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ABSTRACT 

Most of today’s complex systems and processes involve several stages through which 

input or the raw material has to go before the final product is obtained. Also in many 

cases factors at different stages interact. Therefore a holistic approach for 

experimentation that considers all stages at the same time will be more efficient. 

However there have been only a few attempts in the literature to provide an adequate and 

easy-to-use approach for this problem. In this paper, we present a novel methodology for 

constructing two-level split-plot and multistage experiments. The methodology is based 

on the Kronecker product representation of orthogonal designs and can be used for any 

number of stages, for various numbers of subplots and for different number of subplots 

for each stage. The procedure is demonstrated on both regular and nonregular designs and 

provides the maximum number of factors that be accommodated in each stage. 

Furthermore split-plot designs for multistage experiments with good projective properties 

are also provided.  

 

KEY WORDS:  Kronecker product, Mirror image pairs, Projectivity, Restrictions on 

randomization, Two-level designs.   
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                                 1. INTRODUCTION 

 Experimenters are usually recommended to execute their experiments in random 

order. In many experimental situations, however, complete randomization is often not 

feasible and sometimes not even possible due to for example the difficulty in randomly 

changing the levels of certain factors. In general, it is not unusual to have some factors 

that are harder to change than others. A sensible strategy is then to put restrictions on 

randomization and run several experiments in the easy to change factors for a given level 

(or combination of levels) of the hard to change factor(s). As in many methods in 

experimental design, the original suggestion of running experiments in this fashion dates 

back to agricultural experiments. For example Yates (1935) recommends “splitting of 

plots for subsidiary treatments” when applications of some combinations of treatments in 

small plots becomes exceedingly difficult. Such experiments are therefore called split-

plot experiments where combinations of levels of hard to change factors form whole plots 

for which experiments for various combinations of levels of easy to change factors are 

run to form the subplots.  

 Various studies in industrial experimentation also show that putting restrictions on 

randomization is very common in industrial setting and usually provide more efficient 

experiments as discussed in Daniel (1976), Box and Jones (1992) and Goos and 

Vandebroek (2004). One of the main industrial applications of split plot designs is in 

robust product experimentation. While there are some early examples of this as in 

Michaels (1964), particularly in the 1980’s the popularization of the concept of robust 

products was mainly due to the work of Dr. Taguchi through his inner and outer arrays 

(Taguchi (1986)). A great expose of the use of split-plot designs for robust product 

experimentation can be found in Box and Jones (1992).  

 As mentioned earlier, having some factors that are harder to change than others is 

not an exception but a norm in many experimental situations. However, for a long period 

of time, practitioners received only little help from the literature in properly designing 

these experiments except for a few sources such as the tables of split-plot designs 

provided in the article by Addelman (1964). Starting two decades ago, however, we have 

seen a flurry of activities in this area resulting in various works in the design and analysis 

of split-plot experiments (Letsinger et al. (1996), Bisgaard and Steinberg (1997), 
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Bisgaard (2000), Bingham and Sitter (1999, 2001, 2003), Goos and Vandebroek (2001)). 

In many cases the research revolved around 2-level factorial split plot designs with 

various numbers of whole plot and subplot factors (Huang et al. (1998), Bingham and 

Sitter (1999), Bingham et al. (2004)). The number of subplots in these designs will 

naturally be a power of 2. For more flexibility in the number subplots required in a split 

plot design, Kulahci and Bisgaard (2006) and Kulahci (2007b) offer possibilities with 3, 

5, 6, 10, etc. subplots for each whole plot based on Plackett and Burman designs. 

Similarly Kowalski (2002) proposes designs with 6 subplots for each whole plot by 

adding 2 follow-up experiments to the original 4 subplots.   

Tyssedal et al. (2011) provide two-level split-plot designs constructed from both 

regular and nonregular designs where for each whole plot two subplots were run as 

mirror image pairs. Such designs have the appealing property that they divide the 

estimated effects into two orthogonal subspaces separating subplot main effects and 

subplot by whole plot interactions from the rest, see Tyssedal and Kulahci (2005). 

Tyssedal et al. (2011) further emphasize the importance of taking the projection 

properties of the design into account. 

Split-plot designs have a natural extension to processes with more than two stages, see 

Tobias et al. (2013). For three stages such designs are called split-split-plot designs.  An 

example of a four stage split-split-split-plot design for identifying factors causing 

rancidity of stored meat loaf is given in Baardseth et al. (2005). Tyssedal and Kulahci 

(2014) provide designs for multistage processes, hereafter called multistage experiments, 

which are direct generalizations of the designs introduced by Tyssedal et al. (2011) and 

where only two experiments are run as mirror image pairs at each stage for each 

experiment from the previous stage. D-optimal designs of split-split-plot experiments are 

considered in Jones and Goos (2009).  

