the abstract interactor notation was
visible or not, the standard behaviour of the interaction objects could be turned on
or off. When on, the user interface could be tested, and if the interactor notation
was visible, the propagation of values would be animated, and the values could be
inspected. Note that the model could still be edited, but care had to be taken to
interact with the model instead of the running interface. When interaction was
turned off, it was easier to edit the model or change the layout of objects.

As a proof-of-concept, both GUI-builders showed the advantage of using an interactor
model for supporting the implementation, e.g. for building the interface using templates, for

1. Garnet uses a tailor-made prototype/instance-based object system for its interaction objects, which are very powerful
for making dynamic GUIs but more difficult to integrate with Common Lisp applications.

URN:NBN:no-2353

8.4 Concluding remarks 177

exploring design alternatives, and for runtime modification of the user interface. Unfortu-
nately, the CLIM and Garnet implementation platforms are no longer useful starting points
for a real implementation, hence we have turned to the Java language and platform.

8.3.3 Java-implementation of Statecharts for direct
manipulation
The Java-based Statecharts implementation and direct manipulation tools were imple-
mented for the purpose of validating the ideas presented in [Trætteberg, 1998]. To support
direct manipulation in a simple RML model editor, the basic Statecharts machinery was
augmented by classes for geometric computation and visual objects and wrappers for link-
ing Statecharts’ events and actions to Java’s event and display system. The most common
editing tools, e.g. making new concepts, naming them, moving and resizing boxes, adding
bundles and relations, were first modelled and then hand-translated to executable Java-
classes. The tools sub-system of the editor was itself a Statecharts state, with the individual
tools as substates. During runtime, the composite state was interpreted, driven by events
from the mouse and generating visual feedback by means of the mouse pointer and visual
objects. For debugging purposes, a hierarchical view of the state machine could be shown in
a separate pane, with the active (sub)states highlighted during execution.

The advantage of the Statecharts-based implementation of direct manipulation tools, is
mostly related to our own ability to analyse and gain confidence in a design, before coding
it. The coding is complex, but nevertheless straight-forward in the sense that the translation
from model to code is step-by-step. On a larger scale, we expect it to be easier to combine
separately designed composite states machines, into more complex tools. The implementa-
tion of tooltips illustrates the flexibility of our Statecharts-based approach. Instead of sepa-
rately adding tooltips handling to each tool in the palette, a tooltips (super)state was and-
composed with the tools sub-system, and provided the tips by inspecting the current tool
state and waiting for mouse and timeout events.

Although the Statecharts machinery is heavy-weight compared to directly implementing the
same behaviour in Java component classes, it was fast enough for implementing the
required feedback.1 Even when animating the Statecharts machinery for debugging pur-
poses, the response was good enough. As we consider Java a relevant platform, we have
begun implementing runtime support for the hybrid interactor and Statecharts DiaMODL
language presented in Chapter 5, “Dialogue modelling”, on top of the Swing toolkit.

8.4 Concluding remarks
The contact with industry and practical experiences with proof of concept prototyping has
given us confidence that our approach is worth future work. The industry has confirmed a
need for:

1. The implementation was developed and tested on a 200Mhz laptop running Windows 95 and Sun’s JDK 1.1.8.

URN:NBN:no-2353

178 Chapter 8 Experiences and feedback

• a flexible notation for expressing task structures found in current practices and as
envisioned by designers of future interfaces.

• an abstract and graphic dialogue notation which complements the concrete (and
graphic) representation that GUI-builders and development tools provide

• methods for representing, analysing and reusing design (knowledge)

However, industry remains sceptic to languages that focus more on formal characteristics
than on ease of understanding and use. Hence, it seems important to pay attention to prag-
matic aspects of modelling languages and the implementation of supporting tools. As for
the latter, our practical experience has shown that the proposed abstract dialogue modelling
language may provide a basis for practical design tools, both as the design language and as
a means for implementing them.

URN:NBN:no-2353

179

Chapter 9

Conclusion and Future work
This chapter summarizes the main contribution of the work and point out directions for
future research.

The motivation for this work has been our observation that different traditions or
approaches to development of information systems and applications have different strengths
and weaknesses. Similarly, different research fields focus on and view important aspects of
information system development differently, each contributing to our understanding of the
central problems, while at the same time fragmenting it. We have characterised the differ-
ence between what be have labelled engineering and designer approaches. The difference is
among others concerned with the role and use of design representations, each with their
strengths and weaknesses with respect to the development process.

With pros and cons for both engineering and designer approaches and for different design
representations, we have focused on understanding how they (might) fit together, as formu-
lated in our problem statement:

How can models be used as a representation tool in the development of
interactive systems and provide a means of integrating information sys-
tems development with user interface design?

We have developed a framework for classifying design representations, where different rep-
resentations populate a three-dimensional space. Movements in this space correspond to
moving from one representation to another, and by performing movements according to the
needs of the process, we may better utilise the strengths of each representation. The design
representation classification framework and the movements within the representation space,
has been used as a guidance for the second part of our work, the development of languages
for modelling tasks, abstract dialogue and concrete interaction, all based on work within the
fields of both model-based user interface design and information systems.

Our task modelling language was designed as a hybrid of the APM workflow language
[Carlsen, 1998] and traditional task modelling languages. This will ease the movement
between workflow and task models, without preventing the integration with traditional task
analysis. Our dialogue modelling language took the established interactor/gate abstraction
and architecture as a starting point, and merged it with the industry standard Statecharts lan-
guage. In addition, it was given a flexible graphical notation, to make it more practical for
expressing user interface structure and logic. We have shown how many concrete interac-

URN:NBN:no-2353

180 Chapter 9 Conclusion and Future work

tion objects may be described in terms of the dialogue modelling language, and have used
the language for modelling two common styles of interaction.

The proposed languages are mainly considered tools for expressing ideas about design, so
our focus has been on simplifying the constructs and making the notation flexible. In addi-
tion, we want the models to stimulate further work on the design, so human reasoning about
the models is important. Through a case study we have shown how all this fit together in a
model-based approach to user interface design: How task models may guide the develop-
ment of an abstract dialogue model, and how this model may further guide the design in
terms of concrete interaction objects. Although we focus on humans’ design and modelling
activity, the languages have a formal foundation that allows for machine reasoning. Task
models can (to some extent) be checked for inconsistencies, while dialogue models can be
type and syntax checked and are executable. This paves the way for model-based design
tools that may both be used for modelling during design and execution for testing, valida-
tion and evaluation.

9.1 Main contributions
The main contributions of this work are:

• We have proposed a framework for classifying design representations, and inter-
preted the role and use of representations during interface development in terms of
this framework. The framework contributes to an enhanced understanding of when
and how different design representations should be used. The framework may also
be used for evaluating existing design representations and modelling languages.

• We have developed a task modelling language called TaskMODL which combines
features from workflow modelling languages and traditional task modelling lan-
guages. The language provides:

- An advanced domain modelling language, RML, based on simple and powerful
constructs. RML is integrated with the dynamic part of TaskMODL both concep-
tually and visually, and is used for defining TaskMODL itself.

- Comprehensive support for modelling resources, giving uniform treatment of
information and resource flow and parameterisation of tasks.

- Support for generalisation/specialisation, providing support for representing
general and specific task structures. The support is a direct consequence of Task-
MODL’s definition in terms of RML.

