
Case study research: the Butterfly Robot

Oskar Rømyhr Lund

Master of Science in Cybernetics and Robotics

Supervisor: Anton Shiriaev, ITK

Department of Engineering Cybernetics

Submission date: January 2018

Norwegian University of Science and Technology



 



Case study research: the ”Butterfly” robot

Oskar Rømyr Lund
Department of Engineering Cybernetics, NTNU

Project description:
Non-prehensile manipulation refers to the art of manipulating an object without grasping
it. Instead, the object may be pushed, thrown, balanced and so on. The concept of
non-prehensile manipulation is highly complicated and needs a ton of research, which is
why this thesis investigates the example of the ”Butterfly” robot. The ”Butterfly” robot
does not depend on prehensile manipulation, but needs to have its motions planned and
stabilized. Deriving an accurate model for the system is crucial because the theoretical
system should behave as closely as possible to the real system. The better the theoretical
model is, the more likely the system is to follow a planned trajectory, and the dependency
on a controller diminishes.

It is of interest to have a thorough investigation of the ”Butterfly” robot, as this system is
highly relevant for the inevitable progress in non-prehensile manipulation. The project
should start all the way from scratch by deriving a model for the system, before a plan on
how to generate feasible motions for the system should be presented.

The following items should be considered:

1. Choose a coordinate system that represents the behaviour of the ”Butterfly” robot
in an efficient manner, and develop a kinematic model of the system.

2. Conduct research surrounding the commonly used assumption in the system
dynamics and determine potential consequences.

3. Investigate motion planning for the underactuated system of the ”Butterfly” robot.

4. Implement the system in a numerical computing program and simulate the findings
of the paper.

Supervisor: Anton Shiriaev

Co-supervisor: Christian Fredrik Sætre

January, 2018





Abstract

Robots that can only manipulate objects by grasping are very restricted and limited in their

actions. Nevertheless, manipulation by grasping remains a common feature for robots, as

it is the easiest way to always maintain control of the states in a system. By developing

non-prehensile manipulation for robots the possibility of robots who can use human ob-

jects, with the same functionality as humans, is feasible and expected. To gain knowledge

of non-prehensile manipulation, a benchmark example known as the ”Butterfly” robot is

studied. The benchmark example from 1998 was meant to propose the challenge of devel-

oping a systematic technique for non-prehensile manipulation of a rolling motion.

This thesis considers an underactuated dynamic model, which is derived with all the sur-

rounding theory carefully explained. Furthermore, a common assumption applied to the

system is investigated to possibly reveal inaccuracies caused by the assumption itself.

Virtual-holonomic-constraints-based motion planning is then applied to the system to find

feasible trajectories for the ”Butterfly” robot.

i



Sammendrag

Roboter som bare kan manipulere objekter ved å gripe er svært begrenset i sine han-

dlinger. Likevel er manipulering ved griping et svært vanlig trekk for roboter. Dette er

fordi det er den enkleste måten å alltid opprettholde kontrollen av statene i systemet. Ved

å videreutvikle ikke-gripende manipulasjon for roboter er muligheten for roboter som kan

bruke menneskelige gjenstander, med samme funksjonalitet som mennesker, mulig og for-

ventet. For å øke kunnskapen om ikke-gripende manipulasjon studeres et referanseeksem-

pel kalt ”Sommerfugl”-roboten. Referanseeksemplet fra 1998 var ment som et forslag for

å utvikle en systematisk teknikk for ikke-gripende manipulering av en rullende bevegelse.

Denne avhandlingen vurderer en under-aktuert dynamisk modell, som er utledet med

all omliggende teori nøye forklart. Videre undersøkes en hyppig brukt antagelse for

å muligens avsløre unøyaktigheter forårsaket av selve antagelsen. Virtual-holonomic-

constraints-basert bevegelsesplanlegging blir deretter utført for å finne fysisk oppnåelige

baner for ”Sommerfugl”-roboten.

ii



Preface

This paper was developed and submitted during Fall 2017 as the final requirement for a

Master of Science in Cybernetics and Robotics at the Norwegian University of Science

and Technology (NTNU). The paper is my thesis and documents my work done on non-

prehensile manipulation of a particular robot called the ”Butterfly” robot.

Acknowledgements

I would like to thank my supervisor, Anton Shiriaev, for guidance and help with under-

standing the system at hand and for encouraging me to define and solve an extremely in-

teresting and fun problem. Thanks are also due to PhD candidate Christian Fredrik Sætre

for always responding and patently helping me when I stumbled over some of the more

complicated topics.

Basis for thesis

The desired goal for this project was to expand the knowledge surrounding the ”Butterfly”

robot and its possibilities. My supervisor, Anton Shiriaev, is one of the world’s leading

experts on the ”Butterfly” robot, and it was he that requested more research about the sys-

tem. There exists a common assumption that vastly simplifies the representation of the

dynamics of the system. The downside of this assumption is that it distances the theoret-

ical dynamics from the actual dynamics, which again might lead to certain consequences

for behaviour of the system. Another topic that is in need of more research is the process

of finding different feasible trajectories, which is a complicated matter.

Naturally, Shiriaev has been my main source throughout the semester, along with one of

his published papers about the ”Bytterfly” robot, [1]. Maksim Surov is a co-author of the

said paper, and with his team he has successfully created an original, functioning ”Butter-

fly” robot to perform experiments with. The robotics lab at NTNU contains two of these

robots, which I had at my disposal. Unfortunately, I did not get to use them due to time

iii



constraints stemming from the vast amounts of theoretical work needed to be done first.

The main contribution from this thesis is the detailed and extensive theoretical work done.

The theoretical work in this thesis was derived with pen and paper, while the experimental

work was solely performed in MATLAB in the form of simulations.

Basic information about the ”Butterfly” robot was discussed with my supervisor. This

included a description of how the system was composed, how the system behaved, and

why the system needed further investigation and research. Also, big concepts like; choice

of coordinate system, previously used assumptions, and finding feasible trajectories were

heavily discussed throughout the year. When more concrete problems occurred, e.g., math-

ematical errors, distorted simulations, or just general information about how the thesis

should be structured, PhD candidate Christian Sætre has helped me. Lastly, since Surov

is responsible for the experimental setup of the ”Butterfly” robot, he has been consulted

about the robot’s physical design and layout.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Dynamics of ”Butterfly” Robot 5

2.1 Derive system dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Reducing Degrees of Freedom . . . . . . . . . . . . . . . . . . . 6

2.1.2 Changing Coordinate System . . . . . . . . . . . . . . . . . . . 7

2.2 Dynamic Equations for the System . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 System Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Constrained Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Validation of System Dynamics . . . . . . . . . . . . . . . . . . 22

v



2.4.2 Validations of Constraints . . . . . . . . . . . . . . . . . . . . . 28

3 Finding Parameters for M,C,G 31

3.1 Description of Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 The Problem of Expressing the Ball’s Center . . . . . . . . . . . 32

3.1.2 System With and Without the Assumption . . . . . . . . . . . . . 33

3.1.3 Motivation to Find a Solution . . . . . . . . . . . . . . . . . . . 35

3.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Overview: Wanted Parameters . . . . . . . . . . . . . . . . . . . 36

3.2.2 Introducing New Angle α . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Finding ~τ , ~n,~κ . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Finding s′ & s′′ . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.5 Representation of φ . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Finding ϕ = g(φ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Derive an Expression for ϕ . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Validation of the Expression . . . . . . . . . . . . . . . . . . . . 50

4 Motion Planning 57

4.1 Virtual Holonomic Constraints . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Underactuated System . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 VHCs General Form . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Reduced Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Finding Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Desired Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Guide to Valid Solution . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Deriving a Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Deriving a VHC . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Discussion 93

5.1 Setup of physical system . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vi



5.2 Evaluate Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Theoretical System Vs. Physical System . . . . . . . . . . . . . . . . . . 97

6 Conclusion and Recommendations for Further Work 99

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . 100

Bibliography 101

Appendix A Frenet Frame 105

Appendix B Euler-Lagrange 107

Appendix C Code 109

vii



List of Tables

3.1 Parameters needed for M , C, G . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Overview of expressions for parameters . . . . . . . . . . . . . . . . . . 46

4.1 Model parameters for simulation . . . . . . . . . . . . . . . . . . . . . . 84

viii



List of Figures

1.1 Schematic view of the ”Butterfly” robot . . . . . . . . . . . . . . . . . . 2

2.1 Six degrees of freedom in Cartesian coordinates . . . . . . . . . . . . . . 6

2.2 Four degrees of freedom in cartesian coordinates . . . . . . . . . . . . . 7

2.3 Pythagoras triangle in the intersection between frame and ball . . . . . . 9

2.4 Four degrees of freedom in polar coordinates . . . . . . . . . . . . . . . 10

2.5 General overview of polar coordinate system . . . . . . . . . . . . . . . 12

2.6 Schematic view of initial conditions . . . . . . . . . . . . . . . . . . . . 26

2.7 Simulation results of the circle dynamics . . . . . . . . . . . . . . . . . . 27

2.8 Simulation results of the general dynamics . . . . . . . . . . . . . . . . . 28

2.9 Simulation results of the forces . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Closeup and notation of system . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Illustration of when simplification is close to valid . . . . . . . . . . . . . 34

3.3 Illustration of when simplification is far from valid . . . . . . . . . . . . 34

3.4 Closeup of the top-right corner of the butterfly: Introducing α . . . . . . 38

3.5 Closeup of subpart ABD . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Closeup with curvature notifications included . . . . . . . . . . . . . . . 40

3.7 Closeup of α angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Closeup of the top-right corner of the butterfly: Finding ϕ . . . . . . . . . 48

3.9 Link between circular shape and δ(φ) . . . . . . . . . . . . . . . . . . . 51

3.10 Circular frame balancing a ball on top . . . . . . . . . . . . . . . . . . . 52

3.11 Behaviour of ϕ for a full rotation around a circle . . . . . . . . . . . . . . 52

3.12 Link between elliptical shape and δ(φ) . . . . . . . . . . . . . . . . . . . 53

ix



3.13 Elliptical frame balancing a ball on top . . . . . . . . . . . . . . . . . . . 54

3.14 Behaviour of ϕ for a full rotation around an ellipse . . . . . . . . . . . . 54

3.15 Link between butterfly shape and δ(φ) . . . . . . . . . . . . . . . . . . . 55

3.16 Butterfly frame balancing a ball on top . . . . . . . . . . . . . . . . . . . 56

3.17 Behaviour of ϕ for a full rotation around the butterfly frame . . . . . . . . 56

4.1 The pendulum’s different behaviour dependent on the initial physical push 63

4.2 Phase portrait illustrating system behaviour of pendulum . . . . . . . . . 63

4.3 Positions mapped for a full rotation . . . . . . . . . . . . . . . . . . . . . 72

4.4 Determining constant for chosen VHC . . . . . . . . . . . . . . . . . . . 74

4.5 π periodic α-function always greater than zero . . . . . . . . . . . . . . . 75

4.6 Examening condition on VHC . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Checking system for asymptote . . . . . . . . . . . . . . . . . . . . . . . 76

4.8 Equilibrium points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Classifying equilibrium points based on sign of γ
′(ϕ)
α(ϕ) . . . . . . . . . . . 79

4.10 Phase trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Periodic motion of VHC and its derivatives . . . . . . . . . . . . . . . . 81

4.12 Schematic view of initial conditions for simulations . . . . . . . . . . . . 85

4.13 Complete phase trajectory for designed solution ϕ? . . . . . . . . . . . . 86

4.14 Selected phase trajectory ϕ? (cut from of Figure 4.13) . . . . . . . . . . . 87

4.15 Constraint forces parameterized by ϕ . . . . . . . . . . . . . . . . . . . . 87

4.16 Actual phase trajectory for solution ϕ? . . . . . . . . . . . . . . . . . . . 88

4.17 Angular position of ball and frame for solution q? . . . . . . . . . . . . . 88

4.18 Angular velocity of ball and frame for solution q̇? . . . . . . . . . . . . . 89

4.19 Constraint forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.20 Actuation force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.21 Relationship between generalized coordinates given by Θ(ϕ) . . . . . . . 90

4.22 Phase trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.23 Constraint forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



A.1 The unit tangent and principal normal vectors for a curve . . . . . . . . . 105

xi



List of Symbols

The International System of Units (SI) is used for all the variables/symbols. ”The body

fixed frame” or ”the body frame” refers to the body fixed frame of the figure eight shape,

not the fixed frame of the ball. The ”intersection point” refers to the contact point between

the ball and the frame. These default notations are used unless otherwise specified.

Symbols Units Description

xf - x position of the frame’s center

yf - y position of the frame’s center

θf = θ rad Rotation from inertial to fixed body frame

xb = x - x position of the ball’s center

yb = y - y position of the frame’s center

θb rad Rotation from inertial to fixed body frame of ball

~eii - Directional unit vector

R m Effective radius of ball

Rf m Radius of the frame

Rb m Radius of the ball

rf m Half the distance between the two plates of figure eight

w m The ball’s distance from the ideal curve

ψ rad Rotation from body frame to the ball’s body frame

ϕ rad Rotation from the body frame to the ball’s position

φ rad Rotation from the body frame to the intersection point

α rad Angle between the tangent at point (x’,y’) and x’-axis

k̂ - Unit vector in z-direction

xii



~δ = ~δ(φ) - Vector from the origin to the intersection point

~ρ = ~ρ(ϕ) - Vector from the origin to the center of the ball

s = s(ϕ) - Natural parameter of the curve formed by ~ρ

sf = sf (φ) - Natural parameter of the curve formed by ~δ

~τ := d~ρ
ds - Unit tangent vector for ball

~τf := d~δ
dsf

- Unit tangent vector for frame

~n := k̂ × ~τ - Unit normal vector for ball

~nf := k̂ × ~τf - Unit normal vector for frame

~κ := d2~ρ
ds2 - Curvature vector for the ball’s path

~κf := d2~δ
ds2f

- Curvature vector for the frame

~rf m Position of frame

~vf m s−1 Velocity of frame

~ωf rad s−1 Angular velocity of frame

~rb m Position of ball

~vb m s−1 Velocity of ball

~̂ωb rad s−1 Angular velocity of the ball about its own rotation

~ωb rad s−1 Angular velocity of the ball

x′ - x-coordinate relative to the body frame

y′ - y-coordinate relative to the body frame

x̄ - x-coordinate relative to the inertial frame

O - Origin of the inertial and body fixed frame

Π(θ) - Three-dimensional rotation matrix

Kf,ω J Rotational kinetic energy of frame

Kb,ω J Rotational kinetic energy of ball

Kb,v J Translational kinetic energy of ball

K J Total kinetic energy

P J Total potential energy

~g m s−2 Gravitational acceleration

m kg Mass of ball

Jf kg m2 Mass moment of inertia of frame

Jb kg m2 Mass moment of inertia of ball

xiii



u kg m s−2 Actuator of the frame

q - Vector of generalized coordinates

M(q) - The inertia matrix

C(q, q̇) - The Corilois and centrifugal matrix

G(q) - Gravity vector

B(q) - Coupling matrix

~Fb N Forces acting on the ball

Fn N Reaction force in the normal direction at intersection point

Fs N Friction force at the intersection point

µ - Friction coefficient of intersection point

~ξ - Vector representing position on butterfly shape

Υ - Matrix for differentiation of ξ

Θ(ϕ) - Virtual holonomic constraint

xiv



Chapter 1
Introduction

1.1 Background and Motivation

The study of non-prehensile manipulation is highly relevant as robotic technology is get-

ting more and more advanced. Trying to manipulate objects with more degrees of freedom

than what can be directly actuated makes non-prehensile manipulation challenging in both

theoretical and practical work. The goal is to make robots capable of manipulating human

objects with the same functionality as humans themselves. Humans can control nonlin-

ear systems and adapt to environments very well, while robots struggle because of the

high complexity. Working in the robots advantage is their high bandwidth and quick sen-

sors, which no human reaction can compete with. By developing robots to perform more

complex actions, like walking on two legs [2][3], managing independent objects [4][5]

or any other non-prehensile motion, they will eventually become a valued asset to every-

day life. Some potential benefits to mastering non-prehensile manipulation could be new

robot primitives, simpler manipulators, flexibility, increased workspace size and increased

workspace dimensionality. For a more detailed explanation of these potential benefits, see

[6], while an introduction to non-prehensile manipulation and the ”Butterfly” robot can be

viewed in1.

1https://www.youtube.com/watch?v=V30e77x8BQA

1



Chapter 1. Introduction

In cases of underactuated robots where the control system cannot directly influence all the

degrees of freedom, manipulation becomes difficult [7]. The system has to have dynam-

ics that represent both the robot and the object that is being manipulated. A benchmark

example of one of these systems was published in 1998 by Lynch et al [8]. This bench-

mark example is called the ”Butterfly” robot and involves continuously manipulating a ball

rolling around what is a butterfly-shaped frame. Two identical figure eight shaped plates

are rigidly placed parallel to each other with a gap smaller than the diameter of the ball

between them, as seen in Figure 1.1. An actuator is attached to the plates which controls

the movement of the frame and thereby indirectly controls the ball’s motion. The ball is

driven by the force of gravity and is not attached to the frame, which means that it could

depart from the frame if not properly controlled.

Figure 1.1: Schematic view of the ”Butterfly” robot

This thesis has based its methodologies of the work of Surov and Shiriaev et al [1]. The

work done in [1] was published 17 years after the benchmark example was introduced,

and it displayed their ability to accurately model the system dynamics of the ”Butterfly”

robot and to plan feasible continuous one-directional motions for the ball on the frame.

The published paper omitted the details of their approach, but proved that there existed a

2



1.2 Outline of the Thesis

functioning solution to the system. Surov and his coworkers are the leading researchers

on the ”Butterfly” robot and have built a successful physical system where they perform

experiments2. Other papers about the ”Butterfly” robot have not achieved as accurate and

favorable results, e.g. [9] due too oversimplifications or [10] due to analytical errors.

Using continuous motion to generate stability is very useful and could be applied to more

than just the ”Butterfly” robot. Bipedal robots is an example of systems that could benefit

from further research in this field. Continuing the work of [1] is highly relevant for not only

this specific system, but for non-prehensile manipulation in general. This thesis focuses

on an analytical analysis of the ”Butterfly” robot and how feasible motions for the robot

can be found.

1.2 Outline of the Thesis

This thesis is organized as follows; the choice of generalized coordinates and the dynamics

of the system are given in Chapter 2. The process of finding parameters for the system,

with and without a common assumption, are located in Chapter 3. An introduction to vir-

tual holonomic constraints, a guide to motion planning and results are provided in 4. The

results are discussed in Chapter 5, along with a discussion about the leap from theoretical

work to the physical robot. Lastly, a conclusion and future work is presented in Chapter 6

Note: The notifications of a vector ~a & a are equivalent and interchangeable with each

other. ~a is used throughout the paper, while a is used in the Appendix. This is because

there are clusters of calculations which look cleaner without the arrow above the variable.

Another important distinction is the difference between ȧ & a′. While ȧ is always differ-

entiating with respect to time, a′ is differentiating with respect to the variable the function

is given by, e.g. a′(x) = da/dx and a′(y) = da/dy. Both of these notes are worth

mentioning even though they are well known mathematical facts.

2https://www.youtube.com/watch?v=kyvW5sOcZHU

3



Chapter 1. Introduction

4



Chapter 2
Dynamics of ”Butterfly” Robot

The first step in any control problem is to derive the system dynamics. This allows for a

greater understanding of the system and will be a natural first step in creating a model that

represents the physical behaviour of the ”Butterfly” robot. This chapter uses a Langrangian

approach to step by step derive the equations of motion for the system.

2.1 Derive system dynamics

Before deriving the system dynamics there are certain assumptions about the ”Butterfly”

robot that needs to be specified. First and foremost, the frame and ball are solid, rigid

bodies which will not deform, meaning that there will not be line contact between the ball

and frame. Secondly, both the frame and ball are assumed to be smooth objects without

any imperfections to disturb motion. Thirdly, they are also assumed to have a uniform

distribution of mass, which means that they both have a center of mass in their geometric

center. The final assumption made is that the frame is constructed by two rigid figure eight

shaped plates, as depicted in Figure 1.1, which are identical and perfectly aligned with one

another, thereby ensuring the ball a 2-D rolling surface.

5



Chapter 2. Dynamics of ”Butterfly” Robot

2.1.1 Reducing Degrees of Freedom

The assumptions mentioned gives the opportunity to represent the ”Butterfly” robot as a

two-dimensional system, as can be seen in Figure 2.1. The system is here divided into

three separate frames; the reference frame (span of ~e 0
1 & ~e 0

2 ), the body fixed frame for

the figure eight shape (span of ~e 1
1 & ~e 1

2 ), and the body fixed frame for the ball (span of

~e 2
1 & ~e 2

2 ). Note that the figure eight shaped plates that make up the frame of the robot is

also referred to as the frame throughout the paper. This can be confusing, so it is important

to look at the context in which it is used.

~e 1
1

~e 1
2

~e 2
1

~e 2
2

θf θb

xf

yf

xb

yb

~e 0
1

~e 0
2

Figure 2.1: Six degrees of freedom in Cartesian coordinates

There are three degrees of freedom per rigid body (frame and ball), making it six degrees

of freedom for the whole system. Horizontal displacement, vertical displacement and the

body fixed frame’s rotation compared to the reference frame is respectively represented by

(xi, yi, θi), where i is a variable of frame or ball. Figure 2.1 clearly illustrates the corre-

6



2.1 Derive system dynamics

sponding degrees of freedom and how they describe the robots behaviour.

An actuator is driving a rotating axing that is attached through the center of mass of the

robot frame (also the geometric center). This is the only motor, and thereby the only

external control the ”Butterfly” robot contains. By moving the inertial reference frame’s

origin to the body fixed frame centerpoint, the displacement of the robot frame will be

constant (xf = yf = 0). Figure 2.2 is a closeup of the top right corner of the system,

where the new position of the reference system is illustrated. This imposed constraint

reduces the degrees of freedom from six to four; (xf , xb, yf , yb, θf , θb)→ (x, y, θf , θb).

~e 1
1

~e 1
2

~e 2
1

~e 2
2

θf

θb

x

y

~e 0
1

~e 0
2

Figure 2.2: Four degrees of freedom in cartesian coordinates

2.1.2 Changing Coordinate System

Cartesian coordinates poorly describes how the two objects that make up the ”Butterfly”

robot are linked together. Both rigid bodies are independently represented, which can be

impractical when analyzing how the two objects work together, e.g. if the ball is even in

contact with the frame. There are of course many different ways to represent the system,

and many ways one could change the coordinate system. A practical coordinate system

7



Chapter 2. Dynamics of ”Butterfly” Robot

is the priority, and therefore a polar coordinate system is introduced. The new coordinate

system, and the manner in which it is implemented, was first introduced by Surov and

Shiriaev at el [1].

Assuming that there will be no line contact, as mentioned before, leaves two other possi-

bilities;

1. The ball has no contact with the frame, resulting in two independent systems where

there is no way to control the motion of the ball.

2. The ball is in point contact with the frame, resulting in a ideal situation where the

motion of the ball can be affected by the actuated frame. The ball rests between two

plates, technically creating two points of contact, but an undramatic simplification

is here applied to create just one point of contact. This simplification will not have

any significant effect on the derived mechanics. Note that the mentioned setup will

make it so the radius of the ball Rb is not the distance from the center of the ball to

the point contact on the frame. This distance is called the effective radius R and is

found by applying Phytagoras theorem to the triangle depicted in Figure 2.3,

R =
√
R2
b − r2

f , (2.1)

where rf is half the distance between the two plates.

A variablew is introduced as a degree of freedom to decide which of the two circumstances

mentioned above the system resides in. Together with another new degree of freedom s,

they represent the position of the ball in reference to the body frame of the figure eight

shape. If desired behaviour with point contact between the ball and frame is achieved, a

smooth curve with an offset of the effective radius R is created by tracing the center of

mass for the ball along the curvature traveled, as Figure 2.4 shows.

~ρ denotes the vector from origin to the point closest to the ball’s center on this curva-

ture, while s denotes the curve from the initial starting position of the body frame of the

8



2.1 Derive system dynamics

figure eight shape to the position of ~ρ, depicted by the thick, black arc length in Figure

2.4. Every location of ~ρ can therefore be represented by the arc length s, resulting in a

re-parametrization of ~ρ = ~ρ(s).

R

rf

Rb

Figure 2.3: Pythagoras triangle in the intersection between frame and ball

By implementing the Frenet frame (see Appendix A) to the curvature, the so-called tan-

gent ~τ , normal ~n, and curvature ~κ unit vectors can be introduced. The tangent and normal

vectors are perpendicular unit vectors that form a basis at any point on the curve as shown

in Figure 2.4. Their definitions are as follows; ~τ := d~ρ
ds , ~κ := d~τ

ds and ~n := k̂ × ~τ , with the

unit vector k̂ = [0, 0, 1]T .

Now s represents the traveled distance of the ball’s center along the offset curve, and w

represents the ball’s distance from the ideal curve. By using these two degrees of freedom,

the position of the ball with respect to the body fixed frame of the figure eight shape can

be expressed as

rb = ~ρ+ w~n, (2.2)

where w = 0 is point contact and w > 0 is when the ball has departed from the frame.

9



Chapter 2. Dynamics of ”Butterfly” Robot

R

w

~n

~τ

~e 2
1

~e 2
2

~e 1
1

~e 1
2

~ρ(s)

θ

ϕ
ψ

~e 0
1

~e 0
2

s

Figure 2.4: Four degrees of freedom in polar coordinates

To tansform the orientation of the ball to the body fixed frame of the figure eight shape,

a third degree of freedom ψ is introduced. This new variable is the rotation between the

robot’s two body fixed frames (the figure eight shape and the ball). A fourth and last degree

of freedom θ is introduced to represent the rotation between the inertial reference frame

and the body fixed frame of the figure eight shape. The configuration of the overall system

can thereby be expressed by a new set of variables with respect to the inertial reference

frame. The change of coordinates (x, y, θf , θb) → (s, w, ψ, θ) has yielded a more conve-

nient system when working on the control design of the ”Butterfly” robot. This new and

practical set of generalized coordinates yields immediate information about the location

of the ball with respect to the frame and is useful for control purposes.