While the literature on how to obtain two-level split-plot designs is rich, it seems 

to be fairly limited for their generalizations to more than two stages and we are not aware 

of any established strategy for the generation of such designs. However, most modern 

manufacturing nowadays involve processes where the raw material goes through several 

stages before the final product is obtained. This is valid for both parts manufacturing and 

continuous processes alike. Moreover the factors at an early stage may (and often do) 
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interact with another factor in a later stage and have subsequently an impact on the final 

product. Therefore it is no longer viable to consider each stage of the production on its 

own and perform experiments that seem to be important particularly for that stage. A 

more holistic approach where the interdependencies among the stages are taken into 

account, is a more effective approach.  The purpose of this paper is to present a 

methodology for the construction and the understanding of design properties of two-level 

designs used for both split-plot and multi-stage experiments. The methodology is based 

on the Kronecker product representation of orthogonal designs and allows for the number 

of subplots to vary from stage to stage. The designs obtained are saturated in the sense 

that they provide the maximum number of factors that can be allocated at each stage. In 

the literature, if the number of factors in one or several stages is less than the maximum 

number of factors allowed, the allocation of these factors to the appropriate columns of 

the proposed design seems often to be based on the minimum aberration criterion (Fries 

and Hunter (1980), see e.g. Huang et al. (1998), Bingham and Sitter (1999)). We will not 

follow that track. Also Bisgaard (2000) and Kulahci et al. (2006), point out that other 

design criteria can yield more desirable split-plot designs for a given situation, see also 

Tyssedal et al. (2011). Instead as in Tyssedal and Kulahci (2014), we will focus on how 

we can obtain designs where runs at different stages can be constructed as mirror image 

pairs and how to provide designs with good projection properties. This is accomplished 

by restricting the number of factors that can be allocated at each stage. Such design 

properties are very appealing in screening situations. It should be noted that Tyssedal and 

Kulahci (2014) focus on multistage experiments where the number of experiments 

(“subplots”) at each stage is always two for each experiment (“whole plot”) from the 

previous stage. In that regard, in this paper we propose a more general methodology that 

will allow for any number of experiments as a multiple of 2 at any given stage.  

This paper is organized as follows. In Section 2 we introduce the Kronecker 

product representation used in the construction of general split-plot designs from regular 

two-level designs. Section 3 is devoted to the discussion of some important designs and 

their projection properties. The construction of two-level split-plot designs with various 

designs and projection properties is dealt with in Section 4 and generalized to design for 

multistage processes in Section 5. In Section 6 we show some examples of how the 
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Kronecker product framework can also be used to construct split-plot and multistage 

experiments from nonregular designs. Concluding remarks are given in section 7. 

 

2. CONSTRUCTION OF TWO LEVEL SPLIT-PLOT EXPERIMENTS FROM 

REGULAR DESIGNS USING KRONECKER PRODUCT REPRESENTATION  

 

A general matrix representation of a 2k factorial design using the Kronecker 

product representation is provided in the appendix.  This follows from the proof given in 

Dey and Mukerjee (1999) where it is shown that the Kronecker product of two Hadamard 

matrices of orders N1 and N2 respectively is also a Hadamard matrix of order N1N2.  

Similar arguments and a detailed discussion on the orthogonal arrays can also be found in 

chapter 11 of Hedayat, Sloane and Stufken (1999). For further information on the 

Kronecker product operation see also Rao (1973).   

Using the Kronecker product representation, the design matrix for a k2  design 

fully expanded with interaction columns and a first column of only 1’s can be written as 

    

k 1 1 1

k

j k j 1 j k 1

   

    

2 2 2 2

2 2

   (1) 

where   stands for the Kronecker product operation and 
1

1 1

1 1

 
  
 

2   Note that the 

design matrix in (1) is a 2k by 2k array. It can be shown that this notation can be used in 

blocking factorial experiments in 2, 4, etc. blocks (Kulahci (2007a)). 

In the following we show how split-plot experiments can be constructed using the 

Kronecker product representation for which the number of subplots for each whole plot is 

a power of 2. For illustration purposes, we consider a split-plot design with 8 runs in total 

and present two cases for which the number of subplots for each whole plot is 2 and 4.   

 

2.1 Split-Plot Experiments with 2 Subplots per Whole Plot 

Since the total number of runs is 8, we consider a 23 design as our base design and 

write the Kronecker product representation of its design matrix as: 
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3 1 2

2 2

2 2
.

 

 
  
 

2 2 2

2 2

2 2

    (2) 

In this notation, the first column block of 
 
 
 

2

2

2

2
 is the candidate for the allocation 

of whole plot factors as the 2
2  matrix remains the same meaning that each run in the 22  

factorial design appears twice in the overall design constituting a whole plot for which 2 

subplots will be run. Similarly, the second column block 
 
 
 

2

2

-2

2
 is the candidate for the 

allocation of subplot factors.  

In the column block used for the subplot factors, the 2
2  matrix appears twice with 

opposite signs. Hence for each whole plot the subplots will be in the form of mirror 

image pairs. Thus this design fits well into the 
 
 
 

W S

W -S
 representation of split-plot 

mirror image pairs (SPMIP) designs introduced in Tyssedal and Kulahci (2005). To see 

this more clearly, consider the entire design in (2) expanded as 

3

I 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

           
   
          

          
   
           


          
           
   
          
              

2















.   (3) 

In this form, the first and the fifth runs correspond to the same whole plot for which the 

subplots are the mirror images. From the labels of the columns in (3), we can also see that 

this design will accommodate up to 3 whole plot factors that can be allocated in columns 

1 to 3 and 4 subplot factors that can be allocated in columns 4 to 7.  
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2.2 Split-Plot Experiments with 4 Subplots per Whole Plot 

In this case, since the total number of runs is 8, we have 2 whole plots with 4 subplots for 

each. We then modify the Kronecker product representation of the 23 design matrix as: 

3 2 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 

  
 

  
  
 
 

2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

    (4) 

In (4), the first block column 

1

1

1

1

 
 
 
 
 
 

2

2

2

2

 is the candidate for the allocation of the whole plot 

factor since it is the only block column that has a repeated entry; i.e. each row of the 1
2  

matrix is repeated exactly 4 times corresponding to each subplot. The rest of the block 

columns can be used to allocate the subplot factors. Hence this design will allow for only 

1 whole plot factor and 6 subplot factors.  

