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ABSTRACT
This paper presents a comparative study of sensitivity anal-

ysis (SA) and simplification on artificial neural network (ANN)
based model used for ship motion prediction. Considering tra-
ditional structural complexity of ANN usually results in slow
convergence, SA, as an efficient tool for correlation analysis,
can help to reconstruct the ANN model for ship motion predic-
tion. An ANN-Garson method and an ANN-EFAST method are
proposed, both of which utilize the ANN for modeling but se-
lect the input parameters in a local and a global fashion, respec-
tively. Through the benchmark tests, ANN-EFAST exhibits su-
perior performance in both linear and nonlinear systems. Further
test on ANN-EFAST via a case study of ship heading prediction
shows its cost-effective and timely in compacting the ANN based
prediction model.

INTRODUCTION
With the development and prosperity of the world’s shipping

industry, the maritime transportation has become more and more
busy. In order to ensure the safety of navigation, great concern
has been put toward the ship motion prediction. Furthermore,
some special operations, such as submarine cable laying, marine
survey, etc., need more accurate ship motion prediction and con-
trol precisely. Therefore, how to establish an efficient ship mo-
tion prediction model has great theoretical and practical value in
the maritime applications. However, mathematical model based
ship motion prediction is challenging due to the nonlinear and
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time-varying dynamical model of ship, as well as complex dy-
namic nature of sea [1, 2]. Our partner in Norway therefore
started to collect on-board ship sensor data long time ago and
intended to create robust predictive models for ship maneuvering
technologies. There would be a possibility to combine those ship
sensor data with modeling methods to design and implement ship
motion prediction model.

To date, a variety of novel intelligent approximation-based
techniques and algorithms like fuzzy logic, Kalman filtering,
Bayesian network, regression analysis and ANN have been ap-
plied to create predictive models [3–6]. Those methods have
their own pros and cons at specific aspects. For example, re-
gression analysis is not suitable for complex, high dimensional
and non-linear system; Fuzzy logic relies more on mathematical
model; Kalman filtering works only for Gaussian noise process;
The performance of Bayesian network in high dimensional data
set is poor. None of them except ANN are suitable for modeling
the ship motion, as situations in which lack precise mathematical
model and only input-output sample data are available.

Indeed, an ANN is a “black box” and has the ability to
explicitly identify possible causal relationships from the input-
output sample data. However, there is no standard to construct
a compact ANN for prediction purposes. Input parameters and
hidden units are the main factors to obtain an optimized model
[7]. If there are too few inputs, the network cannot represent the
input-output mapping of system with sufficient accuracy. If there
are too many inputs, the network dimension will increase, which
in turn aggravates computational complexity. Both cases will de-
teriorate the generalization capability of the network. Therefore,
selection of input parameters is a key issue when applying ANN
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to ship motion prediction. SA investigates how the variation in
the output of a numerical model can be attributed to variations
of its input factors, and it plays an important role in prediction
model construction and simplification, and thus the generaliza-
tion ability of prediction model. The main purpose of SA is to
estimate the contribution of each model input, either main or in-
teraction contribution, on the model output and to identify the
main contributors to the output. SA has been widely used in ar-
eas such as engineering, economics, and sociology [8]. Taking
advantages of SA’s characteristics, it is possible to use it to se-
lect the input parameters of an ANN based model used for ship
motion prediction.

The rest of the paper is organized as follows. The related
work section is a brief recall of some of the existing methods in
ANN and SA. In the next section, we describe the input selection
procedure and the case ship, then the methods we used in this pa-
per is introduced and the calculation of local sensitivity analysis
(LSA) and global sensitivity analysis (GSA) are explained. After
that, the proposed algorithm is tested using two analytical mod-
els and a case study of SA on heading of ship motion prediction
model is described in detail. The results are shown and the cal-
culated first order sensitivity index are compared with analytical
results. A comparison of the performance of the LSA and GSA
is also presented in this section. Finally conclusions are given.

