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Abstract 

A particular pressure-driven flow in a plane channel is considered, in which one of the walls moves with 

a constant speed that makes the mean shear rate and the friction at the moving wall vanish. The Reynolds 

number considered based on the friction velocity at the stationary wall (uτ,S) and half the channel height (h) 

is Reτ,S = 180. The resulting mean velocity increases monotonically from the stationary to the moving wall 

and exhibits a substantial logarithmic region. Conventional near-wall streaks are observed only near the 

stationary wall, whereas the turbulence in the vicinity of the shear-free moving wall is qualitatively different 

from typical near-wall turbulence. Large-scale-structures (LSS) dominate in the center region and their 

spanwise spacing increases almost linearly from about 2.3 to 4.2 channel half-heights at this Reτ,S. The 

presence of LSS adds to the transport of turbulent kinetic energy from the core region towards the moving 

wall where the energy production is negligible. Energy is supplied to this particular flow only by the driving 

pressure gradient and the wall motion enhances this energy input from to the mean flow. About half of the 

supplied mechanical energy is directly lost by viscous dissipation whereas the other half is first converted 

from mean-flow energy to turbulent kinetic energy and thereafter dissipated.   

Keywords: Turbulent flows; Couette-Poiseuille flow; Zero wall shear; Large-scale-structures. 

1 Introduction 

Wall-bounded turbulent flows have been of great interest due to their vital importance of academic as 

well as industrial relevance. Extensive experimental studies on wall turbulence have been conducted, and 

an increasing number of relevant numerical studies have appeared for the past several decades thanks to the 

advancement in computer technology. These studies cover various flow conditions and over a large range 

of Reynolds number. In particular, studies on a fully developed channel flow have played an important role 

in understanding the mechanisms of wall-bounded turbulence in general.  

A plane channel flow (also referred to as plane Poiseuille flow) is usually defined as a fluid flow driven 

by a streamwise pressure gradient between two parallel impermeable walls. A useful database on this type 

of flow was provided by a widely acknowledged direct numerical simulation (DNS) of Kim et al. (1987) at 

a Reynolds number of 180 (Reτ, based on the friction velocity at the wall and the channel half-height). For 

this flow, the statistically-steady turbulence field is homogenous in the wall-parallel planes, and the mean 

velocity is non-zero only in the streamwise direction. The wall-normal distribution of the primary statistics, 

including the mean streamwise velocity and the fluctuations of the velocity components, the pressure and 

the vorticity are all symmetric with respect to the channel center. The total shear stress, defined as the sum 

of the viscous shear stress and the turbulent shear stress, follows a linear relation and reaches maximum at 

the two walls and reduces to zero at the channel center. Organized coherent structures in the form of 

streamwise streaks flanked by alternating vortical structures are generated near the walls. These vortical 
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structures associate with the sweep and ejection events of high and low velocity respectively, which closely 

relate to the conversion of mean flow kinetic energy into turbulence energy and finally viscous dissipation 

(Wallace et al., 1972; Alfredsson and Johansson, 1984; Robinson, 1991). The scales of these inner-layer 

structures are relatively small, with a spanwise spacing of about 100 wall units (Kim et al., 1987). The 

formation mechanism for the organized small-scale streaks has been explained in different ways, and is 

probably a combined phenomenon rather than having one simple universal explanation (Hamilton et al. 

1995; Zhou et al., 1996; Jeong et al., 1997; Waleffe, 2001; Jiménez and Pinelli, 2002). A well-recognized 

theory is that the near-wall streaks and vortical structures are educed by the high mean shear rate in this 

region (Rogers and Moin, 1987), whereas for regions where there is small shear (e.g. near the channel 

center), structures of larger scales are likely to form depending on the Reynolds number. This implies that 

wall proximity is not necessarily a pre-requisite for the formation of such small-scale coherent streaky 

structures (Lee et al., 1990; Lam and Banerjee, 1992).  

The total shear can be easily controlled by allowing the walls to have a relative velocity. A flow driven 

by the relative wall velocity instead of a pressure gradient is known as a shear-driving Couette flow. Plane 

Couette flows have also received much attention in the past decades (see for example, Kuroda et al., 1993, 

1995; Bech et al., 1995; Bech and Andersson, 1996; Komminaho et al., 1996; Kawahara and Kida, 2001; 

Tsukahara et al., 2006; Holstad et al., 2009). It has been shown that the wall-normal profile of the turbulent 

intensities for a plane Couette flow is symmetric with respect to the center line, and the wall-normal 

distribution of the total shear stress attains a constant value throughout the entire flow. Compared to 

turbulent Poiseuille flows, the high- and low-speed structures formed in a turbulent Couette flow have two 

scales, one small scale similar to that of a channel flow, and one larger scale that extends much longer in 

both streamwise and spanwise directions. The small-scale structures are the coherent streaks observed near 

the walls, while the large-scale structures are often found in the channel center. These large-scale structures 

in a plane Couette flow, since first discovered by Lee and Kim (1991), have been reported in many 

subsequent studies and received different names (e.g. Tsukahara et al., 2006; Pirozzoli et al., 2011). Here 

they are referred to as Very-Large-Scale Structures (VLSS). There have been some arguments on whether 

these VLSS are a result of the periodic boundary condition applied in the DNS (Bech et al., 1995), resulting 

in several studies examining varying sizes of the computational domain (Bech and Andersson, 1994; 

Komminaho et al., 1996, Holstad et al., 2006, Tsukahara et al., 2006 and Gai et al. 2015). As a general rule, 

numerical simulations of plane Couette flows always require a much larger domain size than needed for 

plane Poiseuille flows to avoid unphysical effects of the periodic boundary condition in the homogeneous 

directions. Tsukahara et al. (2006) reported the influence of the domain size on the size of the VLSS, and 

suggested that at least a spanwise length of 8 times the channel height is needed for avoiding the effects of 

the periodic boundary condition. They also reported the global existence of the VLSS and their influences 

on the near-wall streaks at Reτ = 52 and 126−129.  

By imposing both a mean pressure gradient and a relative wall velocity, one can obtain a so-called 

Couette-Poiseuille flow (CP flow). The CP flow serves as a good media to evaluate the combined effects 

of the driving pressure gradient and the wall shear stress on the varying scales of the flow structures. For 

example, by adding a spanwise pressure gradient to a shear-driving Couette flow generated between two 

parallel planes with relative movement, Holstad et al. (2009) evaluated the effects of the skewed mean flow 

on the coherent turbulent structures in a three-dimensional turbulent boundary layer. To examine the effects 

of the mean shear, Kuroda et al. (1993, 1995) performed a DNS study on flows between two walls with a 

varying shear stress by changing the motion of one wall. They presented a variety of turbulence statistics, 

but the format of the conference proceedings did not allow for any detailed analysis and interpretation of 

the results. The computational domain size of Kuroda et al. (1993, 1995) was similar to that used by Kim 

et al. (1987) in their pioneering Poiseuille flow simulation, and is nowadays generally accepted to be 
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insufficient for Couette flow simulations (e.g. Bech and Andersson 1994, Komminaho et al. 1996, 

Tsukahara et al. 2006) as well as for Couette-Poiseuille flows (Pirozzoli et al. 2011). A very recent DNS 

study of Pirozzoli et al. (2011) using a much larger domain (see Table 1) covered different flows ranging 

from a pure Poiseuille flow (or a P flow) to a pure Couette flow (or a C flow) at Reτ,S = 250, a Reynolds 

number based on the friction velocity at the stationary wall. In particular, they pointed out that the specific 

CP flow with zero mean shear at the moving wall is of special value in evaluating the effects of the total 

shear. They observed the existence of streaky structures in the near-wall region of both the P flow and the 

C flow. Structures of larger scale were observed in the center region for the CP flow and the C flow. For 

the CP flow, Pirozzoli et al. (2011) showed the coexistence of the two scales and the superimposing of the 

LSS onto the near-wall small-scale structures by way of a two-point amplitude modulation coefficient. In 

general, there is an enhanced near-wall influence of the outer-layer large-scale structures from P-like to C-

like flows. The VLS found for the C flows have a size in the order of the channel height and their center 

locates at the channel centerline (similar to that reported in other studies on C flow, e.g. Tsukahara et al. 

