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Abstract—Short and long-term power system planning models
are becoming more complex in order to capture current and
future market characteristics comprising more variability, un-
certainty, and integration of geographically spread market areas.
Dimension reduction methods can be used to keep the planning
models tractable, e.g. time series sampling and clustering, but
they represent a trade-off between model complexity and level
of detail. The accuracy of dimension reduction methods can
be measured both in terms of raw data processing and model
output metrics, where the latter reveals how well a sampling
technique fits that particular model instance. In this study, the
robustness of several sampling and clustering techniques is quan-
tified with different model instances by independently varying
model parameters, such as e.g. the marginal cost of generation.
As the obtained findings indicate that the performance of the
considered techniques is, indeed, model-dependent, more insight
into the performance of common dimension reduction techniques
in power system planning applications is provided. The results
are illustrated by a case study of the North Sea Offshore Grid
(NSOG) for the scenario year 2030, using a bi-level mixed-integer
linear optimization program. All things considered, systematic
sampling and moment matching are shown to give the most
robust results from the sensitivity analysis.

Index Terms—Clustering; Dimension Reduction; Sampling;
Sensitivity Analysis; Time Series; Transmission Expansion Plan-
ning.

I. INTRODUCTION

An increasing share of variable and non-dispatchable gen-
eration capacity is expected in many power systems over the
coming decades, yielding more volatile variations in the net
load (i.e. load subtracted by non-dispatchable power genera-
tion) which need to be balanced with conventional generation
capacity and other means of system flexibility [1]. Hence, in
order to maintain a reliable power system, it is important to
incorporate adequate system characteristics in power system
planning models capturing the value of both temporal and
spatial flexibility [2]. For instance, larger geographical areas
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should be considered due to wind speed smoothing effects [3],
and different market states (operational resolution) due to
interdependency among non-dispatchable generation and load,
in addition to a variety of recurring power flow patterns [4].

Planning models with a multinational geographical scope
are becoming more common and their size and complexity
can easily lead to intractable optimization models [5]. For this
reason, pre-processing of data input can be very beneficial
in order to construct tractable optimization models, while, at
the same time, trying to replicate the characteristics of the
original data set for the problem [6]. Common approaches
use load duration curves or other generic scenario reduction
approaches, such as sampling and clustering methods, on the
model’s input data [7], [8], and [9]. Conversely, a reduction
approach focused on the model’s output data rather than the
input data is shown in [10]. In general, these techniques
produce more compressed time series and fewer operational
time steps in the optimization problem, which can significantly
reduce the computational complexity (solution time).

Transmission expansion planning (TEP) models are specif-
ically sensitive to the aforementioned, multinational system
characteristics since their lumpy and capital intensive invest-
ment decisions are dependent on regional- and national price
differentials [11]. To illustrate, a high non-dispatchable pro-
duction in one area with low demand could use a transmission
line to transmit power to another area with high demand and
low non-dispatchable generation. This is particularly relevant
in the European context, where the European Union is pursu-
ing a fully integrated internal energy market facilitating a free
flow of electricity across its regions for a successful integration
of renewable energy [1].

In this article, the focus is on TEP models with a case
study of the North Sea Offshore Grid (NSOG) which has been
identified as a strategic trans-European energy infrastructure
priority in the EU Regulation No 347/2013. Sampling and
clustering methods are used to reduce the number of time
steps considered in this context, e.g. from a full year (8760
hours) to a set of representative hours in the range of 1-25 %
of the full year time series (68 to 2190 hours).



A. Literature on comparative sampling and clustering

Comparative analyses dealing with a variety of sampling
and clustering techniques are still not well established in the
literature. One exception is the predecessor of this article
which ranks the most common dimension reduction methods
used for a multivariate set of time series input data in a power
system planning model [6]. The presented methods are partic-
ularly suitable for applications in optimization models without
temporal constraints, e.g. restrictions ensuring ramping limits,
minimum up- and down-times, and energy storage. The results
indicate that sampling methods performing best in terms of
raw data fit, measured as the average normalized root-mean-
square error (NRMSE), do not necessarily perform in the same
order taking the model output into perspective, i.e. deviations
in investment costs (CAPEX) and operational costs (OPEX).

In [6], k-means [12], k-medoids and hierarchical clus-
tering [13] are studied, in addition to a simple systematic
sampling and a statistical moment-matching technique [14].
In power system operation and planning, those methods have
been used for a long time, but the literature falls short
on comparisons of their overall performance. A comparison
of different approaches for selecting representative days in
generation expansion planning problems as well as a new
optimization-based approach is presented in [15]. Other works
such as [16] provide a comparison of different clustering tech-
niques in the context of power system reliability assessments.

