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Problem description

Isotropic metamaterials can in principle be designed to have any refractive index. The real part can be
positive (positive refraction), or it can be negative (negative refraction). Provided we allow the medium
to be active (involving pumping), the imaginary part can have either sign as well. Due to the possibility
of instabilities, such gain media must be analyzed using Laplace-Fourier theory, in which the usual
Fourier transform in time is replaced by the Laplace transform, and the Fourier transform in space is
retained. By suitable deformation of the two-dimensional integration surface, one rigorously establishes
well-known behaviors of gain media, in addition to confirming more controversial or novel results. In
particular, the theory predicts the existence of simultaneously positive and negative refracting media. In
this master proposal, the candidate will consider this theory in detail, and try to verify it independently
by solving the Maxwell equations in the time-domain using FDTD simulations.
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Abstract

Fourier-Laplace analysis of gain media predicts the existence of novel types of media.
In particular it predicts the existence of media refracting positively and negatively at the
same time, so-called simultaneous refraction. This effect is analytically derived through de-
formation of the inverse Fourier-Laplace integration surface. The requirements, and possible
problems, of such media are discussed. It is argued that this is a two-dimensional effect,
meaning side waves must be present for the effect to occur. For a medium to be simultaneous
refracting it must have gain, and it is discussed how this gain can be minimized.

A Finite Difference Time Domain (FDTD) method for dispersive Lorentz media was
implemented in MATLAB. The program solves Maxwell’s equations numerically in the time
domain, where the real physics happens. If the Fourier-Laplace theory predicts novel optical
properties for a given ε(ω) and µ(ω), the program can thus be used to simulate the actual
response from a medium with permittivity and permeability ε(ω) and µ(ω). It can therefore
be used to independently verify the results obtained using Fourier-Laplace theory.

The FDTD program was used to simulate various types of novel media. Simulation results
showing evanescent gain and non-magnetic negative refraction are presented. For media with
large gain the program fails after some time, due to amplified, artificial reflections caused
by numerical errors. The reflections were found to originate from the numerical precision of
MATLAB.

Gain media may involve instabilities. There are two types of instabilities, convective and
absolute. A convective instability is convected away. An absolute instability grows with time,
even at a fixed point in space. The deformation theory is used to explain the occurrence of
such instabilities, in particular in infinite or semi-infinite media.

Wave propagation in passive media is usually considered in the so called monochromatic
and plane wave limits, meaning only a single frequency ω1 and plane wave component Kx

is present. Physically these limits can never fully be reached. The monochromatic limit is
approached by turning on a single frequency oscillation at t = 0, and waiting a sufficiently
long time t→∞. The plane wave limit is approximated by letting the source width σ being
infinitely large, σ →∞. The Fourier-Laplace theory is used to show that these limits do not
necessarily exist in gain media, as instabilities may lead to diverging fields. Even for media
where the monochromatic limit exists, it may for certain gain media take a very long time
for the transients to die out. This fact is studied with the help of frequency domain and time
domain simulations, and is the main reason why simultaneous refraction appears impossible
to simulate with FDTD or realized experimentally, at least with the proposed types of media.
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Sammendrag

Fourier-Laplace analyse av gainmedier forutsier nye typer medier. Spesielt forutsier det
at det finnes medier som bryter lys b̊ade positivt og negativt p̊a en gang, s̊akalt samti-
dig brytning. Denne effekten utledes analytisk ved å deformere den inverse Fourier-Laplace
integrasjonsoverflaten. Krav til, og mulige problemer med slike medier diskuteres. Det argu-
menteres for at dette er en todimensjonal effekt, som betyr at sidebølger m̊a være til stede
for at effekten skal kunne oppst̊a. For at et medium skal kunne være samtidig brytende m̊a
det ha gain (forsterkning), og det diskuteres hvordan denne gainen kan minimeres.

En metode basert p̊a endelige differanser i tidsdomenet (FDTD) for dispersive Lorentz-
medier ble implementert i MATLAB. Programmet løser Maxwells likninger numerisk i tids-
domenet, hvor den egentlige fysikken finner sted. Dersom Fourier-Laplaceteorien forutsier nye
typer optisk respons for en gitt ε(ω) og µ(ω) kan programmet brukes til å simulere den faktis-
ke responsen fra et medium med permittivitet og permeabilitet ε(ω) og µ(ω). Det kan derfor
brukes til å uavhengig verifisere resultatene som finnes gjennom Fourier-Laplaceteorien.

FDTD-programmet ble brukt til å simulere ulike typer medier. Simuleringsresultater som
viser evanescent gain og ikke-magnetisk negativ brytning presenteres. For medier med stor
gain mislykkes programmet, p̊a grunn av forsterkede, kunstige refleksjoner, som skyldes nu-
meriske feil. Refleksjonene blir funnet til å skyldes den numeriske oppløsningen i MATLAB.

Gainmedier kan innebære ustabiliteter. Det finnes to typer ustabiliteter, konvektive og
absolutte. En konvektiv ustabilitet ledes bort. En absolutt ustabilitet vokser med tiden, selv
for et gitt punkt i rommet. Deformasjonsteorien brukes til å forklare n̊ar slike ustabiliteter
vil oppst̊a, spesielt for uendelige eller semi-uendelige medier.

Bølgeforplantning i passive medier undersøkes normalt i de s̊akalte monokromatiske- og
planbølgegrensene, som betyr at bare én frekvens ω1 og én planbølgekomponent Kx er til
stede. Fysisk kan disse grensene aldri oppn̊as. Den monokromatiske grensen tilnærmes ved å
skru p̊a en enkelfrekvensoscillasjon ved tiden t = 0 og vente en tilstrekkelig lang tid t→∞.
Planbølgegrensa tilnærmes ved å la bredden p̊a kilden bli uendelig stor, σ → ∞. Fourier-
Laplaceteorien brukes til å vise at disse to grensene ikke nødvendigvis eksisterer i gainmedier,
ettersom ustabiliteter kan føre til divergerende felt. Selv for medier hvor den monokromatiske
grensen eksisterer vil det for enkelte gainmedier ta en veldig lang tid for transientene å dø
ut. Dette fenomenet studeres ved hjelp av simuleringer i tids- og frekvensdomenene, og er
hovedgrunnen til at samtidig brytning virker umulig å simulere med FDTD, eller realiseres
eksperimentelt, i det minste for de foresl̊atte medietypene.
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Preface

This master thesis is a continuation of a preparatory project done the fall 2013, titled Simultaneous re-
fraction in active metamaterials. In this preparatory work a FDTD simulation program was implemented
in MATLAB. The aim of the project was to understand the phenomenon of simultaneous refraction, and
use the implemented FDTD program to simulate the effect. The originally suggested simultaneous re-
fractive medium had a very large gain, and we ran into several challenges related to simulations of strong
gain media.

This thesis seeks to explain the origin of these challenges, and provide suggestions on how to overcome
them. The preparatory project indicated that an effort should be made to find possible simultaneous
refracting media with a minimal amount of gain at all frequencies. An extensive amount of time was
thus spent thinking about this. It was also an underlying goal to finish the attached paper, which both
the preparatory project and this thesis are based upon. The main emphasis of this report therefore focus
on elaborating the findings in this paper.

The past year has taught me that even though something is shown theoretically to be possible, does
not necessarily mean it is easy to realize. The fact that media exhibiting both a positive and negative
refractive index at the same time may exist is quite sensational, and it has been very interesting to be
involved in the early investigation of this phenomenon. Unfortunately simulations have still not been
able to reveal the effect of simultaneous refraction. Reasonable explanations for why this is the case were
found, and we have therefore by no means any reason for doubting that the effect in fact is possible to
obtain. As we have seen, gain media may have very interesting properties. Understanding the challenges
related to simulating them may therefore turn out to become useful later on. The implemented program
has also been used to simulate a range of novel media, and can be used to analyze other interesting
phenomena also in the years ahead.

I must thank my supervisor Johannes Skaar for excellent guidance throughout my work with this
thesis. The discussions during our weekly meetings has really been an inspiration to me. He has always
been available for answering my questions, and really has the ability to explain complicated things in
a simple way. I must also thank Ph.D.-student Christopher Dirdal for some informative discussions on
some of the topics discussed in this thesis. I am really looking forward to working with the two of
you in the coming years. Thanks to Markus Malema for suggesting FDTD simulations using Luebbers’
PLRC-method. Finally, I would like to thank my family and friends for always being there for me, life
would be dull to live alone.

Hans Olaf H̊agenvik
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1 Introduction

Optical technologies play an important role in today’s society. Fiber optics and wireless technologies
dominate the way we communicate. These technologies make use of electromagnetic radiation below
the visible frequency range. Examples of applications at optical frequencies are microscopes, lenses,
eyeglasses and cameras. To enable further development of these technologies it is crucial to understand,
and know how to control the optical properties of materials. The optical properties of a material will
in general depend on the frequency of light, a phenomenon called dispersion. In a prism with dispersive
refractive index the different frequencies will be refracted at slightly different angles. If we shine white
light at such a prism the different color components will thus be separated.

Recent development within microprocessing- and structuring techniques has made it possible to design
materials with desired optical properties, in particular properties that cannot be found in nature. Such
artificially designed materials are called metamaterials. One such novel property is the phenomenon
of negative refraction. The idea of negative refraction was first proposed by Veselago [1] in 1968. He
claimed that for a material with negative permittivity and permeability, ε and µ, the refractive index
would also be negative. Pendry showed in 2000 [2] that a slab of a medium with refractive index n = −1
would function as a perfect lens, going beyond the diffraction limit. In 2006 [3] he further showed that if
ε and µ can be controlled at will, it is possible to design a cloaking devices, i.e. a container where light is
bend around it, and effectively makes it invisible. Metamaterials can also be used to increase efficiency of
antennas, and obtaining a magnetic response even at very high frequencies. To obtain desired responses
such as negative refraction, some metamaterials make use of material resonances. A resonant response
is often associated with high losses, which is an extensive problem in current metamaterial realizations.
To overcome these losses it has been suggested to make use of active media, i.e. media with gain.

In an unpublished paper H̊agenvik, Malema and Skaar use Fourier-Laplace theory to analyze gain
media. The media are assumed to be infinite or semi-infinite, meaning fields never reach the end of the
media. One may argue that this situation is unphysical, as infinitely large media don’t exist. However,
for a finite medium the theory will still predict the response for the duration before the light reaches
the outer boundaries of the medium. It also helps us understand the optical response given solely by
the medium’s properties - all effects related to interactions with surrounding media have been ruled out.
The mentioned paper is attached in appendix A.

Infinite or semi-infinite gain media may involve instabilities, as the waves may travel infinitely far,
picking up gain as they propagate. The theory is used to understand when these instabilities will be
convective, meaning they are convected away, and when they will be absolute, meaning the fields grow
with time even at a fixed point in space. The theory is also used to predict the existence of novel types
of media. In particular it predicts isotropic media exhibiting simultaneous refraction, meaning that they
refract positively and negatively at the same time. It is shown that for this to be possible the medium
must have gain. A discussion on what is required from such a medium, and suggestions for optimal
realizations are presented in this thesis.

When light goes from one material to another it is refracted at some angle, as shown in Figure 1a.
This is because light travels at different speed in different materials. If a specific metamaterial is used, the
refraction may happen at a negative angle, which implies that the light inside the metamaterial travels
towards the boundary, as shown in Figure 1b. By simultaneous refraction it is meant that both this
peculiar effect, and the regular positive refraction happen at the same time. A principle sketch is given
in Figure 1c. The possible existence of this effect is derived by deformation of the inverse Fourier-Laplace
integration surface.

Optical phenomena are often considered in the so called monochromatic and plane wave limits,
meaning the signal is assumed to contain a single frequency ω1, and a single plane wave component Kx.
Physically these limits can never be reached. The source will always have a finite width, so other kx than
Kx will be excited to some extent. The source is turned on at some time t = 0, and other frequencies
than ω1 must be present to describe this onset. The monochromatic limit is approximated by turning
on a single frequency oscillation at t = 0, and waiting a sufficiently long time t → ∞. The plane wave
limit is approached by letting the source width σ be infinitely large. It is shown in the attached paper
that for gain media these two limits do not commute in general. If the monochromatic limit is taken
first, the plane wave limit cannot necessarily be taken, and visa versa. This is because there may be
instabilities associated with waves traveling infinite distances, and for infinitely long times in gain media.
In a physical situation the order of the limits t → ∞ and σ → ∞ will explain how the optical response
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Figure 1: A principle sketch of (a) positive refraction, (b) negative refraction and (c) simultaneous
refraction. The source produce an incident wave, which is refracted differently in the three cases. The
response in (a) is the type of refraction we see in every day life. To obtain the response (b) or (c) novel
media, metamaterials, must be used.

will be in the limits t � σ/c and t � σ/c when σ and t both gets very large. Even in gain media
where the monochromatic limit can be reached, it may require very long experiment durations before
the transients (”unwanted” kx and ω) die out. This is because the transient frequencies may grow faster
than the observation frequency ω1 as the wave propagates. For gain media the transient phase may thus
be a lot longer than for conventional, passive media. If there are instabilities involved, the transients will
in fact never die out.

To visualize simultaneous refraction a time domain (FDTD)-method was implemented in MATLAB.
The analytic derivation of simultaneous refraction is done in the Fourier-Laplace transform domain,
but the real physics happens in the time domain. The simulations are therefore done in the time
domain, as an independent verification of the theory. It turns out a significant amount of gain is
required to obtain simultaneous refraction, where the large gain must be just adjacent to the observation
frequency. Unfortunately, for media with large gain the validity of the simulations collapses after even
short durations. This is due to numerical errors being amplified, before the monochromatic response may
be observed. The implemented FDTD program was used to simulate the time domain response of several
(passive and active) negative refracting media. It was also used to show the presence of evanescent gain,
and to investigate various phenomena related to instabilities in gain media.

1.1 Scope of report

The report is structured as follows: Section 2 introduces some concepts from complex analysis which
frequently occur in this report. Section 3 covers some background theory about the optical parameters
of materials, ε and µ, and a short introduction to metamaterials is given. Assumptions about the media
which will be analyzed, and two different source configurations used to investigate these media are
presented in Section 4, before the Fourier-Laplace theory from the attached paper is presented in Section
5.

Section 6 describes how the transient phase may be very long for certain gain media. A method
for how to determine whether the monochromatic limit at a given point is reached or not is presented.
Section 7 discuss the instabilities associated with infinite gain media. Simulation results of some of the
discussed phenomena are presented in Section 12.5.

If the fields grow very large, amplified artificial reflections inside the medium will destroy the validity of
FDTD simulations. A discussion on the origin of these reflections is given in Section 11. A short review
of the development of the FDTD method, and derivations of the expressions used in the simulation
program are given in Section 9. Section 10 explains how this method was implemented in MATLAB,
for instance how the simulation parameters were chosen, and how the boundary conditions were set. In
Section 12 the FDTD program is used to simulate different negative refracting media. Simulation results
showing evanescent gain are presented. Media with zeros in the upper half plane were also simulated.

Finally, Section 13 sums up, and concludes the findings in this thesis. In Section 14 some suggestions
on what could be done next are made. The author’s results are contained in Secs. 6-8 6-8 and 10-14
10-14, in addition to parts of 4.3 and 5.3. The remaining part of the thesis describes background work.
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2 Complex analysis

2.1 Fourier and Laplace transforms

The excitation in time starts at time t = 0, so all fields are equal to 0 for t < 0. Since we are looking at
media with gain, the fields can possibly grow with time. A Laplace transformation decomposes a signal
starting at t = 0 in exponentials with possibly complex arguments,

E(x, z, ω) =

∫ ∞

0

E(x, z, t)eiωtdt, (1)

where the standard transformation variable s has been substituted with −iω. For the Laplace transform
to exist we must require that the signal does not grow faster than as an exponential with time, so it will
be assumed that

|E(x, z, t)| < E0e
γt. (2)

This requires Imω > γ (i.e. Re s > γ).
In reality the width of the source cannot be infinitely large, so the signal will also contain different

plane wave components. This decomposition can be done using the Fourier transform

E(kx, z, ω) =

∫ ∞

−∞
E(x, z, ω)e−ikxxdx (3)

where all the kx’s are real. By comparing Equation (1) and (3) it can be seen that the Laplace transform
is just a Fourier transform with a possibly complex argument1. The sign of the transformation variables
are opposite for the transformation in space and time. This convention is chosen because this gives a
wave propagating in the positive x-direction for positive kx and Reω. The inverse Fourier transform
is taken by performing a similar integral as the forward transform, but where the sign in the exponent
has switched, and a factor of 1/(2π) is added. The convenience of the substitution of the Laplace
transformation variable now becomes apparent, as the inverse Laplace transform becomes an inverse
Fourier transform taken along the line Imω = γ. The actual electric field in the time and spatial domain
is thus given by

E(x, z, t) =
1

(2π)2

∫ iγ+∞

iγ−∞

∫ ∞

−∞
E(kx, z, ω)ei(kxx−ωt)dkxdω. (4)

2.2 Analytic function

A function f(z) is said to be analytic in a domain D if f(z) is defined and differentiable at all points of
D. The function f(z) is said to be analytic at a point z = z0 in D if f(z) is analytic in a neighborhood
of z0.

Also, by an analytic function we mean a function that is analytic in some domain.

2.3 Cauchy’s integral theorem

If f(z) is analytic in a simply connected domain D, then for every simple closed path C in D,

∮

C

f(z)dz = 0 (5)

It can be shown that the implication goes both ways, so if f(z) is continuous in a domain D, and if∮
C
f(z)dz = 0 for every closed path in the domain D, then f(z) is analytic in D.
It is easy to extract from (5) that if f(z) is analytic in a domain D, the integration path from a point

A to point B in D is path independent. This means that integration paths can be deformed in domains
where f(z) is analytic.

1In the Laplace transform the integral is taken from t = 0 to ∞, but since the electric field is 0 for t < 0 it wouldn’t
make any difference to change the lower limit to −∞

3



Re z

Im z

(a)

(b)
(c)

Figure 2: Three possible branch cuts from the branch point of w =
√
z: (a) Along the real axis towards

+∞, (b) along the imaginary axis towards +i∞ and (c) along an arbitrary path towards infinity.

2.4 The residue theorem

If f(z) is analytic in a domain except at a finite number of points, an integral around a closed path C
can be calculated using the residue theorem

∮

C

f(z)dz = 2πi

k∑

j=1

Resz=zjf(z) (6)

where C is a closed, counterclockwise path, and zj are the non-analytic points of f(z) inside C. When

f has a simple pole at z1 we can write f(z) = g(z)
z−z1 , where g(z) is analytic in a neighborhood around z1.

Then Resz=z1f(z) = g(z1).

2.5 Square root of complex numbers

The square root of a complex number z = w2 can take the two possible values ±w. For positive numbers
the square root is defined to be the positive value, but such a definition is not possible to make for
a complex number. By writing a complex number in polar form z = reiφ, the square roots are given

by w =
√
z = ±√reiφ2 . First look at the positive root, and let φ go from 0 to 2π. One then gets

z(r, 0) = z(r, 2π) = r, but w(r, 0) =
√
r and w(r, 2π) = −√r. A phase shift of 2π in the argument

of the square root will shift the sign of the square root. The same things happens if the negative root
considered. This is valid for any r, which means that the square root is discontinuous, and therefore
non-analytic along a line from r = 0 to ∞. The square root is said to have a branch point in z = 0, and
a branch cut goes from the branch point along the real axis to +∞.

The angle φ where the sign for the square root flips can be defined to be somewhere else than for
φ = 0. For instance if φ = π

2 , let the sign for w be chosen such that w(r, π2 ) = +
√
rei

π
4 . When φ goes

from π
2 to π

2 + 2π the value of w goes from w(r, π2 ) = +
√
rei

π
4 through a bunch of complex numbers, and

ends up at w(r, π2 + 2π) = −√reiπ4 . The branch cut now goes from z = 0 to +i∞.
In general the angle where the sign flips can be chosen as a function of r, but no matter how this

path is defined there will go a branch cut, where the square root is non-analytic, from z = 0 through
some path out to ∞. Three such branch cuts are shown in Figure 2.

If z1 is a point close to the branch cut, and z2 a point just on the other side of the cut, one will have
f(z1) = −f(z2). The root

√
z − z0 will have a branch point in z = z0, and a branch cut from z = z0 to

∞.
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3 Background

3.1 Maxwell’s equations

Maxwell’s equations for a source free medium are given by [4, p. 332]

∇×H =
∂D

∂t
(7a)

∇×E = −∂B

∂t
(7b)

∇ ·D = 0 (7c)

∇ ·B = 0. (7d)

The electric flux density D and electric field E are related through the material dependent electric
property P (polarization density). B and H are similarly related through the magnetization density M:

D = ε0E + P (8a)

B = µ0H + µ0M. (8b)

For a linear medium the polarization and magnetization densities at the time t are linearly dependent
on the electric and magnetic fields at all previous times τ < t. Such a property is mathematically
described by a convolution:

D(t) = ε0E(t) + ε0

∫ t

0

χe(t− τ)E(τ)dτ (9a)

B(t) = µ0H(t) + µ0

∫ t

0

χm(t− τ)H(τ)dτ. (9b)

Here χe,m are called the electric and magnetic susceptibilities, and ε0 and µ0 are the permittivity and
permeability of vacuum, respectively. The integrals are taken from τ = 0 instead of τ = −∞ because the
source is turned on at t = 0, so all fields are zero for t < 0 due to causality. The arguments of the two
functions in a convolution can be interchanged, so the integrals in (9a) can be written

∫ t
0
χe(τ)E(t−τ)dτ ,

and similarly for (9b). The susceptibilities χ(τ) thus describe how the polarization/magnetization at time
t depends on what the electric/magnetic field was τ ago.

It can be convenient to solve Maxwell’s equations in the frequency and wavenumber domains. In the
transformation domains the convolution becomes a product, which is a lot easier to deal with than the
possibly complicated integral. For the components E(kx, z, ω)eikxx−iωt the x and t dependency is only
in the exponent. The derivatives with respect to x and t are thus equivalent to multiplying with ikx and
−iω. The Laplace transforms D(ω) and E(ω) (and B(ω) and H(ω)) are related through

D(ω) = ε0(1 + χe(ω))E(ω) = ε0ε(ω)E(ω) (10a)

B(ω) = µ0(1 + χm(ω))H(ω) = µ0µ(ω)H(ω) (10b)

where the functions ε(ω) = 1 + χe(ω) and µ(ω) = 1 + χm(ω) have been introduced. These functions are
called the relative permittivity and permeability functions, and describes the material dependent
electric and magnetic properties of a medium. The electric and magnetic properties are in general
frequency dependent, and theoretical models are therefore usually made for the frequency dependent
susceptibilities χ(ω). For example the susceptibility may be given by the Lorentz oscillator model [5,
p. 176]:

χ(ω) =
Fω2

0

ω2
0 − ω2 − iΓω (11)

which describes a resonant dielectric medium. Here F is the strength of the response, ω0 is the resonance
frequency, and Γ is the damping rate, which also describes the bandwidth of the resonant frequency
response.
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The same variable has here been used for the time dependent and frequency dependent versions of the
functions (E(t) and E(ω) etc). This will be done throughout the report, but it should be apparent from
the argument of the functions, and the context, whether it is the time or frequency dependent function
which is being evaluated. If χ(ω) is known, χ(t) is found by taking the inverse Laplace transform:

χ(t) =
1

2π

∫ iγ+∞

iγ−∞
χ(ω)e−iωtdω (12)

where γ must be chosen such that χ(ω) is analytic for Imω > γ.
For homogeneous media, it can be shown that the Fourier-Laplace transformed solutions of Maxwell’s

equations must fulfill the Helmholtz equation

(
d2

dz2
− k2

x + ε(ω)µ(ω)
ω2

c2
)E(kx, z, ω) = 0 (13)

where ε(ω) and µ(ω) are the relative permittivity and permeability of the material in the frequency
domain, and c is the speed of light in vacuum.

3.2 Refractive index

The refractive index is defined as

n(ω) =
√
ε(ω)µ(ω) = n′(ω) + in′′(ω) (14)

and will in general be a complex number depending on frequency. n(ω) is given by a square root, so
the correct sign must be determined. As mentioned in Section 2.5 the square root of a complex number
has two possible solutions. However, only one of the solutions to (14) is physical, as will be explained in
Section 4.1.

The real part of the refractive index at a frequency reflects how the phase velocity at the given
frequency compares to the speed of light in vacuum, c. The imaginary part indicates how much the wave
attenuates or is amplified as it propagates in the medium.

