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Abstract—The use of unmanned aerial vehicles (UAVs) that can
operate autonomously in dynamic and dangerous operational
environments are becoming increasingly common. In such op-
erations, object detection, classification and tracking can often
be one of the main goals. In recent years there has been an
increased focus on embedded hardware that is both small and
powerful, making UAV on-board data processing more viable.
Being able to process the video feed on-board the UAV calls for
fast and robust real-time algorithms for object identification and
tracking. This paper discusses the development and implemen-
tation of a machine vision system for a low-cost fixed-wing UAV
with a total flying weight of under 4kg. The machine vision sys-
tem incorporates the use of a thermal imaging camera and on-
board processing power to perform real-time object detection,
classification and tracking of objects at the ocean surface. The
system is tested on thermal video data from a test flight, and is
found to be able to detect 99, 6% of objects of interest located in
the ocean surface. Of the detected objects, only 5% were false
positives. Furthermore, it classifies 93,3% of the object types
it is trained to classify correctly. The classifier is highly agile,
allowing the user to quickly define which object characteristics
that should be considered during classification, and what types
of objects to classify. Finally, the system is found to successfully
track 85% of the object types it is actively searching for in a real-
time simulation test.
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1. INTRODUCTION

The recent increase of commercial availability of small un-
manned aerial vehicles (UAVs) has lead to the use of UAVs
in many different applications involving inspections of struc-
tures, surveillance and tracking of objects. Research has been
carried out to extend the UAV’s area of applications, espe-
cially in areas where UAVs can increase safety and efficiency.

This includes search and rescue (SAR) applications, where
UAVs equipped with cameras are used to map large areas and
locate missing objects.

[1] describes a SAR system using a fixed-wing UAV equipped
with a camera sensor. By searching a predefined area, like-
lihood functions are constructed to determine the likelihood
of localizing the object at a given location. The likelihood
functions are merged into a larger mapping, a probability
density function (PDF), which is maintained to express the
most likely location of the object. The UAV’s and the camera
sensor’s paths are generated from the PDF to maximize the
likelihood of detecting the object of interest. The main
downside of this approach is that it does not extend to an
arbitrary number of objects, and that localizing a moving
object would greatly complicate the process.

[2] describes another SAR system for rotary wing UAVs, also
equipped with camera sensors. As described in [3], their
system utilizes a trained boosted cascade classifier based on
Haar-like features to automatically detect objects. Although
the results are promising, the object detection module is
dependent on having a stable and non-moving video feed of
the object to verify the detection. This is often impossible to
achieve, e.g if a fixed-wing UAV is utilized. Furthermore, the
system does not take into account moving objects.

[4][5] both use state-of-the-art methods to detect, classify
and track humans in aerial infrared images. This is achieved
by combining methods such as background subtraction, edge
detection and mean shift segmentation for detection with ma-
chine learning (support vector machine (SVM) and cascaded
classifiers) for classification. For tracking, popular methods
includes particle filters and Kalman filters. [6] also use a
thermal camera for surveillance in a maritime environment,
classifying objects using a SVM trained classifier based on a
set of predefined features. However, there is little literature
combining the two with an UAV capable of both detecting,
classifying and tracking humans (or missing objects in gen-
eral) in a marine environment.

The focus of this paper is the combination of novel methods
for detection, classification and tracking specifically in a
maritime setting. We describe the development and imple-
mentation of a novel payload system for search and tracking
of objects for a fixed-wing UAV. Using real-time on-board
analysis of thermal images, it seeks to automatically detect,
classify and track objects of interest. The benefit of pro-
cessing the video feed on-board is twofold. First, it greatly



reduces the need for a fast and stable communication link
to the ground station, effectively extending the range of an
operation at a low cost. Second, it may greatly reduce the
delay in the decision-making process, i.c where the UAV
should {ly to maximize the visual information. In particular
we develop a system, which is capable of tracking multiple
objects simultaneously, where the user has direct control with
the types of object to track. It would, for instance, be possible
to adapt the proposed system to detect and track the motion of
ice floes instead, effectively implementing one of the outlined
ice monitoring systems described in [7].

The paper is organized as follows. First, the overall UAV
payload and system are described. This includes a short
description of each independent module and their respective
tasks. Following this is an in-depth description of the algo-
rithms and methods used to develop and implement a SAR
system on-board an UAV. This includes the object detection,
classification and tracking modules. Furthermore, the im-
plementation of software for use in a real-time environment
is described. The system’s performance is evaluated on
gathered video data from an UAV flight test. Finally the paper
is summarized in a brief conclusion.