The generalization of the proposed approach can be done by answering the 

following two questions: 

1. What is the total number of runs? 

2. What is the number of subplots (or similarly the number of whole plots)? 

The answer to the first question, N, determines the base design 
kN 2  whereas 

the answer to the second question, e.g. the number of subplots, 
sn 2  determines the 

Kronecker product representation: 

 

(5) 

 

 

 

 

where ij  is the sign in the i-th row and j-th column in the design matrix for a 2s  design 

in standard form fully expanded with interaction columns with the first column consisting 







































sk

NN

sk

N

sk

sk

N

sksk

sk

N

sksk

sksk

222

222

222

SPWP

222

2

222

112








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of only 1’s. From (5), we can see that in this design it is possible to allocate up to 

12 sk =   1nN  whole plot factors and skk  22 = N- N n  subplot factors. Note that 

designs in which more than one factor is allocated to the same column are not considered. 

  

3. SOME IMPORTANT DESIGN CONSIDERATIONS 

In the previous section, we showed that the Kronecker product representation can 

be used to obtain the maximum number of whole plot and subplot factors that can be 

tested in a split-plot design for a given number of experiments and number of subplots (or 

whole plots). This of course results in saturated split-plot designs. However designs with 

several desirable properties can be obtained if they are not saturated, i.e. the numbers of 

whole plot and subplot factors are less than the maximum allowable numbers given in the 

previous section. This is achieved by the proper allocation of the factors to the available 

columns for whole plot and subplot factors.  

As a motivational example, we consider two designs, D1 and D2, both with 8 

experimental runs and both with four subplots for each whole plot. Furthermore we 

assume that D1 has 6 subplot factors labeled 2 through 7 whereas D2 has 4 subplot 

factors, labeled 4 through 7 as shown in Figure 1. We will now investigate the aliasing 

between two-factor interactions and main effects for these designs. Let w and s denote 

whole plot main effects and subplot main effects and let ww, ws, ss denote whole plot by 

whole plot, whole plot by subplot and subplot by subplot interactions respectively. Also 

let  w ww ss, , for instance represent the subgroup consisting of w,ww and ss effects. It 

can be shown that for D1, the ws interactions are fully aliased with the  s ss,  effects, 

while ss interactions are fully aliased with the  w s ss, ,  effects as shown in the alias 

matrix in Table 1. For D2, the ws interactions are fully aliased with s effects only while 

ss interactions are fully aliased with the  w ss,  effects as shown in the alias matrix in 

Table 2. Hence a much simpler alias structure is obtained by only allowing four factors at 

the subplot level. It can further be shown that for D2, the space defined by the columns 

for the s effects and the columns for the ws interaction effects is orthogonal to the space 

defined by the columns for w, ww and ss effects and therefore as pointed out in Tyssedal 

and Kulahci (2005), a variable search for active factors can be performed in two 
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independent steps. This is a direct result of the fact that we at the subplot level of D2 

have two mirror image pairs. That is, for each whole plot in D2, the first two and the last 

two subplots are pairs of mirror image runs. Note that this is not the case for D1.   

[Insert Fig 1 here] 

[Insert Table 1 here] 

[Insert Table 2 here] 

Another important design consideration particularly for screening experiments is 

the projective properties. Box and Tyssedal (1996) defined projectivity for a two-level 

design as follows: A kN   design with N  runs and k  factors each at two levels is said 

to be of projectivity P  and is called a ),,( PkN  screen if every subset of P  factors out of 

possible k contains a complete P2  factorial design, possibly with some runs replicated. 

Projectivity P  implies that all main effects and all interactions of any P  factors 

are estimable with no bias if the other factors are inert, and it is empirically well 

documented that they are well-suited for identifying the active factors if no more than P 

factors are active. This is in particular true for nonregular designs where effects normally 

are not fully aliased. It is also well known that for 3P   designs it is possible to de-alias 

main effects from two-factor interactions. For 3P   regular designs, there is even no 

aliasing between these two types of effects. In nonregular designs it is normally also 

possible to de-alias two-factor interactions from each other while regular designs need to 

be of 4P   in order to do so.  

For a completely randomized design, four factors assigned to the columns labeled 

1, 2, 4 and 7 in (3) give a projectivity 3P   design. The same columns can be used to 

construct projectivity 3P   split-plot designs with 2 or 4 subplots for each whole plot. 

For the former, it follows from (3) that we can have at most two subplot factors assigned 

to the columns 4 and 7. The subplots will then be mirror image pairs. For the latter, it 

follows from (4) that one whole plot factor can be assigned to column 1 and three sub-

plot factors can be assigned to the columns 2, 4 and 7.  
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4. SPLIT-PLOT DESIGNS WITH MIRROR IMAGE PAIRS AS 

SUBPLOTS   

 In the previous section, we discussed the advantages of using mirror image pairs 

as subplots. If regular two-level designs are used as base designs in generating split-plot 

designs using the Kronecker product representation, the number of subplots for each 

whole plot will be a power of 2. For 2 subplots, the suggested mirror image pairs will 

simply be two subplots for each whole plot where the levels of the subplot main effects 

are reversed. For 4 or more subplots for each whole plot, we consider pairs of subplot 

runs each of which is a mirror image pair as in design D2 in Figure 1. The following 

result can be used to determine the maximum number of factors allowed in a split -plot 

design where the subplots are run as mirror image pairs.   

