
Sparse Signal Representation
using Overlapping Frames

by

Karl Skretting

Submitted in partial fulfillment
of the requirements for the degree of

DOKTOR INGENIØR

Høgskolen i Stavanger
Norway

2002

URN:NBN:no-3330

URN:NBN:no-3330

Abstract

Signal expansions using frames may be considered as generalizations of sig-
nal representations based on transforms and filter banks. Frames for sparse
signal representations may be designed using an iterative method with two
main steps: (1) Frame vector selection and expansion coefficient determina-
tion for signals in a training set, – selected to be representative of the signals
for which compact representations are desired, using the frame designed in
the previous iteration. (2) Update of frame vectors with the objective of im-
proving the representation of step (1). In this thesis we solve step (2) of the
general frame design problem using the compact notation of linear algebra.
This makes the solution both conceptually and computationally easy, espe-
cially for the non-block-oriented frames, – for short overlapping frames, that
may be viewed as generalizations of critically sampled filter banks. Also, the
solution is more general than those presented earlier, facilitating the imposi-
tion of constraints, such as symmetry, on the designed frame vectors. We also
take a closer look at step (1) in the design method. Some of the available
vector selection algorithms are reviewed, and adaptations to some of these
are given. These adaptations make the algorithms better suited for both the
frame design method and the sparse representation of signals problem, both
for block-oriented and overlapping frames.

The performances of the improved frame design method are shown in exten-
sive experiments. The sparse representation capabilities are illustrated both
for one-dimensional and two-dimensional signals, and in both cases the new
possibilities in frame design give better results.

Also a new method for texture classification, denoted Frame Texture Classifi-
cation Method (FTCM), is presented. The main idea is that a frame trained
for making sparse representations of a certain class of signals is a model for this
signal class. The FTCM is applied to nine test images, yielding excellent over-
all performance, for many test images the number of wrongly classified pixels
is more than halved, in comparison to state of the art texture classification
methods presented in [59].

i

URN:NBN:no-3330

ii ABSTRACT

Finally, frames are analyzed from a practical viewpoint, rather than in a math-
ematical theoretic perspective. As a result of this, some new frame properties
are suggested. So far, the new insight this has given has been moderate, but
we think that this approach may be useful in frame analysis in the future.

URN:NBN:no-3330

Preface

This dissertation is submitted in partial fulfilment of the requirements for the
degree of doktor ingeniør at the Norwegian University of Science and Technol-
ogy (NTNU), Trondheim, Norway. Professor John H̊akon Husøy and professor
Sven Ole Aase of Stavanger College University (Høgskolen i Stavanger, HiS),
Stavanger, Norway, have been my supervisors.

The work, including compulsory courses corresponding to one year full time
studies, as well as one year of undergraduate lecturer duties, has taken place in
the period of August 1998 to August 2002 and was carried out at the Electrical
and Computer Engineering Department of HiS. Parts of the work leading to
this dissertation have been presented in [1,2,36,63,64,65].

iii

URN:NBN:no-3330

iv PREFACE

URN:NBN:no-3330

Acknowledgments

First of all I would like to thank my supervisor, Professor John H̊akon Husøy,
for his inspiration, insight, invaluable support and help in finding the direc-
tion of this research work, and my second supervisor, Professor Sven Ole Aase,
for his enthusiasm and help in finding practical ways of expressing the prob-
lems and solutions. They both have given considerable contributions to my
professional, technical, and linguistic development.

My colleagues at Høgskolen i Stavanger have all contributed to a highly ap-
preciated job atmosphere. Particularly I would like to thank Kjersti Engan
for valuable discussion about the frame design method, the work in this thesis
is to a large degree based on the work in her thesis [22].

Last but not least, I would like to thank my wife Anita for being supportive
and together with our one year old daughter Maria, making these years as a
PhD student the best years of my life. I would also like to thank my parents,
Jofrid and Tobias, and the rest of my family and friends.

v

URN:NBN:no-3330

vi ACKNOWLEDGMENTS

URN:NBN:no-3330

Contents

Abstract i

Preface iii

Acknowledgments v

Nomenclature xi

List of Abbreviations xv

1 Introduction 1

1.1 Signal expansions . 2

1.2 Sparse signal representations 7

1.3 Vector Selection and Matching Pursuit 10

1.4 The scope and contributions of this thesis 14

2 Linear Algebra Approach to Frame Design 17

2.1 Problem formulation . 18

2.2 Design of block-oriented frames 19

2.3 Design of overlapping frames 21

2.4 General overlapping frames . 26

vii

URN:NBN:no-3330

viii CONTENTS

3 Generalizations to Two and More Dimensions 33

3.1 Notation . 33

3.2 Block-oriented frame in 2D . 34

3.3 Overlapping frame in 2D . 36

3.4 General overlapping frame in 2D 40

3.5 Multi-dimensional signal . 40

3.5.1 Block-oriented frame . 41

3.5.2 Overlapping frame . 41

3.6 Non-linear frames . 42

3.6.1 Separable block-oriented frame in 2D 42

4 Vector Selection in Frame Design 47

4.1 Three new algorithms for vector selection 49

4.1.1 Vector selection by partial search 49

4.1.2 Vector selection using previous weights 52

4.1.3 Improving convergence for the design method 52

4.2 Distribution of non-zero weights 55

4.2.1 Replace sparseness constraint by error constraint 56

4.2.2 Distribute the weights evenly 56

4.2.3 Global matching pursuit 57

4.2.4 Use an extended frame 58

4.3 Overlapping vector selection . 59

4.4 Frame in coefficient domain . 62

5 Sparse Representation Experiments 67

5.1 Sparse representation of an ECG signal 67

5.2 Sparse representation of images 77

5.2.1 The different frame structures 77

5.2.2 Preparing the training vectors 79

5.2.3 Training and testing the frames 83

URN:NBN:no-3330

CONTENTS ix

6 Texture Classification 89
6.1 Introduction to texture classification 89
6.2 Frame texture classification method 94

6.2.1 Preprocessing . 94
6.2.2 Training . 97
6.2.3 Classification . 99

6.3 Classification results . 100
6.3.1 Different sets of frame parameters 100
6.3.2 The nonlinearity and low-pass filtering 103
6.3.3 Choosing the frame size K 106
6.3.4 Two-texture test image 107

6.4 Some comments . 109

7 Some Considerations on Frame Properties 111
7.1 Definitions and theory . 112

7.1.1 Bases and Frames . 112
7.1.2 Oversampled Filter Banks 114
7.1.3 Frames for signal representation 115

7.2 Alternative frame properties . 116
7.3 Mathematical details for the frame properties 122

7.3.1 Singular value decomposition 122
7.3.2 Representation error . 127
7.3.3 Angle between frame vectors 131
7.3.4 Norm of the weights . 135
7.3.5 Difference between frames 138

7.4 Properties of overlapping frames 138
7.5 Some examples . 144

7.5.1 Geometry of the space RN 144
7.5.2 Tight frames . 146
7.5.3 Randomly generated uniform frames 147
7.5.4 The 16× 32 frame designed for an ECG signal 147
7.5.5 Frames designed for texture classification 148
7.5.6 Differences between frames 148

8 Conclusions and Summary 151
8.1 Directions for future research 153

Bibliography 154

URN:NBN:no-3330

x CONTENTS

URN:NBN:no-3330

Nomenclature

‖ · ‖ Norm, usually 2-norm or Frobenius (trace) norm
b·c the largest integer smaller or equal to its argument
d·e the smallest integer larger or equal to its argument
α angle used as needed
β angle between two frame vectors or between a frame vector and a

signal vector
β(min) angle between the two frame vectors closest to each other
β(avg) average for each of the frame vectors of the angle to its closest

neighbor
β(mse) average of all the angles between frame vectors taken in the “mean

square sense”
β(avg2) average for each of the frame vectors of the angle to the center of

the cluster formed by the frame vectors
Γ(·) gamma function
λn eigenvalues of the frame operator
Λ eigenvalue matrix
σn singular values of the frame
Σ singular value matrix
θ(avg) average for the angles for all the frame vectors to its closest neighbor

in another frame.
A lower frame bound
As norm of weights for a sparse representation is limited by

‖w‖ ≤ (1/
√

As)‖x‖
A† pseudoinverse of matrix A
A−1 inverse of matrix A
AT transpose of matrix A
Aij entry i in column j of matrix A
[A]ij entry i in column j of matrix A
aj column j of matrix A
aj(i) entry i in vector aj

xi

URN:NBN:no-3330

xii NOMENCLATURE

B upper frame bound
B matrix that represents an image
Bm image number m in a training set of images
B̃ reconstructed image
C∗ matrix to be inverted when a new frame is calculated,

C∗ = W∗W∗T

Cp a submatrix of C∗

C the Q×Q matrix to be inverted for a general frame
D product of weights and polyphase components of the signal,

Equation 2.28
d product of weights and polyphase components of the

signal,Equation 2.34
F multi-dimensional frame
F frame matrix where the columns are the synthesis vectors, size

NP ×K

F̃ dual frame
F(i) frame in iteration i during frame design
Fp part of the overlapping frame F, Equation 2.11
Fm “frame” made by only some of the columns in F, m tells which

index set to use, and the index sets tell which columns to use
Fh horizontal part of a separable frame
Fv vertical part of a separable frame
F∗ overlapping frame F reshaped into size N ×KP
FM frame consisting of M repetitions of F
F large frame consisting of many repetitions of F
F̃ part of the F frame matrix, Equation 7.26
f vector formed by all the free variables in F
fk synthesis vector, a column vector of F
fn row of F reshaped into a column vector
f
∗
n row of F∗ reshaped into a column vector

G orthonormal filter bank
G large matrix representation of an orthonormal filter bank
H Hilbert space
H block-oriented frame
H large matrix representation of a block-oriented frame
i index used as needed
IN identity matrix of size N ×N
IC total number of different submatrices in matrix C∗

URN:NBN:no-3330

NOMENCLATURE xiii

j index used as needed, or the imaginary unit j =
√−1

J(F,W) objective function during frame design
JMS objective function in filter design (Mahalanobis and Singh)
JU objective function in filter design (Unser)
JF objective function in filter design (Fisher)
K number of frame vectors in the frame
L number of signal blocks in a training set
M number of times a frame F is repeated in FM , or number of images

in a set of training images, or number of index sets
N length of a signal block
P overlap factor for a frame
Q total number of free variables in a frame
R reorder or reshape operator
R(z) synthesis polyphase matrix of an overlapping frame
R reconstruction error or residual
rl reconstruction error or residual of a signal block
r reconstruction error or residual for signal x
r relative representation error ‖r‖/‖x‖.
r
(max)
s maximal relative representation error using s frame vectors

r
(avg)
s mean (average) relative representation error

r
(mse)
s square root of the mean square relative representation error
RN N-dimensional real Hilbert space
S sparseness factor
Sd sparseness factor used in frame design
Slp part of the sparseness factor from the low-pass representation
St total sparseness factor, St = S + Slp

SN (r) surface of a ball with radius r in RN

s number of frame vectors used to represent a signal
sl number of frame vectors used for a particular signal block
S(z) polyphase matrix of of the frame operator
S frame operator
SNRt The SNR achieved during training of a frame
T operator defined by a transform or a filter bank
T transform matrix
tn column n of the transform matrix T
u inner product vector
U inner product matrix
U left unitary matrix in a SVD of a matrix, eigenvectors in an eigen-

value decomposition

URN:NBN:no-3330

xiv NOMENCLATURE

VN (r) volume of a ball with radius r in RN

v vector used when needed
V right unitary matrix in a SVD of a matrix
W multi-dimensional weight matrix
W matrix of the weights of size K × L
W∗ large weight matrix of size KP × L
W huge weight matrix of size NL×NKP or NL×Q−→
Wp weight matrix where the columns are (circularly) shifted p positions

to the right−→
W multi-dimensional shifted weight matrix
w weight vector
wl weight vector corresponding to a signal block
wM concatenation of M weight vector blocks
X multi-dimensional signal
X matrix where the columns are the signal blocks
X̃ reconstruction of the matrix where the columns are the signal blocks
x one-dimensional signal
x̃ reconstruction of a one-dimensional signal
x̃M part of reconstructed signal using part FM of F , Figure 4.4
x̃a part of reconstructed signal using part of F after FM

x̃b part of reconstructed signal using part of F before FM

xl signal block
x̃l reconstructed signal block
xn row of X reshaped into a column vector, polyphase component of

x
x the vector made by concatenating the N xn vectors
x in Equation 1.9, the mean of the signal blocks
y(n) transform, or filter bank, coefficient
ỹ(n) quantized transform coefficient
y transform, or filter bank, coefficient vector
ỹ quantized transform coefficient vector
Y matrix of transform coefficients
Ỹ reconstructed coefficients
z complex number

URN:NBN:no-3330

List of Abbreviations

1D one-dimensional
2D two-dimensional
AR autoregressive
BP basis pursuit, an algorithm to find the weights in x̃ = Fw
BMP basic matching pursuit, a greedy vector selection algorithm
dB decibel
DC direct current
DCT discrete cosine transform
ECG electrocardiogram
ELT extended lapped transform
FIR finite input response
FOCUSS focal under-determined system solver, a parallel vector selection

algorithm
FOMP fast (or fully) orthogonal matching pursuit, a greedy vector selection

algorithm
FTCM frame texture classification method
FS the full search vector selection algorithm
GLA generalized Lloyd algorithm
GMP global matching pursuit, a greedy vector selection algorithm
JPEG joint photographic expert group
KLT Karhunen-Loève transform
LOT lapped orthogonal transform
LP linear programming
LVQ learning vector quantizing

xv

URN:NBN:no-3330

xvi LIST OF ABBREVIATIONS

MD multi-dimensional
MIT100 signal 100 from the MIT arrhythmia database of ECG signals
MMP modified matching pursuit, a greedy vector selection algorithm
MOF method of frames, an algorithm to find the weights in x̃ = Fw
MP matching pursuit, a group of greedy vector selection algorithms
MSE mean squared error
OMP orthogonal matching pursuit, a greedy vector selection algorithm
ONB orthonormal basis
ORMP order recursive matching pursuit, a greedy vector selection algo-

rithm
pdf probability density function
PR perfect reconstruction
PSNR peak signal to noise ratio
QMF quadrature mirror filter
QRcp QR-factorization with column pivoting, an algorithm to find the

weights in x̃ = Fw
SAR synthetic aperture radar
SNR signal to noise ratio
SRF frame for sparse representation
SVD singular value decomposition
TF tight frame
UB unit ball
UF uniform frame
UTF uniform tight frame
VQ vector quantization

URN:NBN:no-3330

Chapter 1

Introduction

The demand for digital signal processing is continuously increasing. All real
world properties or activities which are being recorded generate signals. Com-
mon examples are speech or audio signals, images and video signals, medical
signals such as ElectroCardioGram (ECG) signals, and seismic signals. The
ever increasing recording of signals gives an increased need for analysis, com-
pression, transmission, and storage. Signal representation is important to do
these tasks in an effective way. During recording the signal is typically sampled
and amplitude quantized, this gives a digital signal. The representation of a
signal through its sample values is the simplest possible representation. More
effective or alternative representations or parameterizations may be desirable
in many applications. By effective we here mean a representation using fewer
parameters than samples, i.e. a sparse representation, or a representation us-
ing parameters that may be stored using few bits, i.e. signal compression, or
a representation using parameters that somehow reflects important properties
of the signal, i.e. a model based signal representation. This latter one is often
also a sparse representation. A common method for signal representation is to
transform the signal into some coefficients using a transform or a filter bank.
In this thesis we will investigate an alternative method for signal represen-
tation, which is a generalization of the transform and filter bank approach.
In particular we will show how to design frames, a frame plays a similar role
in our alternative method for signal representation as a transform does in
the transform domain representation. We will demonstrate how the designed
frames can be used in sparse signal representation in general, and especially
how frames may be applied in texture classification. In the end we will also
discuss some possible frame properties.
This introduction, intended as a preview of several issues dealt with fully later
on, is organized in four sections. First we review standard signal expansions

1

URN:NBN:no-3330

2 Introduction

and relate them to the overlapping frame concept. In the second part we
explain the goal and motivation for a sparse signal expansion. Closely related
to sparse representation using a frame is the vector selection problem, this is
discussed in the third section. The chapter is concluded by a section explaining
the scope and contributions of this work.

1.1 Signal expansions

A signal expansion is the representation of a signal as a linear combination
of some basic synthesis signals. For simplicity we only consider real, one-
dimensional (1D) signals in this section.
A signal, or a block of a longer signal, x ∈ RN , may be represented using
some transform coefficients, denoted y. The forward transform, which we
for notational convenience denote by T−1, is used to compute the transform
coefficients. They are found by the analysis equation, y = T−1x. The recon-
structed signal vector is then given by the corresponding synthesis equation,
where the tilde is used to indicate the possibility of approximated quantities:

x̃ = T ỹ = [t1t2 · · · tN]

ỹ(1)
ỹ(2)

...
ỹ(N)

 =

N∑

n=1

ỹ(n)tn. (1.1)

The synthesis vectors, denoted {tn}N
n=1, are the columns of the transform

matrix T. In the case of common transforms, such as the Discrete Cosine
Transform (DCT) and the Karhunen-Loève Transform (KLT) [28], these syn-
thesis vectors form an orthogonal basis for RN . We should note that even
if the synthesis vectors are not orthogonal, they should form a basis for RN

since this is necessary for the inverse, T−1, to exist. The reconstructed signal
is built up as a linear combination of these synthesis vectors.
Allowing for the possibility of having more than N terms in the linear com-
bination of Equation 1.1, say K ≥ N terms, the collection of K vectors will
be denoted as {fk}K

k=1. Interpreting these vectors, collectively referred to as
a frame or a dictionary, as columns of an N × K matrix F we have a more
general situation than that of Equation 1.1. The synthesis equation for the
frame case has the same form as in the transform case:

x̃ = Fw =
K∑

k=1

w(k)fk. (1.2)

URN:NBN:no-3330

1.1 Signal expansions 3

Here we have replaced the transform coefficients y by the weights used for
each synthesis vector, w. Since a signal block of length N is reconstructed in
Equation 1.1 and Equation 1.2, both are block-oriented signal representations.
An analysis equation can not be used to find the weights in Equation 1.2 since
the solution is not unique and the inverse of F does not exist. We will return
to the problem of finding the weights in Section 1.3 and Chapter 4.

We will now look at different ways to represent the synthesis equation for the
block-oriented case, both to introduce the different notations and to prepare
for the more general overlapping case. A long signal, x (size: NL×1), is divided
into L blocks of length N , where each block is represented by a column vector
denoted by xl. The synthesis equations for the blocks,

x̃l = Fwl =
K∑

k=1

wl(k)fk, l = 1, 2, . . . , L, (1.3)

can be written as

N l

x̃1
...
x̃l
...

x̃L

=

F
. . . K¾ -

F lN
. . .

F

w1
...

wl
...

wL

lK (1.4)

or x̃ = F w. (1.5)

Here we have introduced the large frame matrix F in the synthesis equation.
This is a block-diagonal and band-diagonal matrix (size: NL×KL), where entries
outside the blocks in the diagonal band are zero. The notation in Equation 1.5
will be especially convenient for the overlapping case, to be explained shortly,
but for the block-oriented case another version of the synthesis equation is
usually preferred. Defining X = [x1 x2 · · · xL], (size: N × L) and W =
[w1 w2 · · · wL], (size: K × L) we can write

X̃ = FW. (1.6)

URN:NBN:no-3330

4 Introduction

When we are dealing with approximative representations, the mean squared
error (MSE) can be calculated as

MSE =
‖x− x̃‖2

NL
=
‖X− X̃‖2

NL
=

1
NL

L∑

l=1

‖xl − x̃l‖2, (1.7)

where ‖x‖ is the norm of x. Generally in this thesis, if not otherwise men-
tioned, the 2-norm for vectors and the trace (Frobenius) norm for matrices,
‖A‖2 = ‖A‖2

F = trace(ATA) =
∑N

n=1

∑K
k=1(Ank)2 will be used. Another

common error measure, useful in assessing approximate signal representations,
is the Signal to Noise Ratio (SNR), usually expressed in decibel as

SNR = 10 log10

σ2
x

MSE
[dB] (1.8)

where σ2
x is the variance of the signal. A practical way to estimate the SNR is

SNR = 10 log10

∑L
l=1 ‖xl − x‖2

∑L
l=1 ‖xl − x̃l‖2

[dB] (1.9)

where x is a vector with the mean of the signal in all entries, x = [x, x, . . . , x]T

and x = 1
NL

∑L
l=1

∑N
n=1 xl(n).

In many signal processing applications critically sampled filter banks are known
to perform better than block-oriented transforms. The difference between a
synthesis transform and a synthesis filter bank is as follows: In the former case
the linear combination of length N basis vectors of the synthesis equation, –
Equation 1.1 or Equation 1.2 with K = N , completely describes the recon-
struction of a signal block. In the latter case, the K = N basis (synthesis)
vectors have length NP , where P is an integer. All P length N parts of these
vectors are involved in the reconstruction of a length N signal block [58]. As
will be seen below this makes it natural to talk about overlapping synthesis
vectors. Using the input-output relations for an upsampler and a linear filter
[71], the input-output relation for a uniform K channel synthesis filter bank
can be verified to correspond to a matrix vector product [58] and it can be
written as in Equation 1.5. The expansion to a form like that of Equation 1.4
will now be

URN:NBN:no-3330

1.1 Signal expansions 5

Transform Frame Filter bank/LOT Wavelet

Figure 1.1: The support structure of 4 different synthesis matricesF . Each col-
umn of dots represent one synthesis vector. Note the block-oriented structure
for the transform and frame case, and the overlapping structure for the filter
bank case. The shown filter bank is a 8 channel Lapped Orthogonal Transform
(LOT) [46] and each filter has length 16. The wavelet structure corresponds
to a three level dyadic tree with filter lengths of 7 for the high-pass synthesis
filter and 9 for the low-pass synthesis filter. The resulting synthesis filters have
different length.

...
x̃l

x̃l+1

x̃l+2

x̃l+3

x̃l+4
...

=

. . . K¾ -

. . . N
?
6

. . . F

. . . F
. . .

F
. . .
. . .
. . .

...
wl

wl+1

wl+2
...

(1.10)

The main diagonal (when K = N) of the large matrix goes through the entries
[F]n,n for n = 1, 2, . . . , N . The signal, the vector of weights, and the matrix F
are still assumed to be finite, but since it is not yet defined how to reconstruct
the ends of the signal, only the central part of the equation is shown. How to
treat the signal ends is further discussed in Section 2.3. The columns of the

URN:NBN:no-3330

6 Introduction

constituent matrices F are the synthesis filters. The length of these filters is
NP . P is called the overlap factor, since P of the F matrices overlap each
other. We note that having P = 1, this reduces to the block-oriented case.
For an orthogonal perfect reconstruction filter bank we will have F−1 = FT

and FTF = IN where IN is the N ×N identity matrix.

The overlapping frame is not a new concept, actually it is an oversampled
synthesis filter bank. The oversampled filter bank is a frame if perfect recon-
struction is possible [8] [15]. Like the frame is an extension to the transform,
the overlapping frame is an extension to the critically sampled synthesis filter
bank. In this thesis the term overlapping frame is preferred since it relates
more to the block-oriented frame concept than to the filter bank concept where
the main issue often is the relationship between the analysis and the synthe-
sis filter bank. The columns of the matrix F are the synthesis filters. This
structure offers a great flexibility for the synthesis system, all the different
structures in Figure 1.1 can be implemented. The rightmost part of Fig-
ure 1.1, the wavelet case, needs some comments: A tree structured filter bank,
like a dyadic wavelet filer bank, can be implemented as a general filter bank
with one level, see Figure 2.3 for details on how this is done. It is the general
filter bank structure, corresponding to a three level dyadic wavelet tree where
the lengths of the wavelet filters are 7 for the high-pass synthesis filter and 9
for the low-pass synthesis filter, which is illustrated in Figure 1.1.

As a summary we may classify the different forms of signal expansion:

Complete Overcomplete
expansions, K = N expansions, K > N

Block-oriented Block-oriented
expansions, P = 1 Transform frame

Overlapping Critically sampled Overlapping
expansions, P > 1 filter bank frame

URN:NBN:no-3330

1.2 Sparse signal representations 7

1.2 Sparse signal representations

Sparse signal representations are useful in different applications. In commonly
used block-oriented transforms, e.g. the DCT, and the more recent wavelet
based decomposition methods, the sparseness is introduced through thresh-
olding of the transform or wavelet coefficients. Thus only a limited number of
non-zero coefficients represent the signal. This introduces errors in the recon-
structed signal. The goal is to minimize these errors while fulfilling a sparsity
constraint making the number of non-zero coefficients small compared to the
number of samples in the original signal. The non-zero coefficients as well
as their position information constitute a sparse representation of the signal,
useful in many applications like compression, feature extraction, modelling,
and classification.

For images, this has an analogy in the human visual system, where an image
is interpreted as many objects placed relative to each other. This is a sparse
representation of the image. We do not perceive the millions of pixels that
are received in the retina, but rather a sparse image of some few constituent
parts (objects) with different shapes and textures.

For music, the notes are a sparse representation of the music. The vertical
position gives the frequency, the horizontal position gives the time and the
shape of the note gives the duration. The actual waveforms are given by the
instrument and the musician. Each second of music may be represented by
some few notes giving a very compact description of the essential properties
of the music. This is actually a model based representation. Time-frequency
signal analysis may be used to obtain a similar, usually sparse, description
of most signals. This has been useful for signals much more “complex” than
simple music, like speech signals and seismic signals.

Sparse representations using frames are achieved by allowing only a limited
number of the coefficients/weights in w to be non-zero. The sparsity of the
representation is expressed by the sparseness factor

S =
number of non-zero coefficients in w

number of samples in x
. (1.11)

An overcomplete frame will allow greater flexibility in matching the signal with
a sparse expansion than a complete (orthogonal) one. Having more than N
frame vectors to choose from when forming the sparse representation improves
the flexibility. For a given sparseness factor we should expect smaller error in

URN:NBN:no-3330

8 Introduction

the reconstructed signal using an overcomplete frame rather than a complete
expansion.
Efficient transforms and filter banks are often constructed based on the statis-
tical properties of the signal, and the signal is often assumed to be generated
by a stationary process. Common desired properties are (almost) perfect re-
construction, easy and efficient implementation, energy compaction and small
artifacts, like blocking or ringing effects which often can be seen on compressed
images. For K close to N we have a frame with a low degree of overcomplete-
ness, the possibilities of such a frame will in many ways be similar to those
of a transform or filter bank. Also the design targets and the design methods
will be similar, but not much attention has been devoted to the design of such
frames. As the ratio K/N increases the frame should become more capable of
representing signals with varying statistical properties in the different signal
blocks or groups of signal blocks, provided signal properties are exploited in
the design of the frames.
The frame representation may alternatively be viewed as a model based sys-
tem. The model is the signal viewed as a sparse linear combination of the K
possible frame vectors, which may occur at different translations of factor N ,
which can be one. If we had a frame consisting of vectors each corresponding
to the sound of a key on a keyboard, then this frame could be used to get
a sparse representation of any music played on this instrument. The synthe-
sizer is well suited to illustrate this frame model. Here several “frames” are
available, each imitate a real, or artificial, instrument, and the wanted one is
selected by some switches beside the keyboard.
In recent years sparse representation has found several applications: 1) Low
bit rate video coding [4,51,52,72,73], where coding of the motion residual im-
ages can be done by a sparse representation usually using large overcomplete
dictionaries, i.e. frames. Note that quite large errors are allowed when rep-
resenting the motion residual images, thus what is represented is only the
most important changes. 2) Still image compression has also been investi-
gated [6,7,22,29,41] but here results are generally not that promising, mainly
since natural images are difficult to represent in a very sparse way as opposed
to motion residuals, and since what may be gained by having few non-zero
weights often is lost in the entropy coding scheme where position information
also has to be taken into account. 3) Other applications like template match-
ing [30], of which road sign interpretation [35] is a special case, or medical
signal analysis [21] have also been reported. In Chapter 6 in this thesis some
promising results on texture classification using frames are presented.
Different kinds of frames have been used. Examples include the frame created
by concatenation of the orthogonal basis vectors of the DCT and those of the

URN:NBN:no-3330

1.2 Sparse signal representations 9

Haar transform [6], Gabor functions [51], [4], oversampled filter banks and
wavelet trees [73], and Gaussian chirps [33]. These selections are motivated
by their good time-frequency resolution and efficient implementation.

The requirements of the application usually set a limit on the magnitude of the
representation error, and this in turn limits how small the sparseness factor can
be. The signal class to be represented is of course also very important for the
feasible sparseness factor. As already mentioned, the motion residual images
in video coding are examples of images that can be represented in a sparse
way. Natural images, general two-dimensional signals, and signals of several
dimensions, are generally more sparse in nature than one-dimensional signals,
and lower sparseness factor is possible without introducing more errors.

Our experience suggest a connection between the attainable sparseness factor,
the appropriate signal representation, and the application that may roughly
be summarized as follows:

• S > 1: This case gives signal expansions with more weights than signal
samples. These may be used for signal analysis, and applications where
error resilience is an issue. Frames, using the Method of Frames, Sec-
tion 1.3, to find the weights, and oversampled filter banks and wavelets
are such signal expansions.

• S = 1: This case should be used when close to perfect reconstruction
(PR) is demanded. Orthogonal and bi-orthogonal transforms and criti-
cally sampled filter banks, including wavelets, are signal decompositions
with the PR property, but rounding of the coefficients may introduce
small acceptable errors. This is often used in lossless and nearly lossless
signal compression.

• 0.1 < S < 1: Signal expansions with sparseness factor a little bit lower
than 1 is often found by thresholding (and quantizing) the transform or
filter bank coefficients. Common applications are lossy compression and
noise reduction.

• 0.01 < S < 0.25: Applications with sparseness factors in this range may
be lossy compression where a low bit rate is important and in appli-
cations that need only (some of) the essential properties of the signal,
one example is texture classification. For this case we think that block-
oriented or overlapping frames as presented in this work, with the degree
of overcompleteness of moderate size 1 < K

N < 10, will be suitable.

URN:NBN:no-3330

10 Introduction

• 0.001 < S < 0.05: This range of the sparseness factor can be used for
similar applications as in the previous point. But to compensate for the
lower sparseness factor, frames with a large degree of overcompleteness,
typically 10 << K

N , are used. These frames or dictionaries are built
in a systematic way such that fast algorithms may be used. In fact,
certain dictionaries have fast implicit algorithms, Fw and FTx may
be computed fast and often also without explicit storage of the large
matrices F and FT .

• S < 0.01: Model based representations often have a very low sparseness
factor. Reconstruction of the original signal is often not possible, even if
quite large errors are allowed, but construction of a similar signal, with
the same properties, is an option. A text may be regarded as a model
for spoken words. The sound, represented by its recorded samples, that
is generated when the text is read will generally be quite different from
one reader to another. Nevertheless, the “reconstructed sound signal”
will contain the same essential information.

1.3 Vector Selection and Matching Pursuit

The vector selection problem (for a given sparseness factor, S) is to find the
weights1, w, in the equation,

x = x̃ + r = Fw + r, (1.12)

such that the norm of the error, ‖r‖, is as small as possible and the number of
non-zero weights is smaller or equal to a target integer, s. Often this integer,
denoted by lowercase s, rather than the sparseness factor S, is given in the
problem. They are related by S = s/N . If the sparseness factor as defined in
Equation 1.11 is given, the number of non-zero weights allowed is s = bSNc,
where b·c denote the largest integer smaller or equal to its argument. Usually,
we assume that the columns of F have norm one2, i.e. ‖fk‖ = 1. Such a frame
is denoted a uniform frame.

1Strictly speaking, the vectors should be indexed by l to keep notation in line with
Equation 1.4. For notational simplicity, we here consider only a single signal block making
the indexing unnecessary.

2Earlier we denoted such a frame as normalized, but the common terminology, [11] and
[39], seems to use the term “a normalized frame” for a tight frame where the frame bounds,
see Equation 7.1, both are one, A = B = 1.

URN:NBN:no-3330

1.3 Vector Selection and Matching Pursuit 11

The linear equation system, Fw = x, (w is the unknown variable), where we
have the frame F (size: N ×K) with N < K and rank(F) = N , is underdeter-
mined. It has many exact solutions when N ≤ s ≤ K, but for 1 ≤ s < N ,
generally no exact solution exists. Now, a sparseness criterion is imposed to
the equation system, s < N . Then the choice of weights that minimizes the
2-norm of the residual (error) is called the “optimal solution” or the optimal
approximation in the least squares sense. An ε-solution is a choice of weights
such that the 2-norm of the residual is smaller than a given limit, ε. Davis [19]
has proved that finding whether an ε-solution exists or not is an NP-complete3

problem, and that finding the optimal approximation for a given s is an NP-
hard4 problem. This implies that a practical solution to this problem needs
to use algorithms that are not guaranteed to find the true optimal solution.

A large amount of work has been done on this problem. Some of the algorithms
that may be used are described and compared in [61], [62], [14]. We will here
briefly review the different algorithms that can be used to find the weights in
the equation above, both when the sparseness constraint is imposed and when
it is relaxed (ignored). For the algorithms that do not return a sparse solution
thresholding of the weights can be done to comply to the sparseness criterium.
For some of the algorithms the number of flops (floating point operations) used
by Matlab when solving a quite small (N = 8, K = 16, and s = 4) problem is
given.

FS The Full Search algorithm finds the optimal solution to the problem. It
examines/checks all the possible combinations for selecting s vectors out
of the K frame vectors available. The number of different combinations
is M =

(
K
s

)
. For each of these M combinations the frame vectors with

indices Im = {k(m)
i }s

i=1, m = 1, 2, ..., M , are used to build a matrix Fm

(size: N×s). The solution, wm = w(Im) (size: s×1), is then found by solv-
ing the overdetermined equation system, Fmwm = x, in the least squares
sense. If Fm has full rank (s) this solution is wm = (FT

mFm)−1FT
mx. The

best of these M solutions is the optimal approximation for the vector
selection problem. This algorithm is only practical for quite small prob-
lems. For the small example problem 3.95 million flops was used. Another
example: having N = 64, K = 128, and s = 8 will give M =

(
K
s

)
= 1.42 · 1012

different combinations to check. Using Matlab on a 500 MHz PC, for each
possible combination of selected vectors approximately 14000 flops and 0.55
milliseconds is needed. To examine all combinations requires almost 25 years!

3An NP-complete problem is as hard as (can be transformed in polynomial time into)
another problem known to be NP-complete.

4An NP-hard problem is at least as hard as an NP-complete problem.

URN:NBN:no-3330

12 Introduction

MOF The Method of Frames [17] use the generalized inverse or pseudoinverse
to find a solution, w = F†x where F† = FT (FFT)−1. This algorithm
is especially useful when the frame is tight (see Section 7.1). Then the
generalized inverse is simply F† = A−1FT where A is the frame bound.
The solution found by MOF is the one that minimizes the 2-norm of w,
thus it is also called the minimum-norm solution. For the small example
problem 23216 flops was used.

QRcp QR-factorization with column pivoting is used by the backslash oper-
ator in Matlab, w=F\x. It finds an exact solution using N of the vectors
from F. This is one of the more computationally efficient and stable
algorithms for solving an under-determined equation system, but the so-
lution has no special properties. These N vectors (usually) form a basis
of RN , and the solution is x expressed using this basis. For the small
example problem 3110 flops was used.

BP Basis Pursuit [12] finds an optimal basis using N of the K column vectors
of F, the basis is optimal in the sense that the 1-norm of the solution,
‖w‖1, is minimized. The problem can be expressed as a Linear Pro-
gramming (LP) problem, and solved using LP methods. Due to recent
advances in LP this problem can be solved for quite large frames. One
advantage with this solution is that it is often sparse, but wether it is
or not is not known until the solution is found. For the small example
problem 268304 flops was used.

FOCUSS FOCal Under-determined System Solver [32] is a parallel vector
selection algorithm. While standard FOCUSS search for an exact so-
lution, a more practical (when signal has noise) variant is Regularized
FOCUSS [22] which search for a good approximation. Both variants
try to minimize an object function which include a term similar to the
p-norm, ‖w‖p

p =
∑K

k=1 |w(k)|p. The p-norm is defined for p ≥ 1 but in
FOCUSS the term is used for values of p ≤ 1. As p get close to zero, this
term get close to the numerousity measure of w, i.e. the number of non-
zero elements in w. Engan [22] found that Regularized FOCUSS usually
finds a good sparse solution, but it is computationally demanding.