2. UAV PAYLOAD AND SYSTEM

The object detection, classification and tracking payload sys-
tem we consider consists of several different components and
subsystems. Figure 1 illustrates the system components and
the information flow between them. The payload includes
an autopilot (ArduPilot [8]) for flight control, a single board
computer (PandaBoard [9]) for on-board image processing
and an analog thermal camera (FLIR Tau2 336 [10]) as a
visual sensor. The thermal camera has a sampling frequency
of 9 frames per second (upsampled to 30 frames per second
for analog output) and is sensitive to the long-wave infrared
spectral band (7.5 — 13.5um) with a sensitivity of < 50mK.
It has a resolution of 336 x 256 pixels, which is interpolated
up to 720 x 480 pixels. Furthermore, there is an analog to
digital converter (Axis M7001 [11]) that converts the analog
thermal video feed to a digital video stream which can also
be broadcast to the ground station by the on-board network.
Finally there is a communication link (Ubiquiti Rocket M5
[12]) to the ground station. The radio link installed in the
payload enables remote control of the object detection, clas-
sification and tracking system, as well as making it possible to
visually see the thermal images from the ground station. The
interconnection of these components is illustrated in Figure
1.

As seen in Figure 2, the object detection, classification and
tracking module can be divided into several smaller modules.
An object detection module is responsible for segmenting the
parts of an image that is likely to contain objects of interest.
This is done by applying machine vision techniques which
filter out everything but objects of interest from the original
image. After having segmented out objects of interest from
the original image, the object detection module passes on
a list of the location of the detected objects to an object
classification module. The location of the objects are given
in both image frame and world frame coordinates. The image
frame coordinates are found by calculating the centroid of
the object of interest, while the world frame coordinates are
found by georeferencing the object’s image frame position
using on-board GPS and AHRS (Attitude-Heading Reference
System) data.
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Figure 1. Overall object detection, classification and track-
ing payload system description.

The object classification module seeks to categorize the
objects of interest into specific categories. The categories
used by the system presented in this paper are the following:
non-interesting or unidentified object (disregard observation),
human, small boat and big boat. The classification module
is given a set of reference object features, which decides
what characteristics of the detected object that should be
evaluated in the classification process. Hence, this module
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Figure 2. Data flow in the object detection, classification and
tracking module.

can be changed to suit the needs of the user (e.g remove
or add categories) simply by changing the set of external
object features fed to the classification module. In this
regard, it should be noted that the classification module works
independently from the object detection module. The results
from the classification process is sent to the object tracking
module, in order to make the tracking module able to know
what it is tracking.

The object tracking module is responsible for both estimating
and predicting the position and velocity of the detected ob-
jects. The position is here given as a 2 dimensional vector,
and the velocity as the speed along each of the 2 dimensions.
This means that the tracking module is assuming that the
object is moving in a 2 dimensional reference frame (e.g the
image plane or the ocean surface). Furthermore, it associates
new observations done by the object detection module with
already detected objects, making the system able to track
objects from one frame to the next, as well as keeping track
of objects over a prolonged period of time. The output from
the object tracking module is the position history (where the
object has been), as well as the predicted future position



and velocity of the tracked objects. This information can in
turn be sent to the path planner/controller of the UAV. This
will enable the system to close the loop, i.e interconnect the
detection and tracking module with a path planning module,
effectively making the UAV able to follow targets. However,
this is not the topic of this paper.

The following section will describe the three modules in the
object detection and tracking system in some more detail.

3. OBJECT DETECTION

To automatically detect objects of interest, the thermal image,
I, is first smoothed. The motivation for this is to reduce
the thermal noise present in the image. This was found to
make the edge detector more robust when performed on the
sharp thermal images. The smoothing is done by convolving
(denoted by *) the image with a Gaussian kernel g. g is a
n x n kernel approximating a Gaussian distribution with a
standard deviation of 0, i.e

Is[xay] :(I * g)[:&y}
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I and I, are w x h matrices, where w and h is the width

Figure 3. Before (a) and after (b) smoothing of the original
image. The image is showing a large boat (Ilength of 55m), a
rigid-inflatable boat and a small buoy.

and height of the original thermal image. [z,y] are integers
representing a pixel coordinate in images I and Is. [m, k]
are integers representing a coordinate in the Gaussian kernel
approximation g. The result of smoothing an image showing
a big boat (length of 56m), a rigid-inflatable boat (RIB) and a
small buoy can be seen in Figure 3. Notice that the upper left
corner has slightly brighter pixels than the rest of the image,
due to inaccurate camera calibration. Now, to detect the edges
in the resulting smoothed image I, the gradient image, G,
of I is calculated. The gradient image of I is found by the
following calculation