2006), whereas the LSS associated with CP flow have a less influencing range and their center deviates 

from the channel centerline. Similar large-scale structures have also been detected in turbulent Poiseuille 

and boundary-layer flows at high Reynolds number (see e.g. Balakumar and Adrian 2007). In hybrid 

channel flows, i.e. CP flows, the presence of large-scale structures depends on whether the actual flow is 

C-like or P-like. Since Couette flows are known to have a characteristic length scale that is much longer 

than those found in P flows at high Reynolds numbers, the intermediate case of a CP flow with zero mean 

wall shear is believed to exhibit LSS of size somewhere in between pure P flows and pure C flows. It is 

likely that these differences are associated with the variation of the mean velocity between the two walls. 

The mean velocity exhibits an inflection point midway between the walls in C flows, and as the flow 

becomes less and less C-like the inflection point gradually shifts towards the moving wall until it finally 

vanishes for the CP flow with zero mean shear. Shear-less CP flows were also addressed in recent studies 

of Coleman and Spalart (2015) at Reτ,S = 850 and Coleman et al. (2016) at Reτ,S = 282 ~ 975, who proposed 

a linear relation between the mean velocity and the square-root of the normalized wall-normal coordinate 

near the moving wall. 

The present work focuses on a CP flow with zero mean shear at one moving wall at Reτ,S = 180, 

controlled by a prescribed streamwise pressure gradient and a relative velocity between the two walls. After 

a brief description of the numerical method and flow validation, the results of the current CP flow are 

presented in mainly three aspects. Firstly, the primary statistics for the CP flow is discussed. Secondly, the 

turbulent structures formed in the CP flow are analyzed, and in particular, different scales of the flow 

structures are evaluated. In this study, the large-scale structures are referred to as LSS (Large-Scale 

Structures) for the CP flows in order to distinguish with the larger VLSS (Very-Large-Scale Structures) for 

the Couette flows. Last but not least, the kinetic energy and its internal conversion associated with the 

present CP flow are considered. Extensive comparison with the turbulent Poiseuille flow database of Kim 

et al. (1987) is carried out to address the effects of the wall motion.  

2 Methodology 

2.1 Governing equations and Numerical methods 

The present study considers incompressible Newtonian turbulent fluid flow between two impermeable 

parallel planes with a relative velocity. The governing equations for the flow are the incompressible Navier-

Stokes equation and the continuity equation, which can be written as (after normalized by the friction 

velocity at the stationary wall uτ,S and half the channel height h): 
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ũi

∂xj∂xj

 
2.1 

∂ũi
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where ũi is the dimensionless instantaneous velocity normalized by uτ,S, and p̃  is the dimensionless 

instantaneous pressure normalized by ρuτ
2

,S, where ρ is the fluid density. The instantaneous velocity ũi can 

be decomposed into a mean flow and corresponding velocity fluctuations (i.e. ũx = U+u, ũy = V+v, and ũz = 

W+w in x-, y- and z-directions, respectively). The mean flow is obtained by averaging in homogenous (x, 

y) directions and time. The friction Reynolds number based on uτ,S is defined as Reτ,S = uτ,Sh/v, where v is 

the fluid kinematic viscosity. In this study Reτ,S is set at 180. Based on this Reτ,S value, the physical quantities 

are scaled using uτ,S and v to obtain the viscous units, by ui
+ = ũi/uτ,S, xi

+ = xi/(v/uτ,S), t+ = t/(v/uτ
2

,S), and p+ = 

p/ρuτ
2

,S. 

The computational domain is demonstrated in Fig. 1 together with the coordinate system. The size of 

the current domain is 36h × 10h × 2h in streamwise (x-), spanwise (y-), and wall-normal (z-) directions, 

respectively. The bottom wall (z/h = 0) is stationary and the top wall at z/h = 2 has a relative velocity of  

Uwall = 20uτ,S. This particular wall velocity depends on the actual Reynolds number and was determined by 

a trial-and-error procedure starting from the wall speed of Uwall = 19.48uτ,S reported by Kuroda et al. 

(1993,1995) at Reτ,S = 154. Here we intentionally decided to consider a flow with Reτ,S = 180 in order to 

facilitate direct comparisons with results from the benchmark Poiseuille flow simulation by Kim et al. 

(1987), since we anticipate close similarities in the near-stationary-wall turbulence between our CP flow 

case and the canonical Poiseuille flow case. At both walls a no-slip boundary condition is applied. A 

periodic boundary condition is used in the homogenous xy- directions. A driving pressure gradient 

corresponding to Reτ,S = 180 is also added to the present flow. The values of the two controlling parameters, 

i.e. the relative wall velocity and the pressure gradient, were chosen to achieve a vanishing shear at the 

moving wall (|τM/ρuτ
2

,S| ≈ 0). Although the mean shear rate and thereby the mean friction is practically zero, 

the instantaneous shear rate and the instantaneous shear stress at the moving wall fluctuate about an almost 

zero mean value. For the present CP flow, we were able to obtain a flow field with a statistically low mean 

value of |τM/ρuτ
2

,S| ≈ 3×10-3. The friction Reynolds number based on the moving wall friction velocity uτ,M 

becomes Reτ,M ≈ 9.8.  

Comparison of the current computational domain with previous studies is given in Table 1. The current 

domain size is close to but slightly smaller than the one used by Pirozzoli et al. (2011), because they 

considered also Couette flows, which have even larger-scale structures in the flow (VLSS for C-like flows). 

Kuroda et al. (1993, 1995) also investigated all flow regimes from P-like flows to C-like flows at a smaller 

Reτ,S, with a much smaller domain than the present one. Specifically, our domain is about 2.3 times the 

streamwise length and about 1.6 times the spanwise width as that of Kuroda’s domain. The present domain 

is also much larger than that of the P flow case of Kim et al. (1987) at the same Reτ,S, due to the possible 

formation of the LSS in the current CP flow. For the discretization of the current domain, the number of 

grid points in the x-, y- and z- directions are 576, 260 and 192, respectively. The mesh resolution in the 

homogeneous plane (xy plane) is uniform, with ∆x+ = 11.25 and ∆y+ = 6.93 (normalized by viscous units). 

In the wall-normal direction, the grids are non-uniform and are increasingly finer closer to the two walls. 

The first grid spacing near the wall is ∆z+ = 0.88 and the largest grid spacing (∆z+ = 2.86) is found at the 

channel center. From Table 1 it is seen that the current grid resolution is similar to that of Kim et al. (1987), 

and is slightly coarser than that of Pirozzoli et al. (2011). This is because our Reτ,S is similar with Kim et 

al.’s case but lower than Pirozzoli et al.’s case.  



5 

 

   

Fig. 1. Sketch of the present computational domain and coordinate system. 

Table 1. Comparison of the present computation with previous studies. *Only the cases with the finest mesh at different Reynolds 

number (Case C3000, C6000a, C12000) of Coleman et al. (2016) are shown in this table.  

 Reτ,S 

 

Reτ,M Domain size 

Lx × Ly × Lz 

Grid number 

nx × ny× nz 

∆x+ ∆y+ 

 

Kim et al. (1987) 

 

 

180 

 

- 

 

4πh×2πh×2h 

 

192×160×129 

 

11.8 

 

7.1 

Kuroda (1993, 1995) CP3 

 

154 17.7 5πh×2πh×2h 128×128×96 18.9 18.9 

Pirozzoli et al. (2011) SL 

 

255 26 12πh×4πh×2h 1024×512×256 9.4 6.3 

Coleman & Spalart (2015) 

 

850 ca. 0 4πh×2πh×2h 576×576×193 18.5 9.3 

 

Coleman et al. (2016)* 

282 6.9  576×432×257  6.2 4.1 

520 7.4 4πh×2πh×2h 1152×864×385 5.7 3.8 

975 23.9  1152×1536×385 

 

10.7 4.0 

Present DNS CP flow 

 

180 9.8 36h×10h×2h 576×260×192 11.3 6.9 

 

The present DNS code uses a pseudo-spectral method in the homogeneous directions, and a second-

order central finite difference method in the wall-normal direction. This method has been used by Gillissen 

et al. (2007), Mortensen et al. (2008) and Zhao et al. (2013), to which interested readers are referred for 

more details about the numerical scheme. The code has been well validated against Poiseuille flow cases, 

but since this is the first time it is used for a CP flow case, a flow validation against a previous study is 

therefore conducted. 

