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Abstract 
 

In this work, the High temperature tensile properties of unmodified A356 alloys with trace additions 

of Ni or V were investigated by analysing samples obtained from sand and permanent casting in as-

cast and T6 heat treated conditions. Trace elements were added in concentrations of 600 and 1000 

ppm of Ni and V, respectively. High temperature tensile tests were performed at 235°C and 

crosshead speed was 1mm/min. A comparison between the High and the Room temperature 

mechanical properties was also carried out. It was found that neither Ni nor V addition exercises a 

detrimental effect on the High temperature tensile properties. Unlike what was expected, the 

references and Ni-containing sand and permanent mould cast alloys, in the as-cast condition, shown 

an increase in yield strength at High temperature as compared to the Room temperature. The 

phenomenon of V solid solution strengthening stated at Room temperature, was discovered to be 

less efficient at High temperature. The strength of the alloys in the T6 condition, in both sand and 

permanent mould castings shown a small decrease at High temperature as compared to the Room 

temperature, it was most likely due to the over-aging. Under the High temperature condition the α-

Al matrix was more capable to be deform, the internal stress originated by the non- homogeneity, 

induced by the presence of the acicular eutectic Si crystals, was partially recovered at the expense 

of the matrix.  Hence fracture occurred at lower strength values compared with the room 

temperature case, but offered higher elongation. 
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1    Introduction  
 
The use of light-metal alloys in various applications such as automotive and aerospace has recently 

increased  because of  their good castability, lightness, low strength-to-weight ratio and corrosion 

resistance. Al-Si-Mg foundry alloys are found to give good results since they show excellent casting 

characteristics and mechanical properties. Higher strenth can be eventually achieved by heat 

treatment involving solutioninsig and subsequent age hardening. Though, a growing concern is the 

deterioration in the current coke quality for anode production, which is necessary for the Hall-

Héroult electrolytic process. This has led to increase the amount of metal impurities such as Ni and 

V in primary aluminium. In the next years, the levels of Ni and V are expected to rise to 420 and 

1080 ppm, respectively. At the present, there is no cost effective or efficient method available for 

removal of these impurities, and the response to the problem is mainly monitoring the V and Ni 

levels and checking for any negative influence [1]. Therefore industries are developing a growing 

interest with respect to the effect of increased Ni and V levels on the downstream properties of 

aluminium alloy products. 

A previous study [2] investigated the room temperature tensile properties of sand cast and 

permanent mould cast unmodified A356 alloy containing 600 and 1000 ppm of Ni and V, 

respectively. It was found that Ni and V strongly affect both the yield strength (Rp02) and ultimate 

tensile strength (UTS) of the sand cast alloy in the as-cast condition, in particular, Ni reduce Rp02  

and UTS by 87% and 37% respectively whereas V addition increases Rp02  and UTS by 42% and 

25%. 

In the last decade, aluminium alloys has been re-focused in term of lightweight material for 

vehicles. Replacing cast iron with aluminium alloys can result in a significant weight reduction and 

consequently better fuel efficiency [3]. Considering the new trends it might be interesting to 

understand which role is played by the Ni- and V- addition on the High temperature mechanical 

behaviour. High-Temperature performance is a critical characteristic affecting an alloy’s suitability 

for various automotive power-train applications. Diesel cylinder heads for passenger cars and light 

trucks are particular challenging examples. Contemporary automotive engines operate at higher 

temperatures reaching up to 250° C and peak pressure up to 180 bar for improved gasoline 

consumption and reduced Green House Gas (GHG) emissions [4]. This creates demanding 

operating requirements for existing Al-Si-Cu and Al-Si-Mg alloy that typically lose strength above 

150°C. Much development and many studies are still ongoing for the purpose of improving heat-

resistant stability, high temperature mechanical and fatigue properties. Recent studies investigated 

complex hypoeutectic and near eutectic Al-Si based alloys, with the aim to improve their properties 
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for high temperature applications  [5-9]. Heusler et al. [5] proposed a new alloy for engine 

applications based on the Al-Si-Mg-Cu-Fe-Ni system, they showed an increase in fatigue properties 

and tensile strength at High temperature attributed to the present of Fe-bearing intermetallic 

compounds. Ashgar et al. [6 ] reported a significant elevated-temperature strength in Al-12SiNi, 

where the addition of 1.2 wt% Ni led to the formation of an interconnected  hybrid reinforcement 

consisting of eutectic Si and Ni and Fe aluminides. Conversely  there is a lack of information about 

the effect of  V addition with respect to High temperature tensile properties of the Al-Si-Mg alloy 

system. It was recently observed that V is added in combination with Zr (or Ti) in order to stabilise 

the mechanical properties in both room and high temperatures through the formation of Al3X  

trialuminide phases during the ageing stage of the heat treatment  [10-12]. Further details are given 

in [2]. 

Currently, only the EN 1676-2010 standard specifies the maximum concentration limit for V of 

0.03wt% for EN-AB aluminium foundry alloys, which correspond to A356 commercial alloys. On 

the other side there are no indications for the maximum tolerable Ni level in this group of alloys. 

Hence the objective of this work is to evaluate the influence of Ni and V trace elements on the High 

temperature tensile properties of as-cast and T6 heat treated A356 unmodified foundry alloys in 

both sand and permanent mould casting process. This study also proposes an indication about the 

tolerable levels of Ni and V for the High temperature applications of the much-used A356 

aluminium foundry alloys, in the case in which the Ni- or V- containing alloys show mechanical 

properties comparable to the base alloy. High Temperature tensile tests were performed to evaluate 

the mechanical properties. Further, microstructural and fractographic investigations were carried 

out to analyse the microstructures features involved in the fracture process. 
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2    Theoretical Background 
 
2.1    Al-Si foundry alloys 
 
2.1.1   Introduction 
 

Al-Si foundry alloys are widely used in the automotive and aerospace industry due to their good 

castability, lightness, low strength-to-weight ratio and corrosion resistance. 

Silicon increases the fluidity in aluminium casting alloys, reduces the melting temperature and the 

thermal expansion coefficient and diminishes the tendency of the alloy toward shrinkage and hot 

tearing. The Al-Si system is a simple eutectic system. The two solid solution phases are FCC Al and 

Diamond-cubic Si (Figure 2.1). 

Al-Si alloys are divided into three groups: 

1. Hypoeutectic containing 5-10%  silicon 

2. Eutectic containing 10-13%  silicon 

3. Hypereutectic containing 13-25%  silicon 

 
                         

                              
 
                     Figure 2.1- Phase diagram of the binary Al-Si system. [13] 
 
Depending on the purity of the base material, the Al-Si alloys contain varying amounts of impurity 

elements like Fe, Mn, Cu and Zn. Cu and Mg are often added as alloying elements to increase the 

strength and the hardenability of the castings. 

Al-Si foundry alloys are generally hypoeutectic. 
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The maximum solubility of Si in Al is 1.5 at% at the eutectic temperature of 577° C. 

The solubility of Al in Si is negligible. [14] 

The solidification of hypoeutectic alloys starts with the formation of primary α-Al dendrites, minor 

dendrite branches on the primary dendrites also grow in the liquid. The dendrites stop growing as 

soon as the temperature of the melt reaches the eutectic temperature, when an interconnected 

network is formed. After further cooling, the content of Si in the residual liquid, rejected by the 

primary phase, will eventually increase and, when the undercooling is sufficiently large the final 

eutectic reaction occurs.  

In the end, the precipitation of secondary eutectic phases such as Mg2Si and Al2Cu, can be 

observed. 

In contrast to the previous alloys, the solidification of hypereutectic alloys starts by the nucleation 

of polyhedral primary Si crystals and ends with the subsequent eutectic reaction. 

