
Modeling of electrochemical and 
photoelectrochemical impedance 
functions for films

Didrik Rene Småbråten

Chemical Engineering and Biotechnology

Supervisor: Svein Sunde, IMTE

Department of Materials Science and Engineering

Submission date: June 2014

Norwegian University of Science and Technology



 



ACKNOWLEDGMENT i

Acknowledgment

First of all I would like to thank my supervisor Professor Svein Sunde for excellent guidance during

this thesis. He has shown brilliant knowledge in the electrochemistry field through countless of dis-

cussions and working sessions, and it has been an honor to work closely with him the last year. Ph.D.

Morten Tjelta and Ph.D. Lars-Erik Owe are acknowledged for the preliminary work with electrochem-

ical and photoelectrochemical impedance calculations this thesis is based upon.

I would also like to thank to my classmates of the M.Sc. program in Chemical Engineering and

fellow students at the Department of Materials Science and Engineering (DMSE) at the Norwegian

University of Science and technology (NTNU) for all the academic and non-academic moments we

have spent together throughout the 5 years in Trondheim. A special thanks goes to "Langemann og

Støtteapparatet" for all the countless hours of funny moments we have shared.

Finally I would like to thank my family for all the support during my studies at NTNU, and for two

fun years with my brother as roommates. I am certain that the studies would have been much harder

without you being there for me.



ii



PREFACE iii

Preface

This master thesis gives a summary of the work in my final semester of the M.Sc. program in Chemical

Engineering, and specialization in Material Chemistry and Energy Technology at the Department of

Materials Science and Engineering, at the Norwegian University of Science and Technology (NTNU),

spring 2014.

This thesis is a mathematical modeling study of electrochemical and photoelectrochemical impedance

of thin films. The goal of this study is to derive mathematical models used as aid to analyze experi-

mental data collected in impedance spectroscopy measurements of mixed conducting thin films. The

study is based upon preliminary work developed by Professor Svein Sunde, Ph.D. Morten Tjelta, and

Ph.D. Lars-Erik Owe. Throughout this study, the existing preliminary work has been completed, and

developed further to include more impedance spectroscopy methods.
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SUMMARY v

Summary

The aim of this study was to develop mathematical models for electrochemical and photoelectro-

chemical impedance transfer functions for mixed conducting films. These models include electro-

chemical impedance spectroscopy (EIS), photoelectrochemical impedance spectroscopy (EIS), intensity-

modulated photovoltage spectroscopy (IMVS), and intensity-modulated photocurrent spectroscopy

(IMPS) for mixed conducting photoelectrochemical thin films, and intensity-modulated photocur-

rent spectroscopy (IMPS) for mixed conducting microporous thin films. In addition a short study

of the step size dependency of the convergence for numerical modeling approach using Newman’s

BAND(J) subroutine to solve a second order diffusion equation has beed performed.

It was found that the derived photoelectrochemical impedance (EIS) transfer function and the

intensity-modulated photocurrent spectroscopy (IMPS) transfer function were dependent on the de-

gree of mixed conductivity, while the intensity-modulated photovoltage spectroscopy (IMPS) transfer

function was independent with degree of mixed conductivity. This was explained by the steady-state

concentration profiles for the extreme cases of t+ = 1 and t+ = t− = 0.5. The concentration at solution

interface increases with increasing light intensity when a sufficiently large light adsorption coefficient

is assumed. For the pure electrical conducting system (t+ = 1), the concentration close to the support

is constant. So when the current oscillates, only the concentration close to the solution interface os-

cillates. For the mixed conducting system (t+ = 0.5), concentration at both the electrode interfaces

oscillates. Thus, the electrode kinetics at both interfaces affect the impedance measurements for an

applied current density. Under open circuit conditions for IMVS measurements, only the photogen-

erated charge carriers close to the solution will contribute to the impedance, since the applied current

is zero and the transfer function is independent of the transport numbers.

Newman’s BAND(J) subroutine has been proven to be valid to solve partial differential equations

with complex numbers, needed to calculate impedance spectra, in previous work. It was found in

this study that the convergence of the BAND(J) subroutine does not follow the expected convergence

toward the numerical solution with decreasing step size. One possible source for this unexpected

trend was proposed to be that the error related to this numerical approach is dependent on higher

derivatives of the solution. It was advised that a Richardson’s iteration method study for higher order

derivatives should be performed for this routine to find the appropriate error dependency.

The electrochemical impedance transfer function for the mixed conducting thin film electrode

showed a reflective-like behavior, as expected from previous work. A dome in the low frequency re-

gion of the impedance plane plot was observed. The dome occurs at a frequency equal to the effective

rate constant k. Thus, this dome corresponds to the charge limiting process of recombination across

the bulk electrode. By decreasing the rate constant of recombination, the impedance increases, in
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accordance with previous work.

The photoelectrochemical impedance transfer function for the mixed conducting thin film elec-

trode showed two domes in the impedance plane plot with different imaginary parts in the low fre-

quency region of the impedance spectrum corresponding to two distinct charge transfer limiting pro-

cesses in opposite directions. It was found that the current associated with charge transfer limiting

process oscillating in the same direction as the potential occurred at a frequency equal to the chosen

effective rate constant k. Thus, this dome corresponds to the charge limiting process of recombi-

nation in the bulk of the electrode material. The current oscillating in the opposite direction of the

potential was assumed to be associated with a back charge transfer process between the electrode

and the electrolyte, and should be described by the electrode kinetics at the solution interface. In the

high frequency region, the system is diffusion limited, and for high light intensities the system shows

a reflective-like behavior.

The intensity-modulated photovoltage spectroscopy (IMVS) impedance transfer function for the

mixed conducting thin film electrode showed one dome in the impedance plane plot. It was found

that the dome occurs at a frequency equal to the chosen value for the effective rate constant k. Thus,

the dome corresponds to the charge limiting process of recombination across the bulk electrode.

For sufficiently low k-values, the system is charge transfer limiting in the low frequency region, and

diffusion limiting in the high frequency region.

The intensity-modulated photocurrent spectroscopy (IMPS) impedance transfer function for the

mixed conducting thin film electrode showed two distinct domes in the impedance plane plot in the

same quadrant for large rate constants and applied steady state current densities, corresponding to

two different charge limiting processes. It was found that one of the domes occurred at a frequency

equal to the chosen value of the effective rate constant k. Thus, this dome corresponds to the charge

limiting process of recombination across the electrode. The other dome is assumed to correspond to

back charge transfer with the electrolyte, and the rate of the charge transfer should be described by the

electrode kinetics at the solution interface. By decreasing the applied current density and increasing

the light intensity, a shift in the quadrant of the impedance plane plot was observed. The proposed

explanation to this is the competition between recombination and charge generation to keep the

potential constant. When the rate of generation exceeds the recombination, the charge transfer at

the solution interface changes direction in order to maintain a constant potential.

This was investigated in more detail for steady-state conditions, where it was found that for high

rate constants the current increases with increasing light intensity to keep a constant potential, in ac-

cordance with Fick’s first law of diffusion. For low rate constants the current decreases with increasing

potential, thus the charge transfer between the electrode and electrolyte changes sign and the net cur-
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rent density is in opposite direction than the light intensity. For intermediate rate constants, a change

from increasing to decreasing current with increasing light intensity is observed. This indicates that

the recombination process accommodates for the increased current by increasing the light intensity

in order to keep the potential constant for low light intensities. At a threshold light intensity, the cur-

rent density is changing from increasing to decreasing with increasing light intensity, indicating that

the recombination cannot accommodate for the increased current by increasing the light intensity to

keep the potential constant, and the potential is kept constant by changing the direction of the charge

transfer between electrode and electrolyte.

The intensity-modulated photocurrent spectroscopy (IMPS) transfer function for the microp-

orous mixed conducting thin film electrode showed a reflective-like behavior, where a charge transfer

limiting process in the lower frequency limit and a diffusion controlled process in the high frequency

region where observed. The charge limiting process was found to be the recombination process de-

scribed by the effective rate constant k. The model, however, seemed to break for low rate constants,

and a further study of this model was suggested.

A limitation of the derived model was that the steady-state concentration under zero light and

zero illumination is zero. In previous work, an additive term in the steady-state concentration ex-

pression corresponding to the equilibrium concentration was proposed. By including an additive

term directly does not fulfill the steady-state diffusion equation as written. One possible solution was

proposed, in which the equilibrium concentration is introduced in the diffusion equation, and the

diffusion equation is then solved with appropriate boundary conditions. This was suggested to be

studied in more detail in further work.
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SAMMENDRAG ix

Sammendrag

Målet med denne oppgaven var å utlede matematiske modeller for elektrokjemiske og fotoelektrokjemiske

impedance funksjoner for filmer med blandet ledningsevne. Disse modellene inkluderer elektrokjemisk

impedansspektroskopi (EIS), fotoelektrokjemisk impedansspektroskopi (EIS), lysmodulert fotospen-

ningspektroskopi (IMVS) og lysmodulert fotostrømspektroskopi (IMPS) for fotoelektrokjemiske tyn-

nfilmer med blandet ledningsevne, og lysmodulert fotostrømspektroskopi (IMPS) for mikroporøse

tynnfilmer med blandet ledningesvne. I tillegg ble en analyse av skrittlengdeavhengigheten til en

numerisk fremgangsmåte for å løse partielle differensialligninger med Newman’s BAND(J) subrutine

utført.

Det ble vist at den fotoelektrokjemiske impedansfunksjonen (EIS) og den lysmodulert fotostrøm-

spektroskopifunksjonen (IMPS) var avhengig av grad av blandet ledningsevne, mens lysmodulert

fotospenningspektroskopifunksjonen (IMVS) var uavnheig av grad av blandet ledningsevne. Dette

ble forklart ved at for den rene elektriske elektroden definert i studiet, er det bare konsentrasjonen

nær elektrolyttgrenseflaten som modulerer med modulerende strøm. For en elektrode med blan-

det ledningsevne vil modulering av strøm påvirke konsentrasjonen nær begge grenseflatene til elek-

troden. Modulering av lys vil påvirke konsentrasjonen nær elektrolyttgrenseflaten i begge tilfeller.

For lysmodulert fotospenningsspektroskopi (IMVS) er påført strøm konstant og lik null, så det kun

er modulering av lys som påvirker konsentrasjonen nær elektrolyttgrenseflaten. Dermed er IMVS

uavhengig av grad av blandet ledningsevne.

Newman’s BAND(J) subrutine viste ikke forventet konvergens med skrittlengde, og en analyse av

påvirkning av høyereordens deriverte ved hjelp av høyereordens Richardson’s iterasjonsmetoder ble

foreslått for videre studie.

Den elektrokjemiske imepdansfunksjonen (EIS) for tynnfilmelektrode med blandet ledningsevne

viste en kuppel i impedansplanplottet som svarer til rekombineringsprosessen i elektroden, i samvsar

med tidligere arbeid.

Den fotoelektrokjemiske impedansfunksjonen (EIS) for tynnfilmelektrode med blandet ledning-

sevne viste to kupler i impedansplanplottet. Det ble funnet at den ene kuppelen svarer til rekom-

bineringsprosessen i elektroden, og den andre ble antatt å svare til ladningsoverføring fra elektrode

til elektrolytt ved lav frekvens.

Den lysmodullerte fotospenningspectroskopifunksjonen (IMVS) viste en kuppel i impedansplan-

plottet, som ble funnet til å tilsvare rekombineringsprosessen i elektroden.

Den lysmodulerte fotostrømspektroskopifunksjonen (IMPS) viste to kupler i impedansplanplot-

tet i samme kvadrant for lave lysintensiteter. Det ble funnet at den ene tilsvarer rekombineringspros-

essen i elektroden, og den andre ble antatt å tilsvare ladningsoverføring over elektrolyttgrenseflaten
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gitt av elektrodekinetikken på grenseflaten. Ved å øke lysintensiteten, redusere rekombineringshastigheten

og redusere påført strøm ble et skift i kvadrant for IMPSfunksjonen observert. Dette ble forklart ved

at en redusering i ladningsoverføring over elektrolyttgrenseflaten ved høy lysintensitet må skje for

å opprettholde et konstant potensial om rekombineringshastigheten ikke kan kompensere for foto-

genererte ladningsbærere.

En sammenheng mellom potensial, strømtetthet og lysintensitet under stasjonære betingelser ble

utledet for å forklare impedansspektrene matematisk.

Det ble foreslått en videre studie av modellen for lysmodulert fotostrømsspektroskopi (IMPS)

av mikroporøse elektroder med blandet ledningsevne, hvor rekombineringsprosessen sees på som

hastigheten til ladningsoverføring mellom elektrode og elektrolytt langs poreoverflaten.

En begrensning med de utledede modellene er at konsentrasjonen under stasjonære betingelser

blir lik null ved null påført strøm og lysintensitet. Det ble foreslått en metode å inkludere et kon-

sentrasjonsledd i diffusjonsligningen som tilsvarer likevektskonsentrasjonen under null påført strøm

og null lysintensitet. Den løste diffusjonsligningen kan kombineres direkte med modellene i dette

studiet.
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1 Introduction

1.1 Background

Earth’s population has exceeded 7 billion, and prognoses say that the increase in earth’s population

will continue until it flattens at around 10 billions [1]. With a continuous increase in the standards

of living and industrialization of the third world countries, the worlds energy demand will grow in a

large extent the next years. The historical and predicted energy demand for different energy resources

is given in Figure 1.1 [2].

Figure 1.1: The historical and predicted energy demand for different energy sources. From [2].

From Figure 1.1 it can be seen that most of the energy demand is supplied by high CO2 emitting,

non-sustainable energy sources, like oil and coal. The largest source to CO2 emission is energy pro-

duced from fossil fuels, where the emission has increased with 145% the last 30 years [3]. Researchers

agree that the emission of greenhouse gases, as CO2, methane and nitrous gases, may contribute to

global warming.

Solar energy is a promising low CO2 emitting, sustainable energy source to meet the future energy

demand. Solar irradiation supplies energy equal to the earth’s entire annual energy demand in about

1.5 hours [4]. However, there are issues regarding the utilization, harvest and storage of this energy,

and there is a constant research in the solar energy technology field. Photovoltaic cells or photo-

voltaics, commonly known as solar cells, convert light energy to usable energy in form of electricity.

1.2 Semiconductor technology and solar cells

Solar cells are based on semiconducting materials. In order to explain the working principle of pho-

tovoltaics, a brief introduction to semiconductors and semiconductor technology is required.



2 1 INTRODUCTION

1.2.1 Electronic structure of materials used for electronics

There are three types of materials used in electronics; metals, insulators, and semiconductors. These

are characterized by the electronic conductivity, where metals have a high conductivity, insulators a

very low conductivity, and semiconductors are located between these to extrema. The difference in

the electronic conductivity of these material groups may be explained by the electronic structure of

the materials. For a crystalline solid, electrons are allowed to travel in quasi-continuos bands. These

quasi-continuous bands, referred to as energy bands, are caused by overlap between allowed energy

states in each atom (a more detailed description can be found elsewhere []). The allowed energy

bands may accommodate for 2N electrons, where N is the total number of electrons in each unit cell

of the crystal. The energy bands may either be separated by quasi-continuos forbidden energy bands

(referred to as band gaps), or overlap in energy. The highest energy band occupied by electrons is

referred to as the valence band (VB), and the following energy band, that is, the lowest unfilled energy

band is referred to as the conduction band (CB).

The characteristics of the different materials are explained by how the valence band and con-

duction band are filled and separated. Metals typically either have a partially filled valance band, or

overlapping completely filled valance band and conduction band as sketched in Figure 1.2a and 1.2b,

respectively. Electrons in the valance band are easily excited, as there are accessible energy states

close to the electron. Insulators are characterized by having a completely filled valance band and

a completely empty conduction band, separated by a large band gap Eg as sketched in Figure 1.2c.

Electrons does not excite in the conduction band as there are no energy states available in the valance

band, and the energy barrier to excite electrons across the band gap is to large at room temperature.

Semiconductors are similar to insulators in electronic structure, where a completely filled valence

band and completely empty conduction band is separated by a band gap Eg as sketched in Figure

1.2d. However, for semiconductors the band gap is of a magnitude so that electrons may excite across

the band gap under room temperature and the conduction band conduct electricity. There are also

available states in the valance band for electrons to excite, and the valance band also contributes to

the conduction. Distinction of insulators and semiconductors can be quite ambiguous, but as a rule

of thumbs insulators are defined by a band gap exceeding 2-3 eV.

1.2.2 Semiconductors under illumination

When a semiconductor is illuminated, electrons may excite across the band gap if the photon energy

exceeds the size of the band gap [5]. If excited electrons can be extracted from the conduction band

in an outer circuit, we have a generated photocurrent. This is sketched schematically in Figure 1.3,

where electrons are drained from the conduction band, forced through an outer circuit, and fed to
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(a) (b) (c) (d)

Figure 1.2: Different electronics material types. a Metal with partially filled valance band and conduc-
tion band. b Metal with overlapping valance band. c Insulator with a large band gap. d Semiconductor
with a lower band gap.

the valence band to maintain charge neutrality. Thus, the incident light energy is transformed into

usable energy in form of an electric current. The photogenerated current may be fed directly to the

local energy mixture, or stored by different storage methods. The same analogy may be used for

Figure 1.3: Sketch of generated photocurrent in a semiconductor. Electrons excite from the valence
band to the conduction band, drained from the conduction band and forced through an outer circuit
where it is utilized, and fed to the valence band to maintain charge neutrality. Here hν represents the
photon energy.

holes, as they excite simultaneously from the conduction band to the valence band, drained from the

valence band and forced through the outer circuit, and finally fed to the conduction band. Thus, the

flow of negative and positive species are defined in opposite directions.

1.2.3 Conventional heterojunction solar cells

Industrially, conventional silicon (Si) based solar cells are the largest on the market. Silicon is quite

abundant, and the Si-based solar cells have a reasonable efficiency. Essentially, a conventional Si-

based solar cells consists of two Si-materials with different charge concentration in a heterojunction.

One of the Si-materials is doped with an element with an excess of electrons compared to Si, typically
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phosphor (P), and is referred to as an n-type semiconductor. The other material is doped with an

element with a deficit of electrons, typically boron (B), and is referred to as a p-type semiconductor.

When these two semiconductor materials are connected in a junction, the charge carrier concentra-

tion difference causes diffusion of majority carriers across the junction, that is, holes from p-side to

n-side and electrons from n-side to p-side. This creates a potential barrier close to the junction re-

ferred to as the depletion layer. When minority carriers (holes in the n-type material and electrons

in the p-type material) are excited close to the depletion layer, they are immediately swept across the

junction by the potential across the junction causing an increase in the current. These processes are

described in Figure 1.4.

There is extensive research on even more promising solar cell technologies than the conventional

to either reduce the cost or increase the efficiency, preferably both simultaneously. These technolo-

gies include, amongst others, thin film solar cells, intermediate band solar cells, and photoelectro-

chemical solar cells. In this study, photoelectrochemical cells are studied in more detail.

Figure 1.4: Illustrative sketch of the depletion layer across the pn-junction, and the current caused by
excited minority carriers that are swept across the depletion layer.
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1.3 The photoelectrochemical system

1.3.1 Electrochemical photovoltaic cells

In traditional solar cells, such as Si-based solar cells, the system consists of two solids with similar

electronic structure but different charge concentration in a heterojunction. In a photoelectrochemi-

cal cell, however, the potential barrier is created by a liquid phase rather than another solid phase, as

described below.

If a semiconductor electrode is brought in contact with an electrolyte, a potential barrier may be

created at the surface of the electrode [5]. When the interface is illuminated and the semiconduct-

ing electrode is connected to a conducting counter-electrode, a photocurrent may flow between the

electrodes. The most important process of creating a photocurrent is the generation of electron-hole

pairs in the bulk of the semiconductor as described above. In the presence of a depletion layer, the

majority carriers will be transported into the interior of the electrode and minority carriers will be

transported to the surface [6]. If transfer to a redox couple in the electrolyte whose energy lies within

the band-gap can take place, a photocurrent is seen. This process is described below.

An n-type is assumed to be semiconductor is immersed in an electrolyte with a redox couple, that

is, containing an oxidized (Ox) and reduced (Red) state of a species. Under illumination, minority

carrier holes generated in the semiconductor move to the electrolyte interface where the redox couple

in the electrolyte is oxidized [6]

Red+h+ → Ox+ (1.1)

When the semiconductor is connected to a counter electrode immersed in the same electrolyte, elec-

trons reduce the redox couple at the counter electrode interface by

Ox++e− → Red (1.2)

A schematic of such a photoelectrochemical cell is given in Figure 1.5 [5]. Here, an n-type titanium

oxide (TiO2) semiconductor is immersed in an Fe2+/Fe3+ redox couple electrolyte, and connected to

a platinum (Pt) counter electrode. The redox couple is oxidized at the semiconductor and reduced at

the counter electrode.