RELATED WORK
Artificial Neural Network

Inspired by biological neural network, ANN could build up
the mathematical relationship between the input parameters and
the output parameters, with the advantage that it can be mod-
eled without prior knowledge. An ANN facilitates the ability
to learn complex nonlinear relationships between input and out-
put parameters. Thanks to the powerful potential (massive par-
allelism, generalization capacity and fault-tolerance), ANN has
been widely used in fields like pattern recognition, reliability
analysis, classification, ship motion control and prediction. The
basic architecture of ANN consists of single input, hidden and
output layer, with each layer containing one or more neurons,
in addition to bias neurons connected to the hidden and output
layers. The back-propagation (BP) algorithm is the most widely
used learning algorithm for ANN, which is a self-adapted learn-
ing procedure that minimizes the error between the desired and
the predicted outputs. The learning process consists of two parts:
feed-forward and backward pass. The output of ANN is calcu-
lated in the process of feed-forward pass, with the output error
propagated backward to adjust the weights and bias of the ANN.
The number of hidden layer nodes and the maximum iteration
number should be carefully chosen to overcome the over-fitting
and under-fitting problems. Over-fitting means that a trained
ANN has weak capability of generalization. An over-fitted ANN
usually has a good prediction capability over train samples, but

has a bad prediction capability over test samples. Under-fitting
means that a trained ANN is too simple to be capable of rep-
resenting the relationship between input parameters and output
targets. An under-fitted ANN usually has bad prediction capabil-
ities over both training and testing samples.

Sensitivity Analysis
SA could be implemented in either local or global manner.

The LSA explore the response of the model output to a small
change of the parameter from its nominal value. Garson algo-
rithm is one of the popular LSA algorithms [9]. This method
has shown to be computational efficient and conceptually simple
when quantifying the relative importance of input parameters. It
has been used in some ship motion prediction applications, such
as the work in [5, 6, 10]. Local sensitivity index is calculated at
the nominal point or a fixed point, which is not representative for
all inputs in the whole parameter space. In addition, the LSA do
not explore the interactions between input parameters.

In contrast, a GSA estimates the effect of input parame-
ters across the whole input parameter space. GSA is generally
divided into four categories: Traditional methods, Analysis of
Variance methods (ANOVA) methods, Derivative-Based Meth-
ods and Surrogate-Based Methods. ANOVA methods are also
called variance-based methods, which makes ANOVA decompo-
sition of model response variances into the contributions from
individual parameters and their interactions. Cukier, et al. pre-
sented Fourier Amplitude Sensitivity Test (FAST) [11]. Later,
Salteli et al. introduces a global, quantitative, model indepen-
dent SA method for calculating both main effect and total effect
indices based on the FAST — extended FAST (EFAST) [12].
EFAST is model independent, which can be used in ANN based
prediction. Currently, most of the study only focuses on studying
either LSA or GSA in ANN based ship prediction model. There
is not a systematic comparison between them. In this study, ef-
forts are made to combine the ANN with the Garson algorithm
and the EFAST algorithm respectively, aiming to find out which
one is preferable for nonlinear ship motion prediction.

SIMPLIFICATION OF ANN MODEL VIA SENSITIVITY
ANALYSIS
System Structure

This paper aims to construct a compact ANN model for ship
motion prediction using the SA approach. The main idea is to use
the SA method to evaluate the importance of each input and se-
lect the inputs according to their importance. The input selection
procedure consists of four components: data cleaning, surrogate
model, SA and result visualization. Data cleaning is to minimize
the affection of noisy, redundant information of sensor data on
further analysis and modeling. In general, it is difficult to esti-
mate the contribution of each input parameter and the interaction
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FIGURE 2. Illustration of used ship model.

of input variables to output from those data directly. Surrogate-
based methods provide an analytic approach to construct mathe-
matical model or prediction model from those sensor data. The
widely used surrogate models, such as Kriging [13], Gaussian
surrogate model [14], the Radial Basis Function surrogate mod-
els [15] and ANN surrogate model [16] can be effectively used
for practical SA. ANN plays the dual role in our project for both
prediction model and surrogate model of SA. The LSA and GSA
are utilized to calculate sensitivity index of each input parameter,
respectively. Finally, the result plotting has been realized in the
result visualization component.