None of the algorithms above are suitable when a sparseness constraint is to
be satisfied. FS is only feasible for very small problems, MOF and QRcp are
not sparse, BP and FOCUSS are often sparse but give no (exact) control of
the number of non-zero weights used. By thresholding the smallest weights a
solution fulfilling the sparseness criterium can be found, but the cost will be
that an often too large error is introduced.

URN:NBN:no-3330

1.3 Vector Selection and Matching Pursuit 13

Basic Matching Pursuit algorithm:

1. Initialize: r := x, w := 0

2. Find the inner products: u := FT · r
3. Find k such that |u(k)| = maxi |u(i)|
4. Update weight k: w(k) := w(k) + u(k)

5. Update residual: r := r− u(k) · fk
6. Repeat step 2-5 until w has s non-zero entries.

Figure 1.2: The BMP algorithm for a uniform frame. The stop criterium in
step 6 could also be that a predefined number of iterations, for example s, is
done or that the norm of the error is smaller than a given limit.

Another approach to solve the vector selection problem is the greedy algo-
rithms collectively referred to as Matching Pursuit (MP) algorithms. These
algorithms select one vector from F at each iteration, and then in the next
iteration another vector is selected. The algorithms are quite similar to each
other, and the framework in Figure 1.2 can, with some modifications, be used
for all these algorithms. In each iteration the approximation is found as a
linear combination of the selected frame vectors, and the error is the differ-
ence between the original vector and the approximation. The error is used in
the next iteration to find the new frame vector. The stop criterion for the
iterations can be that a certain number of iterations have been executed, that
the error is below a pre-defined limit, or that a specified number of non-zero
weights has been used. The different variants of MP are

BMP Basic Matching Pursuit [44] is the simplest of these algorithms, Fig-
ure 1.2. It is sometimes also called only Matching Pursuit (MP). In this
algorithm the error is orthogonal to the most recently selected frame vec-
tor, but not necessarily to all the previous selected vectors. This means
that a vector already selected may be selected again, then the weight for
this frame vector is adjusted but no new frame vector is selected. The
error converges to zero but it may converge slowly. The advantage is
that it is simple and quite fast. For analysis of this algorithm see [44] or
[18]. The small example problem used 546 flops.

OMP Orthogonal Matching Pursuit [55] [19] is sometimes also called Modi-
fied Matching Pursuit (MMP). In this algorithm the error is orthogonal
to all the previously selected vectors, the approximation is the signal

URN:NBN:no-3330

14 Introduction

projected onto the space spanned by these vectors. This ensures that a
new vector is selected at each iteration, and that the error is reduced to
zero after N iterations. Orthogonalization makes this algorithm com-
putationally more complex than MP. Fast implementations based on
QR-decomposition exist, these are faster than calculating and applying
the projection matrix for every iteration. For the small example prob-
lem 2386 flops was used by a straight forward (no QR-decomposition)
Matlab implementation.

ORMP Order Recursive Matching Pursuit also orthogonalize onto the se-
lected vectors, but it is the frame vectors presently unused in the ap-
proximation that are orthogonalized and not the residual as in OMP.
Since orthogonalization is done in this algorithm too, it too is some-
times called Orthogonal Matching Pursuit. This is confusing but ORMP
is essentially different from OMP and often selects other vectors usually
giving a better approximation than OMP, and the two algorithms should
be distinguished. Gharavi [31] developed a fast algorithm for ORMP and
called it Fast (or Fully) Orthogonal Matching Pursuit (FOMP). For the
small example problem 781 flops was used.

In Chapter 4 it is discussed how these algorithms can be adapted and used
when designing block-oriented and overlapping frames. Also more details of
vector selection will be discussed there.

1.4 The scope and contributions of this thesis

The focus of this dissertation is on the design of frames for sparse signal
representation. The design method for block-oriented frames, introduced in
[23], is analyzed using the compact notation of linear algebra. One step in
the frame design method is to update the frame when the weights, computed
with the given frame and on a training set of signal vectors representative of
the signals to be represented, are fixed. The linear algebra approach reveals
the true nature of this problem, as both the derivation of the solution and
the solution itself is compactly expressed. With this understanding of the
problem, extensions to overlapping frames and the inclusion of constrains (de-
pendencies) on the frame elements and also extensions to two-dimensional and
multi-dimensional signals are made. This greatly increases the possibilities of
the frame design method. Another step of the frame design method is to up-
date the weights, using the same set of training vectors as in the step above,
when the frame is fixed. Here we assess the many different vector selection

URN:NBN:no-3330

1.4 The scope and contributions of this thesis 15

algorithms available and especially look at their capabilities in the proposed
frame design method. Some modifications to these algorithms are suggested
to improve their capabilities in the present context.
Examples which illustrate the sparse representation properties of different
frame structures are presented both for one-dimensional signals and for two-
dimensional signals. One new application of the sparse representation is given:
Promising results were found using the frame approach to do texture classifi-
cation.
In the end of this work we try to quantify the properties of a frame, we
use established frame properties and also propose some new ones. Even if
these properties give a quantitative, and partly informative, description of
a frame, we did not succeed, as well as we hoped, in establishing a clear
connection from these properties to the sparse representation capabilities or
to the texture discrimination capabilities of a frame. Consequently, Chapter 7
of the thesis should be viewed as a first step in what we believe will be a
process of developing useful tools for frame analysis.
Briefly summarized, the major contributions of this thesis are:

• Using the notation of linear algebra, new insight is gained for the frame
design problem. A compact solution to the “find new frame”-step is
derived in a simple way.

• Solutions to the “find new frame”-step is derived for the overlapping
frame and the general frame with constrains on the frame elements.
These derivations are conceptually easier, more compactly expressed,
and the solutions are more general than those presented previously. The
frame structure possesses the ultimate flexibility in terms of enabling the
specification of degree of overcompleteness (redundancy) of the frame
to be designed and controlling the resolution capabilities of the signal
expansions.

• The frame design methods for the one-dimensional signal are extended
to two- and multi-dimensional signals.

• Adaptations to the vector selection algorithms are given. These make the
algorithms better suited for both the frame design method and the sparse
representation of signals using block-oriented and overlapping frames.

• The experiments show that sparse representations using frames can be
done with smaller errors, for the same sparseness factor, than using
traditional signal expansions, both for one-dimensional signals (electro-
cardiograms) and images.

URN:NBN:no-3330

16 Introduction

• Texture classification using frames shows excellent overall performance,
for many test images the number of wrongly classified pixels is more than
halved, in comparison to state of the art texture classification methods
presented in [59].

• Frames are analyzed from a practical viewpoint, rather than in a math-
ematical theoretic perspective. As a result of this, some new frame
properties are suggested. So far, the new insight this has given has
been moderate, but we think that this approach may be useful in frame
analysis in the future.

URN:NBN:no-3330

Chapter 2

Linear Algebra Approach to
Frame Design

One of the main topics in signal processing the last fifty years has been the de-
sign of signal expansions, like the expansions introduced in Section 1.1. Most
of the work has been concentrated on complete expansions, transforms and
filter banks, especially the orthogonal variants. These expansions are often
adapted to the statistics of the signal class of interest. For the overcomplete
expansions, the most desired feature of the expansion method has often been
computational effectiveness for the many inner-products between the frame
vectors and the signal. This is especially important when the degree of over-
completeness is large. This leads to frames built in a systematic manner,
selected to get good time-frequency resolution and effective implementation.
Examples are Gabor functions [51], [4], [3] filter banks and wavelet trees [73],
and Gaussian chirps [33]. Chou et al. designed a frame by adapting it to a
training sequence using techniques of the shape-gain product vector quantizer
[13], this frame is overcomplete by a factor of 400.

Frames for sparse signal representations may be designed using an iterative
method with two main steps: (1) Frame vector selection and expansion coeffi-
cient determination for signals in a training set, – selected to be representative
of the signals for which compact representations are desired, using the frame
designed in the previous iteration. (2) Update of frame vectors with the ob-
jective of improving the representation of step (1). This method for frame
design was used by Engan et al. [24] for block-oriented signal expansions,
i.e. generalizations of block-oriented transforms, and by Aase et al. [1] for
non-block-oriented frames, – for short overlapping frames, that may be viewed

17

URN:NBN:no-3330

18 Linear Algebra Approach to Frame Design

as generalizations of critically sampled filter banks. Here we solve the gen-
eral frame design problem using the compact notation of linear algebra. This
makes the solution both conceptually and computationally easier, especially
for the overlapping frame case. Also, the solution is more general than those
presented earlier, facilitating the imposition of constraints, such as symmetry,
on the designed frame vectors. We show that adjusting the coefficients of the
frame, step (2), is a linear problem and that in all cases it may be formulated
by the linear equation Ax = b, the solution is then compactly expressed in
the known variables. Much of this work was presented in [64].

2.1 Problem formulation

The frame design methodology presented here was first used in the context
of block-oriented frame design [24]. The frame should be adapted to a class
of signals, represented by a large set of training vectors, {xl}L

l=1, in a way
that makes the frame well suited for a sparse representation for this class of
signals. The training vectors are consecutive blocks of a training signal. For
our frame design method it is convenient to collect the training vectors, the
weight vectors and the synthesis vectors into matrices,

X = [x1 x2 x3 · · · xL],
W = [w1 w2 w3 · · · wL],
F = [f1 f2 · · · fK].

(2.1)

The synthesis equation may now be written as

X̃ = FW. (2.2)

Frame design, or the problem of seeking the optimal frame for a given class
of signals and a given sparseness factor, is briefly summarized below. More
details can be found in [24]. The objective is to find the frame, F, that
minimizes the approximation error expressed as:

J(F,W) = ‖X− X̃‖2 = ‖X− FW‖2, (2.3)

subject to a sparsity constraint on W.

URN:NBN:no-3330

2.2 Design of block-oriented frames 19

Finding the optimal solution to this problem is difficult. A practical optimiza-
tion strategy, not necessarily leading to a global optimum, but with established
good performance [24], [1], can be found by splitting the problem into two parts
which are alternately solved within an iterative loop. The method is inspired
by the generalized Lloyd algorithm [28] and can in fact be interpreted as a
generalization of this algorithm.

The approach starts with a user-supplied initial frame F(0) and then proceeds
to improve it by iteratively repeating two main steps, and a third optional
step, using the training signals. The i-th iteration can be described as:

1. W(i) is found by vector selection and weight computation based on frame
F(i), where the objective function is J(W) = ‖X−F(i)W‖2. Note that
a sparseness constraint is imposed on W. This problem is known to be
NP-hard [18], [50]. Nevertheless several practical approaches employing
matching pursuit algorithms, Section 1.3, are known to work well in the
vector selection and weight computation. In the present work we usually
employ, as the core part of vector selection, an order recursive matching
pursuit algorithm described in [31].

2. F(i+1) is found from X and W(i), where the objective function is J(F) =
‖X− FW(i)‖2.

3. The synthesis vectors of F(i+1) are normalized and the weights in W(i)

are adjusted such that the reconstructed signal is exactly the same as
before normalization, i.e. F(i+1)W(i) is unchanged. The iteration num-
ber, i, is incremented and we proceed again with step 1 above unless
some stopping criterion is satisfied.

In this chapter, we address and solve the problem in step 2, i.e. we find
the expression for the optimal F based on the signals in the training set and
the weights computed in step 1. The method is generalized to two or more
dimensions in Chapter 3. The problem in step 1 is discussed in Chapter 4.

2.2 Design of block-oriented frames

A one-dimensional signal, represented as a column vector x of length NL,
can be divided into L length N consecutive blocks, denoted {xl}L

l=1. An
approximation to a signal block based on a sparse representation is formed as
a linear combination of a few of the synthesis vectors, Equation 1.3. Matrices

URN:NBN:no-3330

20 Linear Algebra Approach to Frame Design

are used to represent the signal, the weights, and the frame vectors or synthesis
vectors, as in Equation 2.1. Transposing the objective function, Equation 2.3,
gives

J(F) = ‖XT −WTFT ‖2. (2.4)

We denote the n-th column of FT as fn and use the same overline notation for
the columns of XT . Since X is a matrix where the columns are consecutive
blocks of the original signal, the xn vectors have elements given by L sam-
ples of the n-th polyphase component [71] of the original signal. Using these
notational conventions, the frame F can be written as

F = [f1 · · · fK] =

f
T
1
...

f
T
N

 , (2.5)

and we can write Equation 2.4 as

J(F) = ‖[x1, . . . ,xN]−WT [f1, . . . , fN]‖2. (2.6)

Using a property of the trace norm, ‖A‖2 =
∑

j ‖aj‖2 where aj is a column
of the A matrix, Equation 2.6 can be written as the sum of N terms:

J(F) =
N∑

n=1

‖xn −WT fn‖2. (2.7)

Thus, minimizing J(F) corresponds to minimizing each term of Equation 2.7
separately, giving rise to N separate least squares problems. The overde-
termined (more equations than unknowns, here L is larger than K) linear
equation system is well known in linear algebra, it is usually written Ax = b,
but using the symbols of Equation 2.7 it is written WT fn = xn. The solutions
of these N problems are given by [67]

fn = (WWT)−1Wxn n = 1, 2, . . . , N. (2.8)

This may more compactly be written as

URN:NBN:no-3330

2.3 Design of overlapping frames 21

↑ N f1(n)

↑ N f2(n)

↑ N fK(n)

⊕
.....

x̃(n)

w1(m)

w2(m)

wK(m)

Figure 2.1: A uniform synthesis filter bank of K filters, upsampling factor is
N for each filter. When K > N the filter bank is oversampled. The filters are
assumed to be of the same length, PN .

FT = (WWT)−1WXT or
F = XWT (WWT)−1. (2.9)

We note that each row of X̃ = XWT (WWT)−1W is formed by projecting
the corresponding row of X onto the space spanned by the rows of W. The
solution in Equation 2.9 is equivalent to the solution given in [24]. The solution
may also be written using the pseudoinverse of W, W† = WT (WWT)−1, this
gives the simple form: F = XW†.
The solutions in Equation 2.8 and Equation 2.9 assume that WT has full rank,
else the inverse of (WWT) does not exist. Experiments done have shown that
this hardly ever occur. The cases where this happens will be when the set of
training vectors is too small (normally it should be at least L > 5K) and a
synthesis vector of F is so that it will not be used for the sparse representation
of any of the training vectors, then a row of W will consist of zeros only and
WT will be rank deficient. If this happens the solution can be found by
removing the unused synthesis vector from F and the zero row from W and
solve the equation system for the rest of the frame vectors. The unused frame
vector may be replaced by a random vector, or another frame vector (the most
used one) with an addition of a small distortion, this will hopefully cause it
to be used during the vector selection step in the next iteration.

2.3 Design of overlapping frames

A uniform synthesis K channel filter bank is shown in Figure 2.1. The input-
output relation can be verified to correspond to a matrix vector product

URN:NBN:no-3330

22 Linear Algebra Approach to Frame Design

x̃ = Fw, (2.10)

where the central part can be expanded like in Equation 1.10. The matrix
F or F is what we here call an overlapping frame. Assuming synthesis filter
lengths given by N times an integer P , i.e. NP , it is convenient to partition
F into P submatrices1, {Fp}P−1

p=0 ,

F =

F0
...

FP−1

 , (2.11)

where each submatrix has size N × K. We refer to P as the overlap factor.
Referring to [58] we can rewrite Equation 2.10 to reveal the block structure
of F explicitly. Below we illustrate this for the case when P = 3 and with a
causality assumption, xl = 0 and wl = 0 when l < 1 and l > L.

x̃1

x̃2
...

x̃L−1

x̃L

=

F0

F1 F0

F2 F1 ·
F2 · ·

· F0

F1 F0

w1

w2
...

wL−1

wL

. (2.12)

At each repetition of F in F , F is moved N positions down and K positions
to the right. Note the resulting “overlap-structure” of F , which is a direct
consequence of the channel filters having length larger than the upsampling
factor N .

The synthesis equation for a signal block can now be written in terms of the
sub-matrices of F:

x̃l =
P−1∑

p=0

Fpwl−p = F0wl + F1wl−1 + . . . + FP−1wl−P+1. (2.13)

Equation 2.13 can conveniently be written as follows:
1This corresponds to the polyphase representation of the oversampled synthesis filter

bank, G(z) in [15] and R(z) in [8]. In fact, the polyphase matrix is R(z) =
PP−1

p=0 Fpz−p.

URN:NBN:no-3330

2.3 Design of overlapping frames 23

x̃l = [F0,F1, · · · ,FP−1]

wl

wl−1
...

wl−P+1

 . (2.14)

In the following it will also be convenient to express a composite synthesis
equation for all the signal blocks, 1 through L:

[x̃1, · · · x̃l · · · x̃L] = [F0,F1, · · · ,FP−1]

w1 · · · wl · · · wL

w0 · · · wl−1 · · · wL−1

...
...

...
...

...
w−P+1 · · · wl−P+1 · · · wL−P+1

 .

Based on this, with obvious definitions, and in analogy with Equation 1.6 we
establish

X̃ = F∗W∗. (2.15)

Note that with a causality assumption, as shown in Equation 2.12, the lower
left part (the part below the “diagonal” made by the w1 vectors) of W∗

consists of only zeros.

It is also convenient to define P (horizontal) partitions of W∗ as follows:

−→
Wp = [w−p+1,w−p+2, · · ·wL−p], p = 0, . . . P − 1, (2.16)

in which case we can also write

X̃ =
P−1∑

p=0

Fp
−→
Wp. (2.17)

Note that the exact contents of the first few columns of
−→
Wp, i.e. those columns

wj with j < 1, depends on assumptions on the signal outside the range given
by {xl}L

l=1. In practice L, the number of blocks in the training signal set, is in
the order of several thousands, implying that whatever assumptions are made

URN:NBN:no-3330

24 Linear Algebra Approach to Frame Design

on the signal outside the training set is of minor importance. Since we, in
our implementation of the design method, have assumed a periodic extension
[58] of the training signal set we point out that in this case the definition of
Equation 2.16 should be modified to read

−→
Wp = [wL−p+1, · · · ,w1, · · · ,wL−p], p = 0, . . . P − 1. (2.18)

In this case
−→
Wp is the W matrix of Equation 2.1 where the columns are

circularly shifted p positions to the right. With this signal extension the F
matrix with overlap factor P = 3 becomes

F =

F0 F2 F1

F1 F0 F2

F2 F1
. . .

F2
. . . F0. . . F1 F0

F2 F1 F0

. (2.19)

As for the block-oriented frame the aim for step two in the frame design method
is to find the optimal frame, F, given some weights, W. As a consequence of
Equation 2.15, the design problem for overlapping frames can now be cast in
exactly the same form as the problem in the block-oriented case. Thus, our
objective function is now

J(F∗) = ‖X− X̃‖2

= ‖X− F∗W∗‖2

= ‖XT −W∗TF∗T ‖2 (2.20)
= ‖[x1, . . . ,xN]−W∗T [f∗1, . . . , f

∗
N]‖2

=
N∑

n=1

‖xn −W∗T f
∗
n‖2 (2.21)

where (f∗n)T is a row of F∗. The solution, – in complete analogy with Sec-
tion 2.2, is

f
∗
n = (W∗W∗T)−1W∗xn n = 1, . . . , N. (2.22)

URN:NBN:no-3330

2.3 Design of overlapping frames 25

This may more compactly be written as

F∗T = (W∗W∗T)−1W∗XT or
F∗ = XW∗T (W∗W∗T)−1. (2.23)

The solution in Equation 2.23 is equivalent to the solution given in [1], but
the derivation is simpler and the solution is conceptually easier to understand.
This way of expressing the solution also facilitates the uncovering of structures
in the matrix to be inverted, C∗ = W∗W∗T . These structures, identified be-
low, have proven useful in devising a computationally efficient implementation
of the design method.
We have

C∗ = W∗W∗T (2.24)

=

−→
W0

...−→
WP−1

[
(
−→
W0)T · · · (

−→
WP−1)T

]
.

A block of this matrix is
−→
Wp1(

−→
Wp2)T , where p1, p2 ∈ {0, 1, . . . , P − 1}. When

periodic extension of the training signal set is assumed, i.e. when using the
definition in Equation 2.18, this matrix block only depends on the relative
difference of p1 and p2

2. Letting p = p2 − p1 we define

Cp =
−→
Wm(

−→
Wm+p)T . (2.25)

This is valid for all values of m, letting m = p it is easily seen that C−p = CT
p .

Thus, the matrix to be inverted can be written

C∗ =

C0 C1 · · · CP−1

CT
1 C0 · · · CP−2
...

...
. . .

...
CT

P−1 CT
P−2 · · · C0

 . (2.26)

2For other reasonable assumptions on the signal outside the training set, this, and the
following statements, are approximately true.

URN:NBN:no-3330

26 Linear Algebra Approach to Frame Design

↑ n1 f1(n)

↑ n2 f2(n)

↑ nJ fJ(n)

⊕
.....

x̃(n)

w1(m)

w2(m)

wJ(m)

Figure 2.2: A general synthesis filter bank of J filters. The filter length, lj ,
and upsampling factor, nj , may be different for each filter.

Each element of Cp is an inner product of two (sparse) vectors

[Cp]ij = (w∗
i)

T (w∗
pN+j), (2.27)

where (w∗
i)

T is row i of the matrix W∗. Also, the elements of the N ×KP
matrix XW∗T , which we denote D, may be calculated in a similar manner

[D]ij = [XW∗T]ij = (xi)T (w∗
j). (2.28)

Having found C∗ and D the solution is simply computed as

F∗ = D(C∗)−1. (2.29)

2.4 General overlapping frames

As pointed out previously, the frame vectors of Section 2.3 correspond to the
filter unit pulse responses of the synthesis filter bank of Figure 2.1. This filter
bank is restricted in the sense that all channels have the same upsampling
factor, and the channel filters are all of the same length, NP . A more general
synthesis filter bank structure with different upsampling ratios and different
filter lengths is illustrated in Figure 2.2. This filter bank has J different FIR

URN:NBN:no-3330

2.4 General overlapping frames 27

↑ 2 h0

↑ 2 h1

⊕ ↑ 2 h0

↑ 2 h1

⊕ ↑ 2 h0

↑ 2 h1

⊕
w1(m)
w2(m)
w3(m)

w4(m)

x̃(n)

⇓

↑ 8 f4
w4(m)

↑ 8 f3
w3(m)

↑ 4 f2
w2(m)

↑ 2 f1
w1(m)

⊕ x̃(n)

Figure 2.3: A wavelet tree filter bank, here with three levels, can be im-
plemented as a general filter bank with one level. When the length of the
high-pass filter, h1, is 7 and the length of the low-pass filter, h0, is 9, the
derived filters f1 (=h1), f2, f3 and f4 will have the lengths 7, 21, 48 and 56,
respectively.

channel filters. The length of the filter for channel j is denoted by lj and
the upsampling factor by nj . As detailed in [1] this structure encompasses
every conceivable transform, filter bank, and wavelet decomposition expansion
along with their generalizations, some possible support structures are shown
in Figure 1.1. In fact this structure possesses the ultimate flexibility in terms
of enabling the specification of degree of overcompleteness (redundancy) of
the frame to be designed through the selection of the njs. Also the resolution
capabilities of the signal expansions can be controlled through the selection of
the ljs.

To make a frame corresponding to this general filter bank structure we can
proceed as outlined in the beginning of Section 2.3, by formulating the input-
output relations of the various channels and collecting them using appropri-
ately defined matrix/vector quantities. Carrying out this quite laborious, but
straightforward, task, we find that the structure of the synthesis equation as
given in Equation 2.12 can be maintained. We illustrate with an example:
Given the dyadic, – wavelet-like, synthesis structure in the upper part of Fig-
ure 2.3. This structure is equivalent to the one shown in the lower part of
the same figure when f1(n), . . . , f4(n) are determined from h0(n) and h1(n) in
an appropriate manner [71]. The structure for the F matrix of Equation 2.12
in this case is shown in Figure 2.3. The following features of the figure are

URN:NBN:no-3330

28 Linear Algebra Approach to Frame Design

Figure 2.4: The structure of the F matrix, Equation 2.12, for a filter bank
as in Figure 2.3. Each box indicate the F matrix, and the dots indicate the
non-zero values in F. The first column in F is for the f4 filter, the second
column for the f3 filter, the third and fourth columns are for the f2 filter, and
columns 5 to 8 are for the f1 filter. In this example N = 8, K = 8 and P = 7.
The observant reader will notice that this structure is the same as the wavelet
structure in the rightmost part of Figure 1.1. The difference in vertical align-
ment of the frame vectors in the F matrix is the same as a permutation of the
columns of the F matrix. For vector selection it is better to have the vertical
alignment as in this figure, the energy for the synthesis vectors in F are better
concentrated to one part of the signal.

URN:NBN:no-3330

2.4 General overlapping frames 29

noteworthy: The first column of dots in each box is for the f4 filter, the second
column for the f3 filter, the third and fourth columns are for the f2 filter, and
columns 5 to 8 are for the f1 filter. In this example N = 8, K = 8 and P = 7.
From this example we see that a filter where the corresponding upsampling
factor is smaller than N will be repeated in N/nj columns within F, each time
moved nj positions down.

In general, the following modifications to the quantities N, K and P , that
collectively determine the structure of F in Equation 2.10, must be kept in
mind:

N = least common multiple of {nj}J
j=1

K =
J∑

j=1

N

nj

P = max
j

⌈
lj − nj

N

⌉
+ 1 (2.30)

where dxe is the smallest integer larger or equal to x. Depending on the desired
lengths, lj , and the upsampling factors, nj , the F matrix will be populated by
a combination of elements of the frame vectors and zeros. Those zeros can be
interpreted as constraints on the F matrix. Obviously these constraints must
be embedded into the frame design method.

In many design problems in signal processing, the imposition of various sym-
metries play an important role. For example, in the design of filters for criti-
cally sampled filter banks we may desire filters with linear phase, i.e. unit pulse
responses that are symmetric with respect to their midpoints. It is conceivably
desirable to impose various symmetry constraints on the frame vectors. Such
symmetries can be expressed by relations between pairs of elements of frame
vectors of type f(i) = af(j), where we have assumed that the elements of all
frame vectors are indexed sequentially. Most often a will be given by 1 (to
specify even symmetries) or −1 (to specify odd symmetries). In the following
we reformulate the design problem presented previously in such a way as to
facilitate the incorporation of the two types of constraints described above.

Recall that what we have done in Section 2.3, is to pose the problem as that
of finding a least squares solution to the overdetermined set of equations

W∗TF∗T = XT . (2.31)

URN:NBN:no-3330

30 Linear Algebra Approach to Frame Design

The solution, which is given in Equation 2.23, is determined by solving the
corresponding normal equations

(W∗W∗T)F∗T = W∗XT . (2.32)

Using previously defined quantities this can be written as

C∗

C∗
. . .

C∗

f
∗
1

f
∗
2
...

f
∗
N

 =

W∗x1

W∗x2
...

W∗xN

 . (2.33)

With obvious definitions, this can compactly be expressed as

Cf = d, (2.34)

where f is the vector of concatenated columns of F∗T . It is also instructive to
observe that the overdetermined set of equations, Equation 2.31, giving rise
to Equation 2.33, can be written as

W∗T

W∗T
. . .

W∗T

f
∗
1

f
∗
2
...

f
∗
N

 =

x1

x2
...

xN

 . (2.35)

And again, with obvious definitions, this can compactly be expressed as

Wf = x. (2.36)

The large matrix W (size NL × NKP) is the “square root factor” of the C
matrix in Equation 2.34, i.e. C = WTW. Given the above, we are in a position
to precisely explain the implications of the previously mentioned constraints
on the problem:

URN:NBN:no-3330

2.4 General overlapping frames 31

1. If an element of f is forced to zero, i.e. f(i) = 0, this has the consequence
of removing variable f(i) in the equation set, Equation 2.36, and deleting
one column of W. Thus the problem is formulated in terms of W̃, which
is the same matrix as W, but with column no. i removed. The C in
Equation 2.34 is consequently replaced by C̃ = W̃T W̃. A little reflection
reveals that C̃ is the same as C, but with row no. i and column no. i
removed. Also, the d in Equation 2.34 is replaced by d̃, the same as d,
but with element no. i removed.

2. If the relation f(j) = af(i) is imposed on a pair of elements in f, this
corresponds to replacing the W of Equation 2.36 by W̃ which is found
by adding a times column i to column j, and removing column i. The
impact of this propagated to C̃ = W̃T W̃ and d̃ is obvious.

The above operations are repeated a number of times consistent with the num-
ber and type of constraints imposed by the frame design specification. Note
that through these operations the symmetry of C̃ is conserved and Equa-
tion 2.34 is modified. After the necessary operations are done, the size of the
C̃ matrix will be Q × Q and the size of d̃ (and f̃) will be Q × 1, where Q is
the number of free variables in f . Solving this modified equation system will
then directly give the free variables of f .

Implementation of this is most easily done by generating two mapping tables,
one table that maps from the Cp matrices of Equation 2.27 to the C̃ matrix of
Equation 2.34, and one table that maps from the D matrix of Equation 2.28
to the d̃ vector of Equation 2.34. These mappings are completely given by the
structure of the overlapping frame, the general filter bank in Figure 2.1.

Notice again the generality of this derivation. It is possible to represent a
large number of different support structures by a general filter bank, x̃ =
Fw where F is as in Equation 2.10. It is also possible to impose symmetry
restrictions on the different filters. A vast set of different configurations may
be optimized using the formulation above, including all possible cases for the
method presented in [1].

URN:NBN:no-3330

32 Linear Algebra Approach to Frame Design

URN:NBN:no-3330

Chapter 3

Generalizations to Two and
More Dimensions

The one-dimensional (1D) frame design method in Chapter 2 can also be used
on two-dimensional (2D) and multi-dimensional (MD) signals. Conceptually
it is very similar but the notation is quite a bit more involved. Even for the
1D signal and an overlapping frame in section 2.3 we have matrices of several
dimensions, like F in Equation 2.11 and F∗ and W∗ in Equation 2.15 which
are 3D, and the C∗ in Equation 2.26 is 4D. However, these MD matrices are
treated as 2D matrices that have a structure as defined in the equations. For
the 2D signal, and even more for the MD signal, this structure gets more
complicated and we need a good notation to reflect it. Multi-dimensional
matrices are appropriate for this use. We will here introduce this MD matrix
notation, and some needed basic operations.

3.1 Notation

A MD matrix is denoted by a not-bold uppercase letter, like A. The notation
is illustrated by a simple example: Let F be 3D (size: N × K × P), like F in
Equation 2.11. An element of of F is denoted Fn,k,p. A plane cut trough the
MD matrix defines a 2D matrix, colons are used to indicate the direction of
the plane, we have F:,:,p (size: N×K), (F:,:,p)T (size: K×N) and F:,k,: (size: N×P).
Similarly, a line through the MD matrix defines a column vector (no matter
the direction of the line), we have F:,k,p (size: N × 1), Fn,:,p (size: K × 1), and
(Fn,:,p)T (size: 1×K) (row vector).

33

URN:NBN:no-3330

34 Generalizations to Two and More Dimensions

MD matrices of the same size can be element-wise added, and a MD matrix can
be multiplied by a scalar. Vector and matrix multiplication are only allowed
on 2D submatrices or 1D subvectors of the MD matrices. We define the norm
for such MD matrices as the square root of the sum of all the elements squared.

‖A‖2 =
N1∑

n1=1

· · ·
Nm∑

nm=1

(An1,··· ,nm)2 (3.1)

where m is the number of dimensions. For 2D matrices this norm corresponds
to the trace (Frobenius) norm and for vectors it corresponds to the 2-norm.

Much of the work involved to solve a MD formulated problem is to reshape the
MD matrices into 2D matrices. The goal is to express the synthesis equation
as a product of 2D matrices, like in Equation 2.2 and Equation 2.15. When
this is accomplished, the solution is easy to find.

Let us illustrate a MD matrix by representing an image as a 4D matrix. An
image (size: N1L1 ×N2L2) can be divided into blocks of size N1 ×N2

X =

X1,1 X1,2 · · · X1,L2

X2,1 X2,2 · · · X2,L2

...
...

. . .
...

XL1,1 XL1,2 · · · XL1,L2

 . (3.2)

The image X is represented as a matrix of matrices. When it is divided into
blocks like this, it is four dimensional and can be represented by the 4D matrix,
X (size: N1 ×N2 × L1 × L2).

3.2 Block-oriented frame in 2D

An approximation to an image block, X:,:,l1,l2 , is formed as a linear combina-
tion of some frame images, denoted {Fk}K

k=1, each of size N1 ×N2. We may
collect these into a 3D matrix, F (size: N1 ×N2 ×K), a particular frame image
may now be denoted F:,:,k. A particular image block indexed by l1 and l2 is
reconstructed as

X̃:,:,l1,l2 =
K∑

k=1

Wk,l1,l2F:,:,k (3.3)

URN:NBN:no-3330

3.2 Block-oriented frame in 2D 35

where W is the 3D weight matrix (size: K × L1 × L2). The goal is to express
this synthesis equation as a product of ordinary matrices, as Equation 2.2 for
the one-dimensional case, to do this the MD matrices should be reshaped or
reorganized. The blocks, X:,:,l1,l2 are indexed by l, where

l = l1 + (l2 − 1)L1 and l ∈ {1, 2, . . . , L} and L = L1L2. (3.4)

This is also done for the l1 and l2 indices in the 3D weight matrix W . Each
image block and each frame image (size: N1 × N2) can be lexicographically
ordered into a vector of length N = N1N2 and indexed by n in a similar way

n = n1 + (n2 − 1)N1 and n ∈ {1, 2, . . . , N} and N = N1N2. (3.5)

This reshaping gives X (size: N × L), W (size: K × L) and F (size: N ×K). The
synthesis equation is on the desired form

X̃ = FW. (3.6)

The synthesis equation is exactly as Equation 2.2, and the solution is given
by Equation 2.9

F = XWT (WWT)−1 (3.7)

The final step should be to reverse the reshape process. This reshaping and
rearranging of blocks is the same procedure as the one used for designing
frames for image compression in [22].

URN:NBN:no-3330

36 Generalizations to Two and More Dimensions

3.3 Overlapping frame in 2D

To get overlapping frames for 2D signals the frame images should be allowed
to overlap each other similar to how the synthesis (frame) vectors overlap each
other for the 1D signal. In Section 2.3 the frame was divided into P parts,
Equation 2.11, where P is the overlap factor. In Equation 2.12 we see that the
synthesis vectors of F overlap each other, i.e. each reconstructed signal block
is the linear combination of different parts of the synthesis vectors. To extend
the overlap quality of the frame from 1D to 2D the overlap should be possible
in both dimensions, i.e both the vertical and horizontal direction. The overlap
factor in vertical direction is denoted P1 and the overlap factor in horizontal
direction is denoted P2. In complete analogy with the 1D case the overlapping
frame in 2D can be represented by a 5D matrix F (size: N1 ×N2 ×K × P1 × P2).
Each frame image, Fk (size: N1P1 ×N2P2), is a matrix of matrices. Indexing of
the submatrices of the frame images is done like for the overlapping frame F
in Equation 2.11, i.e. from 0 to (P1 − 1) and 0 to (P2 − 1). A frame image is
the 2D analogy to the 1D frame vector, it can be written

Fk =

F:,:,k,0,0 F:,:,k,0,1 · · · F:,:,k,0,P2−1

F:,:,k,1,0 F:,:,k,1,1 · · · F:,:,k,1,P2−1
...

...
. . .

...
F:,:,k,P1−1,0 F:,:,k,P1−1,1 · · · F:,:,k,P1−1,P2−1

 . (3.8)

The signal, X (4D), and the weights, W (3D), are as in Section 3.2. Postponing
the treatment of the edge problem, the synthesis equation for an image block
(not close to the edge) corresponding to Equation 2.13 is now

X̃:,:,l1,l2 =
P1−1∑

p1=0

P2−1∑

p2=0

K∑

k=1

Wk,l1−p1,l2−p2F:,:,k,p1,p2 . (3.9)

Just as for the overlapping 1D case, each image block is a linear combination
of blocks of the frame images.

