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Abstract
Precipal and Alsoft are two separate models for simulating the effects of back-annealing on
microchemistry and microstructure, respectively, in AA3xxx-type aluminium alloys (i.e
Mn containing alloys). The precipitation model simulates the precipitation and growth
of dispersoids, growth of constituents, and the resulting change in the solid solution
concentration. Alsoft is a physical softening model which combines the effects of recovery
and recrystallization.

Precipal was originally implemented in Fortran 77, while the softening model, Alsoft,
is implemented in Python. It would be beneficial for both the precipitation and softening
model to be coupled with each other, as both models provide parameters and state vari-
ables that are given as input parameters in the other model (e.g information about the
precipitates from Precipal can be used to calculate the Zener-drag, currently given as an
external input parameter in Alsoft).

In order to facilitate this coupling the precipitation model is reimplemented in Python.
This model is then validated against the old implementation, and a parameter sensitivity
study is performed to identify the most critical input parameters. The new implementa-
tion of the precipitation model is then coupled with the softening model and simulations
has been performed and compared with experimental data.

Precipal consists of two different precipitation models: a physical model based on phys-
ical equations, and one phenomenological model which introduces a number of fitting
parameters which are determined experimentally. The physical model was shown to have
too fast and abrupt precipitation behavior compared with experimental results. The
phenomenological model on the other hand was able to reproduce the experimental pre-
cipitation behavior at a given temperature, but failed to successfully predict the effect of
different annealing temperatures.

The effects on the simulated recrystallization kinetics due to the coupling was found
to be minimal, except when the precipitation halted recrystallization completely due to a
large Zener-drag. The reason for this lacking effect it believed to be the assumption of site-
saturation nucleation in Alsoft, which implies that the Zener-drag effect from concurrent
precipitation on recrystallization nucleation is not modeled.
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Sammendrag
Precipal og Alsoft er to separate modeller for å simulere effekten av tilbakegløding p̊a
henholdsvis mikrokjemi og mikrostruktur, i AA3XXX-type aluminiumslegeringer (dvs
Mn holdige legeringer). Presipiteringsmodellen simulerer presipitering og vekst av dis-
persoider, vekst av primærpartikler, og den resulterende endringen i Mn konsentrasjonen
i fast løsning. Alsoft er en fysikalsk mykningsmodell(softening model) som kombinerer
effekten av gjenvinning og rekrystallisasjon.

Precipal ble opprinnelig implementert i Fortran 77, mens mykningsmodellen, Alsoft, er
implementert i Python. Det vil være fordelaktig for begge modellene å bli koblet med
hverandre, da begge modellene simulerer parametere som er gitt som input-parametere i
den andre modellen (Informasjon om presipitater fra Precipal kan for eksempel brukes til
å kalkulerer Zener-drag i Alsoft).

For å tilrettelegge for koblingen av de to modellene er presipiteringsmodellen reimple-
mentert i Python. Denne modellen er s̊a validert mot den orginale implementasjonen, og
en følsomhetsanalyse er utørt for å identifisere de mest kritiske inputparametrene. Den
nye implementeringen av presipiteringsmodellen blir s̊a koblet med Alsoft, og simuleringer
har blitt utført og sammenlignet med eksperimentelle data.

Precipal best̊ar av to separate presipiteringsmodeller: en fysisk modell baser p̊a fysikalske
ligniner, og en fenomenologisk modell som introduserer et antall tilpassningsparametere
som må bestemmes eksperimentelt. Den fysikalske modellen viste seg å ha for rask og br̊a
presipitering sammenlignet med eksperimentelle data, mens den fenomenologiske mod-
ellen kunne reprodusere eksperimentelle data for en gitt temperatur, men lykkes ikke
med å forutsi effekten av forskjellige glødetemperaturer.

Effekten av koblingen p̊a den simulerte rekrystallisasjonskinetikken var minimal, med
unntak av n̊ar rekrystallisasjonen stoppet fullstendig pga et stort Zener-drag. årsaken
til denne manglende effekten er antatt å komme fra antagelsen om site-saturation kim-
danning i Alsoft, som medfører at Zener-drag effekten fra presipitering under gløding p̊a
rekrystallisasjonskimdanning ikke blir modelert.
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1. Introduction
Manufacturing of aluminium alloy sheets involves a sequence of thermo mechanical treat-
ment steps. During processing the material is first cast and homogenized, before being
plastically deformed, usually by a number of rolling steps, first hot, then cold, followed
by back-annealing, where the material is kept at an elevated temperature for an extended
amount of time. This last step is used to get the desired mechanical properties by ther-
mally activated changes to the microstructure, and it is of great industrial importance to
be able to predict the effect of this heat treatment, and therefore this step is the focus of
this thesis.

During annealing the deformed material will experience recovery (softening due to
growth of sub-grains and annihilation of dislocations) and recrystallization (nucleation
and growth of new dislocation free grains). These phenomena are modeled by the existing
Alsoft-Model which is based on works by Marthinsen, Furu, and Vatne[1–3]. The model
is an extension of the classical Johnson-Mehl-Avrami-Kolmogorov(JMAK) approach, and
combines the effects of recovery and recrystallization.

During annealing of industrial aluminium alloys, precipitation of finely dispersed parti-
cles often occurs. This will have an effect on the recrystallization kinetics. Precipitation
is not modeled in the original Alsoft-model. Currently its influence can only be handled
through changes in external parameters, like the solute level and volume fraction and size
of dispersoids. Precipitation is instead modeled in the separate Precipal-model, imple-
mented at NTNU/Sintef by Friis[4, 5], based on a precipitation model developed in the
PhD work of Lok[6].

In order to improve both the softening and precipitation model there is a need to couple
the two separate models. Precipal was originally implemented in the Fortran programming
language, while Alsoft recently has been implemented in Python. In this thesis Precipal
is reimplemented in Python and the two models are coupled.

The new implementation(Python) of the precipitation model needs testing and valida-
tion before further use to new alloys and conditions. Testing/validation of the coupled
softening(recovery and recrystallization) and precipitation model is desirable an needed
in order to explore and demonstrate its potential, and to identify limitations and equally
important deficiencies.

In this thesis the new implementation of Precipal is validated against the old Fortran
implementation, and a sensitivity test is carried out in order to identify the most critical
input parameters. Precipal is also validated against simulations preformed by Lok[6]
(which are performed with another implementation of the same precipitation model).
The effects of the coupling on the simulated recrystallization kinetics is explored, and
compared with experimental data in an effort to improve and validate the predictive
power of the coupled models.
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2. Theory

In this chapter relevant theory for this work will be presented. First an explanation of
thermomechanical processing used in aluminium sheet production, including the micro-
chemical and microstructural changes in the material will be presented. After this the
recovery and recrystallization model (Alsoft) and precipitation model (Precipal) will be
introduced, including the principle of coupling these two models.

2.1. Thermomechanical processing

Thermomechanical processing (TMP) is widely used during production of commercial
aluminium alloys in which deformation (rolling) and heat-treatment are alternated in a
semi-continuous process. The different steps involved in this treatment are illustrated in
Figure 2.1.

The first step after casting is pre-heating or homogenization, where the material is
heated and held at temperatures up to 600 °C for up to several hours. During this step
the microstructure (grain size, dislocation density and texture) is largely unchanged, while
the microchemistry (solid-solution concentration of alloying elements, and the size and
number density of particles) undergoes large changes. The solid solution concentration
may be lowered as alloying elements will be dispersed as small particles inside the grains,
or as larger particles at the grain boundaries[6, 7].

The next step in the process is rolling, where the material is plastically deformed by
several rolling steps with gradually decreasing roll-gap. The rolling is typically performed
at a temperature of about 350-450 °C (hot-rolling), followed by cold rolling at about 100
°C[6]. This changes the microstructure, as a high number of dislocations are introduced
in the material, and thus results in a high degree of work hardening. The microchem-
istry may also be changed, as particles can precipitate during this step (depending on
temperature)[6].

The final step in the process is annealing, where the material is held at an elevated
temperature ( 300-450 °C) for some time (up to several hours). This step is necessary
in order to get the desired combination of hardness and ductility. During this step both
the microstructure and microchemistry undergoes substantial changes. The deformation
microstructure(consisting of sub-grains and cell interior dislocations) will be removed by
recrystallization where new, dislocation free grains are formed and more particles(disper-
soids) can precipitate. It is this final step which is the focus of this thesis. The changes to
the microstructure and microchemistry will be further explained in Section 2.2 and 2.3.

3



2. Theory

DC casting Pre-heating Hot Rolling Cold Rolling Annealing

Figure 2.1.: Illustration of the different steps in a typical thermomechanical process [8].

2.2. Recovery and recrystallization of cold deformed
material

During annealing there will be a combination of recovery and recrystallization. Recovery
is characterized by growth of sub grains (grains with low angle grain boundaries) and
annealing out (annihilation) of dislocations. Recrystallization consists of nucleation and
growth of new dislocation free grains. Recovery and recrystallization are ”competing”
processes, and the material will experience a combination of these phenomena depending
on the temperature, as illustrated in Figure 2.2. At low temperatures, recovery will be the
dominating process, while at higher temperatures, recrystallization is most prominent. At
medium temperatures the material will experience a combination, with initial recovery,
followed by recrystallization. It is evident from Figure 2.2 that the hardness is reduced
by both reactions, but the reduction is most pronounced during recrystallization.

Figure 2.3 schematicly shows the microstructure of an deformed aluminium alloy at in-
creasing annealing times, with an annealing temperature corresponding with the ”medium
temperature case” in Figure 2.2, so that the material will experience recovery initially,
followed by recrystallization. Immediately after rolling the grains are elongated and the
dislocation density is high (Fig. 2.3a). When the annealing commences the dislocations
will reorganize into sub grains and some will disappear due to annihilation (Fig. 2.3b).
Further annealing will result in nucleation and growth of new dislocation free grains (Fig.
2.3c). This will normally continue until 100% of the material is recrystallized (Fig. 2.3d).
If the annealing is continued the grains will normally continue to grow through normal
grain growth (Fig. 2.3e), or possibly abnormal grain growth (Fig. 2.3f, also called sec-
ondary recrystallization).

Precipitation of particles will normally have an effect on the recrystallization kinetics,
this is explained in the next section.

2.3. Precipitation of particles

There are two main categories of particles affecting the recrystallization kinetics in alu-
minium, constituents and dispersoids [6, 7]. The defining distinction is the size of the
particles and when they are formed. Constituents are formed during casting and solidifi-
cation, and are relatively large, with a radius of ≈ 1-50µm[11]. The dispersoids are mainly
formed during processing and are substantially smaller, with a radius of only ≈ 0.1µm
[11]. In this section the effect of these two particle categories will be presented.
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Time (log scale)
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Low temperature:recovery

Medium temperature:
recovery+recrystallization

High temperature:
recrystallization

Figure 2.2.: Schematic of hardness vs time at different annealing temperatures after de-
formation. Based on figure from [9, p. 8].

(a) Immediately after rolling (b) Dislocations conglomer-
ates into sub grains

(c) Nucleation and growth of
new grains

(d) 100 % recrystallized (e) Further grain growth (f) Abnormal grain growth

Figure 2.3.: Illustration of the changes in the microstructure in a deformed aluminium
alloy during back-annealing[10, s. 2].
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Rolling direction

Constituent

Deformed microstructure

Zone of high stored energy

Figure 2.4.: Deformation zone around a constituent particle, showing the principle for
Particle Stimulated Nucleation. Based on figure from [13].

2.3.1. Constituent particles and particle stimulated nucleation
The constituent particles are large primary particles precipitated mainly on grain bound-
aries during casting and solidification. The relatively large size of these particles limits
their contribution to the Zener-drag (further explained in the next section), but they can
still have a large impact on the recrystallization kinetics, as the particles can act as nu-
cleation sites during recrystallization through a mechanism known as particle stimulated
nucleation, or PSN [3, 12].

The underlying principle for PSN is shown in Figure 2.4. Around a constituent particle
a deformation zone will develop during rolling of the material, resulting in a high energy
zone surrounding the particle. This high energy zone will act as a potent nucleation site
during recrystallization, and is often the dominating nucleation mechanism in commercial
aluminium alloys[3]. The presence of constituent particles can thus have a large grain
refining effect[10].

According to Vatne et.al[3] the particles have to be larger than a critical size, µ∗, in order
to act as a nucleation site. This critical size can be expressed by the Gibbs-Thompson
equation:

µ∗ = 4γGB

PD(0) − PZ(0) (2.1)

where γGB is the specific grain boundary energy between the nucleus and the deformed
matrix[3]. PD is the driving force for recrystallization, representing the stored energy in
the material (explained in Sec. 2.4.4), while PZ is the retarding force, represented by a
Zener-drag. The dispersoids are normally significantly smaller than the critical size, and
will therefore not act as nucleation sites.

2.3.2. Dispersoids and Zener-drag
The dispersoids are small particles precipitated mainly during the annealing process. The
small size of these particles limits their utility as nucleation sites, but they will still have an
impact on the recrystallization kinetics through the Zener-drag. The Zener-drag acts as a
retarding force on boundary migration both during sub-grain growth, recrystallization and
grain growth, as illustrated in Figure 2.5. The growing grain boundary moves unhindered
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2.4. The Alsoft Model

(a) t = t1 (b) t = t2 (c) t = t3

Figure 2.5.: The effect of the Zener-drag on a growing grain boundary. The black line
represents a grain boundary growing upwards. The gray circle is a small
particle (dispersoid). Time is increasing from left to right, so t3 > t2 > t1.
[15]

at t = t1, before t = t2 where parts of the grain boundary is replaced with the particle. If
migration of the boundary continues, new boundary has to be recreated, which requires
energy. This is the source of the Zener-drag[10, p. 12].