As is presented in Figure. 1, firstly, the ANN was employed
as the surrogate model to generate the ship prediction behavior
model. The model contains all the relevant input parameters de-
scribed in Table 1. The ANN is trained by ship simulation data to
achieve certain prediction accuracy in advance. Secondly, LSA
methods such as Garson algorithm, GSA methods like EFAST,

TABLE 1. Recorded ship data specification
Module Parameter Unit

Ship-environment Status

Surge vel [m/s]
Sway vel [m/s]
Yaw vel [m/s]
Roll vel [m/s]
Pitch vel [m/s]

Pos x [m]
Pos y [m]

Heading [deg]
Roll [deg]
Pitch [deg]

Thrust1 Status

Percent [%]
Shaft speed [RPM]
Pitch angle [deg]

Force [N]
Yaw moment [Nm]

Consumed power [W]

Thrust4 Status

Percent [%]
Shaft speed [RPM]
Pitch angle [deg]

Force [N]
Yaw moment [Nm]

Consumed power [W]

Thrust5 Status

Percent [%]
Shaft speed [RPM]
Pitch angle [deg]

Force [N]
Yaw moment [Nm]

Consumed power [W]

are applied to calculate the influence of input parameters on the
output variables based on the model. Thirdly, users can select
the importance of input factors based on LSA or GSA for differ-
ent applications. Those left input factors will feedback to neural
network construction, and the ANN with appropriate number of
inputs would be the prediction model.

The case ship model used is equipped with one tunnel
thruster in the bow, and two main propellers with rudders at the
stern, as shown in Figure. 2. Since the rudder of the main pro-
peller is fixed during the maneuvering, it degenerates as the tun-
nel thruster. In this vessel, four data modules are monitored and
stored: the ship-environment data module, and the three thruster
data modules, as shown in Table 1. Those parameters in ship-
environment data module are the status of case ship. For exam-
ple, Surge vel represents the surge velocity; Sway vel stands for
the sway velocity. Corresponding to Figure. 2, there are three
groups thrust parameters which describe the working status of
each thrust. In this paper, heading of case ship is chosen as the
output parameter of prediction model. The definition of heading
is within [0◦,360◦] originally. Therefore it may appear disconti-
nuity in the corresponding sensor data. We applied the algorithm
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in [5] to remove this type of discontinuity. Figure. 3 illustrates
the ship heading variance before and after data processing. The
blue dotted line in the Figure. 3 is the raw data, and the red line
represents the corrected data.

LSA based on ANN
LSA is performed by modifying one of the input values

across its entire range at a time, while holding the rest of in-
put values constant. Garson’s algorithm is a ‘weights’ method
in SA which is implemented by the connected weights obtained
from an ANN model. It provides a quantitative tool by parti-
tioning the neural network connection weights into components
associated with each input neuron for calculating the relative im-

portance of each input variable in the network. In this paper, the
LSA based on ANN is called ANN-Garson, and we follow the
work in [17] for LSA calculation:

Sik =

L
∑
j=1

(|ωi jυ jk|/
N
∑

r=1
|ωr j|)

N
∑

r=1

L
∑
j=1

(|ωi jυ jk|/
N
∑

r=1
|ωr j|)

(1)

where Sik is the sensitive contribution of the input i to output k;
N is the number of the neurons in the input layer; L is the number
of the neurons in the hidden layer; ωi j is the connected weight
between the neuron i in the input layer and the neuron j in the
hidden layer; υ jk is the connected weight between the neuron
j in the hidden layer and the neuron k in the output layer. In
this study, a BP neural network model is built upon the relation-
ship between the predictive attribute and its sensitivity factors in
ship motion model. All the sensitivity factors were analyzed with
Garsons algorithm based on the connection weights of the neu-
ral network model. Figure. 4 illustrates the flow chart of ANN-
Garson. A neural network is constructed with three layers and
trained with adequate precision. ANN-Garson is conducted for
finding those important input factors with the weights of each
layer of neural network.