We could now proceed from from Equation 3.9 just as we did from Equa-
tion 2.13. Carrying out this task, would be quite laborious and difficult to
present in clear equations, but straightforward. We will here jump directly
to Equation 2.18, here a periodic extension is assumed and the shifted weight
matrices,

−→
Wp, are defined for the overlapping 1D case. The shifted weight

matrices in the 2D case are defined in a similar way, but now shifts in both di-
rections are needed. Remember that the weight matrix, W , is now 3D and its

URN:NBN:no-3330

3.3 Overlapping frame in 2D 37

size is K × L1 × L2. The shifted weight matrix, denoted
−→
W :,:,:,p1,p2 , is defined

as the weight matrix, W , shifted p1 positions forward (down) in the second
dimension and p2 positions forward (right) in the third dimension. Thus we
have

−→
W :,:,:,0,0 = W . These shifted matrices are defined for p1 = 0, 1, . . . , P1 − 1

and p2 = 0, 1, . . . , P2 − 1. This is the most complicated step in this derivation
so to illustrate these shifts we give three examples

−→
W :,:,:,1,0 =

W:,L1,1 W:,L1,2 · · · W:,L1,L2

W:,1,1 W:,1,2 · · · W:,1,L2

...
...

. . .
...

W:,L1−1,1 W:,L1−1,2 · · · W:,L1−1,L2

−→
W :,:,:,0,1 =

W:,1,L2 W:,1,1 · · · W:,1,L2−1

W:,2,L2 W:,2,1 · · · W:,2,L2−1
...

...
. . .

...
W:,L1,L2 W:,L1,1 · · · W:,L1,L2−1

−→
W :,:,:,1,1 =

W:,L1,L2 W:,L1,1 · · · W:,L1,L2−1

W:,1,L2 W:,1,1 · · · W:,1,L2−1
...

...
. . .

...
W:,L1−1,L2 W:,L1−1,1 · · · W:,L1−1,L2−1

 (3.10)

These P1P2 shifted weight matrices are collected into one large 5D matrix
−→
W .

Before the reshaping and reduction of dimensionality we have

X 4D of size N1 ×N2 × L1 × L2−→
W 5D of size K × L1 × L2 × P1 × P2

F 5D of size N1 ×N2 ×K × P1 × P2

 (3.11)

These matrices are now reshaped, the l and n indices, Equation 3.4 and Equa-
tion 3.5, are used, and the p1 and p2 indices are replaced by the p index,

p = p1 + p2P1 and p ∈ {0, 1, . . . , P − 1} and P = P1P2. (3.12)

The size of the reshaped matrices will now be X (size: N×L),
−→
W (size: K×L×P)

and F (size: N×K×P). The “starred” matrices, F∗ and W∗, are defined similar
to the way they were used in Equation 2.15

URN:NBN:no-3330

38 Generalizations to Two and More Dimensions

F∗ = [F:,:,0, F:,:,1, · · · , F:,:,P−1]

W∗ =

−→
W :,:,0−→
W :,:,1

...−→
W :,:,P−1

. (3.13)

The synthesis equation can now be written

X̃ =
P−1∑

p=0

F:,:,p
−→
W :,:,p = F∗W∗ (3.14)

and the solution is like in Equation 2.23

F∗T = (W∗W∗T)−1W∗XT

F∗ = XW∗T (W∗W∗T)−1. (3.15)

Let us look a little bit closer on the matrix to be inverted, we call it C∗ =
W∗W∗T , (size: KP×KP). For the 1D case C∗ has a special structure, as shown
in Equation 2.26. A similar but not quite that simple structure exist for the
2D case. C∗ may be expressed by a 4D matrix, C (size: K ×K × P × P).

C∗ =

C:,:,0,0 C:,:,0,1 · · · C:,:,0,P−1

C:,:,1,0 C:,:,1,1 · · · C:,:,1,P−1
...

...
. . .

...
C:,:,P−1,0 C:,:,P−1,1 · · · C:,:,P−1,P−1

 (3.16)

C:,:,i,j =
−→
W :,:,i(

−→
W :,:,j)T , i, j ∈ {0, 1, . . . , P − 1} (3.17)

where
−→
W (size: K × L × P) is the 5D matrix of Equation 3.11 reshaped into a

3D matrix by (l1, l2 → l) and (p1, p2 → p).

URN:NBN:no-3330

3.3 Overlapping frame in 2D 39

C∗ has P 2 submatrices, each of size K×K. Fortunately, as for the 1D signal,
many of the matrices in Equation 3.17 are equal (or the transposed of another
matrix). The important thing is the relative translation between

−→
W :,:,i and−→

W :,:,j . The 2D translation is not as simple as the 1D translation. It can be
shown that the number of different matrices C:,:,i,j which need to be calculated,
is

(
1
2(2P1−1)(2P2−1)+ 1

2

)
, the general formula for the multi-dimensional case

is given in Equation 3.24. For P1 = P2 = 2 this gives 5 different submatrices,
much less than 16. For P1 = P2 = 3 this gives 13 different submatrices, much
less than 81. The matrix for P1 = P2 = 2 is shown below

C∗ =

C:,:,0,0 C:,:,0,1 C:,:,0,2 C:,:,0,3

(C:,:,0,1)T C:,:,0,0 C:,:,1,2 C:,:,0,2

(C:,:,0,2)T (C:,:,1,2)T C:,:,0,0 C:,:,0,1

(C:,:,0,3)T (C:,:,0,2)T (C:,:,0,1)T C:,:,0,0

 (3.18)

To further illustrate the structure in the C∗ matrix, the example for P1 =
P2 = 3 is shown below, only the significant last two indices (ij) of each of the
C:,:,i,j matrices are written out, and the lower left part is left out since the
matrix is symmetric. The first occurrence of each submatrix is bold

i, j =

00 01 02 03 04 05 06 07 08
00 01 13 03 04 16 06 07

00 23 13 03 26 16 06
00 01 02 03 04 05

00 01 13 03 04
00 23 13 03

00 01 02
00 01

00

(3.19)

C∗ is now given by the different matrices C:,:,i,j each of size K×K and calcu-
lated as the matrix product of two sparse (implying that effective algorithms
may be used) matrices, Equation 3.17. We can also define matrix D similar
as for the 1D case, D = XW∗T . As for the 1D signal, Equation 2.29, the
solution can be written

F∗ = D(C∗)−1 (3.20)

URN:NBN:no-3330

40 Generalizations to Two and More Dimensions

3.4 General overlapping frame in 2D

The general frame can be designed also for a 2D signal using a similar method
to that in Section 2.4. Some points where special care should be taken are
mentioned below. Especially the indexing problem is difficult to avoid, since
the conventional ways of indexing “are consumed” the used notation may seem
awkward, for example for the placement of the j index below, but with some
care it should be possible to decode the used notation.
The general 2D nonseparable filter bank of J filters corresponds to a synthesis
system where we have J different synthesis frame images. The translations
of the synthesis filters may vary and it may be different along each of the
directions. At each repetition frame image j, of size lj1 × lj2, is moved nj

1

positions down and nj
2 positions to the right. nj

1 and nj
2 is the upsampling

factors for filter j in each of the two dimensions. For the overlapping frame
the 2D analogy to Equation 2.30 in 1D is

N1 = least common multiplier of {nj
1}J

j=1

N2 = least common multiplier of {nj
2}J

j=1

N = N1N2

K =
J∑

j=1

N

nj
1n

j
2

P1 = max
j

⌈
lj1 − nj

1

N

⌉
+ 1

P2 = max
j

⌈
lj2 − nj

2

N

⌉
+ 1

P = P1P2 (3.21)

Now the process will be as described before. The matrices F∗ and W∗ are
defined as for the overlapping frame in Equation 3.13. The linear equation
system is formed as Equation 2.34 was formed, and the dependencies in f are
removed using the steps described in Section 2.4.

3.5 Multi-dimensional signal

The extension from 1D to 2D may easily be further extended to the multi-
dimensional (MD) signal. The main problem is that the size of the problem

URN:NBN:no-3330

3.5 Multi-dimensional signal 41

increase dramatically as more dimensions are introduced. For the time being
it is not possible to see any practical use of these methods for more than the
2D signals, possibly with an exception for a small 3D block-oriented frame.
However, to make the theory complete we here include some equations for the
MD signal.

3.5.1 Block-oriented frame

The signal will be MD and may be divided into blocks similar to a 2D signal
Equation 3.2. The sizes of the MD matrices are

X (2M)D of size N1 × · · · ×NM × L1 × · · · × LM

W (M+1)D of size K × L1 × · · · × LM

F (M+1)D of size N1 × · · · ×NM ×K

 (3.22)

Collecting the N-indices together and the L-indices together this is reduced to
2D matrices. The solution is as in Equation 3.7.

3.5.2 Overlapping frame

Also the extension to overlapping frame for MD signals is very similar as the
extension from block-oriented to overlapping frame in the 2D case. The sizes
of the MD matrices are

X (2M)D of size N1 × · · · ×NM × L1 × · · · × LM

W (M+1)D of size K × L1 × · · · × LM−→
W (2M+1)D of size K × L1 × · · · × LM × P1 × · · · × PM

F (2M+1)D of size N1 × · · · ×NM ×K × P1 × · · · × PM

(3.23)

Collecting the N-indices together and the L-indices together and the P-indices
together this is reduced to 3D matrices and the solution is as in Equation 3.15.
The structure of the C∗ matrix will also be regular in a way similar to that of
the 1D and 2D signals. It will consist of P 2 submatrices, where P =

∏M
m=1 Pm,

it will be symmetric, and the structure will be like “Toeplitz matrices within
each other”, this is illustrated in Equation 3.19 for the 2D case. Each sub-
matrix is the product of two of the submatrices of W∗, and it is the relative
position in the MD space that is important. The total number of different
submatrices is

IC =
(1

2

M∏
m=1

(2Pm − 1)
)

+
1
2

(3.24)

where we have also accounted for the symmetry. The extension to the general
MD frame will be just as in Section 3.4.

URN:NBN:no-3330

42 Generalizations to Two and More Dimensions

3.6 Non-linear frames

Non-linear in this section means that the synthesis system is not linear in the
free variables of the frame elements, a frame element is an entry in the frame
matrix. A frame element may be the product of several free variables. The
synthesis system is still linear in the expansion coefficients, i.e. the recon-
structed signal is still formed as a linear combination of some frame vectors
or frame signals. Note that these frames constitute a subset of those possible
using previous theory formulations, i.e. frames where all elements are free
variables.

Some of the most common signal expansions are of this type, the tree-structur-
ed filter bank (wavelet) is a typical example, and the separable transforms and
filter banks commonly used in image processing are other examples. One effect
of the structure in the synthesis system is that the number of free variables in
the frame (transform or filter bank) is reduced. The main advantage is that
the structure usually makes computation easier. The non-linear frames will
not be thoroughly handled here, but we include one example that illustrate
the increased complexity a non-linear structure of the synthesis system gives
for the frame design method presented in Chapter 2.

3.6.1 Separable block-oriented frame in 2D

For the separable frame and the 2D signal, all the frame images are built as
outer products of two column vectors, F:,:,k = ukvT

k or Fi,j,k = uk(i)vk(j).
It is also possible to use all the different combinations of column vectors to
build the frame images, for example 8 different u vectors and 8 different v
vectors gives 64 different combinations and 64 frame images. Each value in
the frame is the product of two variables, and thus non-linear in the free
variables. The problem of finding the optimal frame given the weights and the
original signal can not be reduced to a linear problem. However, the problem
may be formulated as two linear problems which may be solved iteratively in
a way similar to the method described in Section 2.1. Step 2 in this method
will be split into step 2.1 and step 2.2. Since the optimal solution is found in
each of these smaller steps, the algorithm for step 2 will converge to a local
minimum. The convergence properties of the total design method will be even
more uncertain than for the linear cases described earlier, (where the global
optimal solution is obtained in step 2).

For the block-oriented separable frame, each frame image is the outer product
of two column vectors. The column vectors used in the vertical dimension

URN:NBN:no-3330

3.6 Non-linear frames 43

are collected into a frame, Fv (size: N1 × K1). The column vectors used in
the horizontal dimension are collected into another frame, Fh (size: N2 ×K2).
There will be K = K1K2 possible frame images, which may be indexed by
k ∈ {1, 2, . . . ,K} or by k1 ∈ {1, 2, . . . , K1} and k2 ∈ {1, 2, . . . , K2} where
k = k1 + (k2 − 1)K1. A frame image is

F:,:,k1,k2 = (Fv):,k1(Fh)T
:,k2

(3.25)
Fn1,n2,k1,k2 = (Fv)n1,k1(Fh)n2,k2 (3.26)

Note that the free variables are in Fv and Fh and not in F , each entry in F
is formed as a product of one entry in Fv, which is a free variable, and one
entry in Fh, which is another free variable. The dimensions for the different
matrices are

X 4D of size N1 ×N2 × L1 × L2

W 4D of size K1 ×K2 × L1 × L2

F 4D of size N1 ×N2 ×K1 ×K2

Fv 2D of size N1 ×K1

Fh 2D of size N2 ×K2

(3.27)

The synthesis equation, corresponding to Equation 3.3, is

X̃:,:,l1,l2 =
K1∑

k1=1

K2∑

k2=1

Wk1,k2,l1,l2F:,:,k1,k2 (3.28)

X̃:,:,l1,l2 = (Fv)W:,:,l1,l2(Fh)T (3.29)

The last of these equations illustrates the reduced computationally complexity
that can be achieved using a separable frame as the synthesis system.

To find the optimal values for the indices of Fv and Fh the problem is split into
an iterative method of two steps. In step one Fh is considered to be constant
and the best solution for Fv is found, for step two the roles of Fh and Fv are
changed.

Wv is defined as 4D matrix (size: K1 ×N2 × L1 × L2)

URN:NBN:no-3330

44 Generalizations to Two and More Dimensions

(Wv):,:,l1,l2 = W:,:,l1,l2(Fh)T (3.30)

Putting this into Equation 3.29 gives the synthesis equation for a column of
the block

X̃:,n2,l1,l2 = (Fv)(Wv):,n2,l1,l2 (3.31)

The indices n2, l1, l2 are collected into one index i, where

i = n2 + (l1 − 1)N2 + (l2 − 1)L1N2, i ∈ {1, 2, . . . , I}, I = N2L1L2. (3.32)

This reshapes Wv into a 2D matrix (size: K1 × I), and X into a 2D matrix
(size: N1 × I). Since the 4D matrices are reshaped into 2D matrices, they are
denoted by bold letters in Equation 3.33. The problem is now just like for the
block-oriented 1D case. The solution is given in Equation 2.9 and is

Fv = XWT
v (WvWT

v)−1 (3.33)

Step two is done the same way as step one. Wh is defined as a 4D matrix (size:

N1 ×K2 × L1 × L2).

(Wh):,:,l1,l2 = (Fv)W:,:,l1,l2 (3.34)

Putting this into Equation 3.29 gives a matrix equation for each block,

X̃:,:,l1,l2 = (Wh):,:,l1,l2(Fh)T . (3.35)

Looking at one row of this matrix (left side of Equation 3.35), and transposing
to get a column vector gives

X̃n1,:,l1,l2 = (Fh)(Wh)n1,:,l1,l2 (3.36)

URN:NBN:no-3330

3.6 Non-linear frames 45

Note that the row is represented as a column vector both for the X̃ and Wh MD
matrices, this is how a line through a MD matrix was defined in Section 3.1.
The indices n1, l1, l2 are collected into one index j, where

j = n1 + (l1 − 1)N1 + (l2 − 1)L1N1, j ∈ {1, 2, . . . , J}, J = N1L1L2. (3.37)

Collection these J vectors into a 2D matrix reshapes Wv into a 2D matrix
(size: K2 × J), and X is reshaped into a 2D matrix (size: N2 × J). Here too, the
solution is given by Equation 2.9 and is

Fh = XWT
h (WhWT

h)−1. (3.38)

In the experiments done, Section 5.2, the iterations within this step converged
fast, usually 3-6 iterations was enough. The convergence rate seemed to be
geometric with the factor a in the range from 0.01 to 0.1, i.e. ‖Fi+1

v − Fi
v‖ ≈

a‖Fi
v − Fi−1

v ‖ and the same for Fh.

At the end of this section let us just add that the case for the overlapping
separable frame can be solved by combining the results in this section with
the results in Section 3.3, the challenge is the increased number of indices to
keep track of.

URN:NBN:no-3330

46 Generalizations to Two and More Dimensions

URN:NBN:no-3330

Chapter 4

Vector Selection in Frame
Design

The iterative method for frame design, Section 2.1, has two main steps. In
Chapter 2 and 3 the optimal solution for step 2 was found for a large number
of different frame structures. In this chapter we focus on the first step: How
to find the weights when the frame is fixed. This is the most computationally
demanding step in the frame design method. When the weights are found
some constraints may be given which the weights must meet. In this chapter
it will be a sparseness constraint, but also other constraints could be used
(combined with the sparseness constraint), for example in compression the
weights should be quantized and represented by a limited number of bits. The
vector selection step is also important since almost all the computing time is
spent on this part, at least when the sparseness criterion is used. Different
algorithms for vector selection was presented in the introduction, Section 1.3.
We will now look more in detail how these can be used for frame design when
a sparseness criterion, as defined in Equation 1.11, is imposed. The size of the
problem makes it necessary to use sub-optimal vector selection algorithms,
which may give poor convergence properties in the iterative design method.
In the iterative design method it is possible to take advantage of the fact that
the weights from the previous iteration are available when selecting weights
for the current iteration. This may be helpful especially if the current frame
has only minor changes from the previous iteration.

Let us look closer at the problem size. The frame matrix F as introduced in
Equation 1.5, an example for the overlapping frame in Equation 2.19, is of size
NL×KL. L is the number of training vectors, it is large enough to make the
training data representative for the signal class, typically 1000 < L < 100000.

47

URN:NBN:no-3330

48 Vector Selection in Frame Design

This makes the frame matrix F very large, and impractical to use directly in
vector selection. The common way to avoid this problem is to use a block-
oriented frame and to select a fixed number of frame vectors, denoted by a
lowercase s, to represent each signal block. Referring to Equation 1.4 each
xl is then represented as a linear combination of s of the column vectors of
the frame F, giving the sparseness factor S = s/N . Note that the sparseness
factor, as defined in Equation 1.11, allows for more flexibility since it is a
global definition, the number of frame vectors to use to represent xl can be sl

where 0 ≤ sl ≤ N and
∑L

l=1 sl = SNL. Under many circumstances it will be
favorable to have a global vector selection algorithm, or at least an algorithm
that allows for some flexibility when selecting the positions for the non-zero
weights.
The general problem is how to find how many non-zero weights that should be
used for each of the signal blocks, a discussion of this is given in Section 4.2.
A natural approach is to select weights for a few of the signal blocks, let us
say M blocks, in “one operation”, see Subsection 4.2.4. This should allow for
full flexibility in selecting the non-zero weights within these M blocks. This
approach may also be viewed as splitting the large problem of size L into
smaller problems each of size M .
For the overlapping frame it is more complicated to divide the large problem
into several smaller ones, since the smaller problems are overlapping and will
influence each other. One way of handling this inter-block influence is de-
scribed in Section 4.3. Another approach for the overlapping frame is to do
the design in some coefficient domain as described in Section 4.4.
Even when the large problem is divided into smaller problems, the problem
size is still much too large for the Full Search algorithm. The medium sized
example (N = 64, K = 128, and s = 8) in the introduction was estimated to
25 years, and the problems to be solved during frame design are typically even
larger than this, especially for the overlapping frames. An algorithm that do
partial search was developed during the work of this thesis. This algorithm can
be scaled to examine only one combination, then it works exactly as ORMP, see
Section 1.3, up to examine all the possible combinations of non-zero weights,
then it is as the full search algorithm. The partial search algorithm is described
in Subsection 4.1.1. One disadvantage is that quite often many combinations
must be searched to get better results than ORMP and then the computation
cost is too high. The experience gained through design of many frames is
that the sub-optimal vector selection algorithms should be used, and generally
ORMP is the preferred one.
The iterative design method will generally not converge when sub-optimal
vector selection algorithms are used. This means that a small change in the

URN:NBN:no-3330

4.1 Three new algorithms for vector selection 49

frame in step 2 may give a large change in the weights in step 1 in the next
iteration and the norm of the representation error may even be increased. To
improve the convergence properties of the iterative frame design method a
hybrid vector selection algorithm is proposed in Subsection 4.1.3. The main
idea is that the weights and the error from the previous iteration are stored,
and when new weights are found the new error is compared to the previous
one and only if there is an improvement the new weights are used. Another
advantage by using the previous weights is also possible. When the design
method comes close to convergence, the change for the frame is small from
one iteration to the next, we then expect that most of the weights are also
used again. Doing vector selection by keeping some of the weights from the
previous iteration will save computation time and give a faster algorithm,
this is described in Section 4.1.2. However, we should note that the optimal
solution may be a completely new set of frame vectors even for a very small
change in the frame.

In the end of this introduction we should mention that in some applications,
like compression, it is a problem that vector selection may give ‖w‖ >> ‖x‖.
The vector selection algorithm used has some influence on the size of ‖w‖,
BMP is in this respect better than OMP and ORMP [18]. It seems difficult
to get a good control of this effect, but the size of ‖w‖ is also determined by
the frame properites discussed in Subsection 7.3.4.

4.1 Three new algorithms for vector selection

Here we suggest three new algorithms for vector selection, that are all based
on the algorithms presented in the introduction, Section 1.3, and they may be
regarded as variants of these.

4.1.1 Vector selection by partial search

The Partial Search algorithm examines some of the possible combinations for
selecting s vectors out of the K frame vectors available, it can be tuned to
examine from one to all combinations. If only one combination is examined
this algorithm is identical to ORMP, if all combinations are examined then
full search is done.

The algorithm can be described by a recursive function as shown in Figure 4.1.
The input to this function is the uniform frame, F of size N ×K, the signal
vector, x, and the number of vectors to select, s. We also include a fourth

URN:NBN:no-3330

50 Vector Selection in Frame Design

Vector selection by partial search algorithm:

1 [r, i] = PartialSearch(F,x, s, c)
2 N and K found from size of F
3 u := FT · x
4 k is found by sorting u, |u(k(1))| ≥ |u(k(2))| ≥ · · · ≥ |u(k(K))|
5 if s = 1
6 i := k(1)
7 r := ‖x− u(k(1)) · fk(1)‖
8 else
9 r := ∞, s′ := s− 1, and c′ := c \ {c(1)}
10 for j := 1 to c(1)
11 x′ := x− u(k(j)) · fk(j)

12 F′ := F \ {fk(j)}
13 for m := 1 to (K − 1)
14 f ′m := f ′m − (fT

k(j) · f ′m)fk(j)

15 f ′m := f ′m/‖f ′m‖
16 end
17 [r′, i′] := PartialSearch(F′,x′, s′, c′)
18 if r′ < r
19 r := r′

20 i := {i′(1), i′(2), . . . , k(j), . . . , i′(s′) + 1}
21 end
22 end
23 end
24 return

Figure 4.1: The Partial Search algorithm for a unifor frame. Bold uppercase
letters are used for matrices, bold lowercase letters are used for column vectors
and index sets. Note that f ′m is a column vector of the F′ matrix, like fk(j) is
a column vector of the F matrix. More comments to the algorithm are to be
found in the text.

URN:NBN:no-3330

4.1 Three new algorithms for vector selection 51

argument that gives how many combinations to be examined. This is given
as a vector c of size s × 1, where c(1) is the number of vectors to check as
candidates for the first vector to select, c(2) is the number of vectors to check
as candidates for the second vector to select, and so on. The total number of
combinations to try is then

∏s
i=1 c(i). The values returned by the recursive

function are the norm of the residual, r, and the indices of the frame vectors
that were selected, i. The weights are not returned by the function, since they
can easily be found when we know which frame vectors to use.

Inside the function the first thing that is done is that the inner products
between the signal vector and the column vectors of the frame are calculated,
line 3 in Figure 4.1. The inner products are sorted according to their absolute
value, the indices for the sorted order is stored in k, line 4. Then two cases
are handled.1) If only one vector should be selected, s = 1, the situation is
easy: the selected frame vector is the one for which the inner product with the
signal vector is largest, line 6. Note that i is the set of selected indices, even
if it only has one element in line 6 it is denoted by a bold letter. In line 7 the
norm of the error is calculated, the error is the signal vector subtracted the
projection of itself onto the selected frame vector, i.e. orthogonalized to the
selected frame vector. 2) If more than one vector should be selected, s > 1,
there is more work to be done. In line 9 r is set to a large number just to
make sure that the test in line 18 will be true the first time. Also s′ and c′ are
set in line 9, the tagged variables are the ones that will be used as arguments
when the function is called again in line 17. In lines 10 to 22 each of the c(1)
most promising frame vectors, i.e. the first ones from the sorted list, are tried.
Using frame vector fk(j) the remaining part of the signal, x′, is found in line
11. A modified frame, F′, is found by removing the current frame vector fk(j),
line 12, then orthogonalizing each of its frame vectors to the removed frame
vector fk(j), line 14, and finally adjusting the length of the new frame vector,
line 15. We are now ready to search in the next level, this is done by a call to
the same function, line 17. If the error returned is smaller than the smallest
error so far, the returned error is stored as the smallest error so far, line 19.
Also the indices i referring to the columns of F are found from the indices i′

referring to the columns of F′ and the index of the current frame vector k(j),
line 20. Note that the indices in i and i′ are in ascending order, and that k(j)
is put into the correct position, and that the values of i′ after k(j) must be
incremented when they are used in i. This concludes the function.

Within the function the update from F to F′ will be like one step of the QR
factorization in linear algebra, this means that the function can be imple-
mented quite effectively. But we should not forget that the amount of work
to be done is approximately proportional to the number of combinations to

URN:NBN:no-3330

52 Vector Selection in Frame Design

try, and this number may be very large. If full search of a reasonably sized
problem is wanted another algorithm should be used, as this function may
examine different combinations of the same frame vectors, i.e. permutation
on the order the frame vectors are selected in.

The extension of the search is set by the values in c. If all entries of c are
one, the function is an implementation of the ORMP algorithm, though not
a fast one. Our experience with this algorithm is quite good. The returned
solution is the same as the one found by ORMP, or it is a better one. In
the experiments done we used from 50 to 500 different combinations and in
approximately 75% of the function calls this function returned better results
than ORMP.

4.1.2 Vector selection using previous weights

Matching Pursuit that use weights of the previous iteration of the design
method is a simple modification to the BMP algorithm. The difference is that
the previous weights are used as input argument instead of number of vectors
to select, the number of vectors to select is implicit given as the number of
non-zero previous weights. By keeping, for example the three largest weights,
a part of the work in vector selection is already done. Then BMP, or another
MP algorithm, is used to select the rest of the weights. This means that
fewer iterations than full BMP is needed. But it also means that the chance
of finding better weights is reduced since completely new weights will not be
found by this algorithm.

4.1.3 Improving convergence for the design method

The convergence properties of the iterative frame design method, Section 2.1,
can be improved using a vector selection algorithm that always returns better
weights, or more exactly never returns weights that gives a larger residual
than the residual in the previous iteration. Looking closer at the method in
Section 2.1 we see that this will guarantee convergence. In step 2 the optimal
frame for the given weights is found, for example by Equation 2.9. If the frame
is changed the error is always reduced. The normalization of the frame vectors
in step 3 do not change the error. In the next iteration, vector selection in
step 1 use the weights from step 3, and only if better weights are found the
old weights will be replaced. This makes sure that the error is reduced (or
unchanged) also for step 1. The fact that the norm of the error never increases
ensures that the design method converges to a local minimum of the object
function.

URN:NBN:no-3330

4.1 Three new algorithms for vector selection 53

Obviously, the weights from the previous step, in addition to the frame and the
signal vector, are needed as input argument in this vector selection algorithm.
The algorithm finds the new weights using one of the previously mentioned
algorithms, and the new residual is compared to the old residual. The weights
corresponding to the smallest residual are returned from the function. Often
this algorithm will just return the old weights, but when some new weights
are selected the result will be an improvement, the norm of the error will be
reduced.

The new weights could be found by choosing a vector selection algorithm in a
“random” way, where the computationally easy algorithms, like the algorithm
using previous weights in Section 4.1.2 or the ORMP algorithm, are more likely
to be used than computationally more expensive algorithms, like the partial
search, BP or the OMP. The benefit of choosing the vector selection algorithm
randomly is that we do not know which one of the many vector selection
algorithms that works best for the particular signal vector and frame. Trying
another algorithm than the one used in previous iteration of the design method
may be a smart thing to do, especially if the frame is almost unchanged, as
it will be after some iterations, when convergence is getting closer. This way
of choosing vector selection algorithm ensures that many different algorithms
are tried without increasing the computational cost. This hybrid algorithm is
the one that was used in the experiments in Chapter 5.

It would be interesting to know if the suggested improvements to vector se-
lection for frame design have any practical effect. We test this by designing
three frames where the only difference is the vector selection algorithm. The
frames were designed as described in Section 5.1. The frame structure is the
overlapping frame as in point (d) in the same section, using target sparseness
factor 1

16 . In Figure 4.2 the SNR, Equation 1.9, after step one in each itera-
tion is plotted as a function of iteration number. For each of the three vector
selection algorithms 500 iterations are shown. We note that neither BMP nor
ORMP (FOMP) converge properly, while the hybrid algorithm seems to con-
verge quite well. Also, after approximately 100 iterations both the BMP and
the ORMP algorithms have reached close to their maxima, it seems not neces-
sary to do more iterations, while the hybrid algorithm improves all the time.
To further investigate the convergence properties of the hybrid algorithm 5000
iterations were done, and the SNR was further increased 0.33 decibel or almost
1 decibel better than by ORMP. Looking closer at the SNR curve, Figure 4.3,
it has improvements in small steps. Since the hybrid algorithm occasionally
use the partial search algorithm (and the BP algorithm) better weights may
be found at each iteration even if the frame is unchanged. This is what I
think makes these small steps in the SNR-curve, and the change in the frame

URN:NBN:no-3330

54 Vector Selection in Frame Design

0 50 100 150 200 250 300 350 400 450 500

23

24

25

ORMP (FOMP) algorithm.

Last SNR is 24.89, and best SNR is 24.97

0 50 100 150 200 250 300 350 400 450 500

23

24

25

MP algorithm.

Last SNR is 23.72, and best SNR is 24.03

0 50 100 150 200 250 300 350 400 450 500

23

24

25

Hybrid algorithm.

Last SNR is 25.47, and best SNR is 25.47

Iteration number.

Figure 4.2: SNR is plotted as a function of training iterations. The training is
for an overlapping frame, frame (d) in Section 5.1, the target sparseness factor
is 1

16 .

URN:NBN:no-3330

4.2 Distribution of non-zero weights 55

4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000
25.804

25.806

25.808

25.81

25.812

25.814

25.816
Last iterations for hybrid algorithm.

Iteration number

SN
R

Figure 4.3: SNR for iteration 4000 to 5000 for the hybrid vector selection
algorithm The same frame as in Figure 4.2, frame (d) in Section 5.1.

is very small for the last thousands of iterations. Thus, the frame is probably
very close to the final one after some hundreds iterations also for the hybrid
algorithm.

The time until “convergence” is reached is also relevant, the BMP and ORMP
use approximately the same time for each iteration, for the current example 9
seconds, while the hybrid algorithm uses approximately 4 times longer. But of
course the time for the hybrid algorithm is highly dependent on how it is set
up, particulary how often partial search is done and how many combinations
to examine, it may be scaled to run as fast as ORMP (or BMP) by only using
this algorithm. The conclusion is that the hybrid algorithm should be used for
frame design, especially since the computational time is not very important
for design.

4.2 Distribution of non-zero weights

First, let us point out that by distribution of non-zero weights we mean how
many non-zero weights used on each of the signal blocks, not the distribution

URN:NBN:no-3330

56 Vector Selection in Frame Design

of the weight values. A signal x (size: NL × 1) can be approximated by a lin-
ear combination of some frame vectors from the frame matrix F , introduced
in Equation 1.5 for the block-oriented frame and Equation 2.12 for the over-
lapping frame. The frame F is of size NL × KL, so the size for the vector
selection problem is generally very large. The sparseness factor, S, as defined
in Equation 1.11 is used in this context. To solve this large vector selection
problem it must be divided into smaller problems, this is quite easy for the
block-oriented frame and also possible for the overlapping frame.

The division into smaller problems introduce another problem: how should
the total number of vectors to select, S · (number of samples in x) = SNL,
be distributed among the subproblems, i.e. among the blocks? If we let sl be
the number of non-zero weights allowed, or used, in block l of the weights, the
distribution of non-zero weights is defined by these numbers {sl}L

l=1, where∑L
l=1 sl = SNL. Several different methods may be used to find this distribu-

tion.

4.2.1 Replace sparseness constraint by error constraint

The simplest alternative is to ignore the strict and global sparseness constraint
and instead use a constraint on the error on each block , ‖rl‖ = ‖xl − x̃l‖ <
ε‖xl‖. The MP vector selection algorithms (BMP, OMP and ORMP) may all
use the magnitude of the error as a stop criterion. This approach gives good
control of the error and indirect control of the sparseness factor. This is a
good way to distribute the non-zero weights along the signal, and was used in
[22].

4.2.2 Distribute the weights evenly

Another easy way to distribute the non-zero weights is to distribute them
evenly among the signal blocks. This gives sl = s = SN for all blocks, where
it is assumed that SN is integer. If SN is not integer we can round it either
up or down for each sl such that the total sum is SNL. For stationary signals,
for example an AR(1) signal1, this may be a good approach, but for more
irregular signals having some regions with much activity and some relatively
flat regions, for example images, this is not a good idea. More frame vectors
should be used on the parts of the image rich with details than on the parts
of the image that are flat.

1An AR(1) signal is the output of an autoregressive (AR) process of order 1.

URN:NBN:no-3330

4.2 Distribution of non-zero weights 57

4.2.3 Global matching pursuit

The main disadvantage of the vector selection algorithms is that they are
impractical for large problems. But when the large frame has a structure,
as in Equation 1.4 for the block-oriented frame and in Equation 2.12 and
Equation 2.19 for the overlapping frame, the Matching Pursuit algorithms can
be adapted to do Global Matching Pursuit (GMP) without a large, i.e. much
smaller than the problem size would indicate, increase in computing time.
This is most easily done for the block-oriented frame based on the Matching
Pursuit algorithm, and the algorithm for this case is described below. It was
also described in [63].

This algorithm will return the same weights as if BMP is done using the
synthesis equation with the large frame, x̃ = Fw, but here the starting point
is the L synthesis equations using the smaller frame F, compactly written as
X̃ = FW Equation 2.2. The steps in GMP are2

1. Set the current weight matrix to zero, W = 0, and the current residual
matrix to the signal matrix, R = X. Then we find all the inner products,
U = FTR, (size: K × L). U(k, l) is the inner product of frame vector k
and column l in R.

2. Find the largest (in absolute value) bSLc inner products of U but not
more than one from each column, giving the best vector for those blocks
that are most in need of one of the bSLc vectors to be distributed. This
gives a set of indices, denoted {(ki, li)}bSLc

i=1 .

3. For i = 1 to bSLc, i.e. for each of the bSLc different pairs of indices, use
the frame vector given by ki to approximate column li of X:

(a) Update the weight,
W (ki, li) = W (ki, li) + U(ki, li).

(b) Update column li of R,
R(:, li) = R(:, li)− U(ki, li) · F (:, ki)

(c) Stop if we have selected enough weights.

(d) Update the inner products for vector li of R,
U(:, li) = FT ·R(:, li)

4. If more frame vectors may be selected goto 2.
2Here we use notation similar to the notation used in Matlab, W (k, l) is entry in row k

and column l of matrix W and W (:, l) is column l of matrix W.

URN:NBN:no-3330

58 Vector Selection in Frame Design

The modification compared with BMP, Figure 1.2, when BMP is selecting
s = SN , SN is integer, frame vectors for each training vector, can be seen in
step 2. BMP would select the L largest inner products, one for each column of
U. By reducing the number of selected inner products we make sure that the
outer loop, step 2 to 4, is done at least N times, making it possible to select
many frame vectors for those vectors (columns) of X that require so.

4.2.4 Use an extended frame

An extended frame, denoted FM (size: MN × MK), is built by repeating the
frame F M times

FM =

F
F

. . .
F

(4.1)

To use an extended frame to find the distribution of the non-zero weights is
a good alternative to the GMP algorithm. Using the larger extended frame
we have a larger vector selection problem, but the non-zero weights may be
distributed freely among the M repetitions of F in FM . One minor drawback
is that an initial distribution of the weights is needed. The computing time
of the vector selection algorithms increases considerably as the size of the
problem, i.e. frame, increases, so the extended frame can not be too large. To
understand the rather trivial extended frame for the block-oriented case will
be helpful when the more complicated overlapping frame is presented in the
next section.