The main contribution of this article is to follow up the pre-
vious work presented in [6] which quantified the performance
of different dimension reduction methods in a transmission
expansion planning model and compared it with the raw data
sampling and clustering performance. However, the question
as to whether the performance ranking is model- or instance-
dependent, or not, for that matter, remains unanswered. In
order to acquire more insights, a similar study with the same
sampling and clustering techniques, the same sample sizes, and
an almost identical model, but with different model instances
in terms of sensitivity parameter variations is carried out. It is
important to stress that by considering generation expansion
in addition to transmission expansion and combining them
both into the long-term expansion planning model a further
dimension is added to the problem.

The remaining part is structured as follows. Section II
outlines the overall methodology of the study and Section III
provides an overview of the considered dimension reduction
methods, the expansion planning model and its input data, as
well as the investigated sensitivity parameters. The results are
presented and discussed in Section IV and Section V concludes
the study.

II. METHODOLOGY

For a detailed overview and references of the different
sampling and clustering techniques, as well as the compact
mathematical model formulation of the long-term expansion
planning model which is used in this study, the reader is
referred to [6]. In the context of this article, only a brief
overview will be given.

The approach of this study consists of three main steps:
First, five different sampling and clustering techniques are
used to reduce the size of a time series matrix containing
information about hourly offshore wind, onshore wind, solar,
and hydro generation, as well as hourly load levels in six
different market areas, countries in this case. To that end, only
a fraction of the total number of time steps in a full-year (8760
hours) is considered.

Secondly, the resulting reduced time series matrices are used
as input for the expansion planning model which is then run
for a range of possible model instances reflecting sensitivity
variations, i.e. by individually varying six different model
parameters.

Finally, the robustness and performance of all considered
sampling and clustering techniques are assessed by evaluating
the model output accuracy in terms of capital and operational
expenses (CAPEX and OPEX) deviations for all analyzed
model instances (sensitivity variations). The deviations are
measured with respect to the results obtained by the model
when using full-year time series. This allows for an estimate
of whether there is reason to believe that the performance of
each sampling or clustering method is model-dependent, or
not.

III. CASE STUDY FUNDAMENTALS
A. Dimension reduction methods

In accordance with the dimension reduction methods dis-
cussed in [6], the candidate sampling and clustering techniques
being employed here include

e Systematic sampling,

e k-means clustering,

¢ k-medoids clustering,

o Hierarchical clustering, and
¢ Moment-matching.

In order for the expansion planning model to identify efficient
transmission investments for a multinational NSOG, it is
important to capture the underlying values of its capability
to provide both temporal and spatial flexibility for system
operation. Moreover, in contrast to the study presented in [6],
the investment model is able to expand generator capacity to
incorporate power generators’ response to transmission grid
investments. Since generation expansion decisions add one
more dimension to the problem, the sampling and clustering
rankings obtained in [6] are likely to be affected by this model
extension. However, the impact is limited as the generation
expansion is restricted to 10 % of the input data.

B. Model and input data

The expansion planning model is a bi-level mixed-integer
linear program (MILP) which is a common way to formulate
TEP models [5]. It co-optimizes investment decisions and
market operation in a power system consisting of several mar-
ket areas bordering the NSOG: Norway (NO), Great Britain
(GB), Denmark (DK), Belgium (BE), Germany (DE), and the
Netherlands (NL).



The case study of a potential future offshore grid in the
North Seas is based on one of ENTSO-E’s scenarios for
2030 known as “Vision 4” [17]. This vision is a top-down
scenario developed at the European level and it is designed to
meet the objectives of the European Commission on market
integration and climate mitigation. It is considered to be
the most ambitious of the four visions in terms of share
of renewable generation capacity. Therefore, the considered
sampling and clustering methods’ ability to capture extreme
multivariate correlations across country borders becomes even
more important in this context.

C. Sensitivity parameters

To investigate the model-dependent and -independent ef-
fects of using dimension reduction methods, different model
instances are created by varying the following sensitivity
parameters:

e CO; price,

o Marginal cost of generation,

o Interest rate,

o Economic lifetime,

o Transmission infrastructure capital costs, and

o Annual energy inflow to hydro power plants.

For the purpose of this study, the sensitivity parameters in
question are set to -50%, -25%, +25%, and +50% with
respect to the input values used in [6].

IV. RESULTS AND DISCUSSION
A. Raw data sampling and clustering performance

In general, the sampling and clustering performance of raw
data is independent of the model it is being applied to. Since
the same data set of [6] for installed generation capacities and
peak load levels, among others, are used here, the same raw
data sampling and clustering results are obtained.

To summarize, the normalized root-mean-square error
(NRMSE) was calculated as an average for all time series,
i.e. load, onshore wind, offshore wind, solar, and hydro, for
each dimension reduction method and sample size. The aver-
age NRMSE measure suggested that the k-means clustering
performed best for all sample sizes when processing the raw
data. It therefore stood to reason that the k-means method also
yields the most accurate results when using it in the expansion
planning model.