 Proposition 1.  The maximum allowable number of subplot factors in a split-plot design 

constructed from a regular design such that the subplots are run as mirror image pairs is 

12k  = 2N  where N  is the total number of runs.  

Proof. For any number of subplots s2n ,s k   we can write 

s k s2 2 =
1 1k k 2 2 2 =

1 1

1 1

k k

k k

 

 

 
 
 

2 2

2 2
=

1 1

1 1

s k-s s k-s

s k-s s k-s

 

 

   
 

  

2 2 2 2

2 2 2 2
. Clearly it is 

possible to allocate up to 12k  subplot factors to the columns in 

1

1

s k-s

s k-s





  
 

 

2 2

2 2
= 

1

1

k

k





 
 
 

2

2
 

such that these runs are mirror image pairs. If more subplot factors are to be used, they 

have to be allocated to the columns in the first block

1 1

1 1 s

k s k s

k s k

  

  

   
   

   

2 2 2

2 2 2
. But this 

obviously violates the mirror image pair requirement.  

As for the projectivity, the following result provides the maximum allowable 

number of subplot factors with corresponding experiments run as mirror image pairs in 

order to have a projectivity 3P   split-plot design.   

Proposition 2. For 8N  , the maximum allowable number of subplot factors in a 

3P   split-plot design constructed from a regular design  such that the subplots are run 

as mirror image pairs is 22k  = 4N  where N  is the total number of runs.  
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Proof.  A two-level fractional factorial design of projectivity 3 with a total number of N 

runs can be obtained by allocating the factors to the main effects columns and odd-factor 

interaction columns of the  Nk 2  full factorial design. Since there are only 2N  such 

columns, the maximum number of factors that can be used in a fractional factorial design 

of projectivity 3 is 2N . Let 

12 1

1

1 k  

 
 
 
  

i = . The columns in 

1

1

k

k





 
 
 

2

2
 are just the entry-wise 

product between the columns in 

1

1

k

k





 
 
 

2

2
and the column

 
 
 

-i

i
which itself  is a column 

in

1

1

k

k





 
 
 

2

2
. In order to have a 3P   design, interaction columns between  

 
 
 

-i

i
 and main 

effects and odd factor interactions in 

1

1

k

k





 
 
 

2

2
 need to be avoided. Thereby we are left with 

exactly 4N  columns in

1

1

k

k





 
 
 

2

2
. This number cannot be augmented since the rows in 

1

1

k

k





 
 
 

2

2
 corresponding to the mirror image pairs in 

1

1

k

k





 
 
 

2

2
 are identical.  

We note that the above results do not depend on s  which determines the number 

of subplot factors. Also the simplification of the alias pattern when subplots are run as 

mirror image pairs will hold independently of s . To show that, consider the general 

representation of a saturated regular design with 2 1k   factors as

1 1

1 1

k k

k k

 

 

 
 
 

2 2

2 2
. With the 

subplot factors allocated to

1

1

k

k





 
 
 

2

2
, it can be easily shown that ws interactions can only 

be aliased with s effects while ss and ww interactions can only be aliased w effects. The 

possibility of splitting the main effects and the two-factor  interaction columns into two 

orthogonal subspaces where searches for active factors can be done separately, has the 

benefit that more active factors can be identified than one would expect from the 

projective properties  of the design as pointed out in Tyssedal and Kulahci (2005).  
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For split-plot designs with N  runs, 
1f  whole plot factors and

2f subplot factors  

we will use the abbreviations   1 2SP N, f , f n  and   1 2SPMIP N, f , f n  to denote split-

plot designs with s2n   subplots and split-plot designs with s2n   subplots run as mirror 

image pairs respectively.  We will further denote split plot designs of projectivity P  as  

  1 2SP
P

N, f , f n  and   1 2SPMIP
P

N, f , f n . If otherwise obvious the number of runs 

and factors are left out. The following rules apply on the maximum allowable number of 

whole plot and subplot factors for the various types of designs constructed from regular 

designs.  

I. In   1 2SP N, f , f n  and   1 2SPMIP N, f , f n  designs, the maximum allowable 

number of   whole plot factors is   1nN  

II. In   1 2 3
SP 8N , f , f n  and   1 2 3

SPMIP 8N , f , f n  designs, the maximum 

allowable number of whole plot factors is 12k-s = 2N n . 

III. The maximum allowable number of subplot factors in   1 2SP N, f , f n , 

  1 2SPMIP N, f , f n ,   1 2 3
SP 8N , f , f n  and   1 2 3

SPMIP 8N , f , f n designs is 

N- N n , 2N , 2N N 2n  and 4N  respectively.   

The first rule follows from the general Kronecker representation given in (5). Running 

the subplots as mirror image pairs affects only the number of subplot factors. The second 

rule also follows from (5) since the maximum allowable number of factors in order to 

have a projectivity 3P   design is half the number of runs, i.e. 12k-s  for the whole plot 

factors. The maximum allowable number of subplot factors for  
3

SP n  designs given in 

rule III is due to the fact that the total number of factors in a projectivity 3P   design 

cannot exceed 2N . A list of possible number of whole plot and subplot factors for 

64N   are shown in Table 3.  