2.2 Flow validation 

The calculations were started with a random flow field and allowed to develop in time. The time step 

for the DNS is ∆t = 0.0002h/uτ,S, or 0.036 in viscous units (v/uτ
2

,S). After the statistically steady turbulent 

flow field has been established, the simulations were continued in order to collect sufficient independent 

z
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samples (122 samples, taken from t = 53.1h/uτ,S ~ 65.2h/uτ,S) for statistical convergence of the results to be 

analyzed in this study.  

The current zero-mean-shear CP flow field is validated by comparing to the similar flow of the CP3 case 

of Kuroda et al. (1993, 1995), which also has an almost shear-free moving wall. However note that the 

friction Reynolds number for the two cases are slightly different (see Table 1). Without losing generality, 

selected primary statistic quantities will be compared in the following. 
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Fig. 2. Normalized mean-velocity profiles compared to case CP3 of Kuroda et al. (1993, 1995). (b) is the semi-log plot of (a). 

The wall-normal distribution of the normalized mean streamwise velocity (U+ = U/uτ,s) of the two cases 

are compared in Fig. 2. The mean velocity is obtained by averaging in the homogeneous directions and 

time. The normalization is realized using the wall units at the stationary side, which depends on the Reτ,S of 

each case. Therefore, z+ ranges from 0 to 360 for the current CP case and from 0 to 308 for Kuroda et al. 

(1993, 1995)’s case. It is obvious from Fig. 2 that the profiles of the two cases overlap well across the whole 

domain. The distributions of U+ for both cases have a linear trend in the viscous sublayer and follow a 

logarithmic relation over a long distance to the upper wall (Fig. 2 (b)). From Fig. 2 (a) we see that both 

curves are almost flat next to the moving wall, indicating the mean streamwise velocity gradient dU+/dz+  ≈ 

0. This gives a zero viscous shear (µdU+/dz+ ) approaching the moving wall, which is one proof of the total 

shear stress at the moving wall to be zero, since due to the no-slip boundary condition, the turbulent shear 

stress −ρuw̅̅̅̅  is also zero at the moving wall. The comparison of the stresses is not presented here for brevity. 
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Fig. 3. Normalized fluctuating quantities compared to case CP3 of Kuroda et al. (1993, 1995). (a) RMS velocity fluctuations  at 

the normalized distance away from the nearby wall. Solid lines: the present results; dashed lines: Kuroda et al. (1993, 1995)’s 

results. Black: u+
rms; Red: v+

rms; Blue: w+
rms. (b) Wall-normal distribution of the RMS pressure normalized by the viscous units. 

Notice that the data for the pressure fluctuations are not included in the papers by Kuroda et al. (1993, 1995) but taken from the 

database at http://www.thtlab.jp/. Contrary to the distributions of the velocity fluctuations in panel (a), the pressure profile in 

panel (b) is stretched to extend from wall to wall, i.e. from z/h = 0 to 2.  

The fluctuating quantities of the two flows are also compared. Fig. 3 (a) shows the comparison of the 

normalized turbulent intensities (u+
rms, v

+
rms and w+

rms) near the two walls. Note that, as mentioned before, 

the overall wall-normal span of the current CP flow in z+ is 360 while that of Kuroda’s case is 308 due to 

the different Reτ,S between the two cases. In Fig. 3 (a), a distance of 100v/uτ (viscous length) away from the 

neighboring wall is shown as the zoom-in region. Overall good agreement between the two cases is 

observed, such as the slopes of the curves and the location of the peaks; in particular, better agreement is 

found near the stationary wall than near the moving wall. Compared to Kuroda’s case, all velocity 

fluctuations from the current CP flow are slightly larger near the stationary wall, while slightly smaller near 

the moving wall. This difference might be attributed to the difference in Reτ,S. Fig. 3 (b) shows the 

comparison of the wall-normal distribution of the normalized pressure fluctuation (p+
rms) between the two 

cases. Again the comparison is satisfactory. The modest shift of the peak of the p+
rms distribution is primarily 

caused by the usage of the outer scaling z/h rather than inner scaling z+. 
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Fig. 4. Spanwise two-point correlation coefficient of streamwise velocity fluctuation (Ruu) calculated for wall-parallel planes at 

selected z/h values. (a) Near the stationary wall at z/h = 7×10-2; (b) at the center plane z/h = 1 and (c) near the moving wall at z/h 

= 1.92. Comparison between the present CP flow and the CP3 of Kuroda et al. (1993, 1995) in each panel. Data of Kuroda et al. 

taken from the database at http://www.thtlab.jp/.  

In addition to the primary statistical quantities, it is also relevant to study the spatial two-point 

correlations. As mentioned in many previous studies (e.g. Kim et al.,1987; Kuroda et al., 1993, 1995; 
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Tsukahara et al., 2006), the streamwise and spanwise two-point correlations coefficients calculated in the 

homogenous plane can be used to evaluate the sufficiency of the computational domain size. In addition, 

the spanwise two-point correlation coefficient of the streamwise velocity fluctuation is often used to 

evaluate the spanwise spacing of the coherent turbulent structures (e.g. streaks). This spanwise two-point 

correlation coefficient, Ruu(δy), is defined as 

Ruu(δy)=
u(x, y, z, t) u(x, y+δy, z, t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

urms(x, y, z, t) urms(x, y+δy, z, t)
 , 

2.3 

where u and urms are respectively the instantaneous streamwise velocity fluctuation and the RMS of the 

fluctuation, and δy is the spanwise distance between two sampling points.  

Fig. 4 shows the comparison of the time-averaged spanwise Ruu at selected z/h values. The results from 

the two studies compare well in Fig. 4 (a) and (b), but not in (c). At z/h near the stationary wall (Fig. 4 (a)), 

a clear negative minimum value is seen at δy/h ≈ 0.3 for the present CP flow and at δy/h ≈ 0.4 for Kuroda 

et al.’s case. This yields a similar δy+
min of about 55 for both cases. It is known that the negative peak of 

spanwise Ruu stands for the spacing between the alternating high- and low- streamwise velocity regions, 

based on which λ+ = 2δy+
min is defined as the spacing between a pair of streaks formed near the stationary 

wall. Therefore, the spanwise spacing λ+ of the near-stationary-wall coherent streaky structures is 110 for 

both cases. At the center plane (Fig. 4 (b)), the negative peak is much less prominent than near the stationary 

wall. Also, the negative minimum value of Ruu is now found at δy/h ≈ 1.7 for both cases at this z/h (center 

plane). This less prominent negative peak is associated with the LSS. Near the moving wall (Fig. 4 (c)), it 

can be observed that our spanwise length is large enough to accommodate a negative peak of Ruu, which is 

again not as prominent as for the near-wall peak in Fig. 4 (a). However, this negative peak of Ruu was not 

captured by Kuroda et al. (1993, 1995) due to a smaller spanwise width of their domain (see Table 1). By 

comparing between Fig. 4 (a), (b) and (c) it is concluded that, from the stationary wall to the moving wall, 

the location of the negative minimum value of Ruu migrates to a larger δy/h, indicating an increasing 

spanwise spacing between the high- and low-velocity regions, i.e. the structures have a gradually larger 

spanwise scale. This point will be further explored later. It is also worthwhile noting that, the blunt negative 

peak in Fig. 4 (c) has a similar δy/h station as in a Couette flow at different values of Reτ,S (Tsukahara et al. 

2006 and Avsarkisov et al., 2014).  

3 Results 

After the flow field has been validated, the results obtained from the current CP flow will now be 

discussed. First we present the primary flow statistics obtained from 122 flow samples after the flow has 

reached a fully developed and statistically steady state. Then the flow structures associated with this 

particular shear-less CP flow are examined. Finally, the kinetic energy and its conversion within the flow 

field will be analyzed. In the following discussions, we will frequently compare our results with those of 

the turbulent Poiseuille flow case of Kim et al. (1987) at the same Reτ,S of 180. 