Commercial Al-Si alloys contain between 5 to 20 wt% Si. These alloys have a eutectic volume 

fraction ranging between 50-100% and considering that most of the casting defects originate in the 

later stages of solidification, the eutectic reaction is of great importance as it will strongly influence 

the alloys’ mechanical properties. Alloys in which Si-particles are small, round and uniformly 

distributed are usually displaying high ductility [15]. In addition  to the  main reaction, precipitation 

of iron- and manganese- containing phases will take place, the most common of such phases in 

foundry alloys are Al5FeSi and Al15(Mn, Fe)3 Si2 [16]. 

 

 

2.1.2   The A356 alloy  
 
Alloy A356 is a high-purity version of the well-known casting alloy 356, and belongs to a group of 

hypoeutectic Al-Si alloys. It is designed as EN AB-42100, according to the EN 1676-2010 

specifications. Chemical composition are given in Table 2.1 

The as-cast microstructure consists of primary dendrites of α-Al containing magnesium and silicon 

in solution, surrounded by an Al/Si eutectic phase. The size and morphology of the eutectic silicon 

depends on the casting conditions, as well as the presence of chemical modifiers such as strontium, 

sodium or antimony. Without modification the eutectic silicon forms as coarse platelets, shown in 

Figure 2.2 - a, whereas a fine ‘fibrous’ or ‘coral-like’ structure occurs in modified alloys, Figure 2.2 

- b. Other phases found in commercial A356 alloys include Mg2Si particles, which are taken into 

solid solution and precipitated during heat treatment, and Fe-rich phases including α-Al5SiFe, β-

Al8Si2Fe and π-Al8Mg3Si6Fe that arise from the presence of melt impurities. The presences of the 
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Fe-bearing compounds influence the ductility of the alloy [17]. Their volume and shape depend on 

the Mg content [18-19] and on the cooling rate respectively. 

In most cases the alloy is subject to heat treatment, and as a result, several combinations of tensile 

and other mechanical properties can be provided. Due to low iron and impurity content, high 

ductility can be achieved. The alloy is generally used for aircraft structures, cast aluminium 

automobile wheels and structural components [16]. 

 
 

Table 2.1- Chemical composition of the A356 foundry alloy in accordance with EN 1676-2010 

specification. No specific information about the maximal tolerable Cr, Ni, Pb and Sn concentration 

is given. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
 
Figure 2.2 - Microstructure of Al/Si eutectic phase in an as-cast A356 aluminium alloy;  
(a) Unmodified alloy, (b) Modified with an addition of 156ppm strontium [20]. 

 

A 356 - EN AB-42100 

Element Composition [wt%] 

Si  6.50 -7.50  

Mg  0.30 -0.45  

Fe  0.15  

Cu  0.03  

Mn  0.10  

Zn  0.07  

Ti  0.18  

 0.03(each)  Other 
 0.10(total)  

Al  bal.  
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2.1.3   Microstructure 
 
The solidification sequence is reported as follows: 

- T= 610°C – Start of solidification and formation of α-Al dendrites 

- T= 568°C – Start of main eutectic reaction:   Liq.         Al + Si + Al5FeSi 

- T= 557°C – Precipitation of Mg2Si: Liq.         Al + Si + Mg2Si 

- T= 550°C – Precipitation of complex eutectic: Liq.         Al + Si + Mg2Si + Al8Mg3FeSi6 

According to Arnberg et al. [16], the nucleation of α-Al starts at 610°C. Equiaxed dendritic crystal 

begins evolving, and become coherent at 604°C. The eutectic reaction starts at 568°C, and the fist 

β-Al5FeSi platelets begin to appear. Under continued solidification the Mg2Si phase and the π-

Al8Mg3FeSi6 phase precipitate. 

 
 
 

2.2    Heat Treatment 
 
2.2.1 The influence of Mg in A356 alloy 
 
Mg is added into the A356 foundry alloy with the purpose of inducing age hardening through the 

precipitation of fine Mg2Si particles [21]. It is believed that while Mg achieves the pursuit of 

making the aluminium matrix age-hardenable, it might affect the microstructure and in particular 

the type and morphology of brittle phases and consequently a decrease in ductility and fracture 

toughness appears [19, 22]. According to Shivkumar et al. [23], the sequence of precipitation in the 

commercial A356 foundry alloy can be described as follows: 

- Precipitation of GP zones (needles ~ 10 nm long); 

- Intermediate phase β’’- Mg2Si, (homogeneous precipitation); 

- Intermetallic phase β’- Mg2Si, (heterogeneous precipitation); 

- Equilibrium phase β- Mg2Si, FCC structure (a=0.639), rod or plate-shaped. 

Supersatured solid solution (SSSS) decomposes as Mg and Si atoms are attracted first by 

themselves (cluster), then to each other forming precipitates GP, or sometimes β’’- Mg2Si. GP zone 

consist of alternating arrangement of Mg and Si atoms columns along the ⟨100⟩ α direction. GP 

zones can also evolve directly to phase β’’ and  then to a number of other metastable phases 

labelled β’, B’, U1, U2 (Figure 2.3) .The peak  aging (the maximum alloy strength) is enriched just 

ahead of the incoherent β- platelets precipitation. The precipitation of metastable Mg-rich phases 

depends on the Mg-to-Si ratio. The excess of Si in solid solution can significantly alter the kinetics 
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of precipitation and the phase composition. Equilibrium phases are enriched in Mg and metastable 

phases are enriched in Si [24]. 

 
 Figure 2.3- Supersatured solid solution (SSSS) decomposes as Mg and Si atoms are attracted first 

by themselves (cluster), then to each other developing in precipitates GP, or sometimes β’’- Mg2Si. 

GP zones can also evolve directly to phase β’’ and then to a number of other metastable phases 

labelled β’, B’, U1, U2 [24]. 

 
 
 
2.2.2   The T6 heat treatment 
 
Controlled heat treatment of aluminium alloys can significantly influence properties such as 

strength, ductility, toughness, and corrosion resistance, as well as the formation of residual stresses 

and the thermal and dimensional stability of the component. The main heat treatment process 

applied to cast Al-Si-Mg alloys is precipitation hardening. The standard procedure for T6 heat-

treatment consists of three stages (Figure 2.4): 
- Solution treatment at high temperature 

- Quenching  

- Age Hardening 

Solution treatment requires long soak times at high temperature in order to produce a homogeneous 

solid solution with maximum solute concentration.  The soak temperature is determined by alloy 

composition and solid solubility limit, and is generally close to the eutectic temperature of the alloy 

(475-566°C) [24]. 

Underheating can result in incomplete dissolution of particles, low solute concentrations, and 

inhomogeneous solute distributions in the matrix; all of which cause a reduction in the 

strengthening potential of the alloy. During this stage, phases that have been formed during the 

solidification such as Mg2Si and the Fe- rich phases (slow-diffusing) progressively dissolve. 

Another significant metallurgical process during solution treatment is the change in shape of 

insoluble second phase particles.  In the case of Al-Si-Mg alloys this involves a change in the 
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eutectic Si crystals from the as-cast structure to spheroidal globules (Figure 2.5). 

 

Figure 2.4 – Diagram showing the three steps for precipitation hardening [24 ]. 

 

Homogenization of the casting to attain a globular morphology of the eutectic Si is of primary 

importance to improve ductility and fracture toughness. 