10



2.2 Dynamic Equations for the System

2.2 Dynamic Equations for the System

The dynamic equations, or ”the equations of motion”, for a physical system (e.g. the

”Butterfly” robot) is a mathematical description of the system’s behaviour by the use of

dynamic variables. The dynamics of a system are general and can be derived by various

approaches, most commonly by either Newton’s second law or Euler–Lagrange’s equa-

tions. In this thesis an Euler-Langrangian approach will be used to derive the equations of

motion. For a more in-depth description of the concept of equations of motion, see [11].

To get a thorough understanding of a Langrangian approach and the benefits it can bring,

see [12] to follow a simpler, yet similar control problem called ”Cart-Pendulum.”

2.2.1 System Constraints

In order to reduce the complexity of the system, two assumptions are made. These as-

sumptions’ purpose is to reduce the degrees of freedom so that the system is easier to

work with. The first assumption made is:

• At any time moment, the ball and frame have one point of contact.

Since the ball and frame have one point of contact at all time without any deformation,

w = 0, making this free variable redundant. This has removed the worry of mathematically

expressing the instant when the ball elevates from the frame, leaving no way to control the

ball. The second assumption made is:

• The ball rolls without slipping.

The ball’s center will now always move along the offset curve without the intersection

point ever sliding. Both assumptions contribute to constraining the system, reducing the

degrees of freedom from four to two (s, w, ψ, θ) → (θ, ϕ). The two variables can suffi-

ciently describe the configuration of the system, as 2.5 displays. θ is now an angle repre-

senting the orientation of the figure eight frame relative to the inertial coordinate system

Ox̄ȳ, while ϕ is an angle representing the orientation of the ball’s center relative to the

body fixed coordinate system of the figure eight shape Ox′y′.

11



Chapter 2. Dynamics of ”Butterfly” Robot

O

~n

~τ
s(ϕ)

x’

y’

θ

ϕ

~ρ(ϕ)

x̄

Figure 2.5: General overview of polar coordinate system

2.2.2 Kinematics

The kinematic equations of the system are derived to represent the motion of the two ob-

jects in the ”Butterfly” robot. The position ~ri, the velocity ~vi and the angular velocity ~ωi

of both the frame and ball are examined.

Frame

The center of mass of the figure eight frame is located at the origin of rotation, which is

also the origin of both the inertial frame of reference and the body fixed frame. This fact

results in

~rf = ~vf = [0, 0, 0]T , (2.3)

~ωf = θ̇k̂. (2.4)

12



2.2 Dynamic Equations for the System

Ball

Combining (2.2) with the constraint of one contact point results in ~ρ representing the center

of the ball measured from the origin of the x’-y’ coordinate system, seen in Figure 2.5. The

position in the inertial frame is therefore given by

~rb =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ~ρ = Π(θ)~ρ, (2.5)

where Π(θ) is a three-dimensional rotation matrix about the z-axis, translating the expres-

sion to the inertial frame. See [13] for more information about the rotation matrix Π. For

convenience, Π is used instead of Π(θ) in certain expressions to increase readability.

The velocity of the ball is found by differentiating the position with respect to time. Arc

length is defined as s :=
∫ ϕ

0
‖ d~ρ
dϕ ‖ dϕ, which is dependant on ϕ. This is used in the

following derivation of the ball’s velocity,

~vb =
d~rb
dt

= Π̇~ρ+ Π
d~ρ

dt
= ωf × (Π~ρ) + Π

d~ρ

ds

ds

dϕ

dϕ

dt
= θ̇k̂ × (Π~ρ) + Π~τs′ϕ̇. (2.6)

Using the constraint mentioned where the ball is assumed to not slip while rolling, the

angular velocity of the ball about its own center rotation is expressed as

~ωbcenter = − 1

R
ṡk̂ = − 1

R
s′ϕ̇k̂. (2.7)

The overall angular velocity is therefore given by

~ωb = ~ωf + ~ωbcenter = θ̇k̂ − 1

R
s′ϕ̇k̂ = (θ̇ − 1

R
s′ϕ̇)k̂. (2.8)

2.2.3 Energy

To find the equations of motion, the system’s kinetic and potential energy must be ana-

lyzed. The kinematics from the previous subsection are inserted into the definitions of

the energies defined here. The frame and ball differs in contribution of both potential and

13



Chapter 2. Dynamics of ”Butterfly” Robot

kinetic energy, and the energies are therefore studied separately.

Kinetic Energy
The kinetic energy of the system is defined as

K = Kf +Kb, (2.9)

where f represents frame and b represents ball.

Kf/b =
1

2

n∑
i=1

(
mi~vi · ~vi + Ii~ωi · ~ωi

)
, (2.10)

with the ball’s mass m, translational velocity ~v, moment of inertia I , angular velocity ~ω.

Frame

Kf =
1

2
m~vf · ~vf +

1

2
Jf~ωf · ~ωf .

There is rotational energy from the frame, derived in (2.4), as the actuator can move it

around, but there is no linear energy (2.3). This gives the following kinetic energy of the

frame,

Kf =
1

2
Jf θ̇

2. (2.11)

Ball

Kb =
1

2
m~vb · ~vb +

1

2
Jb~ωb · ~ωb.

The ball has both translational and rotational energy, see (2.6) and (2.8). This gives the

14



2.2 Dynamic Equations for the System

following kinetic energy of the ball,

Kb =
1

2
m

((
θ̇k̂ × (Π~ρ) + Π~τs′ϕ̇

)
·
(
θ̇k̂ × (Π~ρ) + Π~τs′ϕ̇

))
+

1

2
Jb

((
θ̇ − 1

R
s′ϕ̇
)
k̂ ·
(
θ̇ − 1

R
s′ϕ̇
)
k̂

)
=

1

2
m

(
θ̇2
(
k̂ × (Π~ρ)

)
·
(
k̂ × (Π~ρ)

)︸ ︷︷ ︸
||~ρ||2

+2s′θ̇ϕ̇
(
Π~τ
)
·
(
k̂ × (Π~ρ)

)︸ ︷︷ ︸
k̂ · (~ρ× ~τ)

+s′2ϕ̇2 ~τTΠTΠ~τ︸ ︷︷ ︸
1

)

+
1

2
Jb

(
θ̇2 − 2

R
s′θ̇ϕ̇+

1

R2
s′2ϕ̇2

)
=

1

2
m

(
θ̇2||~ρ||2 + 2s′θ̇ϕ̇

(
k̂ · (~ρ× ~τ)

)
+ s′2ϕ̇2

)
+

1

2
Jb

(
θ̇2 − 2

R
s′θ̇ϕ̇+

1

R2
s′2ϕ̇2

)
.

(2.12)

Total Kinetic Energy

With both the separate kinetic energies calculated, the total kinetic energy of the system

equals

K = Kf +Kb

=
1

2

(
Jf + Jb +m||~ρ||2

)
θ̇2 +

(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′θ̇ϕ̇+

1

2

(
m+

Jb
R2

)
s′2ϕ̇2.

(2.13)

Potential Energy
The potential energy of the system is defined as

P = Pf − Pb, (2.14)

where f represents frame and b represents ball.

Pf/b =
1

2

n∑
i=1

(
mi~g · ~ri

)
, (2.15)

with the gravitational acceleration ~g = [0, g, 0]T and the position of particular body ~r.

15



Chapter 2. Dynamics of ”Butterfly” Robot

Frame

Pf = mf~g · ~rf .

There is no gravitational force acting on the frame, and there is therefore no potential

energy of the frame. Another way to see this is that the frame is centered at the origin and

the position is therefore zero (2.3),

Pf = 0. (2.16)

Ball

Pb = m~g · ~rb.

The ball’s position is affected by the gravitational force as it rolls around the frame and is

defined in (2.5).

Pb = m~g · (Π~ρ). (2.17)

Total Potential Energy

The gravitational force acting on the ball is the only potential energy in the system and the

total potential energy is therefore expressed as

P = Pf + Pb

= m~g · (Π~ρ).
(2.18)

2.2.4 Equations of Motion

The assumptions from Subsection 2.2.1 makes it possible to model the system with the

generalized coordinates q = [θ, ϕ]T . This reduction of the degrees of freedom will sim-

plify the equations of motion (EoM) substantially. To find the EoM, the energy derived in

16



2.2 Dynamic Equations for the System

the previous section will be used. Firstly, the Langrangian is defined as

L = K − P

=
1

2

(
Jf + Jb +m||~ρ||2

)
θ̇2 +

(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′θ̇ϕ̇

+
1

2

(
m+

Jb
R2

)
s′2ϕ̇2 −m~g · (Π~ρ).

(2.19)

The Euler-Langrange equation uses the Langrangian to derive the EoM. The Euler-Langrange

equations for this system, defined in (B.7), are presented as

d

dt

[
dL
dθ̇

]
− dL
dθ

= u, (2.20a)

d

dt

[
dL
dϕ̇

]
− dL
dϕ

= 0. (2.20b)

The expressions of (2.20) can then be reformulated to represent the equations of motion

seen below.

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, (2.21)

where u is the actuator driving the rotating figure eight frame and thereby affecting θ, and

B(q) = [1, 0]T is a coupling matrix function defined by the location of the controlled gen-

eralized forces affecting the system. To get a deeper understanding of how this previous

and following process is done, see Appendix B.

The three algorithms presented in (2.22) is a workaround of the path from the Euler-

Langrange equation presented in (2.20) to the full EoM presented in (2.21). The three

algorithms gives a shortcut to achieving the inertia matrixM(q), the Coriolis and centrifu-

gal matrix C(q, q̇) and the gravity matrix G(q) used in the EoM.

mij :=
∂

∂q̇i

(
∂K
∂q̇j

)
, (2.22a)

cjk :=
2∑
i=1

cijk(q)q̇i, cijk(q) =
1

2

[
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk

]
, (2.22b)

gi :=
∂P
∂qi

. (2.22c)

17



Chapter 2. Dynamics of ”Butterfly” Robot

The Inertia Matrix: M(q)

Using the algorithm in (2.22a) gives the following expressions,

m11 =
∂

∂θ̇

(
∂K
∂θ̇

)
= Jf + Jb +m||~ρ||2,

m12 =
∂

∂θ̇

(
∂K
∂ϕ̇

)
=
(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′,

m21 =
∂

∂ϕ̇

(
∂K
∂θ̇

)
= m12,

m22 =
∂

∂ϕ̇

(
∂K
∂ϕ̇

)
=
(
m+

Jb
R2

)
s′2,

which again leads to the inertia matrix,

M(q) =

 Jf + Jb +m||~ρ||2
(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′(

mk̂ · (~ρ× ~τ)− Jb
R

)
s′

(
m+ Jb

R2

)
s′2

 . (2.23)

The Coriolis and Centrifugal Matrix: C(q, q̇)

In order to use the algorithm in (2.22b), certain sub-expressions are necessary.

∂mij

∂θ
= 0, ∀ i, j = 1, 2

∂m11

∂ϕ
= 2ms′~ρ · ~τ ,

∂m12

∂ϕ
=
∂m21

∂ϕ
=
(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′′ +

(
mk̂ · (~ρ× ~κ)

)
s′2,

∂m22

∂ϕ
= 2
(
m+

Jb
R2

)
s′s′′,

c111 =
1

2

[
∂m11

∂θ

]
= 0,

c112 =
1

2

[
2
∂m21

∂θ
− ∂m11

∂ϕ

]
= −ms′~ρ · ~τ ,

c121 =
1

2

[
∂m11

∂ϕ

]
= ms′~ρ · ~τ ,

c122 =
1

2

[
∂m22

∂θ

]
= 0,

18



2.2 Dynamic Equations for the System

c211 =
1

2

[
∂m11

∂ϕ

]
= ms′~ρ · ~τ ,

c212 =
1

2

[
∂m22

∂θ

]
= 0,

c221 =
1

2

[
2
∂m12

∂ϕ
− ∂m22

∂θ

]
=
(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′′ +

(
mk̂ · (~ρ× ~κ)

)
s′2,

c222 =
1

2

[
∂m22

∂ϕ

]
=
(
m+

Jb
R2

)
s′s′′.

These calculations, together with the algorithm, gives the following,

c11 = c111θ̇ + c211ϕ̇ = ms′~ρ · ~τϕ̇,

c12 = c121θ̇ + c221ϕ̇ = ms′~ρ · ~τ θ̇ +

[(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′′ +

(
mk̂ · (~ρ× ~κ)

)
s′2
]
ϕ̇,

c21 = c112θ̇ + c212ϕ̇ = −ms′~ρ · ~τ θ̇,

c22 = c122θ̇ + c222ϕ̇ =
(
m+

Jb
R2

)
s′s′′ϕ̇,

which again leads to the following Coriolis and centrifugal matrix,

C(q, q̇) =

 ms′~ρ · ~τϕ̇ ms′~ρ · ~τ θ̇ +

[(
mk̂ · (~ρ× ~τ)− Jb

R

)
s′′ +

(
mk̂ · (~ρ× ~κ)

)
s′2
]
ϕ̇

−ms′~ρ · ~τ θ̇
(
m+ Jb

R2

)
s′s′′ϕ̇

 .
(2.24)

The Gravity Vector: G(q)

Using (2.22c) gives the following gravity vector elements,

g1 =
∂P
∂θ

= m~g · (Π′~ρ),

g2 =
∂P
∂ϕ

= m~g · (Π~τs′),

which leads to the gravity vector,

G(q) =

m~g · (Π′~ρ)

m~g · (Π~τs′)

 . (2.25)

where Π′ = dΠ/dθ.

19



Chapter 2. Dynamics of ”Butterfly” Robot

2.3 Constrained Dynamics

It is important to note that even though it is assumed that the ball never leaves the frame and

that the ball never slips while rolling, that there are no guarantees that these assumptions

will not be violated. By introducing the reaction force in the normal direction between

the ball and the frame Fn and the friction force between the ball and the frame Fs, the

assumptions can be represented by the two said forces. For the ball to never leave the

frame,

Fn > 0, (2.26)

and for the ball not to slip,

Fs ≤ µFn, (2.27)

where µ is the friction coefficient between ball and frame. Conditions on Fn and Fs are

mathematically calculated to display the restrictions needed on the forces to make sure the

assumptions are not broken. By choosing the material of the frame and ball, the friction

coefficient can be manually determined. A sufficiently large µ is chosen to always satisfy

the condition (2.27).

To find a restriction that satisfies condition (2.26), and thereby automatically satisfies

(2.27), it is necessary to derive the reaction forces. This can be achieved by applying

Newton’s second law to the ball,

∑
~F = m~a,∑
~Fb = Π ~Fn + Π ~Fs −m~g

= FnΠ~n+ FsΠ~τ −m~g = m
d~vb
dt
.

(2.28)

To be able to derive Fn and Fs, the acceleration ~ab = d~vb/dt needs to be found. The

20



2.3 Constrained Dynamics

velocity of the ball ~vb = θ̇k̂ × (Π~ρ) + Π~τs′ϕ̇, derived in (2.6), is differentiated with

respect to time.

d~vb
dt

= θ̈
(
k̂ × (Π~ρ)

)
+ θ̇
(

0× (Π~ρ)︸ ︷︷ ︸
= 0

+k̂ × d(Π~ρ)

dt

)
+
d

dt

(
Π~τs′ϕ̇

)
= θ̈k̂ × (Π~ρ) + θ̇

(
k̂ × Π̇~ρ︸ ︷︷ ︸

= 0

+k̂ ×Π
d~ρ

dt

)
+ Π̇~τs′ϕ̇+ Π

d~τ

dt
s′ϕ̇+ Π~τ

ds′

dt
ϕ̇+ Π~τs′ϕ̈

= θ̈k̂ × (Π~ρ) + θ̇k̂ ×Π
(d~ρ
ds

ds

dϕ

dϕ

dt

)
+
(
θ̇k̂ × (Π~τ)︸ ︷︷ ︸

θ̇Π~n

)
s′ϕ̇+ Π~κs′2ϕ̇2 + Π~τs′′ϕ̇2 + Π~τs′ϕ̈

= θ̈k̂ × (Π~ρ) + θ̇k̂ ×Π~τs′ϕ̇︸ ︷︷ ︸
θ̇Π~ns′ϕ̇

+θ̇Π~ns′ϕ̇+ Π~κs′2ϕ̇2 + Π~τs′′ϕ̇2 + Π~τs′ϕ̈

= 2Π~ns′θ̇ϕ̇+ Π~κs′2ϕ̇2 + Π~τs′′ϕ̇2 + Π~τs′ϕ̈+ θ̈k̂ × (Π~ρ)

Find Fn

Left multiply (2.28) with (Π~n)T ,

Fn (Π~n)TΠ~n︸ ︷︷ ︸
= 1

+Fs (Π~n)TΠ~τ︸ ︷︷ ︸
= 0

−(Π~n)Tm~g = (Π~n)Tm
d~vb
dt
,

Fn = m(Π~n)T
[
d~vb
dt

+ ~g

]
= m(Π~n)T

[
2Π~ns′θ̇ϕ̇+ Π~κs′2ϕ̇2 + Π~τs′′ϕ̇2 + Π~τs′ϕ̈+ θ̈k̂ × (Π~ρ) + ~g

]
= m(Π~n)T

[
2Π~ns′θ̇ϕ̇+ Π~κs′2ϕ̇2 + θ̈k̂ × (Π~ρ) + ~g

]
,

(2.29)

with (Π~n)T (Π~τ) = 0.

Find Fs

Left multiply (2.28) with (Π~τ)T ,

Fn (Π~τ)TΠ~n︸ ︷︷ ︸
= 0

+Fs (Π~τ)TΠ~τ︸ ︷︷ ︸
= 1

−(Π~τ)Tm~g = (Π~τ)Tm
d~vb
dt
,

21



Chapter 2. Dynamics of ”Butterfly” Robot

Fs = m(Π~τ)T
[
d~vb
dt

+ ~g

]
= m(Π~τ)T

[
2Π~ns′θ̇ϕ̇+ Π~κs′2ϕ̇2 + Π~τs′′ϕ̇2 + Π~τs′ϕ̈+ θ̈k̂ × (Π~ρ) + ~g

]
= m(Π~τ)T

[
Π~κs′2ϕ̇2 + Π~τs′′ϕ̇2 + Π~τs′ϕ̈+ θ̈k̂ × (Π~ρ) + ~g

]
,

(2.30)

with (Π~τ)T (Π~n) = 0.

Fn > 0 will make sure there is no elevation between the ball and the frame and Fs ≤ µFn
will make sure the ball rolls with no slip. If these constraints are broken, the system be-

comes invalid and unstable.

2.4 Model Evaluation

An evaluation of the system dynamics derived is done to make sure the results are credible,

reliable and transferable to a physical system. First the validation of the model dynamics

are discussed, before looking into the validation of the associated constraints.

2.4.1 Validation of System Dynamics

To make sure the derived model of the ”Butterfly” robot is an accurate representation of the

actual system, the model is evaluated. The system dynamics in (2.23)-(2.25) are derived

as general dynamics, and should be valid for any frame used, e.g. butterfly, ellipse, circle,

etc. To validate the derived dynamics, they will be compared to a new set of dynamics,

which are derived specifically for a circle. By comparing these circle-specific dynamics

with the general dynamics where the shape is chosen to be a circle, the general dynamics

will either be confirmed as correct or they will be exposed as incorrect.

Deriving the specific dynamics of a circle frame balancing a ball on top of itself is substan-

tially simpler than for a butterfly frame. The simplicity of the dynamics for a circle reduces

22



2.4 Model Evaluation

the chance of mathematical errors in the calculations, making it a well suited comparison-

partner to validate the general dynamics. The derivation of the kinematics, energies and

EoMs will not be as elaborate as for the general dynamics, as this thesis have already

shown the step-by-step process in Section 2.2.

The frame is chosen as δ(φ) = Rf , whereRf is the radius of the circle. Note that since the

frame has the shape of a circle, the two angles φ and ϕ are always identical. The distance

from the origin to the center of the ball isRδ = Rf +R all around the frame. The position

of the ball is defined as ~ρ = Rδ~ξ(φ), with ~ξ(φ) = ~ξ(ϕ) representing the position on the

frame.

Kinetic Energy
Frame

Kf =
1

2
m~vf · ~vf +

1

2
Jf~ωf · ~ωf ,

~vf = 0 (no linear energy),

~ωf = θ̇k̂ (in z-direction),

Kf =
1

2
Jf θ̇

2. (2.31)

Ball

Kb =
1

2
m~vb · ~vb +

1

2
Jb~ωb · ~ωb,

~rb = ΠRδ~ξ,

~vb =
d~rb
dt

= Π̇Rδ~ξ + ΠRδ
d~ξ

dt
= ωf × (ΠRδ~ξ) + ΠRδ~ξ

′ϕ̇,

~ωb = ~ωf + ~ωbcenter = θ̇k̂ − 1

R
s′ϕ̇k̂ = (θ̇ − 1

R
s′ϕ̇)k̂,

23



Chapter 2. Dynamics of ”Butterfly” Robot

Kb =
1

2
m

((
θ̇k̂ × (ΠRδ~ξ) + ΠRδ~ξ

′ϕ̇
)
·
(
θ̇k̂ × (ΠRδ~ξ) + ΠRδ~ξ

′ϕ̇
))

+
1

2
Jb

((
θ̇ − 1

R
s′ϕ̇
)
k̂ ·
(
θ̇ − 1

R
s′ϕ̇
)
k̂

)
=

1

2
m

(
θ̇2
(
k̂ × (ΠRδ~ξ)

)
·
(
k̂ × (ΠRδ~ξ)

)︸ ︷︷ ︸
||Rδ~ξ||2 = R2

δ

+2s′θ̇ϕ̇
(
ΠRδ~ξ

′) · (k̂ × (ΠRδ~ξ)
)︸ ︷︷ ︸

k̂ · (Rδ~ξ × Rδ~ξ′) = −R2
δ

+R2
δϕ̇

2 ~ξ′TΠTΠ~ξ︸ ︷︷ ︸
1

)
+

1

2
Jb

(
θ̇2 − 2

R
s′︸︷︷︸
Rδ

θ̇ϕ̇+
1

R2
s′2︸︷︷︸
R2
δ

ϕ̇2

)

=
1

2
m

(
θ̇2R2

δ − 2R2
δs
′θ̇ϕ̇+R2

δϕ̇
2

)
+

1

2
Jb

(
θ̇2 − 2Rδ

R
θ̇ϕ̇+

R2
δ

R2
ϕ̇2

)
.

(2.32)

Total Kinetic Energy

K = Kf +Kb

=
1

2

(
Jf + Jb +mR2

δ

)
θ̇2 −Rδ

(
mRδ +

Jb
R

)
θ̇ϕ̇+

R2
δ

2

(
m+

Jb
R2

)
ϕ̇2.

(2.33)

Potential Energy

Frame

Pf = mf~g · ~rf ,

~rf = 0,

Pf = 0. (2.34)

Ball

Pb = m~g · ~rb,

~rb = ΠRδ~ξ,

Pb = m~g · (ΠRδ~ξ). (2.35)

24



2.4 Model Evaluation

Total Potential Energy

P = Pf + Pb

= m~g · (ΠRδ~ξ).
(2.36)

Equation of Motion: Finding M(q), C(q, q̇), & G(q) for Circle
Once again, the algorithms in (2.22) are used to derive the matrices of the EoM. The inertia

matrix is found with (2.22a),

m11 =
∂

∂θ̇

(
∂K
∂θ̇

)
= Jf + Jb +mR2

δ ,

m12 =
∂

∂θ̇

(
∂K
∂ϕ̇

)
= −Rδ

(
mRδ +

Jb
R

)
,

m21 =
∂

∂ϕ̇

(
∂K
∂θ̇

)
= m12,

m22 =
∂

∂ϕ̇

(
∂K
∂ϕ̇

)
= R2

δ

(
m+

Jb
R2

)
,

M(q) =

 Jf + Jb +mR2
δ −Rδ

(
mRδ + Jb

R

)
−Rδ

(
mRδ + Jb

R

)
R2
δ

(
m+ Jb

R2

)
 . (2.37)

Since the inertia matrix M(q) is constant, all the elements of the Coriolis and centrifugal

matrix C(q, q̇) become zero, as (2.22b) shows,

∂mij

∂θ
=
∂mij

∂ϕ
= 0,

c11 = c12 = c21 = c22 = 0,

G(q, q̇) = 0. (2.38)

The gravity vector function is found with (2.22c),

g1 =
∂P
∂θ

= m~g · (Π′Rδ~ξ),

g2 =
∂P
∂ϕ

= m~g · (ΠRδ~ξ′),

25



Chapter 2. Dynamics of ”Butterfly” Robot

G(q) =

m~g · (Π′Rδ~ξ)
m~g · (ΠRδ~ξ′)

 , (2.39)

where ξ′ = dξ/dφ = dξ/dϕ.

Comparison
The new-found dynamics and the general dynamics are compared to see if they produce

identical system behavior. They are also compared with what one would expect in reality.

The two scenarios will be simulated with a ball rolling on their frame. The initial condi-

tions used for the comparison are (θ0, ϕ0, θ̇0, ϕ̇0) = (0, π/2, 0, 0), shown in Figure 2.6.

Since θ0 = 0, the inertial frame is identical to the body frame of the circle. This means

that the inertial frame is hidden underneath the body frame of the circle. Note that there is

no actuation u = 0 in either of the two simulations. The simulation parameters are shown

in Table 4.1, and the corresponding results are shown in Figure 2.7 and Figure 2.8.

x’

y’

~ρ

θ = 0

ϕ = π
2

Figure 2.6: Schematic view of initial conditions

The simulations clearly show that the direct dynamics of a circle and the general dynamics

produce the exact same results (Figure 2.7 VS. Figure 2.8). This substantially enforces the

belief of correct system dynamics, but there is still a small chance of errors in both derived

systems. The next step is to compare the results to what one would expect in reality. This

26



2.4 Model Evaluation

will exclude the possibility of two incorrect systems.

Since the simulations are modelled without any damping, the ball should theoretically

make infinite oscillations on the frame. Figure 2.7c shows the phase plot of the system, and

it clearly illustrates oscillating behaviour with both the angle ϕ and the angular velocity

ϕ̇ rising and sinking in a circular fashion. More information about phase trajectories will

occur later in the thesis, when motion planning is being discussed. There is no actuation

on the system and the initial conditions places the ball at the midpoint section of the circle.