Gz[x»y] = (Is *P)[xvy] =
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P, also referred to as the Prewitt operator [13], is defined as

the 3 x 3 matrix
-1 0 1
P=|-1 01 3)
-1 0 1

The resulting gradient image G can be seen in Figure 4a. Ttis
seen that the big boat, the RIB and the small buoy is clearly
visible after these image processing operations. However,
it is apparent that the waves and ripples in the ocean in
addition to some of the noise in the image are still visible,
albeit smaller in magnitude than the objects of interest in the
image. Because of this, removing them can be done by using

Figure 4.
thresholding.

Before (a) and after (b) gradient magnitude

a threshold value for the magnitude of the gradients which
should be visible. That is, all pixels in the gradient image
that have a magnitude less than a certain threshold T, can be
removed. This is achieved by the following operation

if G(a,y) > T,
otherwise

maxValue

G(z,y) = {0 “

Where maxValue is the maximum brightness value a pixel
in image G can have. From Figure 4b it is readily seen
that, post processing, it is mostly objects with a distinct heat
signature that is left in the image.

Looking at Figure 5a, it is obvious that some of the blobs
clearly do not originate from any object of interest (i.e, the
small dots scattered across the image in Figure 5a), and
therefore has to be filtered out. To filter out the unwanted
blobs from the image, a connected component algorithm [14]
is used to group and label components together in blobs.
Furthermore, the area of each blob is then calculated, and
blobs with a smaller or larger area than what is expected from
a blob originating from an object of interest are then removed
from the image. The result of this process is seen in Figure 5.
The resulting image (Figure 5b) is hereby referred to as the
binary image, B, of the original image I.

Figure 5. Before (a) and after (b) removing blobs which are
either too small or too large to be an object of interest.

After applying the image analysis methods just described
and finding the bounding boxes for each detected object, the



detected objects can be seen in Figure 6a. However, it is
seen that big objects which has some texture in them can
trigger detections within the interior of the actual object. This
is because the texture of the object shows up in the edge
detector. In order to make every detection of an object only
show up as one unique detection, bounding boxes completely
contained in a larger bounding box are removed. The result
of this process is seen in Figure 6b.

(a) ] (b)

Figure 6. Before (a) and after (b) removing detections
completely contained in the interior of other detections.

Looking at Figure 6b, it is apparent that the three detected
objects are of further interest. The detected objects are now
ready for classification. The center positions of the remaining
blobs are calculated in both the image frame and in the
world [rame, and then passed on to the tracking module as
measurements.

4. OBJECT CLASSIFICATION

The detection step has provided the classification module
with the objects of interest. However, since the detector is
using edge detection, the areas of an image that is highlighted
as interesting will often only contain the exterior edges of an
object. When performing classification based on character-
istics such as size, average temperature and overall form it
is crucial that the whole object is evaluated. To expand the
detections to also include the interior of the objects of interest,
an algorithm that seeks to fill holes in the binary image [13]
shown in Figure 6b is applied. The result of applying this
algorithm can be seen in Figure 7.

(@) (b)

Figure 7. Before (a) and after (b) filling the interior holes in
the detected objects.

Using the location of the bright pixels in the binary image
seen in Figure 7b, the pixels that make out the object in the
original image (Figure 3a) can be analysed. The image with
filled contours is hereby denoted Bgjjed-

In this paper, the object characteristics used to classify ob-
jects are the observed object area, perceived average object
temperature and one of the scale, rotation and translation
invariant moments proposed by Hu[15]. Using scale, rotation
and translation invariant features when describing objects

observed from the air is very important, as the altitude, angle
and orientation that the object is viewed from is constantly
changing. Note that both the observed object area and the
perceived average object temperature will be, to some extent,
invariant to the scale, rotation and translation of the object.
Furthermore, keep in mind that the classification method
presented can be used for a large variety of other object
characteristics, as well as easily be modified to include other
object features.