1.3.2 Operating principle og dye-sensitized solar cells (DSSC)

Commercially available photovoltaic solar cells up to now are based on inorganic materials, which

require high costs and highly energy consuming preparation methods. Several of the conventional

materials are also toxic. The use of organic materials have been proposed to solve these issues.

However, conventional organic heterojunction photovoltaic cells have a significantly lower efficiency
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Figure 1.5: Example of an electrochemical photovoltaic cell consisting of a TiO2 semiconductor an-
ode, a Pt counter electrode cathode, and an Fe3+/Fe2+ redox couple electrolyte. From [5].

compared to the commercial inorganic photovoltaic cells [7]. The organic materials should have both

good light harvesting properties and good carriers transport properties which is difficult to achieve.

Dye-sensitized solar cells (DSSC) are promising organic-based photoelectrochemical cells that

may solve many of the issue with organic photovoltaics. DSSCs separates the two requirements above,

as the light harvesting is done by a semiconductor-dye interface and charge transport is done by the

semiconductor and the electrolyte [7]. A schematic of a DSSC is given in Figure 1.6. A porous TiO2

semiconductor film is mounted on a transparent conductive oxide (TCO), and an organic sensitizer

material consisting of a ruthenium complex is adsorbed onto the TiO2 particle surface. The semicon-

ductor is immersed in a triiodide/iodine redox couple electrolyte. A Pt counter electrode immersed

in the electrolyte is connected in an outer circuit with the semiconductor through the TCO. [7].

Under illumination, the dye S absorbs photons to an excited sensitizer state S∗. The excited state

injects an electron in the conduction band of the semiconductor TiO2, leading to an oxidized sensi-

tizer state S+. The electron is transferred to the counter electrode through an external circuit. At the

counter electrode the electron is ejected by reducing the triiodide/iodine redox couple. The reduced

redox couple then regenerates the oxidized dye. These operating principles may be summarized by

the following chemical reactions [7]

S(ads) +hν→ S∗
(ads) (1.3)

S∗
(ads) → S+

(ads) +e−(inj, TiO2) (1.4)
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Figure 1.6: Schematic representation of the dye-sensitized solar cell. A ruthenium-complex sensi-
tizer are adsorbed on the TiO2 semiconductor particles mounted on a transparent conducting ox-
ide (TCO). The Pt counter electrode is connected to the semiconductor through an outer circuit and
through the triiodide/iodine redox couple electrolyte.

I−3 +2e−(Pt) → 3I− (1.5)

S+
(ads) +

3

2
I− → S(ads) +

1

2
I−3 (1.6)

1.3.3 Photoelectrochemical water splitting

Photoelectrochemical water splitting is a photoelectrolysis cell that utilizes illumination to produce

hydrogen by water electrolysis [6]. Water electrolysis by photoelectrolysis is said to be the most green

solution to produce hydrogen. No emission of greenhouse gases is associated in the production pro-

cess, as the energy supplied is emission free (here the production process of the photoelectrochemical

system is neglected).

An n-type semiconductor is assumed to be immersed in a redox couple electrolyte. At the semi-

conductor interface an oxidation reaction occurs. For the case of water splitting, the reaction at the

semiconductor is [6]

H2O+2p+ → 1

2
O2 +2H+ (1.7)

At the counter electrode the reduction reaction

2H++2e− → H2 (1.8)
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occurs, which give the net process reaction

2H2O → 2H2 +O2 (1.9)

A schematic figure of such a photoelectrochemical water splitting cell with a TiO2 semiconductor

electrode, a Pt counter electrode and a KOH electrolyte [5] is given in Figure 1.7. Here, H2O is the redox

couple. The electrolyte consisting KOH is present to serve as a medium for charge transfer between

the electrodes without short circuiting the system.

Figure 1.7: Example of a photoelectrochemical water splitting cell consisting of a TiO2 semiconductor
anode, a Pt counter electrode cathode, and an KOH electrolyte.

1.3.4 Aim of this study

Modeling of impedance transfer functions reported in the literature is usually performed for pure

electrical conducting electrode systems. In this study, we introduce mixed electronic/ionic conduc-

tivity to the modeled electrode system, and investigate how this introduction of mixed conductivity

affect the charge flow, and thus the impedance transfer functions, in photoelectrochemical systems.

We propose that mixed conducting systems may show significantly different charge flows than pure

electrical conducting systems, depending on the degree of mixed conductivity. This will be investi-

gated by comparing calculations for a nearly pure electrical conducting system and the other extrema

of equal transport numbers.

An investigation on the physical properties for the modeled system that may be described by
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impedance spectra will be investigated, and what material properties may be extracted from the cal-

culated spectra.
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2 Impedance measurement techniques and representation

2.1 Introduction

In this section, the principle of impedance spectroscopy measurements, representation of impedance

spectra, and introduction to the modeled impedance transfer functions are described. In Section

2.2 the motivation and principle for impedance spectroscopy measurements to investigate electrical

properties of materials is introduced. An introduction to the methods for representation of impedance

spectra used in this study is given in Section 2.3. In Section 2.4 we give a quick introduction to analysis

of impedance spectra, and describe typical trends in impedance spectra by assuming a half electrode

system where an electrode is immersed in an electrolyte. Photoelectrochemical impedance spec-

troscopy (EIS) is described in Section 2.5. Intensity-modulated photovoltage spectroscopy (IMVS) is

described in Section 2.6 and intensity-modulated photocurrent spectroscopy (IMPS) is described in

Section 2.7. The expected trends in these measurements are found in the literature described below.

In Section 2.8, modeling with equivalent circuits is introduced, and in Section 2.9 the mathematical

treatment of impedance spectroscopy by Laplace transform is introduced.

2.2 Impedance spectroscopy and the importance of interfaces

The interface of a material is important in the study of material properties. Physical properties – crys-

tallographic, mechanical and electrical – change rapidly at an interface and polarization reduce the

conductivity of the system [8]. Each interface in the system will polarize differently when subjected to

an applied potential difference. The rate of polarization change when the applied voltage is reversed

is characteristic for the interface type; slow for chemical reactions at the electrode–electrolyte surface,

substantially faster in the aqueous electrolyte [8].

Impedance spectroscopy (IS) is a characterization method where electrical properties and inter-

facial transfer processes in a system can be determined. In impedance spectroscopy measurements, a

harmonically modulated electrical stimulus is applied to the electrodes and the modulating response

is measured.

Z (t ) = response(t )

stimulus(t )
(2.1)

The electrical response is a result of several microscopic processes throughout the system. Amongst

the processes, and usually the most important in the characterization of the electrical properties of

the system, are charge transport through the electrode and electrolyte phases, and charge transfer

across heterogeneous interfaces. For a semiconductor under illumination, a contribution from the

generation of photocurrent when electrons are excited gives a contribution to the electrical response.

Application of modulating potential forces these processes to oscillate with the applied frequency. If
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a reversible couple is present at the electrode surface, the concentrations of both the reduced and

oxidized species will also oscillate not only at the surface but away of the electrode [5]. The motion

of charge across the system is thus affected by the ohmic resistance in the different phases, and the

rate of the charge transfer at the interfaces [8]. Usually, the impedance defined by (2.1) is referred to

as an impedance transfer function, since it gives a relation of the change in phase and amplitude of

the stimulus and response across an electrical system.

Impedance spectroscopy measurements are well suited to characterize the electrical behavior of

the system, including characterization of the motion of charge control and measuring material prop-

erties like diffusion coefficients, rate constants, mobilities, transport numbers and conductivities. It

may be used to investigate the dynamics of charge species of any kind of solid or liquid material:

ionic, semiconducting, mixed ionic-electronic and so on [8].

There are several impedance spectroscopy techniques, where single-frequency impedance spec-

troscopy is the most common and will be modeled in this study. One single frequency of the elec-

trical stimulus is chosen, and the phase shift and amplitude of the electrical response is measured.

This process is then repeated across a frequency range, typically between 1 mHz to 1MHz [8], and a

series of data is collected. In this study we will investigate the impedance spectroscopy transfer func-

tions photoelectrochemical impedance spectroscopy (EIS), intensity-modulated photovoltage spec-

troscopy (IMVS), and intensity-modulated photocurrent spectroscopy (IMPS).

2.3 Representation of impedance spectra

The phase shift and amplitude of the impedance can be used to represent the impedance as a com-

plex number

Z = Re(Z )+ j Im(Z ) = |Z |cosθ+ j |Z |sinθ (2.2)

This relation can be represented in an impedance plane plot, often referred to as Nyquist plot [5],

where the impedances at different frequencies are plotted as a planar vector in the real and imaginary

plane given by Eq. (2.2). As an example, an impedance plane plot for a Ni/Ti-doped YSZ solid-oxide

fuel cell (SOFC) is given in Figure 2.1.

These plots give a good representation of the phase shift and amplitude of the impedance. How-

ever, it can be difficult to determine at which frequency each point in the plot is measured. The

impedance plane plot often does not give the frequency at each measured point explicit. This can

be shown explicit by plotting the impedance versus the frequency in a Bode plot [5]. Typically, the

imaginary part of the impedance is plotted if an investigation of the phase shift is required, and the

magnitude is plotted if an investigation of the resistance is required. A Bode plot of the electrical

impedance spectrum of a microporous TiO2 dye-sensitized solar cell (DSSC) is given in Figure 2.2
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Figure 2.1: Impedance plane plot representation of the impedance for a Ni/Ti-doped YSZ SOFC as a
function of PH2 . From [9].

[10], where solid symbols represent the imaginary part of the impedance, and the open symbols rep-

resent the magnitude of the impedance.

Figure 2.2: Bode representation of the electrical impedance spectrum for a DSSC with different con-
centration of Pt at the counter electrode. From [10].

2.4 Analysis of impedance spectra

We assume a half electrode system where an electrode is immersed in an electrolyte. It can be shown

[5] that the current flow in the system is given by an electron-transfer resistance across the interface,

RC T , and a Warburg impedance across the diffusion layer, ZW , in series. In practice, this is connected

in parallel with the double layer capacitance, CD , and in series with the electrolyte resistance, RE [5].

An equivalent circuit of this half-cell system is given in Figure 2.3.

2.4.1 Diffusion limited process

For a diffusion limited process, the Warburg diffusion impedance is rate determining. In an impedance

plane plot, it can be shown that the diffusion impedance is a straight line for all frequencies [5]. In
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Figure 2.3: Equivalent circuit for the electrode half-cell. RC T is the charge transfer resistance, ZW is
the Warburg impedance, CD is the double layer capacitance, and RE is the electrolyte resistance.

general, a system is diffusion controlled for a specific frequency region if the impedance plane plot is

a straight line with an inclination angle −φ=α= 45◦ for all frequencies within the region. Physically,

the system shows a infinite-Warburg-like diffusion impedance behavior in this frequency region.

2.4.2 Charge-transfer limited process

We assume that the Warburg diffusion impedance becomes sufficiently small compared to the charge

transfer so that the equivalent circuit in Figure 2.3 is reduced to that of Figure 2.4a [5]. In this limiting

case, the system is only electron-transfer limited. It can be shown [5] that the impedance plane plot

gives a perfect semi-circle. The length of the real part of the semi-circle equals the charge trans-

fer resistance, and the center of the semi-circle is located at a frequency of ω = 1/RC T CD . Thus,

the double-layer capacitance can be investigated for this plot. A schematic impedance plane plot

of an electron-transfer limited process is given in Figure 2.4b. The system effectively charges and

discharges the electrical double layer in this frequency region.

(a) (b)

Figure 2.4: a Equivalent circuit for a rate limiting process, and b impedance plane plot for a rate
limiting process. RC T is the charge transfer resistance, CD the double layer capacitance, and RE the
electrolyte resistance.
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2.5 Photoelectrochemical impedance spectroscopy (EIS)

In photoelectrochemical impedance spectroscopy (EIS) a harmonically modulated voltage V (t ) =
V0 sin(ωt ) with angular frequencyω is applied, and an AC current i (t ) = i0 sin(ωt +φ) results. A phase

difference φ between the stimuli and response may be observed [10]. I0 and V0 are the steady-state

current and voltage, respectively. The EIS signal is the electrical impedance

Z ( jω) = V (ω)

i (ω)
(2.3)

where V (ω) and I (ω) are the modulating perturbation in the voltage and current, respectively.

The equivalent circuit for the electrical impedance spectroscopy setup is given in Figure 2.5,

where Φ0 is the incident light intensity. EIS measurements can be performed under any bias illu-

mination, either for one wave length, one sun, or several suns, depending on the wanted conditions

Figure 2.5: Equivalent sketch of an EIS measurement. Φ0 is the incident light intensity, ω the angular
frequency, φ the phase shift, and I0 and U0 are the steady-state current and voltage, respectively.

Photoelectrochemical impedance modeling is not reported extensively in the literature. Söder-

gren et al. [11] define a diffusion equation which takes photogenerated charge carriers under illumi-

nation into account

D
∂2n(x)

∂x2 − n(x)−n0

τ
+ I0αe−αx = 0 (2.4)

The photoelectrochemical impedance spectrum is characterized by the assumed or designed in-

terfaces in the system. Kim et al. [12] observed three distinct charge transfer limiting processes in

multilayer stacked TiO2 nanoparticle photoelectrodes, as shown in Figure 2.6. It was found that these

processes where corresponding to charge transfer at the counter electrode, charge transfer at the TiO2

electrode, and Nernstian diffusion within the electrolytes.

Kern et al. [10] similarly observed three charge limiting processes for modeled photoelectrochem-

ical impedance spectra, as shown in Figure 2.7
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Figure 2.6: EIS results of the DSSCs fabricated with multilayer TNP/TNT combined electrodes. From
[12].

Figure 2.7: Calculated EIS with variation of the resistance of the boundaries. The high frequency peak
increases and shifts to lower frequencies, as RB increases from 100 to 500 mV. open symbols, |Z |; solid
symbols, phase φ. From [10].
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Hoshikawa et al. [13], however, showed by photoelectrochemical impedance measurements of

dye-sensitized solar cells that their internal resistance consisted of at least five components, shown

in Figure 2.8. This indicates five interfaces in the photoelectrochemical system with distinct time

constants for charge transfer transport.

Figure 2.8: An impedance spectrum in Nyquist presentation obtained from TiO2-based stan-
dard dye-sensitized solar cell. Bias, OCV; light intensity, 100 mW cm-2. Electrolyte: 0.6
M DMPImI, 0.1 M LiI, 0.05 M I2, 0.5 M t-BuPy in methoxyacetonitrile. Structure of cell:
FTO|TiO2(P25)|dye(RuN3)|electrolyte|sputtered Pt (FTO). From [13].

2.6 Intensity-modulated photovoltage spectroscopy (IMVS)

Intensity-modulated photovoltage spectroscopy involves measuring a modulating photovoltage un-

der open-circuit conditions when illuminated with a modulating light intensity. Kern et al. [10] states

that under illumination by a steady-state bias illumination I0, superimposed by a harmonically per-

turbed light intensity, IAC = ∆Ie iωt , the measured photovoltage V photo under open-circuit condi-

tions consists of a large stationary photovoltage V0 and a small transient component VAC varying with

the light frequency and a phase shift φ between the modulating light and the resulting AC voltage

signal

Vphoto =V0 +∆V e i (ωt−φ)︸ ︷︷ ︸
VAC

(2.5)

The IMVS-transfer function is defined by the fraction of measured photovoltage and modulating illu-

mination [10]

ZIMVS(ω) = ∆V

∆I0
(2.6)

Slichthörl et al. [14] describes the IMVS response by looking at the transport equation for a sinu-

soidal modulated light intensity

∂n

∂t
= D

∂2n

∂x2 −kn +ηI0αe iωt e−αx (2.7)
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where n is the sum of photoinduced electron concentration and trap states, k is the rate constant of

recombination, ηI0αe iωt e−αx is a generation term G(x, t ), and η accounts for reflection losses. I0 and

α are the light intensity and penetration depth, respectively. A similar transport equation is reported

numerous in the literature [15, 16, 10], where Peter et al. [15] define τ= k−1 as the electron lifetime.

The IMVS response is typically a semicircle with positive real part and negative imaginary part, as

reported by Peter et al. [15] in Figure 2.9. Here the boundary conditions [15]

Dn
∂n

∂x

∣∣∣∣
x=0

= kextnx=0;
∂n

∂x

∣∣∣∣
x=d

= 0 (2.8)

is assumed, where kext is the rate constant for electron extraction at the substrate (x = 0) and d the

film thickness. For IMVS measurements, kext = 0. It is found that the minimum of the impedance

plane plot of the IMVS response is located at a frequency ωmin = τ−1
n = k [15, 16, 10].

Figure 2.9: Typical IMVS plots for DSSC at dc intensity ∼ 4×1013 cm-2 s-1. From [15].

Schlichthörl et al. [17] investigate the charge-recombination kinetics and band edge movement in

dye-sensitized nanocrystalline TiO2 solar cells (DSSC) by IMVS. They assume that optical excitation

leads to an injection current density, Jinj, into the conduction band, and also a irreversible current

density caused by recombination Jr. They proceed to express the accumulated charge in the con-

duction band Qcb and in surface states Qss as a function of the rate constant of electron capture by

surface states, thermal emission of electrons back into the conduction band, back electron transfer

from the conduction band, and back electron transfer from surface states to an electron acceptor

at the electrode/electrolyte interface. This is given in the electron-transfer kinetic scheme in Figure

2.10. The modeled IMVS response consists of one or two semi circle minima, depending on the rate

constants of the physical processes in the system described above. This is given in Figure 2.11. τ1
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Figure 2.10: Scheme for electron-transfer kinetics. Jinj is the electron-injection current from excited
dye molecules into the semiconductor conduction band, k1 and k2 are the respective rate constants
for electron capture by surface states and the thermal emission of electrons back into the conduction
band, and k3 and k4 are the respective rate constants for the back electron transfer from the con-
duction band and surface states to an electron acceptor at the nanocrystalline semiconductor/redox
electrolyte interface. Jinj is assumed to not limit the recombination kinetics. Electron transfer from
the semiconductor to the oxidized dye and charge injection from the redox electrolyte to the semi-
conductor are neglected. From [17].

and τ2 are the two different time constants given by the electron-transfer kinetics, S and T are linear

combinations of the electron kinetics. Thus, detailed information of the recombination kinetics and

edge movements may be obtained by IMVS with this model.

Kern et al. [10] describes a similar reaction path scheme as Schlichthörl et al. [17], given in Figure

2.12. k1 and k2 are the rate constants for trapping and detrapping of electrons, respectively, and k3

and k4 the rate constants for recombination of conduction band electrons and trapped electrons,

respectively. They found that the IMVS spectra are not influenced by diffusion in the electrolyte since

no current flows through the system. Thus, only one peak is found in the IMVS spectra. This is given

in Figure 2.13 where the imaginary part of the calculated IMVS transfer function is plotted against the

frequency. The maximum peak is associated with the recombination process.

Each semicircle in any resulting IMVS spectra should reflect a distinct step in the electron-transfer

kinetics assumed for the system. Thus, if one kinetic step is assumed, one semicircle is expected, if

two steps are assumed, two semicircles are assumed, and so on. It is to be noted that the if the rate

constants are similar in magnitude they may not be separated, but occurs at similar frequencies.

We expect an IMVS transfer function that is a complete or nearly complete semicircle, where the

minimum of the calculated IMVS impedance plane plot is expected to be observed at a value equal to

the effective rate constant k = τ−1.

2.7 Intensity-modulated photocurrent spectroscopy (IMPS)

Intensity-modulated photovoltage spectroscopy involves measuring a modulating photocurrent un-

der sort-circuit conditions when illuminated with a modulating light intensity. The time-dependent
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Figure 2.11: Schematic plot of the frequency response of potential modulation according to the re-
action scheme in Figure 2.10. τ1 and τ2 are time constants, ω the angular frequency, and S and T
depend on the rate constants. From [17].

Figure 2.12: Reaction paths within a DSSC considered in [10].
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Figure 2.13: Imaginary part of the calculated IMVS spectrum, also plotted with the calculated EIS
spectrum in [10]. The peak is associated with the recombination process. From [10].

incident illumination is assumed to be a sinusoidal perturbation on the form [18]

I (t ) = I0(1+δsin(ωt )) (2.9)

where δ is the depth of modulation and I0 is the mean intensity. The intensity-modulated photocur-

rent spectroscopy (IMPS) is defined as the measurement of the complex ratio of photocurrent flux

iphoto(ω) to incident light flux I0(ω) [18, 19]

L {iphoto}(ω)

L {I0}(ω)
= Re

(
L {iphoto}(ω)

L {I0}(ω)

)
+ Im

(
L {iphoto}(ω)

L {I0}(ω)

)
(2.10)

If surface recombination occurs at an illuminated semiconductor electrode, the response to intensity-

modulated illumination will be made up of two components associated first with the photogenerated

minority carriers and second with the majority carriers that must flow to the surface in order to take

part in surface recombination. The two currents have opposite signs, and generally they will not be

in phase [19].