An extended signal block is built by concatenating M of the original signal
blocks, {xli}M

i=1. For the block-oriented frame these blocks do not need to be
consecutive blocks, they are indexed by {li}M

i=1. The corresponding weights
and the number of vectors to use for each block are indexed the same way.
The number of non-zero weights within each of the M blocks may differ. The
vector selection algorithm finds an approximation to the extended signal block
using s =

∑M
i=1 sli non-zero weights. During vector selection the number of

non-zero weights for a single block may be changed, but their sum should still
be the same. If this is done many times, each time using different signal blocks
to build the extended signal block, the final result will be an updated, and

URN:NBN:no-3330

4.3 Overlapping vector selection 59

presumably better, distribution of the weights. This method is well suited for
the iterative frame design method. The synthesis equation for M blocks is

x̃M =

x̃l1

x̃l2
...

x̃lM

 =

F
F

. . .
F

wl1

wl2
...

wlM

 = FMwM . (4.2)

One may ask how large the number M should be in the extended frame. A
large value will result in a good distribution of the non-zero weights with fewer
iterations than a smaller value, but a small value will make vector selection
computationally less demanding and the complexity highly depends on the
used vector selection algorithm. The rule of thumb I found from the many
experiments done during the work on this thesis is that the number of vectors
to select “at once” from this extended frame should not exceed 50. For large
overlapping frames it was sometimes necessary to have this number as high as
100, but then vector selection was rather demanding.

4.3 Overlapping vector selection

Vector selection using an overlapping frame is more difficult than for the block-
oriented frame. Remember that all the vector selection algorithms in Sec-
tion 1.3 are block-oriented. They must be updated or adapted and wrapped
into another algorithm before they can be used in the overlapping frame case.
One way to do this is to use an extended frame similar to the extended frame
introduced in Subsection 4.2.4. To see how the use of an extended frame can
“reduce” the large overlapping frame vector selection problem into smaller
block-oriented problems is one of the more difficult things in this thesis; we
think the best way to explain this is to illustrate it by a “simple” example.
We chose a frame where the overlap factor is P = 3 and the extended frame,
FM , is built by repeating the frame, F as in Equation 2.11, M = 5 times.

The central part of the synthesis equation, x̃ = Fw, is shown in Figure 4.4.
Let us start the explanation at the right part of the figure. A part of the
weight vector, wM , is the concatenation of M blocks from the weight vector,
{wl+i}M

i=1. At the left side of the figure the reconstructed signal vector, x̃, is
split into three terms:
1) x̃b is built using the weights before wM (wi, i ≤ l),

URN:NBN:no-3330

60 Vector Selection in Frame Design

. . .

. . .

. . .

. . .

. . .

. . .

F0

F0

F0

F0

F0

F0

F0

F0

F0

F1

F1

F1

F1

F1

F1

F1

F1

F1

F2

F2

F2

F2

F2

F2

F2

F2

F2

...
x∗

xl

x∗

x∗

x∗

x∗

x∗

x∗

x∗

x∗

x∗

x∗

x∗

x∗

x∗
...

...
w∗

wl

w∗

w∗

w∗

w∗

w∗

w∗

w∗
...

x̃ = = ·

N 6
? K6?

?

6

wM

FM

µ

x̃b

?
x̃M

?

x̃a

?
l

?

l + 1

?

l + M

?

+

+

+

+

Figure 4.4: A closer look at the synthesis equation x̃ = Fw. The overlap
factor is P = 3, and the extended frame, FM , is made by repeating F M = 5
times. wM is the concatenation of M weight blocks {wl+i}M

i=1. The star index
used in the blocks of w indicate the appropriate index, i.e. w∗ = wl+i where
i is an integer. For the reconstructed signal block the star index is a block or
one part of a block, x̃l+i. The indices written above the F matrix are used to
show the proper alignment of weights to synthesis vectors. The first l, with
an arrow pointing down to the columns of F just to the left of FM , indicate
that the weights within the block with this index, wl, are the weights used for
the K synthesis vectors in this part of F .

URN:NBN:no-3330

4.3 Overlapping vector selection 61

2) x̃M (size: N(M + P − 1)× 1) is built using the weights in wM , and
3) x̃a is built using the weights after wM (wi, i > (l + M)).
They overlap each other by (P − 1) blocks as illustrated in the figure. The
frame, F , is expressed by its constituent matrices, {Fp}P−1

p=0 as in Equation 2.12
and Equation 2.19. The extended matrix, FM (size: N(M + P − 1)×KM), is the
frame matrix, F, repeated M = 5 times and it is illustrated by a surrounding
box in Figure 4.4. The synthesis equation for the central block is

x̃M = FMwM , (4.3)

where the reconstructed signal is an approximation to xM , i.e.

x̃M ≈ xM = (x− x̃b − x̃a). (4.4)

Vector selection for this central block should find an approximation to xM as
a linear combination of some of the column vectors of FM . This is a “simple”
block-oriented vector selection problem, with one small exception, the target
signal xM is not exactly known as it depends on the weights before and after
the central block of weights, wM . Let us assume that we have given some
weights {wl}L

l=1 and a distribution of the non-zero weights {sl}L
l=1 Then x̃b

and x̃a are known and the target signal xM is found. Block-oriented vector
selection, based on Equation 4.3, can now be used to find the weights, wM .
The initial weights could be only zeros and the initial distribution could be
evenly distributed, Subsection 4.2.2.

The procedure for overlapping vector selection can be described by starting
at a random offset for the central part, i.e. (l + 1), as seen in Figure 4.4. The
weights wM or {wl+i}M

i=1 are updated using a block-oriented vector selection
algorithm where the frame FM is used and the number of vectors to select is
given by s =

∑M
i=1 sl+i. The target signal is xM as in Equation 4.4. Only the

relevant (P − 1) blocks of x̃b and x̃a are needed, and to calculate these the
corresponding blocks of weights before and after wM are needed. The vector
selection algorithm updates the weights wM and implicitly also the distribu-
tion {sl+i}M

i=1. Then a new offset is selected, for example l = (l + M) mod L,
and the procedure is repeated until all the weight blocks are determined, up-
dated at least once.

Note that a new offset does not need to be the previous offset incremented by
M , the important thing is that all the weights get a chance to be updated. In

URN:NBN:no-3330

62 Vector Selection in Frame Design

fact, the experiments done have shown that it is often better to use a smaller
increment, this often decrease the “blocking-effects” and allow for the non-
zero weights “to drift” towards the more detailed regions of the signal, i.e.
update the distribution of weights. An increment larger than M could also
be used with much the same results. The new offset could also be selected
“at random”, the main issue is that all blocks of the weight vector are given
a chance to get updated.

This algorithm works quite well, but it is much more computationally demand-
ing than the block-oriented algorithms. Mainly because the extended frame
used must be larger, only (M − (P − 1)) blocks are unaffected by the weights
which are outside of wM . If the initial weights are all zero each weight block
should be selected at least two times to assure that the last time the weights
which are outside of wM have been set.

To summarize: The algorithm described in this section is flexible and general.
It may be used for both block-oriented frames and overlapping frames, and
the extended block size can be set to an appropriate value, we should probably
have M larger or equal to P and small enough to make the vector selection
problem of reasonable size. Any of the many possible vector selection algo-
rithms can be used as the core of this algorithm. Some initial weights should
be given for the overlapping frame cases. These are needed to calculate the
target signal, xM , or more specifically the reconstructed signal before, x̃b, and
after, x̃a, an extended block. It is correct to say that for the overlapping
frame the described algorithm is an algorithm to improve weights, while for
the block-oriented frame this algorithm do not need any initial weights, it se-
lects/finds the weights. For both cases the wanted distribution of the weights
is needed initially, and possibly updated during the procedure.

4.4 Frame in coefficient domain

The algorithm in the previous section works better for block-oriented frames
than for overlapping frames, both because the extended block size can be
smaller and because the problem with interference of weights before and after
current extended block of weights is eliminated. In [65] we proposed a method
that makes it possible to design overlapping frames where block-oriented vector
selection can be done. This makes vector selection for the overlapping frame
as easy as for the block-oriented frame.

In arriving at the proposed method we posed the following question: Given
a desired overlapping frame structure as shown in Equation 1.10, is it pos-
sible to decompose it into the product of one block-oriented structure as in

URN:NBN:no-3330

4.4 Frame in coefficient domain 63

The LOT synthesis vectors, G of size 32× 16

The frame vectors, H of size 16× 32

The resulting synthesis vectors, F = GH of size 32× 32

Figure 4.5: The synthesis matrix F is made up by the matrix product of G
and H. Each column of F is a linear combination of the columns of G, the
coefficients are given by the corresponding column of H.

URN:NBN:no-3330

64 Vector Selection in Frame Design

Equation 1.4 and another matrix? If so, could this other matrix be fixed,
predefined prior to the design process, while the design effort is spent on the
block structured part of the decomposition?

It is easily verified that setting F = GH, that is

F = GH

. . .

. . .
F

F
. . .
. . .

=

. . .

. . .
G

G
. . .
. . .

. . .
H

H
. . .

(4.5)

with G as in Equation 1.10 (size of G: PN × N), and H as the block-oriented
frame in Equation 1.4 (size of H: N ×K), gives the overlapping frame F with
the desired structure, (size of F: PN ×K). Note that the structure of the first
matrix, G, corresponds to the synthesis matrix of a critically sampled FIR
synthesis filter bank. The constituent matrices of F are defined by

F = GH =

G1
...

GP

H =

G1H
...

GPH

 . (4.6)

The signal representation is now x̃ = F w = GHw.

For a given class of signals, specified by a large vector x containing an appro-
priate training set of signal segments, the task of designing F can be divided
into two parts: selecting a reasonable G, which we then keep fixed, and finding
a H (or equivalently its constituent matrices H) using the design method for
block-oriented frames. The object function for the second step in the iterative
design method, will now be J = J(H) = ‖x− GHw‖.
Suppose that the columns of G’s constituent matrices, G, are chosen as the
synthesis vectors (filter responses) of an orthogonal perfect reconstruction filter
bank, then G−1 = GT and the norm is conserved, ‖x‖ = ‖Gx‖ = ‖G−1x‖. This
implies that

URN:NBN:no-3330

4.4 Frame in coefficient domain 65

J = ‖x− GHw‖ = ‖G−1(x− GHw)‖ = ‖GTx−Hw‖, (4.7)

and the frame H can be designed in exactly the same manner as the design of
any block-oriented frame. The only difference is that we use (GTx) rather than
x as the training signal. That is, we do the approximation in the coefficient
domain rather than in the signal domain. One example: G is selected as the
synthesis vectors of a 32 tap 16 channel Lapped Orthogonal Transform (LOT),
[46]. This has overlap factor P = 2 and N = 16. H is a 16×32 block-oriented
frame, it is overcomplete by a factor of K/N = 2. The resulting overlapping
frame F has P = 2, N = 16 and K = 32. This example is illustrated in
Figure 4.5.

This change of problem means that it is possible to use block-oriented vector
selection algorithms instead of the more complicated overlapping scheme. The
synthesis vectors (i.e. the columns) of the sub-matrices of F , (F), are still
orthogonal to all columns in a translated sub-matrix (as they are in G). This
is the same as that (FTF) is a block diagonal matrix and not a band diagonal
matrix, (GTG) is an identity matrix. Weights in one block have no effect
on the weights in neighboring blocks. This is what makes it possible to use
block-oriented vector selection algorithms.

The total synthesis system, specified by F = GH, has one fixed part and
one part with free variables. For the example in Figure 4.5, F has a total of
1024 parameters, but only the 512 in H are free variables. We may ask if this
reduction in degrees of freedom is important. To answer this we compared the
synthesis system designed using the proposed method, with a similar 32× 32
overlapping frame having all variables free, designed using the method in [2],
i.e. the update of the frame step was like described in Section 2.3 and the
update of the weights step as described in Section 4.3. We found that the
overlapping frame designed with the present method performs best, [65]. The
SNR for representation using different sparseness factors is shown in Figure 4.6.
Here also the SNR for a block-oriented frame (of size 16 × 32) is presented.
From this figure we can see that what is lost in degrees of freedom, for the
tested case at least, is more than compensated for by what is gained in the
vector selection step. It is more likely that the sub-optimal vector selection
algorithms will find a solution close to the optimal solution for small problems
than for larger problems. This test indicate that just having more free variables
in an optimization problem does not necessarily give a better solution if the
optimization algorithm can not handle the increase of free variables in a good
way.

URN:NBN:no-3330

66 Vector Selection in Frame Design

0.05 0.1 0.15 0.2 0.25 0.3
11

12

13

14

15

16

17

18

19

Sparseness factor, S.

S
N

R

SNR for sparse representation using AR(1) signal

Block−oriented frame
Overlapping frame, where F=GH
Overlapping frame, all variables free

Figure 4.6: Approximation quality, measured by Signal to Noise Ratio (SNR),
plotted as a function of sparseness factor. Here we compare the results on an
AR(1) signal for a block-oriented frame (×), for an overlapping frame with all
variables free (¤), and for an overlapping frame with F = GH as in Figure 4.5
(◦).

We should also point out that the synthesis vectors we design are tied to the
choice of orthogonal filter bank, G. The columns of F, the synthesis vectors
of length PN , will be in the N dimensional subspace of RPN spanned by the
N columns of G. To summarize: the main idea of this design method is that
we may design an overlapping frame by selecting an appropriate orthogonal
filter bank, G, and design the frame H using established design procedures
for block-oriented frames.

URN:NBN:no-3330

Chapter 5

Sparse Representation
Experiments

In this chapter we present some experiments done to illustrate the capabilities
of the proposed frame structures. Another goal is to present the complete
design process using these examples. The focus throughout this chapter will
be on sparseness alone.

5.1 Sparse representation of an ECG signal

In the first experiment a sparse representation is found for an electrocardio-
gram (ECG) signal. The purpose is to illustrate the sparse representation
capabilities for different frame structures, not to exploit the sparse represen-
tation any further, for example in compression. Consequently, frames with
different structures, denoted (a) to (e) and explained below, are designed for
an ECG signal. To design a frame the following items must be handled:
1) decide the structure and size of the frame,
2) prepare the set of training vectors or the long training signal,
3) set the initial frame,
4) select a target sparseness factor used during frame design, denoted Sd.
5) and finally decide which vector selection algorithm to use.
When these decisions are made the frame can be designed by the iterative
method outlined in Section 2.1.

The designed frames are then used to make sparse representations of a similar
signal. The items to handle now are quite the same as during design, but the
choices must be done in the context of the choices made during design.

67

URN:NBN:no-3330

68 Sparse Representation Experiments

1) choose one of the designed frames,
2) prepare the test vectors (or test signal) in a similar manner as the training
vectors,
3) select the desired sparseness factor, to distinguish it from Sd this one is
denoted S. As will be seen later, Figure 5.6, S could be in a quite wide range
around the value of Sd.
4) decide which vector selection algorithm to use, usually this is the same as
the algorithm used during frame design.
Now, sparse representations for each of the five frame structures can be made.
In the end of this section the representation errors are compared.

The five different frame structures are illustrated in Figure 5.1 and described
in the following list

(a) The first structure is a simple block-oriented frame with size N = 16,
K = 32 and P = 1. The number of free variables (all are free) is
Q = NKP = 512. The design procedure for this frame is as described
in Section 2.2. Note that this frame will not be suitable for a very small
sparseness factor, having S = 1

32 allows only one frame vector for every
second signal block on average.

(b) This is an overlapping frame with size N = 16, K = 32 and P = 2.
The number of free variables (all are free) is Q = NKP = 1024, and
the design procedure for this frame is as described in Section 2.3. This
frame is very similar to frame (a), if the last half of each frame vector is
set to zero the situation should be exactly the same, thus it should be
expected that frame (b) always performs as well as or better than frame
(a).

(c) Another overlapping frame, this one with size N = 8, K = 16 and P = 4.
The number of free variables (all are free) is Q = NKP = 512, the same
number of free variables as in frame (a). The design procedure for this
frame is as for frame (b).

(d) This is a general overlapping frame with size N = 8, K = 16 and P = 6.
A structure is imposed on this frame and the number of free variables
is Q = 246. The design procedure for this frame is as described in
Section 2.4. The structure is: Frame vectors 1-4 are equal except for
translation of two samples, using 6 ∗ 8 + 6 = 54 free variables. Frame
vectors 5-6 are all free, (2 ∗ 6 ∗ 8 = 96) variables. Frame vectors 7-12
are are all of length 24 and forced to be either odd or even symmetric,
(6 ∗ (24/2) = 72) free variables. Frame vector 13 and 15 are of length 12

URN:NBN:no-3330

5.1 Sparse representation of an ECG signal 69

(a) N = 16, K = 32, P = 1 (b) N = 16, K = 32, P = 2

(c) N = 8, K = 16, P = 4 (d) N = 8, K = 16, P = 6

(e) N = 4, K = 16, P = 15

Figure 5.1: The structure of the five frames for sparse representation of ECG
signal. For each frame the central part of F (3 repetitions of F) is displayed,
the non-zero entries are plotted as a dot and F is indicated by a box.

URN:NBN:no-3330

70 Sparse Representation Experiments

(a) N = 16, K = 32, P = 1

(b) N = 16, K = 32, P = 2

(c) N = 8, K = 16, P = 4

Figure 5.2: The synthesis vectors for the frames (a), (b) and (c) in Figure 5.1.
The column vectors of the F matrix are plotted. The frames shown here
have all Sd = 1

8 . Since the signal is mainly low frequency we see that the
low frequency frame vectors are predominant. Note that the length of the
synthesis vectors is 16 for (a), and 32 for (b) and (c).

URN:NBN:no-3330

5.1 Sparse representation of an ECG signal 71

(d) N = 8, K = 16, P = 6

(e) N = 4, K = 16, P = 15

Figure 5.3: The synthesis vectors for the frames (d) and (e) in Figure 5.1
and Sd = 1

8 . The column vectors of the F matrix are plotted. Note that
some of the frame vectors, i.e. entries in the F matrix are forced to be equal,
are symmetric or equal to parts of other frame vectors. In each frame, the
first frame vectors, translated two samples relative to each other, strikingly
resemble the tops in the ECG signal, Figure 5.4. The structures are further
described in the text.

URN:NBN:no-3330

72 Sparse Representation Experiments

and all 24 variables are free, while frame vectors 14 and 16 are equal to
13 and 15 but translated 4 positions. The frame vectors after training
are shown in the upper part of Figure 5.3.

(e) This is another general overlapping frame, this one with size N = 4,
K = 16 and P = 15. The number of free variables is Q = 434, and
the design procedure for this frame is as for frame (d). The imposed
structure is: Frame vectors 1-2 are equal except for translation of two
samples. Frame vectors 3-6 are all free variables. Frame vectors 7-12
are are all of length 28 and forced to be either odd or even symmetric.
Frame vectors 13-16 are of length 12 and all free variables. This frame is
different from the others in that the degree of overcompleteness, K/N , is
4 while it is 2 for the first four frames. The frame vectors after training
are shown in the lower part of Figure 5.3.

Having decided for the frame structures to use, the steps 2-5 in the design
procedure were set:
2) The first four minutes, 86400 samples, of an ECG signal, the “MIT100” sig-
nal from the MIT arrhythmia database [53], was used as training data. The
mean of the signal was subtracted before the training vectors were made.
3) The frame design method starts with an initial frame. This initial frame is
obviously important since the design method, if it converges at all, converges
towards a local minimum of the object function. Most of the frame vectors
was initialized by using segments from the training signal, exceptions are frame
vectors 7-16 in frame (d) and (e), where basis vectors from the Lapped Or-
thogonal Transform (LOT) [46] or the Discrete Cosine Transform (DCT) was
used.
4) For each of the five frame structures 10 frames were designed, where Sd

varied from 1
32 to 10

32 with steps of 1
32 .

5) Vector selection was done by the algorithm in Section 4.3 using M = 12,
12, 14, 15 and 40 blocks for the frames (a) to (e) respectively. The core of the
vector selection algorithm is the hybrid algorithm, Section 4.1.3. As seen in
Figure 4.2 this is the one that performs best for training of frames. Within
this hybrid algorithm again the ORMP algorithm is most frequently used.
Finally, training of the frames were done by the iterative method outlined in
Section 2.1, more than 400 iterations were done on each frame.

Some comments can be given to the results of training. For each of the 50
designed frames, the training curve is very similar in shape to the bottom curve
in Figure 4.2, the hybrid algorithm. The best SNR, Equation 1.8, values are

URN:NBN:no-3330

5.1 Sparse representation of an ECG signal 73

0 50 100 150 200 250 300 350 400 450 500
−50

0

50

100

150

200

250

300
The first part of the signal ECG ECG−001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

50

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Power spectrum of the signal.

Figure 5.4: The first part of the ECG signal. In the power spectrum plot the
frequency is normalized so 1 corresponds to 180 Hz, i.e. half the sampling
frequency.

plotted in Figure 5.5. We note that frame (a) performs badly at low sparseness
factor, this is as expected since the frame vectors are quite short. When the
sparseness factor is higher though frame (a) do better than both frame (b)
and frame (c). That frame (a) do better than frame (c), both frames have
the same number of free variables, can be explained by assuming that to have
many vectors to select from is more important than to have longer vectors and
overlap. But frame (b) should ideally never do worse than frame (a), as easily
can be seen by setting the bottom half of the frame matrix F to zero (F1 = 0)
for frame (b), then frame (b) has exactly the same structure as frame (a).
Nevertheless frame (a) do better than frame (b) for some sparseness factors.
This can only be explained by assuming that the vector selection algorithm
is more difficult for overlapping frames than for block-oriented frames. This
was also observed in Section 4.4, see Figure 4.6. It can also be noted that
the overlapping frame with structure, frame (d), do better than the frames

URN:NBN:no-3330

74 Sparse Representation Experiments

0.05 0.1 0.15 0.2 0.25 0.3
18

20

22

24

26

28

30

32

34

36

e: 26.84
d: 25.81
b: 24.68
c: 24.51
a: 22.67

e: 30.66
d: 29.49
b: 28.62
c: 28.41
a: 28.25

e: 34.42
d: 33.48
a: 32.50
b: 32.29
c: 32.04

Sparseness factor, Sd

S
N

R

Training results for different frames.

Figure 5.5: Final Signal to Noise Ratio (SNR) for the different frame structures
in Figure 5.1 achieved during training. Sd is along the x-axis. Each of the
50 points, of which only 15 are marked and their respective values written,
making up the graph is the final SNR during training of the frame, for example
the point for frame (d) and Sd = 1

16 (25.81) is the final SNR in Figure 4.3.
Since the points for Sd are so dense we have permitted ourselves to draw lines
through the points belonging to the same structure.

URN:NBN:no-3330

5.1 Sparse representation of an ECG signal 75

0.05 0.1 0.15 0.2 0.25 0.3
18

20

22

24

26

28

30

32

34

2: 25.05
4: 24.61
1: 24.48
8: 23.99
10: 23.86

2: 29.28
4: 29.15
8: 28.52
10: 28.16
1: 27.44

8: 33.35
10: 33.10
4: 33.02
2: 32.75
1: 31.22

Sparseness factor, S

S
N

R

Figure 5.6: SNR values achieved on the test signal, using 5 different frames,
all with structure (d) in Figure 5.1. S is along the x-axis. The frames were
designed using Sd = 1

32 , 2
32 , 4

32 , 8
32 and 10

32 . The numerators in these fractions
are used in the figure to mark the plotted lines, this is done at the points
where S = 1

16 , S = 1
8 , and S = 1

4 .

(a) to (c), even if frame (d) has fewer free variables than the other frames. It
performs noticeably better at all values of Sd. The structure is more important
than the number of free variables. Frame (e) is even better than frame (d),
but remember that this frame has a larger degree of overcompleteness, here
K/N = 4, twice as much as for the other frames.

We will now test the designed frames on a test signal. The test signal is from
the same ECG signal (MIT100) as used during training, but from 5 minutes
to 10 minutes, and the length is 108000 samples. In Figure 5.6 five frames,
all with structure (d) and different values for Sd (1

32 , 2
32 , 4

32 , 8
32 and 10

32), are
compared. The five frames were used to make sparse representations of the test
signal, now with sparseness factor varying from S = 1

32 to S = 10
32 with steps of

1
64 . The SNR values are presented in Figure 5.6. We see that the frame with
Sd = 1

32 performs quite poorly for S > 0.1, and the frames with Sd = 8
32 and

Sd = 10
32 is not as good as the other frames for small values of S. The frames

with Sd = 2
32 and Sd = 4

32 are quite good for 0.05 < S < 0.2. The conclusion
that can be made from this is that a frame can be used for a wider range of

URN:NBN:no-3330

76 Sparse Representation Experiments

0.05 0.1 0.15 0.2 0.25 0.3
18

20

22

24

26

28

30

32

34

e: 25.75
d: 24.61
c: 22.73
b: 22.67
a: 20.32

e: 30.35
d: 29.15
b: 27.84
a: 27.84
c: 27.70

e: 33.43
d: 33.02
a: 32.35
b: 32.06
c: 31.90

Sparseness factor, S

S
N

R

Test results for different frames.

Figure 5.7: The achieved SNR for sparse representation of the test signal for
the different frame structures in Figure 5.1. S is along the x-axis. For these
five frames Sd = 4

32 . Note that line (d) in this figure is the same as line (4) in
Figure 5.6

sparseness factors than the specific one it was designed for, for example we
may have Sd/3 < S < 3Sd. If only the frames with Sd = 4

32 are used we will
expect the representation results to be quite close to the representation results
achieved if the frames were designed with “correct” sparseness factors. This
will be so for almost the whole range of S used in the figures in this section.

In Figure 5.7 frames with different structures are compared. The frames are
shown in Figure 5.2 and Figure 5.3, they were designed using Sd = 4

32 . The
SNR values here are a little bit below, approximately 0.5 decibel, the values
achieved during training, Figure 5.5. The conclusion both for training and for
representation of the test signal is that the overlapping frames with structure,
(d) and (e), perform best. What about alternative sparse representations one
may ask. The answer is that the frames perform considerably better than
thresholding the coefficients of a transform or a filter bank, for S = 1

8 the
SNR achived by thresholding coefficients for the DCT, the LOT and Extended
Lapped Transform (ELT) [45] filter banks, and wavelet filter banks are in range
from 23.8 to 24.6. As seen in Figure 5.7 the corresponding range for the frames
is from 27.7 to 30.3.

URN:NBN:no-3330

5.2 Sparse representation of images 77

5.2 Sparse representation of images

The goal of this experiment is to demonstrate the capabilities of sparse rep-
resentation of images for some of the frame structures described in the earlier
chapters. The well known Lena image is used as the test image. Four frame
structures are used and for the sake of comparison we also include a fifth case
where we do thresholding of the coefficients of an orthogonal filter bank. Some
of the results here has been presented earlier, [63].

5.2.1 The different frame structures

The five frame structures presented here are

1. A block-oriented frame where we have N = 64, i.e. the block size is
N1 ×N2 = 8 × 8, K = 128 and P = 1. The number of free variables is
Q = NKP = 8192.

2. An overlapping frame constructed as a block-oriented frame in the coeffi-
cient domain, Section 4.4. The filter bank used is the ELT [45], it has 64
different basis images which are shown in Figure 5.8. Each frame image
is a linear combination of these basis images. For the constructed block-
oriented frame, denoted H in Section 4.4, we have N = 64, K = 128
and P = 1. The number of free variables is Q = NKP = 8192.

3. An overlapping two-dimensional (2D) frame as in Section 3.3. The size
of the frame (after reshaping) is N = 64, K = 128 and P = 4, i.e. the
overlap in vertical and horizontal direction is P1 = P2 = 2. Each of the
K = 128 frame images, is of size 16×16. The number of free variables is
Q = NKP = 32768, which is a quite large number for an optimization
problem.

4. A separable 2D block-oriented frame as in Chapter 3.6.1, Fv and Fh

have size 8 × 16. There is K = K1 · K2 = 16 · 16 = 256 frame images
each of size N1 ×N2 = 8× 8. Note that the number of free variables is
only 256, but the degree of overcompleteness is larger than for the three
previous structures, here K/N = 4 while for structures 1 to 3 K/N = 2.

5. For the sake of comparison we also use the ELT orthogonal filter bank
alone, sparseness is introduced by thresholding its coefficients. Note that
this is a complete expansion, K/N = 1.

URN:NBN:no-3330

78 Sparse Representation Experiments

Figure 5.8: The basis images of the Extended Lapped Transform (ELT) filter
bank. Each basis image has size 32× 32, and are translated by factors of 8 in
vertical and horizontal direction.

URN:NBN:no-3330

5.2 Sparse representation of images 79

Figure 5.9: The training set consists of 8 images, each has size 512×512 pixels,
256 gray levels.

5.2.2 Preparing the training vectors

For the one-dimensional signal this part of the design procedure is quite trivial
(subtracting the mean and chopping the training signal into blocks), but for
the different frames used for the 2D signals many steps are involved. Also the
training sets are prepared in a way depending on the frame structures. Let us
start by looking at the training images, Figure 5.9, these are used for all the
four different frame structures. The training set consists of M = 8 images,
each has size 512× 512 pixels, 256 gray levels.

Before these are used for training we subtract a low-pass image. Several ob-
servations motivate subtracting a low-pass image from the original image, the
resulting image is called the “high-pass” image, even if it contains most of the
information in the image, it is of the same size as the original image. Vector
selection schemes have been shown experimentally to work well when the sig-
nal has zero mean, [22]. Due to the large variation in the mean in different
parts of an image, it is more advantageous to subtract a locally varying mean
than a global mean. Similarly, in DCT based coding schemes (JPEG) the
DC components of each image block are handled separately. This process is
illustrated in Figure 5.10 for the test image, but it is just the same for the
training images. The lower right image is the image used to generate the test
vectors (for “Lena” it will be test vectors). The low-pass image (lower left

URN:NBN:no-3330

80 Sparse Representation Experiments

Figure 5.10: The original test image, Lena, on the top. Below: the image is
split into a low-pass filtered image to the left and a high-pass (the original
subtracted the low-pass filtered image) image to the right.

URN:NBN:no-3330

5.2 Sparse representation of images 81

→ → →
T R V S(F, S)

B Y X W

512× 512 512× 512 64× 4096
N × L

128× 4096
K × L

Figure 5.11: The analysis part of the representation process for an image, B
or Bm. T is an optional (T may be the identity operator) orthogonal filter
bank that transforms the image into a coefficient domain, Y. R is a reorder
operator that organizes image blocks into column vectors. V S(F, S) is the
vector selection function that uses the current frame F and the sparseness
factor S (or Sd during design).

→ → →
T−1R−1F

B̃ỸX̃W

512× 512512× 51264× 4096
N × L

128× 4096
K × L

Figure 5.12: The synthesis part of the representation process generates the
reconstructed image, B̃, based on the sparse weights W. R−1 and T−1 are
the inverse operators of R and T in Figure 5.11.

...

→
R

8× 8 64× 1

Figure 5.13: The operator R reshapes an 8 × 8 block into a 64 × 1 column
vector.

URN:NBN:no-3330

82 Sparse Representation Experiments

image in the figure) is represented by only one byte per 256 samples (0.03 bits
per pixel), i.e. a 512 × 512 image is represented by only 1024 bytes. Since
the frames are used only on the high-pass images, the low-pass filtered images
must be stored separately, this contributes with Slp = 1

256 in the (total) sparse-
ness factor. The sparseness factor used to find how many frame vectors that
can be used is then S = St − Slp = St − 1

256 , where St is the total sparseness
factor. The S used during design is denoted Sd as for the ECG signal. The
high-pass training images, denoted {Bm}M

m=1, are used during frame design.
Design of the 2D frames is done by the method outlined in Section 2.1, and the
steps in this method are embellished in Chapter 2-4. But there is some special
points which must be handled with care. To get a better overview of the design
process for this particular case, the analysis part for a sparse representation of
an image, here the low-pass image B or Bm, is illustrated in Figure 5.11 and
the corresponding synthesis system in Figure 5.12. T is an orthogonal linear
operator, and T−1 its inverse. This operator is only used if frame design is
done in the coefficient domain, Section 4.4, so often we may skip this. When T
is not the identity operator it represents a separable orthogonal filter bank. R
too is an orthogonal linear operator. It reorders each 8× 8 block into vectors
and puts these into a matrix X. V S(F, S) is a vector selection procedure.
With appropriate operators these figures for the analysis and synthesis system
can illustrate the procedure used for all the frame structures introduced in
Subsection 5.2.1.

1. A block-oriented frame is obtained when the T operator is identity.

2. The overlapping frame constructed as a block-oriented frame in the co-
efficient domain, as used in this section, is obtained when T operator is
the ELT orthogonal filter bank.

3. An overlapping frame with all variables free has a more complicated
structure than the two previous frame structures. As for the block-
oriented frame, the T operator is identity. The increased complexity is in
vector selection and the calculation of X̃, since the overlapping structure
of the frame must be taken account for. The method for the 2D overlap
vector selection is a 2D extension of the method in Section 4.3. During
design, updating the frame is as described in Section 3.3.

4. Also for the separable 2D block-oriented frame the T operator is identity.
The difference from frame structure 1 is that the frame F is defined by
its generating parts, Fv and Fh. During design, updating these matrices
must be done as described in Section 3.6.1. Vector selection is block-
oriented as for frame structures 1 and 2.

URN:NBN:no-3330

5.2 Sparse representation of images 83

5. For the ELT orthogonal filter bank case we let the T operator be the
ELT. Now, vector selection is just thresholding of the coefficients, and
on the synthesis part the reconstructed signal vectors in the coefficient
domain is simply X̃ = W.

We should note that the number of free variables for the different frame struc-
tures varies much. It is quite small for the separable case, and very large for
the overlapping case. The degree of overcompleteness varies from K/N = 1 in
the ELT case to K/N = 4 for the separable frame.

5.2.3 Training and testing the frames

In Figure 5.14 and Figure 5.15 the results after frame design and for the sparse
representation test using image Lena are plotted with Peak Signal to Noise
Ratio (PSNR) as a function of sparseness factor. The PSNR is a common
measure of image quality and is calculated as:

PSNR = 10 log10(
2552

MSE
). (5.1)

since 255 is the largest possible pixel value in an 8 bit per pixel image. The
MSE is calculated as in Equation 1.7. The five curves are marked by numbers
from 1 to 5 corresponding to each of the four different frame structures and
the ELT filter bank, as described in the previous subsections.

In Figure 5.14 the average PSNR for the eight training images achieved dur-
ing frame design is plotted. For each frame structure frames were designed
using Sd ∈ { 1

256 , 2
256 , 3

256 , 5
256 , 7

256 , 15
256 , 23

256}, a line is plotted through the points
belonging to each of the frame structures. Also the average PSNR of thresh-
olding the ELT coefficients of the training images is plotted, here more points
are calculated and this line is smoother.

At a first glance we may be surprised that the PSNR is higher in the test
results than in the design results, but then we should remember that the
training images, Figure 5.9, are different from the test image, Figure 5.10. At
a given sparseness factor the PSNR varies much from image to image, the
low-pass filtered training image number 2 (lake) has PSNR=19.45 and image
number 7 has PSNR=26.73. The average of the PSNR values for the 8 training
images is 22.00 decibel when all weights are zero, i.e. for the low-pass filtered
images. For the low-pass filtered Lena image in Figure 5.15 PSNR=23.66.
In this section the test image is different (has different properties) from the

URN:NBN:no-3330

84 Sparse Representation Experiments

training images, while in the previous section the test signal and the training
signal are just different parts of the same ECG signal.

The x-axis in the figures must also be commented on. In Figure 5.14 it is
the total sparseness factor in design, St = Slp + Sd, where Slp = 1/256 is the
contribution of the low-pass image and Sd is the sparseness factor actually
used during design. In Figure 5.15 the x-axis is the total sparseness factor in
sparse representation, St = Slp + S, where S is the sparseness factor actually
used in vector selection.For both figures the PSNR values for each of the
curves are written in the figure for St = 2/256, (4/256 for Figure 5.15 only),
8/256, and 16/256. For the test image Lena we see that all five curves start
at St = Slp = 1/256 and PSNR=23.66 which is when no weights, S = 0, are
used to represent the high-pass image, and of course this value is the same for
all frames and the ELT case.