GSA based on ANN
Many different GSA methods have been developed over

the years [8]. The global method EFAST is a milestone for
global SA of nonlinear models. EFAST was presented for SA
of multi-parameter nonlinear model, in which conditional vari-
ances are represented by coefficients from the multiple Fourier
series expansion of the response function and the ergodic theo-
rem is applied to transform the multi-dimensional integral into
a one-dimensional integral in evaluation of the Fourier coeffi-
cients. The EFAST method is capable of computing main effect
(also called first-order sensitivity index) and the total effect of
each parameter to the response variance. EFAST is model form
independent, that is to say, it can be employed for any model.

Let’s consider the model Y = f (X1,X2, ...,Xn), where the
X1,X2, ...,Xn is the n input variables. Here, the model Y can be
either the analytical representation or the computational model.
For the k-th input variable Xk, it can relate to the a frequency
ωk in EFAST [18]. The widely used transformation function is
defined as follows:

Xk(s) =
1
2
+

1
π

arcsin(sin(ωks)) (2)

where, s is a scalar variable varying in the range between −π
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and π , ωk is the frequency related to Xk. If an appropriate set of
integer frequencies is chosen, the model Y can be expressed as:

f (s) = f (X1(s),X2(s), ...,Xk(s), ...Xn(s)) (3)

The model function f can be expanded in Fourier series of
the form:

f (s) =
+∞

∑
i=−∞

(Ai cos(ωis)+Bi sin(ωis)) (4)

where the Fourier coefficients Ai and Bi are defined as

Ai =
1

2π

∫
π

−π

f (s)cos(ωis)ds

Bi =
1

2π

∫
π

−π

f (s)sin(ωis)ds

Based on the Parsevals theorem, the variance of Y states that:

DY =Var(Y ) = 2
+∞

∑
k=1

(A2
k +B2

k) (5)

The portion of the variance of Y by Xk alone can explained that:

Dk =VarXk [E(Y |Xk)] = 2
+∞

∑
k=1

(A2
kωk

+B2
kωk

) (6)

where Akωk and Bkωk denote the Fourier coefficients for the fun-
damental frequency and its higher harmonics kωk. Consequently,
the main effect of k-th input variable is given by:

Sk =
Dk

DY
=

VarXk [E(Y |Xk)]

Var(Y )
=

2
+∞

∑
k=1

(A2
kωk

+B2
kωk

)

Var(Y )
(7)

Inspired from [7] and [12], the ANN-EFAST can be imple-
mented using the following procedure:

Algorithm 1

procedure
1) choosing the inputs and logging the number of input D
2) normalizing the inputs and the outputs in the

range[−1,1] using for instance Xi = (xi− ai)/bi , with ai =
min(xi)+max(xi)/2 and bi = max(xi)−min(xi)/2.

3) selecting the number of hidden units and the learning
parameters (bias, epochs, . . . ).

4) starting the training stage.
5) Once the training is finished, choosing the interference

factor M = 4, number of samples N, calculating the max fre-
quency: ωmax = (N−1)/(2∗M).

6) Setting the frequency ωp for the remaining input factors.
for i = 1→ D do

ωp[i] = ωmax/(2∗M ∗ i)

7) Calculating scalar variable s.
for i = 0→ N do

s[i] = 2∗π/N ∗ i
8) Sampling, ω2 is the sample frequency.
for i = 0→ D do

ω2[i]← ωmax
idx← 1, . . . , N except i
ω2[idx]← ωp
l← (i∗N , (i+1)∗N)
for j = 0→ N do

g = 0.5+ arcsin(sin(ω2[ j]∗ s+2∗π ∗ rand))
X [l, j] = g

9) Model evaluation Y = Model(X) , the model here is the
neural network.

10) Compute first order sensitivity index for each input.

Algorithm 1 allows to compute the global sensitivity index
using EFAST to discover those more important inputs. It is im-
portant to notice that the EFAST algorithm takes place after the
training stage. As EFAST is model independent, all we have to
know is how to compute the output to perform the EFAST anal-
ysis. In this way, EFAST can help to check whether important
known variables in a model have been correctly considered.