3.3 Negative refraction

The electron gas in a metal approximately behaves as a plasma, where the permittivity function can be
written in the form

ε(ω) = 1− ω2
p

ω2
, (15)

where ωp =
√
Ne2/mε0 is called the plasma frequency. N is here the electron density of the metal, and

m and e the mass and charge of the electron, respectively. For ω < ωp the electric permittivity becomes
negative. The plasma model assumes no loss; in reality the electrons will be damped by the metal lattice.
In a more realistic model where damping is included, still Re ε(ω) < 0 below ωp, but now Im ε(ω) 6= 0
because of the damping.

It is also possible to achieve Reµ(ω) < 0. For instance if µ(ω) = 1 + χ(ω), where χ(ω) is given by
the Lorentz model (11), we will get Reµ(ω) < 0 for ω >∼ ω0, provided F > 1. Such a response can be
approximated by the split-ring resonator medium suggested by Pendry [6]. It is shown in the following
that for a passive medium with ε(ω1) < 0 and µ(ω1) < 0 at the same frequency ω1, also the refractive
index will become negative at this frequency, n(ω1) < 0.

Plane wave solutions, in the form E = E0e
ik·r−iωt and H = H0e

ik·r−iωt, will satisfy Maxwell’s
equations. We can without loss of generality assume that E0 and H0 are real. Inserting this into the
curl Equations (7a)-(7b) gives

k×E0 = ωµH0 (16a)

k×H0 = −ωεE0. (16b)
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FIG. 3: The field vectors of a plane wave.

y

z

µr < 0, ✏r < 0

k2

µr = ✏r = 1

k1

FIG. 4: Snell’s law. The wave vectors in the left and right
medium are denoted k1 and k2, respectively. Wavefronts as-
sociated with the incident and the refracted waves are shown
as lines orthogonal to the wave vectors. Since the tangen-
tial fields are continuous, the wave fronts projected on the
boundary must propagate in the same direction on each side.
In this particular case the material on the right-hand side has
✏rµr > 1.

5. First we note that the normal component of the
Poynting vector must be continuous since there is no ac-
cumulation of energy at the boundary. Thus, the wave
vector k2 has a negative z component, see Fig. 4. On the
other hand, the boundary conditions require that the tan-
gential components of the electric and magnetic fields are
continuous. This implies phase match across the bound-
ary. In other words, the incident wave projected on the
boundary must propagate in the same direction as the
projection from the refracted beam. Putting these re-
sults together, we find negative refraction, see Fig. 4.

6. The phase match at the boundary (see above) re-
quires that k1y = k2y. At z = 0, the incident, reflected,
and transmitted field amplitudes are E, rE and tE, re-
spectively. Imposing continuity of the tangential electri-
cal field yields

1 + r = t. (12)

The magnetic field associated with the incident wave
is found using (10a): H = (0, Ek1z/!µ1,�Ek1y/!µ1).
Similarly, the reflected and transmitted magnetic
fields are (0, rE(�k1z)/!µ1,�rEk1y/!µ1) and
(0, tEk2z/!µ2,�tEk2y/!µ2), respectively. Hence,
continuity of the tangential magnetic field gives

k1z/µ1 � rk1z/µ1 = tk2z/µ2. (13)

object

y

z

lens

FIG. 5: Ray tracing from the object to the image. The re-
fractive index of the lens material is n = �1.

Combining (12) and (13) leads to the desired result (4).
For ✏1,2 and µ1,2 positive, k1z and k2z are positive as
well (assuming propagating waves), and (5) follows using
cos ✓1 = k1z/k1 and cos ✓2 = k2z/k2. If, for example,
✏2 and µ2 change sign, the reflection coe�cient do not
change since both µ2 and k2z change sign.

7. By tracing the rays we conclude that there is an
image inside the lens, and also at the right-hand side, see
Fig. 5. There is no reflection at the boundaries according
to the Fresnel equations.

8a) Taking a Fourier transform of the source field,
we obtain a spectrum A(ky). Eq. (6) then follows as
the inverse transform in the special case z = 0. For
z > 0 the field is propagated from z = 0 to z using
Maxwell’s equations. This is achieved for each plane wave
component by the transformation A(ky) exp(ikyy) !
A(ky) exp(ikyy + ikzz), where k2

z = (!/c)2 � k2
y. Note

that the plane wave components associated with large
spatial frequencies in the object are evanescent (i.e., kz

is imaginary). The largest ky that corresponds to a prop-
agating wave is ky,max = !/c. A conventional lens is not
able to restore the evanescent field, so the finest details
in the image is �y = 2⇡/ky,max = 2⇡/(!/c) = �, where
� is the vacuum wavelength.

8b) Faraday’s law r ⇥ E = i!µH becomes in this
case ŷ@E/@z� ẑ@E/@y = i!µH. The tangential compo-
nent of the magnetic field is the y component, and conse-
quently (@E/@z)/µ must be continuous at the boundary.

8c) Since µ changes sign at each boundary, so does
@E/@z. Assuming no reflections, the field for each ky

has only a single plane wave component A(ky) exp(ikyy+
ikzz). This means that kz changes sign at each boundary.
Thus, an evanescent decaying wave in vacuum results in
a growing wave in the lens material. From the symme-
try in Fig. 5, it is clear that the wave propagates an
equal distance along the z axis in both materials, so the
resulting decay/amplification is 1. In other words, the
evanescent field is perfectly reconstructed in the image
so that the resolution has no limit.

Note that the evanescent field amplification is infinite
in the limit of infinite spatial frequencies or in the limit of
infinite slab thickness. Nevertheless the evanescent fields
do not transport energy in the z direction as can readily
be verified by computing the complex Poynting vector.

Figure 3: The normal component of k2z is negative for a negative refracting medium. The wave is
refracted at a negative angle, and has a phase velocity backwards towards the boundary. This figure is
taken from [7].

Since ε and µ are negative, the vectors (E,H,k) form a left-handed set. Media with negative ε and µ are
therefore referred to as left-handed media. The energy flow in the medium is described by the Poynting
vector

S =
1

2
E0 ×H0, (17)

so S and k are antiparallel in a medium with negative ε and µ.
Further consider the situation described by Figure 3, with vacuum to the left and the medium with

negative ε and µ to the right of the boundary, with a monochromatic plane wave incident to the boundary.
The polarization E = Eŷ and H = Hxx̂ + Hz ẑ is assumed. Since there is no source or ”energy drain”
at the boundary, the normal component of S must be continuous. Since S and k are antiparallel in
the medium with negative ε and µ, the normal component of k2 thus points towards the boundary.
The tangential components of the electric and magnetic fields must be continuous, from the boundary
conditions. To achieve this, the phase of E and H must match at the boundary, so also the tangential
component of k2 must be continuous, i.e. k2x = k1x. The monochromatic plane wave in the left-handed
medium will thus be refracted negatively, and have a phase velocity towards the boundary as shown in
Figure 3. This phenomenon is known as negative refraction.

That the wave is refracted at a negative angle can also be seen from Snells law, n1 sin(θ1) = n2 sin(θ2).
So if n1 > 0 and n2 < 0 the angles θ1 and θ2 will have opposite signs.

3.4 Non-magnetic negative refraction

In 2005 Chen, Fisher and Wise [8] predicted the existence of right-handed negative refracting media, i.e.
media with positive Re ε and Reµ, but Ren < 0. Such a medium will later in the report be referred to
as a CFW-medium. ε and µ can be written in complex form:

ε = |ε|eiθe (18a)

µ = |µ|eiθm (18b)

which gives the refractive index as

n =
√
εµ = ±

√
|ε||µ|ei(θe+θm)/2 (19)

where the sign of n is yet to be determined.
At infinitely large frequencies the electric and magnetic response must disappear, as the charges in the

media can’t move infinitely fast. This means |ε| → 1, |µ| → 1, θe → 0 and θm → 0 as ω →∞. To satisfy
n(ω) → 1 as ω → ∞ the positive sign must therefore be chosen. For the functions ε(ω) and µ(ω) to be
analytic, |ε|,|µ|, θe and θm must be continuous with frequency [9]. For a frequency with (θe + θm)/2 ≈ π
the refractive index thus becomes negative, independent of ε and µ’s separate properties.

According to the arguments above it should be possible to achieve negative refraction where all the
necessary phase comes from the electrical property ε, i.e. µ = 1 and ε with θe = 2π. Weak magnetic
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(a) (b)

Figure 4: Examples of metamaterials: (a) Cross section of parallel metal wires, for obtaining Re ε < 0
and (b) Split ring resonators, for obtaining Reµ < 0, at desired frequencies

response at optical frequencies is one problem with achieving negative refraction in left-handed, passive
media, so non-magnetic negative refractive media are very interesting.

One way of obtaining a right-handed, non-magnetic medium is to use a permittivity function which
is a sum of a passive and active Lorentz. Such a medium must be constantly pumped with energy. An
advantage with using gain media, is that they may be able to overcome the absorption problem of passive
left-handed media.

Simulation results show that the right-handed, non-magnetic CFW-medium in fact exhibits negative
refraction [10]. It has been suggested that such a medium can be experimentally designed using Bose-
Einstein condensates [11].

3.5 Metamaterials

Negative ε and µ at the same frequency do not occur in materials found in nature. Negative refractive
index media must thus be constructed artificially. Such artificially constructed materials, designed to
have specific optical properties, are called metamaterials2. Metamaterials are composite materials, where
the size of the structures are smaller than the wavelength of the light. The idea is that for electromag-
netic waves with wavelengths a lot larger than the feature size of the structures the waves will ”see”
effective parameters ε and µ, rather than the bulk parameters for each of the materials used. To obtain
negative refraction at optical frequencies nano structures must thus be used. The rapid development of
microprocessing techniques the last years has made it possible to produce such small structures.

Negative ε at a desired frequency can for instance be obtained by an array of parallel metal rods.
This will simulate a plasma, where the average electron density will depend on the diameter and density
of the rods. The plasma frequency ωp =

√
Ne2/mε0 can in this way be tuned as desired. A cross section

of such a metal array is shown in Figure 4a.
Similarly will an array of split metal rings, as shown in Figure 4b, make it possible to obtain µ < 0.

The circuit equivalent for the split ring will be a RLC-circuit, where R is the internal resistance of the
ring, L is the self-inductance of the ring, and C the capacitance from the gap. An oscillating magnetic
field through the ring will induce a current, and the RLC-circuit equations can be used to show that the
magnetic response µ of this medium in fact is approximated by a Lorentz function. The parameters for
this Lorentz function can be tuned through the structure size and density of the split rings. Using split
rings to achieve a tunable magnetic response was first suggested in [6].

2One meaning of the greek word meta is ”beyond”, and these materials goes beyond what is found in nature
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4 Setup and assumptions

The media in the following analysis are assumed to be linear, time-shift invariant, isotropic and homo-
geneous, and without spatial dispersion. For simplicity the light only propagates in two dimensions (x
and z-direction), with the electric field polarized in the y-direction. The media can in general be active,
which means that the fields are allowed to grow with time. It is however assumed that the fields do not
grow faster than an exponential function, with exponential growth rate γ:

|E(x, z, t)| ≤ E0e
γt. (20)

This criterion is not very strict, as there is no upper allowed limit set on γ. When equation (20) is
fulfilled the Laplace transform exists for Imω > γ. In reality the active media will be restricted by gain
saturation, which will make the optical response non-linear. This problem is dealt with by assuming that
the excitation is sufficiently weak, so that the magnitude of the fields always are below the saturation
limit.

To investigate the electromagnetic properties of media where ε(ω) and µ(ω) are known, the wave
equation (13) will be solved in two different situations. In the first situation a medium with known
ε(ω) and µ(ω) fills the entire space, and the (infinitely thin) source is located in the plane z = 0. The
second situation is the standard Fresnel case, where two media with known ε(ω) and µ(ω) are located
on each side of the plane z = 0. The source is located at some z < 0, producing an incident wave
propagating towards the boundary. The transmission and reflectance coefficients will be given by the
Fresnel equations [9].

4.1 Surface current excitation

The situation where a medium with known ε(ω) and µ(ω) fills the entire space, with a surface current
source in the plane z = 0, as shown in Figure 5, will now be considered. The electric field can be written
as an inverse Laplace and Fourier transform with respect to time and space, as described by (4) in Section
2.1. The transversal component of the magnetic field is given by −iωµHx(kx, z, ω) = dE(kx, z, ω)/dz.
Using this, and (13) we get

E(kx, z, ω) = A(kx, ω)eikzz +B(kx, ω)e−ikzz (21a)

Hx(kx, z, ω) = − kz
ωµ

[A(kx, ω)eikzz −B(kx, ω)e−ikzz] (21b)

for z < 0, and

E(kx, z, ω) = C(kx, ω)eikzz +D(kx, ω)e−ikzz (22a)

Hx(kx, z, ω) = − kz
ωµ

[C(kx, ω)eikzz −D(kx, ω)e−ikzz] (22b)

for z > 0. Here

k2
z = εµ

ω2

c2
− k2

x, (23)

which means kz is given by one of the square roots

kz = ±
√
εµ
ω2

c2
− k2

x. (24)

The functions A(kx, ω), B(kx, ω), C(kx, ω) and D(kx, ω) are related through the boundary conditions,
which again will depend on the source. If a surface current is used to generate the propagating wave, the
electric field will be continuous across the source plane, while H(kx, 0

+, ω) − H(kx, 0
−, ω) = J(kx, ω),

where J(kx, ω) is the (Laplace-Fourier transformed) surface current source. Since E(kx, z, ω) is continu-
ous across the boundary the symmetry of the situation gives that A = D and B = C. Inserting this in
Hx(kx, 0

+, ω)−Hx(kx, 0
−, ω) = J(kx, ω) gives

9



z

x

2σ

Figure 5: A current source in the plane z = 0. The entire space is filled with a medium with known ε
and µ

2kz
ωµ

(A−B) = J(kx, ω). (25)

Since the argument of the square root in general is a complex number it is not straightforward to
determine which sign should be chosen for kz (see Section 2.5 for details). It seems that the scientific
community now has agreed upon that the sign should be chosen such that

kz(kx, ω) is analytic for Imω > γ, and (26)

kz(kx, ω)→ +ω/c as ω →∞ in the region Imω > γ.

The last criterion makes intuitively sense: For infinitely large frequencies the electrons in the material will
not be able to move fast enough for the media to have any electromagnetic response, so for ω →∞ the
wave should propagate as if it was traveling in vacuum. The first criterion reaches back to Sommerfeld
and Brillouin [12] for passive media, and has later been modified to be valid also for active media in
general [9]. It is shown in the attached paper (appendix A) that (26), along with the principle of causality,
leads to A(kx, ω) = D(kx, ω) = 0.

Since A = D = 0 from causality (25) gives us B = C = − ωµ
2kz

J(kx, ω). Equations (21) and (22) then
become

E(kx, z, ω) = − ωµ
2kz

J(kx, ω)e−ikzz (27a)

Hx(kx, z, ω) = −1

2
J(kx, ω)e−ikzz (27b)

for z < 0, and

E(kx, z, ω) = − ωµ
2kz

J(kx, ω)eikzz (28a)

Hx(kx, z, ω) =
1

2
J(kx, ω)eikzz (28b)

for z > 0.

The inverse Fourier-Laplace transform becomes

E(x, |z|, t) =
1

(2π)2

∫ iγ+∞

iγ−∞

∫ ∞

−∞
− ωµ

2kz
J(kx, ω)ei(kxx+kz|z|−ωt)dkxdω (29)

where kz is given by (24). The electric field only depends on |z|, from the symmetry of the situation.
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Figure 6: An incident wave at a boundary between two materials with different optical properties. The
source is located at some z < 0.

4.2 Incident wave at a boundary

We now consider the situation where two different media are located at each side of the plane z = 0.
The source is located somewhere to the left (z < 0) producing an incident wave propagating towards
the boundary, as shown in Figure 6. The causality argument from the paper in appendix A can be
used to show that D(kx, ω) = 0, but now A(kx, ω) 6= 0 since part of the incident wave is reflected from
the boundary. In this case there are no charges or currents in the plane z = 0. Both the electric and
magnetic fields must therefore be continuous across the boundary, i.e. E(kx, 0

+, ω) = E(kx, 0
−, ω) and

Hx(kx, 0
+, ω) = Hx(kx, 0

−, ω). This gives the reflection and transmission coefficients

B

A
=
µ2k1z − µ1k2z

µ2k1z + µ1k2z
(30a)

C

A
=

2µ2k1z

µ2k1z + µ1k2z
(30b)

where k2
iz = εiµiω

2/c2 − k2
x (i = 1, 2, and refers to the media to the left and right of z = 0). Equations

(30) are known as the Fresnel equations.
For the wave propagating into the area z > 0 the Fourier-Laplace transform becomes

E(x, z, t) =
1

(2π)2

∫ iγ+∞

iγ−∞

∫ ∞

−∞
A(kx, ω)

2µ2k1z

µ2k1z + µ1k2z
ei(kxx+k2zz−ωt)dkxdω, (31)

where kiz (i = 1, 2) is given by (24).

4.3 The source

In the current source situation the propagating wave is generated by a surface current J(kx, ω) in the
plane z = 0. For the case with a boundary the incident wave is described by the amplitude function
A(kx, ω), which for instance could originate from a similar current source in a plane somewhere to the
left of the boundary. In both situations the excitation is assumed to be in the form u(x)v(t), which will
have a Laplace-Fourier transform in the form U(kx)V (ω). Here the functions u(x) and v(t)

u(x) = exp (−x2/2σ2) exp (iKxx) (32a)

v(t) = H(t) exp (−iω1t) (32b)

will be chosen, where H(t) is the unit step function. The Fourier and Laplace transforms are

U(kx) =
√

2πσ exp [−σ2(kx −Kx)2/2], (33a)

V (ω) =
i

ω − ω1
, (33b)

respectively. The excitation (32) is expressed in complex form, so the actual electric field will be the real
part of the final solution E(x, z, t).
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For σ →∞, U(kx)→ 2πδ(kx−Kx), which means that the excitation only produces waves propagating
with wave number Kx in the x-direction. However, in practice an infinitely large source does not exist.
In the more realistic situation with a large, but finite σ, the excitation will mainly contain the wave
number Kx in the x-direction, but also small contributions from all other kx will be present. If Kx = 0
and σ is large, a plane-like wave propagates in the z-direction.

Inserting J(kx, ω) = U(kx)V (ω) in (29) gives (for z > 0)

E(x, z, t) =
1

(2π)2

∫ iγ+∞

iγ−∞

∫ ∞

−∞
− ωµ

2kz
eikxx+ikzz−iωtdkxdω. (34)

Similarly, inserting A(kx, ω) = U(kx)V (ω) in (31) gives

E(x, z, t) =
1

(2π)2

∫ iγ+∞

iγ−∞

∫ ∞

−∞

2µ2k1z

µ2k1z + µ1k2z
ei(kxx+k2zz−ωt)dkxdω. (35)

It is important to remember that these results are only valid for Imω > γ, and real kx. The possibility
of moving the inverse Laplace transform down to the real axis is discussed in Section 5.

12



5 Deformation of integration paths

The inverse Laplace transform (Equation 4) is taken along the line Imω = γ, which means that the time
domain solution is a sum of functions exponentially growing with t. We must choose γ large enough that
the integrand is analytic for Imω > γ. For an analytic function integration paths can be deformed. If
the integrand is analytic in the entire upper half-plane Imω > 0 one can therefore set γ = 0. The inverse
Laplace transform then turns into an inverse Fourier transform, and the time domain electric field is a
sum of functions oscillating at real frequencies. For this to be the case, the argument of the square root
in Equation 24 must not be equal to 0 for any ω in the upper frequency plane, i.e. there is no ω with

Imω > 0 for which kx = ±εµω2

c2 for any kx along the real kx-axis. This is the case for all passive media.
In the paper (appendix A) it is shown that for some media it is possible to deform the integration

path down to Imω = 0, at the expense of deforming the integration path in the complex kx-plane. The
electric field will then be expressed as a sum of functions oscillating at real frequencies, but where the
inverse Fourier transform with respect to kx could contain complex kx, i.e. exponentially increasing
waves in the x-direction. The formalities of this path deformation method are presented in the following
section. In this section systems with a finite source width σ are considered. Provided the inverse Laplace
transform can be deformed down to the real ω-axis, the fields will not grow with time at a fixed point
in space, and the monochromatic limit can thus be approximated by waiting a sufficiently long time.
Possible instabilities associated with approximating the plane wave limit, by letting the source width σ
go to ∞, are discussed in Section 7.

5.1 Towards real frequencies

First the situation where
√
εµ is zero-free, and has no branch points or branch cuts in the upper half-

plane Imω > 0 is considered. The original integration paths in the complex ω and kx-planes are shown
in Figure 7a-b. The ω integration path can be interpreted as a subsequent sum of small integration
segments. We now consider the possibility of moving the part of the integration path at the frequency
marked with a circle in Figure 7a down to the real axis. The branch points, which will make kz non-
analytic, are given by kx = ±√εµω/c. For the frequencies in Dω the corresponding branch points in
the kx-plane are located in the shaded areas, Dkz , in 7b. It is argued in the paper that kz is analytic
along the real kx-axis for Imω > γ. The branch cuts must therefore avoid the real axis, and are taken
as vertical lines to infinity (as shown in Figure 7b).

The idea now is to avoid the kx values which gives branch points for ω in Dω, so the integration path
in the kx-domain is deformed as shown in Figure 7c. Fubini’s theorem allows the order of integration to
be switched. For each kx in the path in Figure 8b, kz will be analytic in the entire domain Dω. The ω
integration path can therefore be deformed down to the real axis in this domain, as shown in Figure 8a.

Performing the same procedure for a neighboring piece in the ω path gives the situation in Figure
9a-b, where the deformation of the kx-path in general will be different for the two ω-segments. This will
result in two domains next to each other where the ω-integration is taken along the real axis, but with
a vertical path up an down right between the domains.

To get rid of these vertical paths one must require that there exists a common integration path in
the kx-domain for ω along the ”up and down”-path. If this is the case the integral up will have the same
magnitude but opposite sign of the integral down, and they sum up to 0. A sufficient condition is that√
εµ is analytic and zero-free for Imω > 0: Consider the trajectories of kz’s branch points kx = ±√εµω/c,

as Imω is reduced from γ to 0. For two values of Reω approaching each other, these two trajectories will
become arbitrarily close to each other. We have also required that εµ is zero-free for Imω > 0. While
even order zeros give analytic square root, they induce another problem: At the zero the two branch
points in the kx-domain coincide, so the integration curve get ”stuck”.

The same method is repeated over again until the integration path goes along the real ω-axis. The
inverse Fourier-Laplace transform is then given by

E(x, z, t) =
1

(2π)2

∫ ∞

−∞

∫

κ(ω)

E(kx, z, ω)eikxx−iωtdkxdω (36)

where the ω integration is taken along the real ω-axis, and the integration path κ(ω) in the kx-plane in
general depends on ω and the properties of the medium.
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Dω

(a)

(c)

Im kx

Im kx

Dkx

(b)
Re kx

Re ω

Re kx

Im ω

γ

Figure 7: The dashed lines correspond to the integration paths in (4): (a) ω-domain; (b) kx-domain; and
(c) deformed path in the kx-domain for the ω indicated by a circle in (a). The domain Dkx corresponds
to the set of values kx = ±√εµω/c for ω ∈ Dω. The open circles in the kx-plane correspond to the open
circle in the ω-plane. The dotted vertical lines indicate branch cuts for kz(kx, ω) for the particular ω as
indicated by the open circle. It is shown in the paper (appendix A) that kz(kx, ω) is analytic wrt. kx,
for Imω = γ and real kx; thus the branch cuts must avoid the real kx-axis. In the figure we take them
to be vertical, starting at the circles.
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Figure 8: Deformation in the ω-domain. For each kx in the path in (b), the integration path in Dω can
be deformed (a).
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Im ω

(a)
Re ω

γ

Im kx

Re kx

(c)

Im kx

Re kx

(b)

Figure 9: Deformation of two neighboring pieces of the ω-integration curve (dashed black and solid
blue) (a) and the associated kx-integration curves (b). For ω-values along the vertical integration curves
between the neighboring domains in (a), one can use a common kx-integration curve (c).

5.2 Non-analytic
√
εµ

Now the more complicated situation where
√
εµ is not analytic or zero-free for Imω > 0 is considered.

For concreteness it is assumed that εµ has a single zero in the upper half-plane.
√
εµ will then have a

branch cut, which is taken vertical from the zero to −i∞ 3. Since
√
εµ is analytic everywhere except at

the branch cut the procedure described in the previous section can be used to deform the ω integration
path to go along the real axis, but with vertical detours around the zeros of εµ, as shown in Figure 10a. It
is not possible to get rid of these paths, as a common integration curve does not exist. For the ω’s to the
left of the zero, the trajectories of kx = ±√εµ when Imω is reduced from γ to 0 are shown in Figure 10c.
Figure 10d shows the trajectories for the ω’s to the right of the zero. Since the two kx-integration paths
are different, the the integration up and down in Figure 10a generally do not cancel. The inverse Laplace
transform will thus contain exponential terms with complex frequencies exp(−iωt) with Imω > 0. This
means that the field will diverge in time, even at a fixed point in space. Media where

√
εµ is non-analytic

and/or has zeros for Imω > 0 will thus have an absolute instability.