- A flexible visual syntax supporting a hybrid of hierarchical tree structure and sur-
face containment, data and control flow and integrating the static and dynamic
aspects of the domain.

• We have developed a dialogue modelling language called DiaMODL, based on a
functional abstraction of how information is mediated between user and system by
elements of a user interface. The language, provides:

URN:NBN:no-2353

9.2 Limitations and Future work 181

- Generic functional elements based on information mediation with good support
for composition.

- Simplified activation semantics through integration with Statecharts.

- Integration with task modelling, through the use of the same RML and dynamic
constructs similar to TaskMODL.

- Straight-forward concrete interpretation in terms of concrete dialogue elements,
supporting a smooth transition to concrete design.

- Parameterised interactors, supporting generic dialogue structures.

• Models of concrete interaction, based on the dialogue modelling language:

- elements of standard window-based interfaces and their composition

- the direct manipulation style of interaction

9.2 Limitations and Future work
The work presented in this work is mainly theoretical, since the focus has been on defining
modelling languages and notations and not on implementing industrial strength tools and
design support. There are several research and development directions worth exploring,
based on the theoretical results from chapters 3, 4 and 5 and on the prototyping efforts
described in Chapter 8. First, the design representation classification framework is mostly a
philosophical background for our work. It should be more directly exploited for supporting
and guiding the design. Second, although care has been taken to base the modelling lan-
guages on established concepts, they may still be regarded as too theoretical for practical
use. Hence, the modelling languages should be made more industry-friendly by aligning
and integrating them with UML. Third, in everyday work both designers and engineers are
often more concerned with hands-on bottom-up design, than drawing abstract diagrams.
Therefore, we should try to integrate the model-based approach with the practical methods
and tools being used by designers and engineers, instead of advocating a pure top-down
model-based process.

In Chapter 3, “Design and representation”, a framework for classifying design representa-
tions was presented. Based on this framework, we propose to use the TaskMODL and
DiaMODL modelling languages presented in Chapter 4 and Chapter 5, respectively, to for-
mulate design knowledge in model-based user interface design patterns. Our current
approach will be elaborated in Section 9.2.1.

In Chapter 4, the RML and TaskMODL languages were presented. TaskMODL was inte-
grated with and partly defined in terms of RML, and to make these more relevant for indus-
trial usage, we propose to integrate them with UML. The advantage and potential of
integrating DiaMODL with UML should be even greater, since it is more targeted at design,
implementation and deployment, and is already based on Statecharts, a variant of which is
part of UML. UML integration will be discussed in Section 9.2.2.

URN:NBN:no-2353

182 Chapter 9 Conclusion and Future work

In Chapter 6, the DiaMODL language was used for describing the concrete interaction
objects that user interfaces are composed from. The same interaction objects are typically
provided by GUI-builders as building blocks for interface design. Based on the experiences
reported in [Puerta, 1999] and [Myers, 2000], design tools based on abstract dialogue com-
ponents e.g. interactors, should build on the functionality of GUI-builders. Suggestions for
how abstract interactors and concrete interaction objects may be combined in a GUI-
builder, will be discussed in Section 9.2.3.

9.2.1 Model-based design patterns
Design is about making choices, concerning among others which patterns of action the user
should be able to perform and how the design elements are selected and composed to sup-
port this behaviour. The movements presented in Chapter 3, “Design and representation”,
correspond to such design choices, e.g. how tasks are mapped to dialogue structure, how
formal specifications are derived from design sketches and how dialogue structure is
decomposed. Making these choices or movements requires knowledge, and accordingly,
our framework can be used for classifying design knowledge. For instance, rules for map-
ping from abstract dialogue elements to concrete widgets correspond to the movement indi-
cated by the arrow shown in Figure 142.

The UID community has a long tradition of formulating design knowledge in principles,
rules and guidelines, and there exists some attempt to formalize it, e.g. [Vanderdonckt,
1993]. A problem is that such knowledge is either very high-level and general or very spe-
cific [van Welie, 2000]. For capturing “middle-level” design knowledge, the use of UID
patterns is gaining interest and momentum. The pattern concept originated in architecture
([Alexander, 1977]), and simply stated, represents a generic, proven and accepted solution
to a reoccurring design problem, in a way that facilitates (re)use in a new design context.
We believe patterns can become a useful design and engineering tool, if we are pragmatic
about philosophical and often almost religious issues concerning pattern discovery and for-
mulation/formats. In the context of our framework, design patterns can simply be inter-
preted as recipes for how to perform sound movements within our representation space
[Trætteberg, 2002]. As such, they can be used bottom-up as building blocks i.e. upward
movement, top-down for design refinement i.e. downward movement and to advance from
problem to solution i.e. movement to the right. In a model-based approach to design, it is
natural to use model fragments, and in our own experience, the abstraction and precision
they provide is very helpful when formulating patterns [van Welie, 2000]. It is crucial that
the modelling languages support combination of several perspectives, and this is part of our
motivation for integrating them. We are currently experimenting with using model frag-
ments using our TaskMODL and DiaMODL modelling languages in pattern formulations.

Figure 142. Classifying design knowledge:
Design knowledge for mapping dialogue elements to widgets

perspective

granularity

task

action

process

component

element

application

pane

widget

window

URN:NBN:no-2353

9.2 Limitations and Future work 183

Figure 143 shows a pattern for browsing aggregation hierarchies and selecting an element.
The interactor signature can be seen as a specification, and its decomposition a suggested
solution to the problem of supporting this task. Two layouts are suggested for configuring
them in window panes. This particular pattern concerns two movements, decomposition of
dialogue and mapping from abstract to concrete design. We have formulated patterns for
selecting concrete dialogue elements from abstract interactors, like “Browsing a container”
shown in Figure 143, and for mapping from tasks to dialogues, like the “Managing Favour-
ites” shown in Figure 144. The latter kind is in our experience the most difficult to dis-
cover.1

In our experience, the most immediate effect of using formal model fragments in patterns is
mental, e.g. enhancing the understanding of design and increasing the consciousness of
(abstract) design knowledge. However, our understanding of how design patterns should be
used in the constructive design process is limited. On the other hand, model-based user
interface design is an established field, and the use of model fragments in patterns may ben-
efit both: patterns provide a new way of representing model-based design knowledge, while
the use of model fragments makes it easier to use patterns in an engineering context. The
use of formal models (or model fragments) in user interface design patterns is controversial,
partly because of the heritage from Alexander and architecture, and partly because formal
user interface models in any case are rarely used. The theory of knowledge creation pre-
sented in Section 3.6 suggests that a pattern should use both formal and informal represen-
tations, the former for precision and the latter for supporting recognition and application.

For successful use of model fragments in patterns we need gain a better understanding of:

• how model fragments may be extracted from its context, interpreted outside it and
reinserted into another,

• how model fragments from different perspectives and using different languages
may be related and annotated with design rationale according to the pattern idea,

• for what purpose model fragments are useful, e.g. recognition of pattern relevance
vs. application of pattern,

• how the content of model fragments in terms of their classification in our represen-
tations framework may be used for structuring pattern collections and languages,
and finally,

• how existing model-based tools may provide support for model-based design pat-
terns.