The Zener-drag can be expressed by [14]:

PZ = 3γGBfp

2rp

(2.2)

where γGB is the boundary energy, fp is the volume fraction of particles and rp is the
particle radius. This equation implies that a large volume fraction of small particles will
give a large Zener-drag. Because of this the main contribution to the Zener-drag are from
the small dispersoids, not from the larger constituents.

2.4. The Alsoft Model
Alsoft is a physically based model which simulates the microstructure development in an
aluminium alloy during back-annealing. It is developed by NTNU/Sintef, in collaboration
with Hydro Aluminium. The model is an extension of the classical Johnson-Mehl-Avrami-
Kolmogorov(JMAK) approach, and which in addition to recrystallization, also simulates
the effects of recovery. The model in its present form is based on works by Marthinsen,
Vatne and Furu[1–3].

Only a basic overview of the model will be given here, with focus on the parts relevant
to the coupling with the precipitation model. A more thorough presentation of the model,
and all the equations, can be found in [3, 15–17].

2.4.1. Program structure
Alsoft is structured in the same way as Precipal (see Section 2.5.2), where a set of differen-
tial equations are solved for each time step. The program is controlled by three input files
(they can also be in the same physical file separated into different categories): alsoft.inp

7



2. Theory

containing most of the input parameters (i,e initial values for subgrain size and dislocation
density, and various constants), alsoft.ele, containing alloy specific parameters (i.e alloy
composition, diffusivities and activation energies), and alsoft.trt containing information
about the annealing process, and external parameters (temperature, Zener-drag and solid
solution concentration at different time steps). An example of these input files can be
seen in Appendix C.

After the differential equation set is solved for all the time steps specified, an output
file, alsoft.out is produced, containing values for over 40 parameters at each time step,
including fraction recrystallized, subgrain size and flow stress.

The integrator used by Alsoft is the odeint() function from the scipy.integrate library.

2.4.2. Recrystallization kinetics
The recrystallization model used in Alsoft is based on the simple mathematical model
developed independently by Johnson and Mehl, Avrami, and Kolmogorov at the end of
the 1930s, and is based on the following assumptions[1]:

• Random distribution of nucleation sites

• Constant grain growth rate

• Isotropic growth (i.e same growth rate in all directions)

Central in the JMAK-approach is the concept of extended volume fraction recrystallized,
which is the volume fraction that would be recrystallized if no consideration was given
to the fact that different grains would interact with each other, and eventually overlap.
In the case of site-saturation nucleation kinetics (i.e all nucleation takes place at t=0),
the extended volume fraction recrystallized can simply be expressed by the number of
nucleation sites multiplied by the volume of the recrystallized grains:

Xext =
# Nucleation sites︷︸︸︷

Ntot
4
3π(V t)3︸ ︷︷ ︸

Volume of recrystallized grains

(2.3)

where V is the growth rate of recrystallized grains and t is the time.
Due to the assumption of random distribution of nucleation sites, the change in the real

volume fraction of recrystallized grains (i.e overlapping effect are considered) will be the
same as the change in the extended volume, multiplied by the remaining untransformed
volume:

dX = (1 − X)dXext (2.4)
By integration and reorganization of this equation the real fraction recrystallized can

be expressed as:

X = 1 − exp(−Xext) (2.5)
By combination of Equation 2.3 and 2.5 real fraction recrystallized can be expressed

by:
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Figure 2.6.: Based on figure from [20].

X = 1 − exp
(

−Ntot
4
3πV 3t3

)
(2.6)

By substituting B = Ntot
4
3πV 3 and n = 3 you get the so called Johnson-Mehl-Avrami-

Kolmogorov equation:

X = 1 − exp(−Btn) (2.7)

here n is called the Avrami constant, and is used as measure for the recrystallization
kinetics. It can be interpreted as the gradient when plotting ln(ln( 1

1−x
)) vs ln(t), as

illustrated in Figure 2.6. There are two special cases for the Avrami constant, n = 4 with
constant nucleation and growth rate, and n = 3 at site-saturation (as assumed during the
derivation of the equation) Experimental values for the Avrami constant during annealing
of cold worked aluminium are often in the range 1 to 2, but exponents below 1 are also
found[1, 2].

Alsoft simulations can be performed with the assumption of site-saturation nucleation,
or with time-dependent nucleation, (based on theory by Zurob and Dunlop [18, 19]). In
this work, however, only the site-saturation model is considered, as the time dependent
model is not yet properly validated against experimental data.

2.4.3. Nucleation
For all simulations with Alsoft in this thesis site-saturation nucleation is employed. This
implies that all nucleation happens simultaneously, at t = 0. There are three different
categories of nucleation sites used in Alsoft: Particle stimulated nucleation (PSN), nu-
cleation on old cube grains (Cube) and nucleation on grain boundaries (GB). The three
nucleation site categories are summed into a single variable, Ntot:

Ntot = NP SN + Ncube + NGB (2.8)
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2. Theory

GBnew
grain

old cube

other
orientations

Figure 2.7.: Schematic illustration of the cube nucleation mechanism. Based on figure
from [3].

The number of nucleation sites also determine the final recrystallized grain size (assum-
ing 100 % recrystallization), which can be expressed by:

D(t) =
(

X(t)
Ntot

)1/3

(2.9)

Particle stimulated nucleation

PSN is often the most prominent nucleation mechanism in industrial aluminium alloys,
including the AA3xxx alloy used in this thesis. The physical reasoning for PSN is ex-
plained in Section 2.3.1. The equation for the number (density) of PSN sites used in
Alsoft are based on works by Vatne[3], and is expressed as:

NP SN = CP SNN0 exp
(

− 4LCP EγGB

PD(0) − PZ(0)

)
(2.10)

where CPSN is the number of nucleation sites per particle, and CPE is a modeling
constant. H0 and L are alloy dependent constants. All these parameters are given as
input to the model, and the values used can be found in Appendix C.2. (PD(0) − PZ(0))
is the net driving force for recrystallization at t = 0, where PD(0) is the driving force, and
PZ(0) is the retarding force (as explained in Sec. 2.3.2).

The implication of this equation is that the number of PSN sites are directly dependent
on the initial Zener-drag, which means that coupling of Alsoft with the precipitation
model should have an effect on the grain size, especially if PZ(0) approaches Pd(0) ((as
can be seen in Sec. 3.5.5))

Cube

Cube grains are grains with texture of the form: {001}<001> [21, 22]. These grains
will remain metastable during deformation and be elongated into cube grain bands. The
subgrains inside the cube grains are generally larger than other subgrains, making these
into potent nucleation sites[3]. The nucleation mechanism is illustrated in Figure 2.7,
where a new grain is nucleated on the border between ”old” cube grains (regions with
cube texture before the deformation) and an area with another orientation. It is also

10



2.4. The Alsoft Model

assumed that nucleation can only happen on the cube boundary when the neighbor grain
has a S-deformation orientation ({123}<634>)[3].

The equation used in Alsoft to calculated the number of cube nucleation sites are based
on the expression presented by Vatne[3], and is expressed as:

Ncube = CCubeδ(0)Rc(1 − Rc)RcubeF
∗
cube

2
D0

[
eε + e−ε + 1

]
(2.11)

here CCube is a modeling constant, δ(0) is initial subgrain size and ε is the strain induced
by the deformation process and D0 is the mean grain size before deformation. All four
parameters are given as input (see Appendix C.2). Rcube is the volume fraction of cube
grains having S-texture grains as the closest neighbor, calculated by a sub model in Alsoft
(See [3, 15, 17] for details.).

F ∗
cube is the number of sub grains that are larger than the critical size. It is calculated

by integrating over the subgrain site distribution from the normalized critical subgrain
size (χ∗

cube) to infinity:

F ∗
cube =

inf∫
χ∗

cube

fcube(χ)dχ (2.12)

where fcube is the subgrain size distribution, assumed to be a log-normal distribution
with shape parameter 0.4545 (This distribution is chosen in order to match the gamma-
distribution used in earlier versions of Alsoft [3], while still having an analytical solution).

The relative subgrain size is given by:

χ∗
cube = δ∗(0)

δcube(0) (2.13)

where δ∗ is the critical subgrain size given by:

δ∗(t) = 4γGB

Pd(0) − Pz(0) (2.14)

Equation 2.12 can be combined with Equation 2.13 and 2.14 and solved analytically
(approximated with the error function):

F ∗
cube =

erf
(
log

(
4γGB

δcube(0)(Pd(0)−Pz(0))

)
+ 0.5 + s2 ∗

√
2−1)

2 (2.15)

where s is the shape parameter (=0.4545). The implication of this equation is that the
initial Zener-drag (PZ(0)) will have an limited effect on the number of nucleation sites
when the difference between Pd(0) and PZ(0) is large, but if PZ(0) approaches Pd(0), the
number of nucleation sites will decrease dramatically, and the grain size will increase (as
can be seen in Sec. 3.5.5).

Grain boundary

PSN and nucleation on old cube grains are not alone able to describe the grain sizes
observed experimentally[3], it is therefore assumed that nucleation can also occur on
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old grain boundaries with orientations other than the cube orientation, with a similar
mechanism to the old cube grain boundaries explained above [3].

The equation used in Alsoft to calculate the number of nucleation sites is similar to
the equation used for the cube sites, and is like the other nucleation equations based on
works by Vatne[3]. It is expressed as:

NGB = CGBδ(0)(1 − RGB)F ∗
GB

2
D0

[
eε + e−ε + 1

]
(2.16)

where FGB is the number of subgrains larger than the critical size (calculated the same
way as for the cube sites, Eq. 2.12) and CGB is a modeling constant given as input.

2.4.4. Evolution equations
The state-parameters in Alsoft are the subgrain size, delta and the dislocation density ρ
(both describing recovery), and the size of recrystallized grains, d (describing recrystal-
lization). The state parameters are expressed as a set of coupled differential equations.

Recovery

The evolution of the subgrain size and the dislocation density is described by[12, 23]:

δ̇(t) = −νDbAδBδ exp
(

− Ua

RT (t)

)
2 sinh

[
Aδ

kT (t)Gb4
√

δ(t)
]

, Aδ = wδC
−e
ss (2.17)

ρ̇(t) = −νDbAρBρρ(t)3/2 exp
(

− Ua

RT (t)

)
2 sinh

[
Aρ

kT (t)(Gb4
√

ρ(t)
]

, Aρ = wρC−e
ss (2.18)

here vD the Debye frequency, k is Boltzmanns constant, Bδ,ρ is an alloy dependent
constant,wδ,ρ is another constant, Ua is the activation energy for diffusion. The numerical
value for these parameters can be seen in Appendix C.2. Css is the effective solid solu-
tion concentration (the sum of all elements in solid solution weighted by their respective
activation energies for diffusion in aluminium), given as an external parameter. G is the
shear modulus, given by a sub model in Alsoft(not described here, see [15, 17]).

These equations are based on the assumption that the rate for annihilation of disloca-
tions are limited by atoms in solid solution retarding dislocation movement, and activation
of these away from the dislocations as the rate-controlling reaction.

Recrystallization

Equation 2.17 and 2.18 are coupled through the equation for the growth rate of recrys-
tallized grains[12]:

V (t) = M(T ) [PD(t) − PZ(t)] (2.19)
where M(T ) is the mobility for grain growth (given by Eq. 2.21), PZ is the retarding

force, given as an external parameter (assumed to be a Zener-drag, as described in Sec.
2.3.2) and PD is the driving force for grain growth, calculated from its derivative:

12



2.5. The Precipal Model

Ṗd = αγSB δ̇

δ2 + Gb2ρ̇

2 (2.20)

here γSB is the sub grain boundary energy (based on the Read-Shockley equation, see
[15, 17]) and α is a constant given as an input parameter. There are two contributions to
the driving force for recrystallization, the stored energy from the subgrains (first term),
and the contribution from the dislocations inside the subgrains (second term).

If the driving force for recrystallization (PD) becomes lower than the Zener-drag (PZ)
(i.e negative net driving force for grain growth) the growth rate is set to zero, effectively
stopping recrystallization. Examples of this occurring can be seen in Section 3.5.2.

The mobility for grain growth is given by:

M(T ) = M0

CsskT
exp

(
Urex

RT

)
(2.21)

where Urex is the activation energy for recrystallization, given as a input parameter and
M0 is a constant which can be used to shift onset of recrystallization to shorter or longer
times.

2.5. The Precipal Model
Precipal is a precipitation model simulating precipitation of particles during back-annealing
of Al-Mn(-Fe-Si) aluminium alloys, with special attention to precipitation of Mn-containing
dispersoids.

In this section all equations used in the Python implementation of Precipal are pre-
sented. The model is based on the work of Lok in his PhD thesis[6], and the existing
Fortran 77 implementation of Precipal, implemented by Friis[4].

2.5.1. Model Assumptions
The precipitation model is specifically developed for Al-Mn-(Fe-Si) alloys (AA3xxx) and
is based on the following assumptions[6], (following from the detailed experimental char-
acterization carried out by Lok in his PhD thesis):

• The depletion of Mn from solid solution is by nucleation and growth of α-Al12Mn3Si
dispersoids and by growth of Al6(Fe,Mn) constituents. The nucleation of con-
stituents, and the transition between constituents and dispersoids is not modeled
(i.e. the number of constituent particles are constant).