[Insert Table 3 here] 

In Table 4, we provide various projectivity 3 split-plot designs with proper 

allocation of whole plot and subplot factors. Note that the labeling of the columns follows 

the effect columns of the corresponding base design. For example for a 16 run SPMIP 

design, the main effects columns of the 24 base design are labeled as 1, 2, 3 and 4. 
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According to Table 4, a 16 run  
3

SPMIP 2  can then be generated by allocating 4 

whole plot factor to the 1, 2, 3 and 123 (the interaction of 1,2 and 3) columns and 4 

subplot factors to the 4, 124, 134 and  234 columns of the 24 design respectively. Note 

that this complies with the maximum allowable number of whole plot and subplot factors 

for  
3

SPMIP 2  design given in Table 3 as (4,4).  It is also possible to construct designs 

with projectivity 3P  . A fairly extensive list of such designs with two subplots for each 

whole plot can be found in Tyssedal et al. (2011). We will therefore only consider 

designs with 4 and 8 subplots for each whole plot. For the total number of runs equal to 

16, 32 and 64, the maximum allowable number of factors is 5, 6 and 8 respectively.  A 

list of possible designs is given in Table 5. Once again the column labels are given as the 

columns of the corresponding base design. 

[Insert Table 4 here] 

[Insert Table 5 here] 

 

            5. MULTISTAGE EXPERIMENTS 

In many industrial settings, processes consist of several stages before the final 

product is obtained. This is particularly true for the chemical and the process industries. 

At each stage there may potentially be several factors affecting the quality 

characteristic(s) of the final product. Moreover factors from different stages may interact 

and affect the output accordingly. 

The Kronecker product representation can be used to generate designs for an l-

stage process by rewriting the base design as  

1 ll ls s sk    2 2 2 2     (6) 

where 
1

l

i

i=

s k  and the total number of runs is 
kN 2 .The number of subplots for 

stage i , 1i  , is then 2 is
. The properties of such designs can be determined in the same 

way as for a two-stage design starting from the last stage and joining the 1l  first stages 

into one stage, and using the rules I-III in section 4. To illustrate this with an example, 

consider a three-stage process with 16N . The possible designs are given as  

          1.                          
4 2 1 1  2 2 2 2  
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          2.                           4 1 2 1  2 2 2 2  

          3.                           4 1 1 2  2 2 2 2  

The first case corresponds to a design with 2 runs in stage 1, 2 runs in stage 2 for each 

run of stage 1 and 4 runs in stage 3 for each run of stage 2. Similarly the second case 

corresponds to a design with 2 runs in stage 1, 4 runs in stage 2 for each run of stage 1 

and 2 runs in stage 3 for each run of stage 2. Finally the third case corresponds to 4 runs 

in stage 1, 2 runs in stage 2 for each run of stage 1 and 2 runs in stage 3 for each run of 

stage 2. Consequently the maximum number of factors that are allowed in each stage 

varies in these three cases. To investigate this we first consider each design as a two-stage 

design where the first and second stages are joined into one stage. We get for the three 

respective cases as 

1.  4 2 1 1 2 2    2 2 2 2 2 2 = 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

  
 

  
  
 
 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

 

2.  4 1 2 1 1 3    2 2 2 2 2 2 = 

3 3

3 3

 
 
 

2 2

2 2
 

3.  4 1 1 2 1 3    2 2 2 2 2 2 = 

3 3

3 3

 
 
 

2 2

2 2
 

    The first block column where the signs do not change represents the joined stages 

and the others represent the last stage. Hence the maximum number of factors that can be 

allocated to the joined stages one and two is 3, 7 and 7 in the three cases. Thereby 12, 8 

and 8 factors can be allocated in stage 3 for the respective cases.  

To investigate stage one and two separately we simply decouple the two stages 

again.   

1. 

1 1

2 1 1

1 1

 
    

 

2 2
2 2 2

2 2
 

2. 

1 1 1 1

1 1 1 1

3 2 1

1 1 1 1

1 1 1 1

  
 

    
  
 
 

2 2 2 2

2 2 2 2
2 2 2

2 2 2 2

2 2 2 2

                                   (7) 
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3. 

2 2

3 1 2

2 2

 
    

 

2 2
2 2 2

2 2
 

Hence the maximum number of factors that can be allocated to stage one is 1, 1 and 3 and 

to stage two it is 2, 6 and 4 for the respective cases.  

Now suppose we want to run the subplots as mirror image pair. From rule III the 

maximum number of factors that can be allocated to stage 3 is 8 in each of the cases. For 

stage 2 it follows from (7) and rule II that the maximum allowable number of factors for 

the three cases is 2, 4 and 4 respectively.   

In order to have 3P   designs we can at most have a total of eight factors. From 

rule III the maximum number of factors in stage 3 is 4 in each of the cases for the 

subplots to be run as mirror image pairs. Otherwise case 1 can accommodate 6 factors. 

From (7), bearing in mind that the total number of runs is still 16, 1, 1, and 2 factors can 

be allocated to stage 1 for the respective cases. As for D2, one factor has to be taken out 

at stage 2 in case 2 in order for the subplots to be run as mirror image pairs.  

           Similar to the notation we introduced for two-stage split-plot designs, we will use 

MSP and MSPMIP to distinguish between whether runs on different stages are run as 

mirror image pairs or not.  Some possible designs are given in Table 6 where for example 

M   1 2 2 3
SP l lN, f , f , , f n , ,n  denotes a 3P   multistage design with N  runs and in  

runs in stage i,  1i   and for which a maximum of if  factors can be accommodated in 

stage i .   