9.2.2 UML integration
UML is a family of modelling languages that is used for both analysis and design of soft-
ware systems, and has quickly become a de-facto standard within the domain of software
engineering. Although it has been criticized for being system- and design-entered, rather
than focused on analysis with an end-user perspective [Markopoulos, 2000a], it provides

1. Our patterns employ a concise format from object-oriented design, adapted for interaction design [van Welie, 2000],
while others still favor Alexander’s narrative style.

URN:NBN:no-2353

184 Chapter 9 Conclusion and Future work

and opportunity for integrating software engineering and interaction design. As discussed in
Section 2.4.1, UML includes sub-languages for both static and dynamic modelling that may
be used within interaction design, and mechanisms for extending the existing sub-languages
in case they are inadequate. Below we will outline a strategy for integrating our languages
with UML.

9.2.2.1 RML - UML integration

The RML domain modelling language presented in Section 4.6, has been used throughout
this work for two important purposes:

Name: Browsing a container

Problem: The user needs to browse the
elements of a hierarchy and select one.

Principle: Provide separate connected
panes for specialised viewers.

Context: Many application contains
aggregated data, which the user must
browse through. and the user often wants
to invoke a function taking one of the parts
as input parameter.

Forces:

• Freedom for the application to visualise the
set of containers, parts and individual items
in specific ways.

• Freedom for the user to resize each viewer.

Solution: Split a window into three panes, one for
the viewing a set of containers, one for viewing a set
of parts, and one for viewing individual parts.The
former two must provide item selection. The selec-
tion of a container should determine the content of
the parts pane, and the selected part should deter-
mine the content of the part pane.

Examples: Eudora email, Netscape news.

Rationale: The desire to act on information often
comes when seeing it. Hence, it makes sense to be
able to use presented information as input.

Figure 143. Design pattern for browsing aggregations

Browse aggregation

Container
1.1 Select

element

1.2 Select
elementParts container.

parts

1.3 View
element

Part

∈

1.1

1.2

1.3

1.1 1.2

1.3

URN:NBN:no-2353

9.2 Limitations and Future work 185

• modelling of the concepts within the domain of task and interaction objects, i.e.
domains that our languages address

• modelling of the target domain of the interface, within task and dialogue models

With such a dominant role, integrating RML and UML is the first natural step. As discussed
in Section 4.6.1, RML and UML are similar in how RML elements and UML objects have

Name: Managing favourites

Problem: The user needs to select an item from a set. Items can
be categorized as “typical” or “less used”.

Principle: Provide quicker interaction for the typical case.

Context: Many entities are so numerous that
selecting from the whole set is cumbersome,
while typing in is tedious. However, often some
of the entities are more relevant than others.

Forces:

• Keeping the design simple

• Adding complexity by
supporting quicker
interaction

Solution: Let the user define
which elements are more rele-
vant or provide good rules, and
provide a means for quicker
selection of these. Provide a
good initial set of “typicals”.
Use one dialogue for the “typi-
cal” ones and one for “less
used” ones, and let the user
promote “less used” elements
to “typical”.

Examples: Colour pickers
with standard colours and abil-
ity to name new ones, URL bookmarks/favourites in Netscape and Internet
Explorer, Recently Used folder in Mac Finder.

Rationale: By streamlining the common case, overall performance is better. The
user should find the simplified selection among the most used elements relieving.
Remembering which elements are “typical” might be a burden.

Elements

Typical
elements

Less used
elements

Select less used element

Select
element

Select typical
element

Select
element

Define as
typicalelement

element

Select element

Element

Select element
Elements

∈

Select element

Element

Less used
elements

∈

Typical
elements∈

∈

Element

Figure 144. The Managing favourites design pattern

URN:NBN:no-2353

186 Chapter 9 Conclusion and Future work

identity, and how common characteristics are described by concepts and classes, respec-
tively. The big difference is how instances are assigned characteristics by means of classifi-
cation: RML relies on set membership, while UML is based on classes as cookie-cutters for
the instances’ structure. It was noted that element classification has a more dynamic flavour
than instantiation from a class, although this difference is not a (theoretical or practical)
necessity.1 If we put this philosophical difference aside and correspond UML classes and
objects to RML concepts/sets and elements, most RML constructs can be defined in terms
of UML’s. Hence, RML can be used as a graphical notation for UML class and object dia-
grams, and/or UML may replace RML in TaskMODL and DiaMODL diagrams. Future
research should address:

• the semantic mismatch between RML and UML and the consequences the mis-
match has for different purposes, like model analysis, data management and code
generation

• the pragmatic consequences of using either the RML or UML notation

9.2.2.2 TaskMODL - UML integration

As described in Section 4.7.1, the meaning of the TaskMODL language is partly defined in
terms of a transformation to RML, and partly in terms of the life-cycle of task instances. A
task definition corresponds to an RML concept, and when a task starts an instance of this
concept is created and then is destroyed when the task ends. The relationship between
super- and sub-tasks is defined similarly in terms of specialised part-of relations and
instances: through-out the lifetime of the sub-task, a part-of relation instance between the
super- and sub-task exists. The stereotype extension mechanism seems well suited for cap-
turing these correspondences between task definition and class, and task and instance.
Hence, in UML the generic task concept can be defined as a <<task>> stereotype based on
the UML classifier meta-class, which each specific task definition will be labelled with.
The aggregation relation between super- and sub-tasks may similarly be defined as a stereo-
type based on the special aggregate association meta-class. Appropriate constraints must be
defined to ensure this stereotype is only used for relating <<task>> classes. A similar treat-
ment may be given to resources, i.e. the requirement and achievement relations defined in
Figure 36 on page 63.

Although this seems like a straight-forward extension of UML, several questions must be
addressed in future research:

• What constraints should be put upon the various stereotypes? Should it be possible
to add attributes and operation to <<task>> classes, and if so, what meaning should
be given to them?

1. Many object-oriented programming languages provide means for re-classifying an instance, either by allowing direct
manipulation of the is-a relation, or by providing meta-functions like CLOS’ change-class method.

URN:NBN:no-2353

9.2 Limitations and Future work 187

• Several of the generic relations in Figure 36 on page 63 are implicitly specialised
when specific task hierarchies are specified. Can we handle this in UML by intro-
ducing an aggregation association class, can we introduce tags on the stereotypes
to handle this, or may we just implicitly assume the specialisation without repre-
senting it in UML?

• Sequence constraints are defined in terms of the possible sequences of part-of rela-
tion instances that are created throughout a super-task’s lifetime. How can these
constraints be represented in OCL, UML’s constraint language? Can these con-
straints also be useful for other kinds of relations, outside the task domain?

• A task model describes the possible sequences of tasks that may be performed, and
we have defined a correspondence between task performance and the creation and
destruction of (fictional) task instances. Software systems that track task perform-
ance or support task enactment, will need to explicitly represent these instances.
How can basic support for this be added to the UML representation of task models.
For instance, can operations be defined to check for pre-conditions, establish the
requirement and achievement relations, and ensure post-conditions?