• For undeformed material, only dispersoids which form homogeneously on the grain
interior, and for the deformed material, only dispersoids which nucleate heteroge-
neously on the subgrain boundaries, are modeled.

• Particle size distribution effects are not modeled. This means that only the average
size of the particles, which are assumed to be spherical, are monitored.
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• The effect of recrystallization on the precipitation kinetics is modeled by changing
from rapid solute diffusion on the subgrain boundaries in the deformed material,
to slower solute vacancy diffusion in the undeformed recrystallized material. The
recrystallization kinetics is not modeled in Precipal, but is provided as an external
parameter. The model can also be coupled with Alsoft, and in this case the fraction
recrystallized will be calculated by Alsoft.

2.5.2. Program structure
Precipal is structured in the same way as Alsoft, in which a set of differential equations are
solved numerically at each time step. The program is controlled by three input files(can
also be specified by one physical file divided into different categories); precipal.inp where
most input parameters are specified, precipal.ele where most alloy specific parameters
are defined (i.e alloy composition, activation energies and diffusivity prefactors), and
precipal.trt in which information about the annealing process are specified (time and
temperature) in addition to external parameters (fraction recrystallized and sub grain
size). An example of these input files can be found in Appendix C.

When Precipal is executed the differential equations are solved numerically for each
time step by the odeint() function from the scipy.integrate library. After the equations
have been solved an output file will be generated, containing data for over 30 different
parameters at each time-step, including the radius, volume fraction and number density
of dispersoids and constituents.

2.5.3. Evolution Equations
In the Fortran 77 implementation of Precipal the system was described by three state
parameters, Nd, fd and fc, representing the number and volume fraction of dispersoids,
and the volume fraction of constituents. In Precipal the system can be described by
the same equations, or by an equivalent set of equations which use particle radii instead
of volume fractions as state parameters. The derivation of these equations, and the
consistency between them, is shown in Appendix A.1 and Section 3.1.

The state parameters are described by a set of differential equation, either by Equations
2.22 - 2.24, or by Equations 2.22, 2.25 and 2.26:

Number of dispersoids:
dNd

dt
= Xjd(DL

Mn) + (1 − X)jd(Deff
Mn ) (2.22)

Volume fraction:
dfd

dt
= X

(
4πr2

dsdNdvd(DL
Mn) + 4πr3

3 jd(DL
Mn)

)

+ (1 − X)
(

4πr2
dsdNdvd(Deff

Mn ) + 4πr3

3 jd(Deff
Mn )

) (2.23)

dfc

dt
= X4πr2

cscNcvc(DL
Mn) + (1 − X)4πr2

cscNcvc(Deff
Mn ) (2.24)
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Radius:
drd

dt
= Xvd(DL

Mn) + (1 − X)vd(Deff
Mn ) (2.25)

drc

dt
= Xvc(DL

Mn) + (1 − X)vc(Deff
Mn ) (2.26)

In Equation 2.22 - 2.26 X is volume fraction recrystallized, given as an external input
parameter. All these equations are expressed as a weighted average between the volume
fraction undeformed material (multiplied by X), and the volume fraction of deformed
material (multiplied by (1 − X)). DL

Mn and Deff
Mn are the diffusivity in the lattice and

effective diffusivity, respectively. They are given by equation 2.28 and 2.30 below. jd is
the nucleation rate of dispersoids, given by Equation 2.32 below. rd and rc is the radius
of dispersoids and constituents, respectively. sd and sc are factors accounting for the
size distribution of the dispersoid and constituent particles, both are set to one for all
simulations presented in this thesis. vd and vc are the growth rates of dispersoids and
constituents, given by Equation 2.40 and 2.41 below. Nc is the number of constituent
particles, and is treated as a constant(for a given alloy), and due to this there is no
nucleation equation for the constituent particles.

rd and rc in Equation 2.23 and 2.24 are calculated by the simple geometric relationship
between the radius, volume fraction, and number of dispersoids (by assuming spherical
particles):

r =
(

3f

4πsN

)1/3

(2.27)

Diffusivities

As stated in Section 2.5.1 there are two different mechanisms for nucleation and growth
of particles simulated in Precipal, namely, nucleation and growth homogeneously in the
lattice, or nucleation and growth on subgrain boundaries. Since both the nucleation
and growth of particles are assumed to be diffusion controlled, the defining distinction
between the two mechanisms (in regards to Precipal simulation) are the diffusivities, with
significantly faster diffusion on the subgrain boundaries.

The two diffusivities are given as a standard Arrhenius temperature dependence:

DL
Mn = D0,L

Mn exp
(

−QD,L
Mn

RT

)
(2.28)

DSGB
Mn = D0,SGB

Mn exp
(

−QD,SGB
Mn
RT

)
(2.29)

with both the prefactors (D0,L
Mn, D0,SGB

Mn ), and activation energies (QD,L
Mn , QD,SGB

Mn ), given
as input parameters.

Due to the assumption that all nucleation and growth of particles take place in the
matrix for undeformed material, and on the subgrain boundaries in the deformed material,
the effective diffusivity can simply be expressed as a weighted average (weighted by the
volume fraction of subgrains) between the diffusivity in the lattice and on the subgrain
boundary:
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Deff
Mn = (1 − fSGB)DL

Mn + fSGBDSGB
Mn (2.30)

where the fraction of subgrain boundary, fSGB, is given by the width of the subgrain
boundaries tSGB (given as input) divided by the average subgrain size (given as an external
parameter):

fSGB = tSGB

δ
(2.31)

2.5.4. Nucleation and Growth Rates
Nucleation rates

The nucleation rate of dispersoids, as a function of diffusivity, is given by [6]:

jd(D) = N tot
hetβ

∗(D)Z exp
(

−∆G∗
het

kT

)
exp

(
−τ(D)

t

)
(2.32)

here N tot
het is the number density of available nucleation sites for heterogeneous nucle-

ation, given by Equation 2.33 below. B∗(D) represents the rate at which atoms are
attached to a critically sized dispersoid nucleus, as a function of diffusivity[6], given by
Equation 2.34 below. The Zeldovic factor, Z, corrects for nuclei that grow beyond the
critical size[6], and is given as input. ∆G∗

het is the activation energy associated with het-
erogeneous nucleation, given by Equation 2.38 below. k is Boltzmann constant, T is the
annealing temperature and t is the time. τ(D) is a characteristic incubation time before
steady state nucleation rate is obtained, given by Equation 2.39 bellow.

The number of constituent particles are assumed to be constant (i.e the nucleation rate
for constituent particles, jc, is zero.)

The number density of heterogeneous nucleation sites in the deformed state are given
by:

N tot
het = fSGBN tot

hom (2.33)

where N tot
hom is the number density of homogeneous nucleation sites. The effect of this

equation is that the number of heterogeneous nucleation sites is significantly lower than
the number of homogeneous sites.

The rate at which atoms are attached to a critically sized nucleus is given by [6]:

β∗(D) = 6πDr∗
d

2CMn

a4
0

(2.34)

where CMn is the Mn concentration in solid solution (from Eq 2.51), a0 is the lattice
parameter for aluminium (input parameter) and r∗

d is the critical dispersoid radius (i.e
the minimum size a dispersoid nuclei can have in order to continue to grow) given by:

r∗
d = 2γd

∆Gv

(2.35)

where γd is the specific surface energy between the dispersoid and the matrix (input
parameter) and ∆Gv is the net decrease in Gibbs free energy when a stable precipitate
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nucleus is formed (i.e the difference in free energy between the newly created nucleus and
the same volume of super saturated matrix), and can be expressed by[6]:

∆Gv = RT

V d
m

ln
(

CMn

Ceq
Mn

)
(2.36)

here Ceq
Mn is the equilibrium solubility of Mn (given by Eq. 2.44 below), and V d

m is the
molar volume of an dispersoid (i.e the volume of one mol of Al12Mn3Si), given as an input
parameter.

The activation energy for homogenous nucleation is the energy barrier a critically sized
dispersoid nuclei has to overcome in order to continue to grow, and is given by [6]:

∆G∗
hom = 16πγ3

d

3∆G2
v

(2.37)

Heterogeneous nucleation is inherently a complex process. Due to this the activation
energy for heterogeneous nucleation is hard to describe properly. In Precipal this is
simplified into a factor, η, which specifies the ratio between the activation energies for
heterogeneous and homogeneous nucleation (given as an input parameter between 0 and
1) [6]. The activation energy for heterogeneous nucleation can thus be expressed by:

∆G∗
het = ξ∆G∗

hom (2.38)

The characteristic incubation time before steady state nucleation of dispersoids is ex-
pressed by:

τ(D) = 1
2β∗(D)Z (2.39)

Growth rates

The growth rates of dispersoids and constituents are given by:

vd(D) = D

rd

Cλ
Mn,d − Ci

Mn,d

Cp
Mn,d − Ci

Mn,d

(2.40)

vc(D) = D

rc

Cλ
Mn,c − Ci

Mn,c

Cp
Mn,c − Ci

Mn,c

(2.41)

The physical interpretation of the different concentrations in the growth rate equations
can be seen in Figure 2.8a. Ci

Mn,d,c is the equilibrium solute concentration at the particle-
matrix interface, given by Equation 2.42 and 2.43 (below) for dispersoids and constituents,
respectively. Cp

Mn,d,c is the Mn concentration inside the particles, and is assumed to be
the stoichiometric concentrations. Cλ

Mn,d and Cλ
Mn,c is the concentration on the surround-

ing volume boundary illustrated in Figure 2.8b, and is given by Equation 2.45 and 2.46
(below) for dispersoids and constituents, respectively.

The equilibrium solute concentration at the dispersoid-matrix interface (illustrated in
Fig. 2.8a) is given by the overall equilibrium solubility, Ceq

Mn, corrected for the curvature
of the dispersoids[6]:
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CMn
p

CMn

CMn
0

CMn
i CMn(x,t)

dr
dt

0 r

(a) Mn concentration profile inside and outside
particle. Cp

Mn is the constant solute concen-
tration inside the particle, C0

Mn is the ini-
tial solid solution concentration and Ci

Mn is
the equilibrium solute concentration at the
particle-matrix interface. CMn(x, t) is the
solute concentration profile outside the par-
ticle.

(b) Schematic illustration of the dispersoid and
constituent distribution. λd and λc is the av-
erage distance between dispersoids and con-
stituent, respectively.

Figure 2.8.: Based on figure from [6, p. 86]

Ci
Mn,d = Ceq

Mn exp
(

2γdV d
m

rdRT

)
(2.42)

where γd is the specific surface energy between the dispersoid and the matrix, R is the
universal gas constant and V d

m is, as mentioned earlier, the molar volume of a dispersoid
(i.e the volume of one mol of Al12Mn3Si).

Due to the significantly larger size of the constituent particles (compared with the
dispersoids), the curvature effects can be neglected so that the equilibrium solute con-
centration at the constituent-matrix interface can be approximated to the overall Mn
equilibrium solubility:

Ci
Mn,c ≈ Ceq

Mn (2.43)

The overall Mn equilibrium solubility is expressed as a standard Arrhenius temperature
dependence:

Ceq
Mn = Cs

Mn exp
(

−QC
Mn

RT

)
(2.44)

where Cs
Mn is the prefactor for equilibrium solubility and QC

Mn is the activation energy
for solubility. Both parameters are given as input parameters in the element file.

The Mn concentration on the surrounding volume boundary, illustrated in Figure 2.8b,
are given by[6]:
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Cλ
Mn,d =

8r3
dCp

Mn,d − λ3
dC0

Mn,d + 3rd(λ2
d − 4r2

d)Ci
Mn,d

λ2
d(3rd − λd) − 4r3

d

(2.45)

Cλ
Mn,c =

8r3
cCp

Mn,c − λ3
cC

0
Mn,c + 3rc(λ2

c − 4r2
c )Ci

Mn,c

λ2
c(3rc − λc) − 4r3

c

(2.46)

for dispersoids and constituent, respectively. Here λd and λc are the average distance
between dispersoids and constituent (as illustrated in Figure 2.8b), and are approximated
by:

λd =
( 6

πNd

)1/3
(2.47)

λc =
( 6

πNc

)1/3
(2.48)

In Equation 2.45 and 2.45 C0
Mn,d and C0

Mn,c is the Mn solute concentration when all the
dispersoids or constituents, respectively, are dissolved (Illustrated in Figure 2.8a), and
can be expressed by [6]:

C0
Mn,d =

8r3
dCp

Mn,d + (λ3
d − 8r3

d)CMn

λ3
d

(2.49)

C0
Mn,c =

8r3
cCp

Mn,c + (λ3
c − 8r3

c )CMn

λ3
c

(2.50)

where CMn is the overall solid solution content of Mn, given by the mass balance:

CMn =
(C0

Mn + C0
Fe)λ3

c − 8Cp
Mn,cr

3
c − 8Nd

Nc
Cp

Mn,dr3
d

λ3
c − 8r3

c − 8Nd

Nc
r3

d

(2.51)

where C0
Mn and C0

Fe are the nominal alloy concentrations of Mn and Fe (not to be
confused with C0

Mn,d and C0
Mn,c, which are the solute concentration when all dispersoids

and constituents, respectively, are dissolved), given as input in the element file.

2.5.5. Phenomenological model
Experimental evidence suggests that precipitation of dispersoid during back annealing
can not be properly described by the precipitation model described above. This can be
seen from the experimental data presented in the doctoral thesis of Lok[6]. The source
of this discrepancy is currently unknown, but several possible explanations are presented
by Lok[6].