After the dissolution process, the alloy must be rapidly cooled to produce a highly supersaturated 

solid solution containing large numbers of “quenched-in” vacancies [25]. The greatest benefit from 

the standpoint of alloy properties is achieved with the fastest quench as it ensures the maximum 

supersaturated solute concentration, but, on the other side, lattice residual stresses can develop, 

affecting the ductility. 
During the age-hardening stage a fine dispersion of second phase particles precipitates from a 

supersaturated solid solution.  This can be realised by exposing the alloy to a suitable combination 

of temperature and time.  Typically, precipitation reactions involve the formation of intermediate 

phases prior to the equilibrium phase, each of which influences the overall strength. There are two 

different methods of ageing, natural and artificial aging. 
Natural ageing refers to the decomposition of a supersaturated solid solution over time at room 

temperature following quenching.  Depending on the alloy, natural ageing occurs over a few hours 

to several years, and results in an increase in strength from the as-quenched condition due to the 



 12 

formation of solute clusters or GP zones.          

 

The decomposition of a supersaturated solid solution at elevated temperature is commonly known 

as artificial ageing.  Typical artificial ageing temperatures are in the range 150°C to 250°C, and 

artificial ageing times can be  as long as 12  hours. Industrial artificial ageing strategies are 

designed to produce the optimum size, distribution, type and morphology of strengthening 

precipitate, and may involve one or more stages at different temperatures, a period of natural ageing 

prior to artificial ageing, or an intermediate ageing treatment at lower temperature (usually 60-

120°C) known as “preageing” prior to artificial ageing. 

 

         
Figure 2.5- Morphological evolution of eutectic silicon in A356 aluminium alloy during solution 

treatment at 540°C; (a) as-cast, (b) 2 hours, (c) 8 hours, [26].  

 
 
 
2.2.3   Precipitation Strengthening Mechanism 
 
The strengthening effect of precipitation is related to the interaction of glide of dislocation with the 

precipitated particles, which act as obstacles to dislocation movement. It is dependent on several 

factors including: the particle characteristics (i.e. size, shape and volume fraction), their distribution 

within the matrix, and the nature of the particle-matrix interface. The strength contributions from 

atoms in solid solution and from shearable and non-shearable precipitates change during ageing, 

while contributions from lattice, dislocations and grain boundaries are constant. Typically the 

dislocations pass the precipitate using the most energetically favourable method available. In 

general there are only two types of interaction: particle cutting in the case where the particle is 

shareable, and dislocation-looping around unsherable particles. Moving dislocations can shear small 

and not too hard precipitates (Figure 2.6 - a). Larger and harder precipitate cannot be sheared by the 

moving dislocations that more likely pass the precipitates by bowing, leaving a dislocation ring 
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around the precipitate (Figure 2.6 - b). Figure 2.6 - c shows the different strength contributions to 

the total yield strength for different ageing time. 

 

     

Figure 2.6 - Dislocations passing mechanism, a) shearing, b) looping. Different strength 

contributions to the total yield strength [24] 

 

 

As long the precipitates can be sheared, the alloy’s yield strength increase with increasing radius of 

the precipitates. On the contrary, when dislocations pass the precipitates by looping, the alloy’s 

yield strength decrease with increasing size of the precipitates [24]. Long time and/ or too elevated 

temperature annealing exposure can results in overaging. It consists in coarsening of second phases 

used for strengthening age-or precipitation hardenable alloys.  

 
 
2.3   Ni and V trace elements 
 
2.3.1   The issue of Ni and V trace elements 
 
Trace elements may often be present in aluminium alloys, either as impurities or by design, and can 

have both beneficial and adverse effects on the microstructure. Impurity issues in primary 

Aluminium smelting have historically been focused on the control of particles and dissolved 

hydrogen and alkali earth metals. However, an emerging problem is the increase in certain 

impurities, such as Ni and V. Both of them come principally from the anodes of the Hall-Héroult 

electrolytic process, but in the case of the Vanadium, a small contribution is given by the Alumina 

[1]. Considering the decrease in quality of petroleum coke observed in recent years, trace elements 
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and metal impurities are expected to rise in the future with significant implications for the ability of 

cast houses to meet customers’ chemical specifications (Figure 2.7). 

It is reported that the Ni and V content in the coke will enrich concentrations of 420 and 1080 ppm, 

respectively [27]. Currently, there is no cost effective or efficient method available for the removal 

of these impurities, and the response to the problem is mainly monitoring the V and Ni levels and 

checking for any negative influence [1]. 

 

                                  
Figure 2.7 -   V and Ni Level in Petroleum Coke  [2.27]. 
 

 

2.3.2  The influence of Ni addition in Al-Si Alloys 
 
Nickel has a low distribution coefficient (Kd =Cs/Cl), and it is reported that it remains in the liquid 

until the later stages of solidification. In commercial Al-Si alloys, where Fe is present as an 

impurity, Ni is more likely to be associated with iron, i.e. in AlFeSi intermetallics and eventually 

segregate at the grain boundaries, than be dissolved in the α-Al matrix. 

There is a lack of information about the Ni additions below 1000 ppm in the Al-Si foundry alloys. 

Grandfield et al [28] studied the effect Ni and V combined additions of 300 ppm of each in a 

AA6063 and A356 alloys. In the as-cast condition, the Ni was mainly found in the intermetallic 

phase, the π-Al8Mg3FeSi6 in an AlSiNi  phase with unknown stoichiometry. Mechanical Properties 

were weakly influenced, nevertheless no significant differences were noticed in the corrosion. 

Zhu et al. [29] evaluated the influences of Ni addition, varying from 80 ppm to 500 ppm in a A356 

alloy, results were in concordance with the work conducted by Grandfield et al., though an 

identified AlSiFeNi phase was detected. 
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Moreover, as documented by Garci [30], brittle Al3Ni particles were detected in Al-7wt%Si alloy 

containing 0.5 and 0.1 wt% of Ni. These particles exercised a negative effect on the tensile 

properties, decreasing strength, elongation and hardness. 

T.H.Ludwig et al. [31] studied the influence of Ni addition in both high purity binary Al-7wt%Si 

and commercial purity A356 foundry alloys. Ni addition, over 300 ppm, resulted in the formation of 

the two Al3Ni and Al9FeNi intermetallic phases. The first one was fine and distributed in the 

immediate vicinity of the eutectic Si crystals in both the alloys, while the second one occurred in 

the commercial alloys, forming distinct script or oval shape particles in the proximity of the π-

Al8Mg3FeSi6 phase. 

In another work [32] the high temperature strength of Al-7wt%Si and Al-12wt%Si was 

investigated. The as-cast microstructure consisted of a network of interconnected Si lamellae and 

3D shape Ni-rich intermetallics. After the solution heat treatment, the stability of the Si-eutectic 

network was stabilized by the Ni-rich intermetallics that maintain their contiguity to the 

spherodized Si particles. As a result the high temperature strength at 250°C and, in particular, the 

yield strength is evidently enhanced. The optimal concentration was established at 1wt%. 

In the end, D.Casari et al. [2] reported that Ni addition of 0.06 wt% strongly influenced the tensile 

properties of the sand cast A356 alloy in as-cast condition, leading to a reduction of both the Yield 

Strength and Ultimate Tensile Strength by 87% and 37%, respectively. Ni-rich intermetallic where 

observed in the fracture surface, prone to fracture more easily than other secondary phases. 

 
 

 
2.3.3   The influence of V impurities in Al-Si Alloys 
 

V is a slow diffusing peritectic element, showing the maximum solubility (~ 0.4 wt%) at the 

peritectic temperature of 611°C [33]. In most cases V resides in the Al matrix [34] whereas V 

containing intermetallic particles are unlikely to form below the concentration of 0.1wt%. Is 

reported by Mondolfo [35] that V, and in particular the peritectic precipitation of Al3V, had some 

beneficial effect on the grain refinement, even thought it was less efficient than Ti and/or B. 