9.2.2.3 DiaMODL - UML integration

The DiaMODL dialogue modelling language has many similarities with TaskMODL: it pro-
vides a notation for defining hierarchies of process-like entities, the entities may be con-
nected, and each entity may define a set of resources that it requires. Hence, the same
strategy for UML integration as for TaskMODL may be employed: stereotypes are defined
for the main concepts, and appropriate constraints are added. The <<interactor>> stereotype
should be based on the classifier meta-class, while the <<connection>> stereotype should
be based on the association class meta-class, to maintain the look & feel of a flow. The tip
and base of gates are similar to attributes in that they have a type and can contain a value.
Hence, it makes sense to define <<base>> and <<tip>> stereotypes based on the attribute
meta-class, instead of a <<gate>> stereotype, and use naming to relate them to each other.1

9.2.3 Building User Interfaces with interactors
GUI-builders provide the user interface designer with functionality for composing a graphi-
cal user interface from concrete interaction objects, typically within a specific language and
toolkit. In terms of the design representation classification framework presented in
Section 3.3, this corresponds to working with design elements located far right on the solu-
tion-oriented end of the perspective axis. User interface modelling tools, on the other hand,
support composing dialogues from more abstract design elements, i.e. the left part of the
solution-oriented end of the perspective axis. [Myers, 2000] discuss the merits of both
approaches and attribute the success of the former and lack of such of the latter to their
respective low and high threshold. One approach to lowering the threshold and increasing
the success of model-based tools is introducing GUI-builder functionality in them, as is
done in the MOBILE system [Puerta, 1999]. It is argued that a user-centred approach

1. Getters and setters of properties are by convention related in a similar way: they are named by prefixing the capitalised
property name with “get” and “set”, respectively, e.g. “getValue” and “setValue” for the “value” property.

URN:NBN:no-2353

188 Chapter 9 Conclusion and Future work

requires support for bottom-up design. Hence, MOBILE includes support for building the
GUI from concrete elements, that later are related to abstract dialogue elements. A key
point in this work is that user interface designers and developers need to move freely
between different design representations, including abstract and concrete views of design
elements. Therefore we propose a design tool which allows a free mix of abstract and con-
crete elements in a single view, a kind of integration of MOBILE’s two views. Figure 145
illustrates a tool which combines interactors and their corresponding concrete interaction
objects in a single view. Without the concrete interaction objects, the window could have
been taken from an abstract dialogue modelling tool, while without the interactors, it could
have been part of a GUI-builder. By combining these two views, we hope to gain several
advantages:

• Give the designer a greater freedom in mixing abstract and concrete thinking

Figure 145. Combining abstract interactors and concrete interaction objects in one view

URN:NBN:no-2353

9.2 Limitations and Future work 189

• Make it easier to understand the abstract notation, both for designers, developers
and students

• Support both abstract evaluation and concrete testing of a design

The accomplish this the tool will need to combine the functionality of both abstract dia-
logue modelling tools and GUI-builders, and in addition let the user manipulate the relation
between abstract and concrete elements. Among others the user should be able to:

• add, edit and remove abstract and concrete elements in any order, using direct
manipulation in a view similar to the one shown in Figure 145,

• establish and manipulate relations between abstract interactors and concrete inter-
actions objects, i.e. introduce the interaction objects corresponding to an interactor
as the latter’s decomposition or wrap an interaction object in an interactor inter-
face,

• for interactor devices of the kind presented in Section 5.2.2 and Section 5.2.3,
choose among a set of corresponding concrete interaction objects, and for standard
concrete interaction objects, introduce the corresponding interactor abstraction,

• switch among different views of (pairs of) abstract and concrete elements, as illus-
trated in Figure 146,

Figure 146. Three different views of JCalendar interactor.

JCalendar

Date

Locale
Locale

JCalendar

Locale

Date

URN:NBN:no-2353

190 Chapter 9 Conclusion and Future work

• manage libraries of (parameterised) interactors, including their decomposition

• match an interactor against a library of (possibly parameterised) interactors based
on gate and resource interface, and unify them, e.g. to introduce a standard decom-
position or concrete interaction object for an interactor

• define or generate prototypical data and connect it to gates of abstract interactors or
set as values of concrete interaction objects

• operate the concrete interaction objects and execute the abstract interactor model,
to validate/evaluate the current design

Although the tool should be usable as either an abstract modelling tool or as a standard
GUI-builder, the focus should be on the integration of abstract and concrete elements, both
for editing/building and executing/operating the abstract and concrete design. Figure 146
shows how a JavaBean, Java’s component technology, may be modelled and viewed. In the
top-left corner, an abstract view of a date device interactor is shown, perhaps as a specifica-
tion of the functionality of a concrete design. Top-right a possible configuration of two
JavaBeans are shown, where the bottom JCalendar bean [JCalendar@2002] shows a a date
in a monthly view and the top bean is used for customizing the JCalendar bean’s locale
property. The bottom view shows the interactor model of this configuration, with the actual
beans included.

9.2.4 Summary
The three directions for future research and development outlined above, all concern how
the theoretical results can be made easier to utilise and more practical and industry-friendly.

The design representation classification framework presented in Chapter 3, has in this work
been used as a motivation and guideline for the development of the three modelling lan-
guages RML, TaskMODL and DiaMODL. By introducing the concept of model-based user
interface design patterns, which use model fragments for capturing design knowledge, we
hope to utilise the framework more directly in the design process.

During the development of the proposed modelling languages, UML has been introduced as
the standard object-oriented notation and has gained widespread acceptance in the software
industry. Since UML lacks support for interaction design, we have suggested a way of inte-
grating the TaskMODL and DiaMODL languages with UML. Hopefully, this research
direction may both contribute to a large community and make our own work more relevant.

A third way of utilising the theoretical results is that of building tool support for our lan-
guages. In this direction we have focused on the integration of abstract dialogue modelling
with concrete design. Our proposal is a design tool that seamlessly integrates abstract inter-
actors and concrete interaction objects in a direct manipulation interface.

URN:NBN:no-2353

List of Figures

Figure 1. Information System (IS), User Interface (UI) and Computer System (CS)1
Figure 2. People use information and tools to perform actions ..1
Figure 4. Alternative abstract interface models, based on a task model. ..10
Figure 3. Alternative concrete interface models (CIM), based on an abstract interface model (AIM)10
Figure 5. People use information and tools to perform actions ..21
Figure 6. People, information, tools and actions are complex entities ...22
Figure 7. Different disciplines study different parts of the picture ...23
Figure 8. Boundaries are interesting and difficult to handle ...23
Figure 9. The problem/solution dimension for classifying design representations ..27
Figure 10. The level/granularity dimension for classifying design representations28
Figure 11. Design representation space: perspective and level...29
Figure 12. The level/granularity dimension interpreted across perspectives ..29
Figure 13. The formality dimension for classifying design representations ...30
Figure 14. Correspondence between user and system views of the design ..32
Figure 15. Smooth and erratic paths through the design space...33
Figure 16. Movements in the representation space ...35
Figure 17. Nonaka’s modes of knowledge transfer ..37
Figure 18. The APM example model. ...44
Figure 19. The APM actor and tool symbols ..45
Figure 20. Ontology or meta-model for task modelling languages [van Welie, 1998]47
Figure 21. Task model for USER based on the workflow model example ..50
Figure 22. Conceptual modelling constructs and notation..52
Figure 23. RML example model ...53
Figure 24. Defining sex (types) as distinguishing trait ...55
Figure 25. Named relations and membership ...57
Figure 26. Specialisation of relations..57
Figure 27. Specialisation and Or-decomposition ..59
Figure 28. Aggregation and And-decomposition..59
Figure 29. Combining specialisation and aggregation ..59
Figure 30. Basic TaskMODL constructs...60
Figure 31. The four sequence constraints ...60
Figure 32. Alternative task hierarchy containment style ..60
Figure 33. The four basic task types ...61
Figure 34. TaskMODL example model ..61
Figure 35. TaskMODL - RML correspondence..63
Figure 36. Generic TaskMODL model ...63
Figure 37. Interpreting the resource bar notation as an RML model fragment...64
Figure 38. Typical usage of actor modelling ..65
Figure 39. Corresponding RML model fragment ...65
Figure 40. Generic actor model...65
Figure 41. Example 1: ...67
Figure 42. Example 2: ...67
Figure 43. Use Phone task example ..68
Figure 44. Decomposing set- and element-oriented tasks ..69
Figure 45. Sequence constraints and corresponding control structure using conditions70
Figure 46. Pre-condition examples ...71
Figure 47. Task classification ...74
Figure 48. Choice context ...75
Figure 49. Generalising several common subtasks of using Eudora ..76
Figure 50. Task specialisation and specialisation of resources, actors and output / post-condition78
Figure 51. System-user communication..84