3.1 Primary flow statistics 

If the flow has reached a statistically-steady state, the total mean shear stress should follow a linear 

relation 

τtotal = −
dP

dx
(2h − z) 

3.1 
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which can be obtained by integration of the x-component of the Reynolds-averaged Navier-Stokes equation 

in the wall-normal direction (Tennekes and Lumley, 1972).  

Fig. 5 shows the mean viscous stress, mean turbulent stress and mean total stress, all normalized by 

stationary-wall units. For a better comparison, a referencing straight line is also plotted in Fig. 5 (a). A 

linear distribution of the total shear stress for the present CP flow is clearly observed, which confirms the 

statistical steady state of the current CP flow. It also shows that, at the moving wall (at z+ = 360), the mean 

total shear has a negligible value of |τ+
M| ≈ 0.003, i.e. less than 1%. Fig. 5 (b) shows the comparison between 

the current CP flow and the Poisuille flow of Kim et al. (1987). Firstly, the most noticeable distinction of 

the current CP flow from the P flow is the breakdown of symmetry of all the stresses: for the CP flow, the 

viscous stress and the total stress are the highest at the stationary wall, and all stresses go to zero at the 

moving wall; on the contrary, for the P flow, all normal stresses have a symmetric distribution with respect 

to the center plane (z/h = 1), where the shear stress is zero. Secondly, it is interesting to compare the two 

flows in the lower half of the domain (z/h = 0 to 1) near the stationary wall. In this region, the viscous stress 

for the two flows is similar, while the turbulent stress shows a greater difference. The CP flow has a higher 

turbulent stress near the stationary wall, in particular with a higher and broader peak at z+ ≈ 38. After the 

peak, the slope of the decreasing −u+w+̅̅ ̅̅ ̅̅  of the CP flow is half of that of the channel flow. 
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Fig. 5. Mean shear stresses normalized by wall units. (a) Distribution with z+ for the present CP flow. In both figures, black: 

dU+/dz+; red: −u+w+̅̅ ̅̅ ̅̅ ; blue: τ+
total; green: referencing straight line. (b) Distribution with z/h and compared to the P flow case of 

Kim et al. (1987). Solid lines: present study; dashed lines: Kim et al. (1987)’s results.  
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Fig. 6. Wall-normal profile of the normalized mean streamwise velocity compared to Kim et al. (1987). (a) Linear plot and (b) 

semi-log-scale plot. 

The wall-normal distribution of the normalized mean streamwise velocity U+ from two flows are 

compared in Fig. 6. As Fig. 6 (a) shows, the current CP flow has a monotonically growing U+, which reaches 

a maximum value equaling to the prescribed relative velocity of the wall motion. On the contrary, U+ of the 

P flow has a symmetric distribution with its maximum value located at the channel center. Even near the 

stationary wall, the two curves representing different flows are not exactly overlapping. This is better 

viewed in the semi-log-scale plot of U+ in Fig. 6 (b). In the viscous sublayer near the stationary wall, 

distributions of U+ from the two flows agree well. The logarithmic relation of U+ for the CP flow starts after 

about z+ ≈ 25 and lasts until very close to the moving wall. This is a much longer logarithmic region than 

the P flow case, whose log-region ends before the channel center. It is observed from Fig. 6 (b) that, in the 

logarithmic sublayer, the current CP flow has a slightly lower U+ than the P flow, therefore the additive 

constant B of the log-scale approximation U+
 = κlnz+ + B for the CP flow is smaller than that for the P flow. 

Also, the von Karman constant κ of CP flow from the log-scale approximation is slightly larger than that 

of the P flow case. A linear curve fitting using 105 sampling points in the logarithmic region of the U+ curve 

for the CP flow (blue) in Fig. 6 (b) yields κ = 0.397 with a small standard error of 0.3% and B = 4.894 with 

a standard error of 1.7%. Note that the value of κ found here is higher than that obtained by Coleman et al. 

(2016) at higher Reτ,S values, who found κ ≈ 0.36 – 0.37. Referencing lines of U+ = z+ and U+ = 

(1/0.397)×lnz++4.894 are also plotted in Fig. 6 (b). The results of the current CP flow provide useful data 

for validating the log-scale approximation in general wall-bounded turbulence. The velocity at the center 

plane is U+
c ≈ 18.0 for the CP flow, slightly smaller than U+

c ≈ 18.3 for the P flow. Past the center plane, 

U+ of the CP flow continues to grow, while U+ of the P flow starts to decrease due to symmetry. Slightly 

beyond z/h = 1, the increasing U+ of the CP flow catches up with the decreasing U+ of the P flow, and 

becomes increasingly larger than the latter further approaching the moving wall. 
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Fig. 7. Wall-normal profile of the normalized velocity fluctuations compared to Kim et al. (1987). Solid lines: the present CP 

flow results; dashed lines: Kim et al. (1987)’s results. Black: u+
rms; red: v+

rms; blue: w+
rms. 

The features of the fluctuating quantities of the CP flow are now considered. Fig. 7 presents the 

normalized turbulent intensities (u+
rms, v

+
rms and w+

rms) and their comparison with the P flow case by Kim 

et al. (1987)’s results. Firstly, it is seen that the distributions of all the turbulent intensities for CP have an 

overall decreasing trend from near the stationary wall to the moving wall, and are not symmetric like the P 

flow case. The magnitudes of the three components are always u+
rms > v+

rms > w+
rms for the two cases, except 

for the channel flow at the center line, where u+
rms > v+

rms ≈ w+
rms. All components of the turbulent intensities 

for the CP flow are higher than the P flow near the stationary wall, leading to a higher turbulent kinetic 

energy (TKE), as will be discussed more later. For z+ < 50, all components grow quickly, and reach a peak 

at different z+ values. Note that the peak magnitudes of the CP flow are slightly higher than those of the P 

flow, especially for v+
rms and w+

rms. After the peak, all components decrease towards the moving wall. The 

rate of change before and after the peak follows u+
rms > v+

rms > w+
rms. The sharp increasing and decreasing 

of u+
rms form a distinct peak close to the stationary wall at z+ ≈ 12. After this peak, u+

rms decreases sharply 

up to the station z+ ≈ 50 (this is where w+
rms has a maximum value). From this point onwards, all three 

components decrease at a relatively small rate across a large center region until close to the moving wall. 

For example, in a range of z+ = 100 to 260, the slopes obtained from curve-fitting for u+
rms, v

+
rms and w+

rms 

are −0.63, −0.42 and −0.31, respectively. The decreasing rates of the CP flow components are smaller than 

those of the P flow, therefore the turbulent intensities in the center of the CP flow are stronger than in the 

center of the P flow. Near the moving wall, all components approach zero due to the no-slip and 

impermeability effects of the wall. The reduction of the turbulent intensities is relatively abrupt like near 

the stationary wall, especially for u+
rms and v+

rms. The decreasing rates are again in the order of u+
rms > v+

rms > 

w+
rms, however the rate of change for each component at the moving wall is smaller than at the other wall. 

Compared to the P flow case, near the moving wall the magnitudes of all components are also much smaller 

and there is no peak of u+
rms, indicating the absence of turbulence regeneration in this region. The values of 

u+
rms, v

+
rms and w+

rms next to the moving wall before they start to decrease (at z+ ≈ 320) are close to the 

values of u+
rms, v

+
rms and w+

rms at the center plane of the P flow, which can be contributed to the vanishing 

shear at both locations. 

The wall-normal distribution of the normalized fluctuating pressure (p+
rms) is also compared with the P 

flow case (figure not shown, refer to Fig. 3 (b) in this paper and Fig. 9 of Kim et al. (1987)). For the CP 

flow near the stationary wall, p+
rms increases first before it decreases almost linearly approaching the moving 

wall, forming a peak at z+ ≈ 30. In the half domain next to the stationary wall (i.e. z/h = 0 to 1), the p+
rms 
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curves of the two cases are similar in both the trend and the locations of the peaks, but the magnitude of 

p+
rms for the CP flow case is larger (approximately 20%) than that of the P flow. The symmetry breaks down 

for the CP flow case and there is no peak of p+
rms near the moving wall for the CP flow. 
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Fig. 8. Wall-normal profile of the normalized vorticity fluctuations compared to Kim et al. (1987). Solid lines: present CP flow 

results; dashed lines: Kim et al. (1987)’s results. Black: ω+
x; red: ω+

y; blue: ω+
z.  