This leads to the expected behaviour of oscillations between ϕ = π
2 rad and ϕ = 3π

2

rad, which is exactly what Figure 2.7a depicts. Figure 2.7b gives a description of the

relationship between the two angles ϕ (representing the ball’s center relative to the body

fixed coordinate system) and θ (representing the body frame relative to the inertial frame).

This relationship shows that a big increase in ϕ will lead to a fractional decrease in θ, as

the two angles are defined in opposite directions. This makes sense with what is expected

in reality as the ball slightly rotates the frame in the same direction as the ball travels past

the bottom point of the circle, slightly shifting the weight of the system from side to side.

This behavior between the two angles can be seen in Figure 2.7a. confirming the expected

behaviour.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1
2π

π

3
2π

Time [s]

A
ng

le
[r

ad
]

θ(t)
ϕ(t)

(a) Behaviour of the degrees
of freedom

1
2π

π 3
2π

0

ϕ [rad]

θ
[r

ad
]

(b) Relationship between gen-
eral coordinates

1
2π

π 3
2π

−10

−8

−6

−4

−2

0

2

4

6

8

10

ϕ [rad]

ϕ̇
[r

ad
/s

]

(c) Phase trajectory

Figure 2.7: Simulation results of the circle dynamics

27



Chapter 2. Dynamics of ”Butterfly” Robot

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1
2π

π

3
2π

Time [s]

A
ng

le
[r

ad
]

θ(t)
ϕ(t)

(a) Behaviour of the degrees
of freedom

1
2π

π 3
2π

0

ϕ [rad]

θ
[r

ad
]

(b) Relationship between gen-
eral coordinates

1
2π

π 3
2π

−10

−8

−6

−4

−2

0

2

4

6

8

10

ϕ [rad]

ϕ̇
[r

ad
/s

]

(c) Phase trajectory

Figure 2.8: Simulation results of the general dynamics

Since the modelled system dynamics are identical and in accordance with the expected

behaviour of reality, it can be concluded that the model of (2.21) is reliable. Another form

of verification of the authenticity of the derived model can be found in [1], where the

dynamics mirror the ones presented in (2.21)-(2.25).

2.4.2 Validations of Constraints

The constraints of (2.26) and (2.27), derived from the assumptions that the ball never slips

or leaves the frame, are evaluated here. The evaluation will use the same example as for

the validation of the dynamics; ball rolling on circle frame. The goal here is not to sat-

isfy the constraints, but to make sure that the forces are acting in accordance with reality,

thereby confirming the authenticity of the expressions in (2.26) and (2.27).

The previously found angular behaviour of the ball and frame are repeated in Figure 2.9a,

while the corresponding forces are showed in Figure 2.9b. Since the ball is oscillating on

the bottom half of a circular frame, the normal forces are expected to be less than zero,

meaning that the ball in reality would depart from the frame. This behaviour can be seen

by the normal force in the simulation. At the initial position ϕ = π
2 rad, the normal force

is defined as Fn = 0 N. Fn then decreases as the ball ’rolls’ down the frame, until ϕ = π

rad (very bottom of the frame), where the normal force starts to increase and the ball starts

to roll upwards. The ball then ’rolls’ up the frame and the normal force goes all the way

back up to Fn = 0 N as ϕ = 3π
2 rad. This gives the normal force in Figure 2.9b a periodic

28



2.4 Model Evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1
2π

π

3
2π

Time [s]

A
ng

le
[r

ad
]

θ(t)
ϕ(t)

(a) Behaviour of the degrees of freedom

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
·10−2

Time [s]

Fo
rc

e
[N

]

Fn
Fs

(b) Behaviour of the normal and friction forces

Figure 2.9: Simulation results of the forces

motion with twice the period of the angle ϕ in Figure 2.9a. The no-slip constraint (2.27) is

heavily dependent on the normal force Fn and the friction coefficient µ. The behaviour of

the slip force Fs is therefore deemed less important to investigate. However, there is one

crucial behavior which is defined by the slip force; since the initial slip force is less than

the gravitational force, the ball accelerates and starts its rolling motion.

Since the forces of the system are in accordance with the expected behaviour of reality, it

can be concluded that the normal force of (2.29), the slip force of (2.30), and the corre-

sponding constraints of (2.26) and (2.27) are reliable.

29



Chapter 2. Dynamics of ”Butterfly” Robot

30



Chapter 3
Finding Parameters for M,C,G

The next step after finding the system dynamics is to actually find the parameters used to

describe the system. The representations seen in equations (2.23), (2.24) and (2.25) are

all dependent on parameters which can be difficult to derive. Because of the difficulty in

deriving accurate parameters, an assumption can be implemented, massively decreasing

the complexity of the math. This chapter will derive the parameters for both cases, with

and without the assumption. The two will then be compared to see if there is in fact any

substantial difference. The problem behind this assumption and the assumption itself is

first introduced, before a step by step method derives the two solutions.

3.1 Description of Problem

The general coordinates q = [θ, ϕ]T are two free variables which are meant to describe

the system, i.e. to represent the position of both the frame and the ball, and how they are

positioned relative to each other. There is, however, no analytical expression present for

the angle ϕ. There is therefore no analytical expressions for s(ϕ) and ~ρ(ϕ), see Figure 3.1,

since they are dependent on the variable ϕ. The previous solution to this issue has been to

use a look-up-table containing numerical values, where a certain value binds the ball to a

specific position on the frame. This look-up-table represents an approximation enforced

on the system, which results in a less accurate physical system. Before the search for an

31



Chapter 3. Finding Parameters for M,C,G

answer to this problem begins, it is important to figure out why a solution is needed.

3.1.1 The Problem of Expressing the Ball’s Center

There is no way to always represent the center of the ball analytically with the angle ϕ

as the function variable for all cases. There is, however, a way of representing the center

of the ball if the ball is firmly planted on the robot frame. In other words, if the ball is

following the curve of the butterfly shape with an offset of R, creating the arc length s.

This fact can be used to find the center of the ball. By knowing the shape of the robot it

is possible to find a vector ~δ from the origin to the intersection point between the frame

and ball. This new vector is dependent on an angle φ, which is the angle between the body

frame of the robot and the vector ~δ, as seen in Figure 3.1. The vector is given as

~δ(φ) = δ(φ)


sinφ

cosφ

0

 = δ(φ)~ξ, (3.1)

with δ usually given as δ(φ) = a − b cos(2φ), since this function achieves the butterfly

shape of the robot seen in figures throughout this paper. By changing the variable δ, the

shape of the frame is changed (e.g. circle or ellipse). Note that the representation for

zero degrees is straight up and not to the right, unlike the normal angle-representation of

a unit circle. The x-position therefore gets represented by sinus and the y-position gets

represented by cosine. Also note ~ξ = [sin(φ), cos(φ), 0]T , as this vector was used in the

previous derivation of the circle dynamics, and will continue to be an essential tool in the

derivation of the parameters describing the dynamics.

Using the normal vector ~n of the intersection point between the frame and ball, together

with the effective radius of the ball R, the distance from the origin to the center of the ball

can be expressed by

~ρ
(
ϕ(φ)

)
= ~δ(φ) +R~n(φ), (3.2)

which can be visually verified by Figure 3.1. This method only works when the ball is in

32



3.1 Description of Problem

contact with the frame. The instant the ball looses contact with the frame, the representa-

tion becomes invalid due to the fact that the function assumes the distance from the frame

to the ball is the effective radius R at all times.

R

~n

~τ

x’

y’

~ρ(ϕ)

~δ(φ)

θ

ϕ

φ

x̄

s

Figure 3.1: Closeup and notation of system

3.1.2 System With and Without the Assumption

The previous subsection clearly showed that there is a distinction between the angle rep-

resenting the center of the ball and the angle representing the intersection point. Never-

theless, a common assumption for the ”Butterfly” robot is to assume these two angles are

identical, namely that ϕ = φ. This is the commonly used assumption mentioned in the

project desciption. Figure 3.2 shows an example where the frame of the robot is very large

compared to the size of the ball. The two vectors ~ρ and ~δ are almost identical, which makes

the assumption ϕ = φ close to valid. Figure 3.3 shows an example where the robot frame

33



Chapter 3. Finding Parameters for M,C,G

is the same size as before, but the ball has increased considerable in size. The two vectors

~ρ and ~δ are now far from identical, making the assumption ϕ = φ invalid.

O

x’

y’

~ρ ~δ

x̄

Figure 3.2: Illustration of when simplification is close to valid

O

x’

y’

~ρ ~δ

x̄

Figure 3.3: Illustration of when simplification is far from valid

34



3.1 Description of Problem

3.1.3 Motivation to Find a Solution

There is always a desire to mathematically express the system in the most exact way pos-

sible. Unfortunately, this cannot always be achieved due to over-complexity, or due to the

amount of resources needed to achieve it. If the assumption gives negligible differences

in the results when compared to the exact system, the assumption can be considered ac-

ceptable. Analytically achieving an exact mathematically representation of the ”Butterfly”

robot has been attempted in [10], where the conclusion confirmed the high complexity

of the system and suggested the use of easier shapes (e.g. circle) before looking at more

advanced shapes (e.g. butterfly). Even with the knowledge that this is a highly complex

system, an attempt will be made to achieve an analytical representation without the as-

sumption ϕ = φ. This will lead to a more accurate system compared to the look-up-table

method previously used by some researchers.

The reasoning behind this improved accuracy lies within the inertia matrix M(q) and the

Coriolis and centrifugal matrix C(q, q̇), located in (2.23) and (2.24). The assumption

ϕ = φ gives a new vector describing the center of the ball. The difference from the one

defined in (3.2) can be seen here,

~ρϕ=φ = ~δ +R~ξ, (3.3a)

~ρϕ6=φ = ~δ +R~n. (3.3b)

~ρ is a frequently used vector in describing the dynamics of the system through the matrices

M(q) and C(q, q̇). This means that the small difference in representing ~ρ will affect the

system dynamics. The inertia matrixM(q) uses the vector ~ρ, as well as a differentiation of

the vector. Differentiating the small deviance between ~ρϕ=φ and ~ρϕ6=φ will lead to an even

bigger error, adding to the already mentioned difference between the two vectors. The

Coriolis and centrifugal matrix C(q, q̇) also performs this differentiation, not only once,

but twice. This will again lead to an even bigger error.

35



Chapter 3. Finding Parameters for M,C,G

With the knowledge concerning the size difference between the frame and the ball gained

in the previous subsection, a suggestion could be to always use a big frame and a small

ball. But importantly, this analytical problem is not reduced to just the ”Butterfly” robot.

This issue affects all kinds of shapes and solving it could help other problems using non-

prehensile manipulation. There is therefore a big desire to find a general analytical expres-

sion which will work for every shape. In this thesis there are three shapes that are used for

verification of the expression derived: circle, ellipse and butterfly. Making one expression

that works for all three shapes is considered a valid solution and a success. There might

be an infinite number of shapes to validate, but there is neither room nor time to try all of

them in this paper. Now that the problem itself is established, a step by step review will be

presented, showing how the required parameters for the dynamics are derived.

3.2 Curvature

To understand how to derive the parameters needed, a deep understanding of curvature

and offset curves is required. The parameters heavily depend on the derived expressions

for ~τ , ~n and ~κ. Figure 3.6 depicts the curvature vectors. Note the distinction of vectors

with and without the subscription f . The vectors with the letter f refers to the vectors of

the frame, which are separate from the vectors needed to calculate the parameters. This

is a very important distinction, as s and sf do not have the same curvature at every point.

When the ball is in point contact with the frame, as is assumed in this paper, the complexity

is somewhat reduced. This will be explained when deriving the curvature of the system.

3.2.1 Overview: Wanted Parameters

To get a better understanding of what is known and what is unknown, Table 3.1 is created.

This gives an overview of the wanted parameters, needed by the equations of motion in

(2.23)-(2.25).

36



3.2 Curvature

Table 3.1: Parameters needed for M , C, G

Known
m Jf Jb R

k̂ ~g Π(θ) Π′(θ)

Unknown
~ρ(ϕ) ~τ(ϕ) ~κ(ϕ) s′(ϕ)

s′′(ϕ)

The known parameters are either constants dependent on the system dimensions used

(m,Jf , Jb, R), constant vectors (k̂, ~g) or rotational matrices (Π,Π′). The structure of the

rotational matrices themselves are known, even though the parameter they depend on, θ, is

unknown for now. More about the general coordinates θ and ϕ in the next chapter, under

Section 4.1.

The shape of the butterfly frame is known, while the shape of the offset shape given by the

ball’s center is unknown. To find the unknown parameters describing this offset curve, seen

in Table 3.1, a translation from the known shape to the unknown shape must take place.

The vector describing the known butterfly shape ~δ(φ) is defined in (3.1) and repeated

here, along with the definition of ~ξ(φ). To increase simplicity for further calculations, the

following is defined for ~ξ(φ) and ~δ(φ),

~ξ =


sinφ

cosφ

0

 , (3.4a)

~ξ′ =


cosφ

− sinφ

0

 =


0 1 0

−1 0 0

0 0 0

 ~ξ = Υ~ξ, (3.4b)

~ξ′′ =


− sinφ

− cosφ

0

 = −~ξ, (3.4c)

37



Chapter 3. Finding Parameters for M,C,G

~δ = δ~ξ, (3.5a)

~δ′ = δ′~ξ + δ~ξ′ = (δ′I + δΥ)~ξ, (3.5b)

~δ′′ = δ′′~ξ + 2δ′Υ~ξ − δ~ξ = (δ′′I + 2δ′Υ− δI)~ξ. (3.5c)

3.2.2 Introducing New Angle α

~n

~nf
~τ

~τf

sf

s

~ρ
~δ

α α

π
2 − α

π
2 − α

ϕ

φ

x’

y’

A
B

C

Figure 3.4: Closeup of the top-right corner of the butterfly: Introducing α

Figure 3.4 is a tight closeup of the top-right corner of the ”Butterfly” robot, where the robot

frame and the arc length describing the ball’s path are displayed by the two dotted lines

sf and s. A new angle α is introduced to help in the process of analytically expressing

certain expressions. The new variable α is the angle between the tangent at a point and the

38



3.2 Curvature

positive direction of the x’-axis. The definition given to α, described here, is valid for all

shapes and curves. Figure 3.4 gives a visual understanding of the information explained.

Three intersection points (A,B & C) are included in the figure to easily isolate the triangle

created by these notations and to increase the understandability in the following mathe-

matical processes dependent on this isolated triangle.

A
B

C

~n

~τ

~τx

~τy

α

α

Figure 3.5: Closeup of subpart ABD

The subpart ABC of Figure 3.4 is presented in Figure 3.5. Virtual lines, represented by

dotted lines in Figure 3.5, are inserted into the figure to create two parallel lines with

another line crossing them both, called a transversal. The transversal makes it possible to

express the angle α at the intersection point C, in the little virtual triangle created from the

tangent vector ~τ and the normal vector ~n. The tangent and normal vectors are dependent

on the angle φ, so the expression for α also becomes dependent on φ. An expression for α

becomes

|~τx| = τx, |~τy| = τy,

α(φ) = arctan

(
−τy(φ)

τx(φ)

)
,

τx =
~δ′x(φ)

||~δ′(φ)||
, τy =

~δ′y(φ)

||~δ′(φ)||
,

39



Chapter 3. Finding Parameters for M,C,G

α(φ) = arctan

(−~δ′y(φ)

~δ′x(φ)

)
,

with ~δ′x and ~δ′y given by (3.5b), resulting in

α(φ) = arctan

(
δ(φ) sin(φ)− δ′(φ) cos(φ)

δ(φ) cos(φ) + δ′(φ) sin(φ)

)
. (3.6)

3.2.3 Finding ~τ , ~n,~κ

.

R

~n

~τ

~nf

~τf

~nf

~τf
κf > 0

κf = 0

κf < 0

sf

s

~ρ

~δ

Figure 3.6: Closeup with curvature notifications included

Having defined expressions to represent ~δ, ~δ′, ~δ′′ and αmakes it possible to find the vectors

for the tangent, the normal and the curvature. The fact that the ball and frame has one point

of contact results in identical tangent and normal vectors for the frame and ball, see Figure

3.6. By using the definition of (A.1) the tangent vector becomes

~τ =
d~ρ

ds
, ~τf =

d~δ

dsf
, ~τ = ~τf ,

40



3.2 Curvature

~τ = ~τf =
~δ′

||~δ′||
. (3.7)

The normal vector is defined in (A.2) as

~n = k̂ × ~τ , ~nf = k̂ × ~τf , ~n = ~nf ,

but a different representation of ~n is used due to that representation’s simplicity when dif-

ferentiating the term. The terms ~n, ~n′, ~n′′ are all used at a later stage in the thesis and a

simplistic representation is therefore wanted. All three expressions can easily be expressed

by the angle α. A closeup of the representation of α is shown in Figure 3.7, where the link

between the normal vector and α can be studied.

~nx

~n

~nyπ
2
− αα

α

α

Figure 3.7: Closeup of α angle

|~nx| = nx, |~ny| = ny, |~n| = 1,

nx = |~n| cos(
π

2
− α) = cos(

π

2
) cos(α) + sin(

π

2
) sin(α) = sin(α),

ny = |~n| sin(
π

2
− α) = sin(

π

2
) cos(α) + cos(

π

2
) sin(α) = cos(α),

nx(φ) = sin
(
α(φ)

)
,

n′x(φ) = cos
(
α(φ)

)
α′(φ),

n′′x(φ) = − sin
(
α(φ)

)
α′(φ)2 + cos

(
α(φ)

)
α′′(φ),

41



Chapter 3. Finding Parameters for M,C,G

ny(φ) = cos
(
α(φ)

)
,

n′y(φ) = − sin
(
α(φ)

)
α′(φ),

n′′y(φ) = − cos
(
α(φ)

)
α′(φ)2 − sin

(
α(φ)

)
α′′(φ),

~n =


sin(α)

cos(α)

0

 , (3.8a)

~n′ =


cos(α)

− sin(α)

0

α′, (3.8b)

~n′′ =


− sin(α)

− cos(α)

0

α′2 +


cos(α)

− sin(α)

0

α′′. (3.8c)

The process of deriving the curvature vector ~κ of the ball’s path is a little more complex.

The idea is to use the curvature vector of the frame ~κf and somehow find the offset curva-

ture vector ~κ by using this achievable ~κf . The curvature constant κf is signed, meaning

that the curvature can change from positive to negative, and from negative to positive.

When the tangent vector rotates counterclockwise the following applies: κf > 0, and

when the tangent vector rotates clockwise: κf < 0. The point where the curve changes

from concave to convex is called an inflection point, κf = 0. These features can be seen in

Figure 3.6. The curvature describes the amount of change the tangent vectors go through

along the curve, while the tangent vectors describes the change of the curve itself. The

definition of curvature is given in Appendix A as

~κ =
d~τ

ds
, ~κf =

d~τf
dsf

, ~κ 6= ~κf .

42



3.2 Curvature

The expression for curvature is taken from [14], where more information about the deriva-

tion of curvature can be explored. The curvature of the frame can be defined as

κf =
||~δ′ × ~δ′′||
||~δ′||3

.

The product of the curvature and the normal tangent will represent how the curve behaves

and how it bends.

The challenge of finding the translation from κf into κ starts by looking at ~ρ in relativity

to the arc length of the frame sf . The next step is to use the definition of tangent vector

and the Frenet formulas defined in (A.3),

d~ρ

dsf
=

d~δ

dsf
+R

d~nf
dsf

= ~τf −Rκf~τf = (1−Rκf ) ~τf .

Thus the arc lengths relative to each other becomes

ds

dsf
= 1−Rκf ,

which gives the following definition for ~κ,

~κ =
d2~ρ

ds2
=
d~τ

ds
=
d~τf
ds

=
dsf
ds

d~τf
dsf

=
κf~nf

1−Rκf
= κ~n.

The curvature of the offset curve is then

~κ = κ~n, κ =
κf

1−Rκf
. (3.9)

As long as the denominator of the offset curve is positive, meaning R < 1
κf

, the offset

curve is smooth. IfR = 1
κf

, a cusp appears. This cusp represents a singularity in the offset

curve. This will also occur for R > 1
κf

.

43



Chapter 3. Finding Parameters for M,C,G

3.2.4 Finding s′ & s′′

The parameters found in the previous subsection stay the same for both systems, with and

without the assumption φ = ϕ. The arc length s and its derivatives s′, s′′, however, do not

stay the same for the two approaches. Derivation of s′ and s′′ will first be done for the

system with no assumption, before turning to the system including the assumption.

The arc length s and its derivatives are redefined here for convenience,

s(ϕ) =

∫ ϕ

0

∣∣∣∣∣∣∣∣ d~ρdϕ
∣∣∣∣∣∣∣∣dϕ, s′ =

ds(ϕ)

dϕ
, s′′ =

d2s(ϕ)

dϕ2
. (3.10)

Without assumption φ 6= ϕ

The center of the ball is now represented by ~ρϕ6=φ = ~δ + R~n from (3.3b). A relationship

between φ and ϕ needs to be found. The relationship chosen in this thesis is ϕ = g(φ),

which will be explained and discussed in the next session. For now it is assumed that

g(φ), g′(φ) and g′′(φ) are feasible and valid. Using these expressions, together with the

previously found (3.5) and (3.8), the parameters s′ and s′′ are derived,

s′ =

∣∣∣∣∣∣∣∣ d~ρdφ dφdϕ
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ d~ρdφ
∣∣∣∣∣∣∣∣dφdϕ =

∣∣∣∣∣∣∣∣ d~δdφ +R
d~n

dφ

∣∣∣∣∣∣∣∣[dϕdφ
]−1

=
∣∣∣∣~δ′ +R~n′

∣∣∣∣ 1

g′(φ)
. (3.11)

Note that
∣∣ dφ
dϕ

∣∣ > 0 due to the definition of the two angles φ and ϕ, and it can therefore be

extracted from the magnitude. The product rule is used when differentiating s′ to achieve

s′′. The expression in (3.11) is defined as

p(·) = s′,

where p is a temporary function used for calculation purposes only. The same goes for the

function h, which is defined as

h(·) = ~δ′ +R~n′,

h′(·) = ~δ′′ +R~n′′.

44



3.2 Curvature

These definitions make the following calculations become more transparent. The function

p is differentiated with respect to φ, which is used in the upcoming differentiation with

respect to ϕ.
dp

dφ
=

d

dφ
||h|| 1

g′(φ)
− ||h|| g

′′(φ)

g′(φ)2
,

where differentiating the magnitude of a vector is defined as

d

dφ
||h|| = h · h′

||h||
.

Combining all this information leads to the wanted expression,

dp

dϕ
=
dp

dφ

dφ

dϕ
=

(
d

dφ
||h|| 1

g′(φ)
− ||h|| g

′′(φ)

g′(φ)2

)[
dϕ

dφ

]−1

.

Inserting the full expressions of h and h′ gives the final expression,

s′′ =
dp

dϕ
=
h · h′

||h||
1

g′(φ)2
− ||h|| g

′′(φ)

g′(φ)3

=

(
~δ′ +R~n′

)
·
(
~δ′′ +R~n′′

)
||~δ′ +R~n′||

1

g′(φ)2
− ||~δ′ +R~n′|| g

′′(φ)

g′(φ)3
.

(3.12)

With assumption φ = ϕ

The center of the ball is now represented by ~ρϕ=φ = ~δ+R~ξ from (3.3a). A helpful feature

of the assumption is that since φ = ϕ ⇒ dφ
dϕ = 1 ⇒ g′(φ) = 1 and g′′(φ) = 0. Also

note that since φ = ϕ ⇒ ~n = ~ξ. Inserting these features into (3.11) and (3.12) gives the

expressions,

s′ =
∣∣∣∣~δ′ +R~ξ′

∣∣∣∣, (3.13)

s′′ =

(
~δ′ +R~ξ′

)
·
(
~δ′′ +R~ξ′′

)
||~δ′ +R~ξ′||

. (3.14)

45



Chapter 3. Finding Parameters for M,C,G

3.2.5 Representation of φ

All the work done in the previous subsection is summed up in Table 3.2. The parame-

ters are all dependent on φ, which is an angle without any form of representation at the

moment. Finding a link between ϕ and φ is therefore crucial to solving the expressions

in Table 3.2. The most straightforward approach would be to find φ = f(ϕ) since ϕ is

one of the generalized coordinates, while φ is not. The search for this function has been

pursued in [10], where a direct inverse relation from ϕ = g(φ) → φ = g(ϕ)−1 = f(ϕ)

was attempted. The conclusion from [10] suggested that this relationship might not exist.

Table 3.2: Overview of expressions for parameters

With assumption (φ = ϕ) Without assumption (φ 6= ϕ)

~ρ(φ) = ~δ +R~ξ ~δ +R~n

~τ (φ) =
~δ′

||~δ′||

~δ′

||~δ′||

~κ(φ) =
||~δ′ × ~δ′′||

||~δ′||3 −R||~δ′ × ~δ′′||
~n

||~δ′ × ~δ′′||
||~δ′||3 −R||~δ′ × ~δ′′||

~n

s′(φ) = ||~δ′ +R~ξ′|| ||~δ′ +R~n′|| 1
g′

s′′(φ) =

(
~δ′ +R~ξ′

)
·
(
~δ′′ +R~ξ′′

)
||~δ′ +R~ξ′||

(
~δ′ +R~n′

)
·
(
~δ′′ +R~n′′

)
||~δ′ +R~n′||

1

g′2

−||~δ′ +R~n′|| g
′′

g′3

This thesis will explore a different expression for the relationship, and it will also avoid the

necessity of finding a direct expression for the relationship. The fact that the relationship

46



3.3 Finding ϕ = g(φ)

φ = f(ϕ) is a property of curvature makes it very complex and incredible hard to solve,

even with help from mathematical tools like Maple and MATLAB. The idea here is to find

ϕ = g(φ) and use this expression to derive values for the parameters, as Table 3.2 shows.

The need for the expression of φ = f(ϕ) therefore diminishes, and the new challenge

becomes to find an expression for ϕ = g(φ) instead.

After finding ϕ = g(φ), a spline is fitted to the function using MATLAB. This spline is

then a close-to-exact representation of φ = f(ϕ). This is a minor simplification which

gives a very good representation of φ. The simplification is far less dramatic than the as-

sumption of φ = ϕ, and will have a next-to-nothing effect on the results. This new found

representation of φ will be used for simulating purposes. The math of the parameters will

still be accurate.