The frames used in Figure 5.15 are the ones designed with Sd = 3/256 (St =
4/256). The range of S for which these frames are suitable is, in accordance
with the results in the end of Section 5.1, 1/256 < S < 9/256. The results
here confirm this; for St larger than 0.03 the ELT performs relatively better
as St increase. In the recommended range for the sparseness factor all frames
have 0.5 to 1.5 decibel higher PSNR than the ELT. The difference is only
marginally larger for the training images, indicating that the frames are not
overtrained to represent only the 8 test images well but that the frames will
work quite well for all images “of the same class” as the training images.

Comparing the different frames to each other we get slightly different conclu-
sions by looking at the training results rather than looking at the test results.
From Figure 5.14 the overlapping frame seems best at low sparseness factors
and the separable frame best at higher sparseness factors, but in Figure 5.15
the crossing point between these two curves are at a lower sparseness factor
and generally the overlapping frame is not a clear winner except for lowest
value of St. The overlapping frame (3) has many free variables, thus being
more vulnerable to the risk of overtraining, while the opposite is true for the
separable frame (4).

The three frames, (1), (2), and (4) achieve quite similar results, even though
they are quite different from each other. For all sparseness factors the frame
in the coefficient domain (2) does slightly better than the block-oriented frame
(1). The separable frame (4) have more frame images to select among, the
degree of overcompleteness is N/K = 4, while it is N/K = 2 for frames (1) and
(2). We see that frame (4) does best for larger sparseness factors, probably
the larger ratio for N/K is the main reason for this. For lower sparseness
factors the rigid structure for the frame images of the separable frame is most

URN:NBN:no-3330

5.2 Sparse representation of images 85

likely to explain that the block-oriented frame (1) with fewer frame images
performs better. The fact that all variables in the frame images were freely
selected during frame design for frame (1) seems to be more important when
the sparseness factor is small than the degree of overcompleteness.

The overlapping frame (3) is good at small sparseness factors, but worse than
the other frames for larger values of S. The main reason for this, I believe,
is that vector selection gets very difficult and computationally demanding,
especially when many frame images should be selected, for the 2D overlapping
frame. For frames (1), (2) and (4) vector selection is done with a quite simple
block-oriented algorithm. The overlapping 2D vector selection algorithm is
more complicated, and it has not been used as much as the block-oriented
algorithm and consequently it is not as thoroughly tested. The fact that
the overlapping 2D vector selection algorithm apparently works well for small
values of S but falls behind for larger values of S indicates that it is the
size of the problem that cause the difficulties. For the 1D overlapping vector
selection algorithm, Section 4.3, the starting point is the synthesis equation,
x̃M = FMwM , Equation 4.3. The size of the x̃M vector is wanted large to
avoid relatively more of the interference from the neighborhood, but it must
not be too large because of the complexity of vector selection. In the 2D
case it is even more difficult to reduce the neighborhood interference, since
it is imperative to restrict the size of the vector selection problem. The used
size of the x̃M vector (before it is reshaped to a vector it was 3 × 3 blocks
of size 8 × 8) was 576 × 1, and this is probably too small to avoid much of
the overlapping effects. The problems with 2D overlapping vector selection is
more serious when many vectors should be selected, this partly explains why
frame (3) performs better than the other frames for Sd < 0.04 and worse for
Sd > 0.05 during design, Figure 5.14.

For a qualitative judgement of the image quality, we look at different sparse
representations of the Lena image. In Figure 5.16 one part of the original Lena
image and its sparse representations using the five frame structures listed in
Subsection 5.2.1 are shown. The sparseness factor is St = 4/256 for all five
frame structures. We clearly notice the blocking effect for the block-oriented
frame (1) and the separable frame (4), which is also block-oriented. The
overlapping frame (3) also show some blocking effect, this is easy to understand
if we look at the frame images after training. They do not smoothly decline
toward zero at the edges (as for example the ELT basis images do, Figure 5.8)
and many of them are blocky alone, i.e. we see that they consist of 4 8 × 8
blocks. The blocking effect of the overlapping frame is less noticeable partly
because it has a higher PSNR value. For “frame structure” (5), largest ELT
coefficients, the image is more smooth that for the other structures, also some

URN:NBN:no-3330

86 Sparse Representation Experiments

ringing effects are visible, for example the edge of the hat is “ringed” to the
chin below the eye. The frame in the coefficient domain (2) is perhaps the
structure that gives the better visual impression. The PSNR values for the
five reconstructed images are 31.52, 32.08, 32.37, 31.27 and 30.38 for the frame
structures (1) to (5) respectively, these numbers can be read from Figure 5.15.

URN:NBN:no-3330

5.2 Sparse representation of images 87

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
24

25

26

27

28

29

30

31

32

33

34

3: 25.74
2: 25.00
1: 24.81
4: 24.59
5: 24.02

3: 30.01
2: 29.77
1: 29.62
4: 29.41
5: 28.21

4: 32.29
2: 32.12
1: 32.02
3: 31.87
5: 30.72

Sparseness factor, Sd + 1/256

PS
N

R

Figure 5.14: Average Peak Signal to Noise Ratio (PSNR) for the training
images achieved during frame design. 1: Block-oriented frame, 2: ELT +
block-oriented frame, 3: overlapping frame, 4: separable frame, and 5: thresh-
olding ELT, note that this latter “frame structure” is not trained.

0 0.01 0.02 0.03 0.04 0.05 0.06

24

26

28

30

32

34

36

38

3: 29.38
2: 28.51
1: 28.07
4: 27.76
5: 27.35

3: 32.37
2: 32.08
1: 31.52
4: 31.27
5: 30.38

2: 35.04
4: 34.82
1: 34.60
3: 34.03
5: 33.72

4: 37.88
2: 37.37
1: 37.27
5: 37.18
3: 35.67

Sparseness factor, St

PS
N

R

Figure 5.15: PSNR for test image Lena. 1: Block-oriented frame, 2: ELT
+ block-oriented frame, 3: overlapping frame, 4: separable frame, and 5:
thresholding ELT.

URN:NBN:no-3330

88 Sparse Representation Experiments

Detail of original image (1) Block−oriented frame

(2) ELT + block−oriented frame (3) Overlapping frame

(4) Separable frame (5) Largest ELT coefficients

Figure 5.16: A detail of the test image Lena, different sparse representations.

URN:NBN:no-3330

Chapter 6

Texture Classification

In this chapter texture classification using frames is presented. The method
is denoted as the Frame Texture Classification Method (FTCM). The main
idea is that a frame trained to represent a certain class of signals is a model
of this signal class. The signal class is given by many representative blocks of
the class, these blocks, reshaped into vectors, constitute the training set. For
image textures the training set is made from many small, typically 5 × 5 or
7× 7, blocks of the texture image examples under consideration. Frames are
trained for several textures, one frame for each texture class. A pixel of an
image to be classified, – an image in a test set, is classified by processing a
block around the pixel, the block size is the same as the one used in the training
set. Many sparse representations of this test block (vector) are found, using
each of the frames trained for the texture classes under consideration. Since
the frames were trained to minimize the representation error, the tested pixel
is assumed to belong to the texture for which the corresponding frame has the
smallest representation error. Before the FTCM is presented in more detail in
Section 6.2 a short introduction to texture classification is given in Section 6.1.
Some results obtained using FTCM are presented in Section 6.3.

6.1 Introduction to texture classification

Most surfaces exhibit texture. For human beings it is quite easy to recognize
different textures, but it is more difficult to precisely define a texture. A sim-
ple definition could be: a texture may be regarded as a region where some
elements or primitives are repeated and arranged according to a placement
rule. Tuceryan and Jain [68] list more possible definitions, and give a more

89

URN:NBN:no-3330

90 Texture Classification

complete overview of texture classification. Texture classification using vec-
tor quantization [48] is an interesting approach since the method we propose
here, FTCM, may be regarded as a generalization of the vector quantization
approach.

Texture is a local property of an image, but it is not confined to a single point,
this means that to decide the texture of a point a small area around it must
be included. When we say that a pixel belong to a certain texture we mean
that a block around that pixel has some properties that define it as belonging
to this texture. If the block must be large to properly identify the texture,for
example 100 × 100 pixels, the texture is coarse, while if the texture is well
defined (recognizable) for a small block, for example 7× 7 pixels, the texture
is said to be fine.

Texture information together with color information and edge detection, is
important for humans for identifying objects within natural images. For the
same reason texture analysis, recognition and classification are often parts
of machine vision systems and image processing algorithms. The possible
applications are not limited to natural images, texture analysis is also used
in areas as geophysical surveying [42], medical analysis [26] [56] [49] [40] and
satellite Synthetic Aperture Radar (SAR) image analysis [74] [54]. Several
methods for texture discrimination have been proposed, an overview is given
by Tuceryan and Jain [68]. They group texture identification methods into four
major categories: statistical, geometrical, model-based, and signal processing
methods.

Randen and Husøy [59] have presented a comparative study of different tex-
ture classification methods. The focus of their paper is on signal processing
methods (filtering), but they also include results where co-occurrence (statis-
tical) and autoregressive (model-based) features are used. The classification
experiments in this chapter are done using the same training textures and the
same test images as the ones used in [59]. Also the experimental setup will
be quite similar. The setup of the filtering approach system they used is pre-
sented in Figure 6.1. The first operation is filtering of the input image, this is
usually done by a bank of filters, the result is several “images”, each being the
response of one filter. Next a local energy function is applied, consisting of a
nonlinearity, usually magnitude or squaring, which is the same as the energy
after filtering, succeeded by a smoothing filter. The dashed box for the second
nonlinearity indicate that this operation may be omitted. For an image pixel
a feature vector is formed by collecting the entries corresponding to the pixel
position from the processed filter responses. The length of the feature vector
will be the same as the number of filters used in the first step. The feature
vectors are finally classified using a vector classification algorithm.

URN:NBN:no-3330

6.1 Introduction to texture classification 91

Filtering

Nonlinearity

Smoothing

Classifier

Input image

Filter responses

Normalizing
nonlinearity

Localenergy
function

Local energy estimate

Feature vectors

Class map

?

?? ?
· · ·

?? ?
· · ·

?? ?
· · ·

?? ?
· · ·

?

Figure 6.1: Experiment setup for the filtering approach used by Randen and
Husøy.

Method (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean
f8a 7.2 21.1 23.7 18.6 18.6 37.5 43.2 40.1 29.7 26.6
f16b 8.7 18.9 23.3 18.4 17.2 36.4 41.7 39.8 28.5 25.9

Daub-4 8.7 22.8 25.0 23.5 21.8 38.2 45.2 40.9 30.1 28.5
JMS 16.9 36.3 32.7 41.1 43.0 47.3 51.1 59.7 49.9 42.0
JU 12.7 33.0 26.5 34.3 43.4 45.6 46.5 35.9 30.5 34.3

Co-occurrence 9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 37.7
Autoregressive 19.6 19.4 23.0 23.9 24.0 58.0 46.4 56.7 28.7 33.3

Table 6.1: Classification errors, given as percentage wrongly classified pixels,
for different methods (rows) and different test images (columns) as presented
by Randen and Husøy in [59].

URN:NBN:no-3330

92 Texture Classification

(a) (b) (c)

(d) (e)

Figure 6.2: The five test images with 5 textures in each.

In [59] Randen and Husøy tried a lot of different filter banks in the filtering
step. For smoothing they concluded that the separable Gaussian low-pass
filter is the better choice. The unit pulse response for this filter is

hG(n) =
1√
2πσ

e−
1
2

n2

σ2 . (6.1)

The parameter σ gives the bandwidth of the smoothing filter. For band-pass
filters (in the filtering step) they calculated σ as

σ =
1

2
√

2f0

(6.2)

where f0 is the radial spatial center frequency. This smoothing function was
initially suggested in [37]. For the methods denoted “JMS” and “JU” in [59],
referred in Table 6.1 and explained below, the value of this parameter was
σ = 8.

URN:NBN:no-3330

6.1 Introduction to texture classification 93

(f) (g)

(h) (i)

Figure 6.3: The 16-textures and 10-textures test images.

For the first and second nonlinearity illustrated in Figure 6.1, in line with the
conclusion of Unser [70], they used squaring in combination with a logarithmic
normalizing nonlinearity. For classification they chose to use the “Type One
Learning Vector Quantizing” (LVQ) supervised classifier of Kohonen [38] for
most experiments.
The extensive results of [59] are presented in many tables, from which we have
extracted some of their best results and presented them in Table 6.1. The
table shows the classification errors, given as percentage wrongly classified
pixels, for different methods (rows) and different test images (columns). The
first five columns are for the 5-texture test images shown in Figure 6.2, the
columns denoted (f) and (g) are for the 16-texture test images in upper part
of Figure 6.3, the next two columns are for the 10-texture test images in lower
part of Figure 6.3, and finally the last column is the mean of the classifica-
tion error for the nine test images used. The test images in Figure 6.2 and
Figure 6.3 are the same as the test images (a) to (i) in Figure 11 in [59].
The methods denoted “f8a” and “f16b” use a tree structured bank of quadra-

URN:NBN:no-3330

94 Texture Classification

ture mirror filters (QMF), the filters are finite input response (FIR) filters
of length 8 and 16, respectively. The method denoted “Daub-4” use the
Daubechies filters [17] of length 4, and the same structure as used for the
QMF filters, the referred results use the non-dyadic subband decomposition
illustrated in Figure 6d in [59]. The methods denoted “JMS” and “JU” are FIR
filters optimized for maximal energy separation, [60]. For the JMS method the
filters are designed to maximize the ratio between the extracted mean feature
values,

JMS =
µv1

µv2

. (6.3)

where µvi is the mean feature value for texture i. For the JU method opti-
mization was done with respect to the criterium

JU =
(µv1 − µv1)

2

µv1µv2

. (6.4)

The last two methods use co-occurrence (statistical) and autoregressive (model-
based) features. For more details of the classification methods referred and
results of more methods we recommend [59]. The results in Table 6.1 are
directly comparable to the results of the proposed method, FTCM, that will
be presented in the end of this chapter.

6.2 Frame texture classification method

The frame texture classification method (FTCM) is presented in Figure 6.4.
The method can be used for supervised classification, i.e. example images of
the possible textures are available and we know which textures are used in the
test images. In this section we will describe the different parts of FTCM.

6.2.1 Preprocessing

The very first step in the FTCM is to decide the frame parameters. These
parameters can be chosen quite freely, they are:

URN:NBN:no-3330

6.2 Frame texture classification method 95

Preprocessing

Sparse repr.

Nonlinearity

Smoothing

Classifier

Test image

Test vectors

Sparse repr. errors
for each pixel
represented in an
appropriate way.

Smoothed error

Class map

?

?

?? ?
· · ·

?? ?
· · ·

?? ?
· · ·

?

Frame parameters

Preprocessing

Training

Block size:
N1 ×N2

Frame size:
N = N1N2

and K
Number of
frame vectors
to use: s

The training
example
texture
images

One frame
is trained for
each texture.

?

?

?

?

?

-

Figure 6.4: Experiment setup for the classification approach used in this chap-
ter. Training is in the left part, and testing is in the right part of the figure.

5× 5

• or

7× 7

• or

9× 9

• or

special

•
... 25× 1 or

49× 1 or
81× 1 or
29× 1

N × 1

→
R

Figure 6.5: Different ways of making the training and test vectors from the
image. Each small square indicate one pixel in the image. Around a central
pixel, here marked with a dot, a block is made, and this block is reordered into
a column vector. The figure shows four different ways of making this block
around the central pixel. The most obvious ones are the square blocks, but
also special kind of blocks may be used, one alternative is shown.

URN:NBN:no-3330

96 Texture Classification

• The shape and size of the block made around each pixel, the properties
of this block are used to classify the pixel. The block shape and size give
the length of the frame vectors, N . In Figure 6.4 a rectangular block of
size N1×N2 is indicated but, as shown in Figure 6.5, also special shapes
may be used. We will use the square shapes with sizes as shown in the
left three alternatives of Figure 6.5. For color textures the vectors could
be made by concatenating the vectors from each of the color spaces, a
5× 5 block and three colors will give a vector of length N = 75.

• The number of vectors in the frame, K, may be chosen quite freely.
The L training vectors that represent the signal class are reduced to
K frame vectors that also represent the class but in a more compact
(and hopefully more general) form. To avoid overtraining1 K should be
much smaller than L. As a rule of thumb, found from the comprehensive
experiments done during the work on this thesis, we may use N ≤ K ≤
5N ¿ L.

• The sparseness factor is defined as S = s/N where s is the number
of frame vectors that are used to approximate the signal vector. The
lowercase s is the parameter used in the texture classification context, it
can also be chosen quite freely. Since vector selection is more difficult, i.e.
computationally demanding, the larger s is, a small value of s is usually
preferred. But the main objective is to choose a value of s that provides
a good discrimination of the different textures. It should be noted that
the sparseness factor used during frame design does not necessarily need
to be the same as the sparseness factor used during testing.

When the frame parameters are chosen the training of the frames for the
different texture classes can start. Each texture class is given by one example
image, and for each texture class a set of training vectors are generated. This
task is denoted preprocessing in Figure 6.5, and it may be done in several
different ways. The important thing is that the training vectors and the test
vectors are generated in a similar way, to make the test vectors as similar to
the frame vectors for the correct texture as possible. Thus the preprocessing
step, which generates the vectors from an image, in the test part should be
the same as the preprocessing step during training. Preprocessing may consist
of one or several different steps, some of them are:

• The mean of (the pixel values of) the image may be subtracted. For an
eight bit gray scale image (pixel values in range 0-255) an alternative is

1Overtraining: the training vectors are approximated better than other vectors belonging
to the same signal class.

URN:NBN:no-3330

6.2 Frame texture classification method 97

to subtract 128 from each pixel value. Some tests done on the effect of
this step showed that the sparse representation error was reduced when
the mean was subtracted, but the discrimination capabilities was usually
best when this step was omitted.

• A low-pass version of the image may be subtracted, i.e. the image is
high-pass filtered with a small cutoff frequency, typically the low-pass
image is the (smoothed) image generated by the local mean of 16×16 or
32×32 blocks of the image. This is justified by the fact that the texture
is a local property of the image. As with the step above this improved the
representation quality, but (at least for the “uniform” texture examples
here) it had small effect on classification.

• The center pixels of the L blocks used to make the training vectors are
selected; this may be done in a random way or in a regular grid on the
texture image. The blocks may be overlapping.

• Each of the training vectors may be individually scaled and/or trans-
lated, usually in such a way that the smallest value (of each training
vector) is set to 0 or -1 and the largest value to 1.

• Each of the training vectors may be normalized, i.e. scaled such that
each has norm one. This is often a reasonable last step of the process
of preparing the training data set, and gives all the training vectors the
same weight during training.

We note that the preprocessing steps can be grouped into two classes: pro-
cessing done on the texture image, and processing done on each of the training
vectors. For the experiments in this chapter training was done using the same
256× 256 texture images as the ones used in [59]2. For these textures prepro-
cessing on the images, the two first steps in the list above, was not needed.
The values of the pixels are in the range from 0 to 255. Square blocks were
used to make the training vectors and the vectors were normalized. The effect
is that they all are vectors (points) on the surface of the positive quadrant
of the unit ball in RN . For each of the example textures the set of training
vectors were collected into a N × L matrix X.

6.2.2 Training

Training of the frame was done using the method below, the same as in Sec-
tion 2.1 but described here in more detail. This is done to better illustrate

2The training images and the test images are available at http://www.ux.his.no/-

˜tranden/.

URN:NBN:no-3330

98 Texture Classification

the similarities to the Generalized Lloyd Algorithm (GLA) [28]. In a cluster-
ing context the GLA is sometimes known as the k-means algorithm and it is
widely used and well analyzed [47] [9]. In GLA the frame is usually called
the codebook, and in the clustering context the training vectors may be called
feature vectors. The frame design procedure has the following steps

1. Setting the initial frame: If s = 1, we start by choosing K arbitrary
vectors from the set of training vectors as the initial frame. If s > 1, the
frame designed with s = 1 is used as the initial frame.

2. For each training vector, xl, we find a sparse representation, i.e. wl

with s non-zero values is found, typically applying an MP algorithm. If
s = 1 this is the same as finding the frame vector closest to the training
vector, i.e. nearest neighbor. The training vectors associated with a
certain frame vector form a cluster. In standard GLA there is only one
non-zero value in each column of W, wl, and this value is 1.

3. The new frame is found by the equation
F = XWT (WWT)−1 .
This F matrix is the frame that minimize the norm of the representation
error, ‖X − FW‖, when X and W are fixed. If s = 1 this gives each
column vector of F as the mean or centroid (weighted mean if not all
non-zero values of W are 1) of the corresponding cluster.

4. The frame vectors are normalized, i.e. scaled such that each has norm
one. The frame is then uniform. This step is not done in standard GLA.

5. Step 2 to 4 are repeated for a predefined number of times or until the
method has converged, i.e. no change, or only a minimal change, in the
frame since last iteration.

In step 1 we have to select the initial frame. Using a frame made by picking K
of the L training vectors in a random way has, in the many experiments done,
shown to work quite well in frame design. In the FTCM, for s > 1, convergence
of the frame design method was a little bit better if the initial frame was the
one that was designed for s = 1 rather than randomly picked training vectors.
This means that the frame for s = 1 must be the first to be designed. We
should also note the effect of step 4, and remember that the training vectors
also have norm one, in this case they are in the positive quadrant of the unit
ball in RN . Then the nearest neighbor of a training vector is the frame vector
where the angle between the two vectors is minimum. That is cosine of the
angle which is the inner product of the two vectors, is maximum. This is also

URN:NBN:no-3330

6.2 Frame texture classification method 99

the frame vector that gives the best representation using only one frame vector.
Negative weights are allowed for sparse representation, but for s = 1 this can
not occur since all elements of X and F are non-negative, and this design
method reduces to standard GLA with normalization of the frame vectors.
For s > 1 the frame vectors may migrate outside of the positive quadrant
during training.

6.2.3 Classification

Texture classification of a test image is the task of classifying each pixel of the
test image to belong to a certain texture. To do this, a small block around each
pixel to be tested must be made into a test vector. How this should be done
was decided when the frames were trained, Section 6.2.1. The process for the
Frame Texture Classification Method (FTCM) is illustrated in Figure 6.4, it
can be compared to the process for the filter bank classification in Figure 6.1.

A test image (of size L1 × L2) is used to generate L = L1L2 test vectors, one
for each pixel. For pixels near the edge of the image the reflection of the edge
pixel is used, i.e. when x(l) is defined for l = 1, 2, . . . , L1 then x(1−l) = x(1+l)
and x(L1 + l) = x(L1 − l) for l = 1, 2, 3, An alternative would be not to
classify the pixels near the edge until the very end of the classification process,
and then classify those pixels to the class of the nearest classified pixel. A test
vector, x, is represented in a sparse way using each of the different frames that
were trained for the textures under consideration, F(i) for texture class i and
i = 1, 2, . . . , C, C is the number of texture classes that are tested for this image.
Each sparse representation gives a representation error, r(i) = x − F(i)w(i),
and since ‖x‖ = 1 the range of the errors will be 0 ≤ ‖r(i)‖ ≤ 1. The norm
squared of each error, r(i)T r(i), is stored in a three dimensional matrix R of
size L1 ×L2 ×C . This corresponds to the energy of the filter responses from
the filtering step in Figure 6.1.

Direct classification based on the norm squared of the representation error
for each pixel, i.e. based on the values stored in the R matrix, gives quite
large classification errors, but the results can be substantially improved by
smoothing, i.e. low-pass filtering each of the C error images (layers of R). A
nonlinearity may be applied before the low-pass smoothing filter is applied, as
illustrated in Figure 6.4. For the filtering approach in Figure 6.1 the (first)
nonlinearity was necessary, but here the nonlinearity should only be used if it
improves the results. This may be the square root to get the magnitude of the
error, or the inverse sine of the magnitude which gives the angle between the
signal vector and its sparse approximation, or a logarithmic operation, then

URN:NBN:no-3330

100 Texture Classification

N ×K s σ (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean
49× 98 3 none 23.7 49.6 64.2 67.5 59.5 58.9 77.8 64.9 78.8 60.5
49× 98 3 4 3.0 18.8 23.6 26.6 22.7 27.6 38.5 33.1 42.0 26.2
49× 98 3 8 4.1 13.5 12.0 12.0 11.5 19.2 21.1 22.9 25.8 15.8
49× 98 3 12 6.2 11.5 10.0 10.3 10.4 17.1 19.2 20.4 21.6 14.1
49× 98 3 16 8.5 11.7 10.8 11.2 12.5 17.3 20.1 18.9 21.7 14.7

Table 6.2: Classification errors, given as percentage wrongly classified pixels,
for different smoothing filters (rows) and different test images (columns). Dif-
ferent values of σ for the Gaussian filter is presented here. The logarithmic
nonlinearity is used. The frame parameters are N = 49, K = 98, and s = 3.

the error is represented like the common SNR measure, Equation 1.8. For
smoothing Randen and Husøy concluded that the separable Gaussian low-
pass filter, Equation 6.1, is the better choice, and this is also the filter used
here.

The effect of filtering is illustrated in the Table 6.2 where the percentage
wrongly classified pixels is shown (the experiments will be further discussed
later). We see that the low-pass filtering reduce the errors considerably. The
final classification is very simple in the FTCM. The frame, – remember the
training resulted in one frame for each texture class, that gives the best ap-
proximation to the test vector gives the class of the test vector. This simple
scheme makes the second nonlinearity, see Figure 6.1, redundant.

6.3 Classification results

The presentation of the results is divided in four parts. First, in Subsec-
tion 6.3.1, rather comprehensive experiments are done, the main purpose is
to try different sets of frame parameters. This is done to get an overview of
the possibilities of the FTCM. Next, in Subsection 6.3.2, the importance of
the low-pass filtering and the preceding nonlinearity is further investigated. In
Subsection 6.3.3 frames with different number of frame vectors are used, i.e.
we let the parameter K vary and keep the other parameters fixed. Finally, in
Subsection 6.3.4, the FTCM is compared to the “optimal” filtering methods
proposed in [59] for the two-texture classification problem .

6.3.1 Different sets of frame parameters

The setup for the experiments is shown in Figure 6.4. In the first experiments
we used 9 different sets of frame parameters. The block sizes of 5 × 5, 7 × 7

URN:NBN:no-3330

6.3 Classification results 101

N ×K s σ (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean
25× 49 1 4 8.9 29.5 28.6 41.3 37.4 35.9 55.3 43.0 53.9 37.1
25× 49 1 8 9.1 23.6 18.1 29.5 27.6 30.3 46.4 36.7 39.3 29.0
25× 49 1 12 10.8 21.2 19.1 29.2 26.7 29.9 45.9 36.9 35.0 28.3
49× 98 1 4 7.9 27.6 30.5 38.2 33.7 34.4 54.1 42.4 56.5 36.1
49× 98 1 8 8.0 18.5 21.2 28.0 24.4 28.2 43.7 34.0 45.5 27.9
49× 98 1 12 9.4 16.0 22.5 27.0 21.9 27.6 40.5 32.7 43.6 26.8
81× 144 1 4 7.3 29.5 29.9 36.0 35.6 34.5 55.2 42.1 58.5 36.5
81× 144 1 8 7.1 22.3 21.9 26.8 28.3 27.9 45.8 33.7 49.0 29.2
81× 144 1 12 8.0 20.4 22.3 26.5 27.7 26.9 42.8 31.6 46.8 28.1

N ×K s σ (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean
25× 49 3 4 2.1 21.0 28.4 27.1 18.6 29.2 39.3 35.2 43.1 27.1
25× 49 3 8 3.6 14.2 12.1 12.6 8.7 21.0 24.0 24.3 26.7 16.4
25× 49 3 12 5.5 12.8 9.3 10.5 7.6 19.2 21.5 21.6 21.2 14.4
49× 98 3 4 3.0 18.8 23.6 26.6 22.7 27.6 38.5 33.1 42.0 26.2
49× 98 3 8 4.1 13.5 12.0 12.0 11.5 19.2 21.1 22.9 25.8 15.8
49× 98 3 12 6.2 11.5 10.0 10.3 10.4 17.1 19.2 20.4 21.6 14.1
81× 144 3 4 3.5 19.3 21.6 27.0 22.6 27.8 43.0 32.8 43.7 26.8
81× 144 3 8 3.9 14.0 10.4 12.3 13.2 19.2 29.9 21.6 27.1 16.8
81× 144 3 12 5.8 12.2 9.8 10.3 12.5 17.3 25.6 18.2 22.9 15.0

N ×K s σ (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean
25× 49 5 4 2.2 19.2 29.9 31.4 31.0 32.5 44.1 40.3 47.5 30.9
25× 49 5 8 3.5 12.7 17.1 20.7 24.8 26.6 32.4 36.4 32.7 23.0
25× 49 5 12 5.2 12.9 13.5 20.0 24.2 26.4 30.7 36.8 28.8 22.1
49× 98 5 4 2.5 16.1 23.4 22.7 17.4 28.5 35.9 33.0 41.7 24.6
49× 98 5 8 3.6 9.7 11.6 9.0 11.4 21.5 24.5 24.3 27.3 15.9
49× 98 5 12 5.4 9.1 9.6 7.4 10.1 21.1 23.3 22.6 23.7 14.7
81× 144 5 4 3.4 17.7 21.9 23.2 18.7 26.4 37.2 31.1 38.7 24.2
81× 144 5 8 3.8 11.8 11.1 9.3 10.6 18.1 24.0 20.6 23.6 14.8
81× 144 5 12 5.7 11.2 10.0 7.2 10.9 15.6 22.8 18.1 20.0 13.5

Table 6.3: Classification errors, given as percentage wrongly classified pixels,
for different sets of frame parameters and smoothing filters (rows) and different
test images (columns). The nonlinearity before smoothing was logarithmic
(SNR). The first three columns are the frame parameters and σ used in the
Gaussian smoothing filter. The next nine columns show the results for the
test images, Figures 6.2 and 6.3. The last column is the mean for these test
images.

URN:NBN:no-3330

102 Texture Classification

and 9 × 9 were used, the three leftmost examples in Figure 6.5. The number
of frame vectors in each frame was first selected so that K is approximately
two times the value of N or a little bit smaller, K = 49 for N = 25, K = 98
for N = 49 and K = 144 for N = 81. Each of these frame sizes were combined
with the values s = 1, s = 3 and s = 5, where s is the number of frame
vectors to use in the sparse representation. For each parameter set a frame
was designed for all the textures of interest. Note that the training vectors
were made from separate example images of each texture, not from blocks of
the test images. The number of different textures used in the 9 test images,
Figure 6.2 and Figure 6.3, is 77, and the number of different parameter sets is
9, thus it was necessary to design 693 frames in this experiment. The design
of all the frames needed many weeks of computer time, in average one hour
for each frame, but this task must only be done once.

We tested these nine sets of frame parameters on all of the test images in
Figure 6.2 and Figure 6.3. Test vectors were made also for pixels near the
edge. The nonlinearity was logarithmic (SNR) and Gaussian low-pass filters
were used for smoothing, the bandwidths used were σ = 4, σ = 8 and σ = 12.

The classification results are presented in Table 6.3. Let us start by looking
at the case where s = 1. This is the same as vector quantizing classification,
or nearest neighbor classification. These results are quite similar to the best
results of the filtering methods in Table 6.1. The mean for the method “f16b”
was 25.9 percent wrongly classified pixels, while the parameter setup 49× 98
for N×K and σ = 12 gave 26.8 percent wrongly classified pixels. Even though
the means are comparable, the results for the individual test images may be
more different. For the test image (h) the result is 39.8 for the “f16b” filtering
method, and 32.7 for the FTCM with parameters 49× 98 and σ = 12, while
for the test image (i) the results are 28.5 and 43.6 respectively. Generally,
we note that the different filtering methods and the autoregressive method
perform better on (i) than on (h), and that the co-occurrence method and the
FTCM with s = 1 (VQ-method) perform better on (h) than on (i).

For the tests with the FTCM and s > 1 much better results are achieved.
The number of wrongly classified pixels is almost divided by two, and this is
very good. We do not have a good explanation for why the sparse represen-
tation model should be so much better than the VQ-method, but the many
experiments are quite conclusive. One interesting thing is noteworthy: The
number of vectors used in the representation, s, should be increased when
the parameter N is increased. For N = 25 the frames where s = 3 perform
better than the frames where s = 5, for N = 49 the two different values of s
perform almost equal, and for N = 81 the frames where s = 5 is better that
the frames where s = 3. This observation can be explained by the fact that

URN:NBN:no-3330

6.3 Classification results 103

when N is larger the number of vectors to select must be larger to have the
same sparseness factor, – remember S = s/N , or to have a reasonable good
representation of the test vector. Best results were found using three or five
frame vectors to represent each test vector, this indicate that “the optimal”
number of vectors to use, s, probably is in the N-range explored: for N = 25
the best s may be 3 or 4, for N = 49 the best s may be 4 and for N = 81 the
best s may be 5 or 6.

The block size should probably be larger for coarse textures than what is
necessary for the more fine textures. The case where N = 25 is best for the
fine textures in the test image (a), while the cases with larger values for N
perform better for the test images (c) and (d) which also contain regions with
coarser textures.

6.3.2 The nonlinearity and low-pass filtering

In Figure 6.6 the results of different nonlinearities and different values of σ in
the Gaussian filter are shown. The results are not clear, but some conclusions
seem likely. It seems best to choose the logarithmic nonlinearity as the pre-
ferred one. For many of the test images the choice of nonlinearity seems to
be unimportant, but for three of the test images, (b), (e), and (f), the non-
linearity matters. For these three test images the logarithmic nonlinearity is
slightly better than the magnitude nonlinearity and the energy nonlinearity is
clearly the worst choice.

When it comes to the choice of σ in the Gaussian filter it seems like the val-
ues in the range from 10 to 14 generally perform best. One exception is for
the fine textures in test image (a), here the number of wrongly classified pix-
els is low. Too much smoothing cause more errors to occur near the edges
between different textures, this smoothing effect is illustrated in Figure 6.7.
When σ = 4 smoothing on the test image (a) has correctly classified almost all
pixels, the wrongly classified pixels are near the image edges and the borders
between regions of different texture. Increasing σ cause only more smooth-
ing and an increased probability of errors near the border between different
texture regions, but the errors near the edges are corrected. This effect on
the region borders also exists for test image (c) in Figure 6.8 and test image
(g) in Figure 6.9, but here the effect is compensated for by the much better
performance within the interior of the texture regions. The conclusion can be
stated as: Generally a large value of σ is best, for example σ = 12, but if the
error rate is small or if the texture regions are relatively small a smaller value
of σ should be used.

URN:NBN:no-3330

104 Texture Classification

4 6 8 10 12 14 16
2

3

4

5

6

7

8

9

10

4 6 8 10 12 14 16
10

15

20

25

4 6 8 10 12 14 16
5

10

15

20

25

30

35

(a) (b) (c)

4 6 8 10 12 14 16
5

10

15

20

25

30

35

4 6 8 10 12 14 16
10

15

20

25

30

4 6 8 10 12 14 16
15

20

25

30

35

(d) (e) (f)

4 6 8 10 12 14 16
10

15

20

25

30

35

40

45

50

4 6 8 10 12 14 16
15

20

25

30

35

40

4 6 8 10 12 14 16
10

15

20

25

30

35

40

45

50

(g) (h) (i)

Figure 6.6: The percentage wrongly classified pixels along the y-axis for the
nine test images, note that the scale varies. Along the x-axis is σ used in the
Gaussian low-pass filtering. The nonlinearity are: logarithmic as solid lines,
magnitude as dotted lines and energy (the output after sparse representation)
as dash-dot lines. The frame parameters are N = 49, K = 98, and s = 3.

URN:NBN:no-3330

6.3 Classification results 105

σ = 4, 2.1% errors σ = 8, 3.6% errors σ = 12, 5.5% errors

Figure 6.7: The wrongly classified pixels for the test image (a). The logarith-
mic nonlinearity is used. The frame parameters are N = 25, K = 49, and
s = 3.

σ = 4, 28.4% errors σ = 8, 12.1% errors σ = 12, 9.3% errors

Figure 6.8: The wrongly classified pixels for the test image (c). The logarith-
mic nonlinearity is used. The frame parameters are N = 25, K = 49, and
s = 3.

σ = 4, 33.8% errors σ = 8, 18.2% errors σ = 12, 16.3% errors

Figure 6.9: The wrongly classified pixels for the test image (g). The logarith-
mic nonlinearity is used. The frame parameters are N = 25, K = 100, and
s = 3.