A set of different reaction routes of photogenerated minority holes for an n-type semiconductor

may be assumed[19, 20], as shown in Figure 2.14. If the recombination is complete, i.e. k1 À k0, the

response extends into the fourth quadrant of the complex plane, described in Figure 2.15a. The in-

tercept at the origin in the upper quadrant is determined by the kinetics of surface recombination,

whereas the response in the lower quadrant depends on the time constant RsolCsc, where Rsol is the
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Figure 2.14: Simplified scheme illustrating the routes available for the reaction of photogenerated
minority holes at the surface og an n-type semiconductor under depletion conditions. Note that a
recombination via the set of surface states induces a flux of electrons into the surface. From [19].

solution resistance and Csc the space charge capacitance [19]. If the indirect charge transfer is negli-

gible, the frequency of the maximum in the upper quadrant is related simply to the pseudo first rate

constant for majority capture by the surface states. In a more general case where partial generation

occurs is given in Figure 2.15b, where only half of the minority carriers are captured by surface states

k1 = k0.

If the light intensity use for IMPS measurements is sufficiently low, the band bending, space-

charge capacitance and density of majority carriers are not changed significantly from their values in

dark. Provided that charge transfer, recombination and capture by surface states are linear processes,

they can be described by first-order kinetic equations [20]. The general shape of the IMPS response

is a semicircle arising from charge transfer/recombination and RC attenuation appear in the upper

and lower quadrants of the complex plane, respectively. However, if the depletion layer capacitance

is large and charge transfer is fast, the IMPS plots develop two semicircles in the lower complex plane

[20].

A single time constant process would result in a semicircle in a complex plane plot of the quan-

tum efficiency where the frequency at the apex of the semicircle can be related to the time constant of

the process [21]. The observed depressed semicircle indicates a nonexponential or multi-time con-

stant process consistent with the transient measurements. The continuity equation in the absence of
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(a) (b)

Figure 2.15: Theoretical IMPS plots calculated for a complete recombination (k1 À k2; k3 = 10−4

s-1), and b partial recombination (k1 = k2). The low frequency interception at 0.5 corresponds to the
steady-state photocurrent response. From [19].

electron migration is described by [21, 14, 15, 16, 10]

D
∂2n(x, t )

∂x2 − ∂n(x, t )

∂t
− n(x, t )−n0

τ0
+ I0αe−αx = 0 (2.11)

The solution of this equation predicts that the steady-state photocurrent is proportional to the light

intensity. The solution gives a nonexponential rise and the characteristic rise time is independent of

light intensity [21]. The recombination term described by the lifetime τ only modifies the rise time

of the transients; it does not change the essential features of the solution. The diffusion coefficient D

represents the thermally activated transport of electrons through the particle network [21]. Physically,

this model is consistent with an electron transport process controlled by thermal excitation from trap

states in the particles [21]. Impedance plane plots for the work done by Cao et al. [21] is given in

Figure 2.16, where β= I0αd 2/n0D0.

(a) (b)

Figure 2.16: IMPS impedance plane plot for a αd = 10 and β= 1000 and b αd = 3 and β= 300. From
[21].
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The transport of photogenerated carriers through a porous network, consisting of nanometer

sized particles, can be studied by IMPS [22]. The optoelectrical admittance is defined as∆i (ω)/eI0(ω),

where and∆i (ω) is a harmonically varying photocurrent density and I0(ω) i small amplitude harmon-

ically component of the absorbed light intensity, respectively [22]. At sufficiently low frequencies,

the optoelectrical admittance is real and corresponds to the photocurrent quantum yield ∆i /I0, and

∆i (ω)/eI0(ω) becomes zero at sufficiently high frequencies [22]. For a sample of given thickness, it

was found that ωmin increases strongly with the background light intensity I0 as shown in Figure 2.17

[22]. The optoelectrical admittance corresponds to a semicircle in the [Re = positive, Im = negative]

quadrant [22]. ω−1
min is equal to the number of trapping events in the deepest unoccupied states times

the lifetime of electron in this state before thermal release to the conduction band [22].

(a) (b) (c)

Figure 2.17: Complex plane representation of the optoelectrical admittance measured with the partic-
ulate TiO2 electrodes of different thickness d , absorbed light intensity Φ. a d = 0.3 µm, Φ= 1.2×1016

cm-2 s-1, b d = 0.9 µm,Φ= 1.6×1016 cm-2 s-1, and c d = 4.0 µm,Φ= 4.1×1016 cm-2 s-1. From [22].

Due to slow transport through particulate electrodes, back transfer of electrons into the elec-

trolyte can occur, which is believed to be one of the recombination mechanisms in TiO2-based solar

cells [23]. If the RC time of the porous electrode is shorter than the transient time of the photogen-

erated charge carriers through the porous network, the externally measured photocurrent response

∆i (ω) corresponds to the internal photocurrent flow in the porous electrode which is due to the mo-

tion of charge carriers. In such a case, transit time of photogenerated charge carriers through the

porous network can be obtained from IMPS studies [23]. The inverse of the frequency at which the

imaginary component shows a minimum ωmin is a measure for the transit time of the photogener-

ated electrons. It was found that the transit time increases with increasing electrode thickness. The

photocurrent quantum yield shows that photogenerated holes are consumed in two competing pro-

cesses: hole transfer to the electrolyte and electron–hole recombination [23].

The electron transport in DSSCs must involve diffusion coupled to relaxation of the ionic atmo-

sphere in the electrolyte phase [24]. The lifetime of excess electrons in the nanocrystalline solid is

presumed to be determined by back reactions with the oxidized component of the sensitizer couple

(I−/I−3 ). The IMPS plot for illumination from the electrolyte side crosses into the negative real quad-

rant and the positive imaginary quadrant before tending towards zero in the high frequency limit.
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This behavior can be understood in terms of the diffusion-controlled transit time required for car-

riers generated outside the film to reach the substrate [24]. If the lifetime of electrons is sufficiently

long, all photoinjected electrons are collected, and the dc value of I0 is determined by the fraction of

incident light absorbed [24]. For a finite electron lifetime, the dc photocurrent conversion efficiency

depends on the ratio between the electron diffusion length L = (Dτ)1/2 and the film thickness [24].

A convenient order of magnitude estimate of the diffusion coefficient can be obtained by noting

that the minimum in the IMPS response occurs at an angular frequency corresponding to the inverse

of the mean transit time for the electrons diffusing to the substrate [25]. The IMPS response can be

described by an effective diffusion coefficient that determines τd , where τd is the mean transit time

for photogenerated electrons [25].

The diffusion of electrons to the substrate contact gives rise to a time delay between electron in-

jection and collection. This delay is manifest as a phase lag in the photocurrent response to intensity-

modulated light. IMPS measurements gives information about kinetics and transport [15]. If τn

becomes large, it no longer influences the IMPS response. Under these conditions, ωmin is directly

proportional to Dn , with the coefficient of proportionality being determined by α and d [15].

The time constant for charge collection τcc cannot be measured directly but is inferred from the

relation between the open circuit time constant τoc and the time constant for the combined processes

at short circuit τsc that is obtained from IMPS measurements (assuming linear and independent pro-

cesses) [14]
1

τsc
= 1

τoc
+ 1

τcc
(2.12)

The IMPS response depends on how fast the steady-state carrier-concentration profile adjusts to a

change of light intensity [14].

The apparent electron diffusion coefficient Dn determined by IMPS is intensity-dependent [16].

It can be shown that the apparent diffusion coefficient for electrons is determined by the density of

trapping states located at the electron quasi fermi level (QFL) [16]. If the first-order rate constants

for trapping (kt ) and detrapping (kd ) are large compared with measurement frequency, the IMPS

response is expected to have the same shape as in the absence of trapping [16]. The only change

is that the frequency response is determined by the effective diffusion coefficient Dn = Dcb(kd /kt ),

where Dcb is the diffusion coefficient of electrons in the conduction band [16].

The phase shift between the modulated light component and the induced photocurrent is related

to the transient time of electrons through the TiO2 network [26]. At low frequencies the plots converge

to a point in the real axis, which implies that low-frequency recombination does not occur under the

used light conditions. The intercept corresponds to the IPCE [26].

As current is passing through the solar cel, IMPS measures a combined response from the photo
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electrode, the counter electrode, and the electrolyte [27].

2.8 Equivalent circuit approach

One approach to derive impedance transfer functions is by the equivalent circuit approach. An equiv-

alent circuit of the modeled system is assumed, where appropriate circuit elements are added either

by looking at the electron flow processes throughout the system, or may be added randomly to fit

experimental data. The latter is not recommended, as the physical understanding of the electrode

system may be completely disregarded in order to fit the experimental data.

Bay et al. [27] establish a model of the dynamics of dye-sensitized solar cells by an equivalent

circuit approach. Here, the porous electrode is modeled by a general branched transmission line

model, in which a idealized porous photomodel network is assumed. The electronic coupling as-

sumed between the electrode and the surrounding electrolyte is given in Figure 2.18. The upper and

lower branches, Ze and Zi corresponds to the electronic and ionic transport, respectively. Z3 corre-

sponds to the impedance associated with charge transfer between the electrode and electrolyte. By

using the charge balance for the electronic branches and the potential difference between the back

contact and the electrode, the electrochemical impedance for the network ZEC and the transfer func-

tion accounting for photogeneration is obtained. By assuming open circuit voltage, an IMVS transfer

Figure 2.18: Transmission line model of the idealized porous photomodel network. Re is the resistivity
of charge transport between electrode particles, Ri is the resistivity of the electrolyte phase, and Z3

is the impedance associated with transfer across the electrode–electrolyte interface. From Bay et al.
[27].

function is obtained. From this IMVS transfer function, the diffusion coefficient is found to be given

by Dn = [Cs(Ri +Re )]−1, where Cs is the surface capacity. The electron lifetime in the conduction

band is found to be given by τn = RsCs where Rs is the reaction resistance for the recombination re-

action. From previous results by e.g. Peter et al [15], they state that the diffusion length is given by

Ln = (Dnτn)1/2 ∼ (Rs/Re )1/2. Further, they say that both the rate of recombination and number of

free carriers in the electrode phase increases exponentially with decreasing potentials, and they ex-
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pect thus the diffusion length is only weakly dependent of the potential of the photoelectrode. By

assuming short circuit conditions, an IMPS transfer function is obtained by a similar approach.

2.9 Mathematical treatment by Laplace transform

In general, the mathematical treatment of impedance spectra by Laplace transform is rarely reported

in the literature. The analytical expressions derived are thus difficult to compare to existing literature.

However, the modeled impedance plane plots and bode plots may be compared to existing literature

in order to compare and verify the derived models.

The relation between the system response and system properties are usually very complex in

the time domain [8]. One method to greatly simplify the mathematical treatment of the system

is to use Laplace transform from the time domain to the frequency domain. It can be shown that

the impedance can be derived by setting s = jω in the Laplace-transformed time region equations,

where j = p−1. This proof is given in Appendix A, established by Professor Svein Sunde. Thus, the

impedance in Eq. (2.1) can be expressed by the Laplace-transform of the voltage and the current by

Z ( jω) = L {r̃} ( jω)

L {s̃} ( jω)
(2.13)

where r̃ and s̃ are the modulated frequency-dependent response and stimulus, respectively. This

mathematical treatment of the impedance is used in this study.

The use of the Laplace transform approach to analyze the electrochemical impedance of nanos-

tructured iridium oxide electrocatalysts is reported by Sunde et al. [28]. Sunde et al. [29] uses the

Laplace transform approach to calculate the electrochemical impedance for porous intercalating

electrodes. Peter [18] states that the response to be expected for a defined laser pulse shape in in-

tensity modulated photocurrent spectroscopy may be obtained from the time-dependent solution

of the diffusion problem using Laplace transform techniques. He introduces a interfacial transfer

function T1(s) in terms of the rate constants

T1(s) = L { jphoto}(t )

L {g }(t )
= j̃photo(s)

g̃ (s)
(2.14)

where jphoto(t ) is the time-dependent photocurrent in the external circuit and g (t ) is the time-dependent

excitation function (incident light profile). Macdonald et al. [8] states that the impedance of an elec-

trochemical system may be described by Laplace transform. However, their focus is on the use of

Fourier transform rather than Laplace transform, and is of little use for this thesis.
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3 Modeling of electrochemical and photoelectrochemical impedance

3.1 Introduction

In this section the photoelectrochemical impedance transfer functions are derived. In Section 3.2

we introduce a numerical modeling approach to calculate photoelectrochemical impedance spec-

tra using Newman’s BAND(J) subroutine [30], studied in more detail in previous work [31]. In Sec-

tion 3.3, the photoelectrochemical thin film electrode is described, and in Section 3.3.1 a physical

description of a mixed conducting thin film electrode under steady-state conditions is introduced,

assuming binary electrolyte and dilute solution theory. In Section 3.3.2 the steady-state physical de-

scription is extended to non-steady state conditions to calculate the frequency dependent impedance

models. In section 3.3.3, the electrochemical faradaic impedance under zero illumination is derived,

and in Section 3.3.4 the faradaic impedance under steady-state illumination is derived. A model for

intensity-modulated photovoltage spectroscopy (IMVS) is derived in Section 3.3.5, and a model for

intensity-modulated photocurrent spectroscopy (IMPS) is derived in Section 3.3.6. We introduce mi-

cropores to the thin film in Section 3.4 assuming a similar analogy as Södergren et. al [11], and an

IMPS model for this system is derived in Section 3.4.2.

3.2 Numerical modeling of the impedance spectra with Newman’s BAND(J) subroutine

The mathematical treatment of modeling impedance spectra involves solving partial differential equa-

tions, as described below. There are two approaches to solve these differential equations; analytical

and numerical. Analytical modeling involves combining existing models, expressions and equations

to solve a certain problem. This is preferred since a full control of the mathematical treatment is ob-

tained, that is, at all times the assumed approximations are done physically. In this study, the focus is

mainly on the analytical modeling approach. Numerical modeling involves approximating the math-

ematical problem with appropriate numerical methods. This is not preferred, as the assumptions

made are purely mathematical, and not based on any physical aspects of the system. However, for

complex systems analytical models are not obtainable, and numerical modeling is required.

Solving the partial differential equations involved in modeling of impedance spectra has been

investigated in previous work [31]. The study used a subroutine BAND(J) for solving a set of n cou-

pled, linear, second-order differential equations numerically given by Newman [30]. The main goal

of the study was to investigate if the subroutine could be applied to complex numbers, and proper

convergence for the numerical approach was observed. However, several issues regarding the step

size sensitivity of the convergence for the subroutine where observed. In this study, a small analysis

of the convergence of this subroutine will be performed. It is noted that the numerical modeling is
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not the focus of this study. For a more detailed description and study of the BAND(J) subroutine, see

previous work [31].

3.3 Photoelectrochemical thin film electrode

The system to be modelled consists of a thin film electrode deposited on a planar substrate at x = L,

sketched in Figure 3.1. The (planar) surface of the electrode faces the solution at x = 0. We assume

that only the electrons may react with solution species, as normally only one of the bands are active

in faradaic processes. The model can easily be reworked for hole transfer, so we do this without loss

of generality.

Figure 3.1: Schematics of the modeled thin film electrode system.

We assume the following species in the solid phase of the porous electrode: electrons of concen-

tration p, holes of concentration n, acceptor dopants of concentration Na , and donor dopants of

concentration Nd . Assuming electroneutrality outside of space charge regions the following condi-

tion applies there [6]:

n −Nd − (p −Na) = 0 (3.1)

where the quantities are lumped so as to suggest a description in terms of the variables c+ = p −Na

and c− = n −Nd . This gives the charge balance

z+ν+c++ z−ν−c− = 0 (3.2)

3.3.1 Physical description of mixed conducting thin film electrode

We employ the dilute-solution approximation in which the flux density vector of species i in the film,

N i , is described by [30]

N i =−zi ui F ci∇Φ1 −Di∇ci (3.3)
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where zi is the charge number, ui the mobility, ci the concentration, and Di the diffusion coefficient

of species i . Here we have neglected convection.

The material balance [30]
∂ci

∂t
=−∇N i +Ri (3.4)

becomes, by combination of the expressions for c+ and c− and Eq. (3.2) [30]

∂c

∂t
= D∇2c +Rc (3.5)

where

D = z+u+D−− z−u−D+
z+u+− z−u−

, Rc = z+u+R−− z−u−R+
z+u+− z−u−

(3.6)

and the concentration of neutral hole-vacancy pair in the electrolyte phase c is given by

c = c+
ν+

= c−
ν−

(3.7)

ν+ and ν− are the numbers of cations and anions produced by the dissociation of one molecule of

electrolyte, respectively.

We assume first order kinetics for the charged species, and define the production per unit volumes

Ri in terms of the respective rate constants Ri and charge carrier concentrations ci by

Ri = k−c− (3.8)

With the definition of the concentration of neutral hole-vacancy pair in Eq. (3.7) we get the expression

for Rc

Rc = z+u+ν−k−− z−u−ν+
z+u+− z−u−︸ ︷︷ ︸

−k

c =−kc (3.9)

where we have introduced a rate constant k corresponding to recombination or trapping of charge

carriers [32], rather than production of charge carriers, thus a negative sign is needed. k includes all

rate constants and any other pre-factors stemming from linearization of R+ and R−. We also introduce

a source term due to photon absorption [11]

I0αe−αx (3.10)

where I0 is the light intensity and α is the light adsorption coefficient.

Under steady-state conditions, the concentration is independent of the time, that is ∂c/∂t = 0.
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For a one-dimensional electrode system, the steady-state diffusion equation in Eq. (3.5) becomes

0 = D
∂2ce

∂x2 −kce + I0αe−αx (3.11)

where "e" refers to steady-state.

The current in the electrolyte is given by [30]

i e = F
∑

i
zi Ni (3.12)

and the net flux density is [30] ∑
i

Ni = i e

F
∑

i zi
(3.13)

We see that N i is the integrated form of Eq. (3.4). We get [30]

− i e

z+ν+F
= (z+u+− z−u−)F c∇Φ1 + (D+−D−)∇c = N+ (3.14)

We assume that electronic species are blocked at the solution interface x = 0, in the present example

the positive species, and we get the species fluxes [30]

N+x = 0 =−z+u+Fν+c
∂Φ

∂x
−D+ν+

∂c

∂x
(3.15)

N−x = ix,e

z−F
=−z−u−Fν−c

∂Φ

∂x
−D−ν−

∂c

∂x
(3.16)

where Ni x is the flux of species i in x-direction. These fluxes are shown schematically in Figure 3.2 for

a positive current ix,e > 0. Positive charge carriers are blocked at the solution interface. Electrons are

transferred from the electrode to the solution, that is in negative x-direction, since N−x < 0 from Eq.

(3.16) when we assume z− =−1.

By elimination of the potential in Eq. (3.15) and (3.16), we get

ix,e

z−ν−F
= z−u−D+− z+u+D−

z+u+
∂c

∂x
(3.17)

We introduce the transport number of the positive species [30]

t+ = 1− t− = z+u+
z+u+− z−u−

(3.18)

and the boundary condition at the electrolyte interface x = 0 becomes [30]

ix,e

z−ν−F
=− D

1− t−
∂c

∂x

∣∣∣∣
x=0

(3.19)
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Figure 3.2: Schematics of the charge carrier fluxes across the solution interface (x = 0). Positive
species are assumed to be blocked at the interface, N+x = 0 (here represented by holes), and nega-
tive species flow from the electrode to the solution, N−x < 0 (here represented by electrons).

At the substrate interface x = L, we assume that electrons are blocked in order to preserve charge

balance and prevent charge accumulation, and get the species fluxes [30]

N+x = ix,e

z+F
=−z+u+ν+c

∂Φ

∂x
−D+ν+

∂c

∂x
(3.20)

N−x = 0 =−z−u−Fν−c
∂Φ

∂x
−D−ν−

∂c

∂x
(3.21)

These fluxes are shown schematically in Figure 3.3 for a positive current ix,e > 0. Negative charge

carriers are blocked at the substrate interface. Holes are transferred from the electrode to the support,

that is in positive x-direction, since N−x > 0 from Eq. (3.20) when we assume z+ = 1.