3The branch cut cannot be taken towards +i∞, as kz is required to be analytic for Imω > γ
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Im ω

(a)
Re ω

γ

Im kx

Re kx

Im kx

Re kx

Im ω

Re ω

γ

(c)

(d)

(b)

Figure 10: Deformed integration paths (dashed) when
√
εµ has branch cuts in the upper half-plane.

The branch points of
√
εµ are shown by open circles in (a); the cuts go vertically towards −i∞. As

Imω is reduced from γ to zero along the left and right arrows in (b), the corresponding trajectories of
kx = ±√εµω/c are shown by solid lines in (c) and (d), respectively.
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5.3 Simultaneous refraction

The deformation theory described above will now be used to predict the existence of media exhibiting
simultaneous refraction, i.e. which refracts light positively and negatively at the same time.

Consider a medium where the branch points move as in Figure 11b when Imω is reduced towards
0 at the observation frequency ω1. The branch cuts can be deformed as shown in Figure 11c, and the
kx integration must follow a zig-zag path to avoid the branch cuts. In the area where the branch cuts
are parallel to the real kx-axis they are taken to be infinitely close to the axis, which allows also the
integration path to be infinitely close to the axis. For a large σ the source will produce a plane-like
wave, with U(kx) small for kx 6= Kx, provided |Re kx − Kx| > |Im kx| along the integration path. As
described in Section 2.5 the square root has opposite sign on the two sides of a branch cut. For small Kx,
i.e. Kx among the kx in the zigzag-path, both signs for kz will survive the kx-integration4. This means
that a medium where the branch point trajectories are as in Figure 11b will refract both positively and
negatively at the same time. This is what is meant by simultaneous refraction.

Consider the situation described in Section 4.1, with a current source at z = 0. As will be shown
in Section 6.1, for the excitation in time (32b), only the carrier frequency ω1 will be present after a
sufficiently long experiment duration5. Inserting (28a) in (36), using that J(kx, ω) = U(kx)V (ω) (where
U(kx) and V (ω) are given by (33)), we get for the single frequency component ω1 where κ(ω1) is as in
Figure 11c:

2π
E(x, z, ω1)

V (ω1)
=

(∫ −kb

−∞
+

∫ ∞

kb

)
− µω

2kz
U(kx)eikzz+ikxxdkx (37)

+

∫ kb

−kb

− µω
2kz

U(kx)
(
2eikzz + e−ikzz

)
eikxxdkx +

∫

vertical detours

− µω
2kz

U(kx)eikzz+ikxxdkx.

Here kb is the real part of the branch point in the first quadrant. In the second integral kz is the value
along the upper integration path in the zigzag area. Note that the second term is positive, since the
integration is taken in the opposite direction, but kz in the fraction has also switched sign.

The equivalent of (37) in the Fresnel situation is

2π
E(x, z, ω1)

V (ω1)
=

(∫ −kb

−∞
+

∫ ∞

kb

)
U(kx)

2µ2k1ze
ik2zz

µ2k1z + µ1k2z
eikxxdkx (38)

+

∫ kb

−kb

U(kx)

(
4µ2k1ze

ik2zz

µ2k1z + µ1k2z
− 2µ2k1ze

−ik2zz

µ2k1z − µ1k2z

)
eikxxdkx

+

∫

vertical detours

U(kx)
2µ2k1ze

ik2zz

µ2k1z + µ1k2z
eikxxdkx.

where the transmission coefficients (30b) has been included. It is crucial to remember that the integrand
in (38) must be analytic as Imω is reduced from γ to 0. To maintain analyticity the denominators in the
transmission coefficients must not equal zero in the upper half-plane, which is an additional requirement
to choosing the correct sign for kz. This must be kept in mind when searching for possibly simultaneous
refracting media.

The second integrals in Equation (37) and (38) show that both signs for kz are present for the plane
wave components kx along the zigzag path in Figure 11c. If the branch points are sufficiently close to
the real axis the integrals around the vertical detours may become negligible. For a sufficiently large
source width (σ → ∞) only the plane wave component Kx is present. For large times, when only the
frequency component ω1 is present, the electric field in the current source situation is given by

E(x, z, t) = −µ(ω1)ω1

2Kz
(2eiKzz + e−iKzz)eiKxx−iω1t, (39)

4Since branch cuts separate the three horizontal parts of the zigzag-pattern, and a square root has opposite sign on each
side of a branch cut.

5Provided the inverse Laplace transform path can be deformed down to the real ω-axis, so there are no absolute
instabilities present, meaning the fields do not grow in time at a fixed point in space.
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Im ω

(a)
Re ω

γ

Im kx

Re kx

Im kx

Re kx

(b)

(c)

ω1

Figure 11: As Imω is reduced from γ to zero (a), kz’s branch points, kx = ±√εµω/c, move along the
trajectories (b). By deforming branch cuts and integration paths, we get situation (c). In (b) the branch
cuts are taken to be along the trajectories, while in (c) they are deformed into the solid lines.

where Kz =
√
ε(ω1)µ(ω1)ω2

1/c
2 −K2

x. The expression for the Fresnel case is similar, but the fraction
−µω/2Kz is replaced with the Fresnel transmission coefficient, which is different for the two terms due
to the sign change for K2z.

If we instead took the limit σ → ∞ before deforming the inverse Laplace transform, only the plane
wave component Kx would be present. For the special case Kx = 0 we can still deform the inverse
Laplace transform down to the real ω-axis, provided

√
ε(ω)µ(ω) is analytic and zero-free for Imω > 0.

For large times, when only the frequency component ω1 is present the field is given by

E(x, z, t) = −µ(ω1)ω1

2Kz
eiKzz−iω1t, (40)

where Kz =
√
ε(ω1)µ(ω1)ω1/c. Only the positive sign for Kz is present, so if the plane wave limit

σ → ∞ (for Kx = 0) is taken before the monochromatic limit, simultaneous refraction does not occur.
By comparing (40) to (39) in the special case Kx = 0 we observe that the resulting electric field depends
on the order we took the monochromatic and plane wave limit. A discussion on the fact that these two
limits do not commute in general is given in Section 7. From this it is understood that simultaneous
refraction is a two-dimensional effect. In the case of a finite σ there will always be oblique waves with
kx 6= 0 excited, no matter how large σ is. After a sufficiently long time t these oblique waves will somehow
establish waves along the z-direction with both signs for Kz. However, if σ → ∞ is taken first, there
will be no oblique waves excited. The simultaneous refracting waves can thus not be established. This
latter situation is one-dimensional, as the excitation u(x) is constant for all x, and Kx = 0.

A medium where ε(ω) = µ(ω) = 1 + χ(ω), and χ(ω) is a strong inverted Lorentz can be used to
obtain simultaneous refraction. We will here use the parameters F = −0.5, ω0 = 1 and Γ = 0.05. The
permittivity function ε(ω) (= µ(ω)) for this medium is shown in Figure 12a. At the observation frequency
ω1 = 0.853 the branch point trajectories as Imω is reduced from γ = 5 to 0 are shown in Figure 12b.
Note that the gain at resonance is very large for this medium. As will be described in Sections 6 11
media with such a large gain are not suited for FDTD simulations or physical realization. Note that the
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Figure 12: (a) ε(ω) = µ(ω) = 1 + χ(ω), where χ(ω) is given by the Lorentz model (11) with parameters
F = −0.5, ω0 = 1,Γ = 0.05. (b) The branch point trajectories as Imω is reduced from γ = 5 to 0, at the
observation frequency ω1 = 0.853. In all simulations and plots in this thesis the units are normalized, as
will be explained in Section 10.

units in Figure 12 are normalized. This will be the case for all simulations and plots in this thesis, as
will be explained in Section 10.
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6 Transient behavior in gain media

The analysis of wave propagation in linear, passive media is usually done by considering a single real
frequency (the monochromatic limit) and also often a single plane wave component (plane wave limit),
separately. The monochromatic limit is approached by turning the source on at t = 0, and waiting a
sufficiently long time, until all the transients die out (t→∞). The plane wave limit can be approximated
by letting the width of the source being infinitely large (σ →∞). Physically these limits can thus never
be reached, and for finite duration and source widths all frequencies and all plane wave components will
be excited to some extent.

For passive media all transients decay as they propagate into the medium, and the necessary time for
the transients to die out is usually relatively short. For gain media, however, the transients may grow
as they propagate. We will here consider the situation where the maximum gain for a medium is found
at another (real) frequency ωg, than the observation frequency ω1. If the gainy frequencies propagate
in the +z-direction, this frequency will grow faster than the observation frequency as it propagates, and
will thus dominate for large z. If we want to investigate a medium’s optical response at the observation
frequency ω1 we should be certain the response we observe actually comes from this specific frequency.
It will be shown in Section 6.1, that provided the inverse Laplace transform can be moved down to the
real axis, all frequencies ω 6= ω1 are expected to die out for large times.

It is simple to take the limit t→∞ in theory. However, as will become apparent, the required duration
of an experiment before the transients have died out may be very large for media with large gain. When
running time domain simulations it may be of interest to know when to expect the monochromatic
limit to be reached at a given z. If the predicted duration is very long, one may want to adjust some
parameters, to avoid having to simulate over such long durations. As the transients may grow with z,
the larger z is, the longer duration is required for the transients to die out. At z = 0 the transients
haven’t traveled any distance, and have therefore not picked up any gain. The monochromatic limit is
therefore reached after a short duration τ . As we increase z the required τ will increase, and how τ will
increase with z is given by the difference in gain at ωg and ω1.

In section 6.2 we present a criterion for determining when the monochromatic limit is reached at a
given z. The presented criterion is found to predict unnecessary long durations τ , and it is argued why
this is the case. Another method, based on calculating the time domain solution through the inverse
Laplace transform is presented in Section 6.3. If the time domain field at a given z is known, we can use
time-frequency analysis to determine after which duration τ the observation frequency becomes dominant
at this z.

For the excitation in time given by (32b) a lot of high frequencies are required to describe the abrupt
onset at t = 0. If the source instead is smoothly turned on, the excitation of other frequencies than ω1

will be reduced, and the monochromatic limit can thus be reached faster. A discussion on approaching
the monochromatic limit in this way is presented in Section 6.5.

6.1 Understanding transient behavior using the residue theorem

The behavior in the monochromatic limit may be found by rewriting (36) into

E(x, z, t) =
1

2π

∫ ∞

−∞

E(x, z, ω)

V (ω)
V (ω) exp (−iωt)dω, (41)

where E(x,z,ω)
V (ω) is the transfer function from the excitation V (ω) to the resulting field E(x, z, ω). Note

that V (ω) is a factor in E(x, z, ω), so the transfer function is independent of V (ω). With V (ω) given by
(33b), the inverse transform (41) may be calculated using the residue theorem, by closing the contour
by a large semi-circle in the lower half plane. This gives

E(x, z, t) = [
E(x, z, ω)

V (ω)
exp (−iωt)]ω=ω1

+ transients(t). (42)

The term transients(t) comes from the integration around all singularities and cuts in the lower half
plane. Due to the negative imaginary part of the frequencies, the transients will decrease exponentially
with time. For media where the inverse Laplace transform can be deformed down to the real ω-axis, the
monochromatic limit thus exists for any finite (x, z):
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Eω1
(x, z, t) =

E(x, z, ω1)

V (ω1)
exp (−iω1t). (43)

In theory it is very simple to take the monochromatic limit t → ∞. However, in a time domain
simulation (or an actual physical experiment) one would have to wait throughout the transient phase
before the monochromatic response at the observation frequency may be observed. As mentioned above,
the required duration τ before the monochromatic limit is reached may be very long for certain gain
media. This is explained from (41) by noting that the transfer function may be very large for some of
the transient frequencies, i.e. the frequencies around ωg. In the current source situation the transfer
function is found from (29) to be

E(x, z, ω)

V (ω)
=

∫

κ(ω)

− µω
2kz

U(kx)eikxx+ikzzdkx. (44)

Since kx ∈ κ(ω) and kz(kx, ω) may be complex numbers, the exponential factor eikxx+ikzz may be large
for large (x, z). By rewriting U(kx) (Equation (33a)) in terms of the real and imaginary part of kx we
get

U(kx) = σ
√

2π exp [
(k2

i − (kr −Kx)2)σ2

2
] exp (−i(kr −Kx)kiσ

2), (45)

where kr and ki are the real and imaginary parts of kx, respectively. If |ki| > |kr − Kx| for some
kx ∈ κ(ω), U(kx) will grow with σ, and may thus become very large. The kx with large imaginary part
will correspond to exponentially growing side waves. For media with strong gain, a large source width
may thus strongly excite these exponentially growing side waves. The strongest excited kx will be those
close to the branch points kz = 0, and the kz in the denominator will increase the value of the integrand
in (44) even more. Since the gain is strongest close to ωg, these are the frequencies where the transfer
function may be largest. This shows that the transfer function may be large for certain ω, even in the
lower half plane. The transients (given by integrals around singularities and cuts) may thus be dominant
for long durations τ , even though they decrease exponentially with time. It is also worth noting that if
|Imω| for the singularities is very small, these transients will decay very slowly with time.

To determine for how long time the frequencies close to ωg will dominate, one would have to know all

the singularities and cuts for E(x,z,ω)
V (ω) in the lower half plane of complex frequencies. Such singularities

and cuts are present if e.g. κ(ω) is discontinuous with ω. It is hard to evaluate the integrals around
those singularities in the general situation, and different methods for finding the necessary duration τ it
takes to reach the monochromatic limit is therefore suggested in the following sections.

6.2 An excitation of finite duration

In the previous section the time dependency of the excitation was assumed to be given by (32b), i.e. a
single frequency oscillation turned on at t = 0, which is never turned off. We will here instead consider
the situation where the source is turned off after a duration τ , i.e.

v(t) = [H(t)−H(t− τ)] exp (−iω1t) (46a)

V (ω) =
i

ω − ω1
[1− ei(ω−ω1)τ ] = τsinc[

(ω − ω1)τ

2
]ei

(ω−ω1)τ
2 . (46b)

For t < τ the physical response will be exactly the same in these two situations, as the system does not
know that the source will be turned off some time in the future (causality). If we let τ > tmax, where
tmax is the largest observation time, there is thus no difference between (32b) and (46a). But, it turns
out that Equation (46b) gives us an advantage mathematically: Since sinc(x) is analytic at x = 0, there
is no singularity at ω = ω1, and the inverse Laplace transform may thus be calculated as an integral
along the real ω-axis, without making use of the residue theorem. We have thus overcome one challenge
from the previous section, regarding the integration around singularities and cuts in the lower half plane.

Equation (46b) also tells us how V (ω) changes with the duration of our experiment τ . We note that
V (ω1) = τ , so the observation frequency will be more and more excited as τ is increased (the source is
kept turned on longer). This makes sense, as the source produces a signal with carrier frequency ω1. For

all other frequencies the magnitude |V (ω)| will be independent of τ . As τ is increased, sinc[ (ω−ω1)τ
2 ] (and
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ei
(ω−ω1)τ

2 ) will oscillate faster with ω. From this it becomes apparent that for τ → ∞ the source will
be drowned down with a monochromatic signal at the observation frequency; all the other frequencies
will cancel each other out in the inverse Laplace transform integral (29) due to the fast oscillations in
V (ω). This means eventually only the observation frequency is present, i.e. the monochromatic limit is
reached. For a finite point (x, z) the monochromatic limit is thus reached by letting the source stay on
for a sufficiently long time τ →∞, the same result as obtained in the previous section.

Parseval’s theorem relates the energy of a signal x(t) evaluated at all times t to the energy of the
signal in terms of its Fourier transform X(ω),

∫ ∞

−∞
|x(t)|2dt =

1

2π

∫ ∞

−∞
|X(ω)|2dω. (47)

A criterion to determine when the monochromatic limit is reached is now suggested: The monochromatic
limit is reached when a significant fraction f of the energy of the signal comes from a small bandwidth
around the observation frequency ω1. We can thus find how large τ must be to make

∫
∆
|E(x, z, ω)|2dω∫∞

−∞ |E(x, z, ω)|2dω
> f, (48)

where f is some fraction between 0 and 1. ∆ is a bandwidth around ω1, which should be chosen such
that ε(ω)µ(ω) is approximately the same as ε(ω1)µ(ω1) for all ω ∈ ∆. We note that the monochromatic
limit is not fully reached before f → 1 for an infinitely small bandwidth ∆, which will only be the case
for τ →∞. We will in the following use a weak gain medium to see how ∆ and f should be chosen, for
(48) to be a suitable criterion for the monochromatic limit.

As an example, we now consider a medium where the permittivity and permeability are described by
inverted Lorentzian functions,

ε(ω) = µ(ω) = 1− Fω2
0

ω2
0 − ω2 − iΓω , (49)

where F > 0 is the strength of the active resonance, ω0 is the resonance frequency and Γ is the bandwidth
of the resonance. In this example the one-dimensional case (Kx = 0, σ → ∞) is considered, and the
parameters F = 0.01, ω0 = 1 and Γ = 0.1 are used. This gives a maximum gain at the resonance
frequency Imn(ω0) = −0.1. The real and imaginary part of ε(ω) for these parameters are shown in
Figure 13. The requirement kz → +ω/c as ω →∞ gives that kz(ω) = +ε(ω)ω/c. The imaginary part of
kz will thus be negative at all positive frequencies, Im kz(ω) < 0 for all ω > 0.

Figures 14 show the resulting field from simulations of the medium described by (49) after two
different durations. The simulation results were achieved using the implemented FDTD program, which
is described in Section 9. The observation frequency is taken to be ω1 = 2, where kz(ω1) ≈ ω1/c. In the
monochromatic limit the medium should thus respond approximately as if it was vacuum, i.e. the field
should not grow significantly with z. Since the source is abruptly turned on at t = 0 the signal will in
the beginning contain all frequencies, not only ω1. The frequencies around ω0 will be amplified, so for
large z these frequencies should dominate. As can be seen from Figures 14 this is also what happens in
the simulations.

At resonance we have Re kz(ω0) = Re ε(ω0)ω0/c = ω0/c = 1 (normalized units, so c = 1). For the
observation frequency we also have Re ε(ω1) ≈ 1, so we get Re kz(ω1) = ω1/c = 2. The wavelength
corresponding to a given frequency for a wave propagating inside a medium is given by 2π/|Re kz|. The
wavelength should therefore be λ = 2π at resonance, and λ ≈ π at the observation frequency.

Figure 14a shows the fields after the duration τ = 314. For z < 50, the wavelength is in fact 3.14,
and the wave propagates with approximately no loss/gain. For z > 50 the field grows rapidly with z,
and the wavelength is ≈ 2π. It is reasonable to interpret this as that after the duration τ = 314 the
monochromatic limit Eω1

(z, t) is reached for z < 50, while the transients corresponding to ω ≈ ω0 still
dominate for z > 50. For τ = 314 the ratio (48) is in fact approximately 1 for z � 50 and 0 for z � 50.
The value for z where the ratio is 0.5 is z = 51. The method thus seems to produce reasonable results,
and the value f = 0.5 marks the transition in z for where the monochromatic limit is reached and not.

In these calculations the bandwidth ∆ = [1.95, 2.05] was chosen, i.e. the frequencies within a distance
±0.05 from the observation frequency ω1 = 2. The size of this bandwidth does however not play an
important role, as long as it does not include frequencies with a significant amount of gain, i.e. ω close to
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Figure 13: The real and imaginary part of ε(ω) given by (49), with the parameters F = 0.01, ω0 = 1
and Γ = 0.1. Note that the scale on the y-axis for the real and imaginary part is different.

Figure 14: The resulting electric field from time domain simulations of a medium where ε(ω) = µ(ω) is
given by Figure 13 after two different durations (a)t = 314 and (b)t = 628. The observation frequency
ω1 = 2 was used. In (a) it is seen that the transients corresponding to frequencies close to the resonance
frequency ω0 grow rapidly with z, and dominate for z > 50. In (b) the transients have been convected
a little further away, and now dominate for z > 80. The monochromatic limit was thus reached for z
between 50 and 80 after a duration between t = 314 and 628.
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ω1 = 1. This is because there are two possible frequency bands which may make significant contributions
to the energy of the signal: A narrow band ∆1 around the observation frequency ω1 (due to the strong
excitation of these frequencies), and a narrow band ∆0 around the resonance frequency ω0 (due to the
large gain at these frequencies). The major energy contribution will for small and large z come from the
bandwidths ∆1 and ∆0, respectively. As long as ∆1 is included in ∆, while ∆0 is not, the size of the
bandwidth ∆ is therefore not very important.

At τ = 628 (Figure 14b) this ”boundary” between where the monochromatic limit is reached and
not has moved to z ≈ 80. This shows that the transients in fact do die out with time, as predicted. The
method based on (48) does however give that the value for z where the fraction (48) is 0.5 is z = 55,
and thus suggests that the transients die out much more slowly than what they actually do in the time
domain simulations. An explanation for why this is the case is now presented.

The suggested criterion for predicting whether the monochromatic limit is reached or not is based on
Parseval’s identity (47), which claims that the energy of the signal from all times is equal to the energy
from all frequencies. In the example (Figures 14) z between 50 and 80 will for the times t < 314 be
dominated by the resonance frequency, while for t > 628 the observation frequency will be dominant.
The fields were however a lot larger in magnitude for the early times, due to the large gain at resonance.
The integral of |E(z, t)|2 will thus be weighted significantly more at earlier times (more energy due to
large fields). We will therefore need the observation frequency to be dominant over a very long time
before the total energy-contribution from this frequency can match the energy from the large fields at
early times.

The criterion (48) does therefore not work exactly as intended. The criterion can be used to find
durations τ where the monochromatic limit is reached, but the monochromatic limit will be reached
locally in time way earlier than this predicted τ . The process which lead to this result did however make
us realize this important fact: it is really whether the monochromatic limit is reached locally in time we
are interested in. This suggest that the time domain solution should be found, which is the foundation
for the method presented in the next section.

6.3 The time domain solution for a given z

As described in the previous section, comparing the energy-contribution from different frequencies at all
times 0 < t < τ is not a good way of predicting when the monochromatic limit is reached at a point
z. What we are interested in is really whether at a given point z, after a duration τ , if the observation
frequency dominant during a following short period T or not. The time domain solution at a given point
(x, z) can be calculated directly, through the inverse Laplace transform (29). This will be done in the 1d
case in this section. Complications with performing the same analysis in 2d are presented in 6.4. When
the time domain solution is found, we can use time-frequency analysis to determine after which duration
τ the monochromatic limit was reached in the medium considered.

If kz(ω) is analytic in the upper half plane, the time domain field for t < τ is given by the inverse
Fourier transform with respect to ω,

E(z, t) =
1

2π

∫ ∞

−∞
E(z, ω) exp (−iωt)dω =

1

2π

∫ ∞

−∞

1

2
τsinc[

(ω − ω1)τ

2
] exp (i

(ω − ω1)τ

2
) exp (ikz(ω)z − iωt)dω.

(50)
The excitation (46a) is chosen so that the inverse transform then can be calculated along the real ω-axis.

We assume ε(ω) = µ(ω) = 1 + χ(ω) where χ(ω) is given by the Lorentz model (11). This gives

kz(ω) =
√
ε(ω)µ(ω)

ω

c
= [1 + χ(ω)]

ω

c
= n(ω)

ω

c
, (51)

where the positive sign of the square root is chosen to get kz(ω) → ω/c as ω → ∞. For the medium to
be active we must have a negative Lorentz strength, F < 0. Provided |F | < 1, kz is then analytic for
Imω > 0.

The susceptibility χ(ω) has two poles in the lower half plane, so the integrand in (50) has two essential
singularities there. We can therefore not calculate the integral using the residue theorem. It is neither
straightforward to evaluate the integral analytically along the real ω-axis. To calculate the time domain
response of a Lorentzian medium was the topic for Brillouin and Sommerfeld’s classical analysis [12].
They were only able to solve this problem within certain regimes, corresponding to first precursors etc.
We should therefore rather calculate the inverse transform numerically.
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Figure 15: The time domain solution of the electric field in two different media, at z = 10. The field
was calculated through the inverse Fourier transform (50), using MATLAB’s built in FFT-function. For
both plots ε(ω) = µ(ω) are given by inverted Lorentzian functions, with the parameters (a) F = 0.1,
ω0 = 1, Γ = 0.1 and (b) F = 0.01, ω0 = 1, Γ = 0.01. The observation frequency ω1 = 2 was used in
both calculations. In both media the field first grow large, due to large gain at some of the transient
frequencies. Eventually these frequencies are convected away, and the monochromatic limit is reached.
The electric field has in both figures been normalized to the maximum value of the field throughout the
experiment duration. Note that the time axis has a different scale in the two figures.