EXPERIMENTS

This section involves three independent experiments. The
first two is to compare the proposed methods with some bench-
mark to verify the feasibility of ANN-EFAST and ANN-Garson,
while the last experiment is a case study of applying ANN-
EFAST on input selection of ANN for ship heading prediction.
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TABLE 2. Comparison in linear system
Algorithm x1 x2
Analytical 0. 997 0. 003

EFAST 0. 995 0. 003
ANN-Garson 0. 499 0. 154
ANN-EFAST 0. 992 0. 016

Comparison in Linear System
The first test case is a widely used feature selection function

[19]:

y = x1 +0.05x2 (8)

The purpose is to test the performances of ANN-Garson and
ANN-EFAST in the linear system. All input parameters are sam-
pled uniformly in the range [-1, 1]. Therefore, the output y is
close to the input x1, i. e., x1 has a higher sensitivity index com-
pared to x2.

First,The analytical result was calculated as follows [20]:

E(Y ) = E(X1)+E(X2) = 0+0 = 0
V (X1) = E(X2

1 )−E2(X1) =
1
2
∫ 1
−1 X2

1 dX1−0 = 1
3

≈ 0.3333
V (X2) = E(X2

2 )−E2(X2) =
1
2
∫ 1
−1 (0.05X2)

2dX2−0
= 0.0025
V (Y ) =V (X1)+V (X2) = 0.3358
VX1 [E(Y |X1)] =V (X1) = 0.3333
VX2 [E(Y |X2)] =V (X2) = 0.0025

S1 =
VX1 [E(Y |X1)]

V (Y ) ≈ 0.9925

S2 =
VX2 [E(Y |X2)]

V (Y ) ≈ 0.0075

where E(i) is the expectation of i; V (i) is the variance of i;
VXi [E(Y |Xi)] is the variance of the conditional expectation Xi; Si
is the main effect of i. Second, the EFAST was preformed based
on [12]. Third, an ANN with x1 and x2 as inputs and y as the
output using samples from Eq. (8) was constructed and trained
for engaging ANN-Garson and ANN-EFAST algorithms. Ta-
ble 2 shows the result of those algorithms. Similar results are
found between the analytical method, the EFAST method and
the ANN-EFAST. The ANN-Garson method shows the ability to
distinguish the importance of variables but the result is far away
from the result of the other three methods. The supposition for
this result is that Garson algorithm is one of LSA methods, the
best performance will happen in a fixed point.

Comparison in Nonlinear System
The second test case is the Ishigami function with three input

parameters [21]. The nonlinear and non-monotonic function is

TABLE 3. Input parameters sensitivity index of Ishigami function
Algorithm x1 x2 x3
Analytical 0.313 0.442 0

EFAST 0.307 0.444 0
ANN-EFAST 0.299 0.435 0.04
ANN-Garson 0.311 0.256 0.315

often used in literature as the global sensitivity benchmark meth-
ods.

y = sin(x1)+7sin2(x2)+0.1x3
4 sin(x1)

xi ∈ [−π,π], i = 1,2,3
(9)

where xi is uniformly distributed within [−π,π]. For analytical
method, the variance of output y and the sensitivity index can be
computed as follows:

V (y) = π4/50+π8/1800+1/2+49/8≈ 13.8445
V1 = 1/2+π4/50+π8/5000≈ 4.345892
S1 =V1/V (y)≈ 0.3139
V2 = 49/8 = 6.125
S2 =V2/V (y)≈ 0.4424
V3 = 0
S3 = 0

where the V (y) is the variance of y; V1, V2 and V3 are the vari-
ance of input parameter x1, x2, x3, respectively; S1, S2 and S3
are the first sensitivity index of input parameter of x1, x2, x3.
For ANN-Garson and ANN-EFAST, again, we trained an ANN
with three inputs and one output to fit the Ishigami function. The
modified Garson algorithm and EFAST algorithm was then per-
formed on the well-trained ANN. Table 3 shows the comparative
result of the analytical method, EFAST algorithm, ANN-EFAST
algorithm and ANN-Garson algorithm. It is obvious that the
proposed ANN-EFAST method obtains a relative smaller error
than that of the ANN-Garson method, which means the proposed
ANN-EFAST method also take effects in solving nonlinear prob-
lems.