Figure 3.3: Schematics of the charge carrier fluxes across the substrate interface (x = L). Negative
species are assumed to be blocked at the interface, N−x = 0 (here represented by electrons), and pos-
itive species flow from the electrode to the support, N−x < 0 (here represented by holes).
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By eliminating the potential in Eq. (3.20) and (3.21), gives the boundary condition at x = L [30]

ix,e

z+ν+F
=− D

1− t+
∂c

∂x

∣∣∣∣
x=L

(3.22)

The diffusion equation in Eq. (3.11) is solved with the boundary conditions in Eq. (3.19) and

(3.22), which gives the specific solution of steady-state concentration profile

ce (x) = ix,e

F
p

Dk sinh

(√
k
D L

)

·
K3,e cosh

√
k

D
(x −L)

−K4,e cosh
(p

kD
)

− I0αe−αx

Dα2 −k

(3.23)

with

K3,e = 1− t−
z−ν−

+ F D I0α
2

i f ,e (Dα2 −k)
(3.24)

K4,e = 1− t+
z+ν+

+ F D I0α
2e−αL

i f ,e (Dα2 −k)
(3.25)

This concentration profile is given in Figure 3.4 for ix,e , I0 > 0. We observe a positive gradient close to

the solution interface x = 0 and a negative gradient close to the substrate interface x = L, as expected

from the boundary conditions in Eq. (3.19) and (3.22), respectively.

Figure 3.4: Calculated charge carrier concentration ce (x) across the electrode. A positive gradient
close to the solution interface (x = 0) in accordance to Eq. (3.19) corresponds to the flux of negative
species from electrode to solution from Eq. (3.16). A negative gradient close to the substrate interface
x = L in accordance to Eq. (3.22) corresponds to the flux of positive species from the electrode to the
support from Eq. (3.20)

When we apply a positive light intensity change, we expect to observe an increase in the charge

carrier concentration close to the interfaces, and a larger increase close to the solution interface (x =
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0) where the illumination occurs than at the substrate interface (x = L). This is given in Figure 3.5,

where ∆ce (x) is the calculated change in steady-state concentration when applying a positive light

intensity change (∆I0 > 0). To prevent charge accumulation, we expect a net increase in the hole flux

out of the electrode at the substrate interface (x = L), and a net increase in electron flux out of the

electrode at solution interface (x = 0), described by ∆Ni x in Figure 3.5

Figure 3.5: Calculated change in charge carrier concentration ∆ce (x) when applying a positive light
intensity change ∆I0 > 0. A net increase in concentration close to the interfaces is observed, where
the increase is larger near the solution interface (x = 0). An increase in carrier concentration fluxes
out of the interfaces is expected, and illustrated by ∆Ni x .

The flux of negative carriers in the x-direction, N−x , is related to the faradaic current as

i f ,e =−z−F N−x (3.26)

since a vacancy flux in the direction from x = 0 to x = L (N−x > 0) represent oxidation of the oxide

(z− = −1 implies that i f ,e = F N−x ). Therefore i f ,e = −ix,e , as shown schematically in Figure 3.6. The

steady-state concentration profile in terms of the faradaic current becomes

ce (x) =− i f ,e

F
p

Dk sinh

(√
k
D L

)

·
K1,e cosh

√
k

D
(x −L)

−K2,e cosh
(p

kD
)

− I0αe−αx

Dα2 −k

(3.27)

with

K1,e = 1− t−
z−ν−

− F D I0α
2

i f ,e (Dα2 −k)
(3.28)

K2,e = 1− t+
z+ν+

− F D I0α
2e−αL

i f ,e (Dα2 −k)
(3.29)
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Figure 3.6: Full schematic of the current flow in the modeled electrode system for I0,∆I0, ix,e > 0. The
faradaic current i f ,e is defined in the opposite direction as the current ix,e .

3.3.2 Solution of the nonsteady-state diffusion equation for mixed conducting thin film electrode

A harmonic perturbation is assumed applied in the driving force for current flow for t > 0. The con-

centration may be written

c = c(r ,0)+ c̃(r , t ) (3.30)

where c(r ,0) describes the steady-state concentration, and c̃(r , t ) describes the harmonic perturba-

tion. The Laplace transform of the time derivative may be written as [33]

L

{
∂c

∂t

}
(s) = s L {c̃} (s)−

=0︷︸︸︷
c̃(0) = s L {c̃} (s) (3.31)

Combination of Eq. (3.31), (3.5), (3.9) and (3.10) gives, for a one-dimensional electrode system

s L {c̃}(s) = D
∂2 L {c̃}(s)

∂x2 −k L {c̃}(s)+L
{

Ĩ0
}

(s)αe−αx (3.32)

where the Laplace constant for impedance spectroscopy measurements is set to s → jω, derived in

Appendix A. We introduce the shortened nomenclature L { f̃ }(s) =L { f̃ }, for simplicity.

We assume that positive species are blocked at the solution interface x = 0 and negative species

are blocked at the support interface x = L, as described above. The boundary conditions for the non-

steady-state system is found by doing the Laplace transform of the steady-state boundary conditions

in Eq. (3.19) and (3.22) [30], where we assume that L {ĩ f } =−L {ĩx }

L
{
ĩ f

}
z−ν−F

= D

1− t−
∂L {c̃}

∂x

∣∣∣∣
x=0

(3.33)
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L
{
ĩ f

}
z+ν+F

= D

1− t+
∂L {c̃}

∂x

∣∣∣∣
x=L

(3.34)

Boundary conditions (3.33) and (3.34) are used to solve the diffusion equation (3.32), which give the

specific solution

L {c̃} =− L
{
ĩ f

}
F

√
D( jω+k)sinh

(√
jω+k

D L

)

·
K1(ω)cosh

√
jω+k

D
(x −L)


−K2(ω)cosh

√
jω+k

D
x


− L

{
Ĩ0

}
α

Dα2 −k − jω
e−αx

(3.35)

where

K1(ω) = 1− t−
z−ν−

− F D L
{

Ĩ0
}
α2

L
{
ĩ f

}
(Dα2 −k − jω)

(3.36)

K2(ω) = 1− t+
z+ν+

− F D L
{

Ĩ0
}
α2

L
{
ĩ f

}
(Dα2 −k − jω)

e−αL (3.37)

3.3.3 Electrochemical impedance of the thin film electrode (EIS)

For electrochemical impedance spectroscopy (EIS) measurements, we assume the conditions

L {ĩ f } 6= 0; L {Ṽ } 6= 0

L {Ĩ0} = 0; I0(x,0) = 0
(3.38)

The electrochemical (faradaic) impedance transfer function is given by [8]

Z f ( jω) = L {Ṽ }

L {ĩ f }
(3.39)

The faradaic current at the electrode-electrolyte interface, i f , is assumed to be a function of the

proton concentration in the oxide film and the potential difference between electrode and electrolyte,

Φ1 −Φ2, given by the linearized expression

i f =
(
∂i f

∂c

)
Φ1−Φ2,x=0

c(x = 0)+
[

∂i f

∂(Φ1 −Φ2)

]
c,x=0

[Φ1(0)−Φ2(0)]

= A0c(0)+B0[Φ1(0)−Φ2(0)]

(3.40)

with A0 =
(
∂i f

∂c

)
Φ1−Φ2,x=0

and B0 =
[

∂i f

∂(Φ1−Φ2)

]
c,x=0

.

The local admittance at the electrode-electrolyte interface for the combined faradaic reaction and
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diffusion, Y0, is found by combining Eq. (3.35) and the Laplace transformed Eq. (3.40) evaluated at

x = 0

Y0 =
L {ĩ f }

L {Φ̃1(0)−Φ2(0)}
= B0

1− A0Z ′
D

(3.41)

with

Z ′
D =− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
1− t−

z−ν−
cosh

√
jω+k

D
L

− 1− t+
z+ν+


(3.42)

By similar approach, the local admittance at the metal-oxide boundary, YL , is given by

YL = L {ĩ f }

L {Φ̃M (L)−Φ1(L)}
= BL

1− AL Z ′
D

(3.43)

with

Z ′′
D =− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
1− t−

z−ν−
− 1− t+

z+ν+
cosh

√
jω+k

D
L


(3.44)

where Φ̃M (L) is the potential of the metal support at x = L.

To relate the potential difference L {Φ̃1(0)−Φ2(0)} to the potential measured with respect to a

reference electrode, we assume the equilibrium at the interface to the electrode support connecting

the electrode

0*) h++e− (3.45)

The electrochemical potential of electrons in the connecting leads is given through (in the dilute

solution limit [30])

−µe =µh =µ0
h +RT lnc(L)+FΦ1(L) (3.46)

when Eq. (3.45) is assumed to be in equilibrium. The measured potential is related to the electro-

chemical potential in a reference electrode as µe −µref
e =−FV .

We assume that µref
e can be measured by a reference electrode so that its value is representative

of Φ2(0) plus a constant. The amplitude and phase of the measured electrode potential is derived by

taking the time dependent part of the linearized Eq. (3.46)

F L {Ṽ } = RT

ce
L {c̃(L)}+F L {Φ̃1(L)}−F L {Φ2(0)} (3.47)
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The potentialΦ1 can in turn be related to the concentration c and the faradaic current i f through [30]

i f

z+ν+F
= (z+u+− z−u−)F c∇Φ+ (D+−D−)∇c (3.48)

where we have used that i f = −ix as described above. We assume that the potential gradient can be

written c∇Φ1 ≈ ce
∂Φ1
∂x + c ∂Φ1,e

∂x , where we have neglected terms beyond first order. Eq. (3.48) becomes

i f

z+ν+F
= (z+u+− z−u−)F

(
ce
∂Φ1

∂x
+ c

∂Φ1,e

∂x

)
+ (D+−D−)

∂c

∂x
(3.49)

We expect the steady-state concentration ce to be independent of the position [34]. For zero current,

the relation [30]

F
∂Φ1,e

∂x
=− D+−D−

z+u+− z−u−
∂ lnce

∂x
(3.50)

implies that ∂Φ1,e /∂x = 0. Using this result in the Laplace-transformed Eq. (3.49) and integrating

from x = 0 to x = L gives

L {Φ̃1(L)} =L {Φ̃1(0)}− D+−D−
F ce (z+u+− z−u−)

[L {c̃(L)}−L {c̃(0)]+ L {ĩ f }L

κ
(3.51)

with κ= F 2 ∑
i z2

i ui ci being the film conductivity. The phase and amplitude of the measured potential

in Eq. (3.47) becomes

F L {Ṽ } = RT

ce
L {c̃(L)}

+F L {Φ̃1(0)}− D+−D−
ce (z+u+− z−u−)

[L {c̃(L)}−L {c̃(0)}]−F L {Φ2(0)}+ F L {ĩ f }L

κ

F L {Ṽ } = F L {Φ̃1(0)−FΦ2(0)}

+
[

RT

ce
− D+−D−

ce (z+u+− z−u−)

]
L {c̃(L)}+ D+−D−

ce (z+u+− z−u−)
L {c̃(0)}+ F L {ĩ f }L

κ

F L {Ṽ } = F L {Φ̃1(0)−FΦ2(0)}

+
[

(z+−1)D+− (z−−1)D−
ce (z+u+− z−u−)

]
L {c̃(L)}+ D+−D−

ce (z+u+− z−u−)
L {c̃(0)}+ F L {ĩ f }L

κ

(3.52)

where we have used the Nernst-Einstein relation Di = RTui [30]. Inserting the expressions for L {c̃(0)}

and L {c̃(L)} described in Eq. (3.35), and that for the potential difference F L {Φ̃1(0)−Φ2(0)} implied

by Eq. (3.41), the faradaic impedance for the electrode, Z f ( jω), may be written

Z f ( jω) = L {Ṽ }

L {ĩ f }
= Z0 +Zφ+ZΩ (3.53)
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where Z0 = Y −1
0 from Eq. (3.41), ZΩ = L/κ and

Zφ = D+−D−
F ce (z+u+− z−u−)

Z ′
D +

[
(z+−1)D+− (z−−1)D−

F ce (z+u+− z−u−)

]
Z ′′

D (3.54)

3.3.4 Photoelectrochemical impedance of the thin film electrode (EIS)

For photoelectrochemical impedance spectroscopy (EIS) measurements, we apply a harmonically

oscillating current under steady-state illumination and measure the potential response. That is

L {ĩ f } 6= 0; i f ,e 6= 0; L {Ṽ } 6= 0

I0(x,0) 6= 0; L {Ĩ0} = 0
(3.55)

The photoelectrochemical (faradaic) impedance transfer function is given by [8]

Z f ( jω) = L {Ṽ }

L {ĩ f }
(3.56)

Under these conditions the steady-state concentration ce cannot be assumed independent of the

length as assumed in Section 3.3.3. In fact, the steady-state concentration ce (x) under illumination is

given by Eq. (3.27). This is essentially the steady-state equivalent of Eq. (3.35), where the frequency is

set to ω= 0 and all time dependent quantities are replaced by steady-state ones,

ce =− i f ,e

F
p

Dk sinh

(√
k
D L

)

·
K1,e cosh

√
k

D
(x −L)

−K2,e cosh

√
k

D
x


− I0α

Dα2 −k
e−αx

(3.57)

with

K1,e = 1− t−
z−ν−

− F D I0α
2

i f ,e (Dα2 −k)

K2,e = 1− t+
z+ν+

− F D I0α
2

i f ,e (Dα2 −k)
e−αL

(3.58)

The faradaic current at the electrode-electrolyte interface is again a function of the concentration

and the potential difference by

i f =
(
∂i f

∂c

)
Φ1−Φ2,x=0

c(x = 0)+
[

∂i f

∂(Φ1 −Φ2)

]
c,x=0

[Φ1(0)−Φ2(0)]

= A0c(0)−B0[Φ1(0)−Φ2(0)]

(3.59)



3.3 Photoelectrochemical thin film electrode 41

with A0 =
(
∂i f

∂c

)
Φ1−Φ2,x=0

and B0 =
[

∂i f

∂(Φ1−Φ2)

]
c,x=0

.

The local admittance at the electrode-electrolyte interface for the combined faradaic reaction and

diffusion. Y0, is found by combining Eq. (3.35) and the Laplace transformed Eq. (3.59) evaluated at

x = 0

Y0 =
L {ĩ f }

L {Φ̃1(0)−Φ2(0)}
= B0

1− A0Z ′
D

(3.60)

with

Z ′
D =− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
1− t−

z−ν−
cosh

√
jω+k

D
L

− 1− t+
z+ν+


(3.61)

By similar approach, the local admittance at the metal-oxide boundary, YL , is given by

YL = L {ĩ f }

L {Φ̃M (L)−Φ1(L)}
= BL

1− AL Z ′
D

(3.62)

with

Z ′′
D =− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
1− t−

z−ν−
− 1− t+

z+ν+
cosh

√
jω+k

D
L


(3.63)

whereΦM (L) is the potential of the metal support at x = L. We also introduce a "diffusion impedance"-

expression across the electrode, ZD (x), for simplicity in further derivation

ZD (x) =− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
1− t−

z−ν−
cosh

√
jω+k

D
(x −L)

− 1− t+
z+ν+

cosh

√
jω+k

D
x


(3.64)

The amplitude and phase of the measured electrode potential is derived by taking the time de-

pendent part of the linearized Eq. (3.46)

F L {Ṽ } = RT

ce (L)
L {c̃(L)}+F L {Φ̃1(L)}−F L {Φ2(0)} (3.65)

where ce (L) is the steady-state concentration in Eq. (3.57) evaluated at x = L.

The steady-state equivalent of Eq. (3.50) with no linearization is [30]

F
∂Φ1,e

∂x
=− D+−D−

z+u+− z−u−
∂ lnce

∂x
+ i f ,e

z+ν+F ce (z+u+− z−u−)
(3.66)
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This gives the steady-state potential gradient ∂Φ1,e /∂x to be used in Eq. (3.49) and (3.51)

F L {Φ̃1(L)} = F L {Φ̃1(0)}

+
∫ L

0

L {ĩ f }

ce z+ν+F (z+u+− z−u−)
−F

L {c̃}

ce

∂Φ1,e

∂x
− D+−D−

ce (z+u+− z−u−)

∂L {c̃}

∂x
d x

(3.67)

or

F L {Φ̃1(L)} = F L {Φ̃1(0)}

+
∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
i f − i f ,e

L {c̃}

ce

)
− D+−D−

ce (z+u+− z−u−)

(
∂L {c̃}

∂x
− L {c̃}

ce

∂ce

∂x

)
d x

(3.68)

The phase and amplitude of the measured electrode potential is thus described by

F L {Ṽ } = RT

ce (L)
L {c̃(L)}+F L {Φ̃1(0)−Φ2(0)}

+
∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
i f − i f ,e

L {c̃}

ce

)
− D+−D−

ce (z+u+− z−u−)

(
∂L {c̃}

∂x
− L {c̃}

ce

∂ce

∂x

)
d x

(3.69)

Again, we use the potential difference F L {Φ̃1(0)−Φ2(0)} implied by Eq. (3.60), as well as the expres-

sion for L {c̃} described in described in Eq. (3.35), and the faradaic photoelectrochemical impedance

Z f ( jω) may be written

Z f ( jω) = L {Ṽ }

L {ĩ f }
= Z0 +ZL +Zφ (3.70)

where Z0 = Y −1
0 , ZL = RT

F ce (L)
Z ′′

D and

Zφ =
∫ L

0

1

ce z+ν+F 2(z+u+− z−u−)

(
1− i f ,e

ZD (x)

ce

)
− D+−D−

ce F (z+u+− z−u−)

(
∂ZD (x)

∂x
− ZD (x)

ce

∂ce

∂x

)
d x

(3.71)

3.3.5 Intensity-modulated photovoltage spectroscopy of the thin film electrode (IMVS)

For intensity-modulated photovoltage spectroscopy (IMVS) measurements, we apply a harmonically

perturbed light intensity and measure the voltage response under open circuit conditions. That is

L {ĩ f } = 0; i f ,e = 0; L {Ṽ } 6= 0

I0(x,0) 6= 0; L {Ĩ0} 6= 0
(3.72)
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The IMVS transfer function is given by [10]

ZV = L {Ṽ }

L {Ĩ0}
(3.73)

Inserting the IMVS conditions from Eq. (3.72) in the expression for the harmonically oscillating

concentration L {c̃} in Eq. (3.35) we get

L {c̃} =− L {Ĩ0}

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
K1(ω)cosh

√
jω+k

D
(x −L)

−K2(ω)cosh

√
jω+k

D


− L {Ĩ0}αe−αx

Dα2 −k − jω

(3.74)

with

K1(ω) =− F Dα2

Dα2 −k − jω
(3.75)

K2(ω) =− F Dα2e−αL

Dα2 −k − jω
(3.76)

We introduce a "diffusion impedance" term for simplicity

ZD,I0 =
L {c̃}

L {Ĩ0}
=− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
K1(ω)cosh

√
jω+k

D
(x −L)

−K2(ω)cosh

√
jω+k

D


− αe−αx

Dα2 −k − jω

(3.77)

Similarly, the steady-state concentration ce under IMVS conditions is given by combining Eq. (3.57)

and (3.72)

ce =− I0

F
p

Dk sinh

(√
k
D L

)

·
K1,e cosh

√
k

D
(x −L)

−K2,e cosh

√
k

D


− I0αe−αx

Dα2 −k − jω

(3.78)
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with

K1,e =− F Dα2

Dα2 −k
(3.79)

K2,e =−F Dα2e−αL

Dα2 −k
(3.80)

The phase and amplitude of the voltage L {Ṽ } is given by combining Eq. (3.69) with the short

circuit conditions from Eq (3.72) and the expressions for the harmonically oscillating concentration

and steady-state concentration in Eq. (3.74) and (3.78), respectively

F L {Ṽ } = RT

ce (L)
L {c̃}(L)+F L {Φ̃1(0)−Φ2(0)}

−
∫ L

0

D+−D−
ce (z+u+− z−u−)

(
∂L {c̃}

∂x
− L {c̃}

ce

∂ce

∂x

)
d x

(3.81)

where the potential difference L {Φ̃1(0)−Φ2(0)} is given by the linearized expression of the current in

Eq. (3.40)

L {ĩ f } = 0 =
(
∂i f

∂c

)
Φ1−Φ2

L {c̃}(0)+
[

∂i f

∂(Φ1 −Φ2)

]
c,x=0

L {Φ̃1(0)−Φ2(0)}

L {Φ̃1(0)−Φ2(0)} =− A0

B0
L {c̃}(0) (3.82)

By combination of Eq. (3.74) to (3.82) we get

F L {Ṽ } =L {Ĩ0}

[
RT

ce (L)
ZD,I0 (x = L)+F

(
A0

B0
ZD,I0 (x = 0)