The inverse Fourier transform (50) can be calculated using MATLAB’s built in FFT-function. Figures
15 show the obtained time domain field at z = 10 for two symmetric Lorentz media with parameters
F = −0.1, ω0 = 1,Γ = 0.1 and F = −0.01, ω0 = 1, Γ = 0.01. Both these media have a maximum gain
Im ε(ω) = −1 at resonance, but the bandwidth with gain is larger for the first medium. The observation
frequency ω1 = 2 was used in both simulations.

It is not possible to see from the figures, but E(t < 10) = 0, as it takes time time t = z/c for the
field to travel from the source to our observation point z = 10. The amplitude of the field then grows for
a while, until it reaches its maximum value, before it decays, and eventually stabilizes at a given value.
The large field for early times is due to the large gain at some of the transient frequencies. Eventually
these frequencies are convected away, and the monochromatic limit is reached. It is seen from the figures
that this happens after the durations t ≈ 600 and t ≈ 6000 for the two media, respectively. For two
media with the same maximum gain, a reduction of the bandwidth with gain with the factor 10 thus
increase the time before the transients die out with the same factor 10.

That a reduction of Γ leads to an increased duration of the transient period can be understood by
again interpreting the transients as integrals around the singularities and cuts in the lower half-plane of
complex frequencies. The transients will then decay exponentially in time, with the exponential decay
rate given by Imω for these singularities and cuts. The imaginary part of the zeros and poles of (49) is
−Γ/2, so a reduction of Γ should indeed lead to a linear increased duration of the transient period.

The electric field has in both figures been normalized to the maximum value of the field throughout
the experiment duration. For both media the gain at the observation frequency is negligible, so the
amplitude at z = 10 will be approximately the same as at the source, which is 1. From this it is seen in
the figures that the maximum field is larger in the medium with the largest bandwidth with gain. This
also makes sense, as a larger fraction of the transient frequencies will be amplified in this medium.

We conclude this section by noting that for media with a large gain at other frequencies than the
observation frequency, it may take a very long time before the transients for which the gain is large die
out. Calculating the time domain response at a given point z through the inverse Fourier transform, can
give us an indication of how long time it takes before the monochromatic limit is reached in such media.
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6.4 Choosing τ and σ in the simulations

It was argued in Section 6.1 that if |Im kx| > |Re kx − Kx| along the integration path, the transfer
function (44) may become large for large σ. This is due to a strong excitation of growing side waves in
the ±x-directions. To be able to approximate the plane wave limit by letting the source width being
very large we should thus have |Im kx| < |Re kx−Kx| for all kx ∈ κ(ω1) at our observation frequency. It
may however be that |Im kx| > |Re kx −Kx| for kx ∈ κ(ω) at other frequencies than ω1. A large source
width will thus make the transfer function at these frequencies very large. In time domain simulations, or
actual physical experiments, should therefore not chose σ too large, as this will lead to a long necessary
simulation time τ before the observation frequency becomes dominant. For Kx to be the dominant plane
wave component at our observation frequency ω1, σ should however not be chosen too small either.

For a given σ, the inverse Laplace-Fourier transform (41) may be calculated, to determine how long
duration τ is required for the monochromatic limit to be reached. For each ω, the integration path κ(ω)
must then be determined, as it is required for calculating the transfer function (44). Further, for each
pair (kx, ω) the longitudinal wave number kz must be determined such that it is continuous with kx and
ω. Due to the complex kx ∈ κ(ω) the inverse Fourier transform (44) will be a sum of possibly very large
values, and a very small discretization ∆kx would thus be necessary. Performing the inverse Laplace-
Fourier transform (41) numerically will thus require an extensive amount of computational power, and
this will therefore not be done here.

To determine when the monochromatic limit will be reached in a 2d simulation we rather suggest to
calculate the inverse Laplace transform in 1d (as was done in the Section 6.3), and keep in mind that in
2d the necessary duration may be even longer, due to possible strongly excited growing side waves. As
mentioned above, the excitation of growing side waves can be limited by choosing a relatively small σ.
We suggest that σ is chosen in the order of magnitude of 1/|Re kx,bp|, where kx,bp is the branch point

at the observation frequency, kx,bp =
√
ε(ω1)µ(ω1)ω1/c. Reducing the excitation of growing side waves

through choosing a small σ does however come at a cost: At the observation frequency, a bundle of plane
wave components kx around Kx will then be excited to some extent, so the plane-wave characteristic of
the wave is somehow destroyed.

6.5 Smoothening the onset of the source

The excitation of frequencies away from the observation frequency ω1 can be reduced by turning on the
source smoothly. The excitation (32b) is sharply turned on at t = 0, and a wide range of frequencies
other than ω1 are required to describe this abrupt change. The smoothest possible onset would be a
gaussian wrapping of the monochromatic signal, i.e.

vg(t) = H(t) exp (−(t− td)2/(2w2
t ))e−iω1t, (52)

where td is the duration before the gaussian reaches its maximum value, and wt is the width of the
gaussian pulse. By letting td > wt and wt →∞ the excitation (52) would only contain the observation
frequency ω1. In a simulation finite values for td and wt must be used, but even for quite small values
the excitation of unwanted frequencies is drastically reduced.

For t > td the gaussian excitation is smoothly turned off again. This becomes a problem for finite
durations and widths, as the source may be turned off before the monochromatic response of the medium
becomes visible. If instead the integral of a gaussian is used, the source is smoothly turned on, but then
kept at its maximum magnitude for t → ∞. The integral of a gaussian is the error function, so the
excitation

ve(t) =
1

2
(H(t)−H(t− τ))(1 + erf[

(t− td)√
2wt

])e−iω1t (53)

gives a smooth onset, and is kept on when it reach its maximum amplitude. The source is turned off
after the time τ , to include the duration of the experiment in the Laplace transform (as was done in
(46a)). The Laplace transform of (53) is given by
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Figure 16: Comparing simulation results for the two time excitations (32b) (Figure a) and (53) (Figure
b). The investigated medium has ε(ω) = µ(ω) both given as an inverted Lorentzian, with the parameters
F = Γ = 0.1, ω0 = 1 and the observation frequency ω1 = 5. The Figures are captured after the same
duration τ = 62.8.

Ve(ω) =
1

2

i

ω − ω1
×{ei(ω−ω1)td− 1

2 (ω−ω1)2w2
t erf[

t− td√
2wt

− i wt√
2

(ω − ω1)] (54)

− (erf[
t− td√

2wt

] + 1)ei(ω−ω1)t}t=τt=0 .

Simulation results from an active resonance medium with F = Γ = 0.1, ω0 = 1 and ω1 = 5 are shown
in Figure 16, where the excitations (32b) and (53) are compared. It is seen that the abrupt turned
on oscillation contains a lot more of the resonance frequency, and is thus dominated by the large gain
(Figure 16a). When the source is turned on smoothly (Figure 16b), only the observation frequency ω1

is present after the same duration. When running the simulation a longer time, the resonance frequency
becomes visible even for this excitation. This shows that turning the source on smoothly may decrease the
excitation of other frequencies. To completely remove unwanted frequency content a very long onset-time
is required, which will increase the necessary simulation time.
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7 Physical instabilities

Wave propagation in semi-infinite gain media may involve instabilities. The waves are allowed to travel
an infinitely large distance, picking up gain as they propagate, and may thus result in infinite fields.
Diverging fields due to an infinite travelled distance z →∞ (and/or x→ ±∞), and which does not grow
with time for a fixed point in space are called convective instabilities - the diverging fields are convected
away. In certain cases the fields may also grow with time, even at a fixed point in space. Such instabilities
are referred to as absolute instabilities.

In this section it is argued that due to instabilities associated with certain frequency-wavenumber
components E(kx, z, ω) it may not be possible to interpret the electromagnetic response of gain media
in the single plane wave and monochromatic limit, as it usually is done for passive media. By examining
the monochromatic and plane wave limits (Eω1

(x, z, t) and limσ→∞E(x, z, t)) we find that the order the
limits are taken does not in general commute. Whether the fields goes to ∞ or not may also depend on
which excitation limσ→∞ u(x) is used to approach the plane wave limit (see attached paper, appendix
A for details). The plane wave limit σ →∞ can in some cases cause instabilities to occur, as side waves
corresponding to kz = 0 will propagate the infinite distance from σ = ±∞ picking up gain, and thus
leading to diverging fields. In other cases the limit σ → ∞ can prevent instabilities from occurring, by
limiting the excitation of the kx’s associated with the instabilities.

Section 7.3 and 7.4 describes media with ε(ω)µ(ω) with single and double zeros for Imω > 0, respec-
tively. FDTD simulations of such media are presented in Section 12.5.

7.1 Analytic and zero-free
√
εµ, plane wave limit (σ →∞)

We first consider the situation where
√
ε(ω)µ(ω) is analytic in the upper half plane Imω > 0. If the

plane wave limit (Kx 6= 0, σ → ∞) is taken first, in certain cases the monochromatic limit cannot be
reached. In the plane wave limit only the plane wave component Kx is present. The electric field is in
the current source situation then given by the inverse Laplace transform

E(x, z, t) =
1

2π

∫ iγ+∞

iγ−∞
− µω

2kz
eiKxx+ikzz−iωt)dω. (55)

If kz(ω,Kx) =
√
ε(ω)µ(ω)−K2

x has branch points for Imω > 0 the inverse Laplace transform cannot
be deformed all the way down to the real ω-axis, but must make detours around the branch cuts, as was
shown in Figure 10a. The time domain signal will thus contain frequency components with Imω > 0,
meaning the fields will increase exponentially with time. This will be the case even for conventional
weak gain media. Physically it is understood as follows. Since the source is turned on at t = 0, all ω
will be excited to some extent. For some ω in the upper half plane we will have kz = 0. As the plane
wave limit is taken first, the side waves corresponding to kz = 0 are allowed to travel an infinite distance
(from x = ±∞), picking up gain as they propagate. Since the plane wave limit σ →∞ was taken first,
no matter how large we chose t there will always arrive side waves which has propagated longer, and
thus grown even larger than the side waves which arrived at any previous times. The fields will therefore
grow with time, even for a fixed point (x, z), so we have an absolute instability. Due to this instability
the monochromatic limit Eω1

(x, z, t) can never be reached.

For the special case Kx = 0 we can move the ω-integration path all the way down to the real axis,
since kz =

√
ε(ω)µ(ω) is analytic for Imω > 0. The fields can thus be interpreted at real frequencies,

and will not grow with time. This is because there will be no side waves excited when σ → ∞. If we
wait a sufficiently long time we will reach the monochromatic limit, and the fields are given by a single
plane wave Kx = 0 and frequency ω1. As described in Section 6 the time before the monochromatic
limit is reached may however be very large if the gain of the medium is large at other frequencies than
the observation frequency ω1.

7.2 Analytic and zero-free
√
εµ, monochromatic limit (t→∞)

Provided
√
ε(ω)µ(ω) is analytic and zero-free for Imω > 0 we can deform the integration path down to

the real ω-axis. As was shown in Section 5 the inverse Fourier transform then might have to be taken
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along a deformed integration path κ(ω). The monochromatic limit can then be reached by letting t→∞.
The electric field in the current source situation can in this limit be written as

E(x, z, t) =
e−iω1t

2π

∫

κ(ω1)

−ω1µ(ω1)

2kz
U(kx)eikxx+ikzzdkx. (56)

For any finite σ, all kx ∈ κ(ω1) will be excited to some extent. If κ(ω1) contains complex kx, these
components will grow in the ±x-directions. For a conventional weak gain medium κ(ω) will be as shown
in Figure 33. The part of the integration path where kx must be complex is close to the branch points
kz = 0.

The kx with largest |Im kx| will be excited by far the most if σ gets really large. Note that these
kx’s will correspond to kz ≈ 0. This means that the larger σ is, the more will the fields be dominated
by exponentially growing side waves. If we try to take the plane wave limit for Kx close to the branch
points we will thus get infinitely large fields. This is consistent with what was found in the previous
section: If we wait an infinitely long time the growing side waves will have travelled an infinite distance,
picking up gain, and make the fields grow infinitely large.

However, in this case, where the monochromatic limit was taken first, also the special case Kx = 0
will lead to infinitely large fields, provided |Im kx| > |Re kx| at the branch points. For any finite σ all
other kx than Kx = 0 will be excited to some extent, also the side waves corresponding to kz = 0. The
excitation of other plane wave components will be related to the fact that the source has a finite width.
It will take the time t = σ/c for the side wave to propagate from x = ±σ to x = 0. At x = 0 the
fields will therefore be the same for a finite σ as for σ → ∞ for times less than σ/c. In the previous
section we let σ → ∞ first, so no matter how large we choose t the side wave will never reach x = 0.
We now took the limit t → ∞ first, so no matter how large we chose σ the side wave will always have
propagated from the end of the source, even when we let σ → ∞. Physically σ will always be finite,
but we can choose σ very large, in attempt to approximate the plane wave limit. For any finite σ, the
solution found when ”taking the plane wave limit first” will thus describe the fields for t � σ/c, while
”taking the monochromatic limit first” will describe the solution for t� σ/c.

For Kx where |Re kx −Kx| > |Im kx| for all kx ∈ κ(ω1) the plane wave limit σ → ∞ can be taken
without getting infinitely large fields, even though the side waves still travel an infinite distance, picking
up gain. Since the gaussian is such a smooth function, U(kx) decrease even more rapidly with σ than
what the side waves grow, so all complex kx are effectively removed from the integration path κ(ω).
While taking the plane wave limit σ → ∞ before the monochromatic limit t → ∞ may lead to infinite
fields for any excitation u(x), taking the limits in the opposite order may in fact lead to finite fields
provided the excitation is smooth enough (i.e. a gaussian). We have still waited for the side waves to
propagate from the end of the source, but they were so weakly excited that they never appeared.

The gaussian excitation (32a) is somewhat unphysical, as it requires an infinite wide source even for
finite σ. For any excitation u(x) of finite support we will get U(kx)→∞ as σ →∞ if there are any kx
with |Im kx| > 0 along κ(ω), independent of Kx. For example the excitation

ut(x) = tri[x/σ]eiKxx, (57)

where tri[x/σ] is the triangular function, has Fourier transform

Ut(kx) = σsinc2[σ(kx −Kx)/2], (58)

which will increase with σ if |Im kx| > 0. Even though the gaussian excitation is unphysical, the fact
that it makes it possible to take the plane wave limit is very interesting. It tells us that the growing side
waves in a gain medium may be limited by making the source sufficiently smooth, and will disappear in
the limit of a perfectly smooth source (gaussian).

If the maximum |Im kx| ∈ κ(ω1) is very small, we can choose a large σ, and the side waves will still
not be very dominant. The fields are then approximately given by the single plane wave and frequency
components Kx and ω1. As σ is increased the fields will be more and more disturbed by the growing side
waves. Note that even though the side waves are not very dominant for the observation frequency ω1 they
could still be strongly excited for other frequencies ω, meaning the gain is larger at these frequencies. It
may then take a very long time before the monochromatic limit is reached.
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7.3 Non-analytic
√
εµ

In Section 5.2 we considered a medium with non-analytic
√
εµ, and looked at the possibility of moving

the inverse Laplace transform integration path down to the real ω-axis by deforming the kx-integration
paths. It was shown that this is not possible because κ(ω) will not be continuous to the left and right of
the branch point frequencies. Here we will instead take the plane wave limit σ → ∞ first. It turns out
that this apparently unstable medium will for large Kx become stable. It is crucial to remember that it
is kz, and not

√
ε(ω)µ(ω), which is required to be analytic for Imω > 0 (Equation (26)) for the field to

be interpreted at real frequencies.
For concreteness, we will also here consider the case where the non-analytic points in the upper half

plane are two single zeros. This is e.g. achieved by a nonmagnetic medium (µ = 1) where ε(ω) is given
by

ε(ω) = 1 + χp(ω) + χa(ω). (59)

Here χp,a(ω) are both given by the Lorentz model (11), where χp is a passive resonance (F > 0) and
χa is an active resonance (F < 0). This ε(ω) will have zeros in the upper half plane provided the active
resonance is strong enough.

We will now instead consider the case where the plane wave limit (Kx = 0, σ → ∞) is taken first.
Since kz =

√
ε(ω)µ(ω) is non-analytic for Imω > 0 we cannot deform the integration path down to the

real ω-axis. The time domain solution will then contain frequencies growing with time. This is because
the inverse Laplace transform contains frequencies in the upper half plane for which kz = 0 even in the
case Kx = 0. This corresponds to frequencies which do not propagate in any direction. Since these
frequencies grow with time, but do not propagate, the field will grow with time even at a fixed point in
space, so we have an absolute instability.

However, if we increase Kx the zeros of kz may move down to the lower half plane Imω < 0. If
this is the case we can safely move the inverse Laplace transform down to the real ω-axis, and the
monochromatic limit can be reached by waiting a sufficiently long time. We have thus ”removed” the
absolute instability by using a sufficiently large incident angle for the incoming wave. This may seem
rather peculiar, but actually we should expect it: In the limit Kx →∞ we know that kz → iKx, i.e. the
fields should become evanescent there, independent of which medium is considered.

For any finite σ, all kx will be present, also kx = 0 for which the absolute instability is present. In a
physical situation the fields will therefore always increase exponentially with time. This is also why we
cannot take the monochromatic limit before the plane wave limit: As argued in the previous section, if
we let t→∞ first, all plane wave components will be present, even though we let σ →∞ afterwards.

If the observation frequency is sufficiently far away from the zero in the upper half plane, the
monochromatic limit may be reached over a certain time range, as the excitation of the unstable fre-
quency is limited. Eventually the absolute instability will start to dominate, and the fields will diverge
in time.

We conclude this section with noting that media with non-analytic
√
εµ (or with zeros for εµ in the

upper half plane) will contain absolute instabilities, so possible application of such media may be limited.

7.4 Zeros of even order for Imω > 0

If ε(ω)µ(ω) has zeros of even order in the upper frequency plane,
√
ε(ω)µ(ω) is analytic, and one may ask

whether the inverse Laplace transform can be deformed down to the real axis. As explained in Section
5.2 this is not the case: Even though

√
ε(ω)µ(ω) is analytic, the integration path κ(ω) will get ”stuck”

at kx = 0 for the ”even order zero”-frequencies. The time domain solution will thus contain frequency
components increasing with time. For concreteness we will here consider the situation where ε(ω)µ(ω)
has two double zeros for Imω > 0. Such a medium could for instance be obtained by letting ε(ω) = µ(ω)
be given as (59).

The argument above holds if we try to approach the monochromatic limit first (i.e. is valid for times
t � σ/c). If we instead take the plane wave limit (Kx = 0, σ → ∞) before the ω-integration path
is deformed, we may actually deform the path down to the real axis, since

√
ε(ω)µ(ω) is analytic for

Imω > 0, and only the plane wave component Kx = 0 is present. However, it turns out that media
with even order zeros for Imω > 0 must be treated with care. If ε and µ are given as suggested above,
the electric and magnetic response must be exactly the same for the zeros of ε and µ to be located the
same place. Even a tiny perturbation will split the double zero into two single zeros, and there will be
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a branch cut between the two zeros. If this is the case the inverse Laplace transform can still be moved
down to the real axis, but we must add integration paths around the branch cuts in the upper half plane.
These frequency components will grow with time, so we have an absolute instability. Also this instability
will disappear if the plane wave limit for large Kx is taken before the monochromatic limit, meaning for
large Kx the response will be stable for t� σ/c.
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8 Simultaneous refraction at low gain

As described in Section 5.3 simultaneous refraction will occur for media with ε(ω) = µ(ω) = 1 + χ(ω),
where χ(ω) is an inverted Lorentz function with a strong resonance response. The observation frequency
ω1 must however be a little below the resonance frequency. As discussed in Section 6, due to the large
gain at resonance it will then take a long time to reach the monochromatic limit Eω1

(x, z, t). Large gain
leads to large fields, which also make the media difficult to simulate (Section 11). Similar challenges are
also expected in experimental realizations, with noise at resonance being strongly amplified. In practice
we will eventually reach the gain saturation limit, and the linear field theory does not hold any longer.
A large gain might also lead to instabilities, due to imperfections in the medium.

It is therefore of interest to search for simultaneous refracting media with low gain at all real ω, not
only at the observation frequency ω1. This section presents a method which can be used to find such
media, based on the discussion on how to obtain a negative refractive index at low loss/gain done by
[13].

To obtain simultaneous refraction the branch points of kz, given by

kx = ±
√
ε(ω)µ(ω)ω/c, (60)

must move such that κ(ω) is forced into a zigzag path as Imω is reduced from γ to 0. Two key
observations are made. First, the branch points must cross the real kx-axis. It is argued in the attached
paper (appendix A) that for passive media, where Imn(ω) > 0 for positive ω, the branch points cannot
cross the real axis in the upper ω half plane. A requirement for simultaneous refraction to occur is thus
that Imn(ω) < 0 for some positive ω. This again requires Im ε(ω) < 0 and/or Imµ(ω) < 0, i.e. the
system must have gain.

Second, the branch point +
√
ε(ω)µ(ω)ω/c must move below origin. To achieve this we must have

an accumulated negative complex phase for
√
ε(ω)µ(ω) of at least −π/2, (or a positive phase more than

3π/2) when Imω reaches 0. To evaluate the phase of ε(ω)µ(ω) it is convenient to write it in complex
form, ε(ω)µ(ω) = |ε(ω)µ(ω)|eiθεµ(ω). The square root is then given by +

√
|ε(ω)µ(ω)|eiθεµ(ω), where the

positive sign is chosen to get
√
ε(ω)µ(ω)→ +1 as |ω| → ∞. For Imω = γ we thus have

√
ε(ω)µ(ω) ≈ 1,

i.e. θεµ ≈ 0, provided γ is chosen large enough. As Imω is reduced, enough phase θεµ should be

accumulated for +
√
ε(ω)µ(ω)ω/c to move below origin before Imω reaches 0. By requiring ε(ω)µ(ω) to

be a rational function, the phase change can be found from its zero-pole-configuration. How this is done
will be explained in Section 8.1.

To minimize the contribution from the integrals along the vertical detours in (37) the branch points
should end up close to the real kx-axis. This corresponds to a phase shift for

√
ε(ω)µ(ω) of≈ −π,±2π,±3π...,

or similarly for ε(ω)µ(ω) of ≈ −2π,±4π,±6π... at Imω = 0. Note that a phase change for ε(ω)µ(ω) of
+2π does not lead to simultaneous refraction, as the branch point +

√
ε(ω)µ(ω)ω/c does not move below

origin in that case. This will be the case for passive negative refracting media.
If the accumulated phase for ε(ω)µ(ω) is larger than −2π the resulting zigzag-path will go back and

forth multiple times, as shown in Figure 17 for the case θεµ = −6π. The second and third integral in
(37) must then be scaled accordingly. If such a large phase is obtained, it is expected that the phase
−2π could be obtained for a similar medium with less gain. As simultaneous refraction at low gain at all
frequencies is what we seek, we therefore restrict the discussion to how to obtain a phase for ε(ω)µ(ω)
of −2π.

We note that for kx = 0 we get kz =
√
ε(ω)µ(ω)ω/c, i.e. the same expression as the branch points

with positive sign. By achieving branch points close to the real axis we thus also minimize the loss/gain
for the forward propagating plane wave component kx = 0. This may reduce the time it takes to reach
the monochromatic limit drastically.

8.1 ε(ω)µ(ω) as a rational function

For a medium to be simultaneous refracting a sufficient phase change for ε(ω)µ(ω) is required as Imω
is reduced from γ to 0. We will now require ε(ω)µ(ω) to be rational, as this makes it fairly simple to
understand how the phase of ε(ω)µ(ω) change as ω is moved around in the complex plane: The phase of
ε(ω)µ(ω) is simply given by the location of ω relative to the poles and zeros of ε(ω)µ(ω).

Rational functions are capable of describing ε(ω)µ(ω) quite generally, as any function can be approx-
imated by Taylor polynomials over a certain bandwidth. In fact, if ε(ω) and µ(ω) separately obey the
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Figure 17: (a) A sketch of the branch point trajectories as Imω is reduced from γ to 0, if the phase shift
of ε(ω)µ(ω) was θεµ = −6π. The branch cuts, and the integration path κ(ω) can be deformed as shown
in (b), where all vertical lines above and below kx = 0 can be moved infinitely close to the real axis.