The invariant moments presented in [15] is based on the
following moment function

Mpg = Y Py'B(x,y), pg=01,... (5
z,y€0

Where m,, is referred to the (p + ¢)th order moment of the
image region O. O is defined as the set of pixels inside the
object’s bounding box. B is here a binary image. Note that
since B is a binary image, the Oth moment (mgg) simply
becomes the number of positive pixels in the image region.
This in turn can be interpreted as the pixel area of the object.
This is an effective parameter to use when classifying objects,
especially when pixel area is converted to the metric area of
the object through the use of on-board altimeter and AHRS
measurements. The metric area of an object can give good
estimates of the object’s type and inertia. Assuming that the
UAV is flying approximately straight forward (low roll and
pitch values), the metric area of an object can be found by
multiplying the pixel area of the object (1mgp) with a factor
a(h). a(h) is defined as square meters per pixel when the
camera is at altitude h. This factor is given by the thermal
camera lens and characteristics. Hence, the metric area of an
object can be approximated by

A= a(h)moo (6)

Central moments are also used in the calculation of Hu’s
invariant moments, and are given as

Fpq = Z (r —2)P(y—7)*B(z,y), p,q=0,1,..

z,ycO (7)
- Mo __ Mol

T=—0V\ J=—"

Mmoo moo

Where (Z,7) is the centroid of the image region. O is
still defined as in (5). Note that the central moments are
invariant to translation. This is readily seen by observing
that the central moment is just my, shifted to the centroid
of the image region. Now, to get scale invariant moments, the
normalized central moments are introduced. The normalized
central moments are given as

_ Fpa

- 7 p+q:2737 (8)
oo

Tlpq y=(@+q+2)/2

Using the normalized central moments, Hu introduced seven
moments invariant to rotation, translation and scale. How-
ever, research has shown that for images with low pixel
resolution (less than 100 x 100 pixels), these moments may
vary when the image is scaled and/or rotated. Furthermore,
[16] show that the higher order moments (¢2_7) vary much
more than the lower order moment (¢4 ) for images with small
resolution. Since the resolution of most thermal imaging
cameras are still quite poor, objects of interest will not be



represented by a lot of pixels. Because of this, only the first
invariant Hu moment is included in the feature vector.

@1 = 120 + No2 ©)

To calculate the perceived average object temperature, the
settings of the thermal imaging camera is utilized. That is,
the camera can be set to capture temperatures in a range from
a minimum and a maximum temperature (7}, and Ty,q2)-
Furthermore, the output from the camera is a standard NTSC
analog video signal, where each pixel can take on a value
between 0 and 2° = 256. This means that the perceived
temperature of an area covering only 1 pixel will be

I(x,
T= (256y) (Tma:c

- Tmin) =+ Tmin (10)
Expanding this to calculate the average perceived temperature
across a detected object, we get

Zl_ygo I(x,y)

T _ Moo
avg —

256 (Tmas

- Tmzn) +Tmzn (11)

Where
Op = {2,y € O|Byiyiea(v,y) = 1}

O is the set of pixels in the object’s bounding box. Hence,
the image region O, is given by the set of pixels in the
detected object blob in the binary image Bgajeq. Note that
the perceived temperature is found from pixel intensities in
the original image I.

Combining the perceived average object temperature with the
invariant moments, we can represent any group of pixels in an
image using the feature vector X

A
Tavg
¢

X = (12)

However, to ensure that no single feature will dominate the
orientation of the feature vector, feature rescaling is included.
This results in the following scaled feature vector

A—Amin
Ial_znar —Amin
rs = | Tow—Toin (13)
M
Plmas —Plin

This effectively scales each feature into the range [0, 1]. The
minimum and maximum values of cach feature can be the
minimum and maximum value observed during the training
process, which is explained below. The scaled feature vector
can also be tuned to give particular weight on certain features,
if desired.

In order to use the feature vector X4 to classify objects, we
need some classified references in the feature space. The
process of finding these reference points is referred to as
classification training, and there exists a wide variety of
methods for this in the literature. However, as a proof of
concept, we will use a simple and straightforward method
in this paper. That is, using 5 example images of each
different type of object (human, small boat and big boat), the
minimum and maximum value for each feature is estimated.

Furthermore, an average feature vector for each class using
the same 5 example images.

The average feature vector of each class will be used as a
reference point, classifying detected objects based on the
distance of an object’s feature vector to the class specific
average feature vectors. That is, using the class specific
reference points in the feature space, classifying an object
simply becomes a matter of calculating the object’s feature
vector Xgpj and finding the distance from this vector to all
the reference points in the feature space. The class reference
point which has the shortest distance to X is most likely
the class describing the object. However, if none of the
distances are smaller than a certain threshold, the system
will disregard the observation or call for user intervention.
Choosing the 2-norm to measure distance, the condition for
disregarding an observation is given by

||Xobj - eri”g >r Vi (14)

Where X,.4; is the reference point in the feature space for
class 4. 7 is a tuning parameter describing the threshold for
disregarding new observations. This is referred to as a nearest
neighbour classifier.