[Insert Table 6 here] 

The procedure based on the Kronecker product representation can easily be 

applied to more than three stages. For example for a four-stage process, a design with 64 

runs with 4 runs in stage 1, 4 runs in stage 2 for each run of stage 1, two runs in stage 3 

for each run of stage 2 and 2 runs in stage 4 for each of stage 3 can be obtained using 

                                      
6 1 1 2 2   2 2 2 2 2     (8)  

We can also show that the maximum number of factors for stages 1 through 4 is 3, 12, 16 

and 32 respectively yielding a M   SP 64 3 12 16 32 4 2 2, , , , , ,  design. Similarly it is 

possible to construct a M   
3

SPMIP 64 2 4 8 16 4 2 2, , , , , ,  design, where subplots are run as 
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mirror image pairs by allowing for 2, 4, 8 and 16 factors in stages 1 through 4 

respectively.    

 

 6.  SPLIT-PLOT MULTISTAGE EXPERIMENTS USING NONREGULAR 

DESIGNS 

Important alternatives to the regular two-level designs are the nonregular designs 

which apparently exist for the number of runs 4  3N m, m  . Besides their flexible run 

sizes, these are known to have far better projection properties than the regular two-level 

designs. In fact most of the nonregular designs are 3P   designs in 1N  factors. Their 

alias structure is usually complex, but it often involves partial rather than full 

confounding. As a result it is normally possible, in contrast to the regular designs, to de-

alias two-factor interactions from each other even for a design of projectivity 3P  . The 

best known nonregular designs are the Plackett and Burman (PB) designs with the 

number of runs 2kN  .  

Construction of MSPMIP designs for cases where for each whole plot, two 

subplots are run as mirror image pairs from nonregular designs is discussed  in Tyssedal 

and Kulahci (2014).  For instance a split-plot design with four subplots for each whole 

plot can be obtained through the operation 
2 PB122  as 

           

PB12 -PB12 -PB12 PB12

PB12 PB12 -PB12 -PB12

PB12 -PB12 PB12 -PB12

PB12 PB12 PB12 PB12

 
 
 
 
 
 

            (9) 

In (9), the column block 

PB12

PB12

PB12

PB12

 
 
 
 
 
 

 represents the whole plot factors and we get a 

  
3

SP 48 11 33 4, ,  or a   
3

SPMIP 48 11 22 4, ,  design by removing the column block 
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PB12

  PB12

PB12

  PB12

 
 
 
 
 
 

.   In a similar way a three stage   
3

MSPMIP 48 11 11 22 2 2, , , ,  design is given 

using the Kronecker product representation 1 1 PB12 2 2  to obtain  

                       

PB12 PB12 PB12 PB12

PB12   PB12 PB12 PB12

PB12 PB12 PB12 PB12
  

PB12   PB12 PB12 PB12

   
  

  
   
  

   

                                    (10) 

Here PB12 contains the 11 factor columns in a 12 run PB design. This design offers the 

practitioner greater flexibility in the number of factors in each stage than a 64 run 

MSPMIP design constructed from a regular two-level design if a 3P   design is 

required. In general we can construct  the factor columns for a multistage experiments 

from the operation 1 1 NR
si

i-s s
   2 2 2  in the same way where NR stands for a 

nonregular design.  

Tyssedal and Kulahci (2014) also propose using different columns of a nonregular 

design in each stage of a multistage design. For example for a three stage process, we can 

have MSPMIP  1 2 3 1 2 3 3
48 13, f , f , f | f f f   . The design matrix is given below  

                                 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

Stage Stage Stage 

i S S i S i

i S S i S i

i S S i S i

i S S i S i

      
      

       
       
      

          

                               (11) 

 where  1 2 3 PB12S S S  and i  is a 12 1  vector of only 1’s. The design can 

accommodate ”only” thirteen factors in total, but has the advantage that no two-factor 

interactions are fully aliased.   

            All nonregular designs constructed from Hadamard matrices are known to be of 

strength at least two. This property offers a possibility to construct cost efficient multi-

stage designs that can be used in situations with few whole plot factors. For example with 

two whole plot factors, we can for each of their level combination have three subplots, 
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and thereby have the possibility to run a   
3

SP 12 2 9 3, , design. Similarly we can also 

construct an SP design with 1 whole plot factor, i.e.   
3

SP 12 1 10 6, , design.  

[Insert Table 7 here] 

An l-stage design can be constructed from a l-1 stage design. For instance the design 

given by   1

3
SP 12 2 9 3, ,2  is a three stage   

3
SP 24 2 9 11 3 2, , , ,  design. By using 

different columns for each stage as in (11) a three stage design in 24 runs where no two-

factor interaction is fully aliased can be obtained. With reference to Table 7, for each of 

the four level combinations of factors A and B, let    2 3SP SP SP  1 2 3 4i i f , i f , i , , ,     

constitute the i-th set of three runs for the last 9 columns. A 

  2 3 2 3 3
SP 24 2 9 3 2, , f , f | f f ,   design is given in Table 8 where 3

1

1

1

 
 


 
  

i . 

[Insert Table 8 here] 

 Another useful approach to generate designs with good projective properties is to 

use the fold-over technique. The factor columns in Table 9 are obtained by taking the 

fold-over of the PB 12 design and adding a column (column 4) which is the three-factor 

interaction column of the first 3 columns. If we omit this column, the design is of 

projectivity 4P  .  From these factor columns it is possible to construct   
4

SP 24 3 9 3, , , 

  
4

SP 24 2 9 6, ,  and   
3

SP 24 4 9 3, ,  designs as well as a   
3

SP 24 2 2 9 2 3, , , ,  design.  