3.3 Finding ϕ = g(φ)

The expression of g is an important discovery and will be used throughout the thesis.

Recently, s′ and s′′ were defined as dependent on g, and it is therefore important to derive

an expression for ϕ = ϕ(φ) = g(φ). An analytical process will be used, along with visual

aids from geometric figures to find the correct expression.

3.3.1 Derive an Expression for ϕ

Figure 3.8 is a tight closeup of the top-right corner of the ”Butterfly” robot, where the

robot frame and the arc length describing the ball’s path are displayed by the two dotted

lines sf and s. The center of the ball is located at (x’,y’), which is a representation relative

to the robot frame’s body frame. The following method is dedicated to finding several

ways to represent the point (x’,y’), before the representations are manipulated to find an

expression for angle ϕ. It is worth mentioning again that upwards, along the y’-axis, is

considered zero degrees, while to the right, along the x’-axis, is considered 90 degrees.

Angles ϕ and φ show this phenomenon in Figure 3.8, where they start from the positive

47



Chapter 3. Finding Parameters for M,C,G

y’-axis and move towards the positive x’-axis to increase the angle.

R

~n

~τR~n

|~ρy|

|~ρx|

|~δy|

|~δx|

R|~nx|

R|~ny|

(x’, y’)sf

s

~ρ

~δ

ϕ

φ

x’

y’

Figure 3.8: Closeup of the top-right corner of the butterfly: Finding ϕ

Using a mathematical approach, disregarding if an angle is in fact expressible or not,

makes it possible to represent the vector ~ρ stretching from the origin to the center of the

ball in two different ways. The first one (3.15a) is a composition of two vectors explained

in (3.2), while the other one (3.15b) goes directly from the origin to the center of the ball.

~ρ = ~δ(φ) +R~n(φ), (3.15a)

~ρ = ~ρ(ϕ). (3.15b)

48



3.3 Finding ϕ = g(φ)

The components describing the center of the ball (x’,y’) are derived by extracting the x and

y value of |~ρ|. The equations in (3.16) used the expression in (3.15a), while the equations

in (3.17) used the expression in (3.15b). Figure 3.8 clearly shows all the notations and

what they represent in the following equations.

x’ = |~δx|+R|~nx| = |~δ| sin(φ) +R|~nx|, (3.16a)

y’ = |~δy|+R|~ny| = |~δ| cos(φ) +R|~ny|. (3.16b)

x’ = |~ρx| = |~ρ| sin(ϕ), (3.17a)

y’ = |~ρy| = |~ρ| cos(ϕ). (3.17b)

By looking at the two equations in (3.17) and dividing the first with the second, together

with the action of isolating the angle ϕ, an expression for ϕ is found. Inserting the defini-

tions of x’ and y’ from (3.16) into the newly created expression for ϕ, introduces an even

better expression for ϕ = ϕ(~δ, ~n, φ), where ~δ = ~δ(φ) and ~n = ~n
(
α(φ)

)
,

ϕ = arctan

(
x’
y’

)
= arctan

(
|~δ| sin(φ) +R|~nx|
|~δ| cos(φ) +R|~ny|

)
= arctan

(
|~δ| sin(φ) +R sin(α)

|~δ| cos(φ) +R cos(α)

)
.

Using the fact that

|~δ(φ)| =
√(

δ(φ) cos(φ))2 + (δ(φ) sin(φ)
)2

=
√
δ(φ)2

(
cos2(φ) + sin2(φ)

)
= δ(φ),

49



Chapter 3. Finding Parameters for M,C,G

the final expression becomes

ϕ = g(φ) = arctan

(
δ sin(φ) +R sin(α)

δ cos(φ) +R cos(α)

)
. (3.18)

3.3.2 Validation of the Expression

A system with a ball balancing on top of a frame will be implemented into MATLAB and

simulations of the expression ϕ = g(φ) will be simulated for two different sizes of the ball,

represented by R. The first simulation will be performed with a small-sized radius of the

ball, while the second simulation performed will have a large-sized radius where the dif-

ferences become clearer. In addition to this, all simulations will be done for three different

shapes; Circle (simple shape), Ellipse (more advanced shape) and Butterfly (complicated

shape). This is to ensure that the expression of ϕ = g(φ) is a general expression, which is

applicable to all systems, not just the ”Butterfly” robot. This goes hand in hand with the

general dynamics that were derived earlier. Making all the work in this thesis general will

make sure the work is applicable to other systems dealing with non-prehensile manipula-

tion.

Before the simulations are performed, a theoretical analysis is done of the expression. It

is always smart to have a certain idea of how the simulations should behave. Inserting the

two instances of the ball (small and large) into the expression g(φ) leads to the following

R→ 0 : ϕ = arctan

(
δ sin(φ)

δ cos(φ)

)
= φ, (3.19a)

R→∞ : ϕ = arctan

(
R sin(α)

R cos(α)

)
= α. (3.19b)

When the ball is very small it makes perfect sense that the two angles become close to

identical, as the center of the ball and the intersection point between the frame and ball

become located very close to one another (previously showed in Figure 3.2). When the

ball is very large, the vector from the origin of the frame to the center of the ball becomes

perpendicular with the tangent vector of the center of the ball. This means that the angle

ϕ becomes equivalent to the tangential angle α. Studying Figure 3.4 can give some visual

50



3.3 Finding ϕ = g(φ)

aids when trying to picture this geometric relationship. Now that certain expectations are

set, it is time to look at the results from the simulations.

Circle

The circular shape is created by δ(φ) and is shown in Figure 3.9a. The dotted lines are

included to show where the zero-angle starts, and to show which way is defined as positive.

There is a constant distance from the origin of the circle to the edge of the circle, seen in

Figure 3.9b.

φ = 0

δ(π2 )

φ

(a) Illustration of a circular shape

0 1
2π

π 3
2π

2π
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

φ [rad]

δ(
φ
)

[m
]

(b) Relationship between angle and distance to
frame relative to center

Figure 3.9: Link between circular shape and δ(φ)

Assuming there is a ball being balanced on top of a circular frame, the relationships be-

tween the two angles of relevance become quite evident. The curvature of the circle is

always positive, and the two angles become identical, as Figure 3.10 shows. Intuitively,

this means that there will always be a linear relationship between the two angles, no matter

what the radius of the ball is. Figure 3.11 shows the relationship for a ball with an effec-

tive radius of 0.01 meters (Figure 3.11a), as well as for a ball with an effective radius of

10 meters (Figure 3.11b). The expression ϕ = g(φ) resulted in the correct and expected

behaviour, regardless of the size of the ball.

51



Chapter 3. Finding Parameters for M,C,G

x’

y’

φ = ϕ

Figure 3.10: Circular frame balancing a ball on top

0 1
2π

π 3
2π

2π
0

1
2π

π

3
2π

2π

φ [rad]

ϕ
[r

ad
]

φ
ϕ(φ)

(a) R = 0.01 meter

0 1
2π

π 3
2π

2π
0

1
2π

π

3
2π

2π

φ [rad]

ϕ
[r

ad
]

φ
ϕ(φ)

(b) R = 10 meter

Figure 3.11: Behaviour of ϕ for a full rotation around a circle

Ellipse

The next shape created by δ(φ) is an elliptical shape showed in Figure 3.12a. The distance

from the origin of the ellipse to the edge of the ellipse varies with respect to the angle φ,

see Figure 3.12b. The transition from the smallest to the largest radius is very smooth,

while the transition from the long side to the short side is quite sharp, as both the figures

show. Once again, the dotted lines are included to show where the zero-angle starts, and

52



3.3 Finding ϕ = g(φ)

to show which direction is defined as positive.

φ = 0

δ(π2 )

φ

(a) Illustration of an elliptical shape

0 1
2π

π 3
2π

2π
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

φ [rad]
δ(
φ
)

[m
]

(b) Relationship between angle and distance to
frame relative to center

Figure 3.12: Link between elliptical shape and δ(φ)

Similar to the previous example of the circular frame, the elliptical shape always has a posi-

tive curvature. Dissimilar to the circle example, the ellipse does not result in the two angles

φ and ϕ being identical, and they do not have a constant relationship. Figure 3.13 clearly

illustrates this statement. There are only four instances around the periodic motion of the

ellipse where the two angles are identical, φ = π
2 , π,

3π
2 , 2π rad. Expressed generally,

regardless of how many rotations are completed, the expression becomes φ = π
2 k, k ∈ Z.

This results in a behaviour where φ 6= ϕ in an alternate positive and negative manner as the

ball rolls around the frame, except for when the expression φ = π
2 k, k ∈ Z is true. Figure

3.14 illustrates this behaviour, with Figure 3.14a having far less dramatic differences than

Figure 3.14b. This is naturally because a large ball results in a bigger gap between the two

angles φ and ϕ.

53



Chapter 3. Finding Parameters for M,C,G

x’

y’

φ 6= ϕ

Figure 3.13: Elliptical frame balancing a ball on top

0 1
2π

π 3
2π

2π
0

1
2π

π

3
2π

2π

φ [rad]

ϕ
[r

ad
]

φ
ϕ(φ)

(a) R = 0.01 meter

0 1
2π

π 3
2π

2π
0

1
2π

π

3
2π

2π

φ [rad]

ϕ
[r

ad
]

φ
ϕ(φ)

(b) R = 10 meter

Figure 3.14: Behaviour of ϕ for a full rotation around an ellipse

Butterfly

The last shape considered as δ(φ) is the butterfly shape showed in Figure 3.15a. Just like

the elliptic shape, the distance from the origin of the butterfly to the edge of the butterfly

varies with respect to the angle φ, see Figure 3.15b. While the elliptic shape has a smooth

transition on the short side and a sharp transition on the long side, the butterfly is the polar

opposite, with a sharp transition on the short side and a smooth transition on the long side.

This results in a longer duration of a large radius compared to the ellipse. The dotted lines

are once again included to show where the zero-angle starts, and to show which direction

54



3.3 Finding ϕ = g(φ)

is defined as positive.

φ = 0

δ(π2 )

φ

(a) Illustration of the butterfly shape

0 1
2π

π 3
2π

2π
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

φ [rad]

δ(
φ
)

[m
]

(b) Relationship between angle and distance to
frame relative to center

Figure 3.15: Link between butterfly shape and δ(φ)

When it comes to the butterfly shape, the two angles φ and ϕ do not have a constant rela-

tionship, as Figure 3.16 shows. While the circle and the ellipse both had positive curvature

throughout their shape, the butterfly shape has both positive and negative curvature. This

is why the signed curvature had to be calculated in the previous section, as opposed to

just the curvature. There are four instances where the two angles φ and ϕ are identical,

and these can be represented with the same general expression as for the elliptical shape;

φ = π
4 k, k ∈ Z. The same simulations as for the two previous shapes are produced for

the butterfly, see Figure 3.17. When R is small there should be a small difference between

the two angles φ and ϕ, while a large R should produce a large difference, except for the

four points φ = π
2 , π,

3π
2 , 2π. ϕ = g(φ) fits the description perfectly, as Figure 3.17a and

Figure 3.17b shows.

55



Chapter 3. Finding Parameters for M,C,G

x’

y’

φ 6= ϕ

Figure 3.16: Butterfly frame balancing a ball on top

0 1
2π

π 3
2π

2π
0

1
2π

π

3
2π

2π

φ [rad]

ϕ
[r

ad
]

φ
ϕ(φ)

(a) R = 0.01 meter

0 1
2π

π 3
2π

2π

0

1
2π

π

3
2π

2π

φ [rad]

ϕ
[r

ad
]

φ
ϕ(φ)

(b) R = 10 meter

Figure 3.17: Behaviour of ϕ for a full rotation around the butterfly frame

The simulations in Figure 3.14 and Figure 3.17 clearly show that the linear relationship of

φ = ϕ is not valid for all frame shapes. In fact, a perfect circle is the only shape where the

assumption is valid. The difference between the angles is also proven to be substantial (es-

pecially if R is large). This leads to the following conclusion; the assumption of φ = ϕ is

not valid and should not be applied to the system. The assumption, and the corresponding

mathematics, will therefore not be used. Instead, the expression ϕ = g(φ) will be used in

the rest of the thesis. The expression is repeated here for convenience:

ϕ = g(φ) = arctan

(
δ sin(φ) +R sin(α)

δ cos(φ) +R cos(α)

)
. (3.20)

56



Chapter 4
Motion Planning

With the dynamics and its parameters derived, the next step is to find feasible continuous

rotations for the system. There has to be determined synchronization functions between

the generalized coordinates, such that desired trajectories can be analytically detected [1].

The concept is explored in this chapter.

4.1 Virtual Holonomic Constraints

Virtual Holonomic Constraints (VHCs) is as the name suggests a virtual constraint on the

system. This means that the said constraint does not physically exist, but it can be imposed

onto the system to create specific motions or trajectories. Before the search for feasible

trajectories begin, an analysis of VHCs, and why it is needed in this particular case, is

completed.

4.1.1 Underactuated System

The ”Butterfly” robot’s system (2.21) is descried by the two independent generalized co-

ordinates q = [θ(t), ϕ(t)]T . A general view on the system will give q ∈ Rn as the vector

of generalized coordinates and u ∈ Rm as the external forces/toques acting on the system.

When m < n the robot is said to be underactuated with a degree of n −m. Since there

57



Chapter 4. Motion Planning

are more generalized coordinates (n = 2) than there are control inputs (m = 1), this paper

has a underactuated system with degree n−m = 1. It can also be physically determined

by comparing the number of objects needing to be controlled (frame and ball) versus the

number of actuators available (rotation of frame). Both methods result in the need for a

constraint to analytically solve the control problem. For a detailed discussion on control

problems in underactuated systems, see [7], while an investigation into virtual holonomic

constraints for Euler-Lagrange systems with n degrees of freedom and n− 1 controls can

be found in [15].

The underactuated system needs a VHC to be able to achieve wanted control over the

systems behaviour. Since the ball is not physically attached to the frame, and there is no

way to directly actuate the ball, the task of controlling the ball becomes complicated. The

responsibility of controlling the ball is placed on the frame since it can receive actuation.

The challenge is to control the movement of the frame in such a way so that the ball is

acting as desired.

4.1.2 VHCs General Form

By imposing a virtual holonomic constraint onto the system, with the job of manipulating

θ, the system’s behaviour can be decided by ϕ alone. A VHC on the following form will

give a desired relationship between the generalized coordinates,

θ = Θ(ϕ), (4.1a)

θ̇ = Θ′(ϕ)ϕ̇, (4.1b)

θ̈ = Θ′′(ϕ)ϕ̇2 + Θ′(ϕ)ϕ̈, (4.1c)

with Θ′(ϕ) = dΘ
dϕ and Θ′′(ϕ) = d2Θ

dϕ2 . Inserting (4.1) into the generalized coordinates

58



4.1 Virtual Holonomic Constraints

q = [θ, ϕ]T gives the following new generalized coordinates,

q =

Θ(ϕ)

ϕ

 , (4.2a)

q̇ =

Θ′(ϕ)

1

 ϕ̇, (4.2b)

q̈ =

Θ′′(ϕ)

0

 ϕ̇2 +

Θ′(ϕ)

1

 ϕ̈. (4.2c)

The system dynamics are re-presented here for convenience, as they will be useful to look

at for the upcoming calculations,

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u. (4.3)

To be able to impose the VHCs onto the system, a control input is needed. This will of

course be applied through the actuation of the frame, which is represented by the first

equation in (4.3). This can be written as

u = [M11 M12]

q̈1

q̈2

+ [C11 C12]

q̇1

q̇2

+G1

= [M11 M12]

Θ′′ϕ̇2 + Θ′ϕ̈

ϕ̈

+ [C11 C12]

Θ′ϕ̇

ϕ̇

+G1.

(4.4)

The obtained control variable u in (4.4) is the only form of control there is over the sys-

tem’s subsequent motion. [1] dives deeper into the mentioned u and provides a more

generic form of the control input, in addition to proofs of theorems used in the derivation.

Before deciding what the function θ = Θ(ϕ) should be to produce the desired behaviour,

the reduced dynamics are derived. These are essential in the upcoming process of search-

ing for feasible and desired motions.

59



Chapter 4. Motion Planning

4.1.3 Reduced Dynamics

The reduced dynamics is a general form of representing an underactuated Euler-Lagrange

system with a virtual constraint imposed on it. To further simplify the derivation of the

reduced dynamics, another set of variables are introduced. These are defined as

Φ(ϕ) =

Θ(ϕ)

ϕ

 , (4.5a)

Φ′(ϕ) =

Θ′(ϕ)

1

 , (4.5b)

Φ′′(ϕ) =

Θ′′(ϕ)

0

 . (4.5c)

Just as in Subsection 4.1.1, a general approach is taken when deriving the reduced dynam-

ics. The Euler-Langrange system of (4.3) are considered to have generalized coordinates

q ∈ Rn, actuator input u ∈ Rm and m < n. Once again, the system is assumed to have

one less actuator than degree of freedom, making it relatable to the example of the ”But-

terfly” robot with underactuation of degree n−m = 1.

Assuming there exists a trajectory q?(t) parametrized by some scalar variable ϕ ∈ R with

the relation,

q?(t) = Φ(ϕ?) = [φ1(ϕ?), ..., φn(ϕ?)]
T , (4.6)

for a C2-smooth vector function Φ(ϕ). This results in the given positions, velocities and

accelerations,

q = Φ(ϕ), (4.7a)

q̇ = Φ′(ϕ)ϕ̇, (4.7b)

q̈ = Φ′(ϕ)ϕ̈+ Φ′′(ϕ)ϕ̇2. (4.7c)

60



4.1 Virtual Holonomic Constraints

To derive the reduced dynamics of the system, both sides of (4.3) are multiplied by a left-

annihilator of B(q). The annihilator B⊥(q) is created to neutralize the coupling matrix B,

and therefore has the rank of n −m with specific values such that B⊥(q)B(q)u = 0 for

all q ∈ Rn. The model then becomes

B⊥(q)M(q)q̈ +B⊥(q)C(q, q̇)q̇ +B⊥(q)G(q) = B⊥(q)B(q)u = 0. (4.8)

Inserting (4.7) into (4.8) and rearranging the order of the variables leads to the reduced

dynamics, famously known as the alpha-beta-gamma equation in the robotics community

at NTNU,

α(ϕ)ϕ̈+ β(ϕ)ϕ̇2 + γ(ϕ) = 0. (4.9)

This second order equation holds for all solutions which have the form and demands of

(4.6), and the elements used in the equation are defined by

α(ϕ) = B⊥(Φ)M(Φ)Φ′, (4.10)

β(ϕ) = B⊥
[
C(Φ,Φ′)Φ′ +M(Φ)Φ′′

]
, (4.11)

γ(ϕ) = B⊥G(Φ), (4.12)

where Φ = Φ(ϕ), as defined in (4.5). The expressions take the form of (4.13) when

inserting the previously derived parameters of the ”Butterfly” robot. Note that α, β, and

γ are dependent on the VHC.

α(ϕ) = s′
(
mk̂ · (~ρ× ~τ)− Jb

R

)
Θ′ + s′2

(
m+

Jb
R2

)
, (4.13a)

β(ϕ) = s′
(
mk̂ · (~ρ× ~τ)− Jb

R

)
Θ′′ −ms′~τ · ~ρΘ′2 + s′s′′

(
m+

Jb
R2

)
, (4.13b)

γ(ϕ) = ms′~g · (Π~τ). (4.13c)

61



Chapter 4. Motion Planning

4.2 Finding Trajectories

Finding predetermined trajectories for the ball and frame is essential when trying to get

the system to work, and when trying to get the system to behave in a specific manner. The

desired motion and the following derivation of feasible trajectories is a complicated matter,

which will be carefully explained. Simple examples are used to explain certain concepts

throughout this section.

4.2.1 Desired Motion

The VHC is an important part of planning motions and to search for feasible trajectories.

In theory a VHC can be anything, but the desire for a specific behaviour restricts the possi-

bilities. Wanting a specific behaviour from the system forces the need for a certain motion,

which can only be achieved by applying the correct VHC. There are therefore many fac-

tors to consider when designing a VHC, represented as conditions or/and restrictions. The

choice of the initial conditions are also essential when shaping the desired trajectory. The

system’s motion can be substantially changed depending on the initial conditions. The

simple example of the pendulum is introduced to clearly illustrate this statement. The

pendulum system is given as

θ̈ +
g

l
sin θ = 0.

The system is imagined without any form of friction, giving it only two possible motions.

The first motion comes from a soft initial push where the pendulum oscillates back and

fourth, illustrated in Figure 4.1a. The second motion comes from a powerful push where

the pendulum swings all the way around in a one-directional periodic motion, illustrated

in Figure 4.1b.

The pendulum’s phase portrait is shown in Figure 4.2, where both the motions are clearly

depicted. The center points of ϕ̄ = 0 + 2nπ with n = 1, 2, 3, ..., k for k ∈ Z, are

represented by a periodic position and a periodic velocity for the angle θ, which fits

perfectly with the behaviour of Figure 4.1a. The saddle points of ϕ̄ = 0 + mπ with

62



4.2 Finding Trajectories

m = 1, 3, 5, ..., 2k + 1 for k ∈ Z, are represented by an increasing position and a peri-

odic velocity for the angle θ, which fits perfectly with the behaviour of Figure 4.1b. The

transition between the two solutions is called the separatrix and it separates the two set of

solutions.

θ

l

(a) Slight push→ Oscillating pendulum

θ

l

(b) Powerful push→ Rotating pendulum

Figure 4.1: The pendulum’s different behaviour dependent on the initial physical push

Figure 4.2: Phase portrait illustrating system behaviour of pendulum

63



Chapter 4. Motion Planning

The initial conditions are clearly very important for the outcome of the pendulum’s motion.

The same goes for the motion of the ball rolling on the butterfly frame. The ”Butterfly”

robot is naturally way more complicated than the pendulum, as the ball is rolling on a mov-

ing surface, constantly changing the ball’s motion. The first thing that needs to be done is

to decide on a desired motion. Should the ball oscillate back and fourth in the valley of the

figure eight frame, should the ball rotate around the frame in a one-directional motion or

should the ball be balanced on the side-plateau of the figure-eight shape? The possibilities

are endless.

In this thesis, the chosen desired motion is a continuous one-directional rotation of the

ball around the frame. It should be a periodic motion for the ball, such that after one full

rotation around the frame, the ball is back to where it started. This means that the angular

position of the ball ϕ is continuously increasing as the ball completes laps around the

frame, while the angular velocity of the ball is periodic and has the same sign for every

round. This behaviour matches that of a saddle, see Figure 4.2. The same behaviour is

required of the butterfly frame itself and its rotation θ. After one full rotation, the position

of the frame should have increased with 2π while the velocity should have been reset to

the same value it started with. However, the periodic motions for θ and ϕ are not actually

given by a full rotation of 2π rad. Since the butterfly shape has axis symmetry, the periodic

motion is only for half a rotation of π rad. This means that the representation of the location

of the butterfly frame relative to the inertial frame becomes

θ(t+ kT ) = θ(t) + πk,

θ̇(t+ kT ) = θ̇(t),
(4.14)

while the location of the ball’s center relative to the butterfly frame becomes

ϕ(t+ kT ) = ϕ(t) + πk,

ϕ̇(t+ kT ) = ϕ̇(t),
(4.15)

with T > 0 as the period and k ∈ Z.

64



4.2 Finding Trajectories

The expressions in (4.14) and (4.15) imposes some conditions on Θ(ϕ), Θ′(ϕ) and Θ′′(ϕ)

because of the relationship established in (4.1a). The virtual constraint Θ(ϕ) should be

twice differentiable and continuously increasing in a periodic fashion of π rad, while Θ′(ϕ)

and Θ′′(ϕ) should be periodic with π rad.

4.2.2 Guide to Valid Solution

Now that the desired motion has been picked, it is time to look at how a solution can be

found. The following process is a step-by-step guide on how to find feasible solutions for

the ”Butterfly” robot, in addition to putting certain conditions on the VHC. The guide will

show a general approach to finding a solution, meaning that the choice of a VHC will be

unspecified. A suitable VHC will later be derived with this guide as its ground base. The

guide contains four steps, and they are presented as follows,

1) Check if system has asymptote.

2) Find equilibrium points.

3) Determine type of equilibrium points.

4) Check if solution is bounded.

1 Check if system has asymptote

System is re-defined for convenience

α(ϕ)ϕ̈+ β(ϕ)ϕ̇2 + γ(ϕ) = 0. (4.16)

The system is rearranged to evaluate the angular acceleration of the ball,

ϕ̈ = −γ(ϕ)

α(ϕ)
− β(ϕ)

α(ϕ)
ϕ̇2, (4.17)

where it can be seen that α(ϕ) = 0 → ϕ̈ = ±∞ → ϕ̇ = ±∞ → ϕ = ±∞. Having this

asymptote in the solution is unacceptable and must be avoided. A condition is placed upon

the VHC to prevent the solution from being invalid due to an asymptote. The condition is

65



Chapter 4. Motion Planning

derived from the previously found representation of α(ϕ) in (4.13a),

α(ϕ) = s′
(
mk̂ · (~ρ× ~τ)− Jb

R

)
Θ′(ϕ) + s′2

(
m+

Jb
R2

)
.

This leads to the condition

Θ′(ϕ) 6=
−s′
(
m+ Jb

R2

)
mk̂ · (~ρ× ~τ)− Jb

R

. (4.18)

To be absolutely certain that a specific solution is valid, an evaluation of both the terms in

(4.17) is reasonable. The terms are expressed as

γ(ϕa)

α(ϕa)
= ±∞, β(ϕa)

α(ϕa)
= ±∞, (4.19)

with ϕa as a point leading to an asymptote. If one of the expressions in (4.19) exists in the

solution, the system is not valid and the trajectory is not acceptable. The safest thing is to

just create a system that never has an asymptote and where α(ϕ), β(ϕ) and γ(ϕ) are finite

for all values of ϕ.

2 Find equilibrium points

Equilibrium point: ϕ̇ = 0→ ϕ̈ = 0.

Inserting this into (4.17) gives the following

0 =
−γ(ϕ)

α(ϕ)
, α(ϕ) 6= 0. (4.20)

The expression of γ(ϕ), defined in (4.13c) and reprinted below, needs to be equal to zero.