)
−

∫ L

0

D+−D−
ce (z+u+− z−u−)

(
∂ZD,I0

∂x
− ZD,I0

ce (x)

∂ce

∂x

)
d x

] (3.83)

The IMVS transfer function becomes

ZV = L {Ṽ }

L {Ĩ0}
= RT

ce (L)
ZD,I0 (x = L)+F

(
A0

B0
ZD,I0 (x = 0)

)
−

∫ L

0

D+−D−
ce (z+u+− z−u−)

(
∂ZD,I0

∂x
− ZD,I0

ce (x)

∂ce

∂x

)
d x

(3.84)

3.3.6 Intensity modulated photocurrent spectroscopy (IMPS)

For intensity-modulated photocurrent spectroscopy (IMPS) measurements, we apply a harmonically

perturbed light intensity and measure the current response under short circuit conditions. That is

L {ĩ f } 6= 0; i f ,e 6= 0; L {Ṽ } = 0

I0(x,0) 6= 0; L {Ĩ0} 6= 0
(3.85)
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The IMPS transfer function is given by [18]

Zφ( jω) = L {ĩ f }

L {Ĩ0}
(3.86)

The harmonically oscillating concentration is given by inserting the IMPS conditions from Eq. (3.85)

in the expression for L {c̃} in Eq. (3.35)

L {c̃} =− L {ĩ f }

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
K1(ω)cosh

√
jω+k

D
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√
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D
x
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− L {Ĩ0}α

Dα2 −k − jω
e−αx

(3.87)

with

K1(ω) = 1− t−
z−ν−

− F D L {Ĩ0}α2

L {ĩ f }(Dα2 −k − jω)

K2(ω) = 1− t+
z+ν+

− F D L {Ĩ0}α2

L {ĩ f }(Dα2 −k − jω)
e−αL

(3.88)

The steady-state concentration ce under IMPS conditions is given by combining Eq. (3.57) and (3.85)

ce =− i f ,e

F
p

Dk sinh

(√
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)

·
K1,e cosh
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− I0α
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(3.89)

with

K1,e = 1− t−
z−ν−

− F D I0α
2

i f ,e (Dα2 −k)

K2,e = 1− t+
z+ν+

− F D I0α
2

i f ,e (Dα2 −k)
e−αL

(3.90)

In order to calculate the IMPS transfer function in Eq. (3.86), we want to express the harmonically

oscillating faradaic current L {ĩ f } as a function of the oscillating light intensity L {Ĩ0}. This is done

by expressing the harmonically oscillating concentration L {c̃} as a sum of one term dependent on

L {ĩ f } only, and one term dependent on L {Ĩ0} only. That is

L {c̃} =L {c̃i f }+L {c̃I0 } (3.91)
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The L {c̃i f } term includes all L {ĩ f } dependent terms in Eq. (3.87)

L {c̃i f } =− L {ĩ f }

F
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·
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(3.92)

where

G1(ω) = 1− t−
z−ν−

G2(ω) = 1− t+
z+ν+

(3.93)

For simplicity in the rest of the derivation, we introduce the "duffusion impedance"-term ZD,i f (ω, x),

and write L {c̃i f } as

L {c̃i f } =L {ĩ f } ·ZD,i f (ω, x) (3.94)

where

ZD,i f (ω, x) =− 1
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(3.95)

The L {c̃I0 } term includes all L {Ĩ0} dependent terms in Eq. (3.87)

L {c̃I0 } =− 1
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(3.96)
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where

G3(ω) =− F D L {Ĩ0}α2

Dα2 −k − jω

G4(ω) =− F D L {Ĩ0}α2

Dα2 −k − jω
e−αL

(3.97)

Again, for simplicity, we introduce the "diffusion impedance"-term ZD,I0 (ω,k), and write L {c̃I0 } as

L {c̃I0 } =L {Ĩ0} ·ZD,I0 (ω, x) (3.98)

where

ZD,I0 (ω, x) =− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
− F Dα2

Dα2 −k − jω
cosh

√
jω+k

D
(x −L)


+ F Dα2

Dα2 −k − jω
e−αL cosh

√
jω+k

D
x


− α

Dα2 −k − jω
e−αx

(3.99)

It may be shown that the harmonically concentration L {c̃} is expressed by the sum of the two terms

in Eq. (3.94) and (3.98).

The potential difference L {Φ̃1(0)−Φ2(0)} is given by combining the linearized expression of L {ĩ f }

in Eq. (3.40) with Eq. (3.91)

L {Φ̃1(0)−Φ2(0)} =L {ĩ f }
1

B0
− A0

B0

[
L {c̃i f }(0)+L {c̃I0 }(0)

]
(3.100)

We insert L {Ṽ } = 0 in the expression for the measured phase and amplitude of the potential given in

Eq. (3.69). Our goal is to find an expression for L {ĩ f } as a function of L {Ĩ0} with the expression for

L {c̃} derived above

0 = RT

ce (L)
L {c̃}(L)+F L {Φ̃1(0)−Φ2(0)}

+
∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
L {ĩ f }− ie

L {c̃}

ce

)
− D+−D−

ce (z+u+− z−u−)

(
∂L {c̃}

∂x
− L {c̃}

ce

∂ce

∂x

)
d x

(3.101)

Combination of Eq. (3.91), (3.100) and (3.101) gives

0 = RT

ce (L)

[
L {c̃i f }(L)+L {c̃I0 }(L)

]+F

(
L {ĩ f }

1

B0
− A0

B0

[
L {c̃i f }(0)+L {c̃I0 }(0)

])
+

∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
L {ĩ f }− ie

ce

[
L {c̃i f }+L {c̃I0 }

])
− D+−D−

ce (z+u+− z−u−)

([
∂L {c̃i f }

∂x
+ ∂L {c̃I0 }

∂x

]
− [

L {c̃i f }+L {c̃I0 }
] 1

ce

∂ce

∂x

)
d x

(3.102)
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We set all the L {ĩ f } and L {c̃i f } terms on the left hand side of the equation, and all L {Ĩ0} and L {c̃I0 }

terms on the right hand side of the expression. Combination with Eq. (3.94) and (3.98) we get

L {ĩ f }

{
RT

ce (L)
ZD,i f (ω,L)+F

(
1

B0
− A0

B0
ZD,i f (ω,0)

)
+

∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
1− ie

ce
ZD,i f (ω, x)

)
− D+−D−

ce (z+u+− z−u−)

(
∂ZD,i f (ω, x)

∂x
−

ZD,i f (ω, x)

ce

∂ce

∂x

)
d x

}
=L {Ĩ0}

{
− RT

ce (L)
ZD,I0 (ω,L)+ F A0

B0
ZD,I0 (ω,0)

+
∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
ie

ce
ZD,I0 (ω, x)

)
+ D+−D−

ce (z+u+− z−u−)

(
∂ZD,I0 (ω, x)

∂x
− ZD,I0 (ω, x)

ce

∂ce

∂x

)
d x

}

(3.103)

The harmonically oscillating faradaic current is thus given by

L {ĩ f } =L {Ĩ0}

{
− RT

ce (L)
ZD,I0 (ω,L)+ F A0

B0
ZD,I0 (ω,0)

+
∫ L

0

1
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(
ie
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ZD,I0 (ω, x)

)
+ D+−D−

ce (z+u+− z−u−)

(
∂ZD,I0 (ω, x)

∂x
− ZD,I0 (ω, x)
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∂ce

∂x

)
d x

}/
{

RT

ce (L)
ZD,i f (ω,L)+F

(
1

B0
− A0

B0
ZD,i f (ω,0)

)
+

∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
1− ie

ce
ZD,i f (ω, x)

)
− D+−D−

ce (z+u+− z−u−)

(
∂ZD,i f (ω, x)

∂x
−

ZD,i f (ω, x)

ce

∂ce

∂x

)
d x

}

(3.104)

The IMPS transfer function in Eq. (3.86) becomes

Zφ( jω) = L {ĩ f }

L {Ĩ0}
=

{
− RT

ce (L)
ZD,I0 (ω,L)+ F A0

B0
ZD,I0 (ω,0)

+
∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
ie

ce
ZD,I0 (ω, x)

)
+ D+−D−

ce (z+u+− z−u−)

(
∂ZD,I0 (ω, x)

∂x
− ZD,I0 (ω, x)

ce

∂ce

∂x

)
d x

}/
{

RT

ce (L)
ZD,i f (ω,L)+F

(
1

B0
− A0

B0
ZD,i f (ω,0)

)
+

∫ L

0

1

ce z+ν+F (z+u+− z−u−)

(
1− ie

ce
ZD,i f (ω, x)

)
− D+−D−

ce (z+u+− z−u−)

(
∂ZD,i f (ω, x)

∂x
−

ZD,i f (ω, x)

ce

∂ce

∂x

)
d x

}

(3.105)

To understand the physical interpretation of the detailed IMPS transfer function described by Eq.

(3.105), one may assume a simpler case in which one of the transport numbers are approximately
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equal to unity. For our speciation, as described in Section 4.2, we may assume the transport numbers

t+ = 1 and t− = 0. The harmonically oscillating concentration is given by inserting these transport

numbers into the expression for the harmonically oscillating concentration in Eq. (3.87)

L {c̃} =− L {ĩ f }

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
K3(ω)cosh

√
jω+k

D
(x −L)


−K4(ω)cosh

√
jω+k

D
x


− L {Ĩ0}α

Dα2 −k − jω
e−αx

(3.106)

with

K3(ω) = 1

z−ν−
− F D L {Ĩ0}α2

L {ĩ f }(Dα2 −k − jω)

K4(ω) =− F D L {Ĩ0}α2

L {ĩ f }(Dα2 −k − jω)
e−αL

(3.107)

The steady-state concentration ce (x) under IMPS conditions is given by the steady-state equiva-

lent of Eq. (3.106) by setting ω= 0 and change all time dependent function to steady-state ones

ce =− i f ,e

F
p

Dk sinh

(√
k
D L

)

·
K1,e cosh

√
k

D
(x −L)

−K2,e cosh

√
k

D
x

− I0α

Dα2 −k
e−αx

(3.108)

with

K3,e = 1

z−ν−
− F D I0α

2

i f ,e (Dα2 −k)

K4,e =− F D I0α
2

i f ,e (Dα2 −k)
e−αL

(3.109)

Again, we write the oscillating concentration profile on the form

L {c̃} =L {c̃i f }+L {c̃I0 } (3.110)

where we define

L {c̃i f } =L {ĩ f } ·ZD,i f (ω, x) L {c̃I0 } =L {Ĩ0} ·ZD,I0 (ω, x) (3.111)
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with

ZD,i f (ω, x) =−
cosh

[√
jω+k

D (x −L)

]
z−ν−F

√
D( jω+k)sinh

(√
jω+k

D L

) (3.112)

and

ZD,I0 (ω, x) =− 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
− F Dα2

Dα2 −k − jω
cosh

√
jω+k

D
(x −L)


+ F Dα2e−αL

Dα2 −k − jω
cosh

√
jω+k

D
x


− αe−αx

Dα2 −k − jω

(3.113)

The IMPS transfer function of this simplified system is given by replacing ZD,i f (ω, x) and ZD,I0 (ω, x)

in Eq. (3.105) with the ones derived in Eq. (3.112) and (3.113), respectively.

Another simplification to understand the detailed transfer function in Eq. (3.86) is to assume an

electrode in which the same species is blocked at both the electrolyte and support interfaces. We

assume for this derivation that positive species are blocked at both electrode interfaces. At the elec-

trolyte interface (x = 0) we get the species fluxes

N+x |x=0 = 0 =−z+u+Fν+c
∂Φ

∂x
−D+ν+

∂c

∂x
(3.114)

N−x |x=0 =− i f

z−F
=−z−u−Fν−c

∂Φ

∂x
−D−ν−

∂c

∂x
(3.115)

By eliminating the potential in Eq. (3.114) and (3.115) and doing the Laplace transform we get the

boundary condition
L {ĩ f }

z−ν−F
= D

1− t−
∂L {c̃}

∂x

∣∣∣∣
x=0

(3.116)

At the support interface (x = L) we get equal species fluxes

N+x |x=L = 0 =−z+u+Fν+c
∂Φ

∂x
−D+ν+

∂c

∂x
(3.117)

N−x |x=L =− i f

z−F
=−z−u−Fν−c

∂Φ

∂x
−D−ν−

∂c

∂x
(3.118)

By eliminating the potential in Eq. (3.117) and (3.118) and doing the Laplace transform we get the

boundary condition
L {ĩ f }

z−ν−F
= D

1− t−
∂L {c̃}

∂x

∣∣∣∣
x=L

(3.119)

We solve the frequency dependent diffusion equation in Eq. (3.32) with the boundary conditions
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described by Eq. (3.116) and (3.119), which gives

L {c̃} =− L {ĩ f }

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
K5(ω)cosh
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D
(x −L)


−K6(ω)cosh

√
jω+k

D
x


− L {Ĩ0}αe−αx

Dα2 −k − jω

(3.120)

with

K5(ω) = 1− t−
z−ν−

− F D L {Ĩ0}α2

L {ĩ f }(Dα2 −k − jω)
(3.121)

K6(ω) = 1− t−
z−ν−

− F D L {Ĩ0}α2e−αL

L {ĩ f }(Dα2 −k − jω)
(3.122)

The steady-state concentration is given by setting ω= 0 in Eq. (3.120) and replace all time depen-

dent quantities by steady-state ones

ce =− i f ,e

F
p

Dk sinh

(√
k
D L

)

·
K5,e cosh

√
k

D
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√
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D
x

− I0αe−αx

Dα2 −k

(3.123)

with

K5,e = 1− t−
z−ν−

− F D I0α
2

i f ,e (Dα2 −k)
(3.124)

K6,e = 1− t−
z−ν−

− F D I0α
2e−αL

i f ,e (Dα2 −k)
(3.125)

The contribution from the faradaic current in Eq. (3.126) is described by

L {c̃i f } =− L {ĩ f }(1− t−)

z−ν−F
√

D( jω+k)sinh

(√
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D L
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·
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√
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D
x


(3.126)
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The contribution from the light intensity in Eq. (3.126) is described by

L {c̃I0 } = L {Ĩ0}

F
√

D( jω+k)sinh

(√
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D L

)

·
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D
x

− L {Ĩ0}αe−αx

Dα2 −k − jω

(3.127)

with

G5(ω) = F Dα2

Dα2 −k − jω
(3.128)

G6(ω) = F Dα2e−αL

Dα2 −k − jω
(3.129)

Thus, we get the two "diffusion impedance" terms to insert in the IMPS transfer function in Eq.

(3.105)

ZD,i f (ω, x) =− 1− t−

z−ν−F
√

D( jω+k)sinh

(√
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)

·
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D
x


(3.130)

and

ZD,I0 (ω, x) = 1

F
√

D( jω+k)sinh

(√
jω+k

D L

)

·
G5(ω)cosh

√
jω+k

D
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D
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(3.131)

The two latter models will not be investigated further in this study, but it is recommended to study

these simplifications and alterations to in general investigate IMPS transfer functions in more detail.

3.3.7 Relation between measured potential, faradaic current density, and light intensity

In order to explain the resulting impedance spectra of the photoelectrochemical thin film transfer

functions described above, a relation between measured potential, faradaic current density, and light

intensity under steady-state conditions is developed.

We assume a mixed conducting thin film electrode, as described in Section 3.3. The steady-state
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diffusion equation in Eq. (3.11) has the specific solution Eq. (3.27)

ce (x) =− i f ,e

F
p

Dk sinh

(√
k
D L

)

·
K1,e cosh

√
k

D
(x −L)

−K2,e cosh

√
k

D
x


− I0αe−αx

Dα2 −k

(3.132)

with

K1,e = 1− t−
z−ν−

− F D I0α
2

i f ,e (Dα2 −k)
(3.133)

K2,e = 1− t+
z+ν+

− F D I0α
2e−αL

i f ,e (Dα2 −k)
(3.134)

The potential is related to the faradaic current density by Eq. (3.14) in one dimension

F
∂Φ1,e

∂x
= i f ,e

z+ν+F ce (z+u+− z−u−)
− D+−D−

ce (z+u+− z−u−)

∂ce

∂x
(3.135)

The potential as a function of x may be calculated by integrating Eq. (3.135) from an arbitrary x-value

to x = L, where we assume that the potential is fixed at x = L

FΦ1,e (x) = FΦ1,e (L)−
∫ L

x

i f ,e

z+ν+F ce (z+u+− z−u−)
+ D+−D−

ce (z+u+− z−u−)

∂ce

∂x
d x (3.136)

At the electrolyte interface (x = 0), we assume that the faradaic current density is related to the

potential by the kinetic expression in Eq. (3.40)

i f ,e =
(
∂i f ,e

∂x

)
Φ1,e−Φ2,e ,x=0

ce (0)+
[

∂i f ,e

∂
(
Φ1,e −Φ2,e

)]
ce ,x=0

[
Φ1,e (0)−Φ2,e (0)

]
= A0ce (0)+B0

[
Φ1,e (0)−Φ2,e (0)

] (3.137)

We insert the expression for the potential evaluated at x = 0 described by Eq. (3.136)

i f ,e = A0ce (0)+B0
{
Φ1,e (L)−Φ2,e (0)

−
∫ L

0

i f ,e

z+ν+F 2ce (z+u+− z−u−)
+ D+−D−

F ce (z+u+− z−u−)

∂ce

∂x
d x

} (3.138)
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The potential at the support interfaceΦ1,e (L) becomes

Φ1,e (L) = i f ,e − A0ce (0)

B0
+Φ2,e (0)

+
∫ L

0

i f ,e

z+ν+F 2ce (z+u+− z−u−)
− D+−D−

F ce (z+u+− z−u−)

∂ce

∂x
d x

(3.139)

At the interface to electrode support connecting the electrode, we assume the equilibrium in Eq.

(3.45)

0*) h++e− (3.140)

The measured potential is related to the electrochemical potential in a reference electrode as FV =
µref

e −µe , which gives the measured potential through the dilute solution limit (Eq.(3.46) and (3.46))

FV =µ0
h +µref

e +RT lnce (L)+FΦ1,e (L) (3.141)

We assume that µref
e can be measured by a reference electrode so that its value is representative of

Φ2,e (0) plus a constant, that is µref
i =µ0

i +zi FΦi . Combination of Eq. (3.141) and (3.139) gives the final

expression for the measured potential

FV =µ0 +RT lnce (L)+ F
[
i f ,e − A0ce (0)

]
B0

+
∫ L

0

i f ,e

z+ν+F ce (z+u+− z−u−)
− D+−D−

ce (z+u+− z−u−)

∂ce
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d x

(3.142)

where we have defined µ0 =µ0
h+µ0

e . We see from Eq. (3.142) that the measured potential is a function

of the faradaic current density and the light intensity, since the steady-state concentration profile is

a function faradaic current density and light intensity. Thus, Eq. (3.142) may be used to investigate

the relation between these three parameters, and may assist in explaining the resulting impedance

spectra.

3.4 IMPS study of a microporous mixed conducting thin film electrode

3.4.1 Solving the diffusion equation for a microporous electrode under short circuit conditions

To include micropores in the system, we assume that the sink term in the diffusion equation may be

interpreted as the rate for a recombination process of charge transfer between the electrode interface

and the electrolyte across the micropore. This is illustrated in Figure 3.7, where we assume a straight

pore with depth L. The transient line of the current is also given.
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Figure 3.7: Schematic of a micropore in the microporous thin film electrode. The sink term in the
diffusion equation is interpreted as a charge transfer process between the electrode material and the
electrolyte across the pore wall.