URN:NBN:no-2353

Figure 52. Mediation between system and user ..85
Figure 53. User interface only...85
Figure 54. Generic interactor ..85
Figure 55. Integer interactor composition ...87
Figure 56. Interactor concepts...88
Figure 57. Summary of the notation for interactors, connections and functions ..89
Figure 58. Functions: standalone (left), on connections (middle) and on gates (right).90
Figure 59. Boolean interactor device (left) and the corresponding concrete interaction object (right)91
Figure 60. Other concrete interaction objects implementing the boolean interaction device92
Figure 61. Various special purpose interaction objects ..92
Figure 62. Element selection interactor (left) and two corresponding concrete interaction objects (right)....93
Figure 63. Alternative selection interactor..93
Figure 64. Subset selection interactor ...94
Figure 65. Listbox subset selection ...94
Figure 66. Selecting a leaf element from a hierarchy ...94
Figure 67. State-oriented interactor concepts..96
Figure 68. Main Statechart constructs...96
Figure 69. Selection transition ..97
Figure 70. The checkbox behaviour..98
Figure 71. Selection of related element...99
Figure 72. And- (left) and or-composition (right)...99
Figure 73. Standalone functions..101
Figure 74. COM-like object ..101
Figure 75. Interactor state resources ...101
Figure 76. Mouse and pen models ..102
Figure 77. Problem of substitution:...104
Figure 78. Generic string parsing and unparsing interactor ..104
Figure 79. Interactor instantiation, through the use of resource binding ..104
Figure 80. Interactor customisation...105
Figure 81. The four components of the Arch model ...106
Figure 82. The Retrieve Messages act modelled as a torn-apart function ..107
Figure 83. Act input device ...107
Figure 84. Act as set and element ...107
Figure 85. Act specialisation, based on task, argument type and result..108
Figure 86. The effect of different transition triggering priorities..110
Figure 87. Cascading acts ...110
Figure 88. Function usage: input arguments, trigger, monitoring and result output.....................................111
Figure 89. Function decomposed into three main states ...111
Figure 90. Use (left and decomposition (right) of Retrieve Messages function ...112
Figure 91. Propagation of along connection ...114
Figure 92. Combining task and interactor models ..116
Figure 93. Using a text label for presenting numbers ...120
Figure 94. Dialogue container and element parts..122
Figure 95. Frame and pane containers ..122
Figure 96. The text label concept and interactor...123
Figure 97. Button structure and states...125
Figure 98. Boolean toggle (left) and act button (right) ...126
Figure 99. A popup calendar. ..127
Figure 100. Popup selection and menu item interactors ...128
Figure 101. Menu aggregation/part structure..129
Figure 102. Integer (within interval) device ...130
Figure 103. Composing an input device for a set of fields ...131
Figure 104. JTree interactor with renderer interactor parameter ..132
Figure 105. Task and dialogue model for moving messages among mailboxes...133
Figure 106. The two Listbox designs: Left: dialogue box, right: wizard style ...134
Figure 107. Aspects and elements of gesture recognisers...138
Figure 108. Mouse device ...138
Figure 109. The structure of the five gesture steps ...139
Figure 110. The behaviour of the five gesture steps ...139
Figure 111. The Move File to Folder gesture recogniser..140

URN:NBN:no-2353

Figure 112. Move File to Folder interactor ...142
Figure 113. The Visio 5 drawing tools (top) and interactor model of toolbar functionality.........................143
Figure 114. Composition of select, move and resize modes...144
Figure 115. Workflow process and task hierarchy alignment...148
Figure 116. IFIP conference arrangement problem definition..149
Figure 117. The process submodel from Figure 7.8, page 231 in [Carlsen, 1997].......................................150
Figure 118. Sequence of set-processing tasks...151
Figure 119. Aggregation of individual task sequences ...151
Figure 120. Conceptual model of the static domain ...153
Figure 121. Task A.2: Record response ..154
Figure 122. Task A.3: Choosing reviewers for a paper and sending the review report154
Figure 123. Refining the Review concept...155
Figure 124. Task A.5: Collecting the review results and making a review summary156
Figure 125. Registering a paper ..158
Figure 126. Assigning reviewers to papers. ..159
Figure 127. Alternative design for assigning reviewers to papers. ...159
Figure 128. Classifying review summaries. ..161
Figure 129. Classification as a state transition..161
Figure 130. And-composition of common interactor with sets of task-oriented interactors163
Figure 131. Folder view of papers and related reviews ..164
Figure 132. Tabs of tabbed pane ...165
Figure 136. Folder view of papers and review reports provides a context for “Reviews” tab165
Figure 133. The “Paper” tab: ..166
Figure 134. The “Reviewers” tab:...166
Figure 135. The “Reviews” tab:..166
Figure 137. “Document” interface and related concepts...167
Figure 138. The task of selling gas depends on the user and on the class of contract171
Figure 139. Alternative dialogues for selecting elements from a large set. ..172
Figure 140. Dialogue and layout pattern from Statoil case...173
Figure 141. Visio stencils for RML (left) and TaskMODL and DiaMODL (right)175
Figure 142. Classifying design knowledge: ..182
Figure 143. Design pattern for browsing aggregations ...184
Figure 144. The Managing favourites design pattern ...185
Figure 145. Combining abstract interactors and concrete interaction objects in one view...........................188
Figure 146. Three different views of JCalendar interactor. ..189

URN:NBN:no-2353

195

References

(Alexander, 1977) Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiks-
dahl-King, I.,& Angel, S. A Pattern Language. Oxford University
Press, 1977.

(Alexander, 1979) Alexander, C. The Timeless Way of Building. Oxford University
Press, 1979.

(Arias, 1997) Arias, E., Eden, H., Fischer G. Enhancing Communication, Fascili-
tating Shared Understanding and Creating Better Artifacts By Inte-
grating Physical and Computational Media for Design. In
Proceedings of the conference on Designing interactive systems:
processes, practices, methods, and techniques, August 1997, Neth-
erland.

(Artim, 1998) Artim, J., van Harmelen, M., Butler, K., Gulliksen, J., Henderson,
A., Kovacevic, S., Lu, S., Overmyer, S., Reaux, R., Roberts, D.,
Tarby, J-C., Vander Linden, K. Incorporating Work, Process And
Task Analysis Into Commercial And Industrial Object-Oriented Sys-
tems Development. Workshop report from CHI’98, SIGCHI Bulle-
tin, 4, 1998.