From the 20 and 24 run nonregular designs we can in the same way construct 

split-plot designs with 5 and 6 subplots for each whole plot. The generalization to 

nonregular designs with 4N m  is obvious.  

Finally another possibility is to use 2H , 3H  and 4H , three of the five different Hadamard 

matrices for 16N  ,  as defined in Box and Tyssedal (2001). The design in Table 10 is 

constructed from 2H . In this design it is possible to allocate up to 12 factors and construct 

a 3P   design. We can then have   
3

SPMIP 16 4 8 2, , ,   
3

SP 16 2 10 4, , , 

  
3

SPMIP 16 2 8 4, ,  and   
3

MSPMIP 16 2 2 8 2 2, , , ,  designs among others.   

[Insert Table 9 here] 
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[Insert Table 10 here] 

7. CONCLUDING REMARKS 

A new methodology for constructing two-level split-plot designs and designs for 

multistage processes by means of Kronecker product representation is introduced. The 

methodology can be used for any number of stages and for various numbers of runs in 

each stage using both regular and nonregular designs as base designs. Using the proposed 

methodology it is easy to find the maximum allowable number of factors in each stage 

and to obtain designs with good projection properties where runs at different stages can 

be run as mirror image pairs. Taking these properties into account the proposed designs 

are divided into four classes that provide flexible starting points for search algorithms 

based on a chosen design criterion such as maximum number of clear two factor interactions 

among factors from different stages to obtain the best suitable design for the needs and 

requirements of the experimental circumstances. Furthermore we believe the 

methodology provided in this paper is flexible enough to accommodate situations such as 

blocking in multi-stage experimentation, mixed level multi-stage experimentation and 

even response surface methodology studies. We are currently working on some of these 

issues but there are still many other possibilities for the use of this methodology for 

research and practical applications.  
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APPENDIX 

Kronecker Product 

Let  
ijaA  and  

ijbB  be nm  and qp  matrices, respectively.  Then the 

Kronecker product  
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     BBA ija       

is an nqmp  matrix expressible as a partitioned matrix with Bija  as the  ji, th partition, 

mi ,,1  and nj ,,1 . 
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D1  D2 

1 2 3 4 5 6 7  1 4 5 6 7 

- - + - + + -  - - + + - 

 - + + - - +   + - - + 

 + - - + - +   - + - + 

 + - + - + -   + - + - 

+ - - - - + +  + - - + + 

 - - + + - -   + + - - 

 + + - - - -   - - - - 

   + + + + + +   + + + + 

 

Figure 1. Two 8 run split-plot designs with 1 whole plot and 6 (D1) and 4 (D2) subplot 

factors respectively. The low and the high level of a factor is represented with – and + 

respectively.  
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Table 1. The Alias Matrix for D1 
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Table 2. The Alias Matrix for D2 
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Table 3. The maximum allowable number of whole plot and subplot factors in split plot 

designs with the total number of runs equal to 8, 16, 32 and 64. SP(n) and SPMIP(n) 

stand for split plot designs with n subplots and split-plot designs with n subplots run as 

mirror image pairs respectively. Similarly SP(n)P or SPMIP(n)P denote the corresponding 

designs of projectivity P 

 Total Number of Runs 

Design    8    16    32    64 

SP (2)  3 4,   7 8,   15 16,   31 32,  

SPMIP(2)  (3,4)  (7,8)  (15,16)  (31,32) 

 
3

SP 2   (2,2)  (4,4)  (8,8)  (16,16) 

 
3

SPMIP 2   (2,2)  (4,4)  (8,8)  (16,16) 

SP (4) (1,6)  3 12,   7 24,   15 48,  

SPMIP(4) (1,4)  (3,8)  (7,16)  (15,32) 

 
3

SP 4  (1,3)  2 6,   4 12,   8 24,  

 
3

SPMIP 4  (1,2)  (2,4) (4,8)  (8,16) 

SP (8)  (1,14)  3 28,   7 56,  

SPMIP(8)  (1,8)  (3,16) (7,32) 

 
3

SP 8   (1,7)  2 14,   4 28,  

 
3

SPMIP 8   (1,4) (2,8)  (4,16) 
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Table 4. Factor assignments in split-plot designs with n subplots run as mirror image 

pairs for (SPMIP(n)P) of projectivity 3P   

  Total Number of Runs 

Design  8 16 32 64 

 
3

SPMIP 2  Whole-plot 1,2 1,2, 

3,123 

1,2,3,123,4,124, 

134,234 

1,2,3,123,4,124,134,234, 

5,125,135,145,234, 235,345,12345 

 Sub-plot 3,123 4,124, 

134,234 

5,125,135,145,234, 

235,345,12345 

6, 126,136,146,156,236,246,256, 

346,356,456,12346,12356,12456, 

13456,23456 

 
3

SPMIP 4  Whole-plot 1 1,2 1,2,3,123 1,2,3,123,4,124,134,234, 

 Sub-plot 3,123 4,124, 

134,234 

5,125,135,145,234, 

235,345,12345 

6, 126,136,146,156,236,246,256, 

346,356,456,12346,12356,12456, 

13456,23456 

 
3

SPMIP 8  Whole-plot  1 1,2 1,2,3,123 

 Subplot  4,124, 

134,234 

5,125,135,145,234, 

235,345,12345 

6, 126,136,146,156,236,246,256, 

346,356,456,12346,12356,12456, 

13456,23456 
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Table 5. Factor assignments in SP and SPMIP designs of projectivity 3P   with total 