The RMS values of the normalized vorticity fluctuations in three directions are presented in Fig. 8, 

together with the results from Kim et al. (1987)’s P flow case. It is apparent that the distributions of all 

three fluctuation components near the stationary wall have a very similar behavior with those of the P flow 

case. The trend of the all three curves are the same, and in particular, the curves of ω+
y and ω+

z from the 

two cases overlap very well. There is a slight enhancement in the magnitude of ω+
x for the CP flow, 

indicating the near-wall streamwise vortices become more powerful in the CP flow due to the imprinting 

of LSS onto the near-wall small-scale structures. The large value of ω+
x at the stationary wall is due to the 

near-wall vorticity induced by the no-slip boundary condition (Kim et al. 1987, Orlandi & Jiménez 1994). 

The peak of ω+
x at z+ ≈ 20 is associated with the center of the streamwise vortices, and the minimum value 

in-between the high wall-value and this peak indicates the edge between the near-wall vorticity and the 

streamwise vortices (Kim et al.,1987). Moving away from the stationary wall and into the channel center, 

all vorticity components become equal and decrease almost monotonically until close to the moving wall 

(to about z+ ≈ 350), where significant differences between the two flows are observed, caused by the distinct 

wall conditions. For the CP flow, there is no peak of ω+
x near the moving wall, which implies the absence 

of the local streamwise vortices like those formed near the stationary wall. The absence of streamwise 

vortices and their associated streaky structures near the moving wall is unique in the shear-free CP flow, 

compared with P-like and C-like flows. Due to the LSS in the channel and the shear-less no-slip boundary 

condition at the moving wall, ω+
x and ω+

y begin to increase and finally reach a similar wall value. The wall-

induced vorticities of ω+
x and ω+

y near the moving wall span larger than the stationary wall (approx. 10 wall 

units vs 5 wall units), indicating a larger region of anisotropy than the latter, but their values at the moving 

wall are much smaller than at the stationary wall. The wall-normal vorticity component ω+
z is the only 

component that does not increase at the moving wall, and it goes to zero at both walls due to the no-slip 

conditions.  
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3.2 Turbulent flow structures 

In this section we will discuss the specific flow structures generated in this particular shear-less CP flow, 

with a focus on the different scales of structures. First flow visualization is provided to distinguish the 

prominent scales, then more information regarding the primary scales is obtained by investigating the 

spanwise two-point correlation coefficient of the streamwise velocity fluctuations, as mentioned in 

conjunction with Fig. 4. 
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Fig. 9. Contours of normalized instantaneous streamwise velocity fluctuations in the range of |u/urms| < 1.5 in wall-parallel planes 

(a) near the moving wall at z+ = 350 (z/h = 1.94), (b) at channel center of z+ = 180 (z/h = 1) and (c) near the stationary wall at z+ = 

10 (z/h = 0.06). 

To visualize the flow field, Fig. 9 shows the contours of the normalized instantaneous streamwise 

velocity fluctuation (u/urms) from the present CP flow. Three xy-planes are chosen, and following the 

definition sketch in Fig. 1, the planes in Fig. 9 from top to bottom are (a) near the moving wall, (b) the 

center plane and (c) near the stationary wall, respectively. Planes (a) and (c) are symmetric with respect to 

the center plane (b) and have a distance of 10v/uτ away from the neighboring wall. Comparing between (a) 

and (c), it is clear that the flow field is quite different at geometrically symmetric planes, which is in 

accordance with previous discussions on the statistics of the CP flow. The greatest distinction is the scales 

of the flow structures in the three wall-parallel planes. The flow structures at the moving wall (a) and the 

center plane (b) have much larger scales than those close to the stationary wall (c). As shown in Fig. 9 (c) 

for the near-stationary-wall plane, alternating high- and low-velocity regions are distributed in long streaks 
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extending in the streamwise direction. These are the well-known near-wall coherent streaky structures also 

observed in a Poiseuille flow (Kim et al., 1987). These streamwise streaks are associated with the 

streamwise vortices (ω+
x in Fig. 8). Away from the stationary wall, with the decreasing of the total shear, 

the spanwise width of the streaks as well as the spacing between the streaks become increasingly larger, as 

seen in Fig. 9 (a) and (b). These represent the LSS mentioned before. The velocity contours at the center 

plane (Fig. 9 (b)) still demonstrate a streamwise streak-like pattern, but near the moving wall they become 

more cloud-like (Fig. 9 (a)). This observation agrees with Pirozzoli et al. (2011), and seems to indicate the 

presence of coherent small-scale streaky structures of different sizes up to the center of the channel for the 

CP flow case, and structures of a larger scale near the moving wall. At this point it is worthwhile to evaluate 

the wall-normal extension of the different scales and determine if they interact at certain locations. 

As has been mentioned in the Methodology, the spanwise spacing of the streamwise structures, which 

reflects the scale of the structures, can be evaluated by the δy/h station of the negative minimum value of 

the spanwise two-point correlation coefficient Ruu defined in Equation 2.3. Recall that Fig. 4 has already 

demonstrated the spanwise Ruu at selected wall-parallel planes. In order to study the complete wall-normal 

variation of the spanwise spacing of the flow structures, the spanwise Ruu is calculated from wall to wall 

and shown in Fig. 10, in which the magnitude of Ruu is reflected by the colors. Fig. 10 (b) shows the 2D 

projection of Fig. 10 (a) by contours of the Ruu values, only for the negative values (Ruu < 0) for clarity.  

  

Fig. 10. Distribution of spanwise two-point correlation coefficient Ruu(δy) in the wall-normal direction. (a) waterfall plot and (b) 

contour plot showing values of Ruu(δy) < 0. 

From Fig. 10 (b), two minima (represented by dark blue color) of Ruu can be observed. These two minima 

are associated with the two most prominent scales, one being the coherent near-wall streaks and the other 

the LSS. This is reflected by the largely unbalanced surrounding areas of the two minima, indicating greatly 

distinguishing influencing areas of the two scales. The coherent streaks near the stationary wall correspond 

to the confined minimum value found at z+ ≈ 10 with a spanwise extension of δy/h ≈ 0.31 (δy+ ≈ 55, at the 

bottom-left corner of Fig. 10 (b)). The surrounding area of this local minimum value extends to δy/h < 0.65 

(δy+ < 120) in spanwise direction and δz/h < 0.2 (δz+ < 40) in wall-normal direction, indicating that the near-

stationary-wall structures are relatively small-scale (small δy+) and their influence is quite local (small δz+). 

Structures become much larger in size (both spanwise and wall-normal) while moving away from the 

stationary wall, i.e. with decreasing mean shear. Also, the influencing area of the small-scale streaky 

structures is much smaller than that of the LSS. This agrees with Fig. 4, where a sharp negative peak near 

the stationary wall is observed (Fig. 4 (a)), and the peaks become much less prominent at larger z/h values 

(a)                                                                                    (b) 

δy/h 

δ
y/

h
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(Fig. 4 (b) and (c)). As shown in Fig. 10 (b), the LSS are so large that their influencing area almost covers 

the whole domain in the wall-normal direction with the center located at z/h ≈ 1.3 (z+ ≈ 234) between the 

center plane and the moving wall. This is different from the VLS observed in C flows, which have their 

center located in the channel center plane (see e.g. Tsukahara et al., 2006 and Pirozzoli et al, 2011). Fig. 10 

(b) also shows that the spanwise extension of the LSS is also much wider, occupying almost half of the 

spanwise domain. Being an almost global phenomenon, the outer area of the LSS encloses the area 

representing the small-scale structures. In general, the spanwise scales of the two different structures near 

the stationary wall and near the moving wall and the influencing areas of the two scales can be very clearly 

reflected in Fig. 10 (b). 
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Fig. 11. Distribution of the mean spanwise spacing along the wall-normal direction, estimated from the mean spanwise two-point 

correlation coefficient Ruu(δy). The sub-plot shows the zoom-in region near the stationary wall using non-dimensional spacing λ+ 

at Reτ,S = 180. 