Due to the unknown source of the discrepancy between the simulated results and the
experimental data a ”phenomenological model” was introduced into Precipal, based on
the model presented by Lok. In this model nucleation of dispersoids is simplified as
site-saturation nucleation, with no incubation time (i.e all nucleation at t = 0). The
number of dispersoids is thus constant, and is provided as an input parameter based on
experimental data[6].
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In the phenomenological model two empirical fitting parameters are introduced into
the growth equations for dispersoids and constituent, n, and θ, leading to the following
expression for the growth rates:

dr

dt
= θn−1

(
1
rn

− 1
rn

max

)(
D

cp
Mn − ceq

i

)
(2.52)

where rmax is given by:

rmax = λ

2

(
ci

0 − ceq
i

cp
Mn − ceq

i

) 1
3

(2.53)

The fitting parameters for the undeformed material θu
d , and θu

c , are expressed as a
function of the number of dispersoids, Nd, and the temperature, T , respectively. The
reason for the dependence on number of dispersoids can be seen by integration of Equation
2.52 without the r−m

max term by assuming that CMn >> ceq
i , and thus also r << rmax (this

assumption is valid for low t), and combining with the expression for volume fraction of
dispersoids (Eq. A.2) [6]:

f = 4π

3 r3N = 4π

3

(
(n + 1)θn−1Dt

cp
Mn − ceq

i

)
N (2.54)

solving for θ gives the following proportionalities for constant T and N , respectively
[6]:

θ(N) ∝ N− 1
3

(
n + 1
n − 1

)
(2.55)

θ(T ) ∝
(

D(T )
cp

Mn − ceq
i (T )

) −1
n−1

(2.56)

The number of constituents is constant for all simulations in such a way that θu
c can

be independent of Nc, and SEM measurements indicate that the temperature has a small
impact on precipitation of dispersoids[6]. This leads to the Nd dependence for θu

d and T
dependence for θu

d as shown in Table 3.4 (see Section 3.4.2, with the exponential term
originating from the Arrhenius equations for D and ceq

i ).
The determination of the fitting parameters are explained in Section 3.4.2.

2.6. Coupling of Alsoft and Precipal
Precipal and Alsoft are coupled through their external parameters. The external param-
eters in Precipal, fraction recrystallized and subgrains size, are now calculated by Alsoft,
and the external parameters in Alsoft, Zener-drag and effective solid solution concentra-
tion, are now calculated by Precipal (it should be noted that no Zener-drag is actually
calculated in Precipal, but rather information about particle distribution and sizes are
transferred to Alsoft where this information is used to calculate the Zener-drag).

The coupling is carried out by a third program, Alprec, which creates Alsoft and Precipal
object instances, and solves the two sets of differential equations simultaneously. In these
objects the reference to the function for getting the external parameters are changed to
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Figure 2.9.: Overview of the coupling between Alsoft and Precipal. The red arrows in-
dicate the parameters shared by the coupling. Zener-drag (PZ) and solid
solution concentration (Css) from Precipal to Alsoft, and fraction recrystal-
lized (X) and subgrain size (δ) from Alsoft to Precipal.

functions in Alprec which retrieves the calculated values for the external parameters from
either Alsoft or Precipal. An overview of the program structure is shown in Figure 2.9.
Standard input parameters for Precipal and Alsoft are used, as shown in Appendix C.

The input is handled with separate input files for Alsoft and Precipal (the same input
file as when the programs are run separately), and shared element and treatment files.
The treatment file now only contains the time and temperature for the annealing process,
as the other external parameters are calculated by the coupling. The element file is
identical to the one used by Alsoft and Precipal. Two separate output files are produced,
containing the same parameters as when the models are executed separately.

The advantage of doing the coupling in this way is that only minor changes to Alsoft are
necessary, i.e it can still be executed and further developed independently. The changes
done to the Alsoft code are documented in Appendix B. Precipal was developed with
regard to the coupling, so no changes to the program was necessary.
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3. Simulations
In this chapter results from simulations will be presented. In the first two sections the new
Python implementation of Precipal is compared with the original Fortran implementation,
while in Section 3.3 the effect of different input parameters on Precipal are presented(i.e
a parameter sensitivity test). In Section 3.4 Precipal simulations are compared with
simulations performed by Lok[6]. Section 3.5 presents simulation results form the coupling
of Precipal and Alsoft, and compares these results with experimental data.

All Precipal simulations are, if not otherwise stated, carried out with the Python im-
plementation, and a standard set of reference input parameters presented in Appendix
C.1. This input represents an undeformed Al-1.11wt%Mn-0.51wt%Fe-0.06wt%Si alloy
annealed at a temperature of 405°C. This input is chosen to be as similar as possible
to the input parameters used in the doctoral thesis of Lok [6, chap 5.3], but with some
discrepancies due to differences in the model (further explained in Section 3.4).

The input used in the Alsoft simulations are described in Section 3.5, and the standard
input used can be seen in Appendix C.2.

3.1. Different evolution equations
Precipal was modified to use two sets of equivalent evolution equations, either the number
density of dispersoids and the volume fraction of dispersoids and constituents (Eq. 2.22,
2.23 and 2.24), or the number density of dispersoids and the radius of dispersoids and
constituents (Eq. 2.22, 2.25 and 2.26).

The original expressions (used in the Fortran implementation) was chosen as they where
easier to solve numerically than the new equations. With the differential equation solver
used in the Python implementation this is no longer a necessity, so the new, easier,
expressions can now be used. However, the original expressions was found to be more
numerically stable with some combinations of input parameters, so the ability to use the
old expressions is kept as an option.

The two sets of differential equations require different initial conditions. The initial
conditions can be converted by using:

r0 =
(

3f0

4πN0

)1/3

(3.1)

where r0 is the initial particle radius, f0 is the initial particle volume fraction, and N0
is the initial number density of particles.

Table 3.1 shows equivalent initial values for both set of equations, and Figure 3.1
compares results calculated with the two equation sets. As expected and argued the
results are identical. This implies that any of the two variants can be interchangeably
used.
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Figure 3.1.: Comparison between the two sets of differential equations, volume fraction of
particles (evEq = 0), and radius of particles (evEq = 1); with initial conditions
from Table 3.1.

Table 3.1.: Equivalent input parameters for the two sets of differential equations. Calcu-
lated with Equation 3.1.

Variable Value Unit
Nd0 0 1/m3

Nc 6.87×1015 1/m3

fd0 0 1
fc0 0.0404 1

rd0 0 m
rc0 1.12×10−6 m
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3.2. Validation of the Python code vs original Fortran 77 implementation of Precipal

3.2. Validation of the Python code vs original Fortran 77
implementation of Precipal

The original implementation of the Precipal model was developed in Fortran 77. In this
thesis the program was rewritten in Python 2.7. The motivation for reimplementing
Precipal in Python was to make it easier to couple Precipal with the softening model
Alsoft (which is a Python application). The conversion was done such that the original
input files could still be used.

Some changes was done to the Precipal model during the conversion, most notably
the Fortran 77 version of Precipal uses a different expression for the volume fraction of
dispersoids:

dfd

dt
= X

(
4πr2

dsdNdvd(DL
Mn) + 4π(ηr∗)3

3 jd(DL
Mn)

)

+ (1 − X)
(

4πr2
dsdNdvd(Deff

Mn ) + 4πηr∗3

3 jd(Deff
Mn )

) (3.2)

The dispersoid radius, rd, has been replaced with a constant, η, set to 1.05, multiplied
by the critical radius for nucleation, r∗, given by Equation 2.35. This expression was used
to make the differential equation problem easier to solve, but it is not necessary with the
modern differential equation solver used in the Python implementation.

Figure 3.2 shows Precipal simulations compared with results from Fortran 77 simula-
tions performed by Friis[4]. The Precipal simulations are using the same input parameters
as the Fortran 77 simulations, input presented in the documentation of the Fortran 77
implementation[4] (not the same as used in the rest of this thesis).

In order to test the accordance between the two implementations, the Python im-
plementation was modified to use the same expression for the evolution of the volume
fraction of dispersoids. When this expression is used the results are identical. When the
new expression is used the results are mostly similar, but the simulated number density
of dispersoids are somewhat lower, and the shape of the volume fraction of dispersoids
and solid solution concentration curves differ some (but well within the uncertainty of the
model).

The conclusion from these results is that the Python implementation produces the same
results with the same input as the old Fortran 77 implementation.

3.3. Parameter sensitivity

In this section the effect of different input parameters in the Precipal Mode are explored.
One parameter is varied, while all other parameters are kept constant between simula-
tions. The motivation for this sensitivity study are the uncertainty in many of the input
parameters, and by performing this test the parameters having the most effect on the
simulation results can be identified.

The standard input parameters in Appendix C are used.
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Figure 3.2.: Comparison between Fortran and Python implementations of Precipal.
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3.3. Parameter sensitivity

3.3.1. Prefactor for equilibrium solubility (Cs)

The value for the prefactor for equilibrium solubility, Cs (Eq. 2.44) is based on the value
used by Lok[6], as explained in Section 3.4. However due to the challenges of correctly
converting the values used by Lok into the correct units used in Precipal (as explained in
Sec. 3.4) the numerical value for Cs is not unambiguously defined, and an sensitivity test
of this parameter seems therefor reasonable.

The results from simulations with varying prefactor for equilibrium solubility are shown
in Figure 3.3a, 3.3c and 3.3e. A higher prefactor gives slower precipitation, and the Mn
concentration in solid solution at the end increases (the equilibrium solubility). A small
increase in the prefactor results in a large decrease in the final number of dispersoids. A
increase in Cs from 20 to 50 atomic fraction leads to a decrease in the final number of
dispersoids of three orders of magnitude. The final volume fraction of dispersoids also
decreases, but only from 1.1 to 0.9 %.

3.3.2. Interface energy modifier (ξ)

The Interface energy modifier, ξ (Eq. 2.38) is a dimensionless parameter used to greatly
simplify the complex interaction between a precipitate and a dislocation, and due to this
its numerical value is inherently uncertain. A sensitivity study is therefor in order.

Results from simulations with varying interface energy modifier can be observed in
Figure 3.3b, 3.3d and 3.3f. A decrease in the interface energy modifier leads to longer
incubation time before the number of dispersoids start to grow, and the final number of
dispersoids increases by about two orders of magnitude when ξ is decreased from 1 to
0.6. The initial and final concentration of Mn in solid solution is unchanged, but starts to
drop later at higher values. The final volume fraction of dispersoids is almost unchanged.

3.3.3. Mn concentration in dispersoids and constituents (Cp
d , Cp

c )

The Mn concentration inside the dispersoids should in principle be given by the stoichio-
metric composition. As explained in Section 3.4 this does not correspond with the values
used by Lok. Due to this a sensitivity study was performed.

Figure 3.4 shows results from simulations with varying Mn concentration in dispersoids
(Cp

d) and constituents (Cp
c ). Variation of the Mn concentration in the dispersoids has

limited effect on the Mn concentration in solid solution, and the number of dispersoids,
but the the volume fraction of dispersoids decreases with increasing Cp

d .
Variation of the Mn concentration in constituents (Cp

c ) has a larger impact on the
results than variation of the Mn concentration in the dispersoids(Cp

d). The Mn con-
centration in solid solution, the final number of dispersoids and the volume fraction of
dispersoids decreases with increasing Cc, and the incubation time before the dispersoids
starts to grow increases. The final number of dispersoids decreases with about 3 orders
of magnitude, while the volume fraction of dispersoids goes from 1.6 to 0.3 %. The final
Mn concentration in solid solution is unchanged.
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Figure 3.3.: A sensitivity study of the prefactor for equilibrium solubility of Mn, Cs, (left
figures) and the interface energy modifier, ξ (right figures). Cs is stated in
atomic fraction.
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Figure 3.4.: A sensitivity study of Mn concentration in dispersoids, Cd, and in con-
stituents, Cc. Both concentrations are stated in at%.
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3.3.4. Initial number of dispersoids (Nd0)
The value for the initial number of dispersoids, Nd0, is not explicitly stated in Lok[6] for
all his simulations. Due to this a sensitivity study of this parameter is also appropriate.

Results from simulations with different number of initial dispersoids is shown in Figure
3.5. Varying the initial number of dispersoids has limited effect on the precipitation
kinetics The only change is the initial number of dispersoids, and after precipitation
starts the development in the number of dispersoids is the same for all three cases. The
variations have no effect on the volume fraction of dispersoids, or the Mn concentration
in solid solution.

3.3.5. Annealing temperature (T )
The temperature at which the annealing is performed is expected to have a large impact
on the precipitation course, and one of the main goals of Precipal is to be able to predict
the effects of different annealing temperatures. Due to this simulations with different
annealing temperatures where carried out.

Undeformed material

In Figure 3.6a the Mn concentration in solid solution, number of dispersoids and volume
fraction of dispersoids from Precipal simulations at different temperatures from 350 to
450 °C for undeformed (reference) material are shown. Higher annealing temperatures
leads to higher equilibrium solubility (as expected based on the Arrhenius temperature
dependence, Eq. 2.44), but also a longer precipitation duration (i.e the precipitation
starts earlier, and ends later, at higher temperatures). The number of dispersoids at the
end shows a high temperature dependence, with the volume fraction changing from 1020

at 350 °C, to 1015 at 450 °C. There is also a large reduction in the volume fraction of
dispersoids, with almost 1.2 volume % dispersoids at 350 °C, to less than 0.02 volume %
at 450 °C. This implies that the radius of the dispersoids has also been reduced.