Comparison of Input Selection for Ship Heading Pre-
diction

A case study of SA on ship heading was carried out to find
those relative important input parameters in ship motion predic-
tion model. In this experiment, an ANN with 27 attributes as the
inputs and the heading attribute as the output was established and
trained. Note for continuity purpose, the heading data was pro-
cessed before importing to the ANN. The hyperbolic tangent is
chosen as the activation function. A total of 1984 sets of data un-
der the Levenberg-Marquardt algorithm were employed to train
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TABLE 4. Performance comparison
Number of

hidden nodes
ANN-A ANN-B ANN-C

Time [s] MSE Time [s] MSE Time [s] MSE
16 336.26 2.94 7.94 0.14 173.91 1.35
20 13.09 0.47 7.01 0.14 203.84 0.48
24 9.63 0.62 4.76 0.178 229.66 0.54

the ANN. Once the train stage finished, it is time to preform SA
approach on it. Considering the results of the above two tests on
both linear and nonlinear systems, the ANN-EFAST method is
preferable since the ship motion model is a complex nonlinear
model. Figure. 5 shows the results of ANN-EFAST. It is interest-
ing that surge velocity has the highest sensitivity index than the
other input parameters for ship heading prediction model. In ad-
dition, the position of the ship has also a relative high sensitivity
index. This makes sense because the change of ship’s position is
the result from the integration of surge, sway and yaw velocities,
definitely correlating to the ship heading. Here, those input pa-
rameters, with the corresponding first sensitivity index exceeds
0.02, are selected. This indicates there are 12 of 27 input param-
eters used to construct the new ANN.

To verify the importance of the selected input parameters
from ANN-EFAST, three ANNs, i. e., A—the ANN with full
inputs, B—the ANN with inputs based on ANN-EFAST, C—the
same ANN from B but with one more input parameter removed,
were compared. We focused on different number of hidden nodes
for the three ANNs in terms of computational time and mean
square error (MSE). Each comparison is repeated five times to
ensure the predictive convergence. The average comparative re-
sult is illustrated in Table 4. ANN-A works well owing to the
full input, except the time consuming due to computational com-
plexity. Another weakness of ANN-A is that the training error is
lager under the same training conditions with ANN-B and ANN-
C. ANN-B in the case of finding the suitable input parameters

has been greatly improved. In contrast, ANN-C reflects that ex-
cessive reduction of input parameters results in the decrease of
performance of ANN-C regarding to both the training time and
the MSE. As a result, ANN-B is more efficient and accurate in
cases of different number of hidden layer nodes. Note that from
Figure 5, the sum of first sensitivity index of all input parame-
ters is 0.753, less than 1, which means the interaction of input
parameters is also significant. Therefore, SA on ANN model of
ship heading prediction should be analyzed not only on the single
influence of each input, but also on the complexity nature of in-
put parameter interaction. Our future work will focus on this as-
pect, especially for quantifying input parameters interaction for
the predictive model.

CONCLUSION
This work presents an ANN based surrogate model for Gar-

son and EFAST sensitivity estimation. First, an ANN is con-
structed as a surrogate for the original model or the original sen-
sor data. Taking the advantage of ANN for fast convergence,
the ANN-Garson and the ANN-EFAST are proposed, which has
the ability for local and global sensitivity estimation, respec-
tively. Comparison results from the benchmark illustrate that the
ANN-EFAST presents a relatively better SA performance than
the ANN-Garson for both linear and nonlinear problems. The
application to the ship heading prediction model emphasizes the
general nature of ANN-EFAST, and demonstrates its usability
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in the complex, non-linear system. Particularly, for those only
input-output samples are available and the underlying model is
unavailable or cannot be explicitly expressed, our methods offer
a solution to estimate the sensitivity index. Considering this pa-
per only concerns the first order sensitivity index of each input
factor, future work will turn to focus on the interaction between
input parameters of ship prediction model.
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