B. Model output performance: fixed model instance

However, the k-means method does not perform as well as
expected. In fact, it exhibits a poor performance in the model
output regarding the average deviation in investment strategy
and performs only slightly better than the systematic sampling
when considering total cost deviations [6]. Compared to the
full-year optimization, hierarchical, and k-medoids clustering
resulted in the most accurate model output behavior. Note that
those results are based on transmission expansion, only.

By including generation expansion into the model instance
presented in [6], similar performance rankings are obtained for
the considered sampling and clustering techniques. However,

there is a minor change worth highlighting: on average, the k-
medoids is outperformed by the moment-matching technique.
This means that the ranking was affected by the inclusion of
generation expansion.

The scope of this work is not the ranking in terms of how
well different dimension reduction methods perform on one
model instance, as discussed above and in [6], but rather to
analyze how robust a given ranking is over a range of model
instances created by varying sensitive model parameters. A
summary of the corresponding findings is the subject of the
following part of this analysis.

C. Model output performance: instance sensitivity

1) Operational cost performance: Fig. 1 shows the model
output performance for different parameter variations ranging
from -50 % to +50 %. Each diagram shows the isolated impact
of increasing or decreasing the value of one particular param-
eter. For instance, the upper left diagram exhibits the impact
of varying the marginal cost of generation with -50 %, -25 %,
+25 %, and +50 %, for all sampling and dimension reduction
methods with sample sizes of 68, 137, 274, 548, 1095,
and 2190 time steps. The deviation in OPEX is calculated
in relative terms to the corresponding full-year benchmark
optimizations (for each sensitivity variation). Focusing on the
smallest sample size, 68, it becomes obvious that hierarchical
clustering gives the smallest deviation in OPEX for the +50%
case (marked with a big upward-facing triangle). If this
performance is model-independent, then the same should hold
for the other variations in marginal costs, i.e. -50 %, -25 %,
and +25%. It is shown that a +25 % increase in marginal
costs (marked with a small upward-facing triangle) yields the
same ranking, but for -25 %, it seems that moment-matching
is the best performing dimension reduction method. That said,
for -50 % it rather is systematic sampling.

Based on the operational cost impact in Fig. 1, it becomes
clear that the considered sampling and clustering techniques
do not exhibit a consistent ranking across all model instances.
However, even though there is an inconsistent ranking, some
parameters yield a smaller impact and variability of results
than others. For instance, the sensitivities of economic lifetime
and interest rate result in a smaller range of OPEX variations
than e.g. changes in marginal costs or energy inflow to
hydropower plants.

One particularly interesting observation from Fig. 1 is the
impact of varying the infrastructure investment cost. A +25 %
increase in investment costs returns about the same OPEX as
the full-year simulation, while a -25 % decrease in investment
costs induces a significant impact on the performance of the
dimension reduction methods. In the context of the conducted
case study, this could imply that cheaper market integration
gives larger exposure to multivariate correlations and regional
characteristics in power generation- and load levels. Hence,
the sampling and clustering techniques’ ability to capture
those correlations becomes more important. Surprisingly, a -
50 % decrease in investment costs offsets some of the extreme
deviations from the full-year simulation. Hence, there is reason
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Operational expenses (OPEX) performance for six different model parameters, each using reduced time series matrices for five different sampling

and clustering techniques with sample size varying from 68 to 2190 times steps. Their performance is measured in relative terms to a full-year analysis
(benchmark) and marked with upward- and downward-facing triangles indicating the direction of sensitivity parameter change with the size indicating the

level of change.

to believe that some model instances, or sensitivities, have
a more global than regional impact, which, in this case, is
reflected by the operational flexibility in the system. In the
-25% case, this means that only some candidate lines are
built, yielding an asymmetric integration of the system through
a few candidate transmission branches, compared to a more
symmetric integration in the -50 % case where it is economic
efficient to build even more transmission lines. Those type of
situations are difficult to account for with model-independent
sampling and clustering methods.

Moreover, the diagrams in Fig. 1 show two occurring
trends with respect to OPEX deviations from their full-year
benchmark: 1) systematic sampling and moment-matching
seem to give a more symmetric distribution of deviations
around zero compared with the other approaches being prone
to underestimate the true OPEX, and 2), k-medoids outper-
forms k-means in terms of robustness and deviations which,
in turn, is outperformed by hierarchical clustering. As the

cluster centroids of k-medoids contain actual data points,
correlations might endure slightly better than with the k-means
method, resulting in smaller deviations from the reference
case. Overall, a clear distinction can be made between the
sampling and clustering robustness from Fig. 1: the sampling
methods perform symmetrical around zero, while the cluster-
ing methods tend to consistently underestimate the operational
costs.