In order for the classification module to handle cases where
only parts of an object of interest are visible within the field
of view of the camera, objects which are touching the border
of the image frame are not classified until the whole object is
visible. Furthermore, if an already detected but not yet fully
classified object is touching the border of the image frame,
the classification process is put on hold until the whole object
is visible again. In other words, an object’s appearance while
touching the border of the image frame is irrelevant to the
class type that the object is finally assigned. This is required
in order to avoid frames where the object’s appearance is
heavily occluded to be decisive in the classification process.

5. OBJECT TRACKING

The object tracking module is responsible for estimating and
keeping track of the position and velocity of the detected
objects. This is done by using Kalman filters to estimate
and predict the position and velocity for each object. That is,
for each uniquely detected object, a Kalman filter instance is
created. Further detections of the tracked object is then used
as measurements in the Kalman filter in order to estimate the
object’s position and velocity. This means that the tracking
module also has to be able to link new detections together
with already existing tracked objects. This is done by associ-
ating object detections to the most likely among the tracking
gaits. A tracking gait is defined as the complete state history
of an object, i.e the history of its positions and velocities. If
an object detection is not likely to originate from any of the
objects currently being tracked, the tracking module creates a
new Kalman filter instance for the newly detected object.

Discrete-Time Kalman Filter

The Kalman filter implemented in the detection and tracking
module is based on [17], and utilizes the following linear



equations of motion
obj __ _obj obj
Tl =Ty +Ath7k

bj bj bj
e =Yk + AV

) ) (15)
obj obj
V%k{H = VLkJ + wy,
obj __ yrobj
Vi1 = Vyr + 2

Where 2377, 2%, V;ll’j and Vyo’l,’f is the position and linear
velocity of an object in the image frame coordinates at time
step k and At is the time passed from time step k to k +
1. wy and z; is Gaussian white noise representing change
in velocity of an object. This yields the following observer
model in state space form

xﬁ'ijl =Axﬁbj + Bwy
obj obj (16)
Vi D =Cx 7 + v

The matrices A, B and C' are equal to

1 0 At 0 0 0
01 0 At 0 0 1 000
AZOOlOle()CZ[OlOO]
00 0 1 0 1
a7
and we have that
Wi = {Z’:] Vi = [,‘{]’j (18)

wy, and zy, are here as previously defined, while g and 7y, are
Gaussian white noise terms which represent noise and errors
in the measurement of an object’s position.

For the two dimensional motion described in (15), the state
vector Xi and the measurement yy are equal to

zobj
b y]ocbj b ’UOb;g
ob) __ obj) __ Yz
X o= |0k Yk~ = | obj (19)
v e
pobi ’
y

Where y;bg , yzbg is the detected object’s position at time step

k.

It should be noted that for the application in this paper, the
Kalman filter is set to track objects only in the image plane.
That is, the objects position and velocity is estimated and
predicted in image pixel coordinates. However, assuming
without loss of generality that an object is moving at a flat
surface (the ocean surface), a Kalman filter based on (15)-
(19) can be used to estimate an object’s position and velocity
also in North-East-Down (NED) frame coordinates. This is
because both scenarios only have motion in 2 dimensions,
in addition to that the measurements are given only as object
position in its relative coordinate frame. Tracking an object in
the NED frame makes it easy to keep track of an objects GPS
coordinates, as converting from NED coordinates to world
coordinates is arbitrary.

Data Association

When tracking objects, one of the most crucial parts is to
be able to match new object detections to objects which the

system is already tracking. This problem is often referred
to as data association. In the present system, a global
nearest neighbour (GNN) approach similar to the one found
in [18] is utilized to perform data association. This involves
using the following distance metric for the distance between
measurement ¢ and tracking gait j

Dy =91 ;8;(k) "Gy . (20)
where _ b b
Yij; = [yo T —9° Jj]

Here, y°%9, is mecasurement i (given as a position in a 2
dimensional plane), §°% ; is the a priori predicted position
of object j and Sj is the prediction’s associated covariance
matrix. Both the predicted position and the covariance matrix
is given by the Kalman filter estimating the position of
tracking gait j. In this paragraph the time index £ is dropped
for simplicity of notation.