Studying γ(ϕ) reveals that the only way the expression can be equal to zero is when

~g ·
(

Π
(
Θ(ϕ̄)

)
~τ(ϕ̄)

)
= 0, since s′ 6= 0,

γ(ϕ) = ms′~g · (Π~τ).

66



4.2 Finding Trajectories

The choice of the VHC, aka Θ(ϕ), is crucial to accomplishing this.

γ(ϕ̄) = ms′(ϕ̄)~g ·
(
Π
(
Θ(ϕ̄)

)
~τ(ϕ̄)

)︸ ︷︷ ︸
= 0

= ms′(ϕ̄)g
(
τx(ϕ̄) sin

(
Θ(ϕ̄)

)
+ τy(ϕ̄) cos

(
Θ(ϕ̄)

))
︸ ︷︷ ︸

= 0

= 0.
(4.21)

Note that since ~g = [0, g, 0]T the dot product of the two vectors in (4.21) is the second

element of the vector Π~τ multiplied with g.

There are certain requirements set upon Θ(ϕ) to be able to satisfy (4.21). The expres-

sions in (4.22) presents these requirements,

γ
(

0 + nπ
)

= ms′g
(
τx(0 + nπ)︸ ︷︷ ︸

6= 0

sin
(
Θ(0 + nπ)

)︸ ︷︷ ︸
= 0

+ τy(0 + nπ)︸ ︷︷ ︸
= 0

cos
(
Θ(0 + nπ)

)︸ ︷︷ ︸
6= 0

)
,

(4.22a)

γ
(

0 +
mπ

2

)
= ms′g

(
τx(0 +

mπ

2
)︸ ︷︷ ︸

= 0

sin
(
Θ(0 +

mπ

2
)
)

︸ ︷︷ ︸
6= 0

+ τy(0 +
mπ

2
)︸ ︷︷ ︸

6= 0

cos
(
Θ(0 +

mπ

2
)
)

︸ ︷︷ ︸
= 0

)
,

(4.22b)

where n = 1, 2, 3, ..., k and m = 1, 3, 5, ..., 2k + 1 with k ∈ Z.

This can be summarized as the following condition,

γ(ϕ̄) = 0, ϕ̄ = 0 +
π

2
k, k ∈ Z

It is now shown how {ϕ̄} is separate points. The next step is to classify these points.

3 Determine type of equilibrium points

x1 = ϕ, ẋ1 = ϕ̇,

x2 = ϕ̇, ẋ2 = ϕ̈,

67



Chapter 4. Motion Planning

f1

f2

 =

ẋ1

ẋ2

 =

 x2

−β(x1)x2
2−γ(x1)

α(x1)

 ,
A =

 ∂f1∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


x1=ϕ̄

=

 0 1

−γ
′(ϕ̄)
α(ϕ̄) 0

 ,
|λI −A| = λ2 +

γ′(ϕ̄)

α(ϕ̄)
= 0,

λ = ±

√
−γ
′(ϕ̄)

α(ϕ̄)
,

• γ′(ϕ̄)
α(ϕ̄) > 0⇒ λ = ±ia⇒ center point.

• γ′(ϕ̄)
α(ϕ̄) < 0⇒ λ = ±a⇒ saddle point.

To assign the separate points ϕ̄ to either of the two classification points, the sign of γ′(ϕ̄)

and α(ϕ̄) needs to be examined. By choosing a VHC so that α(ϕ̄) > 0, ∀ ϕ̄ = 0+ π
2 k, k ∈

Z, the sign of γ′(ϕ̄) determines if the point is a center or a saddle. The condition of (4.18)

is extended to

Θ′(ϕ̄) >
−s′
(
m+ Jb

R2

)
mk̂ · (~ρ× ~τ)− Jb

R

. (4.23)

The expression γ′(ϕ) needs to be derived before the expression’s sign can be evaluated.

d

dϕ
γ(ϕ) = ms′′(ϕ)

[
~g ·
(

Π
(
Θ(ϕ)

)
~τ(ϕ)

)]
+ms′

d

dϕ

[
~g ·
(

Π
(
Θ(ϕ)

)
~τ(ϕ)

)]
︸ ︷︷ ︸

sub expr 1

,

d

dϕ

[
~g ·
(

Π
(
Θ(ϕ)

)
~τ(ϕ)

)]
︸ ︷︷ ︸

sub expr 1

=
d

dϕ
~g︸︷︷︸

= 0

·
(

Π
(
Θ(ϕ)

)
~τ(ϕ)

)
+ ~g · d

dϕ

(
Π
(
Θ(ϕ)

)
~τ(ϕ)

)
︸ ︷︷ ︸

sub expr 2

,

d

dϕ

(
Π
(
Θ(ϕ)

)
~τ(ϕ)

)
︸ ︷︷ ︸

sub expr 2

= Π′
(
Θ(ϕ)

)
Θ′(ϕ)~τ(ϕ) +

(
Θ(ϕ)

) d

dϕ
~τ(ϕ)︸ ︷︷ ︸

sub expr 3

,

d

dϕ
~τ(ϕ)︸ ︷︷ ︸

sub expr 3

=
d

dϕ

( ~δ′(ϕ)

||~δ′(ϕ)||

)
=

~δ′′(ϕ)

||~δ′(ϕ)||
−
~δ′(ϕ)

(
~δ′(ϕ) · ~δ′′(ϕ)

)
||~δ′(ϕ)||3

.

68



4.2 Finding Trajectories

Putting all of this together leads to the expression

γ′(ϕ) = ms′′
[
~g · (Π~τ)

]
+ms′

[
~g ·
(

Π′Θ′~τ + Π
( ~δ′′

||~δ′||
−
~δ′
(
~δ′ · ~δ′′

)
||~δ′||3

))]
.

The next step is to study the expression at the equilibrium points ϕ̄. It is already derived

that ~g · (Π~τ) = 0, ∀ ϕ̄, which gives the following,

γ′(ϕ̄) = ms′
[
~g ·
(

Π′Θ′~τ + Π
( ~δ′′

||~δ′||
−
~δ′
(
~δ′ · ~δ′′

)
||~δ′||3

))]
.

Every individual part of the expression needs to be studied to figure out the combined

output sign. The dot product (~δ′ · ~δ′′) = (~δ′x
~δ′′x + ~δ′y

~δ′′y ) can be massively simplified. This

is because ~δ′y = ~δ′′x = 0 ∀ ϕ̄ = 0 + nπ, n = 1, 2, 3, ..., k and ~δ′x = ~δ′′y = 0 ∀ ϕ̄ =

0 + mπ
2 , m = 1, 3, 5, ..., 2k + 1 for k ∈ Z. The expression can then be written as

γ′(ϕ̄) = ms′
[
~g ·
(

Π′~τΘ′ + Π
~δ′′

||~δ′||

)]
= ms′g

1

||~δ′||︸ ︷︷ ︸
> 0

((
~δ′x cos(Θ)− ~δ′y sin(Θ)

)
Θ′ + ~δ′′x sin(Θ) + ~δ′′y cos(Θ)

)
︸ ︷︷ ︸

= H(ϕ)

.

The sign of H(ϕ) will determine the sign of γ′(ϕ).

H
(

0 + nπ
)

= Θ′
(

0 + nπ
)

(a− b) + 5b− a > 0, (4.24a)

H
(

0 +
mπ

2

)
= Θ′

(
0 +

mπ

2

)
(a+ b)− 5b− a < 0, (4.24b)

where a and b are constants from the definition of the butterfly frame δ = a − b cos(2φ).

This leads to the following conditions: Θ′
(

0 + nπ
)
> a−5b

a−b and Θ′
(

0 + mπ
2

)
< a+5b

a+b .

This can be summarized as the following

γ′(ϕ̄) > 0⇒ center point ⇒ ϕ̄ = 0 + nπ,

γ′(ϕ̄) < 0⇒ saddle point ⇒ ϕ̄ = 0 +
mπ

2
,

where n = 1, 2, 3, ..., k and m = 1, 3, 5, ..., 2k + 1 with k ∈ Z.

69



Chapter 4. Motion Planning

4 Check if solution is bounded

q(t) = q(t, q0, q̇0) is used to find a trajectory, where q is the general coordinate describing

the system. By using this solution, together with the law of conservation of energy, it is

possible to figure out if the system is bounded. The total energy in a system E
(
q(t)

)
does

not change along a solution, given as d
dtE(q, q̇) = Ė(q, q̇) = 0. This can be written as the

following representation,

[
E
(
q(t), q̇(t)

)
− E

(
q(0), q̇(0)

)]
≡ 0. (4.25)

A couple of simple examples are used to show how the conservation of energy (4.25) can

be used to decide if a system is bounded. The first example used is that of an inverted

pendulum,

θ̈ − sin θ = 0.

The total energy of this system is given by

E(θ, θ̇) =
1

2
θ̇2 + cos θ,

while the total amount of energy from the initial conditions is given by

E0(θ0, θ̇0) =
1

2
θ̇0

2
+ cos θ0.

The conservation of energy becomes

E − E0 =
1

2
(θ̇2 − θ̇2

0︸︷︷︸
constant

) + cos θ − cos θ0︸ ︷︷ ︸
bounded

≡ 0.

The last term is bounded because the cosine function is bounded, while the initial angular

velocity of the pendulum is bounded because it is a constant. The angular velocity of the

system therefore has to be bounded to make the total amount of energy in the system un-

changed. In other words, the system is bounded.

The next simple example used is that of a hyperbolic pendulum,

70



4.3 Deriving a Solution

θ̈ − θ = 0.

The total energy of this system is given by

E(θ, θ̇) =
1

2
θ̇2 − 1

2
θ2,

while the total amount of energy from the initial conditions is given by

E0(θ0, θ̇0) =
1

2
θ̇0

2
− 1

2
θ2

0.

The conservation of energy becomes

E − E0 =
1

2
(θ̇2 − θ̇2

0︸︷︷︸
constant

)− 1

2
(θ2 − θ2

0︸︷︷︸
constant

) ≡ 0.

The initial angular position and velocity are bounded as they are constants. The same can

not be said for the position and velocity in general. If the angular position happened to

increase forever (θ →∞), the angular velocity would have to do the same (θ̇ →∞). This

is because the two have to cancel each other out to keep the total energy in the system

unchanged. There is no bounds on θ and θ̇, and the system is therefore unbounded.

Now that the concept of bounded and unbounded systems are explained, the next step

would be to apply this to the ”Butterfly” robot. Firstly, pick a solution which gives a

certain set of initial conditions and insert this into the law of conservation together with

the total energy of the system. Then analyze the equation and determine if the system is

bounded or not.

4.3 Deriving a Solution

Now that the desired motion has been decided, and the verification process for that said

motion has been explained, it is time to put the two together to come up with a possible

71



Chapter 4. Motion Planning

solution. The solution’s potential in reality will also be considered, i.e. making sure the

normal force is greater than zero so the ball does not leave the frame. The process of

implementing the system and the solution into a numerical computer program to produce

simulations is also explained.

4.3.1 Deriving a VHC

The initial design of a virtual holonomic constraint is decided based on intuition. Be-

fore being able to derive an appropriate VHC, vast knowledge about the system must

be acquired. Knowing the system leads to a design where the VHC maps the points

ϕ = 0 + π
2 k, k ∈ Z. This is because the two angles θ and ϕ are identical at these

locations, making the ball balance directly at the very top of the shape.

x’

y’

(a) Ball resting in valley of butterfly shape

y’

y’

(b) Ball balancing on side-plateau

Figure 4.3: Positions mapped for a full rotation

At the point (θ, ϕ) = (0, 0) the ball is resting in the valley of the butterfly frame, see

Figure 4.3a, while at the point (θ, ϕ) = (π2 ,
π
2 ), the ball is balancing at the top of the side-

plateau of the butterfly frame, see Figure 4.3b. The next point (θ, ϕ) = (π, π), is identical

to (θ, ϕ) = (0, 0). The system has then completed one rotation, and the cycle can repeat

itself with θ = Θ(ϕ) and ϕ = 0 + π
2 k, k ∈ Z.

72



4.3 Deriving a Solution

In addition to mapping the points mentioned above, the VHC needs to satisfy the condi-

tions provided by the one-directional desired motion, see (4.14) and (4.15). This includes

Θ(ϕ) being twice differentiable and continuously increasing. There are endless functions

that can satisfy being twice differentiable and continuously increasing, but the choices are

substantially reduced when remembering that Θ′(ϕ) and Θ′′(ϕ) must be periodic with π

rad. A natural choice when requiring a periodic motion is to use a cosine or sine function.

This needs to fit together with the mapping of the points and the need for continuous en-

largement of the VHC. This resulted in a choice where Θ(ϕ) uses ϕ as a parameter, which

turns into a constant when the expression is differentiated. The chosen VHC is therefore

θ = Θ(ϕ) = ϕ− c sin(2ϕ), (4.26)

which satisfies all the mentioned conditions. The derivatives of (4.26) are periodic with π

rad, which can be seen from their expressions,

Θ′(ϕ) = 1− 2c cos(2ϕ),

Θ′′(ϕ) = 4c sin(2ϕ).
(4.27)

The next step is checking how and if (4.26) leads to a valid and feasible solution. This is

done by running it through the ”Guide to Valid Solution” in Section 4.2.2.

1

The constant c, seen in (4.26), is included in the VHC to help in the process of excluding

any asymptotes from the system. The parameter will be shaped to guarantee thatα(ϕ) > 0,

making sure the acceleration ϕ̈ does not approach infinity. This is done by demanding

α(ϕ) > 0 for the equilibrium points ϕ = 0 and ϕ = π
2 . Note that any pair of consecutive

equilibrium points could be used, as the system is periodic with π rad, e.q. (ϕ = π and

ϕ = 3π
2 ). Figure 4.4 shows the boundaries set by the two equilibrium points.

73



Chapter 4. Motion Planning

The constant is chosen from the green-colored area of Figure 4.4:

c = 0.49,

and will be used in all the upcoming simulations. The chosen parameter c gives a system

where α > 0, displayed in Figure 4.5.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

4

5
·10−4

c

α
(ϕ

)

α(ϕ = 0)

α(ϕ = π
2 )

α = 0

Figure 4.4: Determining constant for chosen VHC

The behaviour of the condition in (4.18) is plotted in Figure 4.6 together with the actual

behaviour of the chosen VHC. If the function of the chosen Θ′(ϕ)chosen had crossed the

function of the invalid Θ′(ϕ)invalid at any point, the condition of (4.18) would not have

been satisfied. The fact that the two do not touch each other at any point in the simulation

with ϕ ∈ [0, 2π], and the fact that the motion is periodic makes it so the condition is al-

ways satisfied.

74



4.3 Deriving a Solution

0 1
2π

π 3
2π

2π
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
·10−4

ϕ [rad]

α
(ϕ

)

Figure 4.5: π periodic α-function always greater than zero

0 1
2π

π 3
2π

2π
0

1
2π

π

ϕ [rad]

Θ
′ (
ϕ

)

Θ′(ϕ)chosen
Θ′(ϕ)invalid

Figure 4.6: Examening condition on VHC

75



Chapter 4. Motion Planning

Figure 4.7 shows the behavior of both expressions in (4.17), and it can be seen that they

are both finite. This means that ϕa in (4.19) does not exist, which confirms that there are

no asymptotes in the system, and it guarantees that neither β(ϕ) or γ(ϕ) goes to infinity.

0 1
2π

π 3
2π

2π
−15

−10

−5

0

5

10

15

ϕ [rad]

Te
rm

s
in
ϕ̈

γ(ϕ)
α(ϕ)
β(ϕ)
α(ϕ)

Figure 4.7: Checking system for asymptote

2

Certain conditions were put on Θ(ϕ) to find the equilibrium points of the system. The

conditions are summarized as

sin
(
Θ(0 + nπ)

)
= 0, cos

(
Θ(0 + nπ)

)
6= 0,

cos
(
Θ(0 +

mπ

2
)
)

= 0, sin
(
Θ(0 +

mπ

2
)
)
6= 0,

(4.28)

with n = 1, 2, 3, ..., k and m = 1, 3, 5, ..., 2k + 1 for k ∈ Z.

The content of the sine and cosine functions used in (4.28) are analyzed using Θ(ϕ) =

ϕ− c sin(2ϕ).

Θ(0 + nπ) = nπ − c sin(2nπ) = nπ,

Θ
(
0 +

mπ

2

)
=
mπ

2
− c sin(mπ) =

mπ

2
.

76



4.3 Deriving a Solution

Putting this back into (4.28) gives the following

sin(nπ) = 0, cos(nπ) = ±1,

cos
(mπ

2

)
= 0, sin

(mπ
2

)
= ±1,

which completely satisfies the conditions as n ∈ Z and m are all the odd numbers ∈ Z.

All the conditions in (4.28) were satisfied by the chosen VHC and the resulting equilibrium

points can be seen in Figure 4.8. Since α(ϕ) 6= 0, the equilibrium points are defined when

γ(ϕ) = 0.

0 1
2π

π 3
2π

2π
−8

−6

−4

−2

0

2

4

6

8
·10−4

ϕ [rad]

γ
(ϕ

)

Figure 4.8: Equilibrium points

3

The condition in (4.23) is automatically satisfied as it was previously found that α(ϕ) > 0

(see Figure 4.5). This means that the sign of γ′(ϕ) determines the sign of γ′(ϕ)
α(ϕ) , which

again will determine if the point is a saddle or a center. Determining the sign of γ′(ϕ) is

dependent on Θ′(ϕ),

77



Chapter 4. Motion Planning

Θ′
(
0 + nπ

)
>
a− 5b

a− b
,

Θ′
(
0 +

mπ

2

)
<
a+ 5b

a+ b
,

(4.29)

with n = 1, 2, 3, ..., k and m = 1, 3, 5, ..., 2k + 1 for k ∈ Z, and where

Θ′
(
0 + nπ

)
= 1− 2c cos(2nπ) = 1− 2c,

Θ′
(
0 +

mπ

2

)
= 1− 2c cos(mπ) = 1 + 2c.

By using the parameter values a and b presented in Table 4.1, along with the previously

shaped c, the conditions in (4.29) are both satisfied,

1− 2c >
a− 5b

a− b
,

1 + 2c <
a+ 5b

a+ b
.

This results in the following

γ′(ϕ̄) > 0⇒ γ′(ϕ)

α(ϕ)
> 0⇒ center point ⇒ ϕ̄ = 0 + nπ,

γ′(ϕ̄) < 0⇒ γ′(ϕ)

α(ϕ)
< 0⇒ saddle point ⇒ ϕ̄ = 0 +

mπ

2
.

Figure 4.9 confirms that γ
′(ϕ)
α(ϕ) is positive when ϕ = nπ, for all n ∈ Z, and that γ

′(ϕ)
α(ϕ) is

negative when ϕ = mπ
2 , for all odd numbers m ∈ Z.

Simulations with the chosen VHC is performed in Figure 4.10. This simulation clearly

confirms the placements of the center and saddle points. The simulation is in accordance

with the derived theory. The equilibrium points of the system have now been identified,

and a solution can be found by choosing a certain set of initial conditions.

78



4.3 Deriving a Solution

0 1
2π

π 3
2π

2π
−20

−10

0

10

20

30

40

50

60

70

ϕ [rad]

γ
′ (
ϕ

)
α

(ϕ
)

Figure 4.9: Classifying equilibrium points based on sign of γ
′(ϕ)
α(ϕ)

0 1
2π

π 3
2π

2π
−5

−4

−3

−2

−1

0

1

2

3

4

5

ϕ [rad]

ϕ̇
[r

ad
/s

]

Figure 4.10: Phase trajectory

79



Chapter 4. Motion Planning

4

Unfortunately, finding an analytical representation of the total energy in the systemE(ϕ, ϕ̇)

is very difficult. In complex cases like the ”Butterfly” system, a more general approach

must be taken. The expression of (4.25) is transformed into the more generic integral of

motion, seen in (4.30). Every system containing virtual constrains can be written in the

form of (4.9), and it is therefore a natural starting point for the derivation of the integral

of motion. This derivation process can be seen in the Appendix of [16]. A proof of the

integral of motion can be viewed in [17]. It is given as

I0(ϕ, ϕ̇, ϕ0, ϕ̇0) = ϕ̇2− exp
(
− 2

ϕ∫
ϕ0

β(τ)

α(τ)
dτ

)[
ϕ̇2

0− 2

ϕ∫
ϕ0

γ(s)

α(s)
exp

(
2

s∫
ϕ0

β(τ)

α(τ)
dτ

)
ds

]
,

(4.30)

where α, β and γ are the periodic functions in the reduced dynamics. The function I0

in (4.30) must preserve a zero along the solution, which can be used in the same way the

conservation of energy was used to identify if the system is bounded.

80



4.3 Deriving a Solution

Summary

The chosen vitual holonomic constraint of θ = Θ(ϕ) = ϕ − c sin(2ϕ) has satisfied all

the previously found conditions for Θ(ϕ), Θ′(ϕ), Θ′′(ϕ). Figure 4.11 shows how Θ(ϕ)

is twice differentiable and continuously increasing in a periodic fashion of π rad, while

Θ′(ϕ) and Θ′′(ϕ) are periodic with π rad. The VHC can therefore be used to find a feasi-

ble trajectory, which will be a part of the upcoming subsection.

0 1
2π

π 3
2π

2π

0

1
2π

π

3
2π

2π

ϕ [rad]

V
H

C
be

ha
vi

ou
r

Θ(ϕ)

Θ′(ϕ)

Θ′′(ϕ)

Figure 4.11: Periodic motion of VHC and its derivatives

4.3.2 Implementation

A feasible solution is found by experimentally simulating the behaviour of the full system

for different sets of initial conditions. To be able to achieve these simulations, the full

system must be implemented into a numerical computing software, which in this thesis

is chosen to be MATLAB. The process of transforming the mathematical expressions of

physical dynamics into code is discussed in the upcoming subsection. The choices sur-

rounding implementation is explained, in addition to the choice of a specific set of initial

conditions.

81



Chapter 4. Motion Planning

The main file sets a certain set of initial conditions and inputs these into a function located

in a class named ButterflyRobot, which incidentally is the only class of the system. The

class has a structured layout and runs simulations with the initial conditions received by

the main, and returns the behaviour of the general coordinates in the system. The setup

and content of the class is demonstrated in the compacted chunk of code shown below.

1 c l a s s d e f B u t t e r f l y R o b o t

2 % Dynamics o f B u t t e r f l y r o b o t

3

4 p r o p e r t i e s

5

6 methods

7 %% C o n s t r u c t o r

8 f u n c t i o n o b j = B u t t e r f l y R o b o t ( )

9

10 %% Alpha , Beta , Gamma

11 f u n c t i o n [ t , x ] = simABG ( obj , t0 , tEnd , x0 )

12 f u n c t i o n dx = ABG EOM( obj , x )

13

14 %% B u t t e r f l y Robot

15 f u n c t i o n [ t , x , Fn , Fs ] = simBR ( obj , t0 , tEnd , x0 )

16 f u n c t i o n dx = But te r f ly EOM ( obj , x )

17 f u n c t i o n u = g e t A c t u a t o r I n p u t ( obj , x )

18 f u n c t i o n [ Fn , Fs ] = g e t F o r c e s ( obj , x )

19

20 %% Shared F u n c t i o n s

21 f u n c t i o n [M, C ,G] = getMCG ( obj , x )

22 f u n c t i o n [ rho , t au , n , kappa , Ds , DDs , Pi , DPi ] = g e t V a r i a b l e s ( obj , x )

23 f u n c t i o n [ de l t aVec , Ddel taVec , DDdeltaVec ] = g e t D e l t a V e c s ( obj , p h i )

24 f u n c t i o n [ Alpha , Beta , Gamma] = getABG ( obj , v a r p h i )

25 f u n c t i o n [ Phi , DPhi , DDPhi ] = g e t P h i s ( obj , v a r p h i )

26 f u n c t i o n [ Theta , DTheta , DDTheta ] = getVHC ( obj , v a r p h i )

27

28 %% Symbol ic F u n c t i o n s

29 f u n c t i o n [ d e l t a , Dde l t a , DDdelta , DDDdelta ] = getDELTAs ( obj , p h i )

30 f u n c t i o n [ a lpha , Dalpha , DDalpha ] = getALPHAs ( obj , p h i )

31 f u n c t i o n [ g , Dg , DDg] = getGs ( obj , p h i )

82



4.3 Deriving a Solution

The ’Constructor’ section fits a spline to the function ϕ = g(φ), as previously mentioned

at the end of Subsection 3.2.5. This makes it possible to retrieve a value of φ based on a

value of ϕ throughout the class functions.

The ’Alpha, Beta, Gamma’ and ’Butterfly Robot’ sections runs two different versions

of the system. This choice is made in the main file, not in the class. The function simABG

uses the initial conditions (ϕ0, ϕ̇0) and outputs the behaviour of (ϕ, ϕ̇) based on the α(ϕ),

β(ϕ) and γ(ϕ) derived from the chosen VHC. This simulation was used to find the nom-

inal phase trajectory. The function simBR uses the initial conditions (θ0, ϕ0, θ̇0, ϕ̇0) in an

open-loop simulation of the full system and outputs the behaviour of all the generalized

coordinates (θ, ϕ, θ̇, ϕ̇). Note that the VHC is implemented through the actuation u, see

(4.4).

Both the versions of the system uses a Ordinary Differential Equations Solver (ODE

Solver) to help solve an initial value problem. This means that the ODE is solved by start-

ing from an initial state (given by the initial conditions) and stepping through the problem

iteratively, with each step of the solver applying a particular algorithm to the results of

the previous step. When the iterative process is over, the ODE solver returns a vector or

matrix containing a solution at each step, in addition to a vector of time steps. The default

solver choice is ode45, but unfortunately it was too inefficient as the step size of the solver

was forced down to an unreasonably small level, meaning that the system was too stiff for

the explicit solver. The solver ode23 was selected with fixed-step due to its efficiency on

systems with moderate stiffness, and because it provided the accuracy needed to produce

smooth graphs. The absolute tolerance of ode23 was set to the default value of 1e-6 to

prevent large absolute errors at any step in the simulation. The relative tolerance of ode23

was set to 1e-5 so that virtually no error tolerance relative to the state vector was allowed

at each simulation step.