URN:NBN:no-3330

106 Texture Classification

N ×K s σ (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean
25× 25 1 12 10.8 29.4 15.4 33.9 23.8 30.1 49.3 34.8 40.2 29.7
25× 49 1 12 10.8 21.2 19.1 29.2 26.7 29.9 45.9 36.9 35.0 28.3
25× 100 1 12 11.7 16.3 21.1 26.2 25.5 28.7 45.8 35.4 34.4 27.2

Table 6.4: Classification errors, given as percentage wrongly classified pixels,
for different choices for the K parameter and different test images. The other
frame parameters are N = 25 are s = 1, the nonlinearity is logarithmic (SNR)
and σ = 12 in the Gaussian filter.

6.3.3 Choosing the frame size K

To test the effect of varying the number of vectors in the frame, the parameter
denoted K, more frames were designed. For the block size 5×5, giving N = 25,
frames were designed using K = 25, K = 49 and K = 100 vectors to best
represent each of the textures. This was done for both s = 1 and s = 3. These
frames were used in tests using the same test images as before.

Let us start by looking at the case where s = 1. This is the same as vector
quantizing (VQ) classification, or nearest neighbor classification. It would be
interesting to see if VQ classification methods are able to discriminate textures
better as K increase. It is obvious that the representation capabilities of the
frame (codebook in VQ context) gets better when K is increased, but this does
not need to give better classification. In Table 6.4 we see that on the average
only a small improvement in classification is achieved as K increase, but we
also note that there are large differences for the test images. For test image
(b) the classification result is much better for K = 100 than for K = 25,
while for test image (c) the classification error is larger for K = 100 than
for K = 25. The latter illustrate that better representation of the different
textures does not necessarily give better discrimination between the textures.
Another conclusion we may make is that the FTCM with s > 1 performs
better than vector quantizing classification (or FTCM with s = 1) even if we
let K be larger for the case where s = 1.

In Table 6.5 the classification result for s = 3 is shown. Here we have included
results for four different low-pass Gaussian filters, but the best results in the
average are achieved for σ = 12 for the different values of K. The results are
generally much better than for s = 1. On the average a small improvement in
classification is achieved as K increase, but as for the case when s = 1 there is
large differences for the test images. For test image (b) the classification result
is much better for K = 100 than for K = 25, while for test image (c) the best
results are almost equal for the three values of K but best for K = 49. For

URN:NBN:no-3330

6.3 Classification results 107

N ×K s σ (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean
25× 25 3 4 2.7 22.7 33.3 34.8 22.8 32.4 45.8 36.7 47.7 31.0
25× 25 3 8 3.5 19.0 17.3 15.1 14.0 24.2 28.5 25.5 29.6 19.7
25× 25 3 12 5.3 19.2 11.7 11.0 12.3 22.8 22.8 22.0 23.7 16.8
25× 25 3 16 6.9 21.1 9.5 12.8 13.4 22.6 22.2 21.6 23.1 17.0
25× 49 3 4 2.1 21.0 28.4 27.1 18.6 29.2 39.3 35.2 43.1 27.1
25× 49 3 8 3.6 14.2 12.1 12.6 8.7 21.0 24.0 24.3 26.7 16.4
25× 49 3 12 5.5 12.8 9.3 10.5 7.6 19.2 21.5 21.6 21.2 14.4
25× 49 3 16 7.7 13.1 10.1 12.3 9.6 19.1 21.9 20.9 20.8 15.1
25× 100 3 4 2.3 13.8 22.7 25.8 20.2 28.7 33.8 33.2 39.3 24.4
25× 100 3 8 3.9 7.6 10.1 12.2 11.8 21.8 18.2 21.8 23.9 14.6
25× 100 3 12 5.9 6.5 9.8 8.9 10.8 21.1 16.3 18.9 20.1 13.2
25× 100 3 16 8.3 6.8 12.0 10.9 11.9 21.7 17.0 18.6 18.6 14.0

Table 6.5: Classification errors, given as percentage wrongly classified pixels,
for different choices for the K parameter and different test images. The other
frame parameters are N = 25 are s = 3, the nonlinearity is logarithmic (SNR)
and σ = 4, 8, 12, 16 in the Gaussian filter.

test image (e) the result is better for K = 49 than for the other two cases.
An important observation that can be made from Table 6.5 and Table 6.3 is
that it is usually better to increase K than to increase N . The frame of size
25 × 100 is only about half the size of the 49 × 98 frame and considerable
smaller than the large 81 × 144 frame, but still it is the frame that performs
best on the average.

One important question is: What is the best set of frame parameters to use?
The experiments done so far tell us that this is not an easy question to answer.
The answer depends on the texture classification task at hand. For the mean
of the test images used the best results were achieved for case where 5 × 5
(N = 25), K = 100 and s = 3, so if any combination should be especially
recommended this is it.

6.3.4 Two-texture test image

It is also interesting to test the FTCM on two texture test images. Randen
and Husøy designed filters that were optimized to discriminate between two
different textures, [60]. It is interesting to see how the FTCM performs com-
pared to these filters. They tried three different object function: JMS as used
by Mahalanobis and Singh [43] Equation 6.3, JU originally suggested by Unser
[69] Equation 6.4, and JF [27] suggested by Fisher and defined as

JF =
(µv1 − µv1)

2

σ2
v1

+ σ2
v2

. (6.5)

URN:NBN:no-3330

108 Texture Classification

Figure 6.10: The 2-textures test image “D5D92”.

σ = 4, 16.1% errors σ = 10, 4.5% errors σ = 16, 1.2% errors

Figure 6.11: The wrongly classified pixels for the test image “D5D92” using
FTCM. The logarithmic nonlinearity is used. The frame parameters are N =
25, K = 100, and s = 3.

σ 4 6 8 10 12 14 16
% errors 16.1 10.6 6.8 4.5 3.0 2.0 1.2
Method JMS JU JF DCT f16b(d) f8a(d) Daub4(d)
% errors 28.6 5.1 5.1 2.5 8.2 7.2 8.2
Method co-occurrence AR eigenfilter f16b(c) f8a(c) Daub4(c)
% errors 3.3 3.0 4.7 4.1 3.9 6.5

Table 6.6: The FTCM results for the test image “D5D92” with different choices
for the σ parameter in the first two lines. The frame parameters are N = 25,
K = 100 and s = 3. The last lines are results of different methods from the
work of Randen and Husøy.

URN:NBN:no-3330

6.4 Some comments 109

where σ2
vi

is the feature variance.

Here, we only use one test image, denoted “D5D92”. It is shown in Fig-
ure 6.10 and consists of textures D5 and D92 from the Brodatz album [10].
Frames were designed for these textures and the classification test was done
as described in this chapter. The classification results using the FTCM with
different values of σ, and the classification results for some of the methods used
in [59] including the three optimized filters JMS , JU , and JF , are shown in
Table 6.6. The methods denoted “f8a” and “f16b” use a tree structured bank
of quadrature mirror filters (QMF), the filters are finite input response (FIR)
filters of length 8 and 16, respectively. The method denoted “Daub-4” use
the Daubechies filters [17] of length 4. Two different structures are referred,
the filters marked (d) use a non-dyadic filter bank structure, while the ones
marked (c) use a dyadic decomposition. The table also refers the results of the
“DCT method”, using the coefficients from a 3×3 discrete cosine transform as
features, the “eigenfilter” method where the filters are derived from the eigen-
values of the autocorrelation functions of the textures, and the methods based
on co-occurrence (statistical) and autoregressive (model-based) features. For
more details on these methods we again refer to Randen and Husøy [59].

Also for the two-texture test image, as can be seen from Figure 6.11 and
Table 6.6, the FTCM performs quite well. The smoothing filter used for the
methods JMS , JU , and JF had the parameter σ = 8. For FTCM, using
the same value of σ, the results are comparable, but increasing σ improves
classification considerable. Since smoothing has the same effect, as shown in
Figure 6.11, for the filtering method as for FTCM, it is reasonable to assume
that increasing σ will also improve classification for these methods. For this
particular test image we note that using the JMS criterium fails compared to
the alternative criteria JU and JF , but better results were obtained in [59]
using the methods “DCT”, “co-occurrence”, and “AR”. The FTCM obtains
better classification results only when the value of σ is allowed to grow, best
for σ = 16 where the percentage wrongly classified pixels is as low as 1.2%.

6.4 Some comments

Comparing the results in Table 6.5, the lines with parameters N×K = 25×100,
s = 3, and σ = 8 (perhaps the one most comparable to the values of σ used
in [59]) or σ = 12 (which gives a little bit better results), to the results
in Table 6.1, the conclusion is that FTCM seems like a very good method

URN:NBN:no-3330

110 Texture Classification

for texture classification. It significantly reduces, compared to the methods
tried in [59], the number of wrongly classified pixels for all the test images
containing several textures. For the two-texture classification problem the
results, Table 6.6, are not conclusive.

From the results in Table 6.3 we noted that FTCM and s > 1 gave much better
results than FTCM and s = 1 (VQ classification). The two methods are both
model-based methods where a signal block is approximated. At present we
lack a full theoretic explanation why the models using s > 1 perform that
much better than the models using s = 1 in classification. One explanation
could be that the signal model should be able to capture most of the essential
properties of the texture in the approximation, but at the same time exclude
much of the other properties. In this context a property is represented by
a frame vector, and a linear combination of some few of them makes up an
approximation. The problem is of course that the different textures seem
to have a lot of common properties, implying that catching only the most
conspicuous properties will not make good discrimination possible. Catching
too much of the signal energy will also make it difficult to discriminate, if
s = N there will be no representation error and no signal class discrimination
is possible.

It is obvious that the frames for different textures must hold different prop-
erties to be able to discriminate. Which properties that are important in the
texture classification context are yet not known. In Chapter 7 we consider
many possible frame properties, but clear connections from these properties
to the “being able to discriminate textures”-property are yet not found. Nev-
ertheless, we hope that the work in Chapter 7 may be helpful in future work
on these issues. A theoretic understanding of the FTCM will with no doubt
be helpful when selecting the appropriate frame parameter set for a texture
classification problem at hand.

An alternative to theoretic understanding is an understanding based on ex-
perience. This latter can be increased by doing more experiments: trying
more parameter sets, training frames for more textures, and testing these on
more test images and also different kinds of test images. Often the interac-
tion between theoretical knowledge and practical knowledge will increase both,
theoretical knowledge will help to define relevant experiments, and practical
knowledge may give useful hints in the theory development.

URN:NBN:no-3330

Chapter 7

Some Considerations on
Frame Properties

The objective of this chapter is to define some properties of the frame that
measure the sparse representation capabilities of the frame, and relevant and
practical ways to calculate these properties. We also hoped that the frame
properties would help us to get a better understanding of how frames are
able to discriminate between different textures, as shown in Chapter 6. For
this latter purpose we have not yet found any obvious connection between
the proposed frame properties and the texture discrimination capabilities, but
there is still much work to in this area, we hope that the results presented
here may be helpful in that work.

The proposed properties must be seen in the context of frame properties that
are used in the frame theory before, and to do this some of the frame theory
must be referred. This is addressed in Section 7.1. The limited class of frames
that we consider is described in the last part of this section. In Section 7.2 we
discuss some possible frame properties.

The mathematical details of the proposed properties are further discussed in
Section 7.3 where the first subsections consider block-oriented frames. The
singular value decomposition is discussed in Subsection 7.3.1. As for matrices
in general, the singular values of the frames are important properties also for
frames. The frame bounds are directly connected to these. In Subsection 7.3.2
we define some properties that are directly connected to the representation er-
ror, even though these properties measure the sparse representation capabili-
ties of the frame directly they are not very practical because they are difficult
to calculate, and they are also tied to a specific signal class. Properties based

111

URN:NBN:no-3330

112 Some Considerations on Frame Properties

on the angles between frame vectors do more indirectly measure the sparse
representation capabilities of the frame, and they are discussed in Subsec-
tion 7.3.3. The norm of the weights is discussed in Subsection 7.3.4. Angles
between frame vectors can also be a good way of measuring the difference
between two frames, as shown in Subsection 7.3.5.

Finally properties of overlapping frames are discussed in Subsection 7.4. Some
examples for the use of these properties are shown in the end of this chapter,
Section 7.5.

7.1 Definitions and theory

The frame concept was first introduced in the early fifties by Duffin and Scha-
effer [20], where much of the general theory was laid out. In the late eight-
ies frames received renewed attention, mainly as a consequence of identified
connections with the wavelet transform and time-frequency analysis [34] [16].
Since then much work has been done on the frame theory, especially on Ga-
bor frames [25], i.e. frames made by translations and modulations of a single
function, and Wavelet frames, i.e. frames made by translations and dilations
of a single function. The oversampled filter bank, in this thesis usually called
overlapping frame, is a frame if perfect reconstruction is possible [15] [8]. Pei
and Yeh [57] present the special case of discrete finite frames. This class of
frames includes the frames used for sparse signal representations. A tutorial
on the art of frame theory was written by Casazza [11].

7.1.1 Bases and Frames

Bases and frames are defined in a separable Hilbert space, denoted H. A
basis is a set of elements {en} such that any element of H can be uniquely
expressed as a linear combination of the basis elements. Since many important
Hilbert spaces, for example the common function space L2(R), are infinite
dimensional, the basis can have an infinite (but countable) number of elements.
In fact, the number of basis elements is equal to the dimensionality of the
space. Infinite dimensional spaces make it necessary to use precise definitions
for the concepts used, and depending on the definitions different bases can be
defined. For a finite dimensional space this is much simpler, a basis is a set of
linearly independent elements that span the space. In this thesis we mainly
use the space RN , and the elaborate and precise mathematical definitions
are not necessary, a basis is any set of N vectors that span the space. We
should note that in this thesis the N -dimensional space is used to represent

URN:NBN:no-3330

7.1 Definitions and theory 113

N consecutive samples of a one-dimensional signal. An orthonormal basis is
a basis where the elements are normalized and orthogonal to each other, i.e.
the inner product of two different elements is zero and the inner product of
an element with itself is one; < en, em >= δn,m where < a, b > is the inner
product of a and b. In RN the basis vectors are often collected as columns in
an invertible matrix of size N ×N .

Frames are a generalization of bases. Let us start with the formal definition
of a frame. A family of elements {fi} ⊆ H is called a frame for the separable
Hilbert space H if there exists constants A,B > 0 such that

A‖x‖2 ≤
∑

i

| < x, fi > |2 ≤ B‖x‖2, for all x ∈ H. (7.1)

The indices i may be elements in any countable index set. The numbers A,B
are called frame bounds. They are not unique, i.e. if A and B are frame
bounds that satisfy Equation 7.1 then so do A/c and Bc where c > 1. The
largest possible value for A and the smallest possible value for B are called the
optimal frame bounds and these are the frame bounds most commonly used.
In the rest of this chapter the optimal frame bounds will often only be referred
to as the frame bounds. If we can choose A = B the frame is called tight. The
definition in Equation 7.1 implies that the set of elements {fi} must span the
space H, if not we will get A = 0 since < x, fi >= 0 when x ∈ (H \span {fi}).
The frame is called exact if the frame ceases to be a frame of H when any
element is removed.

An operator, S, is called the frame operator of the frame, it is defined by
Sx =

∑
i < x, fi > fi, for all x in the space spanned by the frame elements.

It is a bounded linear operator and it is invertible [34]. The dual frame of
{fi} is defined as S−1{fi} [34], it is used in the Method of Frames, MOF
in Section 1.3, to find the weights in a signal expansion, the frame is used
in the synthesis part and the dual frame in the analysis part of the signal
expansion. The optimal (tightest possible) frame bounds A and B are given
by the essential infimum and supremum, respectively, of the eigenvalues of the
frame operator [34], [16]. The frame bounds for the dual frame are 1/B and
1/A.

In RN a frame can simply be defined as any set of K vectors that span the
space1. It is represented by an N ×K matrix F where N ≤ K. The equation
corresponding to Equation 7.1 is

1If the vectors do not span RN they still form a frame, but then they form a frame in the
subspace of RN spanned by the frame vectors.

URN:NBN:no-3330

114 Some Considerations on Frame Properties

A‖x‖2 ≤ ‖FTx‖2 = xTFFTx ≤ B‖x‖2, for all x ∈ RN . (7.2)

The frame operator is represented as a matrix of size N × N , S = FFT

[57]. The dual frame is F̃ = S−1F = (FFT)−1F, it is the transposed of the
pseudoinverse of F, F† = FT (FFT)−1. The frame bounds are given as the
smallest and largest eigenvalues of the frame operator matrix S [57].

7.1.2 Oversampled Filter Banks

The oversampled filter bank has been analyzed by frame-theoretic methods
by Cvetković and Vetterli [15], Bölcskei et al. [8] and Stanhill [66]. The
overlapping frame introduced in Section 1.1 is an oversampled filter bank.

A common way to represent a filter bank is to use the polyphase matrix, for
example see Section 5.5 in [71]. The polyphase representation is also used in
[8] and [15] for the oversampled filter bank. The matrix notation used in this
work is closely connected to the polyphase notation. The overlapping frame
in Equation 2.10 (expanded like in Equation 1.10 and F as in Equation 2.11)
has the synthesis polyphase matrix

R(z) =
P−1∑

p=0

Fpz
−p. (7.3)

The frame operator can also be represented as a polynomial matrix [8]

S(z) = R(z)RH(z) =
P−1∑

p=0

P−1∑

i=0

FpFT
i zi−p, (7.4)

where RH(z) is the complex conjungated and transposed of R(z). From the
work of Bölcskei et al. [8], the frame bounds A and B are given by the essential
infimum and supremum, respectively, of the eigenvalues λn(θ) of the frame
operator matrix for z-values on the unit circle, i.e. z = ej2πθ for 0 ≤ θ < 1,
j =

√−1. Note that in [8] the frame is the analysis filter bank and the dual
frame is the synthesis filter bank.

URN:NBN:no-3330

7.1 Definitions and theory 115

all frames

UF TF
UTF

SRF

ONB Space not RN

Space RN

Figure 7.1: Different frame classes. The large ellipse represents all frames.
Within this two ellipses are drawn, the left represents all uniform frames (UF),
and the right all tight frames (TF). The intersection of these is the class of
uniform tight frames (UTF), within this class the orthonormal bases (ONB)
are represented by a small ellipse. The frames for sparse representation (SRF)
are represented by an ellipse within the UF class. The horizontal line divides
all these classes of frames into two, one part for frames in space RN and one for
the rest (infinite dimensional spaces and complex spaces). The frames of our
interest are the frames for sparse representation in RN , this class is indicated
by thick lines in the figure.

7.1.3 Frames for signal representation

The definition of a frame in Equation 7.2 is quite general, in fact any full rank
matrix of size N×K,N ≤ K, represents a frame. We may put some restrictions
onto the frame without restricting its signal representation properties.

1. In signal representation the length of the frame vectors does not matter,
the value of the weight can compensate for this. We prefer to use uniform
frames, for which the frame vectors have 2-norm one, ‖fk‖ = 1. The
Frobenius/trace norm of the frame is then ‖F‖ =

√
K since ‖F‖2 =∑K

k=1 ‖fk‖2 = K.

2. The sign of a frame vector can also be compensated for by the weight.
We select the sign such that

∑
n fk(n) ≥ 0, and if this sum is zero the

sign is set so that the first non-zero element is positive.

URN:NBN:no-3330

116 Some Considerations on Frame Properties

3. The frame should contain no identical frame vectors, i.e. fi 6= fj when
i 6= j.

4. Permutations: The frame vectors may be in any order in the matrix F.
The frame FP where P is a K × K permutation matrix has the same
representation capabilities as the frame F. We do not have a preferred
order of the frame vectors.

The different classes of frames are illustrated if Figure 7.1. The class of frames
for signal representation (SRF) is a subclass of uniform frames (UF), restric-
tion 1 above. The class is further reduced by point 2 and 3, and the fact that
we here only consider the space RN . Note that point 2 cuts out a part of the
orthogonal bases from SRF. Since we do not have any preferred order of the
frame vectors (point 4), different permutations of the frame vectors are re-
garded as different frames, but their representation properties are the exactly
the same. If a preferred order of the frame vectors were defined, the class of
frames under consideration would be even smaller, but Figure 7.1 could be the
same.

7.2 Alternative frame properties

What we want to do is to find some frame properties that can help us to reveal
the sparse representation capabilities of the frame. The representation must
clearly be assessed in the context of the signal or signal class that the frame is
designed for. But also the general representation properties of the frame, not
connected to any particular signal class, reveal some interesting information.
The frame bounds are the most important frame properties for this purpose.
They are well known in frame theory, and also useful for our purpose and they
will be discussed in Subsection 7.3.1.

The fact that our main interest is in sparse representations, makes us look
for other, and hopefully more informative, frame properties. The ultimate
sparse representation is when only one vector is used to approximate the signal
vector, and this case is equivalent to a shape gain vector quantizer where
only the shape is quantized. It may also be regarded as a general vector
quantizer (VQ) of the normalized (and possible change of sign as in point 2
in Subsection 7.1.3) signal vector. For the VQ case the frame is usually called
the codebook. In a VQ context the overall performance of a codebook is often
assessed using a suitable distortion measure. If the signal class is given by
the N-dimensional probability density function (pdf) for the length N signal

URN:NBN:no-3330

7.2 Alternative frame properties 117

-

3

β

d
r

y

x

Figure 7.2: Figure illustrating different possible measures for distance between
two vectors. The vectors x and y are normalized to unit length and β ≤ π/2.
Some possible measures are the angle, β, the distance between endpoints, d,
the distance between one vector and its projection onto the other vector (the
representation error), r, or this error squared, r2.

vectors, the distortion for a codebook can be calculated, i.e. the pdf for the
distortion can be calculated. If the signal class is given by many representative
vectors the pdf for the distortion can be estimated. The pdf for the distortion
is a (continuous) function and properties derived from this are more practical
to assess the codebook, these derived properties can be the statistical average
or the worst-case distortion (the highest value of the distortion for which the
pdf is larger than zero).

The distortion between a vector x and its representation y can be measured
in several ways, as illustrated in Figure 7.2, and listed in the following table

Measure | Definition

β | cosβ = yTx

d | d = ‖x− y‖ =
√

2(1− cosβ)

r | r = ‖x− cosβy‖ = sin β

r2 | r2 = sin2 β = 1− (yTx)2

We should note that in the figure and the table both the signal x and its
representation y are assumed to be normalized to unit length. If the signal
is not normalized the distortion relative to the signal length will often be
preferred measures, i.e. d/‖x‖ or r/‖x‖. For a frame, or shape-gain VQ
codebook, the frame vectors are normalized (in Figure 7.2 y would be the
frame vector closest to the signal vector), but in this case the representation
(assuming no quantization of the weight or gain) will be the x projected onto
y, x̃ = (yTx)y. In this case the distortion measure d is not that relevant. Note

URN:NBN:no-3330

118 Some Considerations on Frame Properties

that both r and d are scalars representing the norm of the vectors r = x− x̃
and d = x− y respectively.

The sparse representation performance of a frame could be assessed in a way
similar to how a codebook is assessed in a VQ context. The properties used
could be the ones derived from the estimated pdf for the chosen distortion
measure (excluding d) in the table above, i.e. the average or the maximum.
Using a frame for sparse representation, we are not restricted to use only
one of the frame vectors, a linear combination of s vectors may be used to
approximate a given signal vector. The same properties can be used also for
this case. For a frame whit s > 1 these properties also depend on the vector
selection algorithm used, but to not complicate too much we assume, at least
for small values of s, that the optimal full search vector selection algorithm
should be used. And, as mentioned above, these properties of course depend
on the signal class, i.e. the pdf of the signal.

Totally, this gives a lot of different properties of a frame which are all connected
to the sparse representation capabilities. We choose some few of these: The
most relevant distortion measure is perhaps the representation error, r =
‖r‖ = ‖x − x̃‖. The derived properties may then be the average, r

(avg)
s =

1
L

∑L
l=1 rl, and the maximum, r

(max)
s maxl rl. The subscript s is the value of

s used in the sparse representation. Since the objective when designing the
frames is to minimize the sum of errors squared a property based on the r2

measure is also included, we let r
(mse)
s be the square root of the average of the

errors squared, i.e. the mean is taken for the squared errors. This makes r
(mse)
s

approximately the same size as r
(avg)
s (actually r

(avg)
s ≤ r

(mse)
s). If the signal

class is not explicitly given for the properties based on r, r
(max)
s , r

(avg)
s , and

r
(mse)
s , a random white Gaussian signal should be assumed. All directions in

the space RN will then have the same probability and the signal distribution
is uniform on the unit ball.

An obvious measure for the representation capabilities for the frame is the
SNR, Equation 1.9, achieved during training, denoted SNRt in Table 7.1.
During training of the frame the sum of squared errors is wanted as small as
possible, Equation 2.3, this imply that the SNR is maximized. Assuming some
strict conditions on the set of training vectors, which are hardly ever met, the
SNRt property and the r

(mse)
s property will measure the same property but

with different units. If we use the set of training vectors to represent the
signal class, and this set consists of normalized vectors and the mean is the
zero vector, and if optimal vector selection was done during training, then we
would have SNRt = −20 log10 r

(mse)
s [dB].

URN:NBN:no-3330

7.2 Alternative frame properties 119

A Lower frame bound.
B Upper frame bound.
As The frame property such that the norm of the weights for an

optimal sparse representation (selecting s frame vectors) will
be limited by ‖w‖ ≤ (1/

√
As)‖x‖.

SNRt The SNR, Equation 1.9, achieved during training.
Some measures based on the relative representation error,
r = ‖r‖/‖x‖.

r
(max)
s The maximal error, r.
r
(avg)
s The mean (average) of r.

r
(mse)
s The square root of the mean square error.

Some measures based on the angle between frame vectors.
β(min) The angle between the two frame vectors closest to each other.
β(avg) The average for each of the frame vectors of the angle to its

closest neighbor.
β(mse) The average of all the angles between frame vectors taken in

the “mean square sense”.
β(avg2) The average for each of the frame vectors of the angle to the

center of the cluster formed by the frame vectors.
Measures for difference between two frames.

θ(avg) The average for the angles for all the frame vectors to its closest
neighbor in the other frame.

Table 7.1: A summary of different frame properties. The subscript s tells
the number of frame vectors that are used in the signal representation. The
properties are further explained in the text.

URN:NBN:no-3330

120 Some Considerations on Frame Properties

For a codebook used for VQ there is no point in having two codebook vectors
identical, or almost identical. For a good codebook the vectors are often
distributed in a way similar to the distribution of the signal. Here we propose
some frame properties that give some information about how the normalized
frame vectors are distributed or clustered on the surface of the unit ball in RN .
The distance measure used below could be any one of the ones illustrated in
Figure 7.2, but the preferred one here is the angle, or more precise the “inside”
angle, 0 ≤ β ≤ π/2. The proposed properties are: β(min) – the smallest
distance between any two frame vectors, β(avg) – the average (statistical mean)
distance for all frame vectors to its closest neighbor, or β(mse) – the average,
taken in the “mean square sense” which will be explained in Subsection 7.3.3,
of the distance between all possible combinations of pairs of frame vectors.
In Subsection 7.3.3 we will also show that β(mse) can be calculated from the
eigenvalues of the frame operator.

The β(mse) property tells how “clustered” the frame vectors are. A perhaps
more intuitive property that measure how “clustered” the frame vectors are,
is the average (statistical mean) distance for all frame vectors to the cluster
center, we denote this property β(avg2). The frame vectors (usually) form a
cluster on the surface of the unit ball, the center of this cluster can be defined
in two different ways: The sum of all frame vectors is a vector and when
this vector is normalized it is the cluster center. This center will depend on
the sign of the frame vectors to be appropriate in a representation context,
the representation is independent of the sign of the frame vectors, the frame
vectors should point in “approximately the same direction”, see point 2 in
Subsection 7.1.3. A better alternative to define the cluster center is to use the
eigenvector corresponding to the largest eigenvalue of the frame operator, see
Subsection 7.3.1. The vector for the cluster center will then be the unit length
vector, x, for which ‖FTx‖2 has its maximum value, B, Equation 7.2. The
latter definition of the cluster center should be used for the β(avg2) property.
An advantage of the β-properties compared to the r-properties is that the
β-properties are independent of the signal class and can be calculated from
the frame alone.

Signal representation can be done in many ways using a frame, one of the
benefits compared to a transform is that the many frame vectors give more
flexibility when selecting the weights. Using the dual frame to find the weights
gives an exact representation and minimum 2-norm of the weights where gen-
erally all the K frame vectors are used. Using the Basis Pursuit algorithm
gives an exact representation and minimum 1-norm of the weights, only N
frame vectors are used. For a sparse representation the primary demand for
the weights is that only a limited number of the weights can be non-zero. Gen-

URN:NBN:no-3330

7.2 Alternative frame properties 121

erally this demand will make it impossible to have no representation error, so
the second objective for the weight selection is to have a small representation
error. A third objective may be to have the norm of weights small, but this
is often ignored. Ignoring the third objective and selecting the weights using
a full search algorithm to minimize the representation error may sometimes
give a very large norm for the weights. The greedy vector selection algorithms
select the weights such that the value for the norm of the weights is often
smaller than if the weights were selected by a full search algorithm which will
find the optimal weights in the sense that the error is as small as possible
given the sparseness constraint. When the norm of the optimal weights is
large, the greedy vector selection algorithms (especially the BMP method) are
less likely to find this optimal solution. So we may say that the greedy vector
selection algorithms, in a hidden way, also consider the third objective. In
sparse representation the primary goal for frame design is to design the frame
such that the sum of squared errors is minimized, the norm of the weights is
paid no attention, except possibly indirectly by the choice of vector selection
algorithm.

For some applications, as when the weights are to be quantized, it is unfa-
vorable that the weights can be very large. Since neither frame design nor
vector selection, i.e. the optimal full search algorithm, put any restrictions on
the norm of the weights, it is interesting to know if there is a property of the
frame that can be used to find an upper limit for the norm of the weights.
For the non-sparse minimum norm solution (MOF) such a limit exists and is
given by the lower frame bound, ‖w‖ ≤ (1/

√
A)‖x‖, – since the upper frame

bound of the dual frame, used to find the weights in MOF, is 1/A. Frames
where the lower frame bound, A, is small do more often get large norm for
the weights also for sparse representation. Thus it is natural to conclude that
if it is important to have reasonable sized weights, it is not good if the lower
frame bound is very small. But it is also so that even if A is not small, an
optimal sparse representation may give a very large norm of the weights. In
a similar way as the lower frame bound gives the limit for the norm of the
weights found by the MOF algorithm, a frame property that limits the norm
of the weights for an optimal sparse representation (selecting s frame vectors)
may be defined such that ‖w‖ ≤ (1/

√
As)‖x‖. For many frames and small

values of s the As property can be calculated. In Subsection 7.3.4 we will give
some examples and discuss this a little bit more, an algorithm to calculate the
As frame property (actually, a lower limit for it) is proposed and the value is
calculated for some example frames.

The frame design method in Section 2.1 starts with an initial frame, often
some randomly selected vectors from the training set. A relevant question to

URN:NBN:no-3330

122 Some Considerations on Frame Properties

ask is if frames designed using the same set of training vectors but different
initial values will be much different from each other, and what could be an
appropriate way to measure this difference. Also frames designed with different
target sparseness factors could be interesting to compare to each other, if they
are quite equal it is probably not necessary to design frames for many different
sparseness factors, – a frame can be used with another sparseness factor than
the one used during design. One measure that could be used is the value
of the object function minimized during frame design, but this measure is
very dependent on the set of training vectors (like the rs properties) and can
of course only be used for frames designed with the same sparseness factor.
An alternative could be to use a property derived from the angle between a
frame vector and its closest neighbor in the other frame, denoted θ(avg). This
property is defined and discussed more in Subsection 7.3.5.

Properties of overlapping frames are a little bit more complicated. The frame
bounds and properties derived from the angles between frame vectors can be
extended from the block-oriented frames to the overlapping frames. Measures
using s, the number of frame vectors to use in each block, can not directly
be extended to the overlapping frame case. Replacing s by the sparseness
factor S is one possibility, then the property r

(mse)
S (note: uppercase S) is the

representation mean square error for a given signal and a sparseness factor.
Actually, 20 log10 r

(mse)
S is the SNR, it is plotted as a function of S for some

frames in Figure 5.7. We think that this is good enough to illustrate (measure)
the representation capability of an overlapping frame on a signal class, and do
not pursue this track any further. Neither do we see the need for an extension
of the As property to the overlapping frame case. The rest of the properties
in Table 7.1 applied on overlapping frame are discussed in Section 7.4.

7.3 Mathematical details for the frame properties

Before starting on this section it may be a good idea to refresh the concepts and
notation introduced in Chapter 1, as they, together with the frame concepts
introduced in Section 7.1, will be used extensively throughout this section.

7.3.1 Singular value decomposition

The singular value decomposition (SVD) gives the essential information about
a matrix, and the SVD of the frame matrix gives useful insight on the frame
properties. It is well known that the frame bounds are the largest and smallest

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 123

eigenvalues of the frame operator [34], [16]. Using linear algebra it is easy to
show that the eigenvalues of the frame operator are the square of the singular
values of the frame. The SVD factorization of the frame matrix is

F = UΣVT = U

σ1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · σN 0 · · · 0

VT . (7.5)

The matrices U and V are unitary, i.e. orthonormal, and of size N ×N and
K × K respectively. The singular value matrix, Σ, has size N × K and is
zero everywhere except on the main diagonal where the singular values are.
Only the first N column vectors of V (rows of VT) are needed, the “silent”
rightmost column vectors are discarded as they correspond to the (K − N)
rightmost columns of Σ which are only zeros. It is assumed that the singular
values, {σn}N

n=1 are positive real numbers and in non-increasing order; that is,
σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. When σN > 0, the frame matrix F is of full rank.
All matrices, also the complex ones, can be factorized in this way where the
singular values are real and non-negative [67].

Using the SVD the frame operator can be written as

S = FFT = UΣΣTUT = UΛUT (7.6)

where Λ = ΣΣT is the N × N diagonal matrix containing the eigenvalues
of the frame operator. This is easy to see by writing SU = UΛ. Λ has the
eigenvalues on the main diagonal and zeros elsewhere. The eigenvalues of the
frame operator are denoted {λn}N

n=1, and the values of each is the square of
the singular value, i.e. λn = σ2

n. It is also clear that the matrix U in the SVD
of F is the eigenvectors of the frame operator.

In the rest of this section we let the frame be uniform. The sum of the
eigenvalues for a frame operator is

∑
n

λn =
∑

n

σ2
n = ‖Σ‖2 = ‖F‖2 =

K∑

k=1

‖fk‖2 = K. (7.7)

Since the frame bounds are given by A = λN , the smallest eigenvalue, and
B = λ1, the largest eigenvalue, the ranges for the frame bounds are

URN:NBN:no-3330

124 Some Considerations on Frame Properties

0 < A ≤ K/N ≤ B < K. (7.8)

For tight frames the frame bounds are equal and all the eigenvalues have the
same value, A = B = λn = K/N .

The SVD also shows that the eigenvalues can be related to the angles between
the frame vectors. A K×K matrix can be defined as FTF = VΛKVT . ΛK is
the K×K diagonal matrix with Λ as the upper left part and zeros elsewhere.
The angle between frame vector i and frame vector j is denoted βij = ∠fifj .
Since the frame is uniform cos(βij) = [FTF]ij . This gives the following relation

∑

i,j

cos2(βij) = ‖FTF‖2 = ‖Λ‖2 = ‖S‖2 =
∑

n

λ2
n. (7.9)

Let F be a frame and A be a unitary K ×K matrix. From the SVD of F we
see that the frames F and FAT will have the same frame operator, and thus
the same eigenvalues of the frame operator and the same frame bounds. The
angles between the frame vectors will generally be changed. Now let A be a
unitary N ×N matrix. The frames F and AF will not have the same frame
operator but the eigenvalues and consequently the frame bounds will be the
same, as well as the angles between the frame vectors. Left multiplying the
frame by a unitary matrix is the same as rotating the coordinate system.

In Figure 7.2 we see that the difference between two normalized vectors can
be expressed by several measures. Since we are mainly interested in repre-
sentation properties of the frame the most natural measure is r = sinβ, or
sometimes the error squared (r2). Only inner angles, i.e. angles in the range
0 ≤ β ≤ π/2 need to be considered, if β > π/2 the angle (π − β) can be used
instead.