Now, to associate a measured object position with the most
likely among the tracking gaits, a matrix C expressing the
distances from all n measurements to all m tracking gaits is
calculated. Hence, the matrix C takes on the following form

D11 Dip Dy m
c=|P ! 1)
Dn,l Dn,’m

If the distance D; ; exceeds some threshold d > 0, D ; is set
to infinity. This is because in the case of

D;;>d (22)

the measurement ¢ is not very likely to be a measurcment
originating from the object in tracking gait j. Hence, if all
values along a column j are equal to infinity, it is assumed
that a measurement for tracking gait j is not present. To
cope with this, column j should be removed from C, and the
predicted object position should be used as the best available
estimate for tracking gait j. Furthermore, if all values along
a row 7 is equal to infinity, it is assumed that there exists no
probable tracking gait for measurement . In other words, this
is most likely a measurement originating from a new, not yet
tracked object. Hence, row ¢ should be removed from the
matrix C, and a new tracking gait should be instantiated with
measurement ¢ as the initial position.

After calculating C and removing superfluous rows and
columns, the data association problem is a matter of finding
the combination of distances D; ; that yields the global
minimum distance. This implies that the combination which
is selected assigns exactly one measurement to exactly one
tracking gait, in a way such that the total distance between all
measurements and their assigned tracking gaits is the shortest
achievable distance. This is a well studied problem, and can
be solved by applying the Kuhn-Munkres algorithm [19] to
the modified matrix C.

6. RESULTS

Two test flight using a similar payload to the one described
in Section 2 were conducted with a fixed-wing UAV in order
to collect experimental data. However, instead of using an



analog to digital converter to capture the thermal video feed
on-board, the video feed was sent to the ground station using
an analog transmitter (in the UAV) and receiver (in the ground
station). Sending the video signal to the ground station before
recording it introduced some noise into the thermal video
feed. Because this noise will not be present when processing
the video feed directly on-board, all of the following results
are listed with both noise included and filtered out. The noise
was filtered out by removing the frames where noise was
visible from the video data.

In this paper it is assumed that the UAV was flying at a
constant altitude when objects are visible in the image frame.
Since this assumption is quite realistic for the flight data,
moo from (5) can be used instead of A in the feature vector.
Hence, the results presented in this paper is based on using
myg instead of A for classification.

Detection Results

To perform the detection step, a couple of design parameters
has to be chosen. Specifically, the size and standard deviation
of g and the gradient magnitude threshold value T, have to
be set. It was found that a 9 x 9 kernel approximating a
Gaussian distribution with a standard deviation of 5 was an
appropriate choice for g. The threshold value T} in (4) was
set to 80. This value was found by manually comparing the
gradient magnitudes for gradients originating from objects
with the gradient magnitude for gradients originating from
noise, waves and ripples in the ocean. An average for the
gradient magnitude of each of these two cases (object/non-
object) were found, and the threshold was set at the middle
value of the two.

The result of performing the detection algorithm described
in Section 3 on thermal videos gathered during the two test
flights is shown in Table 1. The thermal videos consists
of almost 3000 thermal image frames. The images contain
humans in the water, a RIB (small boat), a 55m long ship
(big boat) and also some buoys and some underwater vehicles
floating in the ocean surface (the last two categories are
referred to as ”Other” in the results). Specifically, the test
data consists of 203 images in the "Human” category, 659
images in the ”Small Boat” category, 1217 images in the
”Big Boat” category and finally 380 images in the ”Other”
category. The “False Positive” category consists of detections
which are neither caused by noise in the image nor contain
any object of interest.

Table 1. Object Detection Algorithm Result on Dataset

Category Detections | Percentage Detected
Human 200 98,5%

Small Boat 659 100%

Big Boat 1215 100%

Other 374 98,4%

False Positive | 177 -

Noise 510 -

Total 3135 99,6%

A lot of the detections listed as a false positive was because
the horizon was visible in some of the images. This is
detected as a strong edge in the image, as the contrast between
the skies and the ocean is big. This could have been avoided
by using AHRS data to detect when the horizon is in the

field of view of the camera. The remaining detections in this
category was due to irregularity in the pixel intensities caused
by the thermal camera. However, it should be able to fix this
problem by calibrating the camera better, avoiding that some
regions show up darker or lighter than what they should.

Looking at Table 1, it is seen that apart from a fairly high
count of detections caused by the noise introduced by the
analog transmitter and receiver, the detection step has a good
performance. Around 5% false positives (average of 0,059
false positives per image frame) is quite low, especially
considering that only 9 instances (0, 37%) of objects of in-
terest remained undetected. In addition, the number of false
positives can be decreased further by incorporating horizon
detection in the process.