Additionally, the presence of 0.2 wt% V in a high purity alloy Al-7Si-0.3Fe (2.18) facilitated the 

precipitation of Fe-rich phases as a fine scale Chinese script, otherwise in the absence of V as an 

alloying element the Fe-rich phases exhibited the platelets shape. Grandfield et al. (2.9) evaluated 

the influence of 0.03wt% V addition in both AA6063 and A356 alloys, showing a very moderate 

effect on the tensile properties. 
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Further investigations on A356 alloy in the as-cast condition [1] revealed an increase in strength, 

due to the solid solution strengthening effect produced by the addition of 0.1wt% V. 

Accordingly, a significant improvement of tensile strength was achieved in V- and Zr-containing 

Al-7Si-1Cu-0.5Mg-0.1 Ti foundry alloy [36]. The positive effect was associated with the 

precipitation of nano-sized trialuminide precipitates, uniformly distributed in the Al-matrix. 

As stated by T.H. Ludwig [37], increasing the V content from 0.06 wt% to 0.8wt% in a A356 

foundry alloy resulted in a shift of nucleation, minimum and growth temperature of the α-Al by up 

to 4.5K, whereas the undercooling was not affected. No influence on the grain refinement was 

discovered. Polyhedral Si2V phases were detected beyond the concentration of 0.06 wt%, and the β-

Al5FeSi phases began enriching in V with increasing nominal V addition, with changes in 

morphology from needle to script like. 

 
 
 

2.4   Hot Tensile Test 
 
At high temperatures, the procedures and specimens of the tensile test are basically the same as 

room temperature testing. The key differences are the heating apparatus and specially the design of 

instruments for measuring strain at high temperature. General characteristics of the high-

temperature mechanical test setup, used in this work are given in the following section (Chapter 3, 

paragh.2). 

Metallic materials mechanical behaviour is strongly susceptible to temperature. As temperature 

increases, the strength of a material usually decreases and the ductility increases. The general 

reduction in strength and increase in ductility of metals at high temperatures can be related to the 

effect of temperature on deformation of the material. At room temperature, plastic deformation 

occurs when dislocations in the material slip. The dislocations can also interblock and build-up in 

the material as they slip. This build-up of dislocations restricts the slip, and, consequently, the 

forces necessary to continuing the formation increase. This process is known as strain hardening or 

work hardening. At elevated temperatures, dislocation climb is another deformation mechanism. 

Further, the build-up of strain energy from strain hardening can be relieved at high temperatures 

when crystal imperfections are rearranged or eliminated into new configurations. This process is 

known as recovery. A more rapid restoration process is recrystallization, in which new, dislocation-

free crystals nucleate and grow at the expense of original grains. The restoration processes can be 

greatly enhanced by the increase in the thermal activity and mobility of atoms at higher 

temperatures. Thus, lower stress is required for deformation, as shown in the stress-strain diagrams 
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of several materials at elevated temperatures (Figure 2.8). Another effect that can be accelerated 

during high temperature testing is strain aging. In the strain aging the loss in ductility can be 

ascribed to precipitation and diffusion-controlled particle growth along the slip planes [38]. At High 

temperature, as in the Room temperature case, the choice of the strain rate or cross-head speed is of 

great importance, because the mechanical properties are strongly influence by this parameter. 

Several combinations of strain  at room temperature can be performed in order to study a multitude 

of conditions (Figure 2.9).  

                           
Figure 2.8 - Typical stress-strain curves at a constant strain rate of 2.78 × 103 s-1 showing effect of 

different temperatures [39]. 

                   
Figure 2.9 - Typical stress-strain curves at a constant temperature of 25° C showing effect of 

different strain rates [39]. 
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3    Experimental Method 
 
 
3.1   Alloy Preparation 
In this study a A356 hypoeutectic Al-Si  foundry alloy, was used as the base alloy.According to previous 

work [2], as received, ingots were melted in charges of 16 kg each in a boron-nitride coated clay-graphite 

crucible. Trace elements were added in concentrations of 600 and 1000 ppm of  Ni and V, respectively. In 

order to avoid any masking effect or interactions with additional elements, neither Sr nor Na were added as 

modifier agents. The melting temperature was monitored with the Alspeck-H probe and was kept constant at 

740°C ± 5° C. Samples from the three different melts were taken throughout the casting trials and were 

analysed  by optical emission spectroscopy (OES). The chemical compositions of the reference alloy A356  

and the Ni- or V-containing alloys are given in the Table 3.1 

 
Table 3.1. - Chemical composition (wt %) of A356 reference alloy and Ni/V- contaminated alloys 
as measured by OES.  

 
The content of Hydrogen in the melts was measured in-situ using the Alspek- H probe. Melts were 

degassed with argon gas in order to obtain a hydrogen concentration of 0.08 mlH2/ 100 gAl. The 

alloys were then poured in both sand and steel moulds. 

 
 
 

3.2   Casting and Heat Treatment  
After the melt preparation the alloys were  poured in both sand and steel moulds. 

Sand castings were obatained using the tensile testing bars propoused by [Daniele, Dispinar and 

Campbell]. The bar shape varied from cylindrical to tapered, with diameter increasing gradually 

from 15 mm at the bottom and 20 mm at the top.The cooling rate in the middle of the sand-cast 

specimen was 1.3 K/s.A L-shaped steel mould was chosen for the permanent mould castings.UNI 

3039 specfification was considered. The temperature of the die was kept at a temperature of 300° C 

during the casting trials. The cooling rate in the middle of the permanent mould-cast specimen was 

4.2 K/s.Part of the samples originating from both the casting were subjected to a T6 heat treatment. 

Alloy Addition (ppm) Si Fe Mg Ni V Al 
A356 - 7.054 0.092 0.355 0.003 0.007 bal. 
A356 + Ni 600 6.902 0.087 0.344 0.061 0.007 bal. 
A356 + V 1000 6.992 0.094 0.349 0.003 0.108 bal. 
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They were solutionaized  at 540° C for 4 hours, quenched in a water bath at 20°C, and finally aged 

at 160°C for 6 hours.Twelve different experimental conditions were investigated (Table 3.2), and at 

least five specimen were tested for each condition. 

 
Table 3.2 - Specimens condition specification, specimens testing sequence. 
 

 Alloy Mould Condition Alloy Code Testing sequence 
as-cast A356-AC 01;07;13;19;25 

A356               Sand 
T6 A356-T6 02;08;14;20;26 

as-cast N-AC 03;09;13;21;27 
A356 + 600 ppm Ni               Sand 

T6 N-T6 04;10;14;22;28 

as-cast  V-AC 05;11;15;23;29 A356 + 1000 ppm 
V Sand 

T6 V-T6 06;12;16;24;30 

as-cast A356 PM-AC 31;37;43;49;55 
A356a Permanent Mould 

T6 A356 PM-T6 32;38;44;50;56 

as-cast N PM-AC 35;41;47;53;59 
A356 + 600 ppm Ni Permanent Mould 

T6 N PM-T6 36;42;48;54;60 

as-cast V PM-AC 33;39;45;51;57 A356 + 1000 ppm 
V Permanent Mould 

T6 V PM-T6 34;40;46;52;58 

 
 
3.3   Specimen 
In accordance with the normative UNI EN ISO 689202, cylindrical specimen reported  in Figure 3.1 

was chosen. 

                    
Figure 3.1- Example of cylindrical tensile test machined specimen, UNI EN ISO 689202. 
 
The specimen has enlarged ends,15 mm long,for gripping. The cross-sectional diameter, d0, is 6 

mm.The gauge length, L0, is 30 mm. The total specimen length, Lt is 135 mm. 
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  Figure 3.2- Tensile specimen before and after the Hot Tensile Test. 
 
3.4   Hot Tensile Test 
 
High temperature tensile tests were performed on MTS 880 universal testing machine 

 (10 tons) equipped with a 250°C furnace chamber and a MTS Teststar control units (Figure 3.3). 