The frame bounds are important properties of a frame. In a “loose” way we
may say that the frame bounds tell how close the frame is to a tight frame, for
a transform they tell how close the transform is to an orthogonal transform.
Let us illustrate the frame bounds by the two simple examples in Figure 7.3.
From Equation 7.2 we see that the norm of the expression FTx is bounded
between the frame bounds. FTx is a vector of length K where each element is
the inner product, fT

k x, between frame vector k and the signal vector. When
both the signal and the frame vector are normalized this is the cosine of
the angle between the two vectors. It can also be seen as the length of the
projection of one vector onto the other vector. Thus the expression that is

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 125

(a) Tight frame (b) Non-tight frame

F =
[

1 0 cos(α) − sin(α)
0 1 sin(α) cos(α)

]
F =

[
1 cos(α) cos(2α) cos(3α)
0 sin(α) sin(2α) sin(3α)

]

α α
α

α

Figure 7.3: Two simple example frames in R2, These examples illustrate the
difference between a tight frame and a non-tight frame as explained in the
text. In (a) 0 < α < π/2 and in (b) 0 < α ≤ π/4

limited (between the frame bounds) is the sum of the cosine squared of the
angles between a signal vector and the frame vectors,

∑K
k=1 cos2(βk) where βk

is the angle between the signal vector and frame vector k. For tight frames, as
the one in Figure 7.3 (a), the upper and lower frame bound is the same and the
expression ‖FTx‖2 is constant. The “energy” for the projections onto all frame
vectors is constant for x in all possible directions, meaning that no direction
in space is “preferred” by the frame and that the frame vectors are well spread
in the space. Figure 7.3 (a) is the concatenation of two orthonormal bases.
All frames that are the concatenation of one or more orthonormal bases are
tight. But also many other kind of tight frames exist. In R2 it is easy to see
that a 2 ×K frame, and the frame vectors evenly distributed between 0 and
π, i.e. like Figure 7.3 (b) with α = π/K, will be a tight frame. For all tight
frames the frame bounds are A = B = λn = K/N as can easily been seen
from Equation 7.8, the frame in Figure 7.3 (a) has A = B = 2.

The non-tight frame in Figure 7.3 (b) is quite simple and it is possible to
do symbolic calculation of its eigenvalues, i.e. find the eigenvalues without
replacing α by a numeric value. The frame bounds are

URN:NBN:no-3330

126 Some Considerations on Frame Properties

A = 2− 2 | cos(α) · cos(2α)| = 2− | cos(3α) + cos(α)|
B = 2 + 2 | cos(α) · cos(2α)| = 2 + | cos(3α) + cos(α)|. (7.10)

We see that for small α the lower frame bound gets close to zero and the
upper frame bound gets close to 4. Note that if α = 0 this is not a frame
since it does not span R2. The frame bounds are defined as the minimum
and maximum of the expression ‖FTx‖2 = xTFFTx =

∑K
k=1 cos2(βk) for

all ‖x‖ = 1, Equation 7.2. From Figure 7.3 (b) we see (easiest to see for a
small α) that this expression has maximum value when x has the angle 3

2α
with the x-axis, this is the vector “most parallel” to the frame vectors. It
also happens to be the eigenvector corresponding to the largest eigenvalue
(of the frame operator S = FFT). The minimum of ‖FTx‖2 is for x with
the angle 3

2α + π/2 with the x-axis, which is the eigenvector corresponding
to the smallest eigenvalue. Generally, the eigenvector corresponding to the
smallest eigenvalue of S minimize the expression xTSx while the eigenvector
corresponding to the largest eigenvalue maximize the expression. For a small
α the frame bounds are close to the smallest and largest frame bounds possible
for uniform frames, Equation 7.8, and the frame is far away from being a tight
frame. As α gets larger the frame bounds become more equal to each other
and the frame gets closer to a tight frame. For α = π/4 A = B and the frame
is tight. This way we can say that the frame bounds tell how close the frame
is to a tight frame.

Let us now consider signal representation. Many different weights can give
perfect reconstruction, x = x̃ = Fw for different choices of w. The method
of frames (MOF) is often used to find the weights, it applies the dual frame
and it gives perfect reconstruction and the solution that minimize the norm of
the weights. To have a small norm of the weights is often a desirable property
of the representation. Even if MOF finds the minimum norm solution, the
ratio ‖w‖2/‖x‖2 can be large. Remember that the dual frame is used on the
analysis side (find the weights) and the frame is used on the synthesis side
(reconstruction).

The range for the weights will be

1/K ≤ 1/B ≤ ‖w‖2/‖x‖2 ≤ 1/A < ∞ (7.11)

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 127

where A and B are the frame bounds for the synthesis frame, Equation 7.2.
The range of the frame bounds are given by Equation 7.8. The lower frame
bound, A, is especially important since it gives the upper limit for this ratio.
For tight frames A and B are equal and the ratio ‖w‖2/‖x‖2 = 1/A = N/K is
constant, this is similar to the conservation of energy property of orthogonal
transforms and filter banks. For non-tight frames the ratio ‖w‖2/‖x‖2 will be
limited by 1/A, it is clear that small values of A may give large values for the
norm of the weights. For non-tight frames the lower bound can be very close
to zero, one example is Figure 7.3 (b) with small α. The upper bound will
always be limited as long as the frame is uniform.

7.3.2 Representation error

In previous section we saw that using the MOF to find the weights gives the
minimum norm solution. The representation is non-sparse and exact. Using a
frame and an approximative sparse representation some error is accepted, but
we want to keep the error limited and to have some control of it. The relative
error for the representation of a signal vector is rl = ‖xl − x̃l‖/‖xl‖, where x̃l

is the sparse approximation using s of the frame vectors. Be careful not to
confuse the scalar rl with the residual vector r = xl−x̃l. The properties r

(max)
s ,

r
(avg)
s , and r

(mse)
s from Table 7.1 characterize the relative representation error.

The representation error depends on the signal and the frame, and the vector
selection algorithm used, this makes it complicated to find a good frame prop-
erty that tells how large we can expect the representation error to be. Suppose
we know the distribution, i.e. the N-dimensional probability density function
(pdf), for a signal class, or more likely have a large number L of representative
training vectors (each of length N) from the signal class, then we could find
(estimate) the pdf for the relative representation error for a given frame and
a sparseness factor, using s of the frame vectors for each signal vector. The
estimated pdf for the relative representation error is a continuous function
that characterize the sparse representation capabilities of the frame, and not
a simple frame property. The properties r

(max)
s and r

(avg)
s are directly derived

from the pdf.

The proposed properties for the representation error r
(max)
s , r

(avg)
s , and r

(mse)
s

are signal dependent. Two classes of signals are of special interest. First, the
signal class for which the frame was trained. A large representative set of
vectors from this class may be the set of L vectors used during frame design,
assuming the frame was designed as described in Chapter 2. Defining the
relative error for the representation of each signal vector as rl = ‖xl−x̃l‖/‖xl‖,

URN:NBN:no-3330

128 Some Considerations on Frame Properties

where x̃l is the sparse approximation using s of the frame vectors, gives the
following definitions

r(max)
s = max

l
rl

r(avg)
s =

1
L

L∑

l=1

rl

r(mse)
s =

√√√√ 1
L

L∑

l=1

r2
l (7.12)

The second signal class is the signals generated by a real white Gaussian ran-
dom process2. N subsequent samples from this process form a signal vector,
non-overlapping vectors will be independent of each other and their pdf will
be the N-dimensional real Gaussian distribution. Normalizing these signal
vectors their distribution will be uniform on the unit ball (UB) in RN , the
value of the pdf will be constant fx(x) = 1/SN (1) where SN (1) is the surface
of the unit ball. Since all possible unit length signal vectors are contained in
this signal class the r

(max)
s property for the Gaussian signal will be as large

as possible for the frame, i.e. no other signal classes will have larger max
than this. The definitions of the proposed frame properties for the random
Gaussian signal class may be written

r(max)
s = max

x∈UB
‖x− x̃‖

r(avg)
s =

1
SN (1)

∫

UB
‖x− x̃‖dx

r(mse)
s =

√
1

SN (1)

∫

UB
‖x− x̃‖2 dx (7.13)

Let us look at some examples for the r
(max)
s property as defined in Equa-

tion 7.13. Selecting only one vector, s = 1, this is like a shape-gain quantizer
and the property has a simple geometric interpretation. A vector x is selected
in the space RN such the angle to the closest frame vector is maximum, then

2Each signal sample is normal distributed, x(n) ∼ N(0, 1), and independent of other
signal samples.

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 129

(a) 3× 6 tight frame (b) 4× 8 tight frame

1 0 0
√

2
2

1
2

1
2

0 1 0 −√2
2

1
2

1
2

0 0 1 0 −√2
2

√
2

2

1 0 0 0 1
2

1
2

1
2

1
2

0 1 0 0 1
2

1
2 −1

2 −1
2

0 0 1 0 1
2 −1

2 −1
2

1
2

0 0 0 1 1
2 −1

2
1
2 −1

2

(c) 3× 6 tight frame (d) 4× 8 tight frame

c c 0 0 s −s
s −s c c 0 0
0 0 s −s c c

c c 0 0 0 0 s −s
s −s c c 0 0 0 0
0 0 s −s c c 0 0
0 0 0 0 s −s c c

Figure 7.4: Four tight frames. For (c) and (d) the constants are c = cosα =√
0.5 + 0.1

√
5 and s = sinα =

√
0.5− 0.1

√
5 where 2α = arctan 2. The six

frame vectors in (c) are six of the twelve vertices in an icosahedron, a regular
polyhedron made up by twenty equilateral triangles where the length of each
edge is 2s.

r
(max)
1 is the sine of this angle, Figure 7.2. Even if this seems simple, it is

hard to search the entire unit ball for this vector when the space has many
dimensions, i.e. N ≥ 4. But in R2 this is easy by visualizing the frame like
in Figure 7.3. For frame (a) and α ≤ π/4 the largest error is when x has
an angle β = π/4 + α/2 to the x-axis, then r

(max)
1 = sin(π/4 − α/2). If α is

selected to minimize the r
(max)
1 property, then we should select α = π/4, and

r
(max)
1 = sin(π/8). For frame (b) the “worst” signal is when x has an angle

β = π/2+3α/2 to the x-axis, then r
(max)
1 = sin(β), for small α this is close to

1. Now, if α is selected to minimize the r
(max)
1 property, then we should select

α = π/4, and this gives r
(max)
1 = sin(π/8). For this value of α the frame in

(b) is tight, and equal the frame in (a) with α = π/4. In R2 the 2×K frame
with minimum value for r

(max)
1 is a frame like in Figure 7.3 (b) and α = π/K,

this frame will be tight.

In RN for N > 2 it is more difficult to find the N ×K frames that minimize
the r

(max)
1 property. The multi-dimensional spaces are difficult to visualize.

Let us illustrate the increased complexity of the spaces R3 and R4 compared
to R2 by trying to find the N × 2N frames that minimize the r

(max)
1 property.

For the N = 2 case we found that the solution is the concatenation of two

URN:NBN:no-3330

130 Some Considerations on Frame Properties

orthogonal bases, the 2 × 2 identity matrix and the 2 × 2 Haar matrix. Now
let us look at the case when N = 4 the frame is the concatenation of the
4× 4 identity matrix and the 4× 4 Haar matrix, Figure 7.4 (b). Each of the
basis vectors of the Haar matrix has maximal value for the angle to its closest
neighbor unit vector, in fact the angle is the same to all the unit vectors (basis
vectors of the identity matrix). This will be valid for N = 2p and p is integer,
the cases where the Haar bases are easily defined. From Figure 7.3 we saw
that the 2 × 4 frame that minimize the r

(max)
1 value is the “identity+Haar”

frame. A relevant question is if this will be so also for larger “identity+Haar”
frames. The answer is no, as will be shown by comparing two frame, frame
(b) and (d) in Figure 7.4. The four example frames in Figure 7.4 are all
frames that were selected such that the value of the r

(max)
1 property should be

small. By searching the unit ball we found the x vectors that maximized the
representation errors, and r

(max)
1 . The results were

Frame N ×K xT r
(max)
1

(a) 3× 6 [−√1− 2a2, a, a]
√

1− a2 ≈ 0.7345

(b) 4× 8 [12 ,−1
2 ,−1

2 ,−1
2] 1

2

√
3 ≈ 0.8660

(c) 3× 6 [1, 1, 1]/
√

3
√

2
3 − 2

15

√
5 ≈ 0.6071

(d) 4× 8 [12
√

2, 0, 1
2

√
2, 0] 1

2

√
3− 1

5

√
5 ≈ 0.7989

The constant used for frame (a) is a = 0.67859834454585. We see that frame
(d) is better than frame (b) with regard to the r

(max)
1 property, but still better

4×8 frames may be found. The 3×6 frame in (c) that uses the same constants
as the frame in (d) though is the best possible frame of its size. This will be
shown in the end of the next subsection.

Some interesting problems can be defined for frames using the r
(max)
1 property.

First the problem already looked at: Find the N ×K frames that minimize
the r

(max)
1 property. From Subsection 7.3.1 we know that the frame QF (Q a

unitary N × N matrix) will be the frame F in a rotated coordinate system,
and thus have the same r

(max)
s property. Another problem may be to find the

minimum number of frame vectors needed to have r
(max)
s for the best frame

below a given value. These problems belong to the mathematical field.

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 131

7.3.3 Angle between frame vectors

It is a reasonable assumption that the frame vectors cover the space best when
they are well spread out over the space RN . When the frame vectors are well
spread no frame vectors are close to each other. This motivates the use of the
β(min) property in Table 7.1 as an alternative to the r

(max)
1 property found

by using a signal class that cover the entire surface of the unit ball. The
advantage of the β(min) property is that it can be calculated from the frame
alone, it is not necessary to search the space for the x vector with largest angle
to the frame vectors. Note that “natural signals” usually covers only a smaller
part of the space RN , and consequently the frame vectors of a frame designed
for such classes would not be well spread, in the contrary they will often be
well clustered. But in both cases it is relevant with properties that measures
how the frame vectors are spread, or clustered, in the space. For a uniform
frame the β(min) property is defined as

β(min) = min
j 6=i

βij where cos(βij) = [FTF]ij . (7.14)

βij is the angle between frame vector i and frame vector j, fi and fj . The
β(min) and the r

(max)
1 properties are two totally different properties, but the

following connection seems to be valid: when β(min) is large, i.e. close to
the maximal possible value for a given frame size, the r

(max)
1 property will be

small, i.e. close to the minimal possible value for a given frame size. There is
also another reason to use the β(min) property. If β(min) is small then two of
the frame vectors are almost identical. If two frame vectors are close to each
other, and a vector x is in the plane spanned by these two frame vectors and
almost perpendicular to them, then a perfect representation of x is possible
using the two frame vectors. However, the weights will be large, and as pointed
out previously, to have the ratio ‖w‖/‖x‖ large may be problematic in some
applications. The smaller the β(min) property gets the larger this ratio may be.
This, and the connection to the r

(max)
1 property, speak for the β(min) property

as a useful frame property.

The β(min) property only depends on the two frame vectors closest to each
other. An alternative way to measure the spread of the frame vectors is to
take the average for all frame vectors of the angle to its closest neighbor. The
β(avg) property is

β(avg) =
1
K

∑

i

min
j 6=i

βij . (7.15)

URN:NBN:no-3330

132 Some Considerations on Frame Properties

For the frames in Figure 7.3 and a small value of α the frame vectors are
better spread in the space for the tight frame in (a) than for the non-tight
frame in (b), but both the β(min) and β(avg) properties will be the same for
the two frames, β(min) = β(avg) = α. The alternative property β(avg2), defined
as the average for all frame vectors of the angle to the cluster center, more
directly measure how clustered a frame is. A problem here is to define the
cluster center in a good way. We think that the eigenvector corresponding to
the largest eigenvalue of the frame operator, i.e. the upper frame bound B, is
the better choice. For some frames this is not a unique vector, but for “well
clustered” frames this vector will be unique. Denoting this vector fB and its
(inner) angle to frame vector k by ∠fBfk give the following definition

β(avg2) =
1
K

∑

k

∠ fBfk. (7.16)

The value of the β(avg2) property of frame (a) in Figure 7.3 is π/4, note that
this is independent of α and in fact also of the “cluster center” fB. For frame
(b) in Figure 7.3 β(avg2) = α. We may conclude that the β(avg2) property
is useful and has a clear geometric meaning when the frame vectors are well
clustered and the cluster center is well defined.

We should think that these three “β-properties” were enough, but we propose
yet another one which both has a clear geometric interpretation and a simple
mathematical foundation as it can be calculated from the eigenvalues of the
frame operator. Now we use the r2 measure for the distance between two
frame vectors instead of the angle β, see Figure 7.2. We take the average
(arithmetic mean) of all the different possible pairs of frame vectors, this is
like a “mean square error”-property even if no error is involved here. This gives
the “average r2”-property, but to be in line with the other “β-properties” we
prefer to use the corresponding angle, which we denote β(mse). The “average
r2”-property can be written as sin2(β(mse)). Its definition can be written in
mathematical terms

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 133

sin2(β(mse)) =
1

K(K − 1)

∑

i 6=j

sin2 βij =
1

K(K − 1)

∑

ij

sin2 βij (7.17)

=
1

K(K − 1)

∑

ij

(1− cos2 βij) =
K

K − 1
− 1

K(K − 1)

∑

ij

cos2 βij

=
K

K − 1
− 1

K(K − 1)

∑

ij

[FT F]2ij =
K

K − 1
− 1

K(K − 1)

∑
n

λ2
n

=
1

K(K − 1)

(
K2 −

∑
n

λ2
n

)
=

K

K − 1

(
1− 1

K2

∑
n

λ2
n

)

Note that the angle of a frame vector to itself, which of course is zero, does
not count when calculating the average in this measure, but it is included, but
not contributing, in the sum of the sine squared of the angles. For the tight
frame (a) in Figure 7.3 β(mse) is independent of α, it is 54.7 degrees, as it will
be for all tight 2×4 frames. The frame in (b) will be clustered for small values
of α, and then the β(mse) property will also be small. A small table illustrates
this (the angles are written in degrees)

α 1 2 5 10 15 20 25 30 45
β(mse) 1.8 3.6 9.1 18.0 26.6 34.5 41.6 47.4 54.7

The derivation in Equation 7.17 assumes that the frame is uniform, this as-
sumption is necessary for cos(βij) = [FTF]ij to be true. It is interesting to
know the range of the expression 1

K2

∑
n λ2

n used in Equation 7.17, i.e. the
smallest and the largest values this expression can have. The largest value is
when one eigenvalue of the frame operator is large and the rest is almost zero,
the largest eigenvalue must be smaller than the sum of all

∑
n λn. The small-

est value is when all eigenvalues are equal, then the value of each eigenvalue
is 1

N

∑
n λn. This gives the following range for the expression as

1
N

≤ 1
K2

∑
n

λ2
n =

∑
n λ2

n

(
∑

n λn)2
< 1. (7.18)

The alternative way to write the expression in Equation 7.18 is easily verified
since

∑
n λn = K. Equations 7.17 and 7.18 show that the angle β(mse) is

also a measure of the “spread” of the eigenvalues, a large angle β(mse) (the
frame vectors are “spread”) corresponds to the situation where

∑
n λ2

n is small
(the eigenvalues are clustered), and a small angle β(mse) (the frame vectors are

URN:NBN:no-3330

134 Some Considerations on Frame Properties

“clustered”) corresponds to the situation where
∑

n λ2
n is large (the eigenvalues

are “spread”, typically one is large, the upper frame bound B, the rest are
small).

We will now look a little bit closer on the β(mse) property of tight frames. This
case gives the maximal value for β(mse) for a N ×K frame. For a tight frame
all eigenvalues of the frame operator are equal, for a N ×K frame λn = K/N ,
and the β(mse) property is simply

sin2(β(mse)) =
K(N − 1)
N(K − 1)

β(mse) = arcsin

√
K(N − 1)
N(K − 1)

. (7.19)

An tiny remark in the end: If the average is taken over all possible pairs of
frame vectors, including the frame vector to itself, the measure sin2(β(mse))
should be multiplied by K(K − 1) (the number of pairs used) and divided
by K2 (the total number of pairs). For a tight frame this gives a result also
independent of the number of frame vectors K

K(K − 1)
K2

sin2(β(mse)) =
N − 1

N
(7.20)

These properties based on angles between frame vectors were calculated for the
tight frame in Figure 7.4 and the result is presented below (angles in degrees)

Frame N ×K β(min) β(avg) β(mse)

(a) 3× 6 45 45 arcsin
√

4/5 ≈ 63.43

(b) 4× 8 60 60 arcsin
√

6/7 ≈ 67.79

(c) 3× 6 63.43 63.43 arcsin
√

4/5 ≈ 63.43

(d) 4× 8 63.43 63.43 arcsin
√

6/7 ≈ 67.79

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 135

In the end of this subsection we will prove the optimality of frame (c) in
Figure 7.4, optimal in the sense that this frame is the 3 × 6 frame with the
largest possible value for the β(min) property and the smallest possible value
for the r

(max)
1 property. For the frame in (c) the minimum angle is equal

to the average, β(min) = β(mse) = arcsin
√

4/5 = arctan 2. The fact that
the average is taken in “mean square sense” does not matter here. Since the
frame is tight and β(min) = β(mse) all (inside) angles between any two frame
vectors are the same, βij = β(min). The β(mse) is given by the frame size
for a tight frame, and we see from Equation 7.17 that β(mse) is always larger
for a tight frame than for a non-tight frame of the same size. This shows
that β(min) for the frame in (c) has the largest possible value for all 3 × 6
frames. The maximum error, r

(max)
1 , will be for a vector x that is in the

middle of three frame vectors, sign of the frame vectors should be selected
such that the angle between frame vectors are smaller or equal to π/2, then
the distance from x to each of these three frame vectors is the same. Since
all (inside) angles are the same for this frame we may chose any three frame
vectors and the x in the middle of these will have maximum error. Since the
angles between the frame vectors are maximum, this error must be the smallest
possible r

(max)
1 property of all 3 × 6 frames. For the frame in (c) we can use

f1, f3 and f5, then f1 + f3 + f5 = [c + s, c + s, c + s]T and x = [1, 1, 1]T /
√

3.
When β is the angle between x and f1 we have cosβ = xT f1 = (c + s)/

√
3

and r
(max)
1 = sinβ =

√
1− ((c + s)/

√
3)2 =

√
2
3 − 2

3cs =
√

2
3 − 2

15

√
5. The

constants c and s are as defined in Figure 7.4. The twelve points in three
dimensional space given by the columns of F and −F, F as frame (c) in
Figure 7.4, are the twelve vertices of an icosahedron, one of the five regular
polyhedra, which are also known as the Platonic solids and have been known
since the time of the ancient Greeks.

7.3.4 Norm of the weights

Let us start this subsection by two examples. They illustrate that the norm of
the weights may be very large for an optimal sparse representation. We have
previously mentioned that for some applications it may be a problem if the
ratio ‖w‖/‖x‖ is large, for the example frames in Figure 7.5 this may happen.
First note that the lower frame bounds for these frames are not very small
so the ratio ‖w‖/‖x‖ will not be very large if the weights are found by the
MOF, – remember that for the MOF the norm of the weights is limited by
‖w‖ ≤ (1/

√
A)‖x‖.

For the 3× 4 frame in (a) let the vector to be approximated be x = [0, 1, 0]T .
If s = 1 a good approximation is found using column 2 of F, f2. If two

URN:NBN:no-3330

136 Some Considerations on Frame Properties

(a) 3× 4 non-tight frame (b) 4× 5 non-tight frame

1
√

a
2 (2− a) 0

√
1− a2

0 1− a 0 a
0

√
a
2 (2− a) 1 0

1 0
√

a
3 (2− a) 0

√
1
2 (1− a2)

0 1 −√
a
3 (2− a) 0

√
1
2 (1− a2)

0 0 1− a 0 a
0 0

√
a
3 (2− a) 1 0

Frame properties Frame properties
a A B β(min)

0.1 0.5948 2.2141 5.74
0.01 0.8899 2.0216 0.57
0.001 0.9674 2.0021 0.06

a A B β(min)

0.1 0.5663 2 45.29
0.01 0.8589 2 45.00
0.001 0.9553 2 45.00

Figure 7.5: Two non-tight frames. The constant a is assumed to be a small
positive number. The first three (a) or four (b) frame vectors are close to the
basis of unit vectors in R3 or R4 respectively. The β(min) property is given in
degrees.

frame vectors are allowed in the sparse representation, an exact solution can
be found using f1 and f4. The weight for the f4 frame vector will be 1/a and
the weight for the f1 frame vector will also be large in magnitude, the norm
of the weights will be ‖w‖ = 1

a

√
2− a2. We see that when a gets close to

zero ‖w‖ gets large. Evidently this is connected to the fact that x is in the
space spanned by two frame vectors very close to each other and x is almost
orthogonal to both these vectors. The small value of the β(min) property of
this frame indicate that these problems may occur, for a small a for example
a = 0.01, β(min) = arcsin a ≈ a (radians).

The frame (b) in Figure 7.5 is an example of a frame where ‖w‖/‖x‖ can
be large even when neither A nor β(min) are small. Using this frame and
letting the vector to represent be x = [0, 0, 1, 0]T a solution with a small
representation error can be found by selecting only one vector (f3). An exact
solution can be found using three vectors (f1, f2 and f5). For a small value
of a the exact solution using three frame vectors will give a large value for
‖w‖/‖x‖. The observation here is that the weights can get large when one of
the frame vectors is close to (but not a member within) the space spanned by
some few (s− 1) of the other frame vectors.

The question is: Is it possible to find a frame property that gives the limit
for the ratio ‖w‖/‖x‖ when the weights are selected by the full search algo-
rithm? Let s be the allowed number of frame vectors to use, and let us assume
that such a frame property exists and is similar to the lower frame limit A as

URN:NBN:no-3330

7.3 Mathematical details for the frame properties 137

used in Equation 7.11, ‖w‖/‖x‖ ≤ 1/
√

As. Here we propose an algorithm to
find the value of As for a given frame. The algorithm examines all possible
combinations of s frame vectors. It is I =

(
K
s

)
different ways (possible combi-

nations) to select s frame vectors of the K available ones, let us number these
by i = 1, 2, . . . , I. For combination i we build a N × s matrix where the s se-
lected frame vectors are the columns, this matrix is denoted F(i)

s . This matrix
is a frame in the space spanned by the s column vectors, not in the space RN ,
and considering it as a frame in this subspace the non-zero frame bounds exist.
We are interested in the lower frame bound which we denote A(i). A(i) is the
square of the smallest non-zero singular value of F(i)

s . Representing a vector
in the space spanned by the selected frame vectors, the columns of F(i)

s , the
MOF can be used to find the weights with minimum norm. The norm of the
weights will be limited by ‖w‖2/‖x‖2 ≤ 1/A(i), Equation 7.11. The optimal
sparse approximation must be represented by one of the I frames, {F(i)

s }I
i=1,

and the largest possible norm of the weights in this representation must be
limited by

‖w‖/‖x‖ ≤ 1/
√

As where As = min
i

A(i) (7.21)

It is only possible to calculate the As property for small values of s. The trivial
case, A1 = 1, only tells that the norm of the weights is smaller than, or equal
to, the norm of the signal when only one vector is selected.

In the following table some properties and the norm of the weights for the
frames in Figure 7.5 are displayed. The weights are for the optimal s = 2
solution for x = [0, 1, 0]T for frame (a) and the optimal s = 3 solution for
x = [0, 0, 1, 0]T for frame (b).

frame parameter a ‖w‖ 1/
√

A 1/
√

A2 1/
√

A3

(a) 0.1 14.11 1.2967 14.1244 42.9936
(a) 0.01 141.4178 1.06 141.4196 1410
(a) 0.001 1414.2132 1.0167 1414.2134 44709
(b) 0.1 14.1067 1.3289 1.8367 14.1244
(b) 0.01 141.4178 1.079 1.8476 141.4196
(b) 0.001 1414.2132 1.0231 1.8478 1414.2134

These results confirm that the 1/
√

As property gives the limit for the norm
of the weights. The value of 1/

√
A2 is slightly larger than ‖w‖ for frame

(a). The example vector is the “worst case” vector for the limit when a goes

URN:NBN:no-3330

138 Some Considerations on Frame Properties

towards zero, for the case when a = 0.1 another x vector would give a little bit
larger norm for the weights, but always limited by Equation 7.21. The same
observation is made for 1/

√
A3 and the norm of the weights for frame (b).

The very high values for 1/
√

A3 for frame (a) illustrate another fact about
the As property. The four different ways of selecting three out of four frame
vectors give four different F(i)

3 frames, these four frames span the same space,
they are all bases in the space R3. The As property uses the smallest lower
frame bound, but a representation can be done by one of the other F(i)

3 frames
and then the norm of the weights will be limited by the lower frame bound
for this frame. Generally this may happen if the space of one (or more) of the
F(i)

s frames is the same as (or a subspace of) the space spanned by another
combination of the frame vectors of F, i.e. F(i)

s ⊆ F(j)
s for i 6= j.

7.3.5 Difference between frames

The common measure “norm of difference”, ‖F(1) − F(2)‖, can often be used
to measure the difference between two frames. But when the frames are used
for representation permutation of the frame vectors is possible, and the norm
of the difference is not appropriate. Here we suggest the average of the angles
between each frame vector and the closest frame vector in the other frame. For
two frames, F(1) of size N×K1 and F(2) of size N×K2, θij is the angle between
frame vector i in F(1) and frame vector j in F(2), and cos θij = [F(1)TF(2)]ij .
The θ(avg) measure is

θ(avg) =
1

K1 + K2

(K1∑

i=1

min
j

θij +
K2∑

j=1

min
i

θij

)
. (7.22)

Since θ(avg) measure uses the average in “both directions” the difference be-
tween F(1) and F(2) is the same as the difference between F(2) and F(1). This
would not have been the case if only one of the sums were used in Equa-
tion 7.22.

7.4 Properties of overlapping frames

So far in this chapter only block-oriented frames have been considered. For the
overlapping frames the situation is more complicated. We will here discuss the
properties used for block-oriented frame in the context of overlapping frames,

URN:NBN:no-3330

7.4 Properties of overlapping frames 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40
Eigenvalues for the frame operator S as a function of θ

M
ax

 λ
 o

f S
(e

j2
πθ

).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

M
in

 λ
 o

f S
(e

j2
πθ

).

θ

Figure 7.6: The largest and smallest eigenvalues of S(ej2πθ) as a function of
θ. Here the values for frame (e) in Figure 5.1 and Figure 5.2 are presented.

but we will focus on those properties where the extension to overlapping frames
is quite simple.

For the block-oriented frames the singular value decomposition was useful and
revealed many of the frame properties. For an overlapping frame the SVD
analysis is not straightforward. An SVD of the large matrix F could be done,
but this is computationally demanding since the order of SVD algorithms is
cubic in the size of the matrix. One reason for doing the SVD of the frame
was to find the singular values, and through them the eigenvalues of the frame
operator. For an overlapping frame the frame operator and its eigenvalues
can be found using the theory for oversampled filter banks [15] [8]. Thus, we
find the eigenvalues of the frame operator rather than the SVD, including the
singular values, for the overlapping frame.

For a block-oriented frame the frame operator can be expressed as a matrix,
S = FFT . For the overlapping frame the frame operator is expressed using the
polyphase matrix representation, Equation 7.4. The frame bounds are closely

URN:NBN:no-3330

140 Some Considerations on Frame Properties

connected to the eigenvalue decomposition of the frame operator, the frame
bounds A and B are given by the essential infimum and supremum, respec-
tively, of the eigenvalues λn(θ) of the polyphase matrix representation of the
frame operator [8]. For values of θ between zero and one, the frame operator,
Sθ, is found and eigenvalue decomposition is done, and the largest and small-
est eigenvalues are found. This makes it possible to plot these eigenvalues as
functions of θ, and then find/estimate the frame bounds. For the overlapping
frame (e), with target sparseness factor S = 4

32 , in Section 5.1 these values
are plotted in Figure 7.6. From this we can find that the lower frame bound
is A = 0.000188 and the upper frame bound is B = 37.89.

For a uniform block-oriented frame we found that
∑

n λn = ‖F‖2 = K,
Equation 7.7. For the example frame in Figure 7.6 it is easily seen that∑

n λn(θ) 6= K, for small values of θ the largest eigenvalue alone is much
larger than K. We will here show that an expression similar to Equation 7.7
exists for uniform overlapping frames. The expression is

∫ 1

0

∑
n

λn(θ) dθ = ‖F‖2 = K, (7.23)

and the proof is as follows: The polyphase representation of an overlapping
frame is R(z) =

∑P−1
p=0 Fpz

−p, R(z) is a N ×K matrix of polynomials in z, in
the proof only z-values on the unit circle are used, i.e. z = ej2πθ for 0 ≤ θ < 1,
j =

√−1. For a certain value of θ the matrix is denoted Rθ. It is a complex
valued matrix and a singular value decomposition of this matrix is possible.
The polyphase matrix and the frame operator, Equation 7.4, can be written

Rθ = UθΣθVH
θ and

Sθ = RθRH
θ = UθΛθUH

θ (7.24)

where Uθ and Vθ are unitary N ×N matrices, and Σθ is a matrix with real
non-negative singular values on the main diagonal and zeros elsewhere. The
singular values are denoted σn(θ) and the eigenvalues of the frame operator
λn(θ), where λn(θ) = σ2

n(θ). Now we can write

URN:NBN:no-3330

7.4 Properties of overlapping frames 141

∫ 1

0

∑
n

λn(θ) dθ =
∫ 1

0

∑
n

σ2
n(θ) dθ =

∫ 1

0
‖Σθ‖2 dθ =

∫ 1

0
‖Rθ‖2 dθ

=
∫ 1

0
‖

P−1∑

p=0

Fpe
−j2πpθ‖2 dθ

=
∫ 1

0

N∑

n=1

K∑

k=1

|
P−1∑

p=0

[Fp]nke
−j2πpθ|2 dθ

=
∫ 1

0

N∑

n=1

K∑

k=1

(P−1∑

p=0

[Fp]nke
−j2πpθ

)(P−1∑

i=0

[Fi]nke
j2πiθ

)
dθ

=
∫ 1

0

N∑

n=1

K∑

k=1

P−1∑

p=0

P−1∑

i=0

[Fp]nk[Fi]nke
j2π(i−p)θ dθ

=
N∑

n=1

K∑

k=1

P−1∑

p=0

P−1∑

i=0

[Fp]nk[Fi]nk

∫ 1

0
ej2π(i−p)θ dθ

=
N∑

n=1

K∑

k=1

P−1∑

p=0

[Fp]2nk =
P−1∑

p=0

‖Fp‖2 = ‖F‖2 = K (7.25)

Equation 7.23 is the same as Equation 23 in [39].
Some properties to measure for the representation capabilities for a block-
oriented frame was found in Subsection 7.3.2. It was difficult to find a simple
frame property to use, and the proposed measures are signal dependent. For
the overlapping frames we will get an additional problem limiting the (part
of) frame to consider and finding (and using) the number of non-zero weights.
This justifies that it is reasonable not to use the approach of Subsection 7.3.2
for the overlapping frame.
Frame properties derived from the angles between frame vectors are relevant
measures also for an overlapping frame. As for a block-oriented frame these
properties tell how clustered the frame vectors are. Both the β(min), the
smallest angle between any two frame vectors, and the β(avg), the average of
the angles for all the frame vectors to its closest neighbor, properties can be
calculated by looking on a small part of the large band-diagonal matrix F .
Let the example where P = 3 illustrate this, the relevant part of F is

F̃ =

F2 F1 F0

F2 F1 F0

F2 F1 F0

 . (7.26)

URN:NBN:no-3330

142 Some Considerations on Frame Properties

The NP × K(2P − 1) matrix F̃ consists of NP rows from the large matrix
F . The central K columns are the K synthesis vectors, the matrix F in
Equation 2.11. An entry of the K ×K(2P − 1) matrix (FT F̃) is cosine of the
angle between one frame vector and one of the frame vectors that overlap, i.e.
the column vectors of F̃ . For an overlapping frame the β(min) property can
be defined as

β(min) = min
i,j 6=(P−1)K+i

βij where cos(βij) = [FT F̃]ij . (7.27)

The entries of ([FT F̃]), i.e. cosβij , that are used include all angles between
different frame vectors except the angle of one frame vector to itself (which
of course is zero), this is what the subscript, i, j 6= (P − 1)K + i, below the min
function indicate. The β(avg) property is a little bit more difficult, it is the
average for all the frame vectors to its closest neighbor. Here we interpret
“all the frame vectors” as the K column vectors of F which are the central
K column vectors of F̃ , and it closest neighbor is one of the other columns in
F̃ , including translations of the vector itself. With this the average is defined
similar to Equation 7.15

β(avg) =
1
K

∑

i

min
j 6=(P−1)K+i

βij . (7.28)

The geometric interpretation of the β(mse) property is more hazy for over-
lapping frames than for block-oriented frames. Nevertheless, the definition in
Equation 7.17 shows that it is possible to calculate the β(mse) property only
using the eigenvalues of the frame operator (and the size of the frame), and
this should be possible also for an overlapping frame. A problem is that for
the overlapping frame the eigenvalues depends on the value θ. For any given
value of θ a range for the sum of the eigenvalues squared exists, it is like
Equation 7.18

1
N

≤
∑

n λ2
n(θ)(∑

n λn(θ)
)2 < 1. (7.29)

Note that the term
∑

n λn can be replaced by K in Equation 7.18, but this
can not be done for the overlapping frame. A fixed value for the sum of the

URN:NBN:no-3330

7.4 Properties of overlapping frames 143

eigenvalues exist only if the integral on the unit circle is taken, Equation 7.23.
With this information it is natural to suggest the following definition

sin2(β(mse)) =
K

K − 1

(
1−

∫ 1

0

∑
n λ2

n(θ)(∑
n λn(θ)

)2 dθ
)

(7.30)

For the frame used in Figure 7.6 this definition gives β(mse) = 36.8 degrees.
This is only marginally larger than the average for the frame vectors to their
closest neighbor for the same frame, β(avg) = 36.3. For some frames the
β(mse) property may even be smaller than the β(avg) property. The geometric
interpretation of the β(mse) property can not be done for the overlapping
frames like it was done for the block-oriented frames. The β(mse) property
should be regarded as a property derived from the eigenvalues of the frame
operator, like the frame bounds are, and in addition a geometric interpretation
is possible for the block-oriented frame.