Classification Results

In order to perform classification on the output from the
object detection algorithm, the class specific feature vectors
is calculated according to Section 4 using 5 example images
of each class. Furthermore, the threshold r in (14) has to
be chosen. In Figure 8, the correct classification rate (CCR)
is shown for values of  between 0.1 and 2. The CCR is
defined as the number of correct classifications divided by the
total number of classifications made. It is readily seen from
Figure 8 that the choice for r affects the classifier’s ability
to correctly classify the detected objects. The difference
between the best and worst r value is not more than 0.047,
however, for this dataset this implies a doubling of the number
of wrong classifications. This indicates that the choice for r is
just as important as finding representative training examples.
It should be noted that optimal value for r for the specific
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Figure 8. Classification performance for different values of
the threshold .

dataset collected during the test flights is =~ 1.2. Hence, the
rest of the results are based on this choice for 7.

The result of using the trained classifier to classify the output
from the detection algorithm is shown in Table 2. The
”Other” category was omitted from this, as the classifier was
not trained to classify these objects. Comparing Table 1 with
Table 2 it is seen that 11 human images, 199 small boat
images, 1202 big boat images, 79 false positives and 348
noise detections were touching the border of the image frame.
Hence, the number of classified objects in each category is
fewer than the number of detected instances. This is because



Table 2. Object Classification Result

Category Correct | Wrong | CCR
Human 174 15 92%
Small Boat 452 8 98%
Big Boat 13 0 100%
False Positive | 87 11 89%
Noise 136 26 84%
Total 862 60 93,3%

CCR = Correct Classification Rate

the whole object is required to be within the image frame to
perform classification.

Looking at Table 2 it is apparent that the classifier is suc-
cessful at classifying the categories that have a reference
point in the feature space. Furthermore, the classifier has
a slight performance loss on unknown data such as false
positives and noise. However, since the detection of false
positives and especially noise will usually not persist over
several subsequent frames, this should not affect the tracking
algorithm to a large extent.

Considering that the training process only consisted of 5
instances of each type of object, it will actually be possible
to train the classifier on-the-go, i.e while the UAV is in the
air. Using images sent from the thermal camera to the ground
station, reference points for certain types of object can be
constructed in a matter of minutes. These reference points
can then be sent back to the UAV for direct application in the
classification process.

Tracking Results

For the object tracking module it is necessary to both tune the
Kalman filter (i.e, deciding the covariance matrices for wyg
and vy, from (15)) and to choose a value for the threshold d in
(22). It should be noted that these choices are interconnected,
as the distance calculated in (20) is dependent on the tuning
of the Kalman filter. This is because (20) includes the Kalman
filter’s prediction covariance matrix S.

By trial and error, the standard deviation for each element in
the process noise vector wy, was set to 1. To indicate that the
detected object locations (the measurements) typically will be
more precise than the motion model for the tracked objects,
the standard deviation of each element in the measurement
noise vector vg was set to 0.1. 50 was found to be a good
value for the threshold d.

For the tracking module to be less affected by false positives
in the detection step, a newly initialized tracking gait is
required to be matched to a detected object in at least 3 out
of 5 subsequent frames. Once this happens, the tracking gait
is considered to be tracking an object of interest, and is then
only required to be matched at least once ever 5 subsequent
frames after that.

The performance of the tracking module can be seen in Table
3. It is seen that over the course of analysing almost 3000
thermal images, the tracking module instantiated 64 tracking
gaits. Out of the 64 tracking gaits, 5 of them were not tracking
an actual object. 3 of these tracking gaits were instantiated on
the basis of false positive detections caused by the horizon,

Table 3. Object Tracking Result

Category | Instantiated | Success | Failed | Missed
Human 6 6 0 0
Small Boat | 18 17 0
Big Boat 23 22 1 0
Other 12 9 1 2
False 5 - - -
Total 64 54 3 2

and hence could have been avoided using horizon detection.
The other 2 were instantiated because of false detections
caused by object detections caused by irregularities in the
pixel intensity in the camera, and could possible be avoided
by calibrating the camera better. It should also be noted that
out of the 5 falsely instantiated tracking gaits, only 1 of them
were classified as an actual object (small boat).

Furthermore, from Table 3 it is seen that 3 of the instantiated
tracking gaits at some point failed to track the object of
interest successfully. When a tracking gait fails to track the
object, it means that the tracking gait at some point drifts
away from the object’s actual position, up to the point where
the tracking gait is no longer associated with new detections
of the tracked object. There are mainly two things that can
make this happen. One is that the detection algorithm stops
detection the object properly, making the tracking gait use
the object’s predicted position as a measurement, instead of
the object’s actual position in the image frame. The other
possibility for this to happen is that the object simply is
moving in a non-linear pattern and/or too fast in the image
frame for the tracking gait to converge to the object’s actual
position. In our case, it is the latter scenario that caused the
tracking to fail. More specifically, it was the sharp turns and
high speed of the fixed-wing UAV that resulted in quick and
non-linear object displacements in the image frame.