(Baecker, 1995) Baecker, R.M., Grudin, J., Buxton, W.A.S., Greenberg, S. Readings
in Human-Computer Interaction: Toward the Year 2000. Second
Edition. 1995.

(Balzert, 1995) Balzert, H., From OOA to GUI - The JANUS System. Nordbyn, K.,
Helmersen, P.H., Gilmore, D.J., Arnesen, S.A. (eds.) Proceedings of
the 5th IFIP TC13 Conference on Human-Computer Interaction, pp.
319-325, 1995.

(Balzert, 1996) Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C. The JANUS
Application Development Environment - Generating More than the
User Interface. In [CADUI’02], pp. 183-206.

(Bansler, 1989) Bansler, J. Systems Development Research in Scandinavia: Three
Theoretical Schools. Scandinavian Journal of Information Systems,
vol 1, pp. 3-22, 1989.

(Bansler, 1993) Bansler, J.P., Bødker, K. A reappraisal of structured analysis:
design in an organizational context. ACM Transactions on Informa-
tion Systems, 11(2), 1993.

URN:NBN:no-2353

196

(Bergner, 1998) Beregner, K., Rausch, A., Sihling, M. A Critical Look upon UML
1.0. In The Unified Modeling Language: Technical Aspects and
Applications, p. 79-92. Martin Schader, Axel Korthaus, Physica-
Verlag 1998.

(Bier, 1995) Bier, E.A., Stone, M.C., Fishkin, K., Buxton, W., Baudel, T. A Tax-
onomy of See-Through Tools. In [Baecker, 1995].

(Bjerknes, 1995) Bjerknes, G. Bratteteig, T. User participation and democracy: a dis-
cussion of Scandinavian research in systems development. Scandi-
navian Journal of Information Systems, 7(1):73 – 98, 1995.

(Bodart, 1995) Bodart, F., Hennebert, A-M., Leheureux, J-M., Provot, I., Sacré, B.,
Vanderdonckt, J. Towards a Systematic Building of Software Archi-
tecture: the TRIDENT Methodological Guide. In [WfMC, composi-
tionality], p. 262-278

(Buxton, 1990) Buxton, W. A Three-State Model of Graphical Input. In [INTER-
ACT’90], pp. 449-456.

(Card, 1980) Card, S.K., Moran, T.P., Newell, A. The keystroke-level model for
user performance time with interactive systems. Communications of
the ACM, vol 23, p. 396-410.

(Card, 1983) Card, S.K., Moran, T.P., Newell, A. The psychology of human-com-
puter Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.
1983.

(Carlsen, 1991) Carlsen, N. V. Modelling User Interface Software. Part I of disserta-
tion. Technical University of Denmark. 1991

(Carlsen, 1997) Carlsen, S., Conceptual Modeling and Composition of Flexible
Workflow Models. Dr.Ing Thesis 1997, NTNU - Norwegian Univer-
sity of Science and Technology, Trondheim, Norway. Available at
http://www.informatics.sintef.no/~sca/workflow/thesis.pdf (last vis-
ited 2002-01-17).

(Carlsen, 1998) Carlsen, S., Action Port Model: A Mixed Paradigm Conceptual
Workflow Modeling Language. Proceedings of CoopIS - Coopera-
tive Information Systems ’98

(Coleman, 1992) Coleman, D. et.al. Introducing Objectcharts or How to Use State-
charts in Object-Oriented Design. IEEE Transactions on Software
Engineering, vol. 18, no. 1, January 1992.

(Constantine, 2001a) Constantine, L., Lockwood, L. Structure and Style in Use Cases for
User Interface Design. Found at [foruse.com@2001]: http://
www.foruse.com/Files/Papers/structurestyle2.pdf

URN:NBN:no-2353

 197

(Davis, 1995) Davis, A. M. Object-oriented Requirements to Object-oriented
Design: An East Transition? Journal of Systems and Software. No.
30, 1995.

(Duke, 1994) Duke, D., Faconti, G., Harrison, M., Paternó, F. Unifying views of
interactors. In Proceedings of the workshop on Advanced visual
interfaces, June 1 - 4, 1994, Bari Italy, pp. 143-152.

(Ehn, 1993) Ehn, P. Scandinavian design: on participation and skill. In Schuler,
D. and Namioka, A. (eds.) Participatory design : principles and
practices, pages 41-78. Lawrence Erlbaum Ltd., 1993.

(Embley, 1995) Embley, D. W., et. al. OO Systems Analysis: Is It or Isn't It? IEEE
Software, July 1995.

(Farshscian, 19935 Farshchian, B., Krogstie, J., Sølvberg, A. Integration of User Inter-
face and Conceptual Modelling. In Proceedings for ERCIM Work-
shop “Towards User Interfaces for All: Current efforts and future
trends”. 1995.

(Fischer, 1993) Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., Sumner, T. Embed-
ding Computer-Based Critics in the Context of Design. In [INTER-
CHI’93], pp. 157-164.

(Floyd, 1987) Floyd, C. Outline of a Paradigm Change in Software Engineering.
In Bjerknes, G., Ehn, P. and Kyng, M. (eds.), Computers and
Democracy, pages 193-210. Avebury, 1987.

(Foley, 1988) Foley, J.D., Gibbs, C., Kim, W.C. Kovacevic, S. A Knowledge-
based User Interface Management System. In Proceedings of
Human Factors in Computing Systems, p. 67-72, 1988.

(Gross, 1996) Gross, M.D., Yi-Luen Do, E. Ambiguous Intentions: A Paper-Like
Interface for Creative Design. In Proceedings of UIST’96, p.183-
192, 1996.

(Gaudel, 1994) Gaudel, M-C. Formal specification techniques. In Proceedings of
the 16th international conference on Software engineering - ICSE, ,
p. 223-227, May 1994. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1994.

(Harel, 1987) Harel, D. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming 8, 1987.

(Harel, 1992) Harel, D. Biting the Silver Bullet - Towards a Brighter Future for
Systems Development. IEEE Computer, January 1992.

URN:NBN:no-2353

198

(Hirschheim, 1989) Hirschheim, R.A., Klein, H.K. Four paradigms of information sys-
tem development. Communications of the ACM, 32 (10):1199-
1216, 1989.

(Horrocks, 1999) Horrocks, I.. Constructing the User Interface with Statecharts. Add-
ison-Wesley, 1999.

(ISO 9241, 1997) ISO standard 9241 - Ergonomic requirements for office work with
visual display terminals (VDTs), 1997.

(John, 1996) John, B.E., Kieras, D.E., The GOMS family of user interface analy-
sis techniques: comparison and contrast. ACM Transactions on
Computer-Human Interaction. 3, 4, p. 320-351, 1996.

(Johnson, 1991) Johnson, H., Johnson, P., Task knowledge structures: Psychological
basis and integration into systems design. Acta Psychologica, vol.
98, pp. 3-26.

(Johnson, 1993) Johnson, P., Wilson, S., Markopoulos, P., Pycock, J. ADEPT:
Advanced Design Environment for Prototyping with Task Models. In
[CHI’93], p. 56, 1993.

(Jones, 1998) Jones, S., Sapsford, J. The role of informal representations in early
design. In [DSV-IS’98].

(Kim, 1995) Kim, S. Interdisciniplary Cooperation. In [Baecker, 1995].