Deformed material

In Figure 3.6b the Mn concentration in solid solution, and number and volume fraction of
dispersoids, from Precipal simulations at different temperatures, from 350 to 450 °C for
deformed material, is shown. The recrystallization kinetics used are based on experimental
recrystallization curves from Lok[6], and are indicated by broken lines in the figure.

The overall trends are the same as for the undeformed material, (but shifted towards
earlier precipitation), but with some additional interesting effects due to the introduced
recrystallization course:

There is a large shift in the precipitation curves towards later precipitation when recrys-
tallization occurs before the onset of precipitation (T = 450 and 420 °C). The precipitation
course now shifts back to the same times as for the undeformed case. This is reasonable
since the only difference between the simulations is fraction recrystallized, X, which now
becomes the same (i.e 1) before any precipitation occurs.

When recrystallization occurs during precipitation (T = 410 °C) the precipitation stops
for some time before it continues (i.e a step is introduced into the curves). The precip-
itation resumes when precipitation in undeformed material would have happened, and
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Figure 3.5.: A sensitivity study of the initial number of dispersoids, Nd0.
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Figure 3.6.: Mn concentration in solid solution, the number of dispersoids, and volume
fraction of dispersoids at different annealing temperatures for undeformed(left
figures) and deformed (right figures) simulated with the physical precipitation
model. The broken lines are fraction recrystallized.
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3.4. Comparison of Precipal simulations with simulations by Lok

follows the same precipitation course as the undeformed case during the rest of the an-
nealing process.

3.4. Comparison of Precipal simulations with simulations
by Lok

In this section simulation results from Precipal are compared with the simulation results
presented in the doctoral thesis of Z. J. Lok[6]. Since the Fortran 77 version of Precipal,
and thus also the Python implementation, are based on equations presented in this doc-
toral thesis, it was expected that the results presented would be reproduceable in Precipal,
however this turned not to be the case.

Table 3.2 shows the input parameters used in the simulations presented by Lok in
his thesis, and in the corresponding Precipal simulations. Lok states all concentrations
in wt%, while the input for Precipal are in at%. It is unclear how Lok reached the
concentrations in wt% that he states, because the values do not correspond with the
stoichiometric compositions of the particles.

In Precipal on the other hand the Mn concentration in the dispersoids and constituents,
Cp

d and Cp
c , are the stoichiometric concentrations. Therefore these values do not corre-

spond with the values used by Lok. The prefactor for the equilibrium solubility of Mn in
solid solution, Cs (Eq. 2.44), is based on the value used by Lok (named C0,Mn in Lok),
but converted into at% based on the nominal alloy composition.

Table 3.2.: Input parameters used in Figure 5.4 from Table 5.2 in Lok[6, p. 90-91], and
corresponding values used in Precipal. Parameters with different units are
colored red.

parameter Lok Precipal
δSGB 4.0496×10−10 m 4.0496×10−10 m
σ 0.324 Jm−2 0.324 Jm−2

νAl 1.66026×10−10 m−3 1.66026×10−10 m−3

a0 4.0496×10−10 m 4.0496×10−10 m
Cp

d 42.37 wt% 18.75 at%
Cp

c 28.83 wt% 14.286 at%
Cs 7.716×103 wt% 3821 at%
DL

0,Mn 1.04×10−2 m2s−1 1.04×10−2 m2s−1

Nc 6.87×1015 m−3 6.87×1015 m−3

rc 1.1211×10−6 m 1.1211×10−6 m
Qc,Mn 7.15×10−4 Jmol−1 7.15×10−4 Jmol−1

QL
D,Mn 2.109×105 Jmol−1 2.109×105 Jmol−1

V α
m 9.68×10−6 m3mol−1 9.68×10−6 m3mol−1

3.4.1. Physical Model
In this section simulations performed with the physical precipitation model is compared
with the simulation results presented in Lok[6]. The most relevant input parameters are

33



3. Simulations

presented in Table 3.2, while the remaining parameters can be found in Appendix C.

Undeformed material with normal nucleation

This is the most basic case with the fraction recrystallized, set to one (X = 1, the reference
case). This input corresponds with the simulations presented in Figure 5.4 (a) in Lok[6,
p. 91].

Figure 3.7a compares the Mn concentration in solid solution, number density of disper-
soids and volume fraction of dispersoids, simulated with the physical precipitation model,
with relevant simulations performed by Lok.

The initial and final Mn concentration coincides with Lok’s results, but the reaction
starts later with Precipal .

The difference in the number of dispersoids is more pronounced. The final number of
dispersoids from Precipal is about four orders of magnitude lower than the results of Lok.
It should be stated that Lok does not state the initial number of dispersoids, but it is
assumed to be zero. Precipal was run with different number of initial dispersoids, but
there was no difference in the final number of dispersoids (see Sec 3.3.4). As for the Mn
concentration, it can also here be seen that the reaction starts later in Precipal.

The final volume fraction of dispersoids is about half the amount with Precipal com-
pared to Lok’s results. It can also here be seen that the reaction starts later in Precipal.

Simulations with different values for the parameters converted from wt% to at% were
performed, for instance with the conversion based on nominal alloy composition, and sim-
ulations with all parameters in wt% (i.e no conversion of the parameters), but none of this
gave results that coincided more closely with Lok’s results than the results presented here.
The cause of the discrepancy between Precipal simulations, and the results by Lok has un-
fortunately not been identified. However with confidence in the Precipal implementation
and the present choice of input parameters the simulation work was continued.

Undeformed material with site-saturation nucleation

In this case the input parameters are the same as for the undeformed material except that
site-saturation nucleation is used, which means that the number of dispersoids is set to zero
in the beginning, and after an incubation time, all dispersoids nucleate simultaneously.
In this case the incubation time is 300 min, and the number density of dispersoids is
2.74×1017 1/m3. These input parameters corresponds to the ones used in Figure 5.4 (b)
in Lok[6, p. 91].

Figure 3.7b compares Mn Concentration in solid solution, number density of dispersoids
and volume fraction of dispersoids, respectively, from Precipal simulations, and the results
from Lok’s thesis. The short simulation time presented (i.e equilibrium is not achieved)
is due to Lok only presenting results for the time span shown here.

The solid solution concentration and number of dispersoids coincides well with Lok’s
simulations. The small discrepancies between the curves in the Nd plots is most likely
due to small errors introduced from copying the results from Lok’s figures. The volume
fraction of dispersoids starts out similarly (at fd = 0), but strongly deviates as the
simulation continue.
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Deformed material with normal nucleation

Here the input parameters used are the same as for the undeformed case, with the excep-
tion of volume fraction recrystallized (X) which is now set to values following an exper-
imental recrystallization curve by Lok[6]. The results form this simulation are shown in
Figure 3.8a. In contrast to the undeformed case the precipitation simulated by Precipal
occurs earlier, and the final number of dispersoids are higher, than in Lok’s simulations.
The difference in volume fraction of dispersoids on the other hand are about the same.

The solid solution concentration is more dependent on the fraction recrystallized in
Precipal, with the Css shifting about 100 min for Precipal, while for Lok the shift is about
10 min (both towards earlier precipitation).

The final number of dispersoids in Precipal is unchanged compared with the undeformed
simulations, while for Lok’s simulations the final number of dispersoids drops from about
6 × 1022 to 2.4 × 1020 1/m3.

The volume fraction of dispersoids are unchanged between the undeformed and de-
formed case both for Precipal simulations, and for the Lok’s simulations.

Deformed material with site-saturation nucleation

Here the same input parameters as for the undeformed case with site-saturation nucleation
is used, except that recrystallization is introduced, based on experimental recrystallization
curves by Lok[6]. Figure 3.8b shows the results from these simulations. The degree
of consistency between Lok and Precipal is the same as in the undeformed case, with
solid solution concentration and number of dispersoids being consistent, while the volume
fraction of dispersoids deviates,
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Figure 3.7.: Comparison between simulations from Precipal at 405°C of an undeformed
material and the results presented in the doctoral thesis of Z. J. Lok[6, p.
91]. The incubation time for site-saturation nucleation is 300 min, and the
number of dispersoids is 2.74×1017 1/m3.
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Figure 3.8.: Comparison between simulations from Precipal at 405°C of an deformed ma-
terial and the results presented in Figure 5.4 (c) (left figures) and (d) (right
figures) in the doctoral thesis of Z. J. Lok[6, p. 91]. The incubation time
for site-saturation nucleation is 1 min, and the number of dispersoids are
1.32×1018.
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3.4.2. Phenomenological Model
The principles of the phenomenological model, and the motivation for its introduction are
explained in Section 2.5.5. Here nucleation of dispersoids is simplified as site-saturation
nucleation, with no incubation time (i.e all nucleation at t = 0). The number of dispersoids
is thus constant, and is provided as an input parameter based on experimental data from
Lok[6]. The number of dispersoids at different temperatures can be observed in Table 3.3.

The parameters where fitted to the same experimental data as in Lok[6], but since
Precipal uses atomic fraction instead of weight percent as concentration units, the actual
values of the fitting parameters used are different, as shown in Table 3.4.

Undeformed material

The undeformed material is assumed to be completely recrystallized, i.e X = 1. The
fitting was performed against the same experimental data at the same temperatures as
done by Lok (volume fraction of dispersoids and solid solution concentration at 375 and
405 °C), and compared with experimental data at 405 °C due to this being the only
temperature (other than the fitting temperatures) with experimental data for volume
fraction of dispersoids.

Results from phenomenological Precipal simulations for the undeformed reference ma-
terial is shown in Figure 3.9. Here the markers represents experimental data, with the
fitting done against the square markers. The simulated results match the experimental
data well, except for the volume fraction of dispersoids at 405 °C, which is underestimated
by the simulation. This is the same results as obtained by Lok’s precipitation model [6,
chap. 5.4].

Deformed material

The deformed material uses experimental recrystallization data as an external input pa-
rameter[6]. The fitting was also here done against the same variables at the same temper-
atures as done by Lok; Volume fraction of dispersoids and solid solution concentration,
at 405 °C. Note that here the fitting is done at only one temperature.

Results from the phenomenological Precipal simulations for the deformed material can
be observed in Figure 3.10. The solid solution concentration curve nicely follows the
experimental data at 405 °C, also at the unfitted data points. The volume fraction of
dispersoids on the other hand fails to match the experimental data at the unfitted data
point. At 425 °C the simulated solid solution concentration match the experimental data,
while the volume fraction of dispersoids is underestimated. At 375 °C the solid solution
starts to drop too early (i.e precipitation starts to early). This can also be seen in the

Table 3.3.: Number of dispersoids and initial dispersoid radius used in the phenomeno-
logical model.

Temperature(◦C) Nd (1/Nd) rd0(nm)
375 7.18×1017 12.9
405 2.74×1017 20.0
425 1.46×1017 25.0
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Table 3.4.: Fitting parameters used in the Phenomenological model. The superscript d
and c means deformed and undeformed, respectively. The subscripts d and c
means dispersoids and constituents, respectively.

Parameter Lok Precipal
n 6 6
θu

d (Nd) 55.7N−0.467
d wt% 1

5 m 3.6704N−0.467
d (at. frac.) 1

5 m
θd

d 1.9×10−7 wt% 1
5 m 2.7790×10−8 (at. frac.) 1

5 m
θu

c (T ) 3.24×10−9exp
(

5.470×103

T

)
wt% 1

5 m 2.1350×10−10exp
(

5.470×103

T

)
(at. frac.) 1

5 m
θd

c 3×10−6 wt% 1
5 m 1.3970×10−7 (at. frac.) 1

5 m

volume fraction of dispersoids, which in addition to starting to rise too early, also becomes
much higher than the experimental value.

The simulated Precipal results are the same as the results obtained by Lok in his
simulations[6, chap 5.4] (i.e with the same shortcomings as Precipal).

3.5. Coupling of Precipal and Alsoft
In this section results from Alsoft simulations and results from the coupling between Alsoft
and Precipal (as described in Section 2.6) will be presented.

The input parameters used by Precipal are the same as in Section 3.4.1 and 3.4.2 for
the physical and phenomenological model, respectively.

The input used by Alsoft are based on the input used by Wang [24], which are based on
experimental data from almost the same alloy as the one used by Lok (Al-1Mn-0.5Fe-0.1Si
in Wang, Al-1.1Mn-0.51Fe-0.06Si in Lok). The pre-annealing treatment (in terms of i.e
cold rolling) is different between Wang and Lok. The material used by Wang is deformed
to a strain of 3, while the material used by Lok is deformed to a strain of 2. In order to
be more consistent with the experimental data from Lok (on which the Precipal input is
based) the initial subgrain size was changed to 1 µ m, and the simulated grain size and
recrystallization kinetics was fitted to experimental data, as explained in the next section.
The standard input used can be observed in Appendix C.2.

3.5.1. Fitting of grain size and recrystallization kinetics to
experimental data

The grain size simulated by Alsoft was fitted to the experimental grain size data at T=450
°C shown in Figure 3.11a (i.e a condition assumed to be unaffected by precipitation). The
experimental grain size was calculated by dividing the length of the lines by the number
of grains crossed by the lines. The results from this are shown in Table 3.5. It must be
noted that the calculated grain size is not very accurate, as the resolution of the image is
poor.