Kramer Kronig relations, ε(ω)µ(ω) will be approximately rational: It has been shown that all functions
obeying the KK-relations can be approximated by a sum of Lorentzians [14], which indeed will be ra-
tional. For ε(ω) and µ(ω) obeying the KK-relations they will separately be rational, and thus will also
ε(ω)µ(ω) be rational. Requiring ε(ω)µ(ω) to be rational is therefore not a very strict constraint.

The requirement ε(ω), µ(ω)→ 1 as |ω| → ∞ gives that the number of zeros and poles must be equal
[13]. It is convenient to group these in zero-pole pairs (ω0i, ωpi). The symmetry properties of ε(ω) and
µ(ω) gives that for every zero/pole ω0,p there will be a zero/pole at −ω∗0,p, i.e. the zero/pole-configuration
is symmetric with respect to the imaginary axis in the complex ω-plane. As these frequencies are far
away from the observation frequency (which is some real, positive ω), they will contribute very little to
the phase change of ε(ω)µ(ω). By ignoring the contribution from these zeros and poles, we are left with
the approximation

ε(ω)µ(ω) ≈ (ω − ωz1)(ω − ωz2)...(ω − ωzk)

(ω − ωp1)(ω − ωp2)...(ω − ωpk)
. (61)

The complex argument of ε(ω)µ(ω) is thus given by

θεµ(ω) =
∑

i

arg (ω − ωzi)−
∑

i

arg (ω − ωpi), (62)

i.e. a sum of angles in the complex plane given by the position of ω relative to the zeros and poles of
ε(ω)µ(ω).

Let us now consider the situation where ε(ω) = µ(ω) = 1 +χ(ω), where χ(ω) is given by the Lorentz
model (11). The zero and pole of this function with Reω > 0 are found to be ωz = +

√
ω2

0 − Γ2/4− iΓ
2

and ωp = +
√

(1 + F )ω2
0 − Γ2/4− iΓ

2 , respectively. The zeros and poles of ε(ω)µ(ω) at these ω will be of
double order. From (61) one may see that if the zeros and poles are placed far away from each other, the
magnitude of ε(ω)µ(ω) will be large for ω close to a pole (dividing a large number by a small number).
Recall that F is the strength of the resonance, and increasing |F | will increase the distance between the
zero and pole. If (F + 1)ω2

0 > Γ2/4 and ω2
0 > Γ2/4 the imaginary part of the zeros and poles will both

be equal to −iΓ/2. The magnitude of ε(ω)µ(ω) will thus also be large if Γ is small, as the frequencies
around Reωpi will be closer to the pole.

The zeros and poles of ε(ω)µ(ω) (marked as O2 and X2 respectively) for Reω > 0 for a passive and
active Lorentz are shown in Figures 18. For the passive Lorentz we have F > 0, so the double zero is to
the right of the double pole. For the active Lorentz we have F < 0, so the double zero is located left of
the double pole. The angles θz and θp are the angles the two vectors (ω1−ωz) and (ω1−ωp) make with
the real axis, respectively. Trigonometry gives that θ = θp − θz for the active medium, and θ = θz − θp

for the passive medium. The argument of a complex number is the angle it makes with the real axis.
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Figure 18: The zero-pole configuration for ε(ω)µ(ω) for a medium where ε(ω) = µ(ω) is given by (a) a
passive Lorentzian function and (b) an active Lorentzian function. Only the zeros and poles for Reω > 0
are shown.

From (62) we then get θεµ = 2θ = 2(θz− θp) for the passive medium, and θεµ = −2θ = 2(θz− θp) for the
active medium, where the factors 2 comes from that the poles and zeros are of double order. The phase
of ε(ω)µ(ω) is thus given by the angle which ω1 makes with the double zero and pole.

What we really were interested in was the phase change for ε(ω)µ(ω) as Imω is reduced from γ to
0, as indicated by the downwards arrow in the figures. We do however see that for Imω = γ the angle
θ ≈ 0, at least if γ is chosen sufficiently large. We thus get that the angle θεµ found for Imω = 0 is the
accumulated phase θεµ we are interested in. The angle θ is positive. Since we want a negative phase
θεµ = −2π the active Lorentz can in fact be used to obtain simultaneous refraction, if θ ≈ π. This is
achieved by placing the zero and poles far apart (i.e. a large F ), and/or placing them close to the real
axis (i.e. a small Γ). Both these approaches will as mentioned above increase the maximum |ε(ω)µ(ω)|,
which is found for the frequencies close to the poles. If ε(ω) = µ(ω) = 1 + χ(ω), i.e. a single Lorentz
term should be used to obtain simultaneous refraction with low gain at one frequency the Lorentz term
should be active, and have a large maximum gain (given by |F/γ|).

We should note that there are also zeros and poles symmetrically placed for Reω < 0, but it was
assumed here that the contribution to θεµ from these zeros/poles are negligible. When this approximation
holds can be seen from the geometric consideration we just did. If the distance between the zeros and
poles in the half plane Reω < 0 are a lot smaller than the distance from ω1 to these zeros/poles, they
will make the approximately the same angle with ω1. Their contributions to θεµ therefore approximately
cancel out.

8.2 Negative
√
ε(ω)µ(ω) at low gain for real ω

Dirdal and Skaar suggested a method for how to reduce the necessary maximum gain/loss for obtaining
negative refraction in [15, 13]. We are searching for a medium with Re

√
ε(ω)µ(ω) < 0, so we can use the

medium they came up with, provided the phase change θεµ is negative. The method works as follows.
First place a double zero and pole relatively close to each other, and with a fairly large Γ such that the
maximum |ε(ω)µ(ω)| is small. The idea is now that if we place another double zero very close to the
double pole, these two will almost cancel each other out in (61). Since the newly added double zero
almost cancel out the effect of the double pole, we can either increase the distance between the original
double zero and pole, or move all the zeros and poles towards the real axis, and still keep the maximum
gain relatively small. The number of zeros and poles must however be the same, so we must place out
two more poles. But where to place them? If they are placed far away from the other zeros and poles
we will end up with the same problem with a large |ε(ω)µ(ω)| as earlier. We thus place another double
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Figure 19: The zero-pole configuration of ε(ω)µ(ω), where a band of zeros and poles have been introduced
to reduce the maximum gain of a possible simultaneous refracting medium. The double zeros are marked
as O2 and the double poles as X2.

zero next to the already existing cluster of zeros and poles. If this procedure is repeated over and over
again we end up with a band of zeros and poles, as shown in Figure 19.

We can assign one zero/pole from each double zero/pole to each of the functions ε(ω) and µ(ω), and
thus get ε(ω) = µ(ω). The medium just engineered can be written as a sum of Lorentz functions, where
the number of zero-pole pairs will equal the number of Lorentz functions. This gives ε(ω) = µ(ω) =

1 +
∑N
i=1 χi(ω). Here each χi(ω) is given by a single zero-pole pair (and their symmetric zero-pole pair

at Re (ω) < 0). The resulting ε(ω) (= µ(ω)) from such a zero-pole-band medium is shown in Figure 20a.
To create this medium 150 Lorentz functions were used. It is seen in Figure 20b that the branch point
kx = +

√
ε(ω)µ(ω)ω/c moves below origin at the observation frequency ω1 = 0.97, so this medium is

expected to be simultaneous refracting. The branch points end up close to the real axis, so the integrals
around vertical detours in (37) are small. The maximum gain is reduced with a factor 5 compared to
the medium described by Figure 12.

The effect of the zeros and poles in the band to some extent cancelled each other out. This lead to
a smaller maximum gain, while Re

√
ε(ω)µ(ω) < 0 still is obtained over some frequency range. In [13]

this was done using passive resonances (zeros placed to the right of poles), where the band goes towards
smaller Reω. To obtain simultaneous refraction the phase change must be negative, so active resonances
were therefore used here, and the band goes towards larger frequencies. The larger the frequency band is
(i.e. the more Lorentz functions are used), the more can the maximum gain be reduced. This reduction
in gain does however come at a cost: the bandwidth where Re

√
ε(ω)µ(ω) < 0 is reduced.

By examining the resulting function in Figure 20 we see that the zero-pole-band created an asymmetric
Im ε(ω), with a steep variation just above the frequencies with Re

√
ε(ω)µ(ω) < 0, and a softer change

for even larger frequencies. The reduction in maximum gain is thus related to this steep variation in
Im ε(ω)(= Imµ(ω)). This can be understood from the Kramers-Kronig relations, as will be described
in Section 12. The more Lorentz functions are used to describe this asymmetric Im ε, the more can
the maximum gain be reduced. Obtaining Re

√
ε(ω)µ(ω) < 0 at low loss/gain through a such a steep

variation in Im ε has also been suggested earlier [15], where it was shown that to get a linear reduction
in gain, an exponential increase in steepness is required. This corresponds to an exponential reduction
in the bandwidth with Re

√
ε(ω)µ(ω) < 0. It is therefore not convenient to reduce the gain much more

than what was done in the medium described Figure 20, as for small bandwidths, long durations for the
the monochromatic limit to be reached is required.
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Figure 20: (a) A medium where ε(ω) = µ(ω) are both given as a sum of 150 Lorentzian functions with
different resonance frequencies and strengths. The medium is designed to achieve simultaneous refraction
with a minimal gain at all frequencies. (b) The branch point trajectories as Imω is reduced from Γ = 4
to 0, at the observation frequency ω1 = 0.97.

8.3 Monochromatic limit for simultaneous refracting medium with low gain

The medium with ε(ω) = µ(ω) described by Figure 20a is expected to be simultaneous refracting for
the observation frequency ω1 = 0.97. The maximum gain for this medium is max |Im ε(ω)| ≈ −2 at
ω ≈ 1.05. For all Lorentzian functions used to create the medium, the bandwidth Γ = 0.01 was used,
and we should thus expect the transients to die out approximately as in Figure 15. The time domain
solution at z = 2π, i.e. approximately one wavelength at the observation frequency for this medium, is
shown in Figure 21a.

In Figure 21 it looks like the transients die much faster than for the medium in Figure 15. The time
domain response is however somewhat bumpy. This effect is believed to be due to interference between the
transients from the band of frequencies with gain. As seen in Figure 21b these bumps do not completely
die out until t ≈ 5000, so it actually takes this long time before the monochromatic limit is reached, i.e.
approximately the same as for the medium in Figure 15 after all. This analysis was performed in 1d,
and as argued in Section 6.4 it is expected to take even longer to reach the monochromatic limit in 2d,
due to possible amplified side waves making the transfer function large.

We did not include the smooth source into this analysis. It was shown in Section 6.5 that a smooth
onset may in fact reduce the dominance of the gainy frequencies, even for a medium with relatively large
maximum gain, max |Im ε(ω)| = −1. This was however for the case where the observation frequency
(ω1 = 5) was far away from the gainy frequencies (ω ≈ 1). For media with large gain, with a observation
frequency very close to the gainy frequencies, the onset period must be extremely large to reduce the
excitation of the gainy frequencies significantly. It is not possible to simulate for such long times with
FDTD due to lack of computational power.
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Figure 21: (a) The time domain solution at z = 2π in the medium with ε(ω) = µ(ω) given as in Figure
20. (b) Zoomed in on large t in Figure (a).

38



9 FDTD

Finding analytic solutions to the time dependent Maxwell’s equations is not possible except for in a few
special cases. If the derivatives in Maxwell’s equations are written out as finite differences it is possible
to iteratively find a numerical estimate for the time domain solution. The basic method of solving the
standard wave equation through making use of finite differences reaches back to Courant et al in 1928
[16]. Applying this method to solve Maxwell’s equations was first suggested by Yee in 1966 [17]. The
method is known as the finite difference time domain (FDTD) method, since it is based on expressing
derivatives as finite differences, and it aims to estimate the solution in the time domain.

In his ”proof of concept” paper Yee only solved Maxwell’s equations for a medium with constant ε
and µ. Dispersive media were treated by Luebbers et al. [18], where the convolution is computed as a
discrete sum, and the electric field assumed to be constant in each term of the sum. They also show that if
the susceptibility frequency response is described by the Debye model the convolution can be calculated
recursively, which leads to a huge improvement on the necessary computational power. In 1992 [19]
they showed that the convolution can be calculated recursively also for susceptibilities expressed by a
Lorentz function. They further showed that if the susceptibility is a sum of Lorentz functions the same
recursive method can be applied to each susceptibility term separately. This idea is very interesting, as
Dirdal and Skaar [14] recently showed that every function that obeys the Kramer-Kronig relations can
be approximated by a superposition of Lorentzians. Since the convolution can be computed recursively
for a Lorentzian, it will in some situations be convenient to approximate the susceptibility function as a
superposition of Lorentzians, and then apply the recursive convolution method.

Together with his student Kelley, Luebbers further improved the recursive convolution method by
approximating the electric field as a linear function (instead of a constant) for each term in the discrete
convolution sum. This improvement leads to higher accuracy compared to other methods (using the
same resolution in space and time).

In this section the most important equations used in these methods are derived in detail. Some of
the notation will deviate slightly from what is used in the original papers, to make it correspond better
to the theory in the previous sections.

9.1 The Standard FDTD Method (Yee)

In the standard Yee FDTD method the derivatives in Maxwell’s equations are replaced by finite differ-
ences, and the field values approximated at discrete points in time and space: E(x, y, z, t) ≈ E(i∆x, j∆y, k∆z, n∆t)
for which Yee uses the notation En(i, j, k). This gives for the curl equations

∇×En = −Bn+ 1
2 −Bn− 1

2

∆t
(63a)

∇×Hn− 1
2 =

Dn+1 −Dn

∆t
− J (63b)

where the position coordinates has been left out for simplicity. Since the magnetic field is needed to
calculate the next value of the electric field, and visa versa, the calculation is done in a leap-frog manner.
A calculation is done every half time step, where it alternates which of the fields are updated. This is
why the notation ±1/2 is used in the time dependence for H. The magnetic fields are also calculated at a
grid shifted 1/2 in the x and z-directions (for Hz and Hx respectively), as the points used to approximate
spatial derivatives are shifted an equal distance in opposite directions away from the point where the
derivative is calculated.

In a three dimensional situation Equation (63a) and (63b) give a system of 6 scalar equations. For
the 2D system with electric field polarized in the y-direction, as described in Section 3, only three of
these equations will be present. Note that the coordinate system here used is shifted from what is used
in Yees paper. This is to make it correspond to correspond to the theory in Section 3. Coordinates in
the form (i, j) will therefore correspond to (i∆x, j∆z).

Dn+1
y −Dn

y

∆t
=

∆Hx

∆z
− ∆Hz

∆x
(64a)

B
n+ 1

2
x −Bn−

1
2

x

∆t
=

∆Ey
∆z

(64b)
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B
n+ 1

2
z −Bn−

1
2

z

∆t
= −∆Ey

∆x
(64c)

The current density has been assumed to be zero everywhere, Jn(i, j) = 0. Since the current density is
related to the electric field through the conductivity (J(ω) = σ(ω)E(ω)) setting J = 0 is equivalent to
including the conductivity in the electric susceptibility function.

By assuming that ε and µ have constant values, along with B = µH and D = εE, Yee rearranges the
Equations (64), and get

En+1
y (i, j) = Eny (i, j) +

1

ε

∆t

∆z
[H

n+ 1
2

x (i+
1

2
, j)−Hn+ 1

2
x (i− 1

2
, j)]

− 1

ε

∆t

∆x
[H

n+ 1
2

z (i, j +
1

2
)−Hn+ 1

2
z (i, j − 1

2
)] (65a)

H
n+ 1

2
x (i, j +

1

2
) = H

n− 1
2

x (i, j +
1

2
) +

1

µ

∆t

∆z
[Eny (i, j + 1)− Eny (i, j)] (65b)

H
n+ 1

2
z (i+

1

2
, j) = H

n− 1
2

z (i+
1

2
, j)− 1

µ

∆t

∆x
[Eny (i+ 1, j)− Eny (i, j)] (65c)

A (perfectly conducting) metallic obstacle is introduced by forcing the electric field to be zero in an area
of the simulation domain. Also at the boundaries of the domain the fields are kept at 0 for all times.
A propagating wave is produced by setting initial values for both the electric and magnetic field, where
some of the initial values are non-zero for t = 0. The solution at all later times t can be found through
iteration, by using equation (65a)-(65c).

9.2 Convolution as a discrete sum

In [18] Luebbers presents a way for adopting Yees method to dispersive media. The convolution integral
(equation (9a)) is expressed as a sum, where the electric field is assumed to be constant at each term of
the sum. Using the Yee notation D and E are then related through

Dn = ε0E
n + ε0

n−1∑

m=0

En−m
∫ (m+1)∆t

m∆t

χ(τ)dτ (66)

For the next time step the equation becomes

Dn+1 = ε0E
n+1 + ε0

n∑

m=0

En+1−m
∫ (m+1)∆t

m∆t

χ(τ)dτ (67)

Equation (66) and (67) can be inserted in equation (64a). Some manipulation of the resulting equation
yields

En+1
y =

1

1 + χ0
{Eny + ψn +

∆t

ε0∆z
[H

n+ 1
2

x (i+
1

2
, j)−Hn+ 1

2
x (i− 1

2
, j)]

− ∆t

ε0∆x
[H

n+ 1
2

z (i, j +
1

2
)−Hn+ 1

2
z (i, j − 1

2
)]} (68)

where the definitions

χm =

∫ (m+1)∆t

m∆t

χ(τ)dτ, (69)

∆χm = χm − χm+1 (70)

and
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ψn =

n−1∑

m=0

En−my ∆χm (71)

have been made.
If the susceptibility is independent of frequency one gets χm = ∆χm = 0 for all m, and Equation (68)

reduces to Equation (65a) as it should. As pointed out in [18] the Equations for the magnetic response
would be identical to (65b) and (65c) for a non-magnetic medium. If the medium has a magnetic response
the same procedure as for the electric fields can be followed: approximate the magnetic convolution
(Equation (9b)) as a discrete sum, insert this into Equation (64b) and (64c), and manipulate these
equations to get

H
n+ 1

2
x =

1

1 + χ0
m

{Hn− 1
2

x + ψnmx +
∆t

µ0∆z
[∆Eny (i, j + 1)− Eny (i, j)]} (72a)

H
n+ 1

2
z =

1

1 + χ0
m

{Hn− 1
2

z + ψnmz −
∆t

µ0∆x
[∆Eny (i+ 1, j)− Eny (i, j)]} (72b)

where the notation χmmx and χmmz etc is used for the magnetic susceptibility terms.

9.3 Recursive convolution for Lorentzian susceptibility functions

The summation term in Equation (68) will have to be calculated for every time step (as the electric
field values are ”shifted” compared to the χm values for every new step). It would therefore save a
lot of computation time if one could get rid of this term. Luebbers shows that for media where the
susceptibility is described by the Debye [18] or Lorentz [19] model, the calculation of the sum can be
done recursively, where the new value is given as an exponential function times the previous value. The
derivation for a Lorentzian model will be presented here.

For a Lorentzian medium the susceptibility in the frequency domain is given by

χ(ω) =
Fω2

0

ω2
0 − ω2 − iΓω =

Fω2
0

(ω − ω1)(ω + ω∗1)
(73)

where ω1 =
√
ω2

0 − Γ2

4 − iΓ
2 and ω∗1 its complex conjugate.

The inverse Fourier transform can be calculated using the Residue theorem, where the closed path C
is chosen to be the real axis and a semicircle with infinite radius in the lower half plane. The integration
can be done along the real axis as the susceptibility has no singularities (as zeros or poles) in the upper
half plane. The integral path C in Equation (6) should be a counter clockwise path, while the chosen
path goes clockwise. This adds an additional minus sign to the expression, which gives

χ(t) = − 1

2π

∮

C

Fω2
0

(ω1 − ω)(ω∗1 + ω)
e−iωtdω (74)

By applying the residue theorem we get

χ(t) =
iFω2

0

ω1 + ω∗1
(e−iω1t − eiω∗

1 t) =
Fω2

0

2iΩ1
(eiΩ1t − e−iΩ1t)e−

Γ
2 t =

Fω2
0

Ω1
sin(Ω1)e−

Γ
2 t (75)

where Ω1 = Reω1 =
√
ω2

0 − Γ2

4 has been introduced. It turns out that it is useful to introduce the

complex quantity χ̂(t) =
iFω2

0

Ω1
e−iω1t. This is because χ̂(t + ∆t) = χ̂(t)e−iω1∆t which makes it possible

to derive a recursive formula for the convolution. Note that Re {χ̂(t)} = χ(t).
The convolution integral then becomes

χ̂m =

∫ (m+1)∆t

m∆t

χ̂(τ)dτ =
Fω2

0

ω1Ω1
(1− e−iω1∆t)e−iω1m∆t (76)

which gives

χ̂0 =
Fω2

0

ω1Ω0
(1− e−iω1∆t) (77a)
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∆χ̂0 =
Fω2

0

ω1Ω0
(1− e−iω1∆t)2 (77b)

A complex version of the summation variable ψn is used to represent the sum using the complex suscep-
tibility, ψ̂n =

∑n−1
m=0E

n−m
y ∆χ̂m. The exponential character of the susceptibility allows for the complex

summation variable to be calculated recursively

ψ̂n = ∆χ̂0En + e−iω1∆tψ̂n−1 (78)

where ψn = Re {ψ̂n}. In the first time step ψ̂−1 = 0 is used (since E(t < 0) = 0).

9.4 Piecewise Linear Recursive Convolution (Luebbers & Kelley)

In the previous sections the electric field was assumed to have a constant value between the time steps
when calculating the convolution integral. By replacing this constant value with a linear approximation
between the two points Kelley and Luebbers claim to increase the accuracy drastically without any
increased demand for computational power.

Using this new approximation the convolution integral (Equation (9a)) becomes

Dn = ε0E
n + ε0

∫ n∆t

0

E(n∆t− τ)χ(τ)dτ

= ε0E
n + ε0

n−1∑

m=0

∫ (m+1)∆t

m∆t

(En−m +
En−m−1 − En−m

∆t
(τ −m∆t))dτ (79)

In a more compact form this becomes

Dn = En +

n−1∑

m=0

{En−mχm + (En−m−1 − En−m)ξm} (80)

where χm is given as in the previous section, and

ξm =
1

∆t

∫ (m+1)∆t

m∆t

(τ −m∆t)χ(τ)dτ (81)

For a Lorentzian medium also ξm can be computed recursively, through introducing the complex
quantity

ξ̂m =
1

∆t

∫ (m+1)∆t

m∆t

(τ −m∆t)χ̂(τ)dτ = − Fω2
0

Ω1ω1∆t
[
i

ω1
(1− e−iω1∆t) + ∆te−iω1∆t]e−iω1m∆t (82)

where ξm = Re {ξ̂m}.
If Dn+1 − Dn in Equation (64a) is calculated using Equation (80), and manipulating the equation

one gets

En+1 =
1

1 + χ0 − ξ0
{(1− ξ0)En +

∆t

ε0∆z
+ ψn +

∆t

ε0∆z
[H

n+ 1
2

x (i+
1

2
, j)−Hn+ 1

2
x (i− 1

2
, j)]

− ∆t

ε0∆x
[H

n+ 1
2

z (i, j +
1

2
)−Hn+ 1

2
z (i, j − 1

2
)]} (83)

where ψn = Re{ψ̂n} now is given by the modified complex function

ψ̂n = (∆χ̂0 −∆ξ̂0)En + ∆ξ̂0En−1 + e−iω1∆tψ̂n−1 (84)

and the first step ψ0 is again calculated using the fact that ψ̂−1 = 0.
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10 Implementation

Kelley and Luebbers PLRC-method for susceptibilities given as a Lorentzian function was implemented
in MATLAB, in 1 and 2 dimensions. The 2D version of the script is attached in appendix B. How the
boundary conditions were implemented, and the most critical parameters were chosen are explained in
this section.

The size of the simulation domain is given by Nxdx × Nzdz, where Nx and Nz are the number of
grid points in the x and z-direction and dx, dz the grid spacings. The simulation runs over a time Ntdt
where Nt is the number of time steps and dt is the time step.

The electric field is saved at all time steps, to make it possible to evaluate which direction the field
propagates. The size of the electric field matrix will therefore be Nx × Nz × Nt. The magnetic field
matrixes are reused every time step. The two previous time steps are needed when calculating the
convolution summation variable (84), so a Nx ×Nz × 2 matrix is needed for each of Hx and Hz. If we
are only interested in the electric field at the last time step, the matrix size of E can be reduced to only
keep the previous time step, as for the magnetic field.

Since the medium is assumed to be semi-infinite the propagating waves must never reach the boundary
of the simulation domain. Nx and Nz must therefore scale with Nt, so for the simulation to run over a
long time the matrix sizes will be large, and the simulation will take a long time to run due to lack of
memory.