In order to ensure that errors that might occur during the experimental procedure, such as mounting 

time variation, specimens slipping from the grip, errors in the software settings, affect all the classes 

with the same probability, samples were tested in successive order among each category (Table 

3.1). Considering the main purpose of this work, which is to study the effects of trace elments in the 

base alloy on the tensile behavior at elevated temperature, all the specimens were tested at the same 

temperature, 235±5 °C.    

The crosshead speed was 1mm/min and the applied load was restricted to 40 kN.The following 

steps describe the standardized procedure.The first step consisted in heating the furnace chamber by 

setting the maximum temperature’s value at 250°C. Starting from room temperature, one hour was 

necessary to reach the reference temperature of 247 ± 3°C. 

 

                                               
Figure 3.3 – MTS 880 tensile testing machine equipped with a furnace chamber positioned around 
the specimen. 
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Once the reference temperature was attained, the chamber was opened and the mounting phase took 

place (7 minutes), the temperature decreased from 247 ± 3°C to 100±5°C. Subsequently,an other 12 

minutes  were needed to re-establish the reference temperature. To ensure the stability of the 

temperature in the entire specimen, it was exposed another 3 minutes, in which time the accuracy of 

the constant temperature  was checked on the display of the furnace device. After a total time of 15 

min, the test started. One specimen was used to a direct temperature investigation utilizing a 

thermocouple. The tip of the thermocouple was placed into a 1mm diameter hole centered in the 

gauge length of the specimen.It is important to take into account the differences between the 

temperature set in the chamber and the one measured on the specimen, as shown in the Figure 3.4. 

A specially designed clip-on axial extensometer in stainless steel connected to an optical position 

measuring system was used to obtain the stress-strain curves. As a result, the high temperature 

tensile properties such as yield streght, ultimate tensile strenght and elongation, Rp 0,2 , UTS and 

A%, respectively, were determinated.Specimens before and after the Hot Tensile Test are shown in 

Figure 3.2. 

 

 
Figure 3.4 – Temperature measurement conducted by a thermocouple centered in the gauge length 
of the specimen. 12 min. were necessary to achieve the reference temperature; other 3 min. were 
needed to stabilize the temperature, after total 15 min. the test started. 
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3.4   Microstructure Analysis 
 

After the hot tensile test, the specimens were prepared for microscopy analysis. Samples for the 

fractographic investigation were sectioned parallel to the fracture surface. Ultrasonic cleaning was 

used to remove debris, dirt and oil coatings from thefracture surface (Figure 3.5-a). Samples for 

metallographic investigation were sectioned perpendicular to the fracture surface; they were then 

embedded in a low-viscosity epoxy resin (Figure 3.5-b). The grinding procedure was performed 

using SiC papers, from 320 up to 2400, with 15N force for 60 seconds. The samples were then 

polished on MD-Mol (3µm) at 15 N for 6 minutes and on MD-Nap (1 µm) at 15 N for 6 

minutes.Microstructures and fracture surfaces were finally analysed with a HITACHI SU-6600 

field emission scanning microscope (FE-SEM) equipped with energy dispersive X-ray spectroscopy 

(EDS). 

 

                                      
 
Figure 3.5 – a) Fracture surface sample, b) Fracture profile sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 
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4    Results  
 
4.1   High Temperature Tensile Properties 
Tables 4.1 and 4.2 show the average values of the high temperature tensile properties of the 

reference and Ni/V containing alloys in both sand and permanent moulds conditions. 

No significant difference between the reference alloy and the Ni- and V- containig alloys is found 

betwen the two casting conditions, as shown in the Figures 4.1 and 4.2. 

A slight increase in yield strength (Rp02), ultimate tensile strength (UTS) and elongation (A%) can 

be observed for the permanent mould cast alloys as compared  to the sand cast alloys. Additionally, 

a more uniform distribution of  the elongation values (A%) can be noticed for the permanent mould 

castings. Rp02  and UTS have small error bars that indicate the reproducibility and the realibility of 

the values. In spite of this, A% error bars result are larger. 

 
Table 4.1. – High temperature tensile properties of the sand cast reference and Ni/V containing  

  alloys. 

 

Alloy code Rp02 [ Map] ± δ UTS  [ Mpa ] ± δ A  [ % ] ± δ 
A 356 - AC 106,3 ± 3,5 122,2 ± 1,8 2,84 ± 1,07 
A 356 - T6 179,7 ± 2,0 185,6 ± 1,8 1,47 ± 1,18 

N - AC 102,8 ± 1,8 118,1 ± 3,1 4,26 ± 2,80 
N -T6 182,4 ± 5,2 189,3 ± 3,1 1,99 ± 0,83 

V - AC 101,4 ± 1,5 118,4 ± 1,9 3,15 ± 0,94 
V - T6 177,6 ± 1,4 184,4 ± 1,9 2,08 ± 1,06 

    
 
 

Table 4.2. – High temperature tensile properties of the permanent mould cast reference and Ni/V  

   containing alloys. 

 
Alloy code Rp02 [ MPa] ± δ UTS  [ Mpa ] ± δ A  [ % ] ± δ 

A 356 PM - AC 109,6 ± 3,3 133,2 ± 4,8 3,93 ± 1,01 
A 356 PM - T6 185, 7 ± 4,0 195 ± 3,5 3,90 ± 1,78 

N PM - AC 117,2 ± 7, 2 135,8  ± 6,5 2,72  ± 0,79 
N PM -T6 186,0 ± 2,5 196,8  ± 2,5 4,08 ± 1,99 

V PM - AC 111, 3 ± 5,8 135,5 ± 7,0 3,81 ± 2,38 
V PM - T6 192,6 ± 4,7 202,5  ± 4,6 4,65  ± 2,14 
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     Figure 4.1– High temperature tensile properties of the sand cast reference and Ni/V containing    

      alloys in as-cast and T6 conditions. 

   
 
 
 

 
 
      Figure 4.2–High temperature tensile properties of the permanent mould cast reference and      

       Ni/V containing alloys in as-cast and T6 conditions. 
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4.2   Room Temperature Tensile properties versus High        

Temperature Tensile Properties 
Room Temperature Tensile properties of the investigated alloys were evaluated by [D.Casari]. The 

experimental work revealed that Ni and V strongly affected the mechanical properties of sand cast 

samples in the as cast condition; brittle Ni-rich intermetallic compounds were detected in the Ni-

containing alloy, decreasing the strength, whereas solid solution strengthening of the α-Al matrix 

was observed in the V- containing. Furthermore, it was noticed that T6 heat treatment and the high 

cooling rate, due to the permanent mould casting process, could neutralise the detrimental influence 

of Ni. On the contrary V trace addictions were found to be beneficial for the tensile properties. 

The result of both Room and High temperature tensile tests are summarised in Tables 4.3, 4.4, 4.5, 

4.6 and reported in Figures 4.3, 4.4, 4.5, 4.6. 

 
The conditions which were compared are mentioned as follows and further, a description of each 

condition is presented. 

1. sand mould as-cast 

2. sand mould T6 

3. permanent mould as-cast 

4. permanent mould T6 

 

1. Reference and Ni-containing sand cast samples in the as-cast condition show a significant 

increase in the yield strength (Rp02) by 26% and 138% respectively, at High temperature as 

compared to the Room temperature (A356-AC RT and HT, N-AC RT and HT in Figure 

4.3). The difference between the Ni-containing RT vs. HT alloys is emphasised by the low 

strength measured at Room temperature. In contrast, a small decrease in both Rp02 and UTS, 

by 11% and 26% respectively, can be observed for the V contang alloys at High temperature 

as compared to the Room temperature (V-AC RT and HT in Figure 4.3).All the alloys 

exhibit a relevant increase of A% values at 235°C. 