Section ’Shared Functions’ includes all the system dynamics and is used by both versions

of the system. The functions under the ’Symbolic Functions’ section were externally gen-

83



Chapter 4. Motion Planning

erated with the Symbolic Math Toolbox version 7.2. Complex mathematical expressions

were implemented into MATLAB as symbolic functions. These symbolic functions were

differentiated and automatically made into new, independent MATLAB functions, which

again were transferred into the system’s code.

Now that the setup of the code is explained, the next part is to justify the choice of param-

eter values used in the simulations. All the parameters, with the exception of Rf and c

were determined by Surov and Shiriaev at el. Some were taken from [1], and some were

collected from conversations with Shiriaev. As an expert on the ”Butterfly” robot and a su-

pervisor for this thesis, Shiriaev’s previously found values were determined to be the best

possible fit for this system. The parameter c was derived in Subsection 4.3.1, while Rf

was estimated by scaling it to the rest of the components in the system. All the parameters

used are given in Table 4.1, and implemented as properties in the class ButterflyRobot. See

List of Symbols for a description of all the variable names.

Table 4.1: Model parameters for simulation

Parameters Value Unit

m 3.0 · 10−3 m

Jf 1.581 · 10−3 kg m2

Jb 5.48 · 10−7 kg m2

g 9.81 m s−2

Rb 16.55 · 10−3 m

rf 12.5 · 10−3 m

Rf 0.1 m

a 0.1095 -

b 0.0405 -

c 0.49 -

The small excerpt of code previously shown can be seen in its entirety in Appendix C,

along with all the other scripts used. These other scripts do not simulate the full system,

84



4.3 Deriving a Solution

but rather help explain sub-parts of the system sprinkled throughout the thesis. An expla-

nation of all the scripts is included in Appendix C.

Now that the system is implemented into MATLAB, the next step is to simulate a feasible

solution. This is done by choosing a set of initial conditions that produces the right be-

haviour from the system. It is known from Subsection 4.2.1 that the correct behaviour is

a saddle, not a center. This means that the angular velocity of ϕ must be above a certain

point so it escapes the bounds of the centers, as Figure 4.10 illustrates. Knowing this, plus

the fact that the ball should start in the valley of the butterfly shape (so it does not slide off

the frame), the initial values are chosen as (ϕ0, ϕ̇0) = (0, 4.3). The initial value ϕ̇0 was

found experimentally with the trial and error method seeing where the first saddle entered

the system. The chosen initial conditions generates the value of the two remaining initial

conditions (θ0, θ̇0) through the VHC,

θ0 = Θ(ϕ0) = ϕ0 − c sin(2ϕ0) = 0, (4.31a)

θ̇0 = Θ′(ϕ0)ϕ̇0 = [1− 2c cos(2ϕ0)]ϕ̇0 = [1− 2c]ϕ̇0 = 0.086. (4.31b)

In summary, the initial conditions are (θ0, ϕ0, θ̇0, ϕ̇0) = (0, 0, 0.086, 4.3). Figure 4.12

depicts what these initial conditions look like on the ”Butterfly” robot. Note that since

θ0 = 0, the inertial frame is identical to the body frame of the butterfly. This means that

the inertial frame is hidden underneath the body frame of the butterfly.

x’

y’

~ρ

Figure 4.12: Schematic view of initial conditions for simulations

85



Chapter 4. Motion Planning

4.3.3 Simulation Results

The following simulations are the results from using the initial conditions (θ0, ϕ0, θ̇0, ϕ̇0) =

(0, 0, 0.086, 4.3). The results represent a solution for the system and this solution is rep-

resented as q?(t) = (θ?(t), ϕ?(t))
T and q̇?(t) = (θ̇?(t), ϕ̇?(t))

T for t ∈ R. The results

following the heading; Nominal solution, are simulated with simABG and represent the

desired motion, while the results following the heading; Simulated solution, are simu-

lated with simBR and represent the actual motion of the system. The figures following

the heading; Comparing solutions, clearly illustrates similarities and dissimilarities be-

tween the nominal and experimental simulations.

Nominal solution:

0 1
2π

π 3
2π

2π
−5

−4

−3

−2

−1

0

1

2

3

4

5

ϕ [rad]

ϕ̇
[r

ad
/s

]

Figure 4.13: Complete phase trajectory for designed solution ϕ?

86



4.3 Deriving a Solution

0 1
2π

π 3
2π

2π
0.5

1

1.5

2

2.5

3

3.5

4

4.5

ϕ [rad]

ϕ̇
[r

ad
/s

]

Figure 4.14: Selected phase trajectory ϕ? (cut from of Figure 4.13)

0 1
2π

π 3
2π

2π
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
·10−2

ϕ [rad]

Fo
rc

e
[N

]

Fn
Fs

Figure 4.15: Constraint forces parameterized by ϕ

87



Chapter 4. Motion Planning

Simulated solution:

0 1
2π

π 3
2π

2π
0

1

2

3

4

5

6

7

8

9

ϕ [rad]

ϕ̇
[r

ad
/s

]

Figure 4.16: Actual phase trajectory for solution ϕ?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

1
2π

π

3
2π

2π

Time [s]

A
ng

le
[r

ad
]

θ(t)
ϕ(t)

Figure 4.17: Angular position of ball and frame for solution q?

88



4.3 Deriving a Solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

- 3
2π

-π

- 1
2π

0

1
2π

π

3
2π

2π

Time [s]

A
ng

ul
ar

ve
lo

ci
ty

[r
ad

/s
]

θ̇(t)
ϕ̇(t)

Figure 4.18: Angular velocity of ball and frame for solution q̇?

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−4 · 10−2

−2 · 10−2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Time [s]

Fo
rc

e
[N

]

Fn
Fs

Figure 4.19: Constraint forces

89



Chapter 4. Motion Planning

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

Time [s]

In
pu

tf
or

ce
[N

m
]

Figure 4.20: Actuation force

Comparing solutions

0 1
2π

π 3
2π

2π
0

1
2π

π

3
2π

2π

ϕ [rad]

θ
[r

ad
]

(a) Nominal relationship

0 1
2π

π 3
2π

2π
0

1
2π

π

3
2π

2π

ϕ [rad]

θ
[r

ad
]

(b) Simulated relationship

Figure 4.21: Relationship between generalized coordinates given by Θ(ϕ)

90



4.3 Deriving a Solution

0 1
2π

π0.5

1

1.5

2

2.5

3

3.5

4

4.5

ϕ [rad]

ϕ̇
[r

ad
/s

]

(a) Nominal trajectory

0 1
2π

π0.5

1

1.5

2

2.5

3

3.5

4

4.5

ϕ [rad]

ϕ̇
[r

ad
/s

]

(b) Simulated trajectory

Figure 4.22: Phase trajectory

0 1
2π

π
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
·10−2

ϕ [rad]

Fo
rc

e
[N

] Fn
Fs

(a) Nominal forces

0 1
2π

π
−1

0

1

2

3

4

5

6
·10−2

ϕ [rad]

Fo
rc

e
[N

]

Fn
Fs

(b) Simulated forces

Figure 4.23: Constraint forces

91



Chapter 4. Motion Planning

92



Chapter 5
Discussion

In the previous chapter, a solution was derived for the ”Butterfly” robot. This upcoming

chapter will discuss the achieved results and compare the theoretical work done in this

thesis with the actual physical system.

5.1 Setup of physical system

Before analyzing the solution, some information about the physical system is presented.

Knowledge of how the experimental system works will provide further understanding of

the reasoning behind the derived solution. The experimental setup can be seen in Figure

5.1.

Figure 5.1: Experimental setup

93



Chapter 5. Discussion

The hardware equipment used in the experimental setup is given below, with the corre-

sponding model name included:

1. Camera→ acA1300-200uc Basler ace

2. NUC→ INTEL KIT NUC5i5RYH

3. BeagleBone→ Green (BBG)

4. EPOS→ ESCON Motor Controller 70/10

5. Maxon DC motor→ 370356 RE50

6. Incremental Encoder→ SCANCON 8192

The camera constantly takes pictures and provides information about the location of the

ball and frame. This information arrives to the NUC, which has to convert the information

from pictures to a systematic, symmetric system that represents the ball and frame. The

beaglebone collects the data from the NUC, along with speed and distance feedback from

the encoder, and uses all of this to calculate velocity and center of symmetry for the ball.

Based on the systems reaction to the newly calculated position of the ball, the motor con-

troller regulates the speed and direction of the electric motor by manipulating the voltage

that is applied to it. The DC motor drives the robot torque of the frame, before the whole

process repeats itself.

There are certain limitations connected to the hardware used. The sampling frequency of

the camera needs to be high enough to pick up the motion of the ball. Surov and his team

experimentally tested different cameras in the experimental setup and concluded that the

system needed a camera with a capture rate of about 120 Hz. Another limitation on the

hardware is the speed of the image processing required. The system needs to extract infor-

mation about the velocity and location of the ball really fast, which can be hard because of

the intense calculations that are constantly going on. Two different frames captured by the

camera go through the NUC and are compared to find out how much the ball’s position

has changed. The complexity increases drastically when remembering that the surface the

ball rolls on (butterfly shape) also moves. And this whole process, from the camera taking

94



5.2 Evaluate Solution

a picture to the fully detected location of the center of symmetry of the ball must take

less than 2 ms. Considering these limitations on the physical system can be useful when

deriving a solution, as will be explained in the next section.

5.2 Evaluate Solution

Theoretically, there are an infinite number of possibilities when choosing the initial con-

ditions. A certain set of initial conditions will produce a specific solution for the system,

but that does not guarantee the solution to be feasible in reality. The experimental sys-

tem consist of real components that have limitations, just as the information in Section

5.1 explained. One limitation is the sampling frequency of the camera, as it measures the

system’s configurations. It is therefore crucial to consider the ball’s angular velocity when

searching for a solution. Minimizing the angular velocity of the ball will reduce the need

for an expensive camera with high sampling frequency, and thereby contribute to a feasible

solution obtained from an affordable experimental system.

Even though low angular velocity of the ball is desired, it is important that the velocity of

the motion is not too low, causing the trajectory to enter a center. The motion must be of a

saddle, which means that there are restrictions on how low the velocity can get. This can

be visualized in Figure 4.10 as centers, saddles and separatrix are all present. A nominal

solution is chosen by experimentally simulating the system with various initial conditions

for the ball’s velocity. The chosen trajectory ϕ? is depicted in Figure 4.13, which is a

solution extracted from Figure 4.10 together with the correlated initial conditions. This

trajectory illustrates a saddle with almost the lowest possible angular velocity of the ball.

The reason the absolute minimum velocity is not chosen is because some leeway is de-

sired in case small deviations from the nominal trajectory occur, which could cause the

behaviour to change from saddle to center. Figure 4.14 shows the nominal trajectory of

continuous one-directional rotation of the ball around the frame. The maximum angular

velocity ends up as

ϕ̇max = 4.3125 rad/s,

95



Chapter 5. Discussion

which is well within the sampling frequency of the camera in the physical setup.

Figure 4.15 shows the nominal constraint forces for the solution ϕ?. The normal force is

always greater than zero, making sure the ball is always in contact with the frame. The be-

havior of the friction force sets a limit for the friction coefficient. This limit is set through

the constraint (2.27) and is given as µ ≥ 0.22.

The actual behaviour of the system is obtained by simulating the full system in open-loop,

resulting in Figures 4.16 - 4.20. Figure 4.16 shows the phase trajectory the system follows,

which has similar features to the nominal trajectory, except for at the end where it deviates

from the desired path. To further study this deviation from the nominal trajectory the po-

sition and angular speed of the ball and frame are plotted versus time, seen in Figure 4.17

and Figure 4.18. The two rigid bodies behave in the desired manner with the ball balanc-

ing on the frame in a one-directional motion for the first 2.6 seconds, before the system

becomes unstable. This unstable behaviour is mirrored in the forces in Figure 4.19 and in

the actuation input in Figure 4.20. Both the normal force Fn and the actuation u spikes at

around 2.6 seconds and from there the normal force travels below zero, meaning that the

ball leaves the frame. The actuation spikes because the system has slowly deviated from

the nominal path and it wants to correct the error by applying more force. Instead of fixing

the system, the sudden increase in torque makes the frame rotate really fast and the ball

goes flying off the frame. Looking at the actuation input in Figure 4.20 before the system

becomes unstable reveals a maximum input force of about 0.05 Nm, which can easily be

achieved by most standard motors.

The system loses its stability early in the simulation as there does not exists an asymp-

totic stable motion for mechanical systems without using feedback. Since the system

is run in open-loop, the system eventually becomes unstable, meaning that a stabilizing

feedback controller is needed to correct deviations from the nominal trajectory. [1] in-

troduces transverse-linearization-based orbital stabilization, which ensures robust orbital

stabilization of the nominal trajectory. A natural continuation of this paper would be to

96



5.3 Theoretical System Vs. Physical System

further derive an appropriate feedback controller based on orbital stabilization. This is

done through linearization of the transverse dynamics around nominal points and can be

further researched in [1], [18] and [19].

Now that the eventual instability of the system is explained, the focus lands on the first few

seconds of the simulations. This small time period contains valuable information about the

feasibility of the planned motion. These first few seconds are equivalent to one full rota-

tion of the frame (2π rad), which again is equal to two periods for the frame since it has

axis symmetry with π rad. Figure 4.21 shows the virtual holonomic constraint of both the

nominal system and the open-loop system. The two are similar until the known deviations

occur towards the end of the full rotation. Looking at just half of a full rotation, namely

one period of π rad, shows that the two are in fact identical. Comparisons of the phase

trajectory for the nominal and the open-loop system also show identical behaviour, see

Figure 4.22. Lastly, the constraint forces of the nominal and the open-loop system are

compared for the first period. The two friction forces are the same, while the open-loop

normal force has a slightly higher peak value compared to the nominal normal force, as

can be seen in Figure 4.23. This difference is negligible as the main concern is that the

behaviour between the two are very similar, and both satisfy the constraints of (2.26) and

(2.27).

5.3 Theoretical System Vs. Physical System

A feasible trajectory yielding a desired periodic motion has been found through theoretical

work in this paper. The theoretical work is based on the concept of structural perturbations,

which assumes that everything in the system (e.g. forces, degrees of freedom, etc.) can be

predicted or modelled. In reality the system actually consists of some non-structural per-

turbation, which can reveal discrepancies between the theoretical and the physical system.

Some examples that illustrate the mismatch between the theoretical and physical system

are given,

97



Chapter 5. Discussion

• Possible misalignment between the two plates that make up the butterfly frame will

result in a new degree of freedom because the ball can now move in one extra direc-

tion.

• The ball or the surface of the butterfly frame might not be completely smooth, mak-

ing it virtually impossible to correctly model the friction in the system.

• The two rigid bodies (ball and frame) could potentially not have a uniform distribu-

tion of mass, changing the location of their center of mass.

• Unable to model the forces that generate the behaviour of an area contact, not a point

contact that has been assumed in the paper.

• The ball is not guaranteed to roll without slipping, which leads to behaviour that is

difficult to model.

• Forces that are dependent on velocity has a high error far away from equilibrium,

which can accumulate into huge amounts of energy, even from small forces.

The theoretical model of the system is not a perfect representation of the physical system,

and these differences might lead to complications when transferring the theoretical work

to a physical system. On the other hand, [1] has proven that it is possible to overcome

these difficulties with a well designed stabilizing controller. It is, however, important to be

aware of the trouble associated with modeling the ”Butterfly” robot and other underactu-

ated mechanical systems.

98



Chapter 6
Conclusion and Recommendations

for Further Work

6.1 Conclusion

This paper presents valuable, new information on how to derive accurate system dynam-

ics, and how to plan feasible trajectories for an underactuated mechanical system. The

paper has used the benchmark example of the ”Butterfly” robot to illustrate the process, in

addition to carefully explaining everything associated with said process. The ”Butterfly”

robot continuously rolls a ball on top of a frame which is shaped like a butterfly and driven

by a DC-motor.

The dynamics are derived with a common assumption omitted, making them more accu-

rate than previously found dynamics. The second contribution of the paper is the detailed

guide on how to plan feasible trajectories. The theory suggest that the found trajectory

planning method delivers feasible trajectories, but original experiments are needed to val-

idate that the transition from theory to reality is possible without fatal consequences for

the system. However, since [1] has managed to produce physical experiments, there is no

logical reason why the work done in this paper should not be able to. With this in mind,

99



Chapter 6. Conclusion and Recommendations for Further Work

the thesis will serve as an excellent source of information for further research on the ”But-

terfly” robot.

6.2 Recommendations for Further Work

The concepts presented in this thesis has taken an enormous amount of time to fully under-

stand. The intricate details of the system revealed some extremely complicated dynamics,

and the underactuation of the mechanical system lead to a complex process of finding fea-

sible trajectories. The paper presents these advanced concepts in a detailed manner in the

hope that it will serve as a good base of knowledge for non-prehensile systems and that it

will inspire further work in the field. Extending the work of the ”Butterfly” robot would

be a natural continuation to this paper.

The first thing that needs to be done is to create a feedback controller that can stabilize the

system. A feedback controller which ensures orbital stabilization of the nominal trajectory

will be well-fitting. Finding this feedback controller must be achieved before implement-

ing the model onto the physical system, which is a natural second step. Eventually, the

derived dynamics has to be tested on the physical system to validate the theoretical contri-

butions.

When the work above is finished, new feasible motions should be explored. New mo-

tions could be produced by actuating the frame in two directions, as opposed to just one

direction. Another possibility is to apply the framework derived in this paper on a more

complex shape of the frame (i.e. more complex than butterfly shape). A big step forward

in the development of non-prehensile manipulation would be to add a third dimension.

This would exponentially increase the complexity of the system. Imagine balancing a ball

on top of another way bigger ball. This exact scenario might be too complicated at the

moment, but an alternative approach would be to slightly move the two plates making-

up the butterfly frame, so that they no longer are perfectly aligned. This will add a third

dimension to the dynamics, which should be enough of a challenge.

100



Bibliography

[1] M. Surov, A.S. Shiriaev, L.B. Freidovich, S.V. Gusev and L. Paramonov. ’Case

Study in Non-prehensile Manipulation: Planning and Orbital Stabilization of One-

directional Rollings for the ”Butterfly” Robot’, IEEE International Conference on

Robotics and Automation, 1484-1489, 2015.

[2] D.G.E Hobbelen and M. Wisse. ’Swing-Leg Retraction for Limit Cycle Walkers Im-

proves Disturbance Rejection’, IEEE Transactions on Robotics, 24(2): 377-389, 2008.

[3] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas-de-Wit,

and J.W. Grizzle. ’RABBIT: a Testbed for Advanced Control Theory’, IEEE Control

Systems, 23(5): 57-79, 2003.

[4] P. Lertkultanon and Q.C. Pham. ’Dynamic non-prehensile object transportation’, Con-

ference on Control Automation Robotics & Vision (ICARCV 2014), 1392-1397, 2014.

[5] J.C. Ryu, F. Ruggiero and K.M. Lynch. ’Control of Nonprehensile Rolling Manipu-

lation: Balancing a Disk on a Disk’, IEEE International Conference on Robotics and

Automation, 3232-3237, 2012.

[6] K.M Lynch and M.T. Mason. ’Dynamic Nonprehensile Manipulation: Controllability,

Planning and Experiments’, International Journal of Robotics Research, 18(1): 64-92,

1999.

101



BIBLIOGRAPHY

[7] A.D. Luca, S. Iannitti, R. Mattone and G. Oriolo. ’Control Problems in Underactu-

ated Manipulators’, IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, 855-861, 2001.

[8] K.M. Lynch, N. Shiroma, H. Arai and K. Tanie. ’The Roles of Shape and Motion in

Dynamic Manipulation: The Butterfly Example’, IEEE International Conference on

Robotics and Automation, 1998.

[9] M. Cefalo, L. Lanari and G. Oriolo. ’Energy-Based Control of the Butterfly Robot’,

IFAC Proceedings Volumes, 39(15): 1-6, 2006.

[10] H.L. Chen. ’Alternative Approach in Modeling the Dynamics of the Butterfly Robot’,

Internship Report, 2016.

[11] M.W. Spong, S. Hutchinson and M. Vidyasagar. ’Robot Modeling and Control’,

Chapter 7.1-7.3: 239-257, John Wiley & Sons, Inc, 2006.

[12] A.S. Shiriaev, L.B. Freidovich and M.W. Spong. ’A Remark on Controlled La-

grangian Approach’, European Journal of Control, 19(6): 438-444, 2013.

[13] M.W. Spong, S. Hutchinson and M. Vidyasagar. ’Robot Modeling and Control’,

Chapter 2.2: 38-65, John Wiley & Sons, Inc, 2006.

[14] R.A. Admas and C. Essex. ’Calculus, a Complete Course’, Chapter 11.4: 642-649,

Pearson 7th edition, 2010.

[15] M. Maggiore and L. Consolini. ’Virtual Holonomic Constraints for Euler–Lagrange

Systems’, IEEE Transaction on Automatic Control, 58(4): 1001-1008, 2013.

[16] Leonid B. Freidovich, Uwe Mettin and Anton S. Shiriaev. ’A Passive 2-DOF Walker:

Hunting for Gaits Using Virtual Holonomic Constraints’, IEEE Transactions on

Robotics, 25(5): 1202 - 1208, 2009.

[17] A.S. Shiriaev, A. Robertsson, J. Perram and A. Sandberg. ’Periodic Motion Plan-

ning for Virtually Constrained Euler–Lagrange Systems’, Systems & Control Letters,

55(11): 900-907, 2006.

102



BIBLIOGRAPHY

[18] A.S. Shiriaev, J.W. Perram and C. Canudas-de-Wit. ’Constructive Tool for Orbital

Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach’,

IEEE Transactions on Automatic Control, 50(8): 1164-1176, 2005.

[19] A.S. Shiriaev, L.B. Freidovich and S.V. Gusev. ’Transverse Linearization for Con-

trolled Mechanical Systems With Several Passive Degrees of Freedom’, IEEE Trans-

action on Automatic Control, 54(4): 893-906, 2010.

103



BIBLIOGRAPHY

104



Appendix A
Frenet Frame

A smooth curve free of any points of inflection C (seen in Figure A.1) has several scalars

and vectors describing its behaviour, which can help interpret the curves motion.

C

r

N̂

T̂

Figure A.1: The unit tangent and principal normal vectors for a curve

Let r = r(s) be a parametrized space curve in terms of arc length. This means that r

takes values in a three-dimensional Euclidean space represented by the arc length s, and

can be interpreted as the trajectory of a particle moving along a curve C. Arc-length

105



Chapter A. Frenet Frame

parametrization traced at unit speed gives a definition of the tangent vector

T̂(s) =
dr
ds
. (A.1)

By looking at how the curve C deviates away from the tangent line in r, the rate at which

the curve is turning can be measured. The curvature of C at point r(s) is defined as the

length of dT̂/ds. If the curvature is never zero (meaning no straight lines), a unit principle

vector can be defined as

N̂(s) =
dT̂
ds

/∣∣∣∣dT̂
ds

∣∣∣∣. (A.2)

The unit normal is perpendicular to C at r and points in the direction that the tangent vector,

and therefore the curve, is turning. The setup of the curves and vectors is clearly shown in

Figure A.1. The torsion of the curve, namely the rate at which the curve is twisting at any

point, can be found by the help of the normal vector.

These two unit vectors, together with the unit binormal vector B̂ = T̂× N̂ (not included in

this paper), form a basis at every point on a curve and is called the Frenet frame. For more

detailed information about the Frenet frame, see [14].

In this paper, the trajectory of the ball has the same features as the parametrized space

curve mentioned above, where the motion is happening along a curve. This allows and

encourages the use of the Frenet frame to represent the motion and position of the ball.

The Formulas of Frenet

dT̂
ds

= kN̂,
dN̂
ds

= −kT̂, (A.3)

where k = |dT̂
ds | is the curvature at a given point.

106



Appendix B
Euler-Lagrange

A system with generalized coordinates q ∈ Rn consisting of n rigid bodies will have its

kinetic energy K defined as

K =
1

2

n∑
i=1

(
mivTi vi + Iiω

T
i ωi

)
, (B.1)

with vi as translational velocity, ωi as angular velocity, mi as mass and Ii as the moment

of inertia. The potential energy P is defined as

P =

n∑
i=1

migT ri, (B.2)

with g as the gravitational acceleration and ri denoting the position of the particular body.

Both the kinetic and potential energy can be represented by the general coordinate q by

deriving the kinematics that connects the system variables to the vectors describing posi-

tion and velocity and inserting them into the definitions. The Lagrangian of the system

can then be written as

L(q, q̇) = K(q, q̇)− P(q) =
1

2
q̇TM(q)q̇ − P(q), (B.3)

107



Chapter B. Euler-Lagrange

where M(q) is an n× n symmetric, positive semi-definite inertia matrix whose elements

are given by the relation

mi,j(q) =
∂

∂q̇i

(
∂K
∂q̇j

)
, i, j = 1, 2, ..., n. (B.4)

The n × n matrix C(q, q̇) contains the centrifugal and Coriolis terms, where the (k, j)th

element is defined as

ckj =

n∑
i=1

1

2

{
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk

}
q̇i =

n∑
i=1

cijk(q)q̇i. (B.5)

and the terms cijk(q) are known as Christoffel symbols. The n × 1 vector G(q) is known

as the gravity vector with elements defined as

gi =
∂P
∂qi

(B.6)

The three definitions of M,C and G presented above are used in the transformation from

the Euler-Lagrange equation to the equations of motion. By using the Langrangian in

(B.3), the Euler-Lagrange equation can be found and is defined as

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= τ, (B.7)

which can be written as

n∑
j=1

mkj(q)q̈j +

n∑
i=1

n∑
j=1

cijk(q)q̇iq̇j + gk(q) = τk, k = 1, ..., n. (B.8)

Proof of both these claims are omitted due to the large space required to explain it properly,

but can be studied in [11]. Equation (B.8) is commonly written in matrix form as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (B.9)

characterized as the equations of motion of the system. For more information about the

Euler-Lagrange equations or the equations of motion, see [11].

108



Appendix C
Code

MATLAB R2017a code

There is a quick and simple explanation of every .m-file before the code is presented,

in addition to a little description within the scripts themselves. Note that many of the

scripts have multiple choices for certain variables so that the code can be used for multiple

instances (e.g. circle, ellipse, butterfly) and still stay compact. Multiple choices are of

course clearly marked for the users benefit. The comments in the code should be enough

to fully understand all the choices the user has.