In the simulations normalized frequencies are used. For example, for Lorentzian media the resonance
frequency ω0 is taken to be 1. To find the actual physical quantities all frequencies should thus be scaled
with ω0, and other quantities accordingly. For ω0 = 1 the unit time step ∆t = 1/Nper is such that
T = 2π, where T = Nper∆t is the time duration of one time period at ω0, and Nper is the number of
samples used to describe one such period. The speed of light in vacuum is set to c = 1, so one time
unit corresponds to one spatial unit. To get a desired response at optical frequencies the matamaterials
should be designed to have a resonance frequency corresponding to λ = 400 − 700nm, i.e. in the order
of 1015Hz. One time unit would then correspond to a duration in the order of femto seconds, and one
spatial unit corresponds to lengths in the order of some hundreds of nano meters.

10.1 The source

For both the situation with a current source in z = 0 and the Fresnel boundary situation the source
was implemented as a forced oscillation in Hx along the left boundary. This corresponds physically to
an oscillating current source in this plane, as described by (28). This current source is assumed to be
ideal, so the fields outside the source will not affect the fields at the source plane. In the situation with
a current source in z = 0 only the right half plane z > 0 is simulated; the fields for z < 0 will be exactly
the same due to the symmetry of the situation.

In the 2D simulation the amplitude of the excitation is modulated by (32a). A perfect gaussian
excitation would require Nx =∞, so (32a) was truncated after 3σ as shown in Figure 22. Nx must the
be chosen such that the distance from the truncation to the end of the domain is larger than the wave
can propagate during the time Ntdt.

The plane-like character of the waves produced by the source will increase with σ. However, there
will be a tradeoff between the plane-like character and computational speed, as a larger σ will require a
larger Nx. σ = 10 was used in most of the 2D simulations.

10.2 1d and 2d

As explained in the paper (appendix A) the plane wave and monochromatic limits does not commute
in general, i.e. the solution may depend on which limit is taken first. In the simulations the width of σ
must be chosen before the simulation is started. For any finite σ in a 2D simulation the plane wave limit
is never reached, and the monochromatic limit is approached first, by letting the simulation run over a
sufficiently long time.

A simulation in 1D corresponds to a plane wave propagating in the z-direction, and will thus simulate
the situation where the plane wave limit σ → ∞ with Kx = 0 is taken first, and the monochromatic
limit is taken afterwards by letting the simulation run over a long time.
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Figure 22: A gaussian excitation profile, truncated after 3σ. The unit along the x-axis is σ.

10.3 Step size

The grid spacings dx, dz and the time spacing dt must be chosen such that enough data points are
present to represent the wavelengths in space and oscillation periods in time. The position steps are
taken to be equal in both directions, dx = dz. They must also fulfill the stability criterion given by [20]:

vmaxdt ≤ (
1

dx2
+

1

dz2
)−1/2 (85)

Here vmax is the maximum phase velocity expected within the model, and is taken to be c. With dx = dz,
the time step can be chosen as dt = a·dx with a = 0.9 in the 1D program, and a = 0.7 in the 2D program.
If the simulation gives an unstable solution it may help to reduce a. To minimize the simulation time
the largest value which still makes the solution stable should be chosen for a.
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11 Artificial reflections

When simulating gain media (using the implemented FDTD program) over a long duration, an un-
expected effect appears: a wave propagating backwards can be seen close to the source. The spatial
simulation domain is larger than ctmax (where tmax is the maximum simulation time) in all directions, so
the backward propagating wave is not a reflection from the boundaries of the grid. The backward wave
grows in time, so shortly after the backward wave is seen, it becomes the dominant propagation, and the
validity of the FDTD solution is destroyed. It looks like the signal produced by the source is reflected
somewhere inside the medium, and that these reflections grow as they propagate towards the source. The
reflected wave may pick up gain as it propagates. As the backward wave grows with time, it is reasonable
to assume that the reflections occur further and further away from the source. These artificial reflections
occur both in 1d and 2d simulations. For simplicity we will consider the one-dimensional situation.

The backward wave was investigated using a single active resonance, where the refractive index is
described by (49), using different values for the parameters F , Γ and the observation frequency ω1. The
resonance frequency ω0 = 1 was used in all simulations. In Figure 23 the electric field is plotted at
normalized time t = 167 and t = 219. The parameters F = 0.1, Γ = 0.1 and ω1 = 5 were here used.

Figure 23: Simulation results after two different durations, for a medium with ε(ω) = µ(ω) given by an
inverted Lorentzian, with the parameters F = 0.01,Γ = 0.1 and ω0 = 1, with the resonance frequency as
the observation frequency, ω1 = ω0. (a) t = 750. The generated signal propagates away from the source,
and grows in the z-direction due to the gain. (b) t = 841. The validity of the simulation solution is
destroyed by an unexpected reflected wave, which propagates towards the source.

Section 11.1 tries to explain the artificial reflections in terms of errors caused by discretization of the
electric field in space. The reflections were investigated using different values for F,Γ and ω1, and it is
argued in Section 11.2 that this explanation must be wrong. Section 11.3 suggest a different explanation;
that the origin for the reflections are errors in the calculated FDTD solution caused by the numerical
resolution of MATLAB.

Due to the occurrence of such artificial reflections, the implemented FDTD program are only able to
simulate strong gain media for very short durations τ , before the validity of the solution is destroyed.

11.1 Reflections due to discretization errors

It was first believed that the reflections are caused by errors related to the discretization in space and
time. The FDTD solution from the electric field at a given point z will differ from the real the real
field Ereal(z) with an error ∆E(z). The initial assumption was that this error will lead to a reflected
field rEreal(z) traveling towards the source, where r is the reflection coefficient, which is assumed to be
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independent of z. If the entire error signal is reflected we get EFDTD = Ereal(z)+∆E(z) = (1+r)Ereal(z)
6. The reflection coefficient is thus given by

r = ∆E(z)/Ereal(z). (86)

A reflected wave ∆E(z) = rEreal(z) would then be generated at every point z, and may grow as it
propagates towards the source. For the artificial reflections to become visible at z close to 0, they must
reach an amplitude in the same order of magnitude as the source signal, which is 1. This will happen for
reflections originating from some distance z0 into the medium. Reflections from z < z0 will be ignored.

Since a linear approximation for Ereal(z) is used to calculate the derivatives in Maxwell’s equations,

the error ∆E(z) is expected to be of second order, i.e. ∆E(z) ≈ d2Ereal(z)
dz2 (∆z)2. It is argued in Section

6 that frequencies around resonance will dominate for large z, due to the large gain. As a rough estimate
for the field at large z we will thus use a monochromatic plane wave at resonance,

E(z) ≈ E0 exp (ikz(ω0)z − iω0t). (87)

E0 here represents how much the frequencies around resonance are excited by the source, and will be some
fraction between 0 and 1 (depending on the observation frequency and the duration of the simulation).
The second derivative of (87) with respect to z will be −k2

zE(z). If the gain is low (F � 1) we have
|kz| = 2π/λ, which then gives

|∆E(z)| ≈ (2π∆z/λ)2|E(z)|. (88)

The reflection coefficient is thus approximated by

r ≈ (2π∆z/λ)2. (89)

The criterion for when the artificial reflections becomes visible is set to

|rE(z) exp (ikz(ω0)z − iω0t)| = rE0 exp (2|Im kz(ω0)|z) > 1, (90)

i.e. when the reflections reach an amplitude larger than the source excitation at z = 0. This gives the
expression for z0, where the first visible artificial reflections come from:

z0 =
− ln r − lnE0

|2Im kz(ω0)| . (91)

The time terr before the artificial reflections destroy the validity of the simulation will be the time the
frequency components close to ω0 takes to propagate to z0, get reflected, and propagate back to z = 0,
i.e. a total distance 2z0. This gives

terr = 2z0/c =
−2 ln 2π/λ− 2 ln ∆z − lnE0

|Im kz(ω0)| . (92)

11.2 Investigation of artificial reflections, using an active resonance

Simulations were run using different values for F,Γ, ∆z, ∆t and ω1, and the following observations were
made:

• Reflections are dominated by the resonance frequency, no matter which observation frequency is
used.

• The time before the artificial reflections appear seems to be independent of ∆z and ∆t.

• The time before the artificial reflections appear decreases if the maximum gain or the bandwidth
with gain is increased.

• The artificial reflections only occur for large fields.

6It is reasonable to assume that half of the error signal propagates in each direction, but this factor of 1/2 is left out
for simplicity
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In the simulation which produced Figure 23 the artificial reflections became visible after t ≈ 800.
At these parameters Im kz(ω0) = −0.1, and Re kz(ω0) = 1, so λ = 2π. The spatial step ∆z = 0.1323
was used. Since the resonance frequency was used as the observation frequency, we will have E0 ≈ 1.
Estimating the error time using (92) then gives terr = −2 ln 0.1323/0.1 = 40.5, which is a lot smaller
than the observed error time of 800. If the reflections were due to discretization errors we would thus
expect them to appear a lot sooner than what they actually do. Discretization errors can therefore not
be what causes the occurrence of the unexpected backward wave.

Based on the derivation in the previous section we may then ask why artificial reflections do not
occur sooner. If the discretization errors lead to reflections from the FDTD-grid, this could somehow be
explained by that the impedance of the medium is slightly different at two adjacent points in the grid.
It is shown in [21] that despite the inherent approximations in the FDTD method, the impedance in the
grid is exactly the same in the continuous world, i.e. independent on the discretization ∆z.

The assumptions that were done in Section 11.1 were all very rough. The expression (92) is however
quite consistent with the observations listed above:

• That the reflections are dominated by the resonance frequency ω0 makes sense, as they are errors
being amplified, and the gain is largest at ω0.

• The dependence on E0 is logarithmic, so a observation frequency very far from resonance, or a very
long duration τ is needed to change E0 significantly.

• If the bandwidth Γ is increased, E0 will increase, and thus reduce terr.

• If the maximum gain is increased, Im kz(ω0) will increase, and thus reduce terr.

An explanation similar to the one given in Section 11.1, but where the ”reflection coefficient” is of
several orders of magnitude smaller, could thus be reasonable. This is what is presented in the next
section.

11.3 Reflections due to numerical precision of MATLAB

As the reflections only occur if the fields grow large, we now suggest that they are caused by the numerical
precision of MATLAB.

MATLAB represents floating-point numbers in either double precision or single precision format.
The default is double precision, but you can make any number single precision with a simple conversion
function. A value stored as a double requires 64 bits, where 52 bits represents all the digits, and the
rest are used to store the exponent and sign of the value. In practice this means the number 1 + δ in
MATLAB is identically equal to 1 for δ ≤ 1/253. Because of this the calculated electric field values will
differ from the ”real” FDTD solution with a magnitude |E(x, z, t)|/253. For media with large gain, the
electric field values will range over many orders of magnitude. At a given point this small error will
be negligible, but the error may spread towards lower z where the field is smaller. An error signal is
thus induced. This signal is assumed to be white noise, and will thus contain all frequencies, including
frequencies around resonance, which will grow fast as they propagate towards the source. When this
error signal reach a magnitude of around 1 at z = 0 it becomes visible, and the FDTD solution is thus
not reliable any more.

If we assume the entire error induced from the numerical precision errors is reflected at every point
z, we can get a similar expression as (92), by inserting the ”reflection coefficient” r = 1/2−53 in (91):

terr = 2z0/c =
106 ln 2− lnE0

|Im kz(ω0)| . (93)

If we again assume E0 ≈ 1 (since ω1 = ω0) we get terr = 735 for the simulation in Figures 23, which is
not very far from the observed error time.

Due to the logarithmic dependence of terr with respect to r, reducing the numbers of bits by a factor
should thus lead to terr being reduced with the same factor. When the simulation which lead to Figure
23 was run using ”single” precision, the artificial reflections became visible after t ≈ 400, i.e. about half
the time from when ”double” precision was used. It is therefore reasonable to believe that numerical
precision is what causes the artificial reflections.
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We will not go more in depth on the origin of these artificial errors. We rather note that for media
with strong gain the implemented FDTD program cannot be trusted over long simulation times, as
numerical errors are being amplified and destroys the validity of the solution. These errors are believed
to be related to the numerical precision of the calculations done in MATLAB.
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12 Simulation results

Negative refractive index is a novel optical property, which can be achieved using metamaterials. The
Sections 12.1 to 12.3 will present different types of media which can be used to obtain a negative
refractive index, and simulations of them. Section 12.4 briefly introduces the concept of evanescent gain,
and simulation results showing the occurrence of evanescent gain in a weak gain medium. In Section
12.5 media with zeros in the upper half plane are simulated, with results showing that the fields do in
fact grow with time in such media. This is consistent with what was found in Section 7.3 and 7.4.

To find possible negative refracting media it may be useful to consider the Kramers-Kronig relations.
The Kramers-Kronig relations relates the real and imaginary parts of any function that is analytic in
the upper half plane. In this Section we will assume that ε(ω) and µ(ω), and thereby also the refractive
index n(ω) obey the Kramers-Kronig relations:

Ren(ω1) = 1 +
2

π
P
∫ ∞

0

ωImn(ω)

ω2 − ω2
1

dω (94a)

Imn(ω1) = −2ω1

π
P
∫ ∞

0

Ren(ω)

ω2 − ω2
1

dω, (94b)

where P means the principle value. We note that the factor ω
ω2−ω2

1
in (94a) is positive for ω > ω1, and

negative for ω < ω1. To obtain Ren(ω1) < 0 we must thus have either Imn(ω) < 0 for ω > ω1 and/or
Imn(ω) > 0 for ω < ω1. It is also worth noting that Imn(ω) at the frequencies close to ω1 is weighted the
most, as the denominator gets small. It is therefore possible to obtain Ren(ω1) < 0 with Imn(ω1) ≈ 0
at an observation frequency ω1, if there is a steep drop in Imn(ω) just above or below this frequency.

The active medium described in Section 12.3 is expected to be simultaneous refracting. Even though
the maximum gain has been reduced through the steep variation in Imn(ω), the gain is still too large
for the medium to be suited for being simulated using the implemented FDTD program. The fields grow
rapidly with z, and the validity of the solution is after a short duration destroyed by artificial reflections.
FDTD simulations were therefore not able to reveal the effect of simultaneous refraction.

12.1 Passive negative refracting medium

If ε(ω)=µ(ω), also the refractive index n(ω) =
√
ε(ω)µ(ω) must be given by the same function. The

positive sign of the square root must be chosen to get n(ω)→ ω/c as ω →∞. According to the argument
given above we may obtain a refractive index using a medium with a large positive Imn(ω) below the
observation frequency. We may for instance use a passive Lorentzian medium

ε(ω) = µ(ω) = n(ω) = 1 +
Fω2

0

ω2
0 − ω2 − iΓω , (95)

provided that the strength of the resonance F is large enough. The imaginary part of a Lorentzian
decays faster in magnitude than the real part, as ω is increased. By choosing F very large it is thus
possible to obtain Ren(ω) ≈ −1 and Imn(ω) ≈ 0 at a given frequency ω1. In the following simulations
the parameters F = 100, ω0 = 1 and Γ = 0.1 were used. The real and imaginary parts of this refractive
index (n(ω) = ε(ω) = µ(ω)) are shown in Figure 24. The observation frequency ω1 = 7.14 gives
n(ω1) = −1 + 0.03i. In the 1d simulation the situation with a current source at z = 0 was used, as
shown in Figure 25. It is clearly seen that the wave propagates towards the source, which is due to the
negative Ren(ω). For large z the Brillouin and Sommerfeld precursors can be seen. Figure 26 shows a
2d simulation of the Fresnel case, where the negative index medium is located to the right, and vacuum
is to the left. The source is located all the way to the left, marked with a bold line. The wave is traveling
towards the boundary, and is refracted at a negative angle. This is consistent with what was stated in
Section 3.3 for a medium with ε = µ = −1. The energy is absorbed by the medium, as Im kz > 0, and
the Poynting vector S for the transmitted wave is directed away from the boundary. This is as we would
expect from a passive medium.

The 1d simulation was performed for the situation where the negative refracting medium fills the
entire space, and a current source is located in the plane z = 0. This was done to demonstrate that
backward waves are generated even when there are no other medium present, so backward waves are not
produced by interaction with a boundary. The field was only simulated for z > 0, due to the symmetry
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Figure 24: (a) The real and imaginary parts of ε(ω) = µ(ω) = 1 + χ(ω) where χ(ω) is given by the
Lorentz model (11), with the parameters F = 100, ω0 = 1 and Γ = 0.1. (b) The resulting branch point
trajectories as Imω is reduced from γ = 30 to 0, at the observation frequency ω1 = 7.14. We note that
the branch points do not cross the real kx-axis, so κ(ω) can be taken along the real axis. This is the case
for all passive media.

of the situation. The 2d simulation was performed in the Fresnel case, to demonstrate that the wave is
in fact refracted at a negative angle. The boundary is at z = 0, as indicated in the figures.

A negative refractive index could similarly be obtained by a large negative peak of Imn(ω) above the
observation frequency, e.g. as was shown in Figure 12 (n(ω) = ε(ω) = µ(ω)). As discussed in Section
6, a large gain at other frequencies than the observation frequency, ω 6= ω1 will make it hard to reach
the monochromatic limit. Such media cannot be simulated by the implemented FDTD program, as the
fields grow very large, and artificial reflections eventually destroy the validity of the solution.
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Figure 25: The resulting electric field from a 1d simulation of a medium where ε(ω) = µ(ω) is described
by Figure 24a. The image was captured after the duration t = 44. Close to z = 0 a backward wave is
established. The small field which is seen at large z is the low frequency Brillouin precursor at z ≈ 20,
and the high frequency Sommerfeld precursor at z ≈ 40. The precursors propagate at approximately the
speed c/n(0) and c, respectively.

Figure 26: The resulting electric field from a 2d simulation for a medium where ε(ω) = µ(ω) is described
by Figure 24a. The image was captured after the duration t = 13.2. It is seen that the wave is refracted
at a negative angle, and propagates towards the boundary.
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12.2 Non-magnetic negative refraction

It was argued in Section 3.4 that negative refraction can also be obtained in non-magnetic media, e.g.
by the CFW-medium. In the CFW-medium µ = 1 (non-magnetic), and ε is given by a sum of a passive
and an active Lorentzian

ε(ω) = 1 +
F1ω

2
01

ω2
01 − ω2 − iΓ1ω

+
F2ω

2
02

ω2
02 − ω2 − iΓ2ω

, (96)

where F1 > 0 (passive) and F2 < 0 (active). The refractive index is given as n(ω) =
√
ε(ω), where

the sign should be chosen such that n(ω) → +ω/c as ω → ∞. The permittivity function ε(ω) and the
corresponding refractive index n(ω) is plotted in Figures 27, where the parameters of (96) are chosen
such that we get Ren(ω) < 0 in a short frequency range.

It is worth noting that Imn(ω) > 0 for all ω, even though Im ε(ω) < 0 for the frequency range
where Ren(ω) < 0. A negative Im ε means the medium has gain, which was a requirement for obtaining
non-magnetic refraction. Since the medium has gain, it may seem strange that the imaginary part of
n(ω) is positive, meaning the fields decay in the z-direction. This is explained as follows. Since the
medium has Re ε(ω1) > 0 and Reµ(ω1) > 0 at the observation frequency, the vectors E,H and k will
form a right handed system. This means k and S will indeed be parallel, even though the refractive
index is negative. Since Ren(ω) is negative (which gives Re kz < 0 for small kx), k points towards the
boundary, so also the Poynting vector S points towards the boundary. The backward wave thus grows
as it propagates towards the boundary. When it reaches the boundary it has an amplitude larger than
the incident wave. The amplified backward wave thus leaves the medium, and may be interpreted as an
”amplified reflection”. The positive Imn(ω) thus means that the fields grow in the −z-direction, rather
than decay in the +z-direction.

Simulation results from the medium described by Figures 27 are shown in Figures 28 and 29. The
parameters F1 = 2.44, ω01 = 2.64, Γ1 = 0.151 and F2 = −0.14, ω02 = 3.77, Γ2 = 0.151 were used, with
the observation frequency ω1 = 3.883. In the 1d simulation (Figure 28) it is seen that the fields decay
very fast with z inside the medium, which is due to the relatively large positive Imn(ω1). Since the
backward wave reach a larger magnitude than the incident wave (due to the gain), the excess energy
leaves the medium, and appears as an amplified reflection. As seen from the figure, the reflection grows
in magnitude for a while, before it stabilizes at a maximum amplitude of almost 5. The incident wave
has an amplitude of 1, which gives a reflection coefficient of almost 4. The 2d simulation shows that the
wave is refracted at a negative angle, even though this may be hard to see due to the strong decay of
the field in the z-direction.

Both 1d and 2d simulations were here performed in the Fresnel case, with vacuum to the left, and
the non-magnetic negative refracting medium to the right. This was done to demonstrate that there is
an amplified reflected wave present. In Figure 28 the low frequency Brillouin precursor can be seen for
z between 20 and 40, and the high frequency Sommerfeld precursor is seen at z ≈ 60.

It is worth noting that the gain of this medium is relatively high. For other media, this high gain
may have lead to rapidly growing fields, which again leads to artificial reflections destroying the validity
of the simulation. The reason this does not happen for this medium is that the frequencies for which the
medium has gain are refracted negatively. The gain is therefore working towards the boundary, so the
fields don’t propagate a long distance, and thus never grow very large.
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Figure 27: (a) The permittivity and (b) the refractive index for the medium described by µ = 1 and ε(ω)
given by (96). The parameters F1 = 2.44, ω01 = 2.64,Γ1 = 0.151 and F2 = −0.14, ω02 = 3.77,Γ2 = 0.151
were used. The refractive index is clearly negative for the frequencies around 3.8.

Figure 28: Non-magnetic negative refraction in the Fresnel situation. The non-magnetic medium, which
is described by Figures 27, is located at z > 0. The medium has gain, which gives a reflection coefficient
larger than 1. The reflected wave has almost reached back to z ≈ −60. It is seen that the amplitude of
the negative refracted wave has gradually been growing, and has now reached its stable value of almost
5 at z = 0. The Brillouin and Sommerfeld precursors are seen at z ≈ 30 and z ≈ 60, respectively. The
figure was captured after the duration t = 145.

53



Figure 29: Non-magnetic negative refraction in 2d. The non-magnetic medium, which is described by
Figures 27, is located at z > 0. The reflected wave has an amplitude of almost 4. The backward
propagating wave is coming from the top right corner, so the incident wave is in fact refracted at a
negative angle. The image was captured after the duration t = 48.
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12.3 Negative refraction with low loss/gain

The strength of the passive resonance in Figure 24a may seem unnecessary large. One could obtain
negative refraction using a much smaller resonance strength, but this would give a larger Imn(ω1),
meaning the fields decay more rapidly with z. It was shown by Nistad and Skaar that negative refraction
at very low loss/gain can be obtained through a steep change in Imn(ω) close to the observation frequency
[15]. Dirdal and Skaar later showed that all functions obeying the Kramers-Kronig relations can be
approximated by a sum of Lorentzians [14]. This will thus also be the case for the steep-variation
refractive index found in [15], so this medium can be simulated using the implemented FDTD program.
The refractive index for two media where such a steep drop in Imn(ω) is used to obtain negative
refraction are shown in Figures 30. As can be seen from the Figures the reduction of maximum gain/loss
has come at the expense of a smaller bandwidth with Ren(ω) < 0. Both media are left handed, and
ε(ω) = µ(ω) = n(ω).

Results from 1d simulations of both media are shown in Figures 31. Both simulations were done in
the current source situation. Figure 31a shows that a backward wave is present for z close to 0. For z
between 60 and 180 the Brillouin and Sommerfeld precursors can be seen. As seen in Figure 31b, the
transients in the gain medium grow rapidly with z. It is however possible to detect a backward wave
close to z = 0. Due to the large gain, this medium can only be simulated over a short time period before
artificial reflections destroy the solution.

From Figure 30b it is seen that for the passive medium the branch point trajectories do not cross
the real kx-axis, so the inverse Fourier transform can be taken along the real kx-axis. Figure 30d shows
that for the active medium the branch point trajectories are similar to those in Figure 11b. The inverse
Fourier transform must then be taken along a zig-zag path, similar to in Figure 11c, and the medium
described by Figure 30c is therefore expected to be simultaneous refracting.

Figures 32a and (b) show the resulting electric field from 2d simulations of the same media. Both
simulations were done in the situation with a current source at z = 0, and the medium under investigation
fills the entire space. The small source width σ = 2 was used, to limit the presence of exponentially
growing side waves, in accordance with the discussion in Section 6.4.