The spanwise spacings of the structures with varying scales obtained from the negative peaks of the 

spanwise Ruu(δy) are presented in Fig. 11. The spacings from the CP3 case of Kuroda et al. (1993, 1995) 

and the P flow case of Kim et al. (1987) are also included for comparison. Only three points were retrieved 

from Kuroda et al.’s data (recall discussions on Fig. 4), and results for half of the channel height are shown 

for Kim et al.’s case due to symmetry. It is apparent from Fig. 11 that, when outer scaling is used, Kuroda’s 

data points overlap well with the current results. Compared with the P flow case at the same Reτ,S, the 

spanwise spacing λ of the shear-less CP flow is larger, and the difference in λ between the P flow and the 

CP flow increases while moving away from the stationary wall, starting from z+ ≈ 20 (see small figure). 

This confirms again that the LSS observed in the CP flow is a unique feature and is absent in the P flow at 

Reτ,S = 180. As mentioned before, the normalized wall-normal span (δz+) of the small-scale near-wall streaks 

is only about 40 for the current CP flow. Within this z+ range, the subplot of Fig. 11 shows that λ+ of CP 

flow remains almost constant for z+ < 10 but grows slightly for 10 < z+ < 20, while the P flow has a constant 

λ+ for z+ < 20 and a smaller growth than that of the CP flow for z+ > 20. The larger growth of λ+ between 10 

< z+ < 35 for the CP flow indicates the imprinting of the LSS in the buffer region, in consistence with 

observations from Fig. 10 (b). Within this region, more than one negative peak of spanwise Ruu can be 

observed at different δy/h stations, indicating the coexistence of different scales with varying strengths 
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(figures not shown). All other scales are quite confined (local effects) and much weaker than the two 

primary scales, and can thus be neglected for the present discussions. Moving away from the stationary 

wall, the strength of the small-scale near-wall streaks weakens while that of the LSS strengthens. The 

sudden jump in λ+ at z+ ≈ 35 reflects that the role of the LSS in determining Ruu becomes more dominant 

than that of the small-scale near-wall streaks. The switch of the dominating role and the interaction between 

the two scales can be observed from Fig. 10 (b). The observation from the inset of Fig. 11 that the spanwise 

spacing between the near-wall streaks increases much faster in the CP flow than in the P flow indicates the 

influences of the LSS on the near-wall streaks. The scale of LSS reflected by λ/h continues to grow as the 

moving wall is nearer. The distribution of the increasing λ/h corresponding to the LSS follows a good linear 

relation of λ/h = 1.26z/h +1.06, as obtained from a linear curve fitting which returns a small standard error 

of 1% for the slope and 0.6% for the intercept. This linear relation can alternatively be expressed as λ+ = 

1.26z+ +190.8, using wall units at Reτ,S = 180. Contrary to the streaky structures associated with near-wall 

turbulence, the LSS are unlikely to scale with wall units. The interesting observation that the spacing 

between the LSS increases almost linearly from about 2.3h near the stationary wall to more than 4h near 

the moving wall might be a universal feature of CP flows with zero mean shear. However, the actual slope 

and intercept of the fitted line are likely to be Reynolds number dependent.   

3.3 Kinetic energy of the CP flow 

This section will be devoted to energy considerations in the current CP flow. Discussions will be given 

on the overall kinetic energy and the internal energy conversion between the mean flow and the turbulence. 

Definition of the total kinetic energy for the mean flow is 

K= 
1

2
(U2) 3.2 

and for the turbulence is 

k =
1

2
(uiui̅̅ ̅̅ ̅) =

1

2
(u2̅+v2̅+w2̅̅ ̅). 3.3 

The wall-normal distribution of K can be easily obtained from the wall-normal profile of U+ shown in 

Fig. 6, thus is not presented here. K grows monotonically from the stationary wall to the moving wall and 

has the largest value at the moving wall with the maximum U+. The kinetic energy of the mean flow (K) is 

several orders larger than that of the turbulence (k). The turbulent kinetic energy (TKE) k calculated from 

Equation 3.3 is plotted in Fig. 12 (a) and the contribution of each velocity component to the total k is shown 

in Fig. 12 (b). Fig. 12 (a) can be interpreted together with Fig. 7. The energy distribution of the CP flow is 

unbalanced between the stationary wall and the moving wall, as can be predicted. The value of k is much 

larger near the stationary wall than near the moving wall, with a peak found at z+ ≈ 15 (slightly different 

from the location of the largest u+
rms). The peak value of k for the CP flow is higher than that of the P flow, 

which can be explained by recalling the observations from Fig. 7 that all velocity fluctuations of the CP 

flow are higher than those of the P flow near the stationary wall. Fig. 12 (b) shows that, for both cases, the 

input from the streamwise velocity fluctuation is the largest across the whole domain, followed by the 

contribution from the spanwise and wall-normal components. However, close to the moving wall, the 

percentage of the spanwise contribution increases greatly, although the values of all velocity fluctuations 

decrease to zero at the wall. Next to the moving wall, the contributions of u+
rms and v+

rms almost equal, 

unlike near the stationary wall.  
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Fig. 12. Overall mean turbulent kinetic energy k (TKE) compared to Kim et al. (1987). (a) Comparison of k in the whole domain. 

Black solid line: the present CP flow; red dashed line: P flow of Kim et al. (1987). (b) Comparison of contribution from the three 

velocity components across the whole domain (excluding the wall points). Solid lines: present CP flow; dashed lines: Kim et al. 

(1987)’s results. Black: urms
2 /2k; red: vrms

2 /2k; blue: wrms
2 /2k.  

The energy exchange between the mean flow and the turbulence can be evaluated by studying their 

energy budgets, respectively. The energy transport equations are derived from the governing Navier-Stokes 

equations following Tennekes and Lumley (1972). First we will consider the transport equation for the 

kinetic energy of the mean flow, represented by K. In the present case the mean flow is one-componential 

and the transport equation of K becomes  

−
dP

dx
U +

d

dz
(τU) − τ

dU

dz
= −

dP

dx
U +

d

dz
(τU) − μ (

dU

dz
)

2

+ ρuw̅̅̅̅
dU

dz
= 0. 

3.4 

The overall energy conversion can be obtained by integration of Equations 3.4 for the whole domain 

from wall to wall, i.e. z = 0 to 2h. Note that, theoretically, term ∫
d

dz
(τU)dz

2h

0
 from Equation 3.4 is essentially 

zero since U = 0 on the stationary wall at z/h = 0 and τM = 0 on the moving wall at z/h = 2. This means the 

moving wall at z/h = 2 does not contribute any kinetic energy to the flow field, as a result of the zero mean 

shear. This is one key feature of the current shear-less CP flow. The integration equation then becomes 

−
dP

dx
∫ Udz

2h

0
− ∫ μ (

dU

dz
)

2

dz
2h

0
+ ∫ ρuw̅̅̅̅

dU

dz
dz

2h

0
= 0. 

                                         A                       B                         C 

3.5 

The resulting non-zero terms in Equation 3.5 are evaluated individually. Term A represents the total 

supply of mechanical energy to the mean flow, caused by the pressure gradient which drives the fluid in 

the positive x-direction. Term B represents the total deformation work by the viscous shear stress and is 

always negative. This term indicates the loss of mean-flow kinetic energy K by means of viscous dissipation. 

The last term (C) represents the total deformation work by Reynolds shear stress. This term is always 

negative, provided that uw ̅̅ ̅̅ ≤ 0 and dU/dz ≥ 0 everywhere in the flow, and is therefore a loss of K. As will 

be shown later, the lost energy is converted into mean turbulent kinetic energy k. The values for each 

integrated term, after normalized by ρu3
τ,S, are calculated from the present CP flow database: 

Term A: −
1

2Reτ,S

∫ U+dz+2h
+

0
 = 17.06; 
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Term B:  − ∫ (
dU+

dz+
)

2

dz+2h
+

0
 = −8.54 ; 

Term C: ∫ u+w+̅̅ ̅̅ ̅̅ ̅ dU+

dz+
dz+2h

+

0
 = −7.99. 