The simulated grain size was fitted by adjusting the constants in the expressions for
the number of nucleation sites (Eq. 2.10, 2.11 and 2.16), CP SN , CCube and CGB. The
parameters were selected so that the relative amounts of each nucleation site type was
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Figure 3.9.: Volume fraction of dispersoids and Mn concentration in solid solution at differ-
ent temperatures. The lines are from phenomenological Precipal simulations
of an undeformed sample (i.e X = 1), while the dots are experimental data
from Lok[6].
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Figure 3.10.: Volume fraction of dispersoids and Mn concentration in solid solution at
different temperatures. The solid lines are from phenomenological Precipal
simulations of an deformed sample (with recrystallization kinetics as input),
while the markers are experimental data from Lok[6]. The broken lines
are fraction recrystallized. The simulations are fitted against the square
markers.
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(a) T=450 °C (b) T=405 °C

Figure 3.11.: The recrystallized grain structure after annealing [6]. The grains where
counted along the indicated lines.

Table 3.5.: Number of grains along the lines in Figure 3.11, and the corresponding grain
size.

green red yellow Grain Size (µm)
# grains along vertical line 26 25 21 74

T=450 # grains along horizontal line 18 12 19 133
average 103
# grains along vertical line 14 9 10 162

T=405 # grains along horizontal line 2 3 3 813
average 487

unchanged. The parameters found to reproduce the experimental grain size at 450 °C
are: CP SN = 0.0247, CGB = 5.0699 × 10−3 and Ccube = 85.517.

The simulations were also fitted to an experimental recrystallization curve at 450 °C
[6, p.59]. This was achieved by tuning the mobility for the growth rate of recrystallized
grains, by changing the prefactor in the expression for the mobility, M0 (see Sec. 2.4.4,
Eq. 2.21). The mobility prefactor found to correspond with the experimental data was
M0 = 105 m4/s (consistent with what was also used by Wang [11]).

3.5.2. Recrystallization kinetics
Figure 3.12 shows fraction recrystallized at different temperatures for uncoupled Alsoft
simulations, and Alsoft coupled with the physical and phenomenological precipitation
model, together with experimental data from Lok[6].

The uncoupled Alsoft simulations shown in Figure 3.12a corresponds well with the
experimental data at T=450 °C and T=425 °C, but the correlation decreases with de-
creasing temperature. The uncoupled simulated recrystallization curves are too fast at
lower temperatures.

The Alsoft simulations coupled with the physical precipitation model (Fig. 3.12b) are
at T=450 °C and T=450 °C displaced some towards faster recrystallization times com-
pared with the uncoupled simulations. The only parameters that are different in the
recrystallization model during the coupling are the Zener-drag and the solid solution con-
centration. For the uncoupled case the Zener-drag is zero for the entire recrystallization
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Figure 3.12.: Fraction recrystallized at different temperatures. The solid lines are from Al-
soft and Alprec simulations, while the dashed lines are experimental recrys-
tallization curves and the dash-dotted lines are experimental solid solution
concentrations[6].
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Figure 3.13.: Simulated Grain size at the end of the simulations, and experimental grain
size from Lok[6].

.

duration, while in the coupled case the Zener-drag starts out with a small contribution
from the constituent particles, before later receiving a larger contribution from the dis-
persoids. This would move the recrystallization curve in the other direction (i.e towards
later recrystallization) compared with the uncoupled case, so the difference in Zener-drag
is clearly not the reason for the shift in the recrystallization curve. The solid solution
concentration is constant at 0.97 % for the uncoupled case, while for the coupled case it
starts out at 0.47 % before dropping when precipitation starts. This is the cause of the
shift in the recrystallization curve towards earlier precipitation during the coupling, as
lower solid solution concentration leads to a higher mobility of the boundary of a growing
recrystallized grain, and thus earlier recrystallization (see Sec. 2.4.4, and Eq. 2.21).

At T=425 °C the recrystallization is stopped after about 10% recrystallized. At lower
temperatures there are no recrystallization.

The recrystallization curves from Alsoft coupled with the phenomenological model (Fig.
3.12c) are very similar to the uncoupled case for all temperatures, but in this case shifted
somewhat towards faster recrystallization. The reason for this being the same as for the
simulations coupled with the physical precipitation model.

Overall, the coupling of Alsoft with Precipal has limited effect on the simulated re-
crystallization kinetics, except when the recrystallization is halted completely by the
Zener-drag.

3.5.3. Grain size
Figure 3.13 shows the grain size at the end of the simulations together with experimental
grain sizes. There are no change in the simulated grain size between the different precip-
itation models, or at different temperatures, except for the physical case at T=405 °C.
This case was not completely recrystallized (Fig. 3.12b), and because the Alsoft model
uses site-saturation nucleation (all nucleation occurs at t=0), the number of grains is the
same as at the other temperatures, while the recrystallized volume fraction is smaller,
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resulting in smaller grains (ref. Eq. 2.9). Site saturation nucleation is also the reason for
the lacking temperature dependence in the simulated grain sizes, as all nucleation occurs
at t=0, before annealing commences, and is determined by the deformed state alone.

An initial Zener-drag caused by constituent particles have in principle an effect on the
number of nucleation sites (Eq. 2.10, 2.11 and 2.16), but due to the large size of the
constituent particles the contribution is negligible.

3.5.4. Comparison with experimental data
Figure 3.14 shows simulated and experimental fraction recrystallized and solid solution
concentrations, as well as the Zener drag, at T=405 °C and T=450 °C for uncoupled
Alsoft simulations, and Alsoft simulations coupled with the physical and phenomenological
precipitation model.

For the uncoupled cases the Zener drag and solid solution concentration are constant,
as they are given as external parameters.

In the cases coupled with the physical precipitation model the precipitation starts too
early compared with the experimental data. This can be seen both at T=405 °C and
T=450 °C. It can also be observed that after precipitation starts, the precipitation is too
fast and abrupt, compared with the experimental data. In the physical case there are
no recrystallization at T=405 °C, this can be explained by the high Zener drag (approx.
0.4 MPa after 1 minute) before recrystallization gets a chance to start. The Zener drag
starts at a low value, with the constituent particles as the principal contributor, but after
precipitation starts the Zener drag quickly rises to a much higher value caused by the
precipitates.

When the precipitation occurs before recrystallization (as in the physical case at T=405
°C), the precipitation can have a restraining effect on the recrystallization, but often the
simulated recrystallization kinetics are so fast that the material is fully recrystallized be-
fore the onset of precipitation (as in the physical case at T=450 °C). The initial Zener-drag
caused by the constituents are too small to have a significant impact on the recrystalliza-
tion kinetics.

In the cases coupled with the phenomenological precipitation model the solid solution
concentration follows the experimental data. The simulated Zener drag is much lower
than in the physical case, so in this case the material is fully recrystallized at T=405 °C.

Precipitation

Figure 3.15 shows radius, volume fraction and number density of dispersoids and con-
stituents at T= 405 and 450 °C for Alsoft simulations coupled with the physical and
phenomenological precipitation model.

The radius of the dispersoids and constituent are generally larger in the phenomeno-
logical cases. The volume fraction of dispersoids are larger in the physical model simula-
tions, while for the constituents this is reversed, with the volume fractions larger for the
phenomenological simulations compared with the physical simulations. The number of
dispersoids are higher in the physical model simulations compared with the phenomeno-
logical model simulations. This is the reason for the for the lower Zener-drag in the
phenomenological model simulations (as discussed in Sec. 3.5.4), as lower amount of
larger particles results in a lower Zener-drag (Eq. 2.2).
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Figure 3.14.: Simulated and experimental fraction recrystallized and effective solid solu-
tion concentration, and simulated Zener drag at T=405 °C (left figures), and
T=450 °C (right figures). Experimental data from [6].
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For the physical model simulations the radius of the dispersoids are lower at T=405
°C than at T=450 °C. This is reversed for the volume fraction of dispersoids, where the
highest values are found at t=405 °C. Since the radius is larger, and the volume fraction
lower at 450 °C the number of dispersoids also has to be lower at 450 °C compared with
405 °C. For the phenomenological model simulations both the radius and volume fraction
of dispersoids are lower at T=405°C, and the number of dispersoids are the same at both
temperatures (due to site saturation nucleation).

For the constituents, both the radius and the volume fraction are larger at T=405 °C,
and the number of constituents are of course the same for all simulations, as this is given
as an input parameter and treated as a constant.

3.5.5. Artificial Zener drag
The coupling between the recovery and recrystallization model, Alsoft, and the precip-
itation model, Precipal, failed to reproduce the experimental data from Lok[6]. The
simulated recrystallization still starts too early, as shown in Section 3.5.2. One reason
for this discrepancy could that the effects of the Zener drag on nucleation is underesti-
mated by the current recrystallization nucleation model. With site-saturation nucleation
of recrystallization the effect of all precipitation taking place after t = 0 (i.e concurrent
precipitation) is completely neglected.

In order to find out how much ”extra” Zener-drag is required to reproduce the exper-
imental recrystallization curves the recrystallization curve was first fitted at T=450 °C
(with the mobility prefactor, as explained in Sec. 3.5.1), before the temperature was
changed to 405 °C, and an extra Zener-drag was added (as explained in Appendix B.2),
until the simulated recrystallization curve reproduced the experimental curve.

The results from these simulations are shown in Figure 3.17. When there is no extra
Zener-drag at T=405 °C the simulated recrystallization curve is, as expected, to fast.
When it is increased to 100 kPa the material will not recrystallize fully because of the
high Zener-drag. In order to be able to increase the Zener-drag during nucleation, and
still have recrystallization the Zener-drag was set to Zero after the onset of recrystalliza-
tion (i.e only Zener-drag during nucleation), as explained in Appendix B.2. When the
artificial Zener-drag was set to 230 kPa the simulated recrystallization curve matches the
experimental curve. If the Zener-drag is set even higher the recrystallization will become
slower than the experimental.

Final grain size for the same simulations are shown in Figure 3.16. The artificial
Zener-drag up to 100 kPa has negligible effect on the grain size. With an extra Zener-drag
of 230 and 250 kPa the grain size increases dramatically, to about 2 and 5 mm, respectively.
The reason for this dramatical increase can be seen in the equations for the number of
nucleation sites (Eq. 2.10, 2.11 and 2.16). When the Zener-drag (PZ) approaches the
driving force for recrystallization (PD), the number of recrystallization sites dramatically
decreases, and accordingly the grain size will increase.
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Figure 3.15.: Radius, volume fraction and number density of dispersoids and constituents
at T=405 °and T=450 °C for Alsoft simulations coupled with the physical
and phenomenological precipitation model. The number of constituents are
the same for all simulations.
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Figure 3.16.: Simulated Grain size at the end of the simulations for simulations with
different artificial Zener-drag.
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Figure 3.17.: Fraction recrystallized and solid solution concentration from coupled simu-
lations and experimental data[6], and simulated Zener-drag. PZ0 is an extra
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4.1. Implementation
In this section the challenges met during the reimplementation of Precipal in Python, and
the coupling of Precipal and Alsoft, will be discussed. All comments about performance
are based on simulations run with Python 2.7.5 in 64-bit Windows 8 on an Intel i5-2430M
processor clocked at 2.4 GHz with 4 GB RAM.

4.1.1. Reimplementation of Precipal in Python
The reimplementation of Precipal in Python was carried out successfully, with only mi-
nor changes to the original precipitation model implemented in Fortran 77. The new
implementation produce the same results as the old implementation, this implies that all
validation done to the previous model should also be valid for the new implementation.

There are existing code libraries to facilitate interaction between Python and Fortran
code (e.g F2PY[25]), however the use of these libraries can often be cumbersome, and
the interaction between the programs would become more complex. The way the Python
version of Precipal is implemented makes it easy to couple it with Alsoft, as both programs
are structured in the same way, i.e they are both basically a set of differential equations,
and uses the same format in their respective input and output files.

One downside of the Python implementation compared with the Fortran 77 implemen-
tation could be speed, well optimized Fortran code are generally faster than corresponding
Python code[26]. This problem is partially avoided by the use of the odeint integrator
from the Python library scipy.integrate, which is a wrapper around the differential equa-
tion solver lsoda from the Fortran library odepack, i.e the most performance sensitive part
of the code is still basically Fortran code. Langtangen et.al[26] shows that Python code
with loops implemented in Fortran (i.e the solving of the differential equations) obtain
the same performance as pure Fortran code.

For all the uncoupled Precipal simulations performed in this thesis performance was
not a big issue. All simulations used a reasonable amount of computing time (less than
five minutes at most, majority of simulations took less than 30 seconds).

4.1.2. Coupling of Precipal and Alsoft
As explained in Section 2.6 the coupling of the two models was a relatively simple pro-
cedure, as the programs are structured very similarly. It should however be noted that
some minor changes to the Alsoft code was necessary ( see Appendix B for details). This
means that Precipal can not be coupled to a newer version of Alsoft that does not contain
these changes. It would however be trivial to implement the necessary changes in a new
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version, and the changes would have no effect on Alsofts ability to run separately (i.e
uncoupled).

The performance of the coupled model is acceptable, as the performance sensitive part
(i.e the solving of the differential equations) is handled by a Fortran code, as described in
the previous section. Some combinations of input parameters (use of the phenomenolog-
ical precipitation model especially) can lead to long run times (more than 10 minutes).
This time can however be greatly reduced by adjusting the rtol parameter in the integra-
tor (has to be changed in the Alprec code) which sets the maximum error accepted by the
integrator (odeint). Changing this parameter to higher values can reduce the run time
of the simulations by orders of magnitudes (i.e from over 10 minutes to a few seconds),
without having any noticeable effect on the result. This also fixes some out of memory
errors which can occur during long simulations. The default values used by the integrator
is 1.49012×10−8, while the default value used in Alprec is 1.49012×10−5. For the simula-
tions done in this thesis this value have proved to give satisfactory results in a reasonable
time frame.