2. Considering the sand cast heat treated alloys, a small decrease in strength at High 

temperature is visible, as shown in the Figure 4.3. The Ni- and V-containing samples were 

more affected showing a decrease of the yield and  ultimate tensile strength by 14% - 22% 

and 18% - 26% respectively (N-T6 RT and HT, V-T6 RT and HT in Figure 4.3).  
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Table 4.3 – Room temperature and High temperature tensile properties of the sand cast  
    reference and Ni/V containing alloys in the as-cast condition. 
 
 
 
 
 
 
 
 
 
 
Table 4.4 – Room temperature and High temperature tensile properties of the sand cast  
   reference and Ni/V containing alloys in the T6 condition. 
 
 
 
 
 
 
 
 
 
 
  
 
Table 4.5 – Room temperature and High temperature tensile properties of the permanent mould    
   cast reference and Ni/V containing alloys in the as-cast condition. 

 
 
 
 
 
 
 
 
 
 
Table 4.6– Room temperature and High temperature tensile properties of the permanent mould 
   cast reference and Ni/V containing alloys in the T6  condition. 
 
 
 
 
 
  
 

Alloy code Rp 0,2 [Mpa]±δ UTS [Mpa] ±δ A [%] ±δ 
A356-AC RT 80,7 ± 10,4 128,4 ± 8,0 1,46 ± 0,53 
A356-AC HT 106,3 ± 3,5 122,2 ± 1,8 2,84 ± 1,07 

N-AC RT 43,2 ± 6,0 93,8 ± 9,1 1,73 ± 0,28 
N-AC HT 102,8 ± 1,8 118,1 ±3,1 4,26 ± 2,80 

V-AC RT 114,5 ± 4,7 160,5 ±10,0 1,33 ± 0,45 
V-AC HT 101,4 ± 1,5 118,4 ± 1,9 3,15 ± 0,94 

Alloy code Rp 0,2 [Mpa]±δ UTS [Mpa] ±δ A [%] ±δ 

A356-T6 RT 183,2  ± 14,0 212,0 ± 30,1 0,99 ± 0,67 
A356-T6 HT 179,7 ± 2,0 18562 ± 1,8 1,47 ± 1,19 

N-T6 RT 212,7± 31,3 244,6 ± 30,6 0,90 ± 0,35 
N-T6 HT 182,4 ± 5,2 189,3 ± 3,1 1,99 ± 0,83 
V-T6 RT 216,9 ±7,9 250,4 ± 8,8 1,14 ± 0,59 
V-T6 HT 177,6 ± 1,4 184,4 ± 1,9 2,50 ± 1,39 

Alloy code Rp 0,2 [Mpa]±δ UTS [Mpa] ±δ A [%] ±δ 

A356 PM AC-RT 93,4  ± 4,8 172,8 ± 7,0 4,0 ± 0,75 

A356 PM AC-HT 109,6 ± 3,3 133,2 ± 4,8 3,93 ± 1,01 

N PM AC-RT 93,4± 5,5 169,1 ± 9,9 3,44 ±1,32 

N PM AC-HT 117,2 ± 7,2 135,8 ±6,5 2,72 ± 0,79 

V PM AC-RT 91,6 ± 4,0 171,1 ± 10,4 3,54 ± 1,12 

V PM AC-HT 111,3 ± 5,8 135,5 ± 7,0 3,82 ± 2,39 

Alloy code Rp 0,2 [Mpa]±δ UTS [Mpa] ±δ A [%] ±δ 

A356 PM T6-RT 224,3  ± 2,0 282,2 ± 6,9 3,22 ± 0,84 

A356 PM T6-HT 185,6 ± 4,0 191,4 ± 7,7 3,90 ± 1,79 
N PM T6-RT 228,7± 3,1 284,8 ± 7,4 3,25 ± 1,21 

N PM T6-HT 186 ± 2,5 196,8 ± 2,6 4,08 ± 2,0 
V PM T6- RT 224,2 ± 1,5 289,5 ± 8,6 3,60 ± 1,50 

V PM T6-HT 192,6 ± 4,7 202,5 ± 4,6 4,65 ± 2,14 
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3.   Similar trends can be observed in permanent mould cast alloys. All the classes in the as-cast       

      condition show an increase in the yield strength at High  temperature as compared to Room   

      temperature. However the difference pronounced as in the sand cast alloys. A general     

      reduction of UTS is noted for the samples  tested at 235°C. 

4.  The decrease of strength previously discussed in the heat treated sand mould castings is more   

      significant in the permanent mould castings. UTS drops approximately 20% for each      

      experimental condition as evidenced by Figure 4.6. 

 
    
                Figure 4.3–  Room temperatures vs High temperature tensile properties of the sand cast   
                  reference  and Ni/V containing alloys in the as-cast condition. 
  

 
  
                 Figure 4.4–  Room temperatures vs High temperature tensile properties of the sand cast    
                    reference  and Ni/V contaminated alloys in the T6 condition. 
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Figure 4.5 –  Room temperatures vs High temperature tensile properties of the permanent mould    
   cast reference and Ni/V containing alloys in the as-cast condition. 

  
 
 

 
 
 Figure 4.6–  Room temperatures vs High temperature tensile properties of the permanent mould    
      cast reference and Ni/V containing alloys in the T6 condition. 
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4.3   Strain Hardening in the as-cast alloys 
 
Stress-Strain curves are presented in Figure 5.1. According to sand cast/permanent cast analogy 

only the first series of samples was taken into consideration. 

Young’s Modulus (E) and Strain Hardening Rate (Ɵ), calculated as the slope of the Stress-Strain 

curves at given strains (true strain= 0.05%; 0.10%; 0.15%; 0.20%; 0.25%; 0.30%) are shown in 

Figure 5.1 Numerical results are summarised in Table 5.1. 

Both Reference and Ni-containing alloys exhibit an increase in strain hardening rate at elevated 

temperatures. On the other side, the opposite behaviour is noticed in the V-added alloys. 

In all the conditions the Young’s module at 235°C was lower than the Room Temperature case, 

about 80 GPa, and 60 GPa respectively. 

 
 
4.4    Microstructural and Fractographic Investigation. 
 
Microstructural and fractographic investigations were performed analysing the fracture profiles and  

surfaces  of the samples.  

Backscattered electron (BSE) images of the reference, Ni- and V-containing alloys in as-cast and 

T6 heat treated conditions are shown in Figure 4.7. Only the sand cast samples are presented. 

The main features are α-Al dendrites and needle-like Al-Si eutectic, Fe-bearing particles such as π-

Al8FeMg3Si6  and  β-Al5FeSi , Ni-rich compounds  and Mg2Si particles are also observed.  

In the eutectic region platelet-like β-Al5FeSi   and ‘Chinese Script’ π-Al8FeMg3Si6  are sometimes 

associated( Figure 4.7- c). Ni-based intermetallics phases, exhibiting an oval shape, are observed in 

the sand cast alloy with Ni addiction (Figure 4.7 - c, d). 

A slight increase of Fe-rich and Mg2Si particle amount is observed in the V-containing samples 

(Figure 4.7 - c, d). 
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                                         (a)                                                                              (b) 
 

                               (c)                                                                             (d) 
 

                                 (e)                                                                           (f) 
            
Figure 4.7- BSE micrographs of sand cast reference and Ni/V- containing alloys in as-cast and T6 
conditions tested at high temperature (a) A356-AC, (b) A356-T6,(c) N-AC,(d) N-T6,(e) V-AC, (f) V-
T6; Aluminium dendrites are in dark grey, eutectic Si crystal in light opaque grey, π-Al8FeMg3Si6   

and β-Al5FeSi  in light clear grey,Mg2Si in black and Ni-rich intermetallics in white. 
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A moderate spheroidisation of eutectic Si particle is noted in the T6 heat treatment samples due to 

solutionising, on the other hand, Fe-bearing compounds have a more marked tendency to 

spheroidise as visible in Figure 4.7. b, d, f. 