We solve the diffusion equation from Eq. (3.32)

s L {c̃} = D
∂2 L {c̃}

∂x2 −k L {c̃}+L {Ĩ0}αe−αx (3.143)

with boundary conditions under short circuit conditions described by Södergren et. al [11]

∂L {c̃}

∂x

∣∣∣∣
x=0

= 0; L {c̃(x = L)} = 0 (3.144)

Here, we essentially have assumed that the L {c̃(x = L)} = 0, as the concentration at the back sup-

port is kept constant caused by the short circuit condition [11]. We also assume that charge carriers

reaching the outermost part of the microporous film will be reflected and diffuse back to the film [11]

resulting in a negligible current flow at x = 0. This gives the solution

L {c̃} =− L {Ĩ0}
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(3.145)
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3.4.2 IMPS transfer function for the microporous thin film

For intensity-modulated photocurrent spectroscopy (IMPS) measurements we apply a harmonically

perturbed light intensity and measure the current response under short circuit conditions. That is

L {ĩ f } 6= 0; i f ,e 6= 0; L {Ṽ } = 0

I0(x,0) 6= 0; L {Ĩ0} 6= 0
(3.146)

The IMPS transfer function is given by

Zφ( jω) = L {ĩ f }

L {Ĩ0}
(3.147)

The oscillating measured current density is proportional to the derivative of the oscillating con-

centration at the back support [11]. By assuming that electrons are blocked at x = L as described in

Section 3.3.1, we assume the relation

L {ĩ f }

z+ν+F
= D

1− t+
∂L {c̃}

∂x

∣∣∣∣
x=L

(3.148)

Thus, the faradaic current is given by
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(3.149)

This transfer function can readily be found by the expression for the current density in Eq. (3.149)

Zφ( jω) =− z+ν+F
p

D

(Dα2 −k − jω)(1− t+)cosh

(√
jω+k

D L

)

·
α2

p
D −α

√
jω+ke−αL sinh

√
jω+k

D
L

+ α2e−αL

Dα2 −k − jω

(3.150)
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4 Results

4.1 Introduction

Below, we calculate the derived impedance transfer functions in Section 3. In Section 4.2 we introduce

the simulation parameters assuming an iridium oxide electrode immersed in a binary electrolyte. In

Section 4.3 the impedance spectra for the thin film electrode described in Section 3.3 are calculated.

In Section 4.3.1 the numerical approach using Newman’s BAND(J) subroutine is investigated briefly.

In Section 4.3.2 the faradaic electrochemical impedance spectrum from Eq. (3.53) is studied. The

photoelectrochemical impedance spectrum under steady-state illumination from Eq. (3.3.4) is stud-

ied in section 4.3.3. In Section 4.3.4, the IMVS transfer function from Eq. (3.84) is studied, and the

IMPS transfer function from Eq. (3.105) is studied in Section 4.3.5. Finally, the IMPS transfer function

for a microporous thin film electrode from Eq. (3.150) is briefly studied in Section 4.4.

4.2 Simulation parameters

We assume Butler-Volmer type kinetics

i f = i0

{
exp

(
(1−β)F (Φ1 −Φ2 −U )

RT

)
−exp

(−βF (Φ1 −Φ2 −U )

RT

) (4.1)

By assuming A0 = AL = A and B0 = BL = B in Eq. (3.40) and (3.43), we get directly from Eq. (4.1)

A = i0F

RT

∂U

∂c
, B = i0F

RT
(4.2)

The diffusion coefficients for each species are calculated by using Nernst-Einstein relation [30]

Di = kB T

qi
u′

i (4.3)

and the diffusion coefficient for the system is given by [30]

D = z+u+D−− z−u−D+
z+u+− z−u−

(4.4)

where kB is the Boltzmann constant, qi is the charge of the species, zi is the valence of the species

and ui is the mobility of the species. Here we have used a different version of the Nernst-Einstein

relation than the one given in the theory section, in accordance with Sunde et al. [29].
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The conductivity of the electrode material is given by [30]

κ= F 2
∑

i
z2

i ui ci (4.5)

The transport numbers are given by [30]

t j =
z2

j u j c j∑
i z2

i ui ci
(4.6)

The steady-state incident light illumination I0 is assumed to be 0.7 W m-2 with a wavelength λ=
545 nm, as described by Zanden et al. [26]. This is converted into the proper unit of mol m-2 s-1 by

using the expression for the photon energy Eph

Eph = hc

λ
(4.7)

where h = 6.63×10−34 Js is the planck constant, and c = 3×108 m s-1 is the speed of light. This gives

a light intensity of I0 = 3×10−6 mol m-2 s-1, which is used if not otherwise stated.

The material simulation parameters are given in Table 4.1, where we have assumed an iridium

oxide electrode immersed in a binary electrolyte. The values are given by Sunde et al. [29], if not

otherwise stated. The calculated values are given in Table 4.2. When appropriate, the modulating

faradaic current and modulated illumination is set to unity for simplicity, since these term is cancelled

when the impedance is calculated.

From the material properties given in Table 4.1, we get one transport number close to unity and

one transport number close to zero, thus mixed conductivity is minimal. To investigate the introduc-

tion of mixed conductivity, we define a system with equal transport numbers t+ = t− = 0.5. Mathe-

matically, this is achieved by setting the mobilities of the charge species equal. We assume a system

similar to that defined in Table 4.1, but with mobilities u′+ = u′− = 3.5×10−8 cm2 (V s)-1 to keep the

diffusion coefficient equal for the to cases.

4.3 Photoelectrochemical thin film electrode

4.3.1 Numerical solution of the diffusion equation with Newmans BAND subroutine

In previous work [31], a study of solving the frequency dependent diffusion equation in Eq. (3.32)

in order to calculate the electrochemical impedance spectrum for a thin film electrode with mixed

conductivity was derived.

In Figure 4.1, the impedance plane plot of electrochemical impedance spectrum in Eq. (3.53)

solved both analytically and solved by numerical approximation of the diffusion equation for a thin
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Table 4.1: Simulation parameters for the iridium oxide system.

Parameter Value Unit Reference

c0 0.025 mol cm-3 –
ce 0.004 mol cm-3 –
z+ 1 – –
z− -1 – –
ν+ 1 – –
ν− 1 – –
u′+ 0.1 cm2 (V s)-1 –
u′− 1.7×10−8 cm2 (V s)-1 –
i0 0.69×10−3 A cm-2 –
∂U /∂c -20.27 V cm3 mol-1 –
k 1×10−2 s-1 –
L 100 µm –
T 353.15 K –

Table 4.2: Calculated simulation parameters from Table 4.1.

Parameter Value Unit Reference

1/B 44.06 Ω cm2 –
A -0.46 A cm mol-1 –
D 1×10−9 cm2 s-1 –

Table 4.3: Constants and assumed simulation parameters for impedance spectra calculations.

Parameter Value Unit Reference

F 96485 A s mol-1 –
kB 8.618×10−5 eV K-1 –
I0 3×10−6 mol m-2 s-1 [26]
α 2500 cm-1 [24]

L {ĩ f } 1 A cm-2 –

L {Ĩ0} 1 mol m-2 s-1 –
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film electrode described by Table 4.1 and 4.2 is given. Calculations are done for a frequency region of

10−7 −103 Hz and an effective rate constant k = 10−2 s-1. The numerical approximation is calculated

for 1000 steps. We observe a small deviance from the analytical solution in the high frequency, as

described by Småbråten [31].
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Figure 4.1: Analytical solution and numerical approximation of the electrochemical impedance spec-
trum in Eq. (3.53) for a thin film electrode. Calculations are done for an effective rate constant
k = 10−2 s-1. The numerical approximation is calculated for 1000 steps.

In previous results [31], the general trend was that the numerical approximation with the BAND

routine approaches the analytical solution when reducing the step size H . Newmans BAND routine

is an approximation to the order H 2 [30], and should have an error proportional to H 2 for reasonably

small values of H [35]. Thus, the numerical approximation is expected to approach the analytical

solution linearly with respect to H 2. This is investigated in Figure 4.2 for a simple dimensionless

differential equation
∂2c(y)

∂y2 − c(y) = 0 (4.8)

and boundary conditions

c(0) = 0; c(1) = 1 (4.9)

with the specific solution c(y) = sinh(y)/sinh(1), solved at y = 0.5. We do not observe the linear trend

with respect to H 2. However the numerical approximation still approaches the analytical solution

with decreasing step size, as expected. A similar trend is observed for the frequency dependent diffu-

sion equation in Eq. (3.32).
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Figure 4.2: Plot of the numerical approach for Newmans BAND routine with respect to the square of
the step size H 2 for the differential Eq. (4.8) with boundary conditions (4.9). Solved at y = 0.5.

4.3.2 Electrochemical impedance (EIS)

Figure 4.3 shows the impedance plane plot for the rate constant dependency of the electrochemical

impedance spectrum in Eq. (3.53) for an electrode described in Section 4.2. In the high frequency re-

gion, a straight line with an angle of 45◦ is observed in the impedance plane plot, which corresponds

to a diffusion limiting system described by the diffusion coefficient D . A dome is observed in the low

frequency region, which indicates a rate limiting process. The impedance plane plot is zoomed in on

the impedance spectrum for the largest k-value to visualize the change in the value of the impedance

at different rate constants. By reducing the rate constant k, the impedance increases in absolute value

of the real and imaginary parts. The trend in the impedance spectra, however, are similar, where the

rate constant "bends" the impedance plane plot towards zero imaginary part in the low frequency

region. The electrochemical impedance for the thin film electrode described by Eq. (3.53) is expected

to show this reflective-like behavior, as found in previous work [31] The real part value of the low fre-

quency intersect reduces with increasing rate constant. This indicates that the in the low frequency

region, the measured impedance is approximately given by the sum og ohmic resistance in the elec-

trode and electrolyte system.

The maximum in the imaginary part is located at a frequency equal to the chosen effective rate
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Figure 4.3: Impedance plane plot of the rate constant dependency of the electrochemical impedance
in Eq. (3.53) for an electrode described in Section 4.2. Calculations are done for a frequency region of
10−7–103 Hz, and for rate constants varying between k = 10−5-1 s-1

constant value k, as shown in the bode plot in Figure 4.4 of the imaginary part of the impedance as

a function of angular frequency. Thus, the dome occurring in the impedance plane plot in Figure 4.3

should correspond to the recombination process described by the rate constant k, as expected [31].
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Figure 4.4: Bode plot of the imaginary part as a function of angular frequency, of the rate constant
dependency of the electrochemical impedance in Eq. (3.53) for an electrode described in Section 4.2

4.3.3 Photoelectrochemical impedance (EIS)

Figure 4.5 shows the impedance plane plot of light intensity dependency for the photoelectrochem-

ical impedance spectrum in in Eq. (3.70) for an electrode described in Section 4.2. Calculations are
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done for an effective rate constant k = 10−2 s-1, for a frequency region 10−7-103 Hz, for light intensities

between 10−6 and 1 mol cm-2 s-1, and an applied steady-state current i f ,e = 1 A cm-2.

The impedance is reduced by increasing the light intensity, since the increase in photogenerated

charge carriers effectively reduces the current resistance in the system by increasing the flow of charge

carriers. We observe a dome in the positive imaginary part of the impedance spectrum in the low

frequency region for low light intensities. This shift in imaginary part indicates that the signal and re-

sponse oscillates in opposite directions, and should correspond to a rate limiting back charge transfer

process flowing in the opposite direction as the applied current. It is assumed that this process cor-

respond to the electrode kinetics at the solution interface.
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Figure 4.5: Impedance plane plot of the light intensity dependency for the impedance plane plot for
the photoelectrochemical impedance in Eq. (3.70) for an electrode described in Section 4.2. Calcu-
lations are done for an effective rate constant k = 10−2 s-1, incident light intensities in the range of
I0 = 10−6 − 1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an applied steady-state current
i f ,e = 1 A cm-2

The bode plot of the imaginary part of the photoelectrochemical impedance as a function of an-

gular frequency is given in Figure 4.6. Here, we observe one maximum and one minimum for low

light intensities, thus two distinct charge transfer processes are observed. The maximum should cor-

respond to the recombination process described by the effective rate constant k, and the minimum

should correspond to the rate of the electrode kinetics at the solution interface.

In Figure 4.7 the impedance plane plot of same system as described in Figure 4.5 is plotted for

a lower applied steady-state faradaic current i f ,e = 10−3 A cm-2, to show the dependency of current

density. The decrease in impedance with increasing light intensity is more prominent for lower cur-

rent densities, which indicates that the electrode is more sensitive to light for low current density.

The shift in sign of the phase is also more prominent by reducing the faradaic current density, which
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Figure 4.6: Corresponding bode plot of the imaginary part of the photoelectrochemical impedance as
a function of angular frequency for the impedance plane plot in Figure 4.5.

indicates that the back charge transfer process corresponding to this dome increases with decreasing

applied faradaic current density.
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Figure 4.7: Impedance plane plot of the light intensity dependency for the same system described in
Figure 4.5, but with a lower applied steady-state current i f ,e = 10−3 A cm-2

The corresponding bode plot of the imaginary part of the impedance plane plot in Figure 4.7 is

given in Figure 4.8. Here, we observe to distinct charge transfer processes for higher light intensities.

This indicates that by reducing the applied faradaic current density, the back charge transfer pro-

cess occurs at higher light intensities. The back charge transfer process may thus be eliminated for a

chosen light intensity by increasing the applied current density.
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Figure 4.8: Corresponding bode plot of the imaginary part of the photoelectrochemical impedance as
a function of angular frequency for the impedance plane plot in Figure 4.5.

Figure 4.9 shows calculations for the same system described in Figure 4.5, but with a lower effec-

tive rate constant of k = 10−3 s-1. No apparent light intensity of the photoelectrochemical impedance

is observed, as shown in the impedance plane plot in Figure 4.9a. Only one dome is observed, and

from the bode plot in Figure 4.9b, this dome should correspond to the recombination process de-

scribed by the effective rate constant k. We expect that when the recombination rate constant k is

lower than the back charge transfer process rate, only one dome in the photoelectrochemical impedance

spectrum is observed. In Figure 4.10 calculations for the same system as presented in Figure 4.5,

but with equal transport, numbers is given. For low light intensities, a "snail house" effect with four

domes is observed. This indicates that four charge transfer limiting processes may occur in the sys-

tem with different rates. Possible processes may be recombination of charge carriers defined by the

effective rate constant k, charge transfer at the solution interface defined by the electrode kinetics,

charge transfer at the support interface defined by the electrode kinetics, and charge transfer at the

counter electrode. The magnitude of the impedance has also increased, and may be caused by the

reduced mobility of positive species.

The same calculations for an applied faradaic current density i f ,e = 10−3 A cm-2 is given in Figure

4.11, where a similar "snail house" effect is observed. The magnitude of the impedance has also

increased with decreasing applied current density.

In Figure 4.12 calculations for the same system as presented in Figure 4.9a, but with equal trans-

port numbers, is given. We see a similar trend as previous results, however, the system shows a larger

light intensity dependency. Also, the magnitude of the impedance is reduced.

In Figure 4.13 we reduce the applied faradaic current density to i f ,e = 10−3 A cm-2. Now, we ob-
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Figure 4.9: aLight intensity dependency of the impedance plane plot of the photoelectrochemical
impedance in Eq. (3.70) for an electrode described in Section 4.2. Calculations are done for an effec-
tive rate constant k = 10−3 s-1, incident light intensities in the range of I0 = 10−6 −1 mol cm-2 s-1, a
frequency region of 10−7–103 Hz, and an applied steady-state current i f ,e = 1 A cm-2. b Corresponding
bode plot.
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Figure 4.10: Impedance plane plot of the light intensity dependency for the impedance plane plot
for the photoelectrochemical impedance in Eq. (3.70) for an electrode described in Section 4.2 with
equal transport numbers. Calculations are done for an effective rate constant k = 10−2 s-1, incident
light intensities in the range of I0 = 10−6 −1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an
applied steady-state current i f ,e = 1 A cm-2
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Figure 4.11: Impedance plane plot of the light intensity dependency for the same system described in
Figure 4.10, but with a lower applied steady-state current i f ,e = 10−3 A cm-2



68 4 RESULTS

40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

Re(Z )
[
Ω cm2

]

−I
m

(Z
)

[ Ωc
m

2
]

I0 = 10−6 mol cm−2 s−1

I0 = 10−5 mol cm−2 s−1

I0 = 10−4 mol cm−2 s−1

I0 = 10−3 mol cm−2 s−1

I0 = 10−2 mol cm−2 s−1

I0 = 10−1 mol cm−2 s−1

I0 = 1 mol cm−2 s−1

Figure 4.12: Impedance plane plot of the light intensity dependency for the impedance plane plot
for the photoelectrochemical impedance in Eq. (3.70) for an electrode described in Section 4.2 with
equal transport numbers. Calculations are done for an effective rate constant k = 10−3 s-1, incident
light intensities in the range of I0 = 10−6 −1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an
applied steady-state current i f ,e = 1 A cm-2

serve two distinct domes in the impedance plane plot, where the high frequency dome is assumed to

be corresponding to the recombination process described by the effective rate constant k. The low

frequency dome is assumed to be corresponding to the back charge transfer at the solution interface

described by the electrode kinetics, as in Figure 4.5.

4.3.4 Intensity-modulated photovoltage spectroscopy (IMVS)

The intensity-modulated photovoltage spectroscopy (IMVS) impedance spectrum from Eq. (3.84) for

a photoelectrochemical thin film electrode described in Section 4.2 is given in Figures 4.14 to 4.19 for

rate constants varying between k = 10−5 and 1 s-1.

In Figure 4.14 the IMVS response is given for a photoelectrochemical system described in Section

4.2 with an effective rate constant k = 1 s-1. One dome in the impedance plane plot in Figure 4.14a

is observed, and from the bode plot in Figure 4.14b this dome corresponds to the recombination

process described by the effective rate constant k since the maximum occurs at a value equal to the

chosen k. The IMVS response is found to reduce with increasing light intensity.

Figure 4.15a gives the IMVS response for the same system as in Figure 4.14a, but with a lower

effective rate constant k = 10−1 s-1. Again, one dome in the impedance plane plot in Figure 4.15a is

observed, and from the bode plot in Figure 4.15b this dome should correspond to the recombination

process defined by k. The impedance is reducing with increasing light intensity, but the effect is less

apparent as for k = 1 s-1. We also observe an increase in the magnitude of the impedance by reducing
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Figure 4.13: Impedance plane plot of the light intensity dependency for the same system described in
Figure 4.12, but with a lower applied steady-state current i f ,e = 10−3 A cm-2

the rate constant.

In Figure 4.16, the rate constant is reduced to k = 10−2 s-1. The dome in the impedance plane plot

in Figure 4.16a should correspond to the recombination process described by k, as shown in the bode

plot in Figure 4.16b. Only a small light intensity dependency is found in the low frequency region. The

dome shape is slightly distorted in the high frequency region, indicating a mixed limiting process of

charge transfer and diffusion.

By further reduction of the rate constant, as shown in Figure 4.17 and 4.18 for k = 10−3 s-1 and

k = 10−4 s-1, respectively, no light intensity dependency is shown. The domes in the impedance plane

plots in Figure 4.17a and 4.18a again correspond to the recombination process, as shown in the bode

plots in Figure 4.17b and 4.18b, respectively. Also, the distortion of the dome is more apparent by

lowering the rate constant, and for k = 10−4 a clear straight line corresponding to a diffusion limiting

process is observed.

In Figure 4.19, the rate constant is reduced to k = 10−5 s-1. Here, we observe an impedance plane

plot similar to a reflective-like behavior. The photopotential change is thus clearly diffusion limited in

the high frequency region and charge transfer limited caused by the recombination process described

by k when the rate constant is sufficiently low. In Figure 4.20a the IMVS impedance plane plot for

an effective rate constant k = 1 s-1 and equal transport numbers is given. We observe no significant

change compared to Figure 4.14a for transport numbers close to zero and unity. The same is observed

for lower rate constants, here shown for k = 10−5 s-1 in Figure 4.20b. This is to be expected, as the

IMVS transfer function is independent of the transport number, in accordance with the expression

for the modulating concentration profile under open circuit conditions in Eq. (3.74).
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Figure 4.14: a Impedance plane plot for the IMVS spectrum from Eq. (3.84) for a photoelectrochemi-
cal system described in Section 4.2. Calculations are done for an effective rate constant k = 1 s-1 and
a frequency region 10−7–103 Hz. b Corresponding bode plot of the imaginary part of the impedance
as a function of angular frequency.
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Figure 4.15: a Impedance plane plot for the IMVS spectrum from Eq. (3.84) for a photoelectrochem-
ical system described in Section 4.2. Calculations are done for an effective rate constant k = 10−1

s-1 and a frequency region 10−7–103 Hz. b Corresponding bode plot of the imaginary part of the
impedance as a function of angular frequency.
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Figure 4.16: a Impedance plane plot for the IMVS spectrum from Eq. (3.84) for a photoelectrochem-
ical system described in Section 4.2. Calculations are done for an effective rate constant k = 10−2

s-1 and a frequency region 10−7–103 Hz. b Corresponding bode plot of the imaginary part of the
impedance as a function of angular frequency.
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Figure 4.17: a Impedance plane plot for the IMVS spectrum from Eq. (3.84) for a photoelectrochem-
ical system described in Section 4.2. Calculations are done for an effective rate constant k = 10−3

s-1 and a frequency region 10−7–103 Hz. b Corresponding bode plot of the imaginary part of the
impedance as a function of angular frequency.
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Figure 4.18: a Impedance plane plot for the IMVS spectrum from Eq. (3.84) for a photoelectrochem-
ical system described in Section 4.2. Calculations are done for an effective rate constant k = 10−4

s-1 and a frequency region 10−7–103 Hz. b Corresponding bode plot of the imaginary part of the
impedance as a function of angular frequency.