The 2 objects that were not tracked were also moving too fast
for the tracking algorithm to instantiate a tracking gait. This
was because the tracking module did not link the detections of
the those objects together, and instead seeing each detection
as a completely new object. This indicates that the tracking
module would benefit from incorporating the GPS and AHRS
measurements in the tracking process, as well as possibly
using a more complex motion model for the Kalman filter.
Tracking the object’s in the world frame would possibly also
enhance the performance, as the object’s movement is more
linear in this coordinate frame.

Real-Time Performance

To evaluate the real-time performance of the system, the de-
tection, classification and tracking module was implemented
and tested on the on-board single board computer. The
machine vision algorithms were implemented using C++ and
OpenCV [20]. OpenCV (Open Source Computer Vision) is
a library of functions mainly aimed at real-time computer
vision. The data association problem was implemented with a
modified version of hungarian-cpp [21], an open source C++
solution to the minimum assignment problem based on the
Kuhn-Munkres algorithm.

Since the on-board processing was done post flight, a real-
time simulation test is used to evaluate the system’s real-



time performance. That is, the time required for detection,
classification and tracking for each frame is recorded for
each time step. After processing an image, the system skips
forward the number of frames that the system would have
missed if the algorithms were running on-board during a
flight. The number of frames to skip is calculated as

fswip = ceil(ty x 30) (23)

where fspp, is the number of image frames to skip, ¢ is the
time in seconds used processing image frame f, and 30 is the
(upsampled) number of frames per seconds output from the
thermal camera. ceil is a function rounding up to the nearest
integer.

The real-time test was first executed on the original dataset (~
3000 images with 720 x 480 resolution) using only one of the
PandaBoard’s two 1.2GHz ARM processors. This resulted in
a processing speed of ~ 5.5 frames per second. However, this
yielded a poor tracking performance as the detected objects
are moving quickly and in a highly non-linear way in the im-
age frame. Hence, to better the tracking performance, every
image was resized (in run-time) to a 510 x 340 resolution
image before the detection, classification and tracking was
performed. This resulted in a processing speed of ~ 10
frames per second, and the tracking performance listed in
Table 4. Note that increasing the processing speed beyond 9
frames per second would not necessarily yield better tracking
performance. This is because higher processing speeds will
yield measurements which are correlated in time due to the
upsampling from 9 to 30 frames per second. This means
that the Kalman filter should be adapted to take correlated in
time measurements into account when the processing speed
is greater than 9 frames per second.

Table 4. Object Tracking Real-Time Result

Category | Instantiated | Success | Failed | Missed
Human 5 5 0 1
Small Boat | 18 16 1 1
Big Boat 22 20 1 1
Other 9 5 4 3
False 5 - - -
Total 59 46 6 6

There is a noticeable, and expected, performance loss when
the detection, classification and tracking is run in the on-
board hardware. However, it should be noted that of the
object types that we are actively searching for (humans, small
boat and big boat), 85% of them were tracked successfully.
As before, the tracking gaits that failed, and the objects that
were not tracked was due to the fast and non-linear movement
of objects in the image frame. Hence, actively accounting for
the UAVs movements by incorporating the on-board GPS and
AHRS measurements in the tracking process is necessary in
order to achieve better real-time tracking performance.

7. SUMMARY

This paper discusses the development and implementation
of a machine vision system for a low-cost fixed-wing UAV
with a total flying weight of under 4kg. The machine vision
system incorporates the use of a thermal imaging camera

and on-board processing power to perform real-time object
detection and tracking of objects at the ocean surface. Using
a simple edge detector and some filtering, the system is able
to detect 99, 6% of objects of interest located in the occan
surface. Of the detected objects, 5% were found to be false
positive. A simple nearest neighbour classifier based on
object size, temperature and an invariant moment function is
then constructed. Using only the average of 5 examples from
each class as reference points, the classifier is able to classify
93,3% of the detected objects correctly. The classifier is
highly agile, allowing the user to quickly define which object
characteristics that should be considered during classification,
and what types of objects to classify. Furthermore, a tracking
algorithm combining the Kalman filter with a simple linear
motion model and a global nearest neighbour algorithm for
data association is implemented in the on-board single board
computer. The system is able to successfully track 85% of
the object types it is actively searching for during real-time
simulation, using only a 1.2GHz ARM processor. However,
it is apparent that including on-board GPS and AHRS data
in the tracking process is necessary to further improve the
tracking performance.
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