This indicates that the total energy input provided by term A is almost evenly distributed between the 

viscous stress deformation work (term B) and the turbulent stress deformation work (term C). Note that the 

sum of the three terms is 0.53. This small deviation from zero is caused by the fact that, for the DNS results 

of the current CP flow, the total shear stress at the grid points located on the moving wall boundary is not 

exactly zero (although close enough to have a low mean value of |τM/ρuτ
2

,S| ≈ 0.003). Due to the relatively 

large mean velocity at the moving wall (U+
wall = 20), the integrated value of the term 

d

dz
(τU) from Equation 

3.4 is thus not totally negligible, which results in the total sum of the calculated terms in Equation 3.5 to be 

slightly different from zero. 

The three terms for the P flow of Kim et al. (1987) are also calculated to compare with the current CP 

flow. Although the pressure gradient is the same for the two flow cases, term A for the CP flow is larger 

than the same term for the P flow (17.06 vs 15.80), indicating that although the wall motion does not provide 

extra mechanical energy for the CP flow, it increases the energy input by the driving pressure gradient to 

the mean flow. As for the comparison of the loss terms B and C between the two flow cases, term B for the 

CP flow is smaller (-8.54 vs -9.25) while term C for the CP flow is larger (-7.99 vs -6.18), meaning less 

viscous stress deformation work and more turbulence stress deformation work, under the influences of the 

shear-less moving wall. The loss term C changes its sign and thus serves as a gain term in the energy 

transport equation for k, representing the kinetic energy obtained from the mean flow to the turbulence. 

Therefore, the increase in term C observed for the CP flow corresponds to a higher k compared to the P 

flow, in accordance with Fig. 12 (a). 

For the turbulence, the energy transport equation for k can be written as the following: 

 

−ρuw̅̅̅̅
dU

dz
− ρ

d

dz
pw̅̅̅̅ − ρ

d

dz
(

1

2
uiuiw̅̅ ̅̅ ̅̅ ̅) + μ

d
2
k

dz2
− μ

∂ui

∂xj

∂ui

∂xj

̅̅ ̅̅ ̅̅
= 0, 

                              P            Dturb,p                 Dturb,w           Dvisc         ε 

 

3.6 

where P is the production term; Dturb,p and Dturb,w represent the turbulent diffusion terms associated with 

pressure fluctuations and velocity fluctuations, respectively; Dvisc indicates the viscous diffusion; and ε is 

the energy dissipation rate. The expressions from Equation 3.6 are the same as those used by Mansour et 

al. (1988), Komminaho et al. (1996), and Pirozzoli et al. (2011), etc.  

It is seen that the production term P appears both in Equation 3.4 for the mean-flow K equation 

(corresponding to term C in Equation 3.5) and in Equation 3.6 for the turbulence k, but with an opposite 

sign. As mentioned before, P is negative and is a loss term in the K equation, while in transport equation 

for k it becomes a gain term to the turbulence. Komminaho et al. (1996) presented a model to predict the 

wall-normal location and the magnitude of the maximum P, which assumes that U+ in the range from the 

wall to the buffer layer can be modeled as 

U+ = 13.6×tanh(
z+

13.6
). 3.7 

Following this U+ model and considering Equation 3.6, the normalized production term for the present 

CP flow can then be written as 
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P+ =
dU+

dz+
(1 −

dU+

dz+
−

z+

2h
+). 

3.8 

The maximum P+ predicted by Equation 3.8 is 0.231 at z+ ≈ 12. The results given by Equation 3.8 shows 

that the production for the CP flow is slightly larger than for the P flow of Kim et al. (1987), but the 

corresponding z+ is the same for both cases. This matches well with the present DNS data for the CP flow, 

which is shown in Fig. 13 (same as the CP3 case of Kuroda et al., 1993, 1995).  
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Fig. 13. The wall-normal distribution of budgets of the mean turbulent kinetic energy k near (a) the stationary wall from z+ = 0 to 

60, (b) the center region from z+ = 130 to 230 and (c) the moving wall from z+ = 300 to 360. Note the scale of the vertical axis in 

(a) is an order-of-magnitude larger than in (b) and (c).  

The terms in Equation 3.6 are plotted in Fig. 13. In the near-stationary-wall region (Fig. 13 (a)), the 

curves have similar trends to those in the P flow case (the latter not shown). Attaching the stationary wall, 

the dissipation term ε and the viscous diffusion term Dvisc have the largest magnitudes and balance each 

other, while all the other terms go to zero. Slightly above the stationary wall, the magnitudes of ε and Dvisc 

begin to decrease, while the other terms begin to increase. First an almost negligible peak of Dturb,p is found 

very close to the stationary wall. Next a relatively small peak of Dturb,w occurs before the term decreases to 

negative values together with Dvisc. The production term P has the highest peak among all terms, which is 

found at z+ ≈ 12, as mentioned before. At this z+ all other terms are negative and act as loss terms, balanced 

by the only gain term P. 

The magnitudes of all terms have a general decreasing trend leaving the stationary wall and approaching 

the moving wall (Fig. 13 (b)). In the center region, all terms are relatively small. The production term P is 

still the dominant gain term to balance the dominant dissipation term ε, while Dturb,w also serves as a minor 

gain term. The magnitudes of P and ε continue to decrease towards the moving wall. As shown in Fig. 13 

(c), for z+ < 340 in the proximity of the moving wall, the production term P reduces to be the secondary 

gain term, and the turbulent diffusion term Dturb,w serves as the largest gain term. The dominating role played 

by Dturb,w as a gain term will be further evaluated later. Both Dturb,w and P reduce to zero at the moving wall, 

while the role to balance the dissipation term is exchanged between different terms. At z+ > 330, the pressure 

diffusion term Dturb,p begins to increase and becomes positive, changing from a loss term to a gain term. It 

becomes the main term to balance the dissipation near the moving wall, before decreases to zero at the wall, 

forming a peak. Note that this peak of Dturb,p (in Fig. 13 (c)) is much smaller than the peak of Dturb,p near the 

stationary wall (in Fig. 13 (a)). Slightly after the peak of Dturb,p and further nearer the moving wall, the 

viscous diffusion term Dvisc increases and balances the increasing |ε| for z+ > 350. Unlike near the stationary 

wall, all terms at the moving wall are much smaller. This indicates that the generation and conversion of 

the turbulent kinetic energy k is local and the strongest near the stationary wall, associated with the relatively 

small-scale structures, while the energy conversion activity is much reduced near the moving wall where it 

is mainly realized through the turbulent diffusion terms. The LSS, however, play an important role in the 

overall energy transfer throughout the whole domain thanks to their global scales.  
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To further explore the leading role of Dturb,w near the moving wall, Fig. 14 shows the different third-

moments 
2 2 2 3q w u w w w w   that contribute to the turbulence-driven diffusive transport across the 

channel. First of all, one can observe that 
2q w  decreases monotonically all the way from z+ ≈ 30 to the 

moving wall, thereby gives rise to a flux of k from the zone near the stationary wall where a substantial 

mean-shear production P occurs, to the moving wall where P is negligibly small. The positive value of 

2q w  is at least qualitatively consistent with the frequently adopted gradient-type diffusion hypothesis 

2 /q w dk dz  (see Fig. 12 (a)). Furthermore, it is noteworthy that, while 
2u wdominates the turbulent 

diffusion in the vicinity of the stationary wall, 
3w becomes equally important near the moving wall where 

Dturb,w becomes the primary source of turbulent energy. Thus, contrary to the P flow, wall-normal velocity 

fluctuations w correlate equally well with u2 and w2. This anomalous diffusion is likely to be associated 

with the LSS which are essentially non-existing in P flows at this fairly low Reynolds number. 
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Fig. 14. Distribution of third-order moments across the CP flow. 