Figure 4.9 shows the fracture profile of the reference, Ni- and V-containing alloys in as-cast and T6 

heat treated conditions. 

It is evident that the fracture path mainly follows the eutectic region as indicated by the arrows in 

Figure 4.9 - a,b. Below to the main fracture, multiples cracks oriented normally to the applied stress  

are observed in both Si-particles and Fe-bearing phases (Fig 4.8). 

In addition, a significant plastic deformation of Al-dendrites is noticed in all the investigated alloys 

(Fig 4.9 - c). 

No significant difference in the fracture path is observed in heat treated alloys. 

 
 
 

                                
 
 
Figure 4.8- BSE micrograph of the sand cast A356 alloy (as-cast) close to the fracture surface,   
                      showing cracked eutectic Si-particles and Fe-bearing compounds. 
 
 
 
SEM micrographs of the fracture surfaces are presented in Figure 4.10. 

Sand cast A356 alloys in both as-cast and T6 conditions, exhibit a mixed ductile-brittle fracture as 

evidenced by the presence of dimples together with quasi-cleaved Si flakes. 

In accordance with previous findings [2], Ni-rich intermetallics compounds are detected in a sand 

cast alloys with 600 ppm Ni (Figure 4.11 a and b). 
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(a)                                                                          (b) 
 

                   
                                  (c)                                                                                 (d) 
 

                              (e)                                                                                 (f) 
 
Figure 4.9- BSE fracture profiles of sand cast reference and Ni/V- containing alloys in as-cast and 
T6 conditions : (a) A356-AC, (b) A356-T6,(c) N-AC,(d) N-T6,(e) V-AC, (f) V-T6, A Si-driven quasi-
cleavage and matrix crack is the main fracture mode, large plastic deformations can be easily 
observed. There are no significant differences in crack paths  between as-cast and T6 heat treated 
alloys. 
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                             (a)                                                                                (b) 
     
Figure 4.10- SEM micrograph of the fracture surface of sand cast A356 reference alloy in as-cast 
(a) and T6 conditions (b) showing the typical features of  mixed ductile-brittle  fracture. Si- flakes 
persist after the T6 heat treatment. 
 
 

   
                                   (a)                                                                                (b) 
     
Figure 4.11- Ni-rich intermetallics compounds detected in a sand cast alloy with 600 ppm Ni, in the 
as-cast condition (a),(b). 
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5    Discussion 
The result will be discussed in three sections. Firstly a general overview of the results obtained will 

be given. Secondly both the sand cast and the T6 conditions will be analysed. 

Finally fracture behaviour will be examined. 

 

5.1    Overview of the results obtained 
Tables 4.1, 4.2 and Figures 4.1, 4.2 summarise the high temperature tensile properties of the 

reference and Ni/V containing alloys in both sand and permanent mould conditions. 

In contrast with previous findings [2], the results obtained clearly show that there are no differences 

between the reference alloy and the Ni- and V- containing alloys. This evidences that neither Ni nor 

V addition (600 and 1000 ppm respectively) exercises a detrimental effect on the tensile properties. 

Rp02 and UTS have small errors bars that indicate the reproducibility and the reliability of the data 

whereas A% errors bars result are larger. This is mostly due to the presence of porosity in the cast 

alloys. 

 

5.2    The as-cast condition and the T6 Condition 
5.2.1   Reference and Ni-containing yield strength increase in the as cast    

           condition 
 
Results obtained in the as-cast condition show an unexpected behaviour. It is know that typically 

tensile properties decrease with increasing temperature. Surprisingly, the sand cast (Figure 4.3) and 

the permanent mould cast (Figure 4.5) alloys, in the as-cast condition, evidence that the yield 

strength increases at high temperature as compared to the room temperature. In accordance with 

what presented in the previous chapter (Chap. 4.2), reference and Ni-containing sand cast samples, 

A356 AC and N AC show an increase in the yield strength Rp02  by 26% and 138% respectively. 

Similar trends are observed in the permanent mould alloys although the effect is less pronounced. 

 

One possible hypothesis is related to the strain hardening occurring at high temperature. Table 5.1 

summarizes the Room temperature vs. High temperature Young’s modulus and Strain Hardening 

Rate (true strain = 0.05%; 0.10%; 0.15%; 0.20%; 0.25% ;0.30%;) of the sand cast reference and 

Ni/V containing alloys in the as-cast condition. Strain hardening is caused by dislocations 
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interacting with each other and with barriers which impede their motion through the crystal lattice. 

Glide of dislocation can be considered a thermally activated process. The rate of strain hardening is 

derived from the slope of the flow curve. A high rate of strain hardening implies mutual obstruction 

of dislocation gliding on intersecting system. This can come about (1) through interaction of the 

stress fields of the dislocations, (2) through interactions which produce sessile locks, and (3) 

through the interpenetration of one slip system by another which results in the formations of 

dislocation jogs [40,41].  The basic equation relating flow stress (strain hardening) to structure is: 

 

                                                             σ0 = σi + αGb                                                                         (1) 

 

Figures 5.1-2 a,b clearly show the influence of the high temperature on the strain hardening. 

As the test continues the phenomenon is gradually recovered till the point in which the failure takes 

place and the ultimate tensile strength (UTS) is reached. As the matter of fact Figures 4.3 and 4.4 

indicate that as the strain increase, the difference between the high and room temperature curves 

becomes smaller. The high temperature tensile test does not affect the microstructure, so that, 

according with the room temperature case, the presence of course flake-like or acicular eutectic Si 

remain the leader parameter in the failure, which explains the similarities between the room 

temperature and the high temperature UTS.  

 

 

Table 5.1- Room temperature vs. High temperature Young’s modulus, E, and Strain Hardening 

Rate, θ, (true strain = 0.05%; 0.10%; 0.15%; 0.20%; 0.25% ;0.30%;) of the sand cast reference 

and Ni/V containing alloys in the as-cast condition 

 

 

Alloy code E ± δ Ɵ  (A= 0,05) ± δ Ɵ  (A= 0,1) ± δ Ɵ  (A= 0,15) ± δ  Ɵ  (A= 0,20) ± δ Ɵ   (A= 0,25) ± δ Ɵ   (A= 0,30) ± δ 

A356-AC  RT 75,1  ± 6,2 92,8 ± 29,4 50,8 ± 6,1 49,7 ± 7,4 34,7 ± 4,1 30,4 ± 3,4 26,8± 3,0 

A356-AC  HT 59,8  ± 3,9 131,5 ± 6,9 59,3 ± 3,7 53,6 ± 2,4 45,2 ± 1,8 38,5 ± 1,4 33,2 ± 1,2 

N-AC RT 78,5 ± 6,6 24,4 ± 5,2 24,4 ± 2,5 20,7 ± 1,9 18,1 ± 1,6 16,2 ± 1,4 14,8 ± 1,2 

N-AC HT 57,6 ± 4,8 57,8 ± 44,1 57,8 ± 3,6 50,9 ± 2,6 43,3 ± 1,9 37,1 ± 0,7 31,9 ± 0,7 

V-AC RT 79,5 ± 8,0 143,1 ± 5,6 70,0 ± 1,8 57,3 ± 1,8 48,5 ± 1,8 41,8 ± 1,6 36,8 ± 1,4 

V-AC HT 58,3 ± 3,7 132,0 ± 9,5 58,9 ± 6,2 53,2 ±¨2,4 44,5 ± 1,6 37,6 ± 1,3 32,3 ± 1,0 
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Figure 5.1 –Comparison between the 
Stress-Strain curves at Room temperature 
and High temperature of (a)A356 
reference,(b)Ni-containing (c) V-containing 
sand cast alloys in the as-cast condition. RT 
and HT in solid and dotted lines 
respectively. 