(Krogstie, 1995) Krogstie, J., Lindland, O.L., Sindre, G. Defining quality aspects for
conceptual models. Falkenberg, E.D., Hesse, W., Olivé, A. (eds.)
Information System Concepts: Towards a consolidation of views,
pp. 216-231. 1995.

(Landay, 1995) Landay, J.A., Myers, B.A. Interactive Sketching for the Early Stages
of User Interface Design. In Proceedings for CHI’95, v.1 p.43-50,
1995.

(Limbourg, 2000) Limbourg, Q., Pribeanu, C. Vanderdonckt, J. Towards Uniformed
Task Models in a Model-Based Approach. In [DSV-IS’01].

(Lindland, 1994) Lindland, O. I., Sindre, G., Sølvberg, A. Understanding quality in
conceptual modelling. IEEE Software, pp. 42-49. 1994.

(Löwgren, 1995) Löwgren, J. Applying Design Methodology to Software Develop-
ment. In [WfMC, compositionality], pp. 87-95.

(Malone, 1999) Malone, T.W., Crowston, K., Lee. J., Pentland, B., Dellarocas, C.,
Wyner, G., Quimby, J., Osborn, C.S., Bernstein, A., Herman, G.,
Klein, M., O'Donnell, E. Tools for inventing organizations: Toward

URN:NBN:no-2353

 199

a handbook of organizational processes. Management Science
45(3), pp. 425-443, March 1999.

(Markopoulos, 1994) Markopoulos, P., Wilson, S., Johnson, P. Representation and use of
task knowledge in a user interface design environment. IEE Pro-
ceedings - Computers and Digital Techniques, vol 141, 2, p. 79-84,
1994.

(Markopoulos, 1997) Markopoulos, P. A compositional model for the formal specification
of user interface software. PhD thesis at Department of Computer
Science, Queen Mary and Westfield College, University of London.
1997.

(Markopoulos, 2000a) Markopoulos, P., Marijnissen, P. UML as a representation for Inter-
action Design. Presented at OZCHI 2000.

(Markopoulos, 2000b) Markopoulos, P. Supporting interaction design with UML, task
modelling. Position paper at [TUPIS’2000].

(Marshak, 1997) Marshak, R.T. Workflow: Applying Automation to Group Processes.
Coleman, D. (ed.): Groupware - Collaborative Strategies for Corpo-
rate LANs and Intranets. Prentice Hall PTR, 1997. 143-181

(Medina-Mora, 1992) Medina-Mora, R., Winograd, T., Flores, R., Flores, F. The Action
Workflow Approach to Workflow Management Technology. CSCW
’92

(Mukerjee, 2001) Mukerjee, A. Interval Algegra: A review. http://www.cse.iitk.ac.in/
~amit/interval/interval.html, last visited 5. November 2001.

(Myers, 1990a) Myers, B.A. A New Model for Handling Input. ACM Transactions
on Information Systems, 8. 1990.

(Myers, 1990b) Myers, B.A., Guise, D.A., Dannenberg, R.B., Vander Zanden, B.,
Kosbie, D.S., Pervin, E., Mickish, A., Marchal, P. Comprehensive
Support for Graphical, Highly-Interactive User Interfaces: The
Garnet User Interface Development Environment. IEEE Computer
23, 11. November 1990.

(Myers, 1995) Myers, B.A., State of the Art in User Interface Software Tools. In
[Baecker, 1995], pp 323-343.

(Myers, 2000) Myers, B., Hudson, S.E., Pausch, R. Past, Present and Future of
User Interface Software Tools. ACM Transactions on Computer-
Human Interaction, Vol. 7, no. 1, March, 2000.

(Nielsen, 1993) Nielsen, J. Usability Engineering. Academic Press, 1993.

URN:NBN:no-2353

200

(Nonaka, 1998) Nonaka, I., Takeushi, H. A theory of the firm’s knowledge-creation
dynamics. In “The dynamic firm. The role of technology, strategy,
organization and regions.” Chandler jr, A.D, Hagstrøm, P., Søvell,
Ø. (eds). Oxford University Press, 1998.

(Norman, 1988) Norman, D. The Design of Everyday Things. Basic Books, 1988.

(Nunes, 2000a) Nunes, N.J., Cunha, J.F. Wisdom - A UML-based architecture for
interactive systems. In Proceedings of DSV-IS - Design, Specifica-
tion and Verification of Interactive Systems, 2000.

(Nunes, 2000b) Nunes, N.J., Cunha, J.F. Towards a UML profile for interaction
design: the Wisdom approach. Third International Conference on
the Unified Modeling Language (UML’2000), York, UK, October
2000.

(Nunes, 2000b) Nunes, N.J. Object Modeling for User-Centered Development and
User Interface Design: The Wisdom Approach. PhD thesis from
Universidade da Madeira, April 2001.

(Olson, 1990) Olson, J.R., Olson, G.M., The Growth of Cognitive Modeling in
Human-Computer Interaction Since GOMS. Human-Computer
Interaction, 1990, vol 5, pp. 221-265.

(Paterno, 1997) Paternò, F., Mancini, C., Meniconi, S. ConcurTaskTrees: A Dia-
grammatic Notation for Specifying Task Models. Proceedings of
Interact ’97, Chapman & Hall (1997) 362-369

(Paterno, 2000b) Paternò, F. Model-Base Design and Evaluation of Interactive Appli-
cations. Springer-Verlag, 2000.

(Paterno, 2000b) Paternò, F. ConcurTaskTrees and UML: how to marry them? Posi-
tion paper at [TUPIS’2000].

(Puerta, 1996) Puerta, A.R. The MECANO Project: Comprehensive and Integrated
Support for Model-Based Interface Development. In [CADUI’02],
pp. 19-35.

(Puerta, 1997) Puerta, A.R., Maulsby, D. Management of interface design knowl-
edge with MOBI-D. Proceedings of the international conference on
Intelligent user interfaces, 249-252, 1997.

(Puerta, 1999) Puerta, A.R., Cheng, E., Ou, T., Min, J. MOBILE: user-centered
interface building. In Proceeding of the Conference on Human fac-
tors in computing systems, p. 426-433, 1999.

(Rao, 1991) Rao, R., York, W. M., Doughty, D. A Guided Tour of the Common
Lisp Interface Manager. In Lisp Pointers, 4. 1991.

URN:NBN:no-2353

 201

(Searle, 1985 Searle, J.R. and Vanderveken, D. Foundations of Illocutionary
Logic. Cambridge University Press, 1985.

(Shneiderman, 1983) Shneiderman, B. Direct Manipulation: A Step Beyond Program-
ming Languages. IEEE Computer, August 1983.

(da Silva, 2000) da Silva, P.P., Paton, N.W. UMLi: The Unified Modeling Language
for Interactive Applications. In <<UML>>2000 - The Unified Mod-
eling Language: Advancing the Standard. 3rd International Confer-
ence on the Unified Modeling Language, York, United Kingdom,
October, 2000. A. Evans, S. Kent and B. Selic (eds.). LNCS Vol
1939, p. 117-132, Springer, 2000.

(da Silva, 2001) da Silva, P.P. A Proposal for a LOTOS-Based Semantics for UML.
Technical Report UMCS-01-06-1, Department of Computer Sci-
ence, University of Manchester, UK, June 2001. Accessible at http:/
/www.cs.man.ac.uk/~pinheirp/publications.html

(Sukaviriya, 1993) Sukaviriya, P., Foley, J.D., Griffith, T. A second generation user
interface design environment: the model and the runtime architec-
ture. In [CHI’93], p. 375-382, 1993.