4.2. Precipal
In this section discussion regarding uncoupled Precipal simulations are presented.

4.2.1. Sensitivity test
The most uncertain parameters in the sensitivity test performed in Section 3.3 that also
have a major effect on the precipitation is the equilibrium solubility prefactor, Cs, and
the interface energy modifier, ξ. The former should in principle be well defined from ther-
modynamics, however, the thesis of Lok left some uncertainties about the principal value
of this parameter and it is therefor included in the sensitivity analysis. The concentra-
tion inside the dispersoids and constituents also have a large effect on the precipitation,
however these parameters have a clearly defined theoretical value (the stoichiometric con-
centrations), so their values are mostly predetermined. The last parameters investigated
in the sensitivity test, the initial number of dispersoids (Nd0) had only limited effect on
the precipitation.

From the sensitivity analysis it can be seen that tuning of the equilibrium solubility
prefactor, Cs and the interface energy modifier, ε, affect the volume fraction and number
of dispersoids, and the solid solution concentration, in almost the same way, with the
exception of the equilibrium solubility (i.e the final solid solution concentration), which
is only dependent on Cs. This means that Cs can be used to fit the equilibrium solubility
to experimental data, while ξ can be used to adjust the volume density and number of
dispersoids. It is reasonable to fit both these values to experimental data, as they have
no well defined theoretical, and/or easily available, value. A problem that arises with
this approach is that the number density relative to the volume fraction of dispersoids
(and due to the relationship in Eq. A.2 also the radius) can not be changed by these
parameters. One way to change the relationship is to adjust the Mn concentration inside
the dispersoids, Cd, as adjusting this will change the volume fraction of dispersoids, while
not affecting the number density. Using this parameter as a fitting parameter however
is problematic, as it has a very easily calculated theoretical value, i.e the stoichiometric
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concentration. The same can be said about the Mn concentration inside the constituents,
Cs, as changing this value effects the number density and volume fraction of dispersoids,
as well as the initial solid solution concentration, but also this parameter should be set
to the stoichiometric value.

The initial solid solution concentration is decided by the number density and size of
the constituent particles, and the Mn concentration inside the constituents (in addition
to the nominal alloy concentration). The solid solution concentration is relatively easy
to measure, e.g by thermoelectric power (TEP) or hardness tests[6, 7], or calculated
based on thermodynamic data (e.g by the use of the MTDATA software tool)[6]. This
can not, however, say anything about the relation between the size, number density and
volume density of the constituents. To obtain information about this relationship optical
microscopy (mainly for constituents) or scanning electron microscopy (SEM) can be used.

4.2.2. Comparison of Precipal with simulations by Lok

Physical precipitation model

As already mentioned in Section 3.4 the precipitation model in Precipal is based on the
model presented in the PhD thesis of Lok[6], and due to this it was expected that Precipal
would be able to reproduce the results presented in his thesis. As the results presented here
has shown, this was not the case for the physical precipitation model. More simulations
than presented in this thesis was performed in order to try to replicate his results, with
different interpretations of the input parameters presented in his thesis, however, none
of this simulations produced results which corresponded with his results. It is currently
unknown if the problem lies in the input parameters used, or in the implementation of
the precipitation model. It should be noted that Lok’s results also failed to reproduce his
experimental data with the physical model, so it can not be said that his model is more
correct than the current implementation of Precipal.

The physical site-saturation simulations is better in reproducing Lok’s results. This
could imply that the discrepancy between the models are related to the nucleation cal-
culations, however this improved accordance could also simply be due to the loss of one
degree of freedom, i.e the number of dispersoids is now set as a constant input parameter.

It is hard to pinpoint the source of the different results based on the performed simu-
lations. Even though Precipal was not able to reproduce the simulation results presented
by Lok in his thesis, the rest of the work in this thesis was carried out with confidence
in the parameter choices made in this work, and correspondingly the simulation results
produced by Precipal, as it produced the same results as the old Fortran implementation.

It is interesting that for the undeformed material (Fig. 3.7) the current Precipal sim-
ulations give precipitation later than Lok’s results, while in the deformed case (Fig. 3.8)
Precipal starts precipitation before the corresponding simulations made by Lok. This
means that there is a difference in how the variation in precipitation conditions between
the deformed and undeformed is handled by the two implementations. This observation
is not valid for the site-saturation cases, as the Precipal precipitation curves in this case
match the results of Lok.
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Phenomenological precipitation model

As shown in Section 3.4.2 the phenomenological model in Precipal reproduces Lok’s phe-
nomenological simulations. However, as already mentioned the fitting parameters used in
Precipal are numerically different from the values used by Lok, mainly because Precipal
uses at %, while Lok in his thesis states all concentrations in wt %. The values of the
fitting parameters used in Precipal were obtained by trial and error. Because of this there
is no clear correspondence with Lok’s fitting parameters except that both Precipal and
Lok produce the same results with their respective set of fitting parameters.

The phenomenological model is able to reproduce the experimental data at a given
temperature. This is a clear improvement compared with the physical model which failed
to reproduce experimental data at any temperature. Especially the evolution of the
solid solution concentration is well described by the phenomenological model, while in
the physical model the concentration drops too rapidly. At temperatures other than
the fitting temperature, however, also the phenomenological model fails to reproduce the
experimental data in a satisfactory manner. The usefulness of the phenomenological model
is because of this, questionable at best, as it can not be used to predict the effect different
temperatures will have on the precipitation course. It is however useful for simulating
the precipitation course during coupling with Alsoft, as it does produce realistic results
at a given temperature, and can thus be used to test the effects of a realistic change in
the solid solution concentration and the number and size of the dispersed particles during
recrystallization.

4.3. Coupling of Precipal and Alsoft
In this section discussions regarding coupled Precipal and Alsoft simulations are presented.

Input parameters in the Alsoft model

The input parameters used by Alsoft do not completely coincide with the material used
in the experimental data from Lok (as explained in Section 3.5), but any discrepancies
due to this should be minimal since the materials are almost identical, and the fitting
done to the mobility and grain size, as described in Section 3.5.1 should help to minimize
this. It is therefore assumed that the input parameters used in Alsoft should be suitable
to simulate the material.

Recrystallization kinetics

When the recrystallization curve from uncoupled Alsoft simulations were fitted to exper-
imental data at 450 °C by tuning the mobility, the recrystallization curve at 425°C was
also reproduced satisfactory by Alsoft (by only changing the temperature), as was shown
in Figure 3.12a. At other (lower) temperatures the incubation time before onset of recrys-
tallization was greatly underestimated by Alsoft (i.e recrystallization occurred to early).
As can be seen in Figure 3.12a this is also the two temperatures where experimentally
recrystallization occurs before the onset of precipitation, and since Alsoft do not simu-
late precipitation (i.e the Zener-drag and solid solution concentration is constant, and
the same at all temperatures) it is not surprising that the experimental recrystallization

54



4.3. Coupling of Precipal and Alsoft

behavior that undergo concurrent precipitation experience a stronger temperature depen-
dence. This is the same as reported by Wang[11], where he states that Alsoft is able
to produce satisfactory softening behavior for conditions where there are no concurrent
precipitation of dispersoids.

It was believed that coupling of Alsoft with the precipitation model would improve
its ability to reproduce the experimental curves at lower temperatures, but as shown in
Figure 3.12b and 3.12c this was not the case. The coupling had very limited effect on
the recrystallization kinetics (except when recrystallization was halted completely). The
change in the Zener-drag and solid solution concentration in Alsoft due to the coupling
was not enough to have a meaningful impact on the recrystallization kinetics.

Underestimation of dispersoid effect in Alsoft was also reported by Wang et.al[11]. In
this work they managed to use Alsoft to successfully reproduce softening curves when the
particle effects were small, but also here the model failed to provide reasonable predictions
when particles were experimentally shown to have a large impact on the recrystallization
course.

The cause of the underestimated effects of precipitation on the recrystallization behavior
is believed to be due to an underestimation of the effects the Zener-drag has on nucleation.
The assumption of site-saturation recrystallization nucleation is problematic in conditions
of concurrent precipitation, where the Zener-drag is low at t=0 (when nucleation occurs
during site-saturation). With this assumption only the contribution from large primary
particles (constituents) are included. i.e not the effects of the much larger Zener-drag
from the later concurrent precipitation of the smaller precipitates.

This problem related to site-saturation nucleation of recrystallization can also be no-
ticed from the simulated grain sizes compared with the experimental ones, as shown in
Figure 3.13. Here it can be seen that there is a dramatic increase in the experimental
grain size when the temperature is decreased from 450 to 405 °C, while the simulated
grain size is unchanged (when 100 % of the material is recrystallized). This discrepancy
between the simulated and experimental grain sizes can be attributed to the inherent
problem with site-saturation nucleation, in which the effects of concurrent precipitation
on nucleation is neglected, i.e suppressed nucleation of recrystallization due to pinning
of the sub-grain structure (analog to the pinning effect on moving grain boundaries ex-
plained in Sec. 2.3.2) implying a strong reduced density of nucleation sites. The effect is
particularly pronounced for conditions with considerable (concurrent) precipitation before
onset of recrystallization.

Simulation with an extra artificial Zener-drag during nucleation was performed in order
to identify how much additional Zener-drag was needed to reproduce the experimental re-
crystallization curves. It was found that an extra Zener-drag of 230 kPa during nucleation
was sufficient to reproduce the experimental recrystallization curves at 405 °C (Fig. 3.17).
It should be noted that the Zener-drag had to be set to zero (or a low value) after nu-
cleation (i.e when recrystallization starts), in order to get full recrystallization consistent
with experiments. The originally calculated Zener-drag during nucleation at this tem-
perature was only 16 kPa, which means that the Zener-drag during nucleation required
to reproduce the experimental results was more than 16 times larger. This clearly shows
that the current recrystallization nucleation model assuming site saturation is inadequate
for simulating the effects of precipitation on nucleation. Moreover the fact that the Zener-
drag has to be ”turned off” in conditions of significant precipitation to avoid a complete
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stop in the recrystallization process indicates that the Zener-drag effects during recrys-
tallization, once started, is much less than a classical Zener-drag (Eq. 2.2) provides. This
latter observation is consistent with the findings of Wang[11] and unpublished theoretical
calculations by Rollett[27].

The simulated grain size with this extra Zener drag during nucleation is about 2 mm
(diameter) (Fig. 3.16). This is significantly larger than the experimental size of 0.5
mm (Fig. 3.13). It is noted however that the grain size is critically dependent on the
value of the initial Zener-drag (in this high range regime), and moderate changes can give
significant changes in the grain size.
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5. Conclusion
The reimplementation of Precipal in Python was successful, as the new implementation is
able to fully reproduce the results from the old implementation. In accordance with Lok,
Precipal includes two approaches to calculate the precipitation evolution, i.e a physically
based model and a phenomenological approach. However, the physical model with appar-
ently the ”same” input parameters was not able to reproduce the corresponding simulation
results of Lok. The phenomenological model on the other hand provided consistent re-
sults with Lok, although with different fitting parameters. The phenomenological model’s
predictive power at different annealing temperatures was however proven to be limited,
but it provides a realistic precipitation course at a given temperature that can be used
when coupled with Alsoft.

The coupling of Alsoft and Precipal through their external parameters was accomplished
with only minor changes to the Alsoft code. The coupling did not have a significant impact
on the simulated recrystallization behavior. The reason for this is believed to be found
in the nucleation model used in Alsoft, i.e the inherent shortcoming of the site-saturation
model, which fails to account for the effect of concurrent precipitation on nucleation of
recrystallization.

Future work that needs to be done includes validation of the precipitation model against
more experimental data, and to couple the precipitation model with a time dependent
recrystallization model, i.e a model which is capable of including the effect of (concurrent)
precipitation on nucleation of recrystallization. This latter aspect seems to be the key to
explain the recrystallization behavior in conditions of concurrent precipitation.
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A. Derivation of Selected Equations

A.1. Volume fraction and radius of particles
The radius and volume fraction of particles are, owing to geometry reasons, related by
the following equation[4]:

f = 4
3πr3sN (A.1)

Where f is the volume fraction of particles, r is the particle radius, N is the number
of dispersoids and s is a factor accounting for the width of the particle size distribution.

The equation can be rearranged to give an expression for the particle radius:

r =
(

3f

4πscNc

)1/3

(A.2)

A.1.1. Constituents
For constituents the subscript c is used, giving the following equations for volume fraction
and particle radius:

fc = 4
3πr3

cScNc (A.3)

rc =
(

3fc

4πscNc

)1/3

(A.4)

Volume Fraction:

The number of constituents is assumed to be constant, and the time derivative of the
volume fraction can thus be expressed by:

dfc

dt
= 4

3πScNcr
2
c

drc

dt
= 4

3πScNcr
2
cVc (A.5)

here Vc = drc

dt
.

Radius:

By differentiation of equation A.4 the time derivative of the particle radius is:

drc

dt
= 1

3
(

3fc

4πscNc

)2/3
3

4πscNc

dfc

dt
(A.6)
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Rearranging and insertion of Eq. A.3 and A.5 gives:

drc

dt
= 3

(
4πscNc

34
3πr3

cScNc

)2/3 3
4πscNc

4
3πScNcr

2
cVc (A.7)

where Vc = drc

dt
is the growth rate of the dispersoids.