It is seen that for the passive medium (Figure 32a) a backward wave is established. For the active
medium the fields grow rapidly with z, as in the 1d-case. The deformation theory suggests that the
active medium should be simultaneous refracting in the monochromatic limit Eω1

(x, z, t); both signs
of kz should be present. Along the line x = 0 the expected response is thus a ”standing wave”. Due
to the rapidly growing fields artificial reflections destroy the validity of the FDTD solution, and the
monochromatic limit is therefore never reached in the simulations.

As was shown in Section 8.3, the monochromatic limit for this active medium (Figure 30c) is reached
at z = 2π after τ ≈ 5000. This is in the 1d-case, and it is expected to take even longer to reach the
monochromatic limit in 2d, due to the presence of growing side waves. The transients grow so rapidly
that it was by no means possible to simulate for such a long time.
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Figure 30: (a) The real and imaginary parts of ε(ω) given as a sum of 150 passive Lorentzians, with
parameters tuned to get a steep variation in Im ε(ω) at ω ≈ 1. (b) The branch point trajectories for a
medium described by ε(ω) = µ(ω) given as in (a), as Imω is reduced from γ = 5 to 0 at the observation
frequency ω1 = 1.06. (c) and (d) Similar as for (a) and (b), but where the Lorentzians are active. The
observation frequency ω1 = 0.97 was used.

Figure 31: The Figures (a) and (b) show the resulting fields from 1d simulations of media where ε(ω) =
µ(ω) are given by Figure 30a and (c), respectively. Both figures were captured after the same duration
t = 180. Note that the axes in the figures are different. The observation frequency ω1 = 1.06 was used
for the passive medium (Figure (a)), and ω1 = 0.97 was used for the active medium (Figure (b)).
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Figure 32: 2d simulations of the media with ε(ω) = µ(ω) = n(ω) given by Figures 30: (a) the passive
medium (Figure 30a) and (b) the active medium (Figure 30b). The simulations were done in the situation
where a current source is located at z = 0, and the medium fills the entire space. The source, indicated
by the bold line all the way to the left, produce an incident wave with Kx = 0 (normal incidence). In
(a) it is seen that a backward wave is established inside the passive medium. The observation frequency
ω1 = 1.06 was used. In (b) it is seen that the fields grow rapidly, due to large gain at other frequencies
than the observation frequency ω1 = 0.97. Both figures are captured after the duration t = 43.5.

12.4 Evanescent gain

When light hits a boundary surface between a high index medium and a low index medium, total
internal reflection occurs for incident angles larger than a critical angle θ > θc. Boundary conditions
for the electric and magnetic fields give that there must however still be an electric field inside the low
index medium. It can be shown that this field decays with z, i.e. the wave number kz has an positive
imaginary part. This will be the case for real ε and µ.

If the low index medium has loss/gain, the evanescent field should also somehow be altered. Due to
the boundary conditions the reflected wave should sense any such perturbation. How to determine the
electromagnetic response if the low index medium has loss/gain has been discussed extensively over the
last decades [22, 23, 24, 25, 26]. One of the issues discussed is whether the reflectivity may exceed unity
if the medium has gain, which is referred to as evanescent gain. It is argued in [26] that evanescent gain
may or may not occur, this will depend on the global properties of the permittivity function ε(ω) (for
a non-magnetic medium, µ = 1). For a weak gain medium with small dispersion, they show evanescent
gain should be present.

Which direction the wave propagates, and whether the gain works towards or away from the boundary
is determined by the signs of Re kz and Im kz, so the problem is essentially to determine the correct sign
of kz. The deformation path-framework can therefore be used to understand this phenomenon. If kz is
chosen according to (26), the deformation theory ensures that kz is zero-free, and continuous with kx
and ω along the inverse Fourier-Laplace integration surface. As argued in the attached paper we must
also have kz → ikx for kx →∞ for a fixed ω, and kz → +ω/c for ω →∞ for a fixed kx, independent of
the properties of the medium we’re investigating.

We now consider a weak gain medium, for concreteness we assume the medium is non-magnetic
(µ = 1), and ε(ω) is given by a weak inverted Lorentzian,

ε(ω) = 1− Fω2
0

ω2
0 − ω2 − iΓω , (97)

and set the resonance frequency as our observation frequency, ω1 = ω0. The parameters F = 0.05,
ω0 = 1 and Γ = 0.1 were used in the simulations which produced Figure 34.

Provided F < 1, ε(ω) will be analytic and zero-free for Imω > 0, so the inverse Laplace transform
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Figure 33: As Imω is reduced from γ to zero (a), kz’s branch points, kx = ±√εµω/c, moves along the
trajectories in (b) for a weak gain medium. The integration path in the kx-domain must detour around
these branch points.

can be moved down to the real axis. At a given frequency the branch points will move as shown in Figure
33b. Note that the resulting integration path κ(ω) contains vertical detours with complex kx. These
detours are largest at the resonance frequency. It may be tempting to simply overlook these detours, so
that the inverse Fourier transform is taken along the real kx-axis, as it would be for a passive medium.
This is however not possible, due the branch cuts from the zeros of kz, which cross the real kx-axis.
For kx = 0 we have kz = ±

√
ε(ω)ω/c, where the sign of the square root must be chosen such that

kz → +ω/c as ω →∞. For ε(ω) given by (97) we get Im kz < 0 for small kx. If we increase kx along the
real axis, requiring kz to be continuous with kx we would get kz → −ikx as kx → ∞, in contradiction
to the requirement from the paper. But, as we cross the branch cut the sign of kz must be switched
(see Section 2.5). This will give kz → +ikx as kx → ∞, in accordance with the requirement from the
paper. (The branch cuts thus ensure that the sign of kz can be chosen such that kz approach both limits
kz → +ω/c as ω →∞ and kz → ikx as kx →∞, and still is continuous with kx and ω along the inverse
Fourier-Laplace transform integration surface).

FDTD simulations show that the field is in fact evanescent for |Kx| > |Re kx,bp|, where kx,bp is the
branch points for kz. For |Kx| < |Re kx,bp| the fields grow with z, also as the theory predicted (Im kz < 0).
The resulting fields are shown in Figures 34 for the two cases. In the simulations the medium for z > 0
is the weak gain medium described by (97), while the medium for z < 0 is a high index (non-dispersive)
dielectric medium, with ε = 4 and µ = 1. Figure 34(d) shows that the reflected field has an amplitude
larger than 1, implying that evanescent gain is present. In the simulations Maxwell’s equations are
solved in the time domain. One may therefore take the simulations as an independent verification for
that the deformation theory can be used to understand when evanescent gain is possible or not. In the
simulations the incident angle θ is determined by the carrier wavenumber Kx of the approximately plane
waves produced by the source; where the critical angle θc will correspond to Kx = 1.
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Figure 34: The incident wave propagates from a high index medium (ε = 4), to a low index gain medium
located at z > 0, for two different incident angles: (a) θ < θc (Kx = 0.3). Only a small fraction of the
field is reflected at the boundary. (b) θ > θc (Kx = 1.3). A large fraction is reflected at the boundary. (c)
The field from Figure (a) along the line x = 0. The field increases with z inside the medium, so Im kz < 0.
(d) The field from Figure (b) along the line x = 40. The field decrease with z inside the medium, so
Im kz > 0. The maximum amplitude of the incident wave is 0.65, while the maximum amplitude at the
boundary z = 0 is 1.5. The reflection coefficient is thus larger than 1, so evanescent gain is present.
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12.5 Absolute instabilities for media with
√
εµ with zeros for Imω > 0

It was argued in Section 7.3 and 7.4 that for media with ε(ω)µ(ω) with zeros in the upper half plane
Imω > 0, the fields should diverge in time, even at a fixed point in space. FDTD simulations of such
media verify that this is the case. This happens even when the zeros in the upper half plane are of even
order, which in theory should result in a stable medium, in the 1d case.

The non-magnetic medium (µ = 1) with ε given by

ε(ω) = 1 +
F1ω

2
01

ω2
01 − ω2 − iΓ1ω

+
F2ω

2
02

ω2
02 − ω2 − iΓ2ω

, (98)

with the parameters F1 = 1.5, ω01 = 0.8, Γ1 = 0.15, F2 = −0.15, ω02 = 1.1 and Γ2 = 0.3, has a zero of
even order for ε(ω)µ(ω) in the upper half plane, at ωz = −1.18 + i0.026. Figure 35a shows the resulting
field from a 1d simulation of this medium, while Figure 35b shows the resulting field from a 1d simulation
of a medium where ε(ω) = µ(ω) both are equal to (98). For the latter medium the zero for ε(ω)µ(ω) in
the upper half plane is of even order. The 1d simulation corresponds to the situation where the plane
wave limit Kx = 0, σ →∞ is taken initially, so only the plane wave component Kx = 0 is present. The
non-magnetic medium should thus have an absolute instability, where the fields grow exponentially with
time, with the exponential growth rate equal to Imωz = 0.026. The symmetric medium (ε = µ) should
in theory be stable, at least if the electric and magnetic response are in fact exactly identical.

The simulations show that the electric field grow with time in both media. Through evaluating
the electric field at a given z over time, it is found that the field amplitude do in fact grow with an
exponential growth rate ≈ 0.025, i.e. in good agreement with the theoretical predicted value. For the
non-magnetic medium (Figure 35a) the field has grown largest close to z = 0, as this is where the field
has been present over the longest time. The observation frequency ω1 = 1.2 was used in the simulations.
If an observation frequency further apart from the zero in the upper half plane was used, it would take
a longer time before the instability becomes visible, as the instability becomes less excited. However, for
large times the field will eventually be dominated by the instability.

It is believed that the reason the field grow with time even for the symmetric medium is that the
electric and magnetic field are calculated separately at shifted points in space and time in the simulations.
Numerical errors then cause the resulting electric and magnetic response to differ slightly, even though
the same parameters were used for ε(ω) and µ(ω). As explained in Section 7.4 such small perturbations
will split the double zero into to single zeros, which leads to an absolute instability.

Even in the simulation world, where no physical impurities or random generated noise are present,
even order zeros in the upper half plane thus lead to an absolute instability. In an actual physical
experiment there will always be some sort of perturbations present, and media with even order zeros in
the upper frequency plane therefore have limited use.

As explained in Section 7.3, taking the plane wave limit σ → ∞ for a large Kx may in fact prevent
the instability from occurring. Results from a 2d simulation of the non-magnetic medium given by (98),
using a large Kx, is shown in Figure 36. The field is evanescent, and does not grow with time throughout
the duration of the simulation. In the simulation a finite σ is used, so all kx are excited to some extent,
also kx = 0. For very long experiment durations we should thus expect the instability to eventually
become visible, even for this large Kx. The 2d simulation was done in the situation with a current source
at z = 0, and only the field for z > 0 was simulated due to symmetry.
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Figure 35: 1d simulation of the two media (a) µ = 1 and ε given by (98) and (b) ε(ω) = µ(ω) both given
by (98). The fields grow with time in both media. The simulations were done in the current source
situation, where only the fields for z > 0 are simulated due to symmetry. Both figures were captured
after the same duration, t = 129. The arrows in the figures indicate that the fields grow with time.

Figure 36: Simulation results showing that an absolute instability disappears for large Kx. The field
propagate along the x-axis, and decay fast with z due to the large ”incident angle”. The bold line at
z = 0 indicates the source.
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13 Discussions and conclusion

Fourier-Laplace analysis was used to predict the existence of media exhibiting simultaneous refraction,
i.e. refracting both positively and negatively at the same time. This novel property will occur in media
where when deforming the inverse Laplace transform integration path down to the real ω-axis, the
branch points in the kx-plane move such that the kx-integration path is forced into a zigzag-pattern at
our observation frequency ω1. For this to be possible the medium must have gain. It was argued that
this effect is two-dimensional, meaning that the side waves somehow establish waves along the z-axis
with both signs of kz.

It was found that to obtain simultaneous refraction in a medium where ε(ω) = µ(ω) = 1 − χ(ω),
where χ(ω) is given by the Lorentz function, the strength of the Lorentz function must be very large,
meaning the maximum gain of the medium must be large. It was further showed that the required gain
can be minimized through introducing a steep drop in the imaginary parts of ε and µ just above the
observation frequency.

The deformation theory was also used to analyze possible instabilities in infinite or semi-infinite gain
media. It was found that for media where

√
εµ is non-analytic or has zeros in the upper half plane, the

inverse Laplace transform cannot be moved down to the real ω-axis, and such media will therefore have
an absolute instability, meaning the fields will grow with time even at a fixed point in space. It is further
shown that due to the possible presence of instabilities, it is not necessarily possible to interpret the
fields in the monochromatic and plane wave limits in media with gain, as it usually is done for passive
media. Even for media where the monochromatic limit exists, it is shown that for certain media it may
take a very long time for the transients to die out.

A FDTD program was implemented in MATLAB, to be used for simulating some of the novel media
which were analyzed using the Fourier-Laplace theory. A range of negative refracting media were simu-
lated, with results consistent with what the theory predicts. Simulation results showing evanescent gain
were presented. For media with a non-analytic

√
εµ in the upper half plane, the simulations do in fact

show that the fields grow with time, i.e. an absolute instability is present. For media with a large gain
the program fails after just a short duration, due to artificial reflections destroying the validity of the
solution. These reflections were shown to originate from the numerical precision of MATLAB.

Due to these artificial reflections, simulations were not able to reveal the effect of simultaneous
refraction. The reflections only occur for very large fields. At our observation frequency ω1 the gain for
the optimized medium is very low, and in the monochromatic limit the fields should thus not be very
large. A large gain at other frequencies very close to ω1 does however make the field grow rapidly in
the transient period, which is why the artificial reflections occur. The maximum gain of the optimized
medium may be further reduced through an even steeper change in Imn(ω). This will however come at
the cost of an even smaller bandwidth with Ren(ω) < 0, which is not desirable, as this will increase the
necessary duration for the monochromatic limit to be reached.

Through turning on the source sufficiently smoothly, one may prevent the excitation of the frequencies
with large gain. Since the gain is so large, the necessary onset period will however be extremely long, so
it is not possible to follow this approach in our simulations, due to lack of computational power.

It is important to remember that it is in the real, physical world, not the FDTD world we live in. Even
though artificial reflections due to numerical errors would not occur in an actual physical experiment, we
would however run into similar problems. In the real world there will always be some noise or impurities,
which eventually will excite the gainy frequencies leading to huge fields. The media in this analysis were
assumed to be infinite, or semi-infinite. In practice the theory here presented is thus only valid for very
short time periods, as the light very soon will reach the outer boundaries of the medium it propagates
within. The theory does however tell us about the actual optical properties of the investigated medium,
and helps us understand the origin of instabilities. In media with absolute instabilities the fields will
diverge with time, so possible application of such media may be limited.
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14 Further work

14.1 Perfectly Matched Layers

In the implemented FDTD program the spatial domain was chosen so large that the fields never reached
the outer boundaries throughout the simulations. This is because the investigated media where assumed
to be infinite or semi-infinite. If we want to run simulations over very long times this may however lead to
a memory leakage. This problem could be overcome by making use of Perfectly Matched Layers (PML)
techniques [27]. A perfectly matched layer is an artificial absorbing layer. Waves which hit this layer
will simply be absorbed, rather than reflected. By applying a PML technique it may thus be possible
to limit the extent in the x- and z-directions, and by this allow for simulating for long times. Perfectly
matched layers are however not absolute reflection free. It is of high importance that the reflections are
kept at an absolute minimum, as we want to investigate the properties of a semi-infinite medium. The
absorption at the boundaries must therefore be larger than the round-trip gain of the medium, otherwise
the fields will grow with time.

Implementation of a PML technique may also in fact help overcome the problem with artificial
reflections. The artificial reflections occur because the fields grow very large. If the spatial domain
is chosen small enough that the transients never grow any large we have thus prevented the artificial
reflections from occurring. Implementation of PML boundary conditions should thus make it possible to
simulate for large enough times to reveal the effect of simultaneous refraction.

14.2 Metamaterials beyond the Kramers-Kronig relations

Dirdal and Skaar recently showed that the Kramers-Kronig relations may be a too strict limitation on
ε(ω) and µ(ω). For instance, the split ring resonator medium, which only consists of passive components,
must have gain for large frequencies for the Kramers-Kronig relations to be obeyed. The Kramers-Kronig
relations are really just relating mathematical functions, which do not necessarily have any physical
meaning. The effective medium theory metamaterial models are based on requires the structures to be
much smaller than the wavelength of the light. For very high frequencies the models thus collapse. That
a passive medium seems to have gain may therefore be understood as that the frequencies where the
medium is gainy is outside the metamaterial frequency range. At these frequencies µ(ω) will just be a
mathematical function, and has nothing to do with the physical properties of the medium.

The Kramers-Kronig relations showed us that gain above the observation frequency was necessary
for obtaining simultaneous refraction. It may therefore be worth looking into whether this gain may
be ”hidden” outside the metamaterial frequency range, as is the case for the inverted transmission line
medium.
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A Fourier theory of linear gain media

My contribution: Section III and Section IV: Choice of excitations, and associated analysis. Section V.D
and V.E: Choice of medium, analysis, numerical experiments, and discussions. Section VI: Conclusion.
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The analysis of wave propagation in linear, passive media is usually done by considering a single
real frequency (the monochromatic limit) and also often a single plane wave component (plane wave
limit), separately. For gain media, we demonstrate that these two limits generally do not commute;
for example, one order may lead to a diverging field, while the other order leads to a finite field.
Moreover, the plane wave limit may be dependent on whether it is realized with a rect function
excitation or gaussian excitation of infinite widths. We consider wave propagation in gain media by
a Fourier–Laplace integral in time and space, and demonstrate how the correct monochromatic limit
or plane wave limit can be taken, by deforming the integration surface in complex frequency–complex
wavenumber space. We also give the most general criterion for absolute instabilities. The general
theory is applied in several cases, and is used to predict media with novel properties. In particular,
we show the existence of isotropic media which in principle exhibit simultaneous refraction, meaning
that they refract positively and negatively at the same time.

I. INTRODUCTION

Fourier theory makes it possible to consider single fre-
quencies and plane wave components separately, in de-
scribing electromagnetic wave propagation in linear, pas-
sive media. This leads to huge simplification in analy-
sis and interpretation, especially for dispersive (and/or
spatially dispersive) media. Nevertheless, we must
have in mind that real physics happens in the time–
spatial domain, not in frequency–wavenumber space; the
monochromatic and plane wave limits can never be real-
ized in practice. The monochromatic limit is approached
by turning on the excitation at some time t = 0 [1], and
waiting a sufficiently long time until the transients have
died out. The plane wave limit is approached by letting
the width of the excitation be sufficiently large.

For active media (gain media), it is clearly of large in-
terest to use the same Fourier theory, by decomposing
the field into frequency components and/or plane waves.
There is, however, a number of obstacles. The most ob-
vious one is that active media are inherently nonlinear
due to gain saturation [2]. In practice, this can be dealt
with by verifying that the magnitude of the solution is
less than the threshold for gain saturation. If it is not,
then the excitation must be reduced accordingly, or the
solution must be rejected. If there are divergences as-
sociated with the linear solution, the solution must be
rejected in any case.

Another problem is that the Fourier transform not nec-
essarily exists. A remedy is to use the Laplace trans-
form, decomposing the time-domain fields into exponen-
tially increasing functions exp(−iωt) for Imω > 0 (see
Sec. II). Once the solution has been found, it can often
be continuated towards real frequencies, enabling sim-
pler interpretation (Sec. III). One may argue that the
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Fourier transform should be sufficient for the relevant
situations, since diverging solution must be rejected any-
way. However, this strategy is dangerous, as imposing
Fourier transform analysis may give the impression of
false, stable solutions.

An extensively discussed problem in the context of ac-
tive media, is the determination of the sign of the longi-
tudinal wavenumber kz. This problem is far from trivial,
even e.g. in the context of total internal reflection from
a weakly amplifying medium [3–5]. More recently, the
problem has been discussed in the context of the wave
vector or refractive index of more advanced active media
including active metamaterials [6–9].

We are not going to treat this problem here, as it now
seems to be agreement that the sign of the longitudinal
wavenumber must be determined by ensuring it is ana-
lytic in the upper half-plane of complex frequency, and
such that kz → +ω/c for ω → ∞ [7–11]. Here ω is the
(possibly complex) frequency and c the vacuum light ve-
locity. However, we will take the analysis one important
step further; by considering a double Fourier–Laplace
transform with respect to space and time. Clearly, for
realistic situations, the fields can neither have infinite
durations nor infinite widths. In addition to turning the
field excitations on at t = 0, it turns out to be crucial
to let them have finite widths, to see how the medium
behaves in practice. Indeed, even though a particular
medium does not show absolute instabilities for plane
wave excitations, it can support absolute instabilities in
the presence of other excitations.

Once the general theory governing causal finite beam
propagation has been discussed, it is of interest to con-
sider the monochromatic limit and plane wave limit. A
number of peculiar but interesting results arise. First
of all, the monochromatic and plane wave limits do not
commute in general; for very common situations with
conventional gain media, one order leads to finite fields,
while the other order leads to infinite fields. Second of
all, the plane wave limit may depend on the way it is



2

taken; if it is realized using a finite-support excitation or
a gaussian excitation, eventually of infinite widths. Our
analysis leads to a better understanding of the nontrivi-
alities associated with earlier, monochromatic and plane-
wave analyses of active media. It also can be used to
predict new classes of active media, with novel responses.
For example, we predict the presence of isotropic media
which exhibit simultaneous refraction, i.e., both positive
and negative refraction simultaneously. While this is a
novel and surprising response, it may be argued that the
required gain is unrealistically high, and makes both real-
ization and time-domain simulations challenging or even
impossible, at least for the proposed media.

Previously, Kolokolov [4] and Grepstad and Skaar [5]
have treated the problem of Fourier–Laplace transform
analysis of active media. However, Kolokolov only con-
sidered the special case with weak or no dispersion.
Dispersion has important consequences for the theory,
as it turns out to fundamentally change the method
of deformation in the complex frequency–wavenumber
space. The dispersion, possibly engineered by meta-
materials, may lead to new classes of active media, as
shown by the different possible behaviors in frequency–
wavenumber space. Grepstad and Skaar did not perform
a complete analysis, since they did not consider the de-
formation in frequency–wavenumber space, including the
monochromatic limit for finite beams.

The article is structured as follows. In Sec. II, we
state the problem and discuss the assumptions in detail,
before analyzing the fields using the Laplace transform
(in time) and Fourier transform (in space). In Sec. III
we discuss how we may approach real frequencies for me-
dia without absolute instabilities. This happens at the
expense of deforming the integration path in the com-
plex wavenumber (kx) space. In Sec. IV we discuss the
plane wave limit, and the interpretation of divergences
and non-commutativity. The theory is applied to the un-
derstanding of existing media and novel media in Sec.
V. In particular, we show the presence of simultaneous
refraction, before concluding in Sec. VI.

II. LAPLACE AND FOURIER TRANSFORM
ANALYSIS

We restrict the analysis to linear, time-shift invariant,
isotropic, homogeneous media without spatial dispersion.
Moreover, we assume the following asymptotic behav-
ior for the product of permittivity and permeability, as
ω → ∞ [12]: ε(ω)µ(ω) = 1 + O(ω−2). Finally, we as-
sume that the medium does not support superexponen-
tial instabilities, meaning that any field solution should
not grow faster with time than an exponential.

In the analysis we consider an infinite or semi-infinite
medium. Of course, there are no infinite gain media
in practice; what is meant by “infinite” here is that the
smallest distance from an observation point to the bound-
ary of the medium is larger than ctmax, where c is the
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FIG. 1. An excitation is located at z = 0 in a homogeneous
medium. In the figure the special case with finite width 2σ is
shown.

vacuum light velocity and tmax is the maximum dura-
tion of the experiment. To approach steady state (or
the monochromatic limit) we will later require tmax to be
large. Then we must have in mind that the dimensions of
the gain medium must be accordingly large. Considering
an infinite or semi-infinite medium helps us understand
the optical response given solely by the medium’s proper-
ties – all effects related to interactions with surrounding
media have been ruled out.

We will assume that the medium is dark for t ≤ 0. This
assumption needs some clarification. To establish the
active medium, an energy pump must be turned on before
t = 0. When the system does not support instabilities,
we can imagine that the pump was turned on a long time
before t = 0, such that any transients have died out.
If there are instabilities, however, any disturbance will
blow up with time. We could assume that the pump is
turned on slowly before t = 0, sufficiently smooth such
that no significant transients are generated as a result
of the pump, but sufficiently fast such that the (small)
transients do not grow too much before t = 0. We do
not consider the existence of such a trade-off further; we
rather demand that any transients from the pump or from
other perturbations or fluctuations in the system, must
be included into the analysis. This is done by including
them into the excitation of the system, to be defined
below.