The difference between two overlapping frames, F(1) and F(2), can be measured
like for block-oriented frames in Equation 7.22. The two frames should have
the same values for N and P , but K can be different. Matrix C(1) and C(2)

are defined as cosine for angles between frame vectors in different frames:
C(1) = F(1)T F̃ (2) and C(2) = F(2)T F̃ (1) where F̃ (i) is like in Equation 7.26.
The angles corresponding to C(1) and C(2) are denoted θ(1) and θ(2). The
definition is then

θ(avg) =
1

K1 + K2

(K1∑

i=1

min
j

θ
(1)
ij +

K2∑

i=1

min
j

θ
(2)
ij

)
(7.31)

This is a more complicated definition that if we had just used the F matrices.
The reason for this more complicated measure is that two frames where the
difference is just a shift (of N positions) with the measure of Equation 7.31 are
equal to each other, and as far as representation capabilities are considered
these two frames are equal. Examples of two such frames are

F(1) =

F0
...

FP−1

0

 F(2) =

0
F0
...

FP−1

 (7.32)

The r
(max)
s , r

(avg)
s , r

(mse)
s and the As properties in Table 7.1 are not relevant

for overlapping frames.

URN:NBN:no-3330

144 Some Considerations on Frame Properties

7.5 Some examples

In this section we will give a few examples of the use of the introduced prop-
erties. The intention is to illustrate what these frame properties tell about
the frame. In Subsection 7.5.1 the geometry of the space RN is used to argue
that what seems like moderately sized values for the β(min) and β(avg) proper-
ties and the θ(avg) difference measure are actually small, in the meaning that
larger values are more likely (for randomly generated frames). Some exam-
ples, including some of the frames used for texture classification in Chapter 6,
are presented in the following subsections. Even if the frame properties do
not help to explain how texture classification works, the properties give some
information on the frames.

7.5.1 Geometry of the space RN

It is difficult to visualize the space RN . We will not use much space on this
subject here, but recommend an interested reader to search more on this
topic in the mathematical literature. We will mention only a few facts here,
these may be helpful when assessing the numerical value of some of the frame
properties. First, some formulas for the surface and volume of the unit ball in
RN are presented. Then these are used to show that two randomly selected
vectors are unlikely to have a small angle between themselves.

A volume in RN is an N -dimensional set of elements, the unit volume is the
elements within an N -dimensional cube where all sides have length 1. A
surface in RN is an (N − 1)-dimensional set of elements, for example the unit
cube in RN is bounded by 2N unit cubes in RN−1 and thus has a surface
with “area” 2N . A ball in RN consists of all points/vectors x ∈ RN such
that ‖x‖ ≤ r, where r is the radius of the ball. The unit ball has radius one.
The volume of a ball in RN is denoted VN (r), and its surface is SN (r). Using
calculus it can be shown that3

3In mathematical literature the following formulas, and variants of them, are usually
only referred to as “well known”. On the web I found one article where the derivation of the
formulas is done [5].

URN:NBN:no-3330

7.5 Some examples 145

SN (r) =
∫ π

0
SN−1(r sin θ) r dθ

= SN−1(r) · r ·
∫ π

0
sinN−2 θ dθ

VN (r) =
∫ π

0
VN−1(r sin θ) r sin θ dθ

= VN−1(r) · r ·
∫ π

0
sinN θ dθ (7.33)

These recursive formulas are valid for N ≥ 2 and the initial values to use are
S1(r) = 2 and V1(r) = 2r. From these formulas it can be derived that

SN (r) = 2πrVN−2(r). (7.34)

A more direct formula is

VN (r) =
(r
√

π)N

Γ(N/2 + 1)
, (7.35)

where Γ(·) is the gamma function. Both the volume and the surface of the
unit ball goes towards zero as the dimensionality increase.

Let us look at the probability density function (pdf) for the inner angle be-
tween a random vector x uniformly distributed on the unit ball and another
vector. Since x is uniformly distributed on the unit ball this other vector does
not matter, it could be for example another random vector, a frame vector or
a unit vector. The pdf, which we can denote f(β), can be found for an inner
angle β as the part of the surface of the unit ball in RN that has an angle β
(or π− β) to the e1 = [1, 0, 0, . . .]T unit vector divided by the total surface of
the unit ball in RN :

f(β) =
2SN−1(sinβ)

SN (1)
∝ sinN−2 β, 0 ≤ β ≤ π/2. (7.36)

The pdf f(β) is proportional to sinN−2 β since SN (1) is a constant and SN (r)
is proportional to rN−1. From Equation 7.36 we can see that for large N two
“random” vectors are unlikely to have a small angle between themselves, in

URN:NBN:no-3330

146 Some Considerations on Frame Properties

Size Signal r
(max)
1 r

(avg)
1 r

(mse)
1 r

(max)
2 r

(avg)
2 r

(mse)
2

2× 4 Gaussian 0.3827 0.1932 0.2228 0.0000 0.0000 0.0000
4× 8 Gaussian 0.8660 0.5005 0.5202 0.3437 0.1629 0.1784
8× 16 Gaussian 0.8869 0.6937 0.7000 0.6397 0.4461 0.4535
16× 32 Gaussian 0.9682 0.8148 0.8167 0.9128 0.6627 0.6657

Size A B A2 A3 β(min) β(avg) β(avg2) β(mse)

2× 4 2 2 0.2929 - 45.00 45.00 45.00 54.74
4× 8 2 2 0.5000 0.2929 60.00 60.00 62.42 67.79
8× 16 2 2 0.6464 0.5000 69.30 69.30 72.22 75.04
16× 32 2 2 0.7500 0.6464 75.52 75.52 78.21 79.65

Table 7.2: Properties of tight frames that are the concatenation of two or-
thonormal bases, the identity matrix and the Haar matrix. The angles are
given in degrees.

fact as N goes towards infinity the probability that the angle between two
random vectors is smaller than β goes towards zero for all β < π/2. It is not
that easy to see how this influence the β(min) property, but as will be seen
in Subsection 7.5.3, for random frames the β(min) property is unlikely to be
small. In the example shown in Table 7.3 200 random 16 × 32 frames were
used and none of them had β(min) less than 30 degrees.

7.5.2 Tight frames

The first frames which properties we will examine are tight frames that are
the concatenation of two orthonormal bases, the identity matrix and the Haar
matrix. These frames will have size N × 2N . The properties of different
values of N are presented in Table 7.2, it shows how the properties change
with increasing value of N . The frame with N = 2 is the frame in Figure 7.3
(a) with α = π/4 and the frame with N = 4 is the frame in Figure 7.4 (b).

One interesting thing to note is that for N = 4p where p is an integer we
will have r

(max)
1 =

√
1− 1/N , i.e. sine of β(min). This means that in these

particular cases we are able to find a vector x such that the angle between
this one and the closest frame vector is as large as the angle between a unit
vector and a Haar basis vector. From the table we see that the r

(max)
1 only

increase a little bit from the 4 × 8 frame to the 8 × 16 frame, the increase is
larger from the 8× 16 frame to the 16× 32 frame.

Since the frames are tight A = B = K/N = 2 and with K = 2N we
get sinβ(mse) =

√
(N − 1)/(N − 0.5) according to Equation 7.19. Since the

URN:NBN:no-3330

7.5 Some examples 147

Property Signal r
(max)
1 r

(avg)
1 r

(mse)
1 r

(max)
2 r

(avg)
2 r

(mse)
2

Mean Gaussian 0.9881 0.8240 0.8262 0.9663 0.6840 0.6881
Max Gaussian 0.9962 0.8274 0.8298 0.9894 0.6914 0.6957
Min Gaussian 0.9813 0.8211 0.8232 0.8872 0.6787 0.6827
Std Gaussian 0.0028 0.0012 0.0012 0.0098 0.0022 0.0022

Property A B A2 A3 β(min) β(avg) β(avg2) β(mse)

Mean 0.2656 4.8908 0.2885 0.1460 44.51 56.29 71.45 75.54
Max 0.4664 6.0005 0.3983 0.2082 53.01 59.28 76.68 76.44
Min 0.0908 4.0488 0.1556 0.0802 32.39 52.28 66.52 74.19
Std 0.0633 0.3722 0.0470 0.0285 3.92 1.33 1.81 0.43

Table 7.3: 200 uniform frames of size 16×32 were randomly generated and the
frame properties were calculated for each of these frames. The tables present
the mean, maximum value, minimum value, and the standard deviation for
each ensemble of frame properties. The angles are given in degrees.

frames are the concatenation of two tight frames the β(min) = β(avg). The
frame vectors will not be clustered so the β(avg2) property is not very rele-
vant. As N increase all these β-properties will go towards 90 degrees. For an
orthonormal basis the four β-properties will all be 90 degrees.

7.5.3 Randomly generated uniform frames

In Table 7.3 some properties of 16× 32 frames are shown. 200 uniform frames
were randomly generated, the frame vectors were drawn from a set of normal-
ized random Gaussian vectors, which is a uniform distribution on the surface
of a ball in R16. These trials are used as an ensemble of frames. For each
frame the frame properties are calculated generating an ensemble for each
frame property. The table present the average (statistical mean), the mini-
mum, the maximum and the standard deviation for each of these ensembles.
The mean is perhaps the most relevant value as it represent a ’typical’ value
for the frame property of a random frame.

7.5.4 The 16× 32 frame designed for an ECG signal

In Table 7.4 some properties of the 16× 32 frame designed for an ECG signal
are presented. This frame is shown in Figure 5.2 (a). The frame vectors
are quite clustered as can be seen from the relative large value of the upper
frame bound, and the relative small values for the β(avg), β(avg2) and β(mse)

URN:NBN:no-3330

148 Some Considerations on Frame Properties

Size Signal r
(max)
1 r

(avg)
1 r

(mse)
1 r

(max)
2 r

(avg)
2 r

(mse)
2

16× 32 Gaussian 1.0000 0.8913 0.8938 0.9999 0.7869 0.7925
16× 32 ECG 0.9609 0.2583 0.3228 0.8041 0.1471 0.1890

Size A B A2 A3 β(min) β(avg) β(avg2) β(mse)

16× 32 0.0000 23.4452 0.0035 0.0002 4.81 17.19 27.92 42.33

Table 7.4: Properties of the 16× 32 frame designed for an ECG signal. Note
that for the used precision a = 0.0000 means −0.00005 ≤ a < 0.00005 and
a = 1.0000 means 0.99995 ≤ a < 1.00005.

properties, for example compared to the random frames. We also note that
the representation capabilities are of course much better for the ECG signal
than for a random signal, but the maximum error can be quite large also for
the ECG signal. The small values for A, A2, and A3 indicate that the norm
of the (optimal) weights may get quite large.

7.5.5 Frames designed for texture classification

Table 7.5 shows some properties of the 25×49 frames designed for the textures
in test image (e) in Figure 6.2. The last column, labelled φ, in the table shows
the angle between the cluster center, the cluster is all the 49 frame vectors
and its center is the eigenvector corresponding to the largest eigenvalue of
the frame operator, and the vector v = [1/5, 1/5, . . . , 1/5]. We note that the
“center” texture stand out, it is very clustered as can be seen both from its
large value of B and its small values of β(mse) and β(avg2). Also the cluster
center is very close to the vector v = [1/5, 1/5, . . . , 1/5]. It may look like the
clusters for the different frames cover very much the same space of the unit
ball, and thus it is hard to explain the texture discrimination capabilities.
For some of the textures it may look like the frames designed with s = 1 and
s = 5 are more equal to each other than to the frame designed with s = 3.
The reason for this is that the frames with s = 1 and s = 5 were designed
using exactly the same training set, while the frames with s = 3 were designed
using another training set from the same texture. Another observation is that
the frames designed for the same texture are more naturally grouped together
than the frames designed with the same sparseness factor.

7.5.6 Differences between frames

The differences between two frames can be measured by the θ(avg) property
as defined in Section 7.3.5. We include a table showing the θ(avg) measure

URN:NBN:no-3330

7.5 Some examples 149

Texture s SNRt A B β(min) β(avg) β(mse) β(avg2) φ
left 1 11.67 0.000027 40.29 10.57 16.24 34.54 24.01 4.20
left 3 16.52 0.000014 38.73 11.01 20.69 37.81 26.50 4.99
left 5 19.45 0.000012 39.90 13.32 19.17 35.49 24.73 4.68

upper 1 10.39 0.000044 41.42 11.97 17.09 32.30 22.47 2.88
upper 3 14.38 0.000020 40.96 11.20 20.36 33.46 23.44 3.80
upper 5 17.41 0.000030 41.55 13.57 19.82 32.17 22.36 1.97
lower 1 13.10 0.000011 41.59 8.67 14.47 31.86 21.87 3.64
lower 3 18.24 0.000011 40.43 7.77 18.06 34.49 23.90 4.80
lower 5 21.39 0.000005 41.60 7.97 16.16 31.96 21.71 3.76
right 1 14.12 0.000022 38.78 5.75 15.08 37.38 25.77 6.46
right 3 19.07 0.000045 31.67 7.66 24.55 49.32 35.57 8.41
right 5 21.64 0.000060 38.17 5.72 16.15 38.53 26.55 5.21
center 1 17.26 0.000012 47.11 4.20 6.46 16.04 9.93 1.33
center 3 20.51 0.000010 47.61 3.15 7.47 13.82 8.91 1.12
center 5 22.99 0.000015 47.55 4.61 7.20 14.06 8.79 1.01

Table 7.5: Some properties of the 25× 49 frames designed for the textures in
test image (e) in Figure 6.2.

Sparseness factor 1/16 2/16 3/16 4/16
1/16 - 10.11 12.31 12.66
2/16 10.11 - 5.31 6.10
3/16 12.31 5.31 - 3.85
4/16 12.66 6.10 3.85 -

Table 7.6: The θ(avg) difference measure for some 16 × 32 frames designed
for an ECG signal but with varying target sparseness factors. The angles are
given in degrees.

URN:NBN:no-3330

150 Some Considerations on Frame Properties

for some 16 × 32 frames designed for an ECG signal but with varying target
sparseness factors. The frame with S = 2/16 is the frame where the properties
are shown in Table 7.4 and the frame in Figure 5.2 (a). From the table we see
that the frames are actually quite equal to each other, especially the frame
designed for a sparseness factor of 3/16 and 4/16. This indicate that it is
probably not necessary to design frames for many different sparseness factors,
just a few frames will be enough so that “close to optimal”, i.e. almost as
good as if the frame was trained for the wanted sparseness factor, sparse
representations can be found for all sparseness factors of interest.

URN:NBN:no-3330

Chapter 8

Conclusions and Summary

The aim of this thesis was to investigate the use of frames for sparse sig-
nal representations. We wanted to obtain a better understanding of frames
through an exhaustive analysis of the frame design method, and by using
frames for sparse representation of some signals. During this work the frame
design method was further developed and extended. We also searched for ap-
plications where this sparse representation will be useful, texture classification
was the one focussed on.

The frame design method was formulated using the compact notation of lin-
ear algebra. This shed new light on the sparse representation problem using
a frame: The representation is linear in representing the reconstructed signal
as a linear combination of the frame vectors. And the free variables of the
frame are calculated during frame design as a linear combination of the signal
samples, with some special cases as exceptions. Also the compact expressions
describing the problem made the extensions from block-oriented frames to
overlapping frames and from one-dimensional frames to two-dimensional and
multi-dimensional frames possible. A third advantage of the compact notation
is that it is helpful in the process of developing good algorithms and imple-
menting effective programs. During this work Matlab programs, for frame
design and the use of frames in sparse signal representations, were made. The
fact that optimal vector selection is an NP-hard problem can not be avoided
though, and also the practical sub-optimal algorithms are computationally
expensive.

We have presented two sparse representation experiments in this thesis: The
first using a one-dimensional ECG signal and the second using images. In
both experiments different kind of frames were used and the results were com-
pared, and of course we also compared these results to the results achieved

151

URN:NBN:no-3330

152 Conclusions and Summary

by thresholding coefficients from commonly used transforms and filter banks.
For an ECG signal the frame structures made possible by the new design
method increase the sparse representation capabilities of the frames. Using
the sparseness factor S = 1/8 as an example, we saw that thresholding of the
DCT coefficients gave SNR at 23.8 dB, thresholding of the ELT coefficients
gave SNR at 24.6 dB, while using a simple block-oriented frame gave SNR at
27.7 dB and a general frame with structure, frame (d) in Section 5.1, gave
SNR at 29.2 dB. Increasing the degree of overcompleteness, from K/N = 2 to
K/N = 4, further improved the SNR to 30.4 dB. At lower sparseness factors
the performance gap increased, while for larger sparseness factors the perfor-
mance of the different frame structures was closer to each other. In the sparse
representation of an image the results were similar, the new frame structures
performed best, but the differences between the frame structures were not as
large as for the ECG signal.

The FTCM presented in Chapter 6 is a promising method for texture classi-
fication. The main idea is that a frame trained for making sparse represen-
tations of a certain class of signals is a model for this signal class. Frames
are trained for several textures, one frame for each texture class. A pixel of
an image is classified by processing a block around the pixel, the block size
is the same as the one used in the training set. Many sparse representations
of this test block are found, using each of the frames trained for the texture
classes under consideration. Since the frames were trained to minimize the
representation error, the tested pixel is assumed to belong to the texture for
which the corresponding frame has the smallest representation error.

In this work we tested the FTCM on many test images, with excellent over-
all performance. The simple, but computationally demanding, classification
scheme worked well on all the test images, the number of wrongly classified
pixels was from 20% to 60% lower than for the state of the art classification
methods presented in [59] for the same 9 test images. In the experiments we
also tried many different sets of frame parameters. Which parameter set that
will be the best depends on the texture classification task at hand. For the
mean of the test images used, the best results were achieved for case where the
frame size was N = 25 and K = 100, and the sparseness factor was S = s/N
where s = 3, so if any parameter set should be especially recommended this
is it.

The frame properties discussed in Chapter 7 are helpful tools for character-
izing frames, especially the well known frame bounds are important frame
properties. The new suggested properties are helpful for some purposes, for
example to measure how “clustered” the frame vectors are. This preliminary
work may be a useful base for more extended frame analysis in the future.

URN:NBN:no-3330

8.1 Directions for future research 153

8.1 Directions for future research

Based on experience gained during this work, we would suggest some possible
directions for future research.

• Design of tree structured filter bank
A tree structured filter bank can be represented as a frame where the
parameters of the synthesis system are not linear in the free variables
of the frame. This will be a non-linear frame similar to the separable
frame in Section 3.6. The frame design method could be extended to also
include the possibility to design such frames that can be implemented
as tree structured filter banks.

• Convergence issues
Using the hybrid vector selection algorithm in Subsection 4.1.3 the frame
design method is guaranteed to converge to a local minimum of the object
function. How to find the global minimum is still an open question,
perhaps this is impossible to find even for quite small frames.

• Deciding an appropriate set of frame parameters
A large number of choices must be made before starting the frame design
method, i.e. optimizing the free variables of the frame to match a certain
set of training vectors. The frame size, including the overlap factor, the
frame structure which also gives the number of free variables in the
frame, the degree of overcompleteness and the target sparseness factor
must be decided. Also the initial frame has to be set somehow, it is
not in any way obvious that the use of vectors from the training set is
the better choice. We have no theory, only some limited experience is
gained, that helps us making these choices.

• Preprocessing of the signal
In Section 4.4 it was shown that applying an ELT filter bank on the
image before doing a sparse representation using a block-oriented frame
gave better results. Also for the FTCM preprocessing of the image blocks
were done before a sparse representation was done. This has shown that
a suitable preprocessing of the signal often will simplify or improve the
following sparse representation. When preprocessing is needed, and what
kind of preprocessing that will be best, is still an unanswered question.
We think the answer will depend on the application.

• Extending GMP to ORMP and overlapping frames
The GMP algorithm described in Subsection 4.2.3 does global matching

URN:NBN:no-3330

154 Conclusions and Summary

pursuit based on the BMP algorithm. The current version of the GMP
algorithm uses block-oriented frames, it could be extended to use over-
lapping frames as well. It should also be possible to base this algorithm
on the OMP or ORMP algorithms instead of the MP algorithm.

• Obtain a better theoretical understanding of the TFCM
It is obvious that the frames for different textures must hold different
properties to be able to discriminate. Which properties that are impor-
tant in the texture classification context are yet not known. The work
in Chapter 7 gave only moderate new insight, but we think that this
approach may be useful in frame analysis in the future.

• Obtain more practical experience with the TFCM
A supplement to theoretic understanding is an understanding based on
experience. This understanding can be increased by doing more exper-
iments: trying more parameter sets, training frames for more textures,
and testing these on more test images and also different kinds of test im-
ages. Often the interaction between theoretical knowledge and practical
knowledge will increase both, theoretical knowledge will help to define
relevant experiments, and practical knowledge may give useful hints in
the theory development.

• Two texture classification problem
For the two texture classification problem it should be possible to de-
sign frames for texture discrimination that represented blocks from one
texture class in a good way, and at the same time blocks from the other
texture class in a bad way.

• Explore the use of frames in other applications
Frames have been used for signal compression, one example is the multi
frame compression scheme in [22]. The overlapping frames has not yet
been tried in compression. The fact that the sparse representation capa-
bilities are better for overlapping frames than for block-oriented frames
indicate that they may perform better also in a compression application,
but this is still not shown. Another application that we only just have
started to look into is noise reduction.

URN:NBN:no-3330

Bibliography

[1] S. O. Aase, J. H. Husøy, K. Skretting, and K. Engan. Optimized sig-
nal expansions for sparse representation. IEEE Trans. Signal Processing,
49(5):1087–1096, May 2001.

[2] S. O. Aase, K. Skretting, J. H. Husøy, and K. Engan. Design of signal
expansions for sparse representation. In Proc. ICASSP 2000, pages 105–
108, Istanbul, Turkey, June 2000.

[3] O. K. Al-Shaykh, E. Miloslavsky, T. Nomura, R. Neff, and A. Zakhor.
Video compression using matching pursuit. IEEE Trans. Circuits, Syst.
for Video Tech., 9(1):123–143, February 1999.

[4] M. R. Banham and J. C. Brailean. A selective update approach to match-
ing pursuits video coding. IEEE Trans. Circuits, Syst. for Video Tech.,
7(1):119–129, February 1997.

[5] A. Ben-Israel. The matrix volume, surface integrals and probability dis-
tributions, 1998. Available at http://rutcor.rutgers.edu/pub/rrr/-
reports98/22body.ps.

[6] A.P. Berg and W.B. Mikhael. An efficient structure and algorithm for
image representation using nonorthogonal basis images. IEEE Trans.
Circuits, Syst. II: Analog and Digital Signal Processing, 44(10):818–828,
October 1997.

[7] F. Bergeaud and S. Mallat. Matching pursuit of images. In Proc. IEEE
Int. Conf. on Image Proc., ICIP-95, volume 1, pages 53–56, 1995.

[8] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger. Frame-theoretic analysis
of oversampled filter banks. IEEE Trans. Signal Processing, 46(12):3256–
3268, December 1998.

155

URN:NBN:no-3330

156 BIBLIOGRAPHY

[9] L. Bottou and Y. Bengio. Convergence properties of the K-means algo-
rithms. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in
Neural Information Processing Systems, volume 7, pages 585–592. The
MIT Press, 1995.

[10] Phil Brodatz. Textures: A Photographic Album for Artists and Designers.
Dover, NY, 1966.

[11] P. G. Casazza. The art of frame theory. Taiwanese Journal of Mathe-
matics, 4(2):129–201, June 2000.

[12] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by
basis pursuit. SIAM Journal of Scientific Computing, 20(1):33–61, 1998.

[13] Y-T. Chou, W-L. Hwang, and C-L. Huang. Matching pursuit low-bit rate
video coding with dictionary optimized by shape-gain vector quantizer,
1999. Available at http://citeseer.nj.nec.com/394375.html.

[14] S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado. Forward
sequential algorithms for best basis selection. IEE Proc. Vis. Image Signal
Process, 146(5):235–244, October 1999.

[15] Z. Cvetković and M. Vetterli. Oversampled filter banks. IEEE Trans.
Signal Processing, 46(5):1245–1255, May 1998.

[16] I. Daubechies. The wavelet transform, time-frequency localization and
signal analysis. IEEE Trans. Inform. Theory, 36(5):961–1005, September
1990.

[17] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1992.

[18] G. Davis. Adaptive Nonlinear Approximations. PhD thesis, New York
University, September 1994.

[19] G. Davis, S. Mallat, and M. Avellaneda. Adaptive nonlinear approxima-
tions, 1994. Similar to Davis’ Ph.D. thesis.

[20] R. J. Duffin and R. C. Schaeffer. A class of nonharmonic Fourier series.
Transactions of the American Mathematical Society, 72:341–366, 1952.

[21] P. J. Durka, P. J. Ircha, and K. J. Blinowska. Stochastic time-
frequency dictionaries for matching pursuit. IEEE Trans. Signal Pro-
cessing, 49(3):507–510, March 2001.

URN:NBN:no-3330

BIBLIOGRAPHY 157

[22] K. Engan. Frame Based Signal Representation and Compres-
sion. PhD thesis, Norges teknisk-naturvitenskapelige universitet
(NTNU)/Høgskolen i Stavanger, September 2000. Available at
http://www.ux.his.no/˜kjersti/.

[23] K. Engan, S. O. Aase, and J. H. Husøy. Method of optimal directions
for frame design. In Proc. ICASSP ’99, pages 2443–2446, Phoenix, USA,
March 1999.

[24] K. Engan, S. O. Aase, and J. H. Husøy. Multi-frame compression: Theory
and design. Signal Processing, 80:2121–2140, October 2000.

[25] H. G. Feichtinger and T. Strohmer. Gabor Analysis and Algorithms.
Birkhäuser, Boston, USA, 1998.

[26] P. A. Freeborough and N. C. Fox. MR image texture analysis applied to
the diagnosis and tracking of Alzheimer’s disease. IEEE Transactions on
Medical Imaging, 17(3):475–478, June 1998.

[27] K. Fukunaga. Statistical Pattern Recognition. Academic Press, San Diego,
2nd edition, 1990.

[28] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Norwell, Mass., USA, 1992.

[29] M. Gharavi-Alkhansari. A model for entropy coding in matching pursuit.
In Proc. IEEE Int. Conf. on Image Proc., ICIP-98, volume 1, pages 778–
782, 1998.

[30] M. Gharavi-Alkhansari. A fast globally optimal algorithm for template
matching using low-resolution pruning. IEEE Trans. Image Processing,
10(4):526–533, April 2001.

[31] M. Gharavi-Alkhansari and T. S. Huang. A fast orthogonal matching
pursuit algorithm. In Proc. ICASSP ’98, pages 1389–1392, Seattle, USA,
May 1998.

[32] I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from lim-
ited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE
Trans. Signal Processing, 45(3):600–616, March 1997.

[33] R. Gribonval. Fast matching pursuit with a multiscale dictionary of Gaus-
sian chirps. IEEE Trans. Signal Processing, 49(5):994–1001, May 2001.

URN:NBN:no-3330

158 BIBLIOGRAPHY

[34] C. E. Heil and D. F. Walnut. Continuous and discrete wavelet transforms.
SIAM Review, 31(4):628–666, December 1989.

[35] C-L. Huang and S-H. Hsu. Road sign interpretation using matching pur-
suit method. In Proc. 4th IEEE Southwest Symposium on Image Analysis
and Interpretation, pages 202–206, 2000.

[36] J. H. Husøy, S. O. Aase, K. Skretting, and K. Engan. Design of general
block oriented expansions for efficient signal representation. In Proc.
ISCAS’99, pages III:9–12, Orlando, USA, June 1999.

[37] Anil K. Jain and Farshid Farrokhnia. Unsupervised texture segmentation
using Gabor filters. Pattern Recognition, 24(12):1167–1186, 1991.

[38] T. Kohonen. The self-organizing map. Proc. IEEE, 78(9):1464–1480,
September 1990.

[39] J. Kovačević, P. L. Dragotti, and V. K. Goyal. Filter bank frame expan-
sions with erasures. IEEE Trans. Inform. Theory, 48(6):1439–1450, June
2002.

[40] V. A. Kovalev, F. Kruggel, H. J. Gertz, and D. Y. Cramon. Three-
dimensional texture analysis of MRI brain datasets. IEEE Transactions
on Medical Imaging, 20(5):424–433, May 2001.

[41] H. Li and I. Wollf. Multiscale matching pursuit for image coding. In Proc.
ISSPA 1999, pages 805–808, Brisbane, Australia, August 1999.

[42] S. M. Luthi. Textural segmentation of digital rock images into bedding
units using texture energy and cluster labels. Math. Geology, 26(2):181–
196, 1994.

[43] A. Mahalanobis and H. Singh. Application of correlation filters for texture
recognition. Applied Optics, 33(11):2173–2179, 1994.

[44] S. G. Mallat and Z. Zhang. Matching pursuit with time-frequency dic-
tionaries. IEEE Trans. Signal Processing, 41(12):3397–3415, December
1993.

[45] H. S. Malvar. Extended lapped transforms: Fast algorithms and appli-
cations. In Proc. ICASSP ’91, pages 1797–1800, Toronto, Canada, May
1991.

[46] H. S. Malvar and D. H. Staelin. The LOT: Transform coding with-
out blocking effects. IEEE Trans. Acoust., Speech, Signal Processing,
37(4):553–559, April 1989.

URN:NBN:no-3330

BIBLIOGRAPHY 159

[47] J. L. Marroquin and F. Girosi. Some extensions of the K-means algo-
rithm for image segmentation and pattern classification. Technical Report
AIM-1390, Massachusetts Institute Of Technology Artificial Intelligence
Laboratory, 1993.

[48] G. F. McLean. Vector quantization for texture classification. IEEE Trans.
Systems, Man, Cybernetics, 23(3):637–649, May/June 1993.

[49] N. R. Mudigonda, R. M. Rangayyan, and J. E. Leo Desautels. Detection
of breast masses in mammograms by density slicing and texture flow-
field analysis. IEEE Transactions on Medical Imaging, 20(12):1215–1227,
December 2001.

[50] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM
journal on computing, 24:227–234, April 1995.

[51] R. Neff and A. Zakhor. Very low bit-rate video coding based on match-
ing pursuit. IEEE Trans. Circuits, Syst. for Video Tech., 7(1):158–171,
February 1997.

[52] R. Neff and A. Zakhor. Modulus quantization for matching-pursuit video
coding. IEEE Trans. Circuits, Syst. for Video Tech., 10(6):895–912,
September 2000.

[53] Massachusetts Institute of Technology. The MIT-BIH Arrhythmia
Database CD-ROM. MIT, 2 edition, 1992.

[54] C. J. Oliver. Rain forest classification based on SAR texture. IEEE Trans.
on Geoscience and Remote Sensing, 38(2):1095–1104, March 2000.

[55] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition, November 1993. Proc. of Asilomar Conference on Signals
Systems and Computers.

[56] S. Pavlopoulos, E. Kyriacou, D. Koutsouris, K. Blekas, A. Stafylopatis,
and P. Zoumpoulis. Fuzzy neural network-based texture analysis of ul-
trasonic images. IEEE Engineering in Medicine and Biology Magazine,
19(1):39–47, Jan.-Feb. 2000.

[57] S-C Pei and M-H Yeh. An introduction to discrete finite frames. IEEE
Signal Processing Magazine, pages 84–96, November 1997.

URN:NBN:no-3330

160 BIBLIOGRAPHY

[58] T. A. Ramstad, S. O. Aase, and J. H. Husøy. Subband Compression of
Images – Principles and Examples. ELSEVIER Science Publishers BV,
North Holland, 1995.

[59] T. Randen and J. H. Husøy. Filtering for texture classification: A com-
parative study. IEEE Transaction on Pattern Analysis and Machine In-
telligence, 21(4):291–310, April 1999.

[60] T. Randen and J. H. Husøy. Texture segmentation using filters with
optimized energy separation. IEEE Trans. Image Processing, 8(4):571–
582, April 1999.

[61] B. D. Rao. Signal processing with the sparseness constraint. In Proc.
ICASSP ’98, pages 1861–1864, Seattle, USA, May 1998.

[62] B. D. Rao and K. Kreutz-Delgado. Sparse solutions to linear inverse
problems with multiple measrement vectors. In Proc. DSP Workshop,
Bryce Canyon, Utah, USA, August 1998.

[63] K. Skretting, K. Engan, J. H. Husøy, and S. O. Aase. Sparse represen-
tation of images using overlapping frames. In Proc. 12th Scandinavian
Conference on Image Analysis, SCIA 2001, pages 613–620, Bergen, Nor-
way, June 2001. available at http://www.ux.his.no/˜karlsk/.

[64] K. Skretting, J. H. Husøy, and S. O. Aase. General design algorithm
for sparse frame expansions. Submitted for publication, available at
http://www.ux.his.no/˜karlsk/.

[65] K. Skretting, J. H. Husøy, and S. O. Aase. A simple design of sparse signal
representations using overlapping frames. In Proc. 2nd Int. Symp. on
Image and Signal Processing and Analysis, ISPA01, pages 424–428, Pula,
Croatia, June 2001. available at http://www.ux.his.no/˜karlsk/.

[66] D. Stanhill and Y. Y. Zeevi. Frame analysis of wavelet-type filter banks.
Signal Processing, 67:125–139, 1998.

[67] L. N. Trefethen and D. Bau. Numerical Linear Algebra. Siam, Philadel-
phia, PA, USA, 1997.

[68] M. Tuceryan and A. K. Jain. Texture analysis. In C. H. Chen, L. F.
Pau, and P. S. P. Wang, editors, Handbook of Pattern Recognition and
Computer Vision, chapter 2.1, pages 207–248. World Scientific Publishing
Co, Singapore, 1998.

URN:NBN:no-3330

BIBLIOGRAPHY 161

[69] M. Unser. Local linear transforms for texture measurements. Signal
Processing, 11(1):61–79, 1986.

[70] M. Unser and M. Eden. Nonlinear operators for improving texture seg-
mentation based on features extracted by spatial filtering. IEEE Trans.
Systems, Man, Cybernetics, 20:804–815, 1990.

[71] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall,
Englewood Cliffs, NJ, USA, 1993.

[72] M. Vetterli and T. Kalker. Matching pursuit for compression and appli-
cation to motion compensated video coding. In Proc. IEEE Int. Conf. on
Image Proc., ICIP-94, volume 1, pages 725–729, 1994.

[73] C. De Vleeschouwer and B. Macq. Subband dictionaries for low-cost
matching pursuits of video residues. IEEE Trans. Circuits, Syst. for Video
Tech., 9(7):984–993, October 1999.

[74] D. Wu and J. Linders. A new texture approach to discrimination of forest
clearcut, canopy, and burned area using airborne C-band SAR. IEEE
Trans. on Geoscience and Remote Sensing, 37(1):555–563, January 1999.

URN:NBN:no-3330