(Szekely, 1990) Szekely, P. Template-based Mapping of Application Aata to Interac-
tive Displays. In Proceedings of the ACM Symposium on User
Interface Software and Technology, 1990, p. 1-9.

(Szekely, 1992) Szekely, P., Luo, P., Neches, R. Facilitating the exploration of inter-
face design alternatives: the HUMANOID model of interface
design. In Conference proceedings on Human factors in computing
systems, p. 507-515, 1992.

(Szekely, 1995) Szekely, P., Sukaviriya, P., Castells, P., Muthukumarasamy, J., Sal-
cher, E. Declarative interface models for user interface construction
tools: the MASTERMIND approach. 1995. In Proceedings of
EHCI'95.

(Szekely, 1996) Szekely, P. Retrospective and Challenges for Model-Based Interface
Development. In [CADUI’02].

(Sølvberg, 1999) Sølvberg A.: Data and what they refer to. In Chen, P.P. et al.(eds.):
Conceptual Modeling, Lecture Notes in Computer Science, pp. 211-
226. Springer Verlag, 1999.

(Traunmüller, 1997) Traunmüller, R., Wimmer, M., Extending the Van der Veer
Approach to Cooperative Work: A Bridge between Groupware Task
Analysis and Workflow Design. DEXA- Database and Expert Sys-
tems Applications ’97.

URN:NBN:no-2353

202

(Trætteberg, 1998) Trætteberg, H. Modelling Direct Manipulation with Referent and
Statecharts. In [DSV-IS’98].

(Trætteberg, 1999) Trætteberg, H. Modelling work: Workflow and Task Modelling. In
[CADUI’99].

(Trætteberg, 2002) Trætteberg, H. Using User Interface Models in Design. In
[CADUI’02].

(UML, 1998) UML Summary, Version 1.1 http://www.rational.com/uml/html/
summary/ and Statechart notation, http://www.rational.com/uml/
html/notation/notation9a.html

(Vanderdonckt, 1993) Vanderdonckt, J.M., Bodart, F. Encapsulating Knowledge for Intel-
ligent Automatic Interaction Objects Selection. In Proceedings of
INTERCHI'93, p. 424-429, 1993.

(Vanderdonckt, 1999a) Vanderdonckt, J.M., Puerta, A.R., Introduction to Computer-Aided
Design of User Interfaces, Preface of [CADUI’99].

(Vanderdonckt, 1999b) Vanderdonckt, J., Berquin, P. Towards a Very Large Model-Based
Approach for User Interface Development. In Proceedings of User
Interfaces for Data Intensive Systems - UIDIS’99, IEEE Computing
Society Press, Los Alamitos, 1999.

(van der Veer, 1996) van der Veer, G.C., Lenting B.F., Bergevoet, B.A.J. GTA: Group-
ware Task Analysis - Modeling Complexity. Acta Psychologica, vol.
91, pp. 297-322, 1996.

(van der Veer, 2000) van der Veer, G.C., van Welie, M. Task Based Groupware Design -
Putting theory into practice. In Conference proceedings on Design-
ing Interactive Systems - DIS 2000, August 2000, New York.

(van Welie, 1998) van Welie, M., Van der Veer, G.C., Eliëns, A. An Ontology for Task
World Models. In [DSV-IS’98] 57-70

(van Welie, 2000) van Welie, M., van der Veer, G.C., Eliëns, A. Patterns as Tools for
UI Design. International Workshop on Tools for Working with
Guidelines, pp. 313-324. Biarritz, France, October 2000.

(van Welie, 2000) van Welie, M., Trætteberg, H. Interaction patterns in user inter-
faces. 7th. Pattern Languages of Programs Conference, 13-16
August 2000, Allerton Park Monticello, Illinois, USA.

(Wellner, 1989) Wellner, P.D. Statemaster: A UIMS based on Statecharts for Proto-
typing and Target Implementation. In [CHI’89].

URN:NBN:no-2353

 203

(Wieringa, 1989) Wieringa, R. Three roles of conceptual models in informatin system
design and use. Falkenberg, E., Lindgren, P. (eds.) Information Sys-
tem Concepts: An In-Depth Analysis, pp. 31-51. 1989.

(Winograd, 1986) Winograd, T. and Flores, F. Understanding Computers and Cogni-
tion. Addison-Wesley Publ. Co (1986)

(WfMC, 1994) WfMC: The Workflow Reference Model , Version 1.1, Workflow
Management Coalition WFMC-TC-00-1003. 1994.

Conferences, workshops, proceedings and
sites

(CADUI’02) Ch. Kolski & J. Vanderdonckt (eds.), Proceedings of the 4th Inter-
national Conference on Computer-Aided Design of User Interfaces
CADUI'2002 (Valenciennes, 15-17 May 2002), Kluwer Academics
Publisher, Dordrecht, 2002.

(CADUI’99) Vanderdonckt, J., Puerta, A.R. (eds.), Proceedings of the Third
International Conference on Computer-Aided Design of User Inter-
faces, Kluwer Academic Publishers, Dordrecht, October 1999.

(CADUI’96) Vanderdonckt, J. (ed.), Proceedings of the Second International
Conference on Computer-Aided Design of User Interfaces. Presses
Universitaires de Namur, 1996.

(CHI’89) Conference proceedings on Human Factors in Computing Systems.
May 1989.

(CHI’93) Conference proceedings on Human factors in computing systems.
April 1993.

(DictMind, compositionality) Dictionary of Philosophy of Mind.
http://www.artsci.wustl.edu/~philos/MindDict/compositional-
ity.html

(DIS’95) Symposium on Designing Interactive Systems. Conference pro-
ceedings on Designing interactive systems: processes, practices,
methods, & techniques. August 23 - 25, 1995, Ann Arbor, MI USA.

(DSV-IS’96) Palanque, P., Bastide, R. (eds.): Proceedings DSV-IS - Design,
Specification and Verification of Interactive Systems ‘95, Springer-
Verlag/Wien. 1995.

URN:NBN:no-2353

204

(DSV-IS’98) Markopoulos, P., Johnson, P. (eds.): Proceedings of DSV-IS -
Design, Specification and Verification of Interactive Systems ‘98,
Springer-Verlag/Wien. 1998.

(DSV-IS’01) Johnson, C. (ed): Proceedings of DSV-IS - Design, Specification,
and Verification 2001, Springer 2001.

(foruse.com: 2001)) The site of Constantine and Lockwood’s company For Use. http://
www.foruse.com/

(INTERACT’90) Proceedings of the Conference on Human-Computer Interaction.
1990.

(INTERCHI’93) Proceedings of the Conference on Human Factors in Computing
Systems. ACM Press. 1993.

(JCalendar: 2002) The JCalendar home page. http://www.toedter.com/en/jcalendar/
index.html

(TUPIS’2000)) TUPIS - Towards a UML Profile for Interactive Systems workshop
at UML’2000, available at http://math.uma.pt/tupis00/pro-
gramme.html

(XPath’1999) XML Path Language (XPath) Version 1.0, available at http://
www.w3.org/TR/xpath.

URN:NBN:no-2353