4.3 Photoelectrochemical thin film electrode 75

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

·108

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·108

Re(Z )
[
V s cm2 mol−1

]

−I
m

(Z
)

[ V
s

cm
2

m
o

l−
1
] I0 = 10−6 mol cm−2 s−1

I0 = 10−5 mol cm−2 s−1

I0 = 10−4 mol cm−2 s−1

I0 = 10−3 mol cm−2 s−1

I0 = 10−2 mol cm−2 s−1

I0 = 10−1 mol cm−2 s−1

I0 = 1 mol cm−2 s−1

(a)

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

1.2
·108

Angular frequency [Hz]

−I
m

(Z
)

[ V
s

cm
2

m
o

l−
1
] I0 = 10−6 mol cm−2 s−1

I0 = 10−5 mol cm−2 s−1

I0 = 10−4 mol cm−2 s−1

I0 = 10−3 mol cm−2 s−1

I0 = 10−2 mol cm−2 s−1

I0 = 10−1 mol cm−2 s−1

I0 = 1 mol cm−2 s−1

(b)

Figure 4.19: a Impedance plane plot for the IMVS spectrum from Eq. (3.84) for a photoelectrochem-
ical system described in Section 4.2. Calculations are done for an effective rate constant k = 10−5

s-1 and a frequency region 10−7–103 Hz. b Corresponding bode plot of the imaginary part of the
impedance as a function of angular frequency.
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Figure 4.20: Impedance plane plot for the IMVS spectrum from Eq. (3.84) for a photoelectrochemical
system described in Section 4.2 with equal transport numbers. Calculations are done for a frequency
region 10−7–103 Hz and an effective rate constant of a k = 1 s-1, and b k = 10−5 s-1.
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4.3.5 Intensity-modulated photocurrent spectroscopy (IMPS)

The the light intensity of the IMPS response for an electrode described in Section 4.2 with an effec-

tive rate constant k = 10−1 s-1 and an applied steady-state current i f ,e = 1 A cm-2 is given in Figure

4.21. Two domes are observed in the impedance plane plot in Figure 4.21a, which indicates to dis-

tinct charge transfer processes limiting the system at different frequencies. From the bode plot of the

imaginary part of the impedance as a function of the angular frequency, the high frequency dome

should correspond to the recombination process described by the effective rate constant k. The low

frequency dome is assumed to correspond to the charge transfer kinetics at the solution interface. We

see that both processes is located in the first quadrant, and the current caused by both processes are

oscillating in the same direction as the light intensity modulation.

In figure 4.22 the IMPS response for the same system described in Figure 4.21 is given for an ap-

plied faradaic current density i f ,e = 10−3 A cm-2. Here only one dome in the impedance plane plot in

Figure 4.22a is observed in the first quadrant for low light intensities, and from the bode plot in Figure

4.21b this should correspond to the recombination process described by the effective rate constant

k. For high light intensities, we observe a shift in the IMPS response from the first quadrant to the

third quadrant. This indicates that the system is limited by a charge limiting process oscillating in the

opposite direction as the light intensity. It is assumed to be caused by a back charge transfer process

at the solution interface. This back charge transfer process is assumed to have near similar rate con-

stant as the recombination process, to accommodate for the competition between charge generation

by the light intensity and recombination in order to keep the potential constant. The rate increases

with increasing light intensity, indicating that the back charge transfer process rate increases with

increasing light intensity. A distortion in the dome shape is observed in the high frequency region,

indicating a diffusion limiting process described by the diffusion coefficient D .

In Figure 4.23 the IMPS response for an electrode described in Section 4.2 is calculated with an

effective rate constant k = 10−2 s-1 and an applied steady-state current i f ,e = 1 A cm-2. From the

impedance plane plot in Figure 4.23a we observe one dome in the first quadrant for high light inten-

sities. This should correspond to the recombination process described by the effective rate constant

k, as shown in the bode plot in Figure 4.23b. By increasing the light intensity we observe a shift in

quadrant from first to third quadrant, similar to that observed for k = 10−1. However, the shift oc-

curs at lower light intensities, which indicates that the recombination process accommodates for the

light generation to a less degree in order to keep the potential constant. Thus, a back charge transfer

process is assumed to be occurring at higher light intensities to maintain a constant potential.

By decreasing the applied steady-state current to 10−3 A cm-2 as shown in Figure 4.24, the IMPS

response is located in the third quadrant in the impedance plane plot given in Figure 4.24a. This is
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Figure 4.21: a Light intensity dependency of the impedance plane plot of the IMPS spectrum in Eq.
(3.105) for an electrode described in Section 4.2. Calculations are done for an effective rate constant
k = 10−1 s-1, an absorption coefficient α = 2500 cm-1, incident light intensities in the range of I0 =
10−6 −1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an applied steady-state current i f ,e = 1
A cm-2. b Corresponding bode plot of the imaginary part of the impedance as a function of angular
frequency.
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Figure 4.22: a Light intensity dependency of the impedance plane plot of the IMPS spectrum in Eq.
(3.105) for an electrode described in Section 4.2. Calculations are done for an effective rate constant
k = 10−1 s-1, an absorption coefficient α = 2500 cm-1, incident light intensities in the range of I0 =
10−6 −1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an applied steady-state current i f ,e =
10−3 A cm-2. b Corresponding bode plot of the imaginary part of the impedance as a function of
angular frequency.
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Figure 4.23: a Light intensity dependency of the impedance plane plot of the IMPS spectrum in Eq.
(3.105) for an electrode described in Section 4.2. Calculations are done for an effective rate constant
k = 10−2 s-1, an absorption coefficient α = 2500 cm-1, incident light intensities in the range of I0 =
10−6 −1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an applied steady-state current i f ,e = 1
A cm-2. b Corresponding bode plot of the imaginary part of the impedance as a function of angular
frequency.
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expected from the results for k = 10−1 in Figure 4.21 and 4.22, where the reduction of the faradaic

current results in a change in the quadrant. The bode plot in Figure 4.24b indicates, as predicted

from earlier results, that the dome corresponds to a charge transfer process corresponding to the

back charge transfer process. Again, a slight increase in the rate as a function of light intensity is

observed.

In Figure 4.25, the IMPS response for the same system as above is plotted for an effective rate

constant k = 10−3 s-1, and i f ,e = 1 A cm-2 in Figure 4.25a and i f ,e = 10−3 A cm-2 in Figure 4.25b. The

impedance spectrum occurs in the third quadrant for all light intensities in the impedance plane

plots. No apparent light intensity and faradaic current density dependency of the IMPS response is

observed.

The corresponding bode plots of the imaginary part of the impedance as a function of angular

frequency for Figure 4.25 is given in Figure 4.26. From this plot, we see that the charge transfer limit-

ing process has a rate constant of approximately 10−2 s-1. We assume that this rate corresponds the

electrode kinetics at the solution interface.

From these results, we observe that the rate of the assumed back charge transfer process in gen-

eral increases with increasing light intensity and decreases with decreasing applied steady-state cur-

rent. In Figure 4.27a the impedance plane plot for a system defined in Section 4.2 with an effective

rate constant k = 10−1 s-1, an applied faradaic current density i f ,e = 1 A cm-2, and equal transport

numbers are given. Compared to Figure 4.21a, only one dome is occurring. This dome corresponds

to the charge recombination process described by the effective rate constant k, as seen from the bode

plot in Figure 4.27b. The same shift in quadrant by increasing the light intensity is observed. We also

observe a reduction in the magnitude of the impedance by changing the transport number to equal

values.

By reducing the applied faradaic current density to i f ,e = 10−3 A cm-2, the impedance plane plot

in Figure 4.28 shows one dome in the third quadrant for all light intensities with a rate equal to the

charge recombination rate k.

In Figure 4.29, the impedance plane plot for k = 10−2 and i f ,e = 1 A cm-2 is calculated for equal

transport numbers. Compared to the calculations done for one transport number equal to unity in

Figure 4.23a, the shift towards the third quadrant is occurring to a larger degree for low light intensities

when the transport numbers are set equal.

The by reducing the applied faradaic current density or rate constant further when assuming

equal transport numbers, similar trends as for one transport number equal to unity as described

above is observed. In general, the magnitude of IMPS impedance reduces when setting the transport

numbers equal by the means described above.
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Figure 4.24: a Light intensity dependency of the impedance plane plot of the IMPS spectrum in Eq.
(3.105) for an electrode described in Section 4.2. Calculations are done for an effective rate constant
k = 10−2 s-1, an absorption coefficient α = 2500 cm-1, incident light intensities in the range of I0 =
10−6 −1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an applied steady-state current i f ,e =
10−3 A cm-2. b Corresponding bode plot of the imaginary part of the impedance as a function of
angular frequency.
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Figure 4.25: Light intensity dependency of the impedance plane plot of the IMPS spectrum in Eq.
(3.105) for an electrode described in Section 4.2. Calculations are done for an effective rate constant
k = 10−3 s-1, an absorption coefficient α = 2500 cm-1, incident light intensities in the range of I0 =
10−6−1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an applied steady-state current a i f ,e = 1
A cm-2 and b i f ,e = 10−3 A cm-2.
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Figure 4.26: Light intensity dependency of the bode plot of the IMPS spectrum in Eq. (3.105) for an
electrode described in Section 4.2. Calculations are done for an effective rate constant k = 10−3 s-1,
an absorption coefficient α = 2500 cm-1, incident light intensities in the range of I0 = 10−6 − 1 mol
cm-2 s-1, a frequency region of 10−7–103 Hz, and an applied steady-state current a i f ,e = 1 A cm-2 and
b i f ,e = 10−3 A cm-2.
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Figure 4.27: a Light intensity dependency of the impedance plane plot of the IMPS spectrum in Eq.
(3.105) for an electrode described in Section 4.2 with equal transport numbers. Calculations are done
for an effective rate constant k = 10−1 s-1, an absorption coefficient α = 2500 cm-1, incident light
intensities in the range of I0 = 10−6 −1 mol cm-2 s-1, a frequency region of 10−7–103 Hz, and an ap-
plied steady-state current i f ,e = 1 A cm-2. b Corresponding bode plot of the imaginary part of the
impedance as a function of angular frequency.
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Figure 4.28: Impedance plane plot of the IMPS spectrum in Eq. (3.105) for an electrode described in
Section 4.2 with equal transport numbers, k = 10−1 s-1, and i f ,e = 10−3 A cm-2.
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Figure 4.29: Impedance plane plot of the IMPS spectrum in Eq. (3.105) for an electrode described in
Section 4.2 with equal transport numbers, k = 10−2 s-1, and i f ,e = 1 A cm-2.
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4.3.6 Steady-state potential as a function of light intensity under constant faradaic current den-

sity

The potential in Eq. (3.142) with a constant faradaic current density i f ,e as a function of light intensity

for three rate constants k = 10−1, k = 10−2, and k = 10−3 s-1 are given in Figure 4.30 for light intensi-

ties between 10−6 and 10−5 mol cm-2 s-1. We have assumed µ0 = 0 for simplicity. For k = 10−1 s-1 we

observe a decrease in the measured potential with increasing light intensity, as shown in Figure 4.30a.

For k = 10−2 s-1 we observe a decrease of the measured electrochemical potential with increasing the

light intensity for low values of I0, reaching a minimum value around 4×10−5 mol cm-2 s-1. However,

by further increasing the light intensity, the measured potential increases with increasing light inten-

sity. This is shown in Figure 4.30b. For k = 10−3 s-1 we observe an increase in the measured potential

with increasing light intensity, as shown in Figure 4.30c. From these results, we observe that for the

electrode system the potential as a function of constant faradaic current density initially decreases

with increasing light intensity until a minimum is reached at a threshold value of I0. At this point, the

potential increases with increasing light intensity. The threshold value of I0 decreases with decreas-

ing k-value, as shown in Figure 4.30 where the minimum of I0 for k = 10−1 s-1 is located for higher

I0 values than the chosen light intensity range, the minimum of I0 for k = 10−2 s-1 is located within

the chosen light intensity region, and the minimum of I0 for k = 10−3 s-1 is located for lower I0 values

than the chosen light intensity range.

4.4 Microporous thin film electrode

In Figure 4.31 the rate constant dependency of the IMPS transfer function for a microporous electrode

described in Section 4.2 is given for rate constants between k = 10−2 and k = 1 s-1.

The impedance plane plots in Figure 4.31a show a dome shape corresponding to a charge transfer

limiting process in the low frequency region, and a straight line corresponding to a diffusion limiting

process in the high frequency region. From the bode plots in Figure 4.31b the dome occurring in the

impedance spectrum correspond to the recombination rate described by the effective rate constant

k. The shape of the impedance plane plot is similar to a reflective-like behavior impedance spectrum.

In Figure 4.32 the IMPS response is calculated for the same system described above with an ef-

fective rate constant k = 10−3 s-1. We observe a "snail house" behavior in the impedance plane plot

in Figure 4.32a with three distinct rate constants as shown in the bode plot in Figure 4.32b. This in-

dicates that the system is either described by three charge transfer limiting processes occurring at

different frequencies, or most likely that the model is breaking down numerically. A more detailed

study of this model is required, and will not be investigated further in this study.
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Figure 4.30: Measured electrochemical potential as a function of light intensity for a rate constant
a k = 10−1 s-1, b k = 10−2 s-1, and c k = 10−3 s-1. Calculated for a constant faradaic current density
i f ,e = 1 A cm-2, α= 2500 cm-1, and for light intensities in the range of 10−6 to 10−5 mol cm-2 s-1.



4.4 Microporous thin film electrode 89

2 4 6 8 10 12 14 16

0

2

4

6

8

Re(Z )
[
C mol−1

]

−I
m

(Z
)

[ C
m

o
l−

1
]

k = 1 s-1

k = 10−1 s-1

k = 10−2 s-1

(a)

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106
0

1

2

3

4

5

6

7

8

Angular frequency [Hz]

−I
m

(Z
)

[ C
m

o
l−

1
]

k = 1 s-1

k = 10−1 s-1

k = 10−2 s-1

(b)

Figure 4.31: a Impedance plane plot of the rate constant dependency for the IMPS spectrum from
Eq. (3.150) for a microporous thin film electrode described in Section 4.2. b Corresponding bode plot
of the imaginary part of the impedance spectra as a function of angular frequency. Calculations are
done for a frequency region of 10−5–106 Hz.



90 4 RESULTS

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

·107

−2

−1

0

1

2

3

4

5

6

·107

Re(Z )
[
C mol−1

]

−I
m

(Z
)

[ C
m

o
l−

1
]

k = 10−3 s-1

(a)

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106

−2

0

2

4

6

·107

Angular frequency [Hz]

−I
m

(Z
)

[ C
m

o
l−

1
]

k = 10−3 s-1

(b)

Figure 4.32: a Impedance plane plot for the IMPS spectrum from Eq. (3.150) for a microporous thin
film electrode described in Section 4.2 with an effective rate constant k = 10−3 s-1. b Corresponding
bode plot of the imaginary part of the impedance spectra as a function of angular frequency. Calcu-
lations are done for a frequency region of 10−5–106 Hz.
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5 Discussion

5.1 Introduction

In Section 5.2 the limitations of the derived model and transfer functions are discussed. In Section

5.3 applications of the derived model are investigated. In Section 5.4 the convergence of the numer-

ical approach by Newman’s BAND(J) subroutine is investigated in more detail. The mathematical

description of the resulting impedance spectra is explained in Section 5.5 by the steady-state rela-

tion between the measured potential, light intensity and faradaic current density. Finally, a physical

interpretation of the impedance spectra by rate constant analysis is performed in Section 5.6.

5.2 Limitations of the modeled impedance transfer functions

A clear limitation in the derived model is that under zero illumination and steady-state current, the

steady-state concentration expressed by Eq. (3.27) equals to zero. This is however not the case, as a

constant equilibrium concentration ce,0 is observed. In previous results [31], a correction for this was

proposed by including an additive term in the derived steady-state concentration term on the form

ce (x)corrected = ce (x)+ ce,0 (5.1)

However, a simple addition of such a term does not take the physical aspects of the system into con-

sideration, just the mathematical treatment of including the equilibrium concentration under zero

illumination and steady-state current. Also, the addition of this term does not fulfill the steady-state

diffusion equation in Eq. (3.11). One possible solution to this problem is to include the equilibrium

concentration in a similar way described by Sódergren et al. [11] and Cao et. al [21], in which the

steady-state diffusion equation may be written

0 = D
∂2ce

∂x2 −k (ce − ce0)+ I0αe−αx (5.2)

The corrected steady-state on the form described in Eq. (5.1) should fulfill this diffusion equation.

However, a more detailed study of this inclusion is recommended. This correction may readily be in-

cluded in the derived expression in this study, but may also change the trend in the resulting impedance

spectra. However, the physical interpretation discussed below should still be valid, and may assist

in explaining any changes in the impedance spectra when including the equilibrium concentration.

Also, the resulting trends in the impedance spectra in this study should occur for sufficiently low

steady-state concentrations in the corrected model.

The calculated impedance spectra for IMPS in this study show a change in quadrant that is not
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reported elsewhere. This could be caused by the introduction of mixed conductivity, or the disre-

garding of the equilibrium concentration as described above. The physical interpretation of the IMPS

transfer function discussed below should, however, still hold.

5.3 Applications of the modeled impedance transfer functions

From the results in Section 4, the introduction of mixed conductivity may alter the calculated impedance

spectra depending on the measure technique. The calculated photoelectrochemical impedance spec-

tra and as IMPS spectra both showed strong dependency of the degree of mixed conductivity. The

IMVS transfer function, however, is rather insensitive to the introduction of mixed conductivity.

From the derived expression for the modulating concentration profile in Eq. (3.35), there was

found two contributions to the oscillation; the oscillating faradaic current density L {ĩ f } and the os-

cillating light intensity L {Ĩ0}. Thus, how these are affected by the degree of mixed conductivity may

thus explain of the impedance spectra for mixed conducting electrodes differ from pure electrical

conducting electrodes. To obtain charge neutrality, the current in and out of the electrode must at

all times remain equal. From the defined boundary conditions at the electrode interfaces (from Eq.

(3.33) at x = 0 and (3.34) at x = L), the chosen transport number should describe the slope of the con-

centration profile at the interface. When one transport number is set close to unity, a steep profile is

observed where ti ≈ 0, and a flat profile is observed where ti ≈ 1. For equal transport numbers, a sym-

metrical concentration profile is observed. In the speciation for this study, a steep profile is observed

close to x = 0 and a flat profile is observed for x = L when assuming nearly pure electrical conducting

properties. By modulating the current density, the concentration close to the solution interface will

modulate while the concentration at the support is nearly constant, when assuming nearly pure elec-

trical conducting properties. Thus, the solution interface will be of most importance for this system.

When the transport numbers are set equal, the concentration close to both the solution interface and

support interface modulate. Thus, both interfaces are important for mixed conducting systems.

For reasonably large adsorption coefficients, the light intensity will only affect the concentration

profile close to the surface at which the electrode is illuminated (here assumed at the solution inter-

face). Thus, by modulating the light, the solution interface is of most importance.

To illustrate this, the steady-state concentration profile for a near pure electrical conducting elec-

trode illuminated with light intensities I0 = 106 and I0 = 10−5 mol cm-2 s-1 for k = 10−2 s-1 is given

in Figure 5.1a, and for t+ = t− = 0.5 in Figure 5.1b. Here, we clearly see that illumination at the elec-

trolyte interface affects the concentration profile close to the surface only. By setting t+ ≈= 1 as in

Figure 5.1a, oscillation of the faradaic current should only affect the concentration close to x = 0. By

setting t+ = t− = 0.5 as in Figure 5.1b, oscillation of the faradaic current affects both interfaces.
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Figure 5.1: a Steady-state concentration profile assuming t+ ≈ 1. b Steady-state concentration profile
assuming t+ = t− = 0.5.
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Since the photoelectrochemical impedance spectrum is defined as the modulated potential as

a function of modulated current, the electrode with mixed conductivity should may be changed so

both interfaces contribute. Similarly, for the IMPS spectra, the modulating current as a function of of

light intensity will also be altered, where the solution interface is of most importance. IMVS measure-

ments, however, is conducted at open circuit conditions. That is, the current density is zero. Thus,

only the light modulation is affecting the charge transfer flow, and the IMVS spectra should be equal

for mixed conducting and pure electrical conducting electrodes.