This equation can be reduced to:

drc

dt
= Vc (A.8)

A.1.2. Dispersoids
For dispersoids the subscript d is used, giving the following equations for volume fraction
and radius:

fd = 4
3πr3

dSdNd (A.9)

rd =
(

3fd

4πsdNd

)1/3

(A.10)

In contrast to the number constituents, the number of dispersoids is not assumed to be
constant. This gives more complex expressions for the time derivatives.

Volume Fraction:

By differentiation of Eq. A.9 the time derivative for the volume fraction of dispersoids
can be expressed by:

dfd

dt
= 4

3πsd

[
3r2

d

drd

dt
Nd + r3

d

dNd

dt

]
= 4

3πsd

[
3r2

dVdNd + r3
dJd

]
(A.11)

where Jd = dNd

dt
and Vd = drd

dt
.

Radius:

Differentiation of Eq. A.10 gives the following expression for the time derivative of the
dispersoid radius:

drd

dt
= 1

3
(

3fd

4πsdNd

)2/3
3

4πsd

[
dfd

dt

1
Nd

− fd
dNd

dt

1
N2

d

]
(A.12)

Combination with Eq. A.9 and A.10 gives:

drd

dt
= 1

3
(

3 4
3 πr3

d
SdNd

4πsdNd

)2/3
3

4πsd

[
4
3πsd

[
3r2

dVdNd + r3
dJd

] 1
Nd

− 4
3πr3

dSdNd
dNd

dt

1
N2

d

]
(A.13)

Which can be reduced to:
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drd

dt
= 1

3r2
d

[[
3r2

dVdNd + r3
dJd

] 1
Nd

− r3
dJd

1
Nd

]
(A.14)

This expression can be further reduced to give the final expression for the time derivative
for the dispersoid radius:

drd

dt
= Vd (A.15)
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B. Changes to the Alsoft code
In this section all changes done to the Alsoft source code are presented and explained.
First the changes related to the coupling are presented, followed by an explanation of the
new features introduced.

B.1. Changes related to the coupling
The input parameter PZ from chemistry, which specifies where the Zener-drag are read
from, was given a third option, ”2”, which specifies that the values should be provided by
the coupling with Precipal. This change was necessary even though the reference to the
function for getting external parameters are handled externally during the coupling since
this originally external parameter is also accessed by get constpar(), which calculates all
the constant parameters at the start of execution.

When the input parameter PZ from chemistry is set to ”2” the initial value for PZ
used during calculation of the constant parameters are provided by the shell function
GetPz0FromPrecipal(). This function has no functionality in Alsoft, the reference to the
function is meant to be taken over by a Alprec function, as explained in Section 2.6 in
the main text.

B.2. New features
The possibility to set the Zener-drag to zero after a certain fraction recrystallized was in-
troduced. This new featured is controlled by two new input parameters; PZ only during rec
which enables (=1) or disables (=0) this feature, and recryst start which specifies the frac-
tion recrystallized when the Zener-drag should be set to zero (number between 0 and 1).
This feature is implemented by a simple test in fun() which sets the Zener-drag to zero if
the conditions specified by the input parameters are met.

This feature was introduced in order to simulate the effect of a high Zener-drag dur-
ing nucleation, but with subsequent recrystallization and grain growth unhindered by
the Zener-drag. This is motivated by the experimental work by Wang[11], and also by
theoretical calculations by others[27]

A minor feature that was introduced was the possibility to down sample the output
before writing it to file. This change was necessary as some combinations of input param-
eters lead to long integration times and an extremely high number of time steps Up to
several hundred thousand time steps, resulting in output files larger than 150 Mb. This
was implemented as a basic down sampling with no interpolation. This new feature is
controlled through an optional keyword parameter, maxSamples, in the write results()
function which specifies the maximum number of time steps to be written to file.
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C. Input Parameters

C.1. Precipal

Value Python Symbol Desription
0 alsoft N/A Mode bit flag:

0=stand-alone
1=coupled with alsoft

1 ext t N/A Mode bit flag:
0=external time
1=extra timesteps (between max
and min in trt file)

0 SS N/A Mode bit flag:
0=normal nucleation
1=site saturation

0 t inc N/A Incubation time for precipitation
(used if SS=1). S

0 mode N/A Mode bit flag:
0=physical model
1=phenomenological model

1 evEq N/A Mode bit flag:
0 = old evolution eq. (f d, f c)
1 = new evolution eq.(r d, r c)

0 N d0 Nd(0) Initial dispersoid density. 1/mˆ3
(not used if SS=1)

0 f d0 fd(0) Initial dispersoid volume fraction
(Used if evEq=0)

0.0404296 f c0 fc(0) Initial constituents volume fraction
(Used if evEq=0)

0 r d0 rd(0) Initial dispersoid radius. M
(Used if evEq=1)

1.12E-006 r c0 rc(0) Initial constituents radius. M
(Used if evEq=1)

4.096E-010 a0 a0 Lattice parameter of matrix
(assuming fcc). M

6.87E+015 N c Nc Number density of const. 1/mˆ3
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9.68E-006 Vm d V d
m Molar volume of disp. Mˆ3/mol

0.05 Zeldovic Z Zeldovic factor
4.0496E-010 t SGB tSGB Eff. Subgrain boundary thickness. M

0.324 gamma d γd Disp.-matrix interface energy. J/mˆ2
1.66026E-029 eta η Atomic volume of matrix

(= a0ˆ3/4 for fcc). mˆ3
0.6 xi ξ Interface energy modifier (0 < xi < 1)

1 s d sd Factor accounting for the width of
the constituent size distribution

1 s c sc Factor accounting for the width
of the dispersoid size distribution

C.2. Alsoft

Value Python Symbol Desription
1 site saturation N/A Nucleation type:

0 = time dependent
1 = site saturation

0 Gamma distr N/A Subgrainsize distribution:
0=log-normal
1=gamma

0 init recovery N/A Submodel for initial value of rho i0 and delta0:
0=from input
1=from flow stress
2=from strain rate

2 Css from chemistry N/A Where to read Css from: (No effect when coupled)
0=treatment table
1=chemistry
2=Precipal

2 PZ from chemistry N/A Where to read PZ from
0=treatment table
1=chemistry
2=Precipal (coupling)

0 PZ only during rec N/A Zener-drag only during nucleation:
0=normal Zener-drag
1=PZ only during nucleation

0 recryst start N/A Cut-of fraction for recrystallization start
1.98E + 13 rho i0 ρ0 Initial dislocation density (#/mˆ2)

1E-006 delta0 δ0 Initial subgrain size (m)
0 Xext0 Xext,0 Initial extended volume fraction
0 Sext0 Sext,0 Initial extended surface fraction (mˆ-1)
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6E-007 Dext0 Dext,0 Initial extended grain size (m)
Initial number density of nucleation sites

1 NGB0 NGB,0 (not used for site-saturation)
Initial number density of nucleation sites (mˆ-3)

1 NCube0 NCube,0 (not used for site-saturation)
Initial number density of nucleation sites (mˆ-3)

1 NPSN0 NP SN,0 (not used for site-saturation)
Constant in expr. For effective solute content

0.00393 Css 0 Css (at. fraction)
1 C PZ CP Z Prefactor for Zener drag

0.5 FTh Final sheet thickness (mm), unused
3 strain0 ε True strain

50 strainRate0 Strain rate (1/s)
20 T def Tdef Temperature during deformation (C)

200 Rp02 0 Rp02 Initial flow stress (MPa)
53 R FLP RF LP Friction stress (MPa)

Constant in alternative expr. For initial rho i
0.25 f rho fρ and delta

8.00E + 04 B rho Bρ Constant in evolution eq. for dislocation density
0.5 w rho wρ Constant in evolution eq. for dislocation density

2 B delta Bδ Constant in evolution eq. For subgrain size
5 w delta wδ Constant in evolution eq. for subgrain size

2.67E+017 N0 N0 Constant in particle size distribution (1/m)
3.14E + 06 L L Constant in particle size distribution (1/m)
1.20E + 05 M0 M0 Prefactor for mobility (mˆ4/s)

0.04 As As Constant in initial subgrain size
0.03 Bs Bs Constant in initial subgrain size

2 C 1 C1 Constant in initial dislocation density
0.0001 D0 D0 Initial (as-cast) grain size (m)
0.6667 e delta eδ Constant in evolution eq. for subgrain size
0.6667 e rho eρ Constant in evolution eq. for dislocation density

0.3 alpha1 α1 Constant in strength model
2.5 alpha2 α2 Constant in strength model

3 Mtaylor Mtaylor Taylor factor
2.86E-010 b b Burgers vector (m)

1.00E + 13 v D νD Debye frequency (1/s)
0.3 gamma GB γGB Grain boundary energy (J/mˆ2)
1.2 CPE CP E Constant in expr. For density of PSN sites

0.0247 C PSN CP SN Prefactor for density of PSN sites
0.005069 C GB CGB Constant in expr. For density of PSN sites (mˆ3)

2.5 alpha α Constant in expr. For density of GB nucleation sites
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C. Input Parameters

nstant in expr. for density of cube nucleation sites
4 theta θ Geometric constant in driving pressure

15 theta c θc for recrystallisation
0.33 nu ν Missorientation (Deg.)
0.04 R c0 Rc0 Constant for missorientation (Deg.)

85.517 C Cube CCube Poisson number
1.3 fCube fcube Initial volume fraction of cube grains
2.6 R cA RcA Scale factor for mean cube grain size

1 R cB RcB Constant in expr. for volume fraction cube grains
0.3 R cC RcC Constant in expr. for volume fraction cube grains
-2 R cD RcD Constant in expr. for volume fraction cube grains

0.1 R cE RcE Constant in expr. for volume fraction cube grains
-1.4 R cF RcF Constant in expr. for volume fraction cube grains
-1.8 R cG RcG Constant in expr. for volume fraction cube grains
0.04 R sA RsA Constant in expr. for volume fraction cube grains

0.173 R sB RsB Constant in expr. for fraction S deformation texture
2 R sC RsC Constant in expr. for fraction S deformation texture

2.00E + 05 U a Ua Constant in expr. for fraction S deformation texture
1.80E + 05 U aGB Ua,GB Eff. activation energy for solute diffusion (J/mol)
2.00E + 05 U aCube Ua,Cube Eff. activation energy cube subgrains (J/mol)
2.00E + 05 U aPSN Ua,P SN Eff. activation energy GB subgrains (J/mol)
2.00E + 05 U rex Urex Eff. activation energy PSN subgrains (J/mol)
2.00E + 05 U GB UGB Activation energy for recrystallisation (J/mol)
1.60E + 05 U ZH UZH Activation energy for grain boundary (J/mol), unused

0.04 f0 f0 Activation energy for Zener-Hollomon par. (J/mol)
3 kaa kaa Fraction of PSN-nuclei being cube, unused

2.65E + 10 G0 G0 Constant in expr. for rho t
0 G1 G1 Prefactor in expr. for shear modulus (Pa)
1 nu0 Cube νCube,0 Exp. Factor in expr. For shear modulus (Kˆ-1)
1 nu0 PSN νP SN,0 Prefactor in expr. for nucleation frequency (sˆ-1)
1 nu0 GB νGB,0 Prefactor in expr. for nucleation frequency (sˆ-1)

9.00E + 04 Qnu0 Cube QνCube,0 Prefactor in expr. for nucleation frequency (sˆ-1)
9.00E + 04 Qnu0 PSN QνCube,0 Activation energy in expr. For nuc. Frequency (J/mol)
9.00E + 04 Qnu0 PSN QνCube,0 Activation energy in expr. For nuc. Frequency (J/mol)

1 Crho Cρ Activation energy in expr. For nuc. Frequency (J/mol)
Constant for including Zener drag force on

1 Cdelta Cδ dislocation annihilation rate. Should be one.
Constant for including Zener drag in

0.7 K GB0 KGB,0 subgrain growth. Should be one.
1 K Cube0 KCube,0 Factor in the initial grain boundary subgrain size
1 K PSN0 KP SN,0 Factor in the initial cube subgrain size
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C.4. Element table

0.4545 sGB SGB Factor in the initial PSN subgrain size
0.4545 sCube SCube Shape parameter for size distr. GB subgrains
0.4545 sPSN SP SN Shape parameter for size distr. Cube subgrains

Shape parameter for size distr. PSN subgrains

C.3. Treatment table

time(s) T(C) X delta(µm) Css(at. Frac) PZ(Pa)
0 405 1 2 0.004586 0

60000 405 1 2 0.004586 0

This is the treatment table used in the simulations with undeformed material. Note
that fraction recrystallized, X, the subrain size, delta, the solid solution concentration,
Css, and the Zener-drag, PZ, is not used during the coupled simulations. X and delta is
only used during uncoupled Precipal simulations, while Css and PZ is only used during
uncoupled Alsoft simulations.

C.4. Element table

Mn Fe Si Al
C0(wt%) 1.11 0.51 0.06 98.32
M(g/mol) 54.938 55.847 28.0855 26.98154
D0 L(mˆ2/s) 0.0104 0 0 0
Qd L(J/mol) 210900 195000 140000 0
D0 SGB(mˆ2/s) 0.0104 0 0 0
Qd SGB(J/mol) 126500 0 0 0
Cs(atFrac) 38.21 0 0 0
Qc(J/mol) 71500 0 0 0
Cd ppt(at%) 18.75 0 6.25 0
Cc ppt(at%) 14.286 0 0 0
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