All the code used in the thesis is supplied in a zip-folder along with the paper. The code in-

cluded in this appendix is a compacted version of the full code presented in the zip-folder.

All the plotting is excluded from the code enclosed in the paper due to the substantial

amount of space that this consumes. Also, the functions created from the symbolic scripts

are used in every single file. It seems unnecessary to show the same chunk of code for

every script, and the symbolic script functions are therefore only presented in its entirety

in the main script. In the rest of the scripts the function headline is presented without the

associated code.

109



Chapter C. Code

runButterflyRobot.m

This is the main script that can run the two most important features; the function that

tests the feasibility of new velocity profiles or the function that drives the full system in

open-loop. They are run through the ButterflyRobot class.

1 %% Author : Oskar Lund , 1 1 . 1 0 . 1 7

2

3 %% D e s c r i p t i o n

4 % This s c r i p t s i m u l a t e s t h e o v e r a l l b e h a v i o u r o f t h e

5 % b u t t e r f l y r o b o t i n open loop , i n a d d i t i o n t o new ,

6 % p o t e n t i a l t r a j e c t o r i e s

7

8 %% D ef in e t h e o b j e c t BR of c l a s s B u t t e r f l y R o b o t

9 BR = B u t t e r f l y R o b o t ;

10

11 %% Choose which program t o run : ABG = 0 , BR = 1

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 program = 1 ;

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 i f ( program == 0)

17 %% S i m u l a t e a lpha , be t a , gamma

18

19 t 0 = 0 ; % I n t i a l t ime

20 tEn d = 1 0 ; % F i n a l t ime

21 x0 = [ 0 ; 4 . 3 ] ; % I n i t i a l c o n d i t i o n s ( [ v a r p h i 0 ; Dvarph i0 ] )

22 [ t , x ] = BR . simABG ( t 0 , tEnd , x0 ) ;

23

24 e l s e i f ( program == 1)

25 %% S i m u l a t e t h e f u l l b u t t e r f l y sys tem

26

27 t 0 = 0 ; % I n t i a l t ime

28 tEnd = 5 ; % F i n a l t ime

29 x0 = [ 0 ; 0 ; 0 . 0 8 6 ; 4 . 3 ] ; % I n i t i a l c o n d i t i o n s ( [ t h e t a 0 ; v a r p h i 0 ;

D t h e t a 0 ; Dvarphi0 ] )

30 [ t , x , Fn , Fs , u ] = BR . simBR ( t0 , tEnd , x0 ) ;

31

32 end

110



ButterflyRobot.m

This script contains the ButterflyRobot class, which is used by the main file. All the rele-

vant information derived in the paper is located here (e.g. dynamics and VHC).

1 c l a s s d e f B u t t e r f l y R o b o t

2 % Dynamics o f B u t t e r f l y r o b o t

3

4 p r o p e r t i e s

5 m = 3e−3; % Mass o f t h e b a l l [ kg ]

6 J f = 1 .581 e−3; % Moment o f i n e r t i a o f t h e f rame [ kg∗mˆ 2 ]

7 Jb = 5 . 4 8 e−7; % Moment o f i n e r t i a o f t h e b a l l [ kg∗mˆ 2 ]

8 g = [ 0 ; 9 . 8 1 ; 0 ] ; % G r a v i t a t i o n a l e c c e l e r a t i o n [m∗ s ˆ 2 ]

9 R b = 16 .55 e−3; % Radius o f b a l l [m]

10 r f = 1 2 . 5 e−3; % D i s t a n c e between t h e p l a t e s [m]

11 Rf = 0 . 1 ; % Radius o f f rame i n m e t e r s [m]

12 R ; % E f f e c t i v e r a d i u s o f t h e b a l l [m]

13 k h a t = [ 0 ; 0 ; 1 ] ; % Z−d i r e c t i o n a l v e c t o r

14 B = [ 1 ; 0 ] ; % Coup l ing m a t r i x

15 B an = [0 1 ] ; % A n n i h i l a t o r m a t r i x

16 a = 0 . 1 0 9 5 ; % C o n s t a n t f o r c r e a t i n g b u t t e r f l y−f rame

17 b = 0 . 0 4 0 5 ; % S c a l a r f o r c r e a t i n g b u t t e r f l y−f rame

18 c = 0 . 4 9 ; % S c a l a r f o r VHC

19 shape = ’ b u t t e r f l y ’ ; % Choose shape o f f rame

20 phiApprox ; % Approx ima t ion o f p h i

21 I = eye ( 3 ) ; % 3x3 I d e n t i t y m a t r i x

22 Q = [0 1 0 ; % Mat r i x f o r z ’=Qz

23 −1 0 0 ;

24 0 0 0 ] ;

25 end

26

27 methods

28 %% C o n s t r u c t o r

29 f u n c t i o n o b j = B u t t e r f l y R o b o t ( )

30 o b j . R = s q r t ( o b j . R b ˆ2 − o b j . r f ˆ 2 ) ;

31 N = 100 ;

32 p h i = l i n s p a c e ( 0 , 2∗ pi ,N) ;

33 g = z e r o s ( 1 ,N) ;

34 f o r i =1 :N

111



Chapter C. Code

35 g ( i ) = ge tGs ( obj , p h i ( i ) ) ;

36 end

37 vph i = mod ( g , 2∗ p i ) ;

38 v a r p h i = unwrap ( vph i ) ;

39 o b j . phiApprox = s p l i n e ( v a r p h i , p h i ) ;

40 end

41

42 %% Alpha , Beta , Gamma

43 f u n c t i o n [ t , x ] = simABG ( obj , t0 , tEnd , x0 )

44 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , 1e−5, ’ AbsTol ’ , 1e−6) ;

45 t s p a n = l i n s p a c e ( t0 , tEnd , 5 0 0 ) ;

46 [ t , x ] = ode23 (@( t , y )ABG EOM( obj , y ) , t s p a n , x0 , o p t i o n s ) ;

47 end

48 f u n c t i o n dx = ABG EOM( obj , x )

49 vph i = x ( 1 ) ;

50 Dvphi = x ( 2 ) ;

51 [ a lpha , be t a , gamma ] = getABG ( obj , vph i ) ;

52 DDvphi = −( b e t a ∗Dvphi ˆ2 + gamma ) / a l p h a ;

53 dx = [ Dvphi ; DDvphi ] ;

54 end

55

56 %% B u t t e r f l y Robot

57 f u n c t i o n [ t , x , Fn , Fs , u ] = simBR ( obj , t0 , tEnd , x0 )

58 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , 1e−5, ’ AbsTol ’ , 1e−6) ;

59 t S t e p s = l i n s p a c e ( t0 , tEnd , 5 0 0 ) ;

60 [ t , x ] = ode23 (@( t , y ) But te r f ly EOM ( obj , y ) , t S t e p s , x0 , o p t i o n s ) ;

61 n = l e n g t h ( t ) ;

62 u = z e r o s ( n , 1 ) ;

63 f o r i =1 : n

64 u ( i ) = g e t A c t u a t o r I n p u t ( obj , x ( i , : ) ’ ) ;

65 end

66 Fn = z e r o s ( n , 1 ) ;

67 Fs = z e r o s ( n , 1 ) ;

68 f o r i =1 : n

69 [ Fn ( i ) , Fs ( i ) ] = g e t F o r c e s ( obj , x ( i , : ) ’ ) ;

70 end

71 end

72 f u n c t i o n dx = But te r f ly EOM ( obj , x )

112



73 [M, C ,G] = getMCG ( obj , x ) ;

74 u = g e t A c t u a t o r I n p u t ( obj , x ) ;

75 Dq = x ( 3 : 4 ) ;

76 DDq = M\(−C∗Dq − G + o b j . B∗u ) ;

77 dx = [ Dq ;DDq ] ;

78 end

79 f u n c t i o n u = g e t A c t u a t o r I n p u t ( obj , x )

80 % G e n e r a l i z e d c o o r d i n a t e s

81 t h e t a = x ( 1 ) ; D t h e t a = x ( 3 ) ;

82 v a r p h i = x ( 2 ) ; Dvarph i = x ( 4 ) ;

83

84 % VHC

85 The ta = v a r p h i − o b j . c∗ s i n (2∗ v a r p h i ) ;

86 DTheta = 1 − 2∗ o b j . c∗ cos (2∗ v a r p h i ) ;

87 DDTheta = 4∗ o b j . c∗ s i n (2∗ v a r p h i ) ;

88

89 % Dynamics

90 [M, C ,G] = getMCG ( obj , x ) ;

91

92 % Reduced dynamics

93 [ a lpha , be t a , gamma ] = getABG ( obj , v a r p h i ) ;

94

95 % A c c e l e r a t i o n

96 DDvarphi = −( b e t a / a l p h a ) ∗Dvarph i ˆ2 − ( gamma / a l p h a ) ;

97

98 % A c t u a t i o n

99 u = M( 1 , : ) ∗ [ DDTheta∗Dvarph i ˆ2 + DTheta∗DDvarphi ; DDvarphi ] . . .

100 + C ( 1 , : ) ∗ [ DTheta∗Dvarph i ; Dvarph i ] + G( 1 ) ;

101 end

102 f u n c t i o n [ Fn , Fs ] = g e t F o r c e s ( obj , x )

103 Dx = But te r f ly EOM ( obj , x ) ;

104 D t h e t a = Dx ( 1 ) ; DDtheta = Dx ( 3 ) ;

105 Dvarph i = Dx ( 2 ) ; DDvarphi = Dx ( 4 ) ;

106

107 x mod = [ x ( 1 ) ; x ( 2 ) ; 0 ; 0 ] ;

108 [ ˜ , rhoVec , t au , n , kappa , Ds , DDs , Pi , ˜ ] = g e t V a r i a b l e s ( obj , x mod ) ;

109

110 % Normal f o r c e

113



Chapter C. Code

111 Fn = o b j .m∗ ( P i∗n ) ’∗ (2∗ Pi∗n∗Ds∗D t h e t a ∗Dvarph i . . .

112 + Pi∗kappa∗Ds ˆ ( 2 ) ∗Dvarph i ˆ ( 2 ) . . .

113 + c r o s s ( DDtheta∗ o b j . k h a t , P i∗ rhoVec ) + o b j . g ) ;

114 % F r i c t i o n f o r c e

115 Fs = o b j .m∗ ( P i∗ t a u ) ’∗ ( P i∗kappa∗Ds ˆ ( 2 ) ∗Dvarph i ˆ ( 2 ) . . .

116 + Pi∗ t a u ∗DDs∗Dvarph i ˆ ( 2 ) + P i∗ t a u ∗Ds∗DDvarphi . . .

117 + c r o s s ( DDtheta∗ o b j . k h a t , P i∗ rhoVec ) + o b j . g ) ;

118 end

119

120 %% Shared F u n c t i o n s

121 f u n c t i o n [M, C ,G] = getMCG ( obj , x )

122 % P a r a m e t e r s

123 q1=x ( 1 ) ; q2=x ( 2 ) ; Dq1=x ( 3 ) ; Dq2=x ( 4 ) ;

124 m= o b j .m; J f = o b j . J f ; Jb= o b j . Jb ; g= o b j . g ; R= o b j . R ;

125 k h a t = o b j . k h a t ; B= o b j . B ; a= o b j . a ; b= o b j . b ;

126 [ rho , rhoVec , t au , ˜ , kappa , Ds , DDs , Pi , DPi ] = g e t V a r i a b l e s ( obj , x ) ;

127

128 % Make M

129 m11 = J f + Jb + m∗ rho ˆ ( 2 ) ;

130 m12 = ( d o t (m∗ k h a t , c r o s s ( rhoVec , t a u ) ) − ( Jb / R) ) ∗Ds ;

131 m21 = m12 ;

132 m22 = (m + ( Jb / R ˆ ( 2 ) ) ) ∗Ds ˆ ( 2 ) ;

133 M = [ m11 , m12 ; m21 , m22 ] ;

134

135 % Make C

136 c11 = d o t (m∗Ds∗ rhoVec , t a u ) ∗Dq2 ;

137 c12 = d o t (m∗Ds∗ rhoVec , t a u ) ∗Dq1 + ( ( d o t (m∗ k h a t , c r o s s ( rhoVec ,

t a u ) ) − . . .

138 ( Jb / R) ) ∗DDs + d o t (m∗ k h a t , c r o s s ( rhoVec , kappa ) ) ∗Ds ˆ ( 2 ) ) ∗Dq2

;

139 c21 = −d o t (m∗Ds∗ rhoVec , t a u ) ∗Dq1 ;

140 c22 = (m + ( Jb / R ˆ ( 2 ) ) ) ∗Ds∗DDs∗Dq2 ;

141 C = [ c11 , c12 ; c21 , c22 ] ;

142

143 % Make G

144 g1 = d o t (m∗g , DPi∗ rhoVec ) ;

145 g2 = d o t (m∗g , P i∗ t a u ∗Ds ) ;

146 G = [ g1 ; g2 ] ;

114



147 end

148 f u n c t i o n [ rho , rhoVec , t au , n , kappa , Ds , DDs , Pi , DPi ] = g e t V a r i a b l e s ( obj

, x )

149 % G e n e r a l c o o r d i n a t e s and a n g l e s

150 t h e t a = x ( 1 ) ;

151 v a r p h i = x ( 2 ) ;

152 p h i = p p v a l ( o b j . phiApprox , v a r p h i ) ;

153 [ a lpha , Dalpha , DDalpha ] = getALPHAs ( obj , p h i ) ;

154

155 % V e c t o r s needed f o r c a l c u l a t i o n

156 [ de l t aVec , Ddel taVec , DDdeltaVec ] = g e t D e l t a V e c s ( obj , p h i ) ;

157

158 % Tangens v e c t o r s

159 t a u = Ddel taVec / norm ( Ddel taVec ) ;

160

161 % Normal v e c t o r s

162 n = [ s i n ( a l p h a ) ; cos ( a l p h a ) ; 0 ] ;

163 Dn = [ cos ( a l p h a ) ∗Dalpha ; −s i n ( a l p h a ) ∗Dalpha ; 0 ] ;

164 DDn = [− s i n ( a l p h a ) ∗Dalpha ˆ2 + cos ( a l p h a ) ∗DDalpha ; −cos ( a l p h a ) ∗

Dalpha ˆ2 − s i n ( a l p h a ) ∗DDalpha ; 0 ] ;

165

166 % C u r v a t u r e v e c t o r

167 k a p p a f = norm ( c r o s s ( Ddel taVec , DDdeltaVec ) ) / ( ( norm ( Ddel taVec ) )

ˆ 3 ) ;

168 k a p p a c o n s t = k a p p a f / ( 1 − o b j . R∗ k a p p a f ) ;

169 kappa = k a p p a c o n s t ∗n ;

170

171 % V ec to r from o r i g o t o i n t e r s e c t i o n p o i n t : b a l l / f rame

172 rhoVec = d e l t a V e c + o b j . R∗n ;

173 rho = norm ( rhoVec ) ;

174

175 % Arc l e n g t h , d i f f e r e n t i a t e d once and t w i c e

176 [ ˜ , Dg , DDg] = getGs ( obj , p h i ) ;

177 h = Ddel taVec + o b j . R∗Dn ;

178 Dh = DDdeltaVec + o b j . R∗DDn;

179 Ds = ( norm ( h ) ) ∗ ( 1 / Dg ) ;

180 DDs = ( ( ( d o t ( h , Dh ) / norm ( h ) ) ∗ ( 1 / Dg ) ) − ( ( norm ( h ) ) ∗ (DDg/ Dg ˆ 2 ) ) )

∗ ( 1 / Dg ) ;

115



Chapter C. Code

181

182 % R o t a t i o n m a t r i x (RM) and d i f f e r e n t i a t e d RM

183 Pi = [ cos ( t h e t a ) −s i n ( t h e t a ) 0 ; s i n ( t h e t a ) cos ( t h e t a ) 0 ; 0 0

1 ] ;

184 DPi = [− s i n ( t h e t a ) −cos ( t h e t a ) 0 ; cos ( t h e t a ) −s i n ( t h e t a ) 0 ; 0

0 0 ] ;

185 end

186 f u n c t i o n [ de l t aVec , Ddel taVec , DDdeltaVec ] = g e t D e l t a V e c s ( obj , p h i )

187 [ d e l t a , Dde l t a , DDdel ta ] = getDELTAs ( obj , p h i ) ;

188 z = [ s i n ( p h i ) ; cos ( p h i ) ; 0 ] ;

189 d e l t a V e c = d e l t a ∗z ;

190 Ddel taVec = ( D d e l t a ∗ o b j . I + d e l t a ∗ o b j .Q) ∗z ;

191 DDdeltaVec = ( DDdel ta∗ o b j . I + 2∗D d e l t a ∗ o b j .Q − d e l t a ∗ o b j . I ) ∗z ;

192 end

193 f u n c t i o n [ a lpha , be t a , gamma ] = getABG ( obj , v a r p h i )

194 [ Phi , DPhi , DDPhi ] = g e t P h i s ( obj , v a r p h i ) ;

195 Dq = [ Phi ; DPhi ] ;

196 [M, C ,G] = getMCG ( obj , Dq ) ;

197 a l p h a = o b j . B an∗M∗DPhi ;

198 b e t a = o b j . B an ∗ (C∗DPhi + M∗DDPhi ) ;

199 gamma = o b j . B an∗G;

200 end

201 f u n c t i o n [ Phi , DPhi , DDPhi ] = g e t P h i s ( obj , v a r p h i )

202 [ Theta , DTheta , DDTheta ] = getVHC ( obj , v a r p h i ) ;

203 Phi = [ The ta ; v a r p h i ] ;

204 DPhi = [ DTheta ; 1 ] ;

205 DDPhi = [ DDTheta ; 0 ] ;

206 end

207 f u n c t i o n [ Theta , DTheta , DDTheta ] = getVHC ( obj , v a r p h i )

208 The ta = v a r p h i − o b j . c∗ s i n (2∗ v a r p h i ) ;

209 DTheta = 1 − 2∗ o b j . c∗ cos (2∗ v a r p h i ) ;

210 DDTheta = 4∗ o b j . c∗ s i n (2∗ v a r p h i ) ;

211 end

212

213 %% Symbol ic F u n c t i o n s

214 f u n c t i o n [ d e l t a , Dde l t a , DDdelta , DDDdelta ] = getDELTAs ( obj , p h i )

215 a = o b j . a ; b = o b j . b ;

216 t 2 = p h i . ∗ 2 . 0 ;

116



217 t 3 = cos ( t 2 ) ;

218 d e l t a = a−b .∗ t 3 ;

219 t 4 = s i n ( t 2 ) ;

220 D d e l t a = b .∗ t 4 . ∗ 2 . 0 ;

221 DDdelta = b .∗ t 3 . ∗ 4 . 0 ;

222 DDDdelta = b .∗ t 4 .∗ −8 .0 ;

223 i f s t r c m p i ( o b j . shape , ’ c i r c l e ’ )

224 d e l t a = o b j . Rf ;

225 D d e l t a = 0 ;

226 DDdelta = 0 ;

227 DDDdelta = 0 ;

228 end

229 end

230 f u n c t i o n [ a lpha , Dalpha , DDalpha ] = getALPHAs ( obj , p h i )

231 [ d e l t a , Dde l t a , DDdelta , DDDdelta ] = getDELTAs ( obj , p h i ) ;

232 t 2 = d e l t a ;

233 t 3 = s i n ( p h i ) ;

234 t 4 = D d e l t a ;

235 t 5 = cos ( p h i ) ;

236 a l p h a = a t a n ( ( t 2 .∗ t3−t 4 .∗ t 5 ) . / ( t 2 .∗ t 5 + t 3 .∗ t 4 ) ) ;

237 i f ( p h i > p i / 2 && p h i < 3∗ p i / 2 )

238 a l p h a = a l p h a + p i ;

239 end

240 i f ( p h i > 3∗ p i / 2 )

241 a l p h a = a l p h a + 2∗ p i ;

242 end

243 t 6 = t 4 . ˆ 2 ;

244 t 7 = t 2 . ˆ 2 ;

245 t 8 = t 6 + t 7 ;

246 t 9 = DDdel ta ;

247 Dalpha = ( t 6 .∗2 . 0 + t7−t 2 .∗ t 9 ) . / t 8 ;

248 t 1 0 = DDDdelta ;

249 DDalpha = −1 .0 . / t 8 . ˆ 2 . ∗ ( t 2 .∗ t 4 .∗ t 9 . ˆ 2 .∗ −2 .0+ t 2 .∗ t 4 .∗ t 6 .∗2 . 0 + t 2

.∗ t 6 .∗ t 1 0 + t 2 .∗ t 7 .∗ t 1 0 + t 4 .∗ t 6 .∗ t9−t 4 .∗ t 7 .∗ t 9 . ∗ 3 . 0 ) ;

250 end

251 f u n c t i o n [ g , Dg , DDg] = getGs ( obj , p h i )

252 R = o b j . R ;

253 [ d e l t a , Dde l t a , DDdelta , ˜ ] = getDELTAs ( obj , p h i ) ;

117



Chapter C. Code

254 [ a lpha , Dalpha , DDalpha ] = getALPHAs ( obj , p h i ) ;

255 t 2 = d e l t a ;

256 t 3 = a l p h a ;

257 g = a t a n 2 ( ( R.∗ s i n ( t 3 ) + t 2 .∗ s i n ( p h i ) ) , (R.∗ cos ( t 3 ) + t 2 .∗ cos ( p h i ) ) )

;

258 i f ( n a r g o u t > 1)

259 t 4 = t 2 . ˆ 2 ;

260 t 5 = R . ˆ 2 ;

261 t 6 = phi−t 3 ;

262 t 7 = cos ( t 6 ) ;

263 t 8 = Dalpha ;

264 t 9 = R.∗ t 2 .∗ t 7 . ∗ 2 . 0 ;

265 t 1 0 = t 4 + t 5 + t 9 ;

266 t 1 1 = 1 . 0 . / t 1 0 ;

267 t 1 2 = D d e l t a ;

268 t 1 3 = s i n ( t 6 ) ;

269 t 1 4 = DDalpha ;

270 t 1 5 = t 2 .∗ t 1 2 . ∗ 2 . 0 ;

271 t 1 6 = R.∗ t 7 .∗ t 1 2 . ∗ 2 . 0 ;

272 t 1 7 = t 5 .∗ t 8 ;

273 t 1 8 = R.∗ t 1 2 .∗ t 1 3 ;

274 t 1 9 = R.∗ t 2 .∗ t 7 ;

275 t 2 0 = R.∗ t 2 .∗ t 7 .∗ t 8 ;

276 t 2 1 = t 4 + t 1 7 + t 1 8 + t 1 9 + t 2 0 ;

277 Dg = t 1 1 .∗ t 2 1 ;

278 DDg = t 1 1 . ∗ ( t 1 5 + t 1 6 + t 5 .∗ t14−R.∗ t 2 .∗ t 1 3 +R.∗ t 1 3 .∗ DDdelta+R.∗

t 2 .∗ t 7 .∗ t 1 4 +R.∗ t 2 .∗ t 8 . ˆ 2 . ∗ t 1 3 ) −1 .0 . / t 1 0 . ˆ 2 . ∗ t 2 1 . ∗ ( t 1 5 + t 1 6 +R.∗ t 2 .∗ t 1 3

. ∗ ( t8 −1.0) . ∗ 2 . 0 ) ;

279 end

280 end

281

282 end

283 end

118



generateDelta.mlx

This is a symbolic script that is used to calculate complicated mathematical expressions

and turning the answers into functions that take desired input. The following is created to

find δ(φ) and its derivatives.

1 %% C r e a t e f u n c t i o n : ge tPHIs ( obj , p h i )

2 % This f u n c t i o n was g e n e r a t e d by t h e Symbol ic Math Toolbox v e r s i o n 7 . 2 .

3 % 02−Nov−2017 1 6 : 5 1 : 2 3

4

5 syms phi , syms R b c

6

7 d e l t a = b − c∗ cos (2∗ p h i ) ;

8 D d e l t a = s i m p l i f y ( d i f f ( d e l t a , p h i ) ) ;

9 DDdelta = s i m p l i f y ( d i f f ( d e l t a , phi , 2 ) ) ;

10 DDDdelta = s i m p l i f y ( d i f f ( d e l t a , phi , 3 ) ) ;

11

12 getDELTAs = m a t l a b F u n c t i o n ( d e l t a , Dde l t a , DDdelta , DDDdelta , . . .

13 ’ F i l e ’ , ’ getDELTAs ’ , ’ O u t p u t s ’ ,{ ’ d e l t a ’ , ’ D d e l t a ’ , ’ DDdel ta ’ , ’ DDDdelta ’ } ) ;

119



Chapter C. Code

generateAlpha.mlx

This is a symbolic script that is used to calculate complicated mathematical expressions

and turning the answers into functions that take desired input. The following is created to

find α(φ) and its derivatives.

1 %% C r e a t e f u n c t i o n : getALPHAs ( obj , p h i )

2 % This f u n c t i o n was g e n e r a t e d by t h e Symbol ic Math Toolbox v e r s i o n 7 . 2 .

3 % 02−Nov−2017 1 7 : 2 1 : 3 5

4

5 syms p h i

6 syms d e l t a ( p h i ) D d e l t a ( p h i ) DDdel ta ( p h i ) DDDdelta ( p h i )

7

8 f u n a l p h a = a t a n ( ( d e l t a ∗ s i n ( p h i ) − D d e l t a ∗ cos ( p h i ) ) / ( d e l t a ∗ cos ( p h i ) +

D d e l t a ∗ s i n ( p h i ) ) ) ;

9 funDalpha = s i m p l i f y ( d i f f ( f u n a l p h a , p h i ) ) ;

10 funDDalpha = s i m p l i f y ( d i f f ( f u n a l p h a , phi , 2 ) ) ;

11

12 a l p h a = s i m p l i f y ( f u n a l p h a , ’ S t e p s ’ , 1 0 0 ) ;

13 Dalpha = subs ( funDalpha , [ d i f f ( d e l t a ) , d i f f ( D d e l t a ) ] , [ Dde l t a , DDdel ta ] ) ;

14 DDalpha = subs ( funDDalpha , [ d i f f ( d e l t a ) , d i f f ( d e l t a , 2 ) , d i f f ( D d e l t a ) , d i f f

( Dde l t a , 2 ) , d i f f ( DDdel ta ) ] , . . .