From the results above, we clearly see that the charge recombination rate across the bulk elec-

trode may be extracted from the resulting impedance spectra. The most straight forward method

to determine the rate constant is to investigate the electrode by IMVS measurements, as it has been

showed that the impedance spectra from IMVS measurements has one characteristic maximum in

the imaginary part of impedance located at a frequency equal to the rate constant k. k may also

be extracted from the other methods, but can be quite ambiguous, however, as these methods show

several processes with rate constants close to k and may be difficult to distinct.

IMPS-measurements may be used to measure the electrode kinetics at the solution interface for

sufficiently low recombination rates and applied current density, as one characteristic minimum in

the imaginary part of the impedance plane plot is assumed to be occurring at a frequency equal to

the back charge transfer rate at the solution interface. This may be obtained both for pure electrical

conducting and mixed conducting systems.

The diffusion coefficients Di for species i may be found by photoelectrochemical impedance

measurements. It was shown that the photoelectrochemical impedance spectrum showed straight

line corresponding to a diffusion limiting process in the high frequency region. If the mobilities and

charge numbers of the species are known, the diffusion coefficient may be found from Eq. (3.6). If

the diffusion coefficient is known, the mobilities may be found. The electrode kinetics at the solution

interface when assuming a mixed conducting electrode may be extracted from photoelectrochemical

impedance measurements , as it was assumed that for intermediate recombination rates a character-

istic rate constant corresponding to the electrode kinetics at the support was observed.

5.4 Numerical modeling by Newman’s BAND(J) subroutine

From the step size analysis of Newman’s BAND(J) subroutine it was found that the subroutine does

not show the expected linear trend of convergence with the square of the step size. The error in the

numerical approximation of a function f (x) is a sum of the second and higher order derivatives of the

function on the form [35] H 2 f (2)(x)+H 4 f (4) +H 6 f (6)(x)+ . . . , where f (n) is the n-th order derivative.

Richardson [35] suggests that for sufficiently low step sizes, the second order derivative is the main



5.5 Mathematical treatment of the thin film transfer functions by steady-state analysis 95

contributor to the error, and thus the numerical approximation should show a linear trend with H 2.

However, if the higher order derivatives are large, these will still contribute to a certain extend and the

error may not show H 2-dependency. This may be further investigated by a higher-order Richardson’s

iteration method [35].

5.5 Mathematical treatment of the thin film transfer functions by steady-state analysis

5.5.1 Mathematical treatment of the IMPS transfer function

IMPS measurements are done under short circuit conditions, that is, the measured electrochemical

potential is kept constant. From Figure 4.30, we clearly see that by keeping the faradaic current den-

sity constant when changing the light intensity, the potential changes. Thus, by changing the light

intensity I0 in Eq. (3.142), the steady-state faradaic current density i f ,e must change accordingly to

maintain a constant potential. The change of i f ,e as a function of I0 by keeping the potential constant

for k = 10−2 s-1 is given in Figure 5.2a, and the resulting measured potential is given in Figure 5.2b.

For these calculations, I0 is kept constant for each calculation, and i f ,e is changed with with a certain

factor from the original value in the appropriate direction. For low values of I0 we observe an increase

in i f ,e , which reaches a maximum around I0 = 4×10−5, in accordance with the Figure 4.30. A further

increase I0 leads to a decrease in i f ,e .

The plot of the faradaic current density as a function of light intensity, such as the one in Figure

5.2a, should explain mathematically the resulting impedance spectrum. The IMPS transfer function

gives the fraction between the faradaic current density perturbation L {ĩ f } and light intensity per-

turbation L {Ĩ0} at different frequencies when we assume the oscillating faradaic current density and

light intensity on the form i f = i f (x,0)+ ĩ f (x, t ) and I0 = I0(x,0)+ Ĩ0(x, t ), respectively. Since these

perturbations are small changes in faradaic current density and light intensity, that is, ∂i f and ∂I0

respectively, the IMPS transfer function is expected to be directly linked to the sign of the derivative

of faradaic current density with respect to light intensity ∂i f /∂I0.

For the calculations represented in Figure 5.2, we see that in order to maintain a constant mea-

sured electrochemical potential, the current goes from increasing values to decreasing values be-

tween I0 = 1× 10−6 to I0 = 10−5 mol cm-2 s-1. At the point in which ∂i f /∂I0 changes from positive

to negative sign, we investigate if the calculated IMPS response goes from Re(Z ) > 0, − Im(Z ) > 0 to

Re(Z ) < 0, − Im(Z ) < 0 when keeping the steady-state faradaic current density constant. The calcu-

lated IMPS response by keeping i f ,e constant and equal to i f ,e = 1 A cm-2 for the same I0 range as

described above is given in Figure 5.3. We observe that the IMPS response changes quadrant in the

same range of I0 values as that of the change in sign of ∂i f /∂I0. Thus, the quadrant in which the IMPS

transfer function occurs is directly linked to the sign of ∂i f /∂I0, as expected.
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Figure 5.2: a Change in faradaic current density i f ,e as a function of I0 under short circuit conditions,
that is, keeping the measured electrochemical potential V constant. b Resulting potential as a func-
tion of I0 and the new calculated i f ,e . Calculations done for I 0 in the range of 10−6 to 10−5 mol cm-2

s-1, k = 10−2 s-1, and α= 2500 cm-1.
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The current as a function of light intensity under constant potential for a large k-value of k = 10−1

s-1 and a low k-value of k = 10−3 s-1 is given in Figure 5.4a and 5.4c, respectively, for the same light

intensity region chosen for k = 10−2 as described above. Here, we observe an increase in the faradaic

current density with increasing light intensity for a high rate constant, and a decrease in the faradaic

current density with increasing light intensity for a low rate constant. We have also included the IMPS

impedance plane plots for k = 10−1 s-1 in Figure 5.4b and for k = 10−3 s-1 in Figure 5.4d. For a large

k-value we observe Re(Z ) > 0 and − Im(Z ) > 0 for all I0-values, and for a low k-value we observe

Re(Z ) < 0 and − Im(Z ) < 0 for all I0-values, as expected.

5.5.2 Mathematical treatment of the IMVS transfer function

For the IMVS spectra in Section 4.3.4, we observed all spectra in the first quadrant. From these results

we expect the measured potential to increase with increasing light intensity, that is, the derivative

∂V /∂I0 to be greater than zero. This is expected, since the IMVS transfer function gives the frac-

tion between the measured potential perturbation L {Ṽ } and the light intensity perturbation L {Ĩ0

when we assume the oscillating potential and light intensity on the form V = V (x,0)+ Ṽ (x, t ) and

I0 = I0(x,0)+ Ĩ0(x, t ). Since these perturbations are small changes in potential and light intensity, that

is, ∂V and ∂I0 respectively, hence the IMVS transfer function is expected to be directly linked to the

sign of the derivative of measured potential with respect to light intensity ∂V /∂I0.

In Figure 5.5, the measured potential under open circuit conditions i f ,e = 0 is plotted as a function

of light intensity for rate constants between k = 10−3 and k = 10−1 s-1. From these results, we observe

a positive gradient ∂V /∂I0 for all rate constants. Thus, the IMVS transfer function is expected to occur

in the first quadrant.

5.5.3 Mathematical treatment of the photoelectrochemical impedance response

From the resulting photoelectrochemical impedance spectra in Section 4, we observed a dome shape

in the positive imaginary plane for the impedance plane plot. This should correspond to a charge

transfer limiting process in which the current oscillates in the opposite direction as the potential. In

this study we assume this to be a back charge transfer between the electrode and electrolyte, as de-

scribed in more detail in Section 5.6. This dome is found to be more apparent by reducing the applied

faradaic current density. A similar mathematical treatment as described above could be done for this

transfer function be keeping the light intensity constant and investigate how the current density and

potential changes accordingly. This should give similar results as described above.
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Figure 5.4: a An observed increase in faradaic current density with increasing light intensity and b
resulting IMPS spectrum for k = 10−1 s-1. c An observed decrease in faradaic current density with
increasing light intensity and d resulting IMPS spectrum for k = 10−3 s-1.
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Figure 5.5: Measured electrochemical potential as a function of light intensity at open circuit con-
ditions i f ,e = 0 for a rate constant a k = 10−1 s-1, b k = 10−2 s-1, and c k = 10−3 s-1. Calculated for
α= 2500 cm-1, and for light intensities in the range of 10−6 to 10−5 mol cm-2 s-1.
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5.6 Physical interpretation of the thin film transfer functions by rate constant analysis

In this study, we focus on four processes regarding flow of charge carriers in the electrode system;

diffusion of charge carriers across the electrode caused by concentration gradients under illumina-

tion and an applied current, generation of charge carriers under illumination, charge transfer across

the interfaces, and recombination of charge carriers to neutral species in the electrode material. The

three latter charge carrier flow processes are investigated below to give a physical interpretation of

the proposed mathematical explanation above.

5.6.1 Photogeneration under illumination

When the semiconductor is illuminated, charge carriers are generated by excitation of electrons from

the valance band (VB) to the conduction band (CB) and holes from conduction band to valance band,

as sketched in Figure 5.6 for illumination at the electrolyte interface (x = 0). When we assume a

sufficiently large absorption coefficient α, we expect the steady-state concentration to increase with

increasing light intensity close to the surface at which the electrode is illuminated.

Figure 5.6: Electrons are excited from VB to CB and holes from CB to VB producing a net increase in
charge carrier concentration, generating a photocurrent.

5.6.2 Charge transfer and recombination

We assume a system that blocks positive species at the electrolyte interface (x = 0) and blocks negative

species at the support interface (x = L). Thus, charge transfer at the electrolyte interface is given by
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either feeding electrons to or draining electrons from the conduction band, and the charge transfer

at the support interface is given by either feeding holes to or draining holes from the valance band.

Charge carriers may also recombine to neutral species, described by the rate constant k. These two

charge carrier flow processes are described in Figure 5.7.

Figure 5.7: Representation of charge transfer and recombination processes in the electrode system.
Electrons may transfer at the electrolyte interface at x = 0 and holes may transfer at the support inter-
face at x = L. Charge carriers may also recombine to neutral species, described by the rate constant
k.

5.6.3 Change in the net faradaic current density

The change in net faradaic current density is dependent on the concentration profile across the elec-

trode material. As mentioned above, increasing the light intensity will increase the charge concen-

tration close to the electrolyte surface when we assume a sufficiently large adsorption coefficient α.

For a reasonably high recombination rate, the photogenerated charge carriers will quickly recombine

close to the solution interface before being able to diffuse into the electrode material, thus a steeper

concentration profile is observed. In order to keep the potential constant, we expect an increase in

the flux of charge carriers across the solution interface with increasing light intensity, thus an increase

in the net the faradaic current density is observed. This is shown in Figure 5.8, where Ni x represents

the change in net charge carrier flux across the interface.

For low recombination rates, the photogenerated charge carriers diffuse to a larger degree into

the material before they recombine. This may lead to a flattened concentration profile close to the

solution interface. In order to keep the potential constant, the flux of charge carriers across the solu-
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Figure 5.8: For large values of k, the photogenerated charge carriers close to the solution interface
quickly recombine before being able diffusing into the electrode material. To keep the potential con-
stant, an increase in the faradaic current density is observed, represented by a positive change in net
charge carrier flux across the interface Ni x > 0.

tion interface needs to be reduced. Thus, we observe a decrease in the net faradaic current density

with increasing light intensity. This is shown in Figure 5.9, where where Ni x represents the change in

net charge carrier flux across the interface.

5.6.4 Derivative analyisis

In Figure 5.10, the derivate of ce (x) with respect of x is plotted across the electrode length for k =
10−2 s-1 for constant faradaic current and constant potential in Figure 5.10a and 5.10b, respectively.

From the boundary conditions in Eq. (3.19) and (3.22), we expect the derivative to have a constant

value at the electrode interfaces when keeping the faradaic current density constant, as shown in

Figure 5.10a. However, by keeping the potential constant, the faradaic current at the interfaces need

to accommodate for the competition between charge generation and recombination, as described

above. This is shown in Figure 5.10b. First, the gradient increases in magnitude with increasing light

intensity. However, when the light intensity reaches a certain threshold value, the recombination does

not accommodate the charge generation, and the gradient, and thus the faradaic current is, reduced

at the electrode interfaces.
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Figure 5.9: For low values of k, the photogenerated charge carriers close to the solution are able to
diffuse into the electrode material before recombining. To keep the potential constant, a decrease in
the faradaic current density is observed, represented by a negative change in net charge carrier flux
across the interface Ni x < 0.
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Figure 5.10: Derivative of the steady-state concentration with a constant faradaic current, and b con-
stant potential. Calculations done for k = 10−2 s-1, α = 2500 s-1, and i f ,e = 1 A cm-2 at I0 = 10−6 mol
cm-2 s-1.
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6 Conclusion

Mathematical models for electrochemical and photoelectrochemical impedance transfer functions

for films have been developed. These models include electrochemical impedance spectroscopy (EIS),

photoelectrochemical impedance spectroscopy (EIS), intensity-modulated photovoltage spectroscopy

(IMVS), and intensity-modulated photocurrent spectroscopy (IMPS) for mixed conducting photo-

electrochemical thin films, and intensity-modulated photocurrent spectroscopy (IMPS) for mixed

conducting microporous thin films. In addition a short study of the step size dependency of the con-

vergence for numerical modeling approach using Newman’s BAND(J) subroutine to solve a second

order diffusion equation has beed performed.

It was found that the photoelectrochemical impedance (EIS) transfer function and intensity-modulated

photocurrent spectroscopy (IMPS) transfer function was dependent on the degree of mixed conduc-

tivity. The intensity-modulated photovoltage spectroscopy (IMVS) transfer function, however, was

found to be independent of degree of mixed conductivity.

The convergence of the numerical approach using Newman’s BAND(J) subroutine does not show

the expected convergency trend. It was proposed that this may be caused by the higher derivatives

of the modeled equations, and a more detailed study of the numerical approach using a higher order

Richardson’s iteration method was suggested.

The electrochemical impedance spectroscopy (EIS) transfer function showed a reflective-like be-

havior, with a charge limiting dome in the low frequency region in the impedance plane plot corre-

sponding to charge recombination across the bulk electrode.

The photoelectrochemical impedance spectroscopy (EIS) transfer function showed to distinct

charge transfer limiting processes in the low frequency region. It was found that one of the domes

corresponded to charge recombination across the bulk electrode. The other dome was assumed to

correspond to a charge transfer process between the electrode and electrolyte described by the sur-

face electrode kinetics at the solution interface.

The intensity-modulated photovoltage spectroscopy (IMVS) transfer function showed one charge

limiting process corresponding to recombination across the bulk material. For low rate constants,

the system is charge transfer limiting in the low frequency region and diffusion limiting in the high

frequency region.

The intensity-modulated photocurrent spectroscopy (IMPS) transfer function showed to charge

limiting processes. It was found that one of the domes corresponded to charge recombination across

the bulk electrode. The other dome was assumed to correspond to a charge transfer process between

the electrode and electrolyte described by the surface electrode kinetics at the solution interface. For

high light intensities and low rate constants, the transfer function showed a change in quadrant. This
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was explained by a change in the direction of charge transfer between electrode and electrolyte to

maintain a constant potential when the photogeneration process rate exceeds the recombination

process rate.

A relation between measured potential, current density, and light intensity was developed, and

was utilized to explain the physical interpretation of the impedance transfer functions.

The derived steady-state concentration profile disregard the equilibrium concentration under

zero illumination and applied current density. A route to include this by including an equilibrium

concentration term in the steady-state diffusion equation and solving the equation with appropriate

boundary conditions was suggested.
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7 Suggested further work

The modeled impedance spectra may be used to assist the interpretation of experimental data. It is

recommended to investigate the models validity by performing impedance measurement on known

systems, and compare the experimental results to the calculated impedance spectra. This will locate

any deviations or limitations with the derived models, and proper corrections to the derived models

may be found.

A more detailed study of the inclusion of the equilibrium steady-state concentration under zero

illumination and applied current-density is advised. One suggested route is to define the steady-state

diffusion equation in similar terms as Cao et. al [21], and solve the corrected differential equation with

the procedure described in this study. A steady-state concentration profile with an accurate inclusion

of the equilibrium steady-state concentration should be obtained. This altered steady-state concen-

tration profile may be readily included in the existing models, as it will not affect the nonsteady-state

diffusion equation and resulting modulating concentration profile. The calculated impedance spec-

tra may be changed compared to this study, and it is advised to do the equilibrium concentration

inclusion simultaneously with experimental measurements. The discussed physical interpretation

should still be valid, and may be used as aid in interpreting the new calculated impedance spectra.

A study of the two other derived IMPS transfer functions should be investigated in more detail.

They may give aid to more clearly understanding and interpreting IMPS transfer functions as they are

derived for more simple systems, and thus the physical interpretation should be straight forward.

The microporous thin film electrode in Section 3.4 should be analyzed in more detail. In the

time span of this study, a more detailed study and description of this model was not performed and

is highly recommended for further work. The analogy of describing the sink term in the diffusion

equation as a recombination process from electrode to electrolyte across the micropore surface may

be utilized when deriving impedance transfer functions for microporous systems.
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Appendix A A-1

A Proof that the impedance can be derived by setting s = jω in the Laplace-

transform t-space equations

Laplace-transform:

L
{

f (t )
}

(s) =
∫ ∞

0
f (t )e−st d t = F (s) (A.1)

where s =σ+ jω ( j =p−1). Inverse transform:

−1
L

{
f (s)

}= 1

2π

∫ γ+ j∞

γ− j∞
f (s)e st d s = f (t ) (A.2)

Some simple rules and examples:

L {t } = 1

s2 (A.3)

L {t 2} = 2

s2 (A.4)

L {sinβt } = β

s2 +β2 (A.5)

Applications in differential equations: Transform problem, solve transformed equations algebraically,

and then transform back.

For complex equations, the back-transformation is usually quite difficult, and only limiting forms

can (at best) be found. Numerical inversion is possible, but unstable. Some algorithms exist, see e. g.

Schittkowski [36].

Response to a harmonic driving signal

u(t ) =
 u0 sinωt : t > 0

0 : t < 0
(A.6)

Driving signal:

u(s) = u0ω

s2 +ω2 (A.7)

Response when the transfer function is h(s):

y(s) = h(s)
u0ω

s2 +ω2 (A.8)

In t-space

y(t ) =L
{

y(s)
}−1 = 1

2π j

∫ γ+ j∞

γ− j∞
h(s)

u0ω

s2 +ω2 e st d s (A.9)
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Residue theorem: ∮
C

f (z) = 2π j
N∑

k=1
Res fz=zk (z) (A.10)

If simple poles only:

Res fz=zk (z) = lim
ξ→z0

(z − z0) f (z) (A.11)

If the transfer function h(s) has N poles ( uoω
s2+ω2 = u0ω

(s+ jω2)(s− jω2) ) has two poles in s =± jω

y(t ) = 1

2π

∫ γ+ j∞

γ− j∞
h(s)

u0ω

s2 +ω2 e st d s

= h( jω)u0ωe jωt

2 jω
+ h(− jω)u0ωe jωt

−2 jω
N∑

k=1

(s − sk )h(s)u0ωe st

s2 +ω2

(A.12)

If we are primarily interested in the steady-state response, then we inspect the expression in Eq. (A.12)

when t →∞

• If all the poles are in the left half of the complex plane, Re(sk ) < 0, and the last term (the sum)

dies out exponentially.

• If there are any poles in the right half-plane, the system is unstable and will not be interesting

from an impedance point of view anyway.

• We therefore assume that h(s) only has poles in the left half-plane.

lim
t→∞ y(t ) = u0

[
h( jω)

e jωt

2 j
−h(− jω)

e− jωt

2 j

]
(A.13)

Setting (physical systems always have poles symmetrically about the real axis):

h( jω) = ∣∣h( jω)
∣∣eφ(− jω) = ∣∣h( jω)

∣∣e−φ (A.14)

we get

lim
t→∞ y(t ) = u0

∣∣h( jω)
∣∣sin(ω+φ) (A.15)

The steady-state response of the system to a sine stimulus is thus also a sine. The amplitude is scaled

by the absolute value of the transfer function. The phase is shifted by the phase of the transfer func-

tion.

We now assume that u(t ) takes the role of a voltage and y(t ) that of a current (for example). For

electrical and electrochemical systems, the transfer function as written with the argument s = jω is

defined as the admittance of the system:



Appendix A A-3

The admittance of an electrochemical system is the ratio of the Laplace-transformed current to the

Laplace-transformed voltage. The impedance is the inverse of the admittance.

Note that we assumed that there is response linearly connected to the stimulus in the definition of

the transfer function. If the experimental arrangement arrangement does not comply with this re-

quirement, the analysis breaks down. In electrochemistry this is usually achieved by applying a small

amplitude.
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