number of runs N 

N  Designs Whole-plot columns Sub-plot columns 

16   
4

SPMIP 16 1 4 4 8, , /  1 4,24,34,1234 

  
4

SP 16 2 3 4, ,  1,2 3,4,1234 

  
4

SPMIP 16 2 2 4, ,  1,2 4,1234 

32   
4

SPMIP 32 1 5 4 8, , /  1 5,25,35,45,12345 

  
5

SPMIP 32 2 4 4 8, , /  1,2 5,35,45,12345 

  
4

SPMIP 32 3 3 4, ,  1,2,3 5,45,12345 

64   
4

SPMIP 64 1 7 4 8, , /  1 6,26,36,46,56,1236,13456 

  
6

SPMIP 64 1 6 4 8, , /  1 6,26,36,46,56,123456 

  
4

SPMIP 64 2 6 4 8, , /  1,2 6,36,46,56,1346,23456 

  
5

SPMIP 64 2 5 4 8, , /  1,2 6,36,46,56,12346 

  
4

SPMIP 64 3 5 4 8, , /  1,2,3 6,46,56,1456,23456 

  
6

SPMIP 64 3 4 4 8, , /  1,2,3 6,46,56,123456 

  
4

SPMIP 64 4 4 4, ,  1,2,3,4 6,56,1236,23456 

  
5

SPMIP 64 4 3 4, ,  1,2,3,4 6,56,12346 

  
4

SPMIP 64 5 3 4, ,  1,2,3,4,5 6,1236,3456 

  
6

SPMIP 64 5 2 4, ,  1,2,3,4,5 6,123456 
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Table 6. Examples of SP and SPMIP designs for a 3-stage process with a total of 16 runs 

Case1 Case 2 Case 3 

M   SP 16 1 2 12 2 4, , , ,  M   SP 16 1 6 8 4 2, , , ,  M   SP 16 3 4 8 2 2, , , ,  

M   SPMIP 16 1 2 8 2 4, , , ,  M   SPMIP 16 1 4 8 4 2, , , ,  M   SPMIP 16 3 4 8 2 2, , , ,  

M   
3

SP 16 1 1 6 2 4, , , ,  M   
3

SP 16 1 3 4 4 2, , , ,  M   
3

SP 16 2 2 4 2 2, , , ,  

M   
3

SPMIP 16 1 1 4 2 4, , , ,  M   
3

SPMIP 16 1 2 4 4 2, , , ,  M   
3

SPMIP 16 2 2 4 2 2, , , ,  
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Table 7. The factor columns in a 12 run PB design rearranged such that the two first 

columns have the level combinations in a 22  design replicated three times  

 Factors 

Run A B C D E F G H I J K 

1 - - - - - - - - - - - 

2 - - - - - + + + + + + 

3 - - + + + - - - + + + 

4 - + - + + - + + - - + 

5 - + + - + + - + - + - 

6 - + + + - + + - + - - 

7 + - + + - - + + - + - 

8 + - + - + + + - - - + 

9 + - - + + + - + + - - 

10 + + + - - - - + + - + 

11 + + - + - + - - - + + 

12 + + - - + - + - + + - 
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Table 8.  Factor columns in a three stage MSPMIP design constructed from the 12 run PB 

design 

     Stage 1 Stage 2 Stage 3 

-
3i  -

3i   2SP1 f   3SP1 f  

-
3i  

3i   2SP2 f   3SP2 f  

3i  -
3i   2SP3 f   3SP3 f  

3i  
3i   2SP4 f   3SP4 f  

-
3i  -

3i   2SP1 f  -  3SP1 f  

-
3i  

3i   2SP2 f  -  3SP2 f  

3i  -
3i   2SP3 f  -  3SP3 f  

3i  3i   2SP4 f  -  3SP4 f  
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Table 9. Factor columns in a two stage 24 run 3P   split-plot design with up to 4 factors 

at stage 1 constructed from the 12 run PB design    

Stage 1 Stage 2 

3i  -
3i  -

3i  
3i  SP1 

3i  -
3i  

3i  -
3i  SP2 

3i  
3i  -

3i  -
3i  SP3 

3i  
3i  

3i  
3i  SP4 

-
3i  

3i  
3i  -

3i  -SP1 

-
3i  

3i  -
3i  

3i  -SP2 

-
3i  -

3i  
3i  

3i  -SP3 

-
3i  -

3i  -
3i  -

3i  -SP4 
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Table 10. Factor columns in a 16 run 3P   split-plot design with 8 sub-plot factors.   

Whole-plot Factors Subplot factors 

A B C D P Q R S T U V W 

- - - + + + - - - - + + 

+ - - - - - - - - - - - 

- + - - + - - - + + + - 

+ + - + + - + - - + - + 

- - + - - + - - + + - + 

+ - + + - + + - - + + - 

- + + + + + + - + - - - 

+ + + - - - + - + - + + 

- - - + - - + + + + - - 

+ - - - + + + + + + + + 

- + - - - + + + - - - + 

+ + - + - + - + + - + - 

- - + - + - + + - - + - 

+ - + + + - - + + - - + 

- + + + - - - + - + + + 

+ + + - + + - + - + - - 

                               

 

 

 