15 [ Dde l t a , DDdelta , DDdelta , DDDdelta , DDDdelta ] ) ;

16

17 getALPHAs = m a t l a b F u n c t i o n ( a lpha , Dalpha , DDalpha , . . .

18 ’ F i l e ’ , ’ getALPHAs ’ , ’ O u t p u t s ’ ,{ ’ a l p h a ’ , ’ Dalpha ’ , ’ DDalpha ’ } ) ;

120



generateExpr.mlx

This is a symbolic script that is used to calculate complicated mathematical expressions

and turning the answers into functions that take desired input. The following is created to

find g(φ) and its derivatives.

1 %% C r e a t e f u n c t i o n : ge tGs ( obj , p h i )

2 % This f u n c t i o n was g e n e r a t e d by t h e Symbol ic Math Toolbox v e r s i o n 7 . 2 .

3 % 02−Nov−2017 1 7 : 5 2 : 0 4

4

5 syms phi , syms R

6 syms d e l t a ( p h i ) D d e l t a ( p h i ) DDdel ta ( p h i )

7 syms a l p h a ( p h i ) Dalpha ( p h i ) DDalpha ( p h i )

8

9 fung = a t a n ( ( d e l t a ∗ s i n ( p h i ) + R∗ s i n ( a l p h a ) ) / ( d e l t a ∗ cos ( p h i ) + R∗ cos ( a l p h a )

) ) ;

10 funDg = s i m p l i f y ( d i f f ( fung , p h i ) , ’ S t e p s ’ , 1 0 0 ) ;

11 funDDg = s i m p l i f y ( d i f f ( funDg , p h i ) , ’ S t e p s ’ , 1 0 0 ) ;

12

13 g = s i m p l i f y ( fung , ’ S t e p s ’ , 1 0 0 ) ;

14 Dg = subs ( funDg , [ d i f f ( d e l t a ) , d i f f ( a l p h a ) ] , [ Dde l t a , Dalpha ] ) ;

15 DDg = subs ( funDDg , [ d i f f ( d e l t a ) , d i f f ( d e l t a , 2 ) , d i f f ( a l p h a ) , d i f f ( a lpha , 2 )

] , . . .

16 [ Dde l t a , DDdelta , Dalpha , DDalpha ] ) ;

17

18 getGs = m a t l a b F u n c t i o n ( g , Dg , DDg , . . .

19 ’ F i l e ’ , ’ ge tGs ’ , ’ O u t p u t s ’ ,{ ’ g ’ , ’Dg ’ , ’DDg ’ } ) ;

121



Chapter C. Code

runCircleRobot.m

This script is identical to the main file (runButterflyRobot.m), except for that it runs the

functions through a different class, namely CircleRobot class.

1 %% Author : Oskar Lund , 2 9 . 1 0 . 1 7

2

3 %% D e s c r i p t i o n

4 % This s c r i p t s i m u l a t e s t h e o v e r a l l b e h a v i o u r o f t h e

5 % b u t t e r f l y r o b o t , b u t w i th t h e b u t t e r f l y shape

6 % s w i t c h e d o u t wi th a c i r c u l a r shape

7

8 %% D ef in e t h e o b j e c t BR of c l a s s B u t t e r f l y R o b o t

9 CR = C i r c l e R o b o t ;

10

11 %% Choose which program t o run : ABG = 0 , BR = 1

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 program = 1 ;

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15

16 i f ( program == 0)

17 %% S i m u l a t e a lpha , be t a , gamma

18

19 t 0 = 0 ; % I n t i a l t ime

20 tEn d = 1 0 ; % F i n a l t ime

21 x0 = [ 0 ; 1 ] ; % I n i t i a l c o n d i t i o n s ( [ v a r p h i 0 ; Dvarph i0 ] )

22 [ t , x ] = CR . simABG ( t 0 , tEnd , x0 ) ;

23

24 e l s e i f ( program == 1)

25 %% S i m u l a t e t h e f u l l c i r c l e sys tem

26

27 t 0 = 0 ; % I n t i a l t ime

28 tEnd = 5 ; % F i n a l t ime

29 x0 = [ 0 ; p i / 2 ; 0 ; 0 ] ; % I n i t i a l c o n d i t i o n s ( [ t h e t a 0 ; v a r p h i 0 ; D t h e t a 0 ;

Dvarph i0 ] )

30 [ t , x ] = CR . simCR ( t0 , tEnd , x0 ) ;

31

32 end

122



CircleRobot.mlx

This script is identical to the class used by the main file (ButterflyRobot.m), except for that

the general dynamics have been replaced with the specific dynamics of a circle.

1 c l a s s d e f C i r c l e R o b o t

2 % Dynamics o f C i r c l e r o b o t

3

4 p r o p e r t i e s

5 m = 3e−3; % Mass o f t h e b a l l [ kg ]

6 J f = 1 .581 e−3; % Moment o f i n e r t i a o f t h e f rame [ kg∗mˆ 2 ]

7 Jb = 5 . 4 8 e−7; % Moment o f i n e r t i a o f t h e b a l l [ kg∗mˆ 2 ]

8 g = [ 0 ; 9 . 8 1 ; 0 ] ; % G r a v i t a t i o n a l e c c e l e r a t i o n [m∗ s ˆ 2 ]

9 R b = 16 .55 e−3; % Radius o f b a l l [m]

10 r f = 1 2 . 5 e−3; % D i s t a n c e between t h e p l a t e s [m]

11 Rf = 0 . 1 ; % Radius o f f rame i n m e t e r s [m]

12 R ; % E f f e c t i v e r a d i u s o f t h e b a l l [m]

13 Rd ; % Radius from o r i g o t o b a l l ’ s c e n t e r [m]

14 c = 0 . 4 9 ; % S c a l a r f o r VHC

15 B an = [0 1 ] ; % A n n i h i l a t o r m a t r i x

16 phiApprox ; % Approx ima t ion o f p h i

17 end

18

19 methods

20 %% C o n s t r u c t o r

21 f u n c t i o n o b j = C i r c l e R o b o t ( )

22 o b j . R = s q r t ( o b j . R b ˆ2 − o b j . r f ˆ 2 ) ;

23 o b j . Rd = o b j . R + o b j . Rf ;

24 N = 100 ;

25 p h i = l i n s p a c e ( 0 , 2∗ pi ,N) ;

26 g = z e r o s ( 1 ,N) ;

27 f o r i =1 :N

28 [ g ( i ) , ˜ , ˜ ] = ge tGs ( obj , p h i ( i ) ) ;

29 end

30 v a r p h i = mod ( g , 2∗ p i ) ;

31 o b j . phiApprox = s p l i n e ( v a r p h i , p h i ) ;

32 end

33

34 %% Alpha , Beta , Gamma

123



Chapter C. Code

35 f u n c t i o n [ t , x ] = simABG ( obj , t0 , tEnd , x0 )

36 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , 1e−5, ’ AbsTol ’ , 1e−6) ;

37 t s p a n = l i n s p a c e ( t0 , tEnd , 1 0 0 0 ) ;

38 [ t , x ] = ode23 (@( t , y )ABG EOM( obj , y ) , t s p a n , x0 , o p t i o n s ) ;

39 end

40 f u n c t i o n dx = ABG EOM( obj , x )

41 vph i = x ( 1 ) ;

42 Dvphi = x ( 2 ) ;

43 [ a lpha , be t a , gamma ] = getABG ( obj , vph i ) ;

44 DDvphi = −( b e t a ∗Dvphi ˆ2 + gamma ) / a l p h a ;

45 dx = [ Dvphi ; DDvphi ] ;

46 end

47 f u n c t i o n [ a lpha , be t a , gamma ] = getABG ( obj , v a r p h i )

48 [ Phi , DPhi , DDPhi ] = g e t P h i s ( obj , v a r p h i ) ;

49 Dq = [ Phi ; DPhi ] ;

50 [M, C ,G] = getMCG ( obj , Dq ) ;

51 a l p h a = o b j . B an∗M∗DPhi ;

52 b e t a = o b j . B an ∗ (C∗DPhi + M∗DDPhi ) ;

53 gamma = o b j . B an∗G;

54 end

55 f u n c t i o n [ Phi , DPhi , DDPhi ] = g e t P h i s ( obj , v a r p h i )

56 [ Theta , DTheta , DDTheta ] = getVHC ( obj , v a r p h i ) ;

57 Phi = [ The ta ; v a r p h i ] ;

58 DPhi = [ DTheta ; 1 ] ;

59 DDPhi = [ DDTheta ; 0 ] ;

60 end

61 f u n c t i o n [ Theta , DTheta , DDTheta ] = getVHC ( obj , v a r p h i )

62 The ta = v a r p h i − o b j . c∗ s i n (2∗ v a r p h i ) ;

63 DTheta = 1 − 2∗ o b j . c∗ cos (2∗ v a r p h i ) ;

64 DDTheta = 4∗ o b j . c∗ s i n (2∗ v a r p h i ) ;

65 end

66

67 %% C i r c l e Robot

68 f u n c t i o n [ t , x ] = simCR ( obj , t0 , tEnd , x0 )

69 o p t i o n s = o d e s e t ( ’ Re lTo l ’ , 1e−5, ’ AbsTol ’ , 1e−6) ;

70 t S t e p s = l i n s p a c e ( t0 , tEnd , 1 0 0 ) ;

71 [ t , x ] = ode23 (@( t , y ) But te r f ly EOM ( obj , y ) , t S t e p s , x0 , o p t i o n s ) ;

72 end

124



73 f u n c t i o n dx = But te r f ly EOM ( obj , x )

74 Dq = x ( 3 : 4 ) ;

75 [M, C ,G] = getMCG ( obj , x ) ;

76 DDq = M\(−C∗Dq − G) ;

77 dx = [ Dq ;DDq ] ;

78 end

79

80 %% Shared F u n c t i o n s

81 f u n c t i o n [M, C ,G] = getMCG ( obj , x )

82 % P a r a m e t e r s

83 q1=x ( 1 ) ; q2=x ( 2 ) ; Dq1=x ( 3 ) ; Dq2=x ( 4 ) ;

84 J f = o b j . J f ; Jb = o b j . Jb ;

85 m = o b j .m; g = o b j . g ;

86 R = o b j . R ; Rd = o b j . Rd ;

87 [ z , Dz , Pi , DPi ] = g e t V a r i a b l e s ( obj , q1 , q2 ) ;

88

89 % Make M

90 m11 = J f + Jb + m∗Rd ˆ ( 2 ) ;

91 m12 = −(m∗Rd ˆ ( 2 ) + ( Jb / R) ∗Rd ) ;

92 m21 = m12 ;

93 m22 = (m + ( Jb / R ˆ ( 2 ) ) ) ∗Rd ˆ 2 ;

94 M = [ m11 , m12 ; m21 , m22 ] ;

95

96 % Make C

97 c11 = 0 ;

98 c12 = 0 ;

99 c21 = 0 ;

100 c22 = 0 ;

101 C = [ c11 , c12 ; c21 , c22 ] ;

102

103 % Make G

104 g1 = d o t (m∗g , DPi∗Rd∗z ) ;

105 g2 = d o t (m∗g , P i∗Rd∗Dz ) ;

106 G = [ g1 ; g2 ] ;

107 end

108 f u n c t i o n [ z , Dz , Pi , DPi ] = g e t V a r i a b l e s ( obj , t h e t a , v a r p h i )

109 p h i = p p v a l ( o b j . phiApprox , v a r p h i ) ;

125



Chapter C. Code

110 Pi = [ cos ( t h e t a ) −s i n ( t h e t a ) 0 ; s i n ( t h e t a ) cos ( t h e t a ) 0 ; 0 0

1 ] ;

111 DPi = [− s i n ( t h e t a ) −cos ( t h e t a ) 0 ; cos ( t h e t a ) −s i n ( t h e t a ) 0 ; 0

0 0 ] ;

112 z = [ s i n ( p h i ) ; cos ( p h i ) ; 0 ] ;

113 Dz = [ cos ( p h i ) ; −s i n ( p h i ) ; 0 ] ;

114 end

115

116 %% Symbol ic F u n c t i o n s

117 f u n c t i o n [ d e l t a , Dde l t a , DDdelta , DDDdelta ] = getDELTAs ( obj , p h i ) . . .

118 f u n c t i o n [ a lpha , Dalpha , DDalpha ] = getALPHAs ( obj , p h i ) . . .

119 f u n c t i o n [ g , Dg , DDg] = getGs ( obj , p h i ) . . .

120 end

121 end

126



ValidationExpression.m

This is a script that portraits the difference the assumption φ = ϕ makes by simulating

ϕ = g(φ) for various instances.

1 %% Author : Oskar Lund , 2 9 . 1 1 . 1 7

2

3 %% D e s c r i p t i o n

4 % This s c r i p t c r e a t e s p l o t s o f t h e d e r i v e d g e n e r a l f u n c t i o n g ( p h i ) .

5 % There a r e t h r e e s h a p e s ( c i r c l e , e l l i p s e and b u t t e r f l y ) t h a t a r e

6 % s i m u l a t e d t o c o n f i r m t h e a u t h e n t i c i t y o f t h e e x p r e s s i o n .

7

8 %% P a r a m e t e r s

9 s i z e R = ’ s m a l l ’ ; % c h o i c e s : sma l l−> R = 0 . 0 1m, big−> R = 10m

10 shape = ’ b u t t e r f l y ’ ; % c h o i c e s : c i r c l e , e l l i p s e o r b u t t e r f l y

11

12 %% D ef in e a n g l e s and v a r i a b l e s

13 N = 1000 ;

14 p h i = l i n s p a c e ( 0 , 2∗ pi ,N) ;

15 fung = z e r o s ( 1 ,N) ;

16 vph i = z e r o s ( 1 ,N) ;

17

18 f o r i =1 :N

19 [ fung ( i ) , ˜ , ˜ ] = ge tGs ( p h i ( i ) , s izeR , shape ) ;

20 vph i ( i ) = mod ( fung ( i ) ,2∗ p i ) ;

21 end

22 v a r p h i = unwrap ( vph i ) ;

23

24 %% E x t e r n a l f u n c t i o n s from BR s c r i p t

25 f u n c t i o n [ d e l t a , Dde l t a , DDdelta , DDDdelta ] = getDELTAs ( phi , shape ) . . .

26 f u n c t i o n [ a lpha , Dalpha , DDalpha ] = getALPHAs ( phi , shape ) . . .

27 f u n c t i o n [ g , Dg , DDg] = getGs ( phi , s izeR , shape ) . . .

127



Chapter C. Code

DeriveVHC.m

This script simulates all the sub-parts contributing to the derivation of a valid virtual holo-

nomic constraint.

1 %% Author : Oskar Lund , 0 3 . 1 1 . 1 7

2

3 %% D e s c r i p t i o n

4 % This s c r i p t l o o k s a t t h e r e d u c e d dynamics , a l s o c a l l e d :

5 % alpha , be t a , gamma and s i m u l a t e s phase t r a j e c t o r i e s and o t h e r

6 % u s e f u l i n f o r m a t i o n .

7

8 %% P a r a m e t e r s

9 m = 3e−3; % Mass o f t h e b a l l [ kg ]

10 J f = 1 .581 e−3; % Moment o f i n e r t i a o f t h e f rame [ kg∗mˆ 2 ]

11 Jb = 5 . 4 8 e−7; % Moment o f i n e r t i a o f t h e b a l l [ kg∗mˆ 2 ]

12 g = [ 0 ; 9 . 8 1 ; 0 ] ; % G r a v i t a t i o n a l e c c e l e r a t i o n [m∗ s ˆ 2 ]

13 R b = 16 .55 e−3; % Radius o f b a l l [m]

14 r f = 1 2 . 5 e−3; % D i s t a n c e between t h e p l a t e s [m]

15 R = s q r t ( R b ˆ2 − r f ˆ 2 ) ;% E f f e c t i v e r a d i u s o f t h e b a l l [m]

16 k h a t = [ 0 ; 0 ; 1 ] ; % Z−d i r e c t i o n a l v e c t o r

17 B = [ 1 ; 0 ] ; % Coup l ing m a t r i x

18 B an = [0 1 ] ; % A n n i h i l a t o r m a t r i x

19 c = 0 . 4 9 ; % S c a l a r f o r VHC

20

21 %% D ef in e a n g l e s and v a r i a b l e s

22 N = 1000 ;

23 p h i = l i n s p a c e ( 0 , 2∗ pi ,N) ;

24 fung = z e r o s ( 1 ,N) ;

25 v a r p h i = z e r o s ( 1 ,N) ;

26 VHC = z e r o s ( 1 ,N) ;

27 VHC check = z e r o s ( 1 ,N) ;

28 VHC DTheta = z e r o s ( 1 ,N) ;

29 VHC DDTheta = z e r o s ( 1 ,N) ;

30 Alpha = z e r o s ( 1 ,N) ;

31 Beta = z e r o s ( 1 ,N) ;

32 Gamma = z e r o s ( 1 ,N) ;

33 DGamma = z e r o s ( 1 ,N) ;

34

128



35 f o r i =1 :N

36 %% D ef in e v a r p h i

37 [ fung ( i ) ,Dg , DDg] = getGs ( p h i ( i ) ) ;

38 v a r p h i ( i ) = mod ( fung ( i ) ,2∗ p i ) ;

39

40 %% D ef in e v a r i a b l e s

41 [ a lpha , Dalpha , DDalpha ] = getALPHAs ( p h i ( i ) ) ;

42 [ de l t aVec , Ddel taVec , DDdeltaVec ] = g e t D e l t a V e c s ( p h i ( i ) ) ;

43 t a u = Ddel taVec / norm ( Ddel taVec ) ;

44 n = [ s i n ( a l p h a ) ; cos ( a l p h a ) ; 0 ] ;

45 Dn = [ cos ( a l p h a ) ∗Dalpha ; −s i n ( a l p h a ) ∗Dalpha ; 0 ] ;

46 DDn = [− s i n ( a l p h a ) ∗Dalpha ˆ2 + cos ( a l p h a ) ∗DDalpha ; −cos ( a l p h a ) ∗Dalpha ˆ2

− s i n ( a l p h a ) ∗DDalpha ; 0 ] ;

47 rho = d e l t a V e c + R∗n ;

48 h = Ddel taVec + R∗Dn ;

49 Dh = DDdeltaVec + R∗DDn;

50 Ds = ( norm ( h ) ) ∗ ( 1 / Dg ) ;

51 DDs = ( ( ( d o t ( h , Dh ) / norm ( h ) ) ∗ ( 1 / Dg ) ) − ( ( norm ( h ) ) ∗ (DDg/ Dg ˆ 2 ) ) ) ∗ ( 1 / Dg ) ;

52

53 %% D ef in e VHC

54 The ta = v a r p h i ( i ) − c∗ s i n (2∗ v a r p h i ( i ) ) ;

55 DTheta = 1 − 2∗ c∗ cos (2∗ v a r p h i ( i ) ) ;

56 DDTheta = 4∗ c∗ s i n (2∗ v a r p h i ( i ) ) ;

57 VHC( i ) = The ta ;

58 VHC check ( i ) = (−Ds∗ (m + Jb / Rˆ 2 ) ) / ( d o t (m∗ k h a t , c r o s s ( rho , t a u ) ) − Jb / R)

;

59 VHC DTheta ( i ) = DTheta ;

60 VHC DDTheta ( i ) = DDTheta ;

61

62 %% R o t a t i o n m a t r i x

63 Pi = [ cos ( The ta ) −s i n ( The ta ) 0 ; s i n ( The ta ) cos ( The ta ) 0 ; 0 0 1 ] ;

64 DPi = [− s i n ( The ta ) −cos ( The ta ) 0 ; cos ( The ta ) −s i n ( The ta ) 0 ; 0 0 0 ] ;

65

66 %% D ef in e a lpha , be t a , gamma

67 Alpha ( i ) = Ds∗ ( d o t (m∗ k h a t , c r o s s ( rho , t a u ) ) − Jb / R) ∗DTheta + Ds ˆ ( 2 ) ∗ (m

+ Jb / Rˆ 2 ) ;

68 Beta ( i ) = Ds∗ ( d o t (m∗ k h a t , c r o s s ( rho , t a u ) ) − Jb / R) ∗DDTheta − d o t (m∗Ds ’∗

t au , rho∗DTheta . ˆ ( 2 ) ) + (m + Jb / Rˆ 2 ) ∗Ds∗DDs ;

129



Chapter C. Code

69 Gamma( i ) = d o t (m∗Ds∗g , P i∗ t a u ) ;

70 DGamma( i ) = m∗DDs∗ d o t ( g , P i∗ t a u ) + m∗Ds∗ d o t ( g , ( DPi∗DTheta∗ t a u + P i ∗ ( (

DDdeltaVec / norm ( Ddel taVec ) ) −(( Ddel taVec∗ d o t ( Ddel taVec , DDdeltaVec ) ) / (

norm ( DDdeltaVec ) ˆ 3 ) ) ) ) ) ;

71 end

72

73 %% S t u d y i n g e q u i l i b r i u m p o i n t s and c h e c k i n g f o r a s y m p t o t e s

74 asymCheckOne = Gamma . / Alpha ;

75 asymCheckTwo = Beta . / Alpha ;

76

77 [ de l taVecEq1 , DdeltaVecEq1 , DDdeltaVecEq1 ] = g e t D e l t a V e c s ( 0 ) ;

78 [ de l taVecEq2 , DdeltaVecEq2 , DDdeltaVecEq2 ] = g e t D e l t a V e c s ( p i / 2 ) ;

79 [ a lphaEq1 , DalphaEq1 , ˜ ] = getALPHAs ( 0 ) ;

80 [ a lphaEq2 , DalphaEq2 , ˜ ] = getALPHAs ( p i / 2 ) ;

81 [ ˜ , DgEq1 , ˜ ] = ge tGs ( 0 ) ;

82 [ ˜ , DgEq2 , ˜ ] = ge tGs ( p i / 2 ) ;

83

84 rhoEqOne = de l t aVecEq1 + R∗ [ s i n ( a lphaEq1 ) ; cos ( a lphaEq1 ) ; 0 ] ;

85 rhoEqTwo = de l t aVecEq2 + R∗ [ s i n ( a lphaEq2 ) ; cos ( a lphaEq2 ) ; 0 ] ;

86 tauEqOne = Ddel taVecEq1 / norm ( Ddel taVecEq1 ) ;

87 tauEqTwo = Ddel taVecEq2 / norm ( Ddel taVecEq2 ) ;

88 DsEqOne = ( norm ( Ddel taVecEq1 + R∗ [ cos ( a lphaEq1 ) ∗DalphaEq1 ; −s i n ( a lphaEq1 ) ∗

DalphaEq1 ; 0 ] ) ) ∗ ( 1 / DgEq1 ) ;

89 DsEqTwo = ( norm ( Ddel taVecEq2 + R∗ [ cos ( a lphaEq2 ) ∗DalphaEq2 ; −s i n ( a lphaEq2 ) ∗

DalphaEq2 ; 0 ] ) ) ∗ ( 1 / DgEq2 ) ;

90

91 a O p t i o n s = (−2:2) ;

92 f o r i = a O p t i o n s

93 DThetaEqOne = 1 − 2∗ i ∗ cos ( 2∗0 ) ;

94 DThetaEqTwo = 1 − 2∗ i ∗ cos ( 2∗ ( p i / 2 ) ) ;

95 AlphaEqPointOne ( i +3) = DsEqOne . ∗ ( d o t (m∗ k h a t , c r o s s ( rhoEqOne , tauEqOne ) )

− Jb / R) .∗DThetaEqOne + DsEqOne . ˆ ( 2 ) . ∗ (m + Jb / Rˆ 2 ) ;

96 AlphaEqPointTwo ( i +3) = DsEqTwo . ∗ ( d o t (m∗ k h a t , c r o s s ( rhoEqTwo , tauEqTwo ) )

− Jb / R) .∗DThetaEqTwo + DsEqTwo . ˆ ( 2 ) . ∗ (m + Jb / Rˆ 2 ) ;

97 end

98

99 AlphaNul l = z e r o s ( l e n g t h ( a O p t i o n s ) ) ;

100 P1 = I n t e r X ( [ a O p t i o n s ; AlphaEqPointOne ] , [ a O p t i o n s ; AlphaEqPointTwo ] ) ;

130



101 P2 = I n t e r X ( [ a O p t i o n s ; AlphaNul l ] , [ a O p t i o n s ; AlphaEqPointOne ] ) ;

102 P3 = I n t e r X ( [ a O p t i o n s ; AlphaNul l ] , [ a O p t i o n s ; AlphaEqPointTwo ] ) ;

103 Px = [ P1 ( 1 ) ; P2 ( 1 ) ; P3 ( 1 ) ] ;

104 Py = [ P1 ( 2 ) ; P2 ( 2 ) ; P3 ( 2 ) ] ;

105

106 l a mb daS ign De c id e r = DGamma . / Alpha ;

107

108 f u n c t i o n [ de l t aVec , Ddel taVec , DDdeltaVec ] = g e t D e l t a V e c s ( p h i )

109 [ d e l t a , Dde l t a , DDdelta , ˜ ] = getDELTAs ( p h i ) ;

110 z = [ s i n ( p h i ) ; cos ( p h i ) ; 0 ] ;

111 Q = [0 1 0 ; −1 0 0 ; 0 0 0 ] ;

112 I = eye ( 3 ) ;

113 d e l t a V e c = d e l t a ∗z ;

114 Ddel taVec = ( D d e l t a ∗ I + d e l t a ∗Q) ∗z ;

115 DDdeltaVec = ( DDdel ta∗ I + 2∗D d e l t a ∗Q − d e l t a ∗ I ) ∗z ;

116 end

117

118 %% E x t e r n a l f u n c t i o n s from BR s c r i p t

119 f u n c t i o n [ d e l t a , Dde l t a , DDdelta , DDDdelta ] = getDELTAs ( p h i ) . . .

120 f u n c t i o n [ a lpha , Dalpha , DDalpha ] = getALPHAs ( p h i ) . . .

121 f u n c t i o n [ g , Dg , DDg] = getGs ( p h i ) . . .

131