Having said that, it is the investment decision which matters
most for expansion planning applications. Hence, minor devi-
ations in operational cost performance could be tolerable as
long as the resulting investment strategies remain consistent. It
must be noted, however, that those two elements are strongly
related, as already became clear from the investment cost sen-
sitivity in Fig. 1. Then again, the bulk nature of transmission
infrastructure investments features some “buffers” since the
number of cable investments is determined by integer variables
(not continuous variables as for generation expansion). This
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Fig. 2. Capital expenses (CAPEX) performance for six different model parameters, each using reduced time series matrices for five different sampling and
clustering techniques with sample size varying from 68 to 2190 times steps. Their performance is measured in relative terms to a full-year analysis (benchmark)
and marked with upward- and downward-facing triangles indicating the direction of sensitivity parameter change with the size indicating the level of change.

implies that minor deviations in operational costs might not
necessarily lead to new infrastructure investments.

2) Investment cost performance: The diagrams in Fig. 2
follow the same logic as in Fig. 1 with the key difference of
depicting the model output behavior regarding capital expenses
(CAPEX). First, note that the relative spread for marginal
costs and infrastructure investment costs is somewhat larger
than for OPEX deviations in Fig. 1. This is because both
transmission and generation expansion are considered by the
model. By only accounting for transmission expansion, the
range of variations would have been smaller, as was shown
in [6]. In contrast, the spread, or impact, resulting from
changes in energy inflow is smaller than for the latter. Recall
that variations in energy inflow mainly affect hydropower in
market area NO, where its installed hydropower capacity is
considerably larger than in the continental mainland market
areas [17]. Due to the fact that those variations are only
“visible” for the system through a limited set of candidate
transmission lines (e.g. from NO to DE and GB), minor

changes are reasonable.

There are a few patterns in Fig. 2 worth discussing. First,
note the small deviations that occur for reductions in marginal
costs and for -50 % CO, price. Most of those cases give robust
results by not deviating too far from the full-year benchmark
simulations, leading to about the same level of investments. As
those parameter reductions mainly impact thermal units, one
explanation could be that arbitrage opportunities are canceled
out due to small price differentials between market areas
bordering the NSOG. Hence, there is only small room for
deviations in investment strategies. In turn, this could also
explain the opposite effect becoming obvious for increased
marginal costs and CO; prices since those scenarios consis-
tently result in under-investments, i.e. there might be room
for more investment opportunities than the model manages to
identify with the reduced time series data.

Compared to the OPEX findings in Fig. 1, the same level
of consistent trends or patterns is not as clear for CAPEX
deviations in Fig. 2. This might be due to the “bulky” nature of



grid investments which represent the largest share of CAPEX,
making it harder to distinguish the different results. However,
all things considered, the most robust methods which are
performing well over a wide range of model sensitivities
seem to be the systematic sampling and moment-matching
technique. One reason for this might be the fact that the more
sophisticated clustering techniques build clusters in which the
most extreme data points are represented by a cluster centroid.
In other words, a minimum power feed-in from e.g. wind or
solar can be higher than in the original data set, see [6].

V. CONCLUSION

Motivated by the concern of growing model complexity and
increasing computational challenges, this article investigates
the impact of dimension reduction methods for power system
models. To that end, a selection of dimension reduction
methods is analyzed and used to sample from hourly full-
year time series data including load and renewable generation.
The robustness of these techniques is evaluated by running a
sensitivity analysis on model parameters, and thereby different
model instances.

This article shows that the considered techniques vary in
terms of robustness, while, at the same time, revealing how
sensitive the model is for particular parameters. In fact, the
study also implies that some sensitivities have more local than
global impacts in operation conditions in the expansion plan-
ning model with recurring effects in the investment strategies.

Finally, the core of this research suggests that the perfor-
mance of different sampling and clustering techniques are
model-dependent, implying that some methods might yield
better results for particular expansion planning models than
others. For this reason, model-dependent dimension reduction
techniques might lead to more robust solutions than the most
common, model-independent techniques which are investi-
gated in this study.

A. Shortcomings and future work

First, the sampling and clustering methods considered in
this study are independent of the model itself. For instance, it
could be worthwhile to use other methods such as importance
sampling which identifies the cost elements being most crucial
in a model. According to expectations, this would offset some
of the volatility being observed in this study.

Secondly, the expansion planning model has no inter-
temporal constraints. Including that kind of constraints would
add another element to the problem, see [6], and allow for
more dimension reduction methods to be evaluated.

Finally, the inclusion of generation expansion complicated
the interpretation of the results. Moreover, because the dimen-
sion reduction techniques relied on the installed generation
capacity to cluster and weigh data points, enabling the model
to expand generation capacity distorted the “true” performance
of the sampling and clustering techniques to some extent. Then
again, it should be noted that the generation expansion was
limited to 10 % of the input data.
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