Integration of Equation 3.6 for the overall k conversion from wall to wall gives 

− ∫ ρuw̅̅̅̅
dU

dz
dz −

2h

0
∫ ρ

d

dz
pw̅̅̅̅ dz

2h

0
− ∫ ρ

d

dz
(

1

2
uiuiw̅̅ ̅̅ ̅̅ ̅) dz

2h

0
+ ∫ μ

d
2
k

dz2

2h

0
dz − ∫ μ

∂ui

∂xj

∂ui

∂xj

̅̅ ̅̅ ̅̅2h

0
dz = 0.  

3.9 

  

Due to the no-slip condition at the walls, all velocity fluctuations go to zero, therefore the terms 

∫ ρ
d

dz
pw̅̅̅̅ dz

2h

0
 for Dturb,p and ∫ ρ

d

dz
(

1

2
uiuiw̅̅ ̅̅ ̅̅ ̅) dz

2h

0
 for Dturb,w are also zero. To validate this point, the diffusion 

terms normalized by ρu3
τ,S are calculated from the current DNS results, and the values are 

− ∫
d

dz+
p+w+̅̅ ̅̅ ̅̅ dz+2h

+

0
 = 6.5×10-3 and − ∫

d

dz+
(

1

2
ui

+ui
+w+̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) dz+2h

+

0
 = 3.63×10-4. This proves the negligibility of 

these two diffusion terms. Hence Equation 3.9 simply becomes  

− ∫ ρuw̅̅̅̅
dU

dz
dz

2h

0
+ ∫ μ

d
2
k

dz2
dz

2h

0
− ∫ ε

2h

0
dz = 0. 

                                        

        

                                                C’                      B’              D’ 

3.10 
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In this equation, term C’ is the total kinetic energy transferred from the mean flow to the turbulent flow 

and the calculated value for this term after normalization is − ∫ u+w+̅̅ ̅̅ ̅̅ dU
+

dz+
dz+2h

+

0
 = 7.99, in consistence with 

term C calculated from Equation 3.5; term B’, normalized as Reτ,S∫
d

2
k

+

dz+2 dz+2h
+

0
, is the total energy distributed 

by viscous diffusion from wall to wall, and has a negligible value of 0.06; the last term, term D’, the total 

energy dissipated by the turbulence, almost equals term C’ with a value of −Reτ,S ∫ ε+2h
+

0
dz+ ≈ −7.26. . It 

is noted that, the value of term B’ in Equation 3.10 is the overall difference between the complete form of 

viscous diffusion (Reτ,S∫
d

dz+
[ui

+(
∂ui

+

∂z+
+

∂w+

∂xi
+ )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]

2h
+

0
) and the current one used here; at the same time, it also equals 

the difference between the complete thermodynamic expression for the viscous dissipation term 

(Re∫
1

2
(

∂ui
+

∂xj
+ +

∂uj
+

∂xi
+)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
(

∂ui
+

∂xj
+ +

∂uj
+

∂xi
+)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅2h
+

0
) and the current one used here. The current result shows that the difference 

between the different expressions is within 1% and is thus negligible, in consistence with the previous 

discussions on this issue (Bradshaw and Perot, 1993).  

 

4 Conclusions 

This paper describes a DNS study of a particular Couette-Poiseuille flow with the special consideration 

that the total shear stress monotonically decreases and reaches zero at one wall. The shear-less CP flow was 

obtained by prescribing a relative velocity at the wall, in addition to a driving pressure gradient in the 

streamwise direction. The current study achieved a negligible total shear of |τM/ρuτ
2

,S| ≈ 0.003 at the moving 

wall. The Reynolds number is Reτ,S = 180 based on uτ,S (the friction velocity at the stationary wall) and 

Reτ,M = 9.8 based on uτ,M (the friction velocity at the moving wall). First the results obtained for the present 

CP flow are validated against Kuroda et al. (1993, 1995)’s similar shear-free case at a comparable Reynolds 

number of Reτ,S = 154. We succeeded to produce a flow field for which the mean shear stress at the moving 

wall was much closer to zero than that achieved by Kuroda et al. (1993, 1995). Moreover, a finer grid 

resolution and a longer and wider computational domain were used for the present computations. Then the 

influences of prescribing a shear-less moving wall are discussed in mainly three aspects, including the 

primary flow statistics, the different scales of the flow structures, and the energy considerations. Extensive 

comparison to the Poiseuille flow case of Kim et al. (1987) at the same Reτ,S is performed, by which the 

unique features of the present CP flow are reflected. The main findings of the present study are summarized 

below. 

 Most primary statistics, including the shear stresses, the mean streamwise velocity, the turbulent 

intensities and the fluctuating vorticities, are all compared to the P flow case. The asymmetric shear 

condition in the whole flow field due to the additional freedom at one wall results in the 

asymmetricity of all these statistical quantities. Near the stationary wall, the flow features are similar 

to those of Kim et al. (1987)’s P flow, but with slight differences caused by the imprinting of the 

moving wall effects. Away from the stationary wall and approaching the moving wall, the effects 

of the latter become more apparent. Specifically, differences in the primary statistics between the 

current CP flow data and the P flow data are observed: a higher total stress in the center region due 

to a higher turbulent stress; a much longer logarithmic region of the mean streamwise velocity with 

lower values of κ and B from the log-scale approximation; larger turbulent intensities near the 

stationary wall but smaller near the moving wall. The main interest lies in the moving wall region. 

Here the total stress falls to zero, and the mean velocity reaches its maximum value following the 
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wall velocity, while all turbulent intensities reduce to zero due to no-slip and impermeability of the 

wall. All the vorticity components decrease, until very close to the moving wall where they increase 

slightly as a result of the no-slip boundary condition. No streamwise vorticities are formed and the 

vorticity have smaller values at the moving wall. 

 

 The different scales of flow structures formed in the shear-less CP flow are explored by means of 

spanwise two-point correlation coefficient of the streamwise velocity fluctuations. Two different 

dominating scales are found at different wall-normal locations. One is the near-wall coherent streaks 

formed in the buffer layer next to a stationary wall. The coherent streaks are local, i.e. extend up to 

z+ ≈ 35; they are also small-scale, with an increasing spanwise spacing of 100 to 250 wall units. This 

increase of spanwise spacing is faster than in the P flow case due to the imprinting of the Large-

Scale-Structures (LSS), which are absent in the P flow at this low Reτ,S. The LSS have their center 

located near the channel center region, and have an almost global effect: the LSS extend from the 

buffer layer near the stationary wall, where their influences on the small-scale streaks begin to show, 

to very close to the moving wall. With the decrease of the total shear, the LSS tend to increase in 

spanwise spacing and change from streak-like to cloud-like. The spanwise extension of the LSS 

increases from 2.3h to 4.2h following a linear relation over a large region of the domain, and 

increases more sharply very close to the moving wall to about 4.5h. 

 

 The overall kinetic energy of the mean flow (K) is much larger than that of the turbulence (k), and 

the distributions of both K and k are different in the current CP flow compared to a P flow. The 

present CP flow obtains its energy input only from the pressure gradient, and there is no energy 

input by the moving wall due to zero mean shear. This point is clear by looking at the internal energy 

conversion of both the mean flow and the turbulence, from which it is found that the kinetic energy 

is mainly generated near the stationary wall and transferred to the moving wall region, while the 

latter provides no energy contribution to the flow field. Half of the energy input provided by the 

streamwise pressure gradient is converted into the turbulence kinetic energy and the other half is 

lost due to viscous dissipation. Although the wall motion provides no extra energy to the CP flow, 

it enhances the energy input from the driving pressure gradient to the mean flow field, and increases 

the production term near the stationary wall, compared to that of a P flow. The terms in the k 

transport equation behave quite differently near the two walls. In addition to no turbulence 

production near the moving wall, the magnitude for each term is much smaller compared to the near-

stationary-wall region, and the gain terms balancing the dissipation are quite different near the two 

walls. The LSS play an important role in transferring energy through their global effects.  

 

The main contribution of the present work includes, 1) presented detailed data on this particular CP flow 

field from the stationary wall to the zero-mean-shear moving wall; 2) investigated the different scales of 

the flow structures formed in this particular flow; 3) described the influence of the moving wall on the 

coherent turbulent structures near the stationary wall; and 4) studied the energy conversion for the first time 

in literature for this particular CP flow. Such information serves to further our understanding of wall-

bounded turbulence in general.  
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