Figure 5.2– Room temperature vs. High 
temperature Young’s modulus and Strain 
Hardening Rate (true strain = 0.05%; 
0.10%; 0.15%; 0.20%; 0.25% ;0.30%;) of 
(a) A356 reference, (b) Ni-containing, (c) 
V-containing sand cast alloys in the as-
cast condition. RT and HT in solid and 
dotted lines respectively. 
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In order to justify the increase in yield strength at High Temperature, another hypothesis can   be 

evaluated. A temperature of 235°C and an exposure time of 15 minutes, achieved during the high 

temperature tensile test, are believed to be sufficient to promote the precipitation of metastable 

coherent or semi-coherent precipitates, and as a consequence age-hardening occurs. Considering 

both the absence of solution heat treatment and the short time exposure, the efficiency of the 

strengthening mechanism is not comparable with traditional heat treatments, consistently with the 

values of yield strength increase previous discussed (Figures 5.1-2). 

 
5.2.2   The sand cast as-cast Vanadium containing alloys 
 
Casari et al. [2] reported that the higher mechanical strength of sand cast V-containing alloys in the 

as-cast condition (V-AC) was due to solid solution hardening. The V addition into the lattice results 

in high distortion due to the size difference of the Al and the solute atoms. This reduces the 

movement of dislocations and cause an increase in yield stress of the material. The stress fields 

around the solute atoms could interact and eventually ‘’ anchor’’ the dislocations. 

At high temperature the internal stress can be recovered by the lattice deformation. As a result the 

solid solution strengthening is less efficient at 235°C. In fact with respect to the sand cast as-cast 

material, there is no difference in tensile strength comparing the V-containing with Ni- containing 

or reference alloys (A 356 AC HT, N AC HT and V AC HT in Figure 4.3). 

 

 
 
5.2.3    The T6 condition 
 
The strength of the alloys in the T6 condition Figures 4.4 (sand cast) and 4.6 (permanent mould) 

show a small decrease at high temperature as compared to the room temperature. As can be seen, 

UTS drops approximately by 20% for each experimental condition. The heat treatment included 

solutionising at 540°C for 4 h, quench in water bath at 20°C and aging at 160°C for 6 h. It is 

believed that 15 minutes holdning at 235°, can promote an over-aging of the precipitates. The over-

aging results in a transition from small coherent to large un-coherent precipitates. The dislocation 

motion is gradually less impeded and eventually the dislocations pass the precipates by looping. As 

a result the strengths as well as the Hardness decrease. Studies reported that the commercial A356 

modified foundry alloy is strongly susceptible to the aging over a temperatures of 200°C  [42].  
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5.3     Fracture behaviour  
 
Figure 4.11 shows the BSE fracture profiles of sand cast reference and Ni- or V- containing alloys 

in as-cast and T6 condition. Besides the elongation increase approximately by 50% in the high 

temperature samples, the fracture mode is predominantly brittle, as observed in the room 

temperature samples [2].The majority of eutectic Si particles still show an elongated acicular 

morphology even after the solution heat treatment. These elongated eutectic silicon particles 

frequently generate fracture as they are the main sources of stress concentration [43,44], they will 

subsequently connect to produce the main crack. Thus, in the absence of modifier elements e.g. Sr 

or Na, the selected solution heat treatment holding time appears to be insufficient to obtain 

complete necking and spheroidisation of the Si-particles. SEM fracture investigation of the fracture 

surface (Figures 4.11-12) is in line with room temperature findings, and confirms the Si-driven 

quasi cleavage nature of the fracture, as evidenced by the number of cleavage planes and brittle Si-

flakes. Few dimples are detected in the fracture surface. No significant differences in the fracture 

path are observed  between  the as-cast and the T6 treated alloys. 

The alloys studied in this work consist of a soft, low E matrix and hard, high E intermetallics and 

eutectic Si particles. When these alloys are subject to external loads, an inhomogeneity in stress 

distribution results from the discrepancy in the elastic properties between the different phases. 

Similar to a composite material, the stiffer particles generally reinforce the matrix by bearing a 

larger proportion of the applied load. However if the stress induced at the reinforcing particles or at 

the matrix-particle interface exceeds a critical value, then fracture of the particles or decohesion 

occurs [45,46]. Under the high temperature condition, the α-Al matrix is more capable to be 

deform, the internal stress originated by the non- homogeneity is partially recovered at the expense 

of the matrix.  Hence fracture occurs at lower strength values compared with the room temperature 

case, but offer higher elongation. After T6 heat treatment, the precipitation of fine coherent Mg2Si 

dispersoids in the α-Al matrix exerts a strong effect on the tensile properties of both the sand cast 

and permanent mould cast samples. Despite this improvement, the α-Al matrix is prone to crack 

more easily due to the hardening particles, in fact when the fracture of brittle particles begins, the 

following microcrack linking process is faster and leads to a slightly lower ductility compared to the 

corresponding as-cast alloys. 
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6    Conclusion 
 
The influence of Ni and V trace elements on the High temperature tensile properties of as-cast and 

T6 heat treated A356 unmodified foundry alloys in both sand and permanent mould casting process 

were studied in the present work. High Temperature tensile tests were performed to evaluate the 

mechanical properties. Further, microstructural and fractographic investigations were carried out to 

analyse the microstructures features involved in the fracture process. Finally the High temperature 

and Room temperature conditions were compared.  The following conclusion can be drawn from 

this study: 

• There are no differences between the reference alloy and the Ni- and V- containing alloys. 

This evidences that neither Ni nor V addition (600 and 1000 ppm respectively) exercises a 

detrimental effect on the tensile properties. 

• Reference and Ni-containing sand and the permanent mould cast samples, in the as-cast 

condition, evidence that the yield strength increases at High temperature as compared to the 

Room temperature ( by 26% in A356AC  and by 138% in N AC). Two hypotheses are 

proposed. The first one is related to the strain hardening occurring at High temperature 

where, mutual obstruction of dislocation gliding on intersecting system can be considered a 

thermally activated process. The second hypothesis is related to the precipitation-hardening 

mechanism. A temperature of 235°C and an exposure time of 15 minutes, achieved during 

the high temperature tensile test, are believed to be sufficient to promote the precipitation of 

metastable coherent or semi-coherent precipitates. 

• Room temperature sand cast V-containing samples in the as-cast condition (V-AC) show 

higher mechanical strength as compared to the reference and Ni-containing samples, due to 

solid solution hardening exerted by V. At high temperature the internal stress is recovered 

by the lattice deformation. As a result the solid solution strengthening is less efficient at 

235°C. 

• The strength of the alloys in the T6 condition, in both sand and permanent mould castings, 

shows a small decrease at High temperature as compared to the Room temperature. UTS 

drops approximately by 20% for each experimental condition. It is believed that 15 minutes 

holding at 235°C, can promote an over-aging of the precipitates. 

• SEM fracture investigation of the fracture surface is in line with Room temperature findings, 

and confirms the Si-driven quasi cleavage nature of the fracture, as evidenced by the number 

of cleavage planes and brittle Si-flakes. Few dimples are detected in the fracture surface. No 
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significant differences in the fracture path are observed between the as-cast and the T6 

treated alloys. 

• Under the high temperature condition, the α-Al matrix is more capable to be deform, the 

internal stress originated by the non- homogeneity is partially recovered at the expense of 

the matrix.  Hence fracture occurs at lower strength values compared with the room 

temperature case, but offer higher elongation. 
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