It is also in order to comment the linearity assumptions
in some detail. The amplitude in any practical medium
will be limited by nonlinear effects such as gain satura-
tion. When we refer to “diverging fields”, or “instabili-
ties”, it strictly means that the fields grow until they are
limited by gain saturation. Clearly, in such cases the lin-
ear analysis is only accurate for a limited duration. In
the absence of instabilities, the analysis is clearly accu-
rate for all times, provided the excitations are sufficiently
weak.

For simplicity we limit the discussion to propagation
in two dimensions, x and z, and transversal electric (TE)
fields. Let E(x, z, t)ŷ be the physical electric field, point-
ing in the y-direction ŷ. Since the medium is active, the
field may diverge with time t. We have limited our atten-



3

tion to active media that leads to fields growing at most
exponentially (see [13]):

|E(x, z, t)| ≤ E0 exp(γt). (1)

Here E0 and γ are constants independent of x, z, and t.
Consider a source located at the plane z = 0, producing
fields in the half-spaces z > 0 and z < 0 (see Fig. 1). By
(1) the electric field is Laplace transformable:

E(x, z, ω) =

∫ ∞

0

E(x, z, t) exp(iωt)dt, (2)

for Imω > γ. Furthermore, E(x, z, ω) can be Fourier
transformed wrt. x, to obtain the plane wave spectrum

E(kx, z, ω) =

∫ ∞

−∞
E(x, z, ω) exp(−ikxx)dx. (3)

The inverse transform can be written

(2π)2E(x, z, t) = (4)

=

∫ iγ+∞

iγ−∞

∫ ∞

−∞
E(kx, z, ω) exp(ikxx− iωt)dkxdω

=

∫ ∞

−∞

∫ iγ+∞

iγ−∞
E(kx, z, ω) exp(ikxx− iωt)dωdkx,

where, in the last equality, we have used Fubini’s theorem
to interchange the order of integration. This is permit-
ted provided E(kx, z, ω) is absolute integrable wrt. ω
and kx, and kx and ω. Once we have found a solution
to Maxwell’s equations, we must verify that the solution
is consistent with the assumption. For the solutions in
the present article, it is argued in Appendix A that the
fields are absolute integrable provided the excitation is.
A sufficient condition for absolute integrability is there-
fore e.g. that the excitation (to be defined shortly) can
be written U(kx)V (ω) for absolute integrable functions
U(kx) and V (ω). This translates to an excitation in the
(x, t)-domain of the form u(x)v(t), for continuous func-
tions u(x) and v(t).

We consider a source in the plane z = 0 (Fig. 1),
infinitely thin, but possibly of infinite width. In gen-
eral, we may have sources everywhere; in that case, we
would have to superpose the fields resulting from the dif-
ferent sources. For z 6= 0, Maxwell’s equations mean
that

(
d2/dz2 − k2

x + εµω2/c2
)
E(kx, z, ω) = 0. Further-

more, the transversal (x-component) of the magnetic field
is given by −iωµH(kx, z, ω) = dE(kx, z, ω)/dz. Hence,
we can express

E(kx, z, ω) = A(kx, ω)eikzz +B(kx, ω)e−ikzz (5a)

H(kx, z, ω) = − kz
ωµ

[
A(kx, ω)eikzz −B(kx, ω)e−ikzz

]

(5b)

for z < 0, and

E(kx, z, ω) = C(kx, ω)eikzz +D(kx, ω)e−ikzz (6a)

H(kx, z, ω) = − kz
ωµ

[
C(kx, ω)eikzz −D(kx, ω)e−ikzz

]

(6b)

for z > 0. Here

k2
z = εµ

ω2

c2
− k2

x. (7)

The four functions A(kx, ω), B(kx, ω), C(kx, ω), and
D(kx, ω) are connected by the electromagnetic boundary
conditions, which in turn, are dependent on the source.
For a current source, E(kx, z, ω) is continuous across
the source plane, while H(kx, 0

+, ω) − H(kx, 0
−, ω) =

J(kx, ω), where J(kx, ω) is the (Fourier–Laplace trans-
formed) surface current source. With reflection symme-
try about the plane z = 0, this means that

A = D, (8a)

B = C, (8b)

2kz
ωµ

(A−B) = J(kx, ω). (8c)

Clearly, both unknown functions A and B cannot be
found from (8). Moreover, since the medium poten-
tially is active, we cannot use principles like requiring
the source to do positive work, or field decay as z →∞.
We must invoke the principle of causality in its most fun-
damental form.

First we note that the sign of kz can be chosen arbi-
trarily in (5) and (6); a change of sign means only that
the functions C and D (and A and B) are interchanged.
Since ε(ω) and µ(ω) are analytic for Imω > γ, and tend
to unity as ω → ∞ there, we choose the sign such that
for a fixed kx,

kz(kx, ω) is analytic for Imω > γ, and (9)

kz(kx, ω)→ +ω/c as ω →∞ in the region Imω > γ.

Assuming that the medium and the source are at rest
for t < 0, the fields as described by (6) are causal. Thus
they satisfy the conditions of Titchmarsh’ theorem for di-
verging functions, (B6) and (B7) (see Appendix B). This
means that C(kx, ω)eikzz and D(kx, ω)e−ikzz, separately,
satisfy these conditions. From the initial value theorem
and the fact that kzc = ω+O(ω−1), it is intuitively clear
that the factor e−ikzz shifts the beginning of the associ-
ated time-domain response to earlier times by an amount
z/c. Thus D(kx, ω)e−ikzz can only be compatible with
causality for all z > 0 if D(kx, ω) ≡ 01.

1 A rigorous argument goes as follows (here we suppress the kx-
dependence for clarity): Since D(ω) exp(−ikzz) is required to
satisfy (B7) for all z, and since kzc = ω + O(ω−1), we have for
sufficiently large γ:

∫ ∞

−∞
|D(ω′ + iγ)|2dω′ ≤ 2K(z) exp(−2γz/c). (10)

Here K(z) is independent of γ. If d(t) is the inverse Laplace
transform of D(ω), then d(t) exp(−γt) is the inverse Laplace
transform of D(ω + iγ). Thus, from Parseval’s relation,∫∞
0 |d(t)|2 exp(−2γt)dt = 1

2π

∫∞
−∞ |D(ω′ + iγ)|2dω′. Combina-
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We have thus arrived at the causality result: In (5)
and (6), we have

A = D = 0, (12a)

B = C = − ωµ
2kz

J(kx, ω), (12b)

and the sign of kz is to be determined according to (9).
In Appendix A we prove that the function kz(kx, ω) is
zero-free in a region Imω > γ; thus B is analytic there2.

We now consider the usual situation described by the
Fresnel equations, where we have different media on each
side of the plane z = 0, and there is no source at z = 0
but rather somewhere in the medium on the left-hand
side (z < 0). Clearly, we can use the identical causal-
ity argument on the right-hand side (z > 0), to obtain
(9) and D = 0. The electromagnetic boundary condi-
tions E(kx, 0

+, ω) = E(kx, 0
−, ω) and H(kx, 0

+, ω) =
H(kx, 0

−, ω) then give the reflection and transmission co-
efficients

B

A
=
µ2k1z − µ1k2z

µ2k1z + µ1k2z
, (13a)

C

A
=

2µ2k1z

µ2k1z + µ1k2z
, (13b)

where k2
iz = εiµiω

2/c2−k2
x. Here subscript 1 and 2 stand

for the medium to the left and right, respectively.
It is important to note that the results so far have

been derived for Imω > γ. In Sec. III we will consider
the possibility of continuating the solutions towards real
frequencies.

III. TOWARDS REAL FREQUENCIES

To facilitate interpretation and computation, it is use-
ful to examine if we can move the inverse Laplace trans-
form contour (Bromwich path) in (4) down to the real ω-
axis, such that it describes an inverse Fourier transform.
For the active media and systems where this is possi-
ble, we have only convective instabilities [14, 15]: Then,

tion with (10) yields

∫ T

0
|d(t)|2dt ≤ exp(2γT )

∫ T

0
|d(t)|2 exp(−2γt)dt (11)

≤ exp(2γT )

∫ ∞

0
|d(t)|2 exp(−2γt)dt ≤ K(z)

π
exp(−2γ(z/c− T )).

valid for any z and T , and for sufficiently large γ. Letting z/c >
T , it is apparent that we can make the right-hand side as small
as we wish, by letting γ be sufficiently large. Thus d(t) vanishes
for t < T . Since T was arbitrary, d(t) vanishes everywhere.

2 If we had chosen the opposite sign for kz in (9), we would have
obtained B = C = 0. If we had chosen the sign in another,
arbitrary way, we would have obtained A = D = 0 for some
frequencies, and B = C = 0 else. Such choices are inconvenient
(but perfectly valid) as kz and the four functions A, B, C, and
D get nonanalytic.

nondiverging excitations lead to nondiverging fields for
every fixed point (x, z). This means that any growing
wave must be convected away. On the other hand, if
the Bromwich path cannot be moved down to the real
axis due to singularities or cuts, the transform can be
described as an inverse Fourier transform plus integrals
around the nonanalytic points. Since the latter integrals
diverge with time, we have absolute instabilities, meaning
that the fields diverge even at fixed points in space.

For a wide range of active media of interest, it turns out
to be possible to move the Bromwich path in (4) down to
the real axis, at the expense of deforming the integration
path in the kx-domain [15]. This is what we will consider
in the following. The clue here is to realize that the
integrand is analytic in both kx and ω, so integration
paths can be deformed until they reach singularities. To
this end we assume that εµ does not have singularities
or zeros for Imω ≥ 0; situations with zeros in the upper
half-plane will be discussed later. Under these conditions√
εµ is analytic and zero-free for Imω ≥ 0. We consider

the evaluation of the physical field in the spatial and time
domain, according to (4), but along a possibly deformed
surface Γ in the (kx, ω)-domain:

(2π)2E(x, z, t) =

∫

Γ

E(kx, z, ω) exp(ikxx− iωt)dkxdω

(14)
Consider Fig. 2a-b, showing the original integration

paths in the ω- and kx-domains. For all ω in the indicated
domain Dω, the branch points of kz, i.e., kx = ±√εµω/c,
are located in the domain Dkx . Now, consider the short
piece of the integration path that lies in Dω. For these
ω values, the idea is to deform the corresponding kx in-
tegration path, as shown in Fig. 2c. This can safely be
done, since kz(kx, ω) is analytic wrt. kx away from the
branch cuts.

The next step is to interchange the order of integration
(using Fubini’s theorem). For each kx in the path in Fig.
3b, we can deform the short piece of the ω-path, obtain-
ing the path in Fig. 3a. Repeating the procedure for two
neighboring pieces of the ω-integration curve, we obtain
the situation in Fig. 4, generally with two different in-
tegration curves in the kx-domain. In simple situations
like the one in the figure, we could use a single, com-
mon integration curve in the kx-domain, for both pieces
in the ω-domain. In general, to get rid of the vertical
integration curves between the two domains in Fig. 4a,
we must require the existence of a common integration
curve in the kx-domain detouring the interface between
the neighboring domains (Fig. 4c). If this is always the
case, we can continue the deformation in the ω-domain
until the integration curve coincides with the real axis:

E(x, z, t) =
1

2π

∫ ∞

−∞
E(x, z, ω) exp(−iωt)dω, (15)

where

E(x, z, ω) =
1

2π

∫

κ(ω)

E(kx, z, ω) exp(ikxx)dkx. (16)
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Dω

(a)

(c)

Im kx

Im kx

Dkx

(b)
Re kx

Reω

Re kx

Imω

γ

FIG. 2. The dashed lines correspond to the integration paths
in (4): (a) ω-domain; (b) kx-domain; and (c) deformed path
in the kx-domain for the ω indicated by a circle in (a). The
domain Dkx corresponds to the set of values kx = ±√εµω/c
for ω ∈ Dω. The open circles in the kx-plane correspond to the
open circle in the ω-plane. The dotted vertical lines indicate
branch cuts for kz(kx, ω) for the particular ω as indicated by
the open circle. We proved in Appendix A that kz(kx, ω) is
analytic wrt. kx, for Imω = γ and real kx; thus the branch
cuts must avoid the real kx-axis. In the figure we take them
to be vertical, starting at the circles.
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Imω

(a)
Reω

Im kx

Re kx

(b)

γ

FIG. 3. Deformation in the ω-domain. For each kx in the
path in (b), the integration path in Dω can be deformed (a).

Here κ(ω) is the deformed path in the kx-domain, for
each ω. Since Imω = 0 in (15), the resulting field will
not diverge with time. Thus in these situations, there are
no absolute instabilities, and (16) can be interpreted as
the usual frequency-domain field for real ω.

We have required the existence of a common kx-
integration curve for any two neighboring ω’s. A suf-
ficient condition is that

√
εµ is analytic for Imω ≥ 0:

Consider the trajectories of kz’s branch points, kx =
±√εµω/c, as we reduce Imω from γ to zero. For two
neighboring values of Reω, these two trajectories will
become arbitrarily close as the two Reω’s approach each
other.

We have also required that εµ be zero-free for Imω ≥ 0.
While even order zeros give analytic square root, they in-
duce another problem: At the zero the two branch points
in the kx-domain coincide so the integration curve get
“stuck”.

The frequency-domain field E(x, z, ω) is related to the
physical, time-domain field in the so-called monochro-
matic limit. From (15),

E(x, z, t) =
1

2π

∫ ∞

−∞

E(x, z, ω)

V (ω)
V (ω) exp(−iωt)dω, (17)

where E(x,z,ω)
V (ω) is the transfer function from the excitation

V (ω) to the resulting field E(x, z, ω). Note that V (ω) is
a factor in E(x, z, ω), so the transfer function is inde-
pendent of V (ω). We can for example take a unit-step
modulated complex exponential as the excitation3:

v(t) = H(t) exp(−iω1t), H(t) =

{
0, t < 0

1, t > 0
, (18)

with Laplace transform

V (ω) =
i

ω − ω1
. (19)

The inverse transform (17) can be found with the residue
theorem, by closing the contour by a large semicircle in
the lower half-plane:

E(x, z, t) =

[
E(x, z, ω)

V (ω)
exp(−iωt)

]

ω=ω1

(20)

+ transients(t).

Here the term transients(t) is a result of the integration
around all singularities and cuts in the lower half-plane,

3 This excitation is not continuous at t = 0. Thus its Laplace
transform (19) is not absolutely integrable with respect to ω; a
condition that must be satisfied to apply Fubini’s theorem to
(4). However, we can come as close as we wish to the excitation
(18) while satisfying the condition, by letting H(t) be slightly
smoothened at t = 0. This makes (19) valid for arbitrarily large
ω, before it starts to decay faster.
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Imω

(a)
Reω

γ

Im kx

Re kx

(c)

Im kx

Re kx

(b)

FIG. 4. Deformation of two neighboring pieces of the ω-
integration curve (dashed black and solid blue) (a) and the
associated kx-integration curves (b). For ω-values along the
vertical integration curves between the neighboring domains
in (a), one can use a common kx-integration curve (c).

and will decay exponentially. For later use, we define the
monochromatic limit limω1

E(x, z, t) as the field when the
excitation is given by (18), and for sufficiently large t such
that the transients can be ignored:

lim
ω1

E(x, z, t) = E(x, z, t)− transients(t). (21)

For the case where εµ is analytic and zero-free for Imω ≥
0, the monochromatic limit limω1

E(x, z, t) exists, and is
given by the first line in (20). Even though the monochro-
matic limit exists in principle, in some situations (media
with large gain and large x or z) the transients may be
extremely strong, which means it may take very long time
before they have died out.

We now consider the more complicated situation where
εµ is not analytic or zero-free everywhere in the upper
half-plane Imω > 0. For concreteness we assume εµ has
two simple zeros but is analytic otherwise. Then

√
εµ

has branch cuts, which we take to be vertical towards
−i∞. Since

√
εµ is analytic everywhere in the upper half-

plane except at the branch cuts, we can use the procedure
above to deform the integration paths, leading to the ω-
integration curve depicted in Fig. 5a. It is natural to try
to deform also the remaining detours, to reach the real
ω-axis everywhere. To this end we let Imω be reduced
from γ to zero, on the left-hand side and right-hand side
of
√
εµ’s branch cut (Fig 5b). The corresponding trajec-

Imω

(a)
Reω

γ

Im kx

Re kx

Im kx

Re kx

Imω

Reω

γ

(c)

(d)

(b)

FIG. 5. Deformed integration paths (dashed) when
√
εµ has

branch cuts in the upper half-plane. The branch points of√
εµ are shown by open circles in (a); the cuts go vertically

towards −i∞. As Imω is reduced from γ to zero along the
left and right arrows in (b), the corresponding trajectories
of kx = ±√εµω/c are shown by solid lines in (c) and (d),
respectively.

tories of kx = ±√εµω/c are shown in Figs. 5c and 5d,
respectively. Apparently, the result of the integration in
Fig. 5c differ from that of Fig. 5d, so the integrations up
and down in Fig. 5a generally do not cancel. As a result
the detours cannot be omitted. The presence of complex
frequencies exp(−iωt) with Imω > 0 means that the field
will diverge with time, even at a fixed point in space.
This means that the field cannot be interpreted at real
frequencies as in (20); we have an absolute instability.

IV. PLANE WAVE LIMIT

We have seen that when there are no absolute instabil-
ities, it is possible to move the inverse Laplace transform
path down to the real axis, enabling the interpretation
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of the fields (5) and (6) for real frequencies. However,
this has come at a price: The integration curve in kx
must be deformed to include complex values of kx. As
will be demonstrated shortly, this means that it is not
necessarily possible to approach the plane wave limit any
longer.

Consider an excitation in the form u(x)v(t), with
transform U(kx)V (ω). This excitation corresponds to,
e.g., a current source J(kx, ω), or an incident wave
A(kx, ω), as defined in Sec. II. The function v(t) could
be given by (18), while u(x) could be e.g. one of the
following alternatives:

u1(x) = tri(x/σ) exp(iKxx), (22a)

u2(x) = exp(−x2/2σ2) exp(iKxx). (22b)

Here tri(x/σ) = max(1 − |x/σ|, 0) stands for the trian-
gular function. Both alternatives represent a beam of
thickness ∼ σ and a bundle of kx’s around the central
transversal wavenumber Kx. The wavenumber spectra
of the excitations are given by

U1(kx) = σ sinc2[σ(kx −Kx)/2], (23a)

U2(kx) =
√

2πσ exp[−σ2(kx −Kx)2/2]. (23b)

Both spectra are entire functions in kx. However, the
two of them are fundamentally different in the sense that
the first goes slowly to zero compared to the second. For
real kx and Kx both functions approach 2π · δ(kx −Kx)
in the limit σ →∞.

To approach plane waves, it is natural to consider the
limit σ → ∞ in (15)-(16). Here the field is expressed
using real frequencies (assuming no absolute instabili-
ties), and deformed paths in the complex kx-plane such
as that in Fig. 3b. Surprisingly, the limit σ → ∞ does
not necessarily exist, as U1(kx) diverges for complex kx.
Perhaps even more surprisingly, even though the limit
does not exist when using U1(kx), it may exist when us-
ing U2(kx), since the gaussian does not diverge provided
|Im kx| ≤ |Re kx − Kx|. Thus, when the detours of the
kx-integration curve are not too far away from the real
axis, or too close to the excitation wavenumber Kx, we
can take the plane wave limit using a gaussian excitation,
but not a triangular excitation. When the limit exists,
we can write

E(x, z, t) =
1

2π

∫ ∞

−∞

E(Kx, z, ω)

U(Kx)
exp(iKxx− iωt)dω,

(24)
expressing the field with a single wavenumber Kx. Note
that U(Kx) is a factor in E(Kx, z, ω) so the ratio is in-
dependent of U(Kx).

The peculiar divergence discussed above, can be in-
terpreted as follows. For certain frequencies ω and
wavenumbers ±kx, the longitudinal wavenumber kz be-
comes zero. These modes correspond to side waves, which
propagate in the ±x-direction. If the medium is gainy,
and the excitation extends over all x’s, the field at an ob-
servation point x may diverge since the side waves prop-
agate an unlimited distance before reaching the point.

For the triangular excitation u1(x) (or more generally,
for any excitation of finite support), as σ increases, side
waves will have the chance to propagate a larger distance
before reaching the observation point; thus we expect an
exponential growth. At the same time, the excitation
U1(kx) at the particular kx associated with the side wave
becomes weaker, but only as ∝ σ−1. For the gaussian
excitation u2(x), an increased σ will again give rise to an
exponential growth as a result of the increased distance;
however, the excitation itself at the particular kx associ-
ated with the side wave, may be much weaker due to the
factor exp[−σ2(kx −Kx)2/2].

So far we have expressed the field using real frequen-
cies (when there are no absolute instabilities), before we
tried to take the plane wave limit. We can also do this
procedure the other way around: First we can take the
plane wave limit, while keeping the Bromwich path at
Imω = γ. Since only real kx’s are involved in (4), the
plane wave limit σ →∞ always exists, which leads to

E(x, z, t) =
1

2π

∫ iγ+∞

iγ−∞

E(Kx, z, ω)

U(Kx)
exp(iKxx− iωt)dω.

(25)
Equation (25) has the disadvantage that it is expressed
using complex frequencies. We would like to be able to
set γ = 0 in (25) for interpretation at real frequencies.
If the integrand is analytic for ω ≥ 0, we can move the
integration path to the real axis. However, as we will see
below, this is not always the case, not even for media with
analytic and zero-free εµ for Imω ≥ 0. Since Kx is fixed,
we must require that

√
εµω2/c2 −K2

x is analytic in the
upper half-plane Imω ≥ 0, to avoid absolute instabilities.
Although this can happen, it is not very common; it is
not even the case for conventional, weak gain media [5, 8]:
For such media, there is a branch point slightly above
the real ω-axis, corresponding to a side wave with Kz =
0. For plane wave excitations, this side wave propagates
an infinite distance along the x-axis, thus picking up an
infinite amount of gain.

This type of absolute instability is somewhat artificial,
since it is induced by the excitation of infinite width. For
the case with finite σ we have seen that the instability is
only convective, as long as the medium has analytic and
zero-free εµ for Imω ≥ 0. This makes sense intuitively,
since for finite σ, the side wave has only propagated a
finite distance from the excitation to a fixed observation
point.

In other words, let limω1
denote the monochromatic

limit, as defined in Section III. If εµ is analytic and zero-
free for Imω ≥ 0, but

√
εµω2/c2 −K2

x is not analytic
there,

lim
ω1

E(x, z, t) = finite (26)

for any finite σ, while

lim
ω1

lim
σ→∞

E(x, z, t) =∞. (27)
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However,

lim
σ→∞

lim
ω1

E(x, z, t), (28)

on the other hand, is dependent on the manner in which
the plane wave limit is taken. If it is taken using an
excitation U1(kx) of finite support, it is infinite, but if
it is taken using a gaussian U2(kx), it is finite provided
|Im kx| ≤ |Re kx−Kx| along the integration detour. The
gaussian excitation u2(x) is somewhat unphysical, as it
requires an infinite wide source even for finite σ. Even
though the gaussian excitation is unphysical, the fact
that it makes it possible to take the plane wave limit is
very interesting. It tells us that the growing side waves
in a gain medium may be limited by making the source
sufficiently smooth, and will disappear in the limit of a
perfectly smooth source (gaussian).

Remarkably, and less intuitively, for certain media with
absolute instabilities for finite σ (meaning that εµ is
not analytic and zero-free everywhere in the upper half-
plane), it is possible to eliminate the absolute instabilities

by letting σ →∞. Indeed, if
√
εµω2/c2 −K2

x is analytic
for Imω > 0 while εµ is not analytic and zero-free,

lim
ω1

E(x, z, t) =∞, (29)

for any σ, while

lim
ω1

lim
σ→∞

E(x, z, t) = finite. (30)

For example, this happens for media for which εµω2/c2−
K2
x has no zeros in the upper half-plane Imω > 0, while

εµ has two simple zeros there. Such a medium is sug-
gested in Ref. [5]. Equations (29) and (30) can be in-
terpreted as follows. Consider the field E(x, z, t) when σ
and t are finite. As σ is made larger, the unstable mode
with kz = 0 is excited more weakly. Thus a larger t can
be tolerated before E(x, z, t) gets large. If σ → ∞ first,
we can let t be infinite as well, without getting an infinite
field. Thus the monochromatic limit exists.

We conclude this section by noting that the monochro-
matic and plane wave limits are far from trivial in gain
media. Although it can be argued that these limits are
unphysical, since infinite experiment durations or infinite
beam thicknesses cannot exist, they provide valuable in-
tuition for experiments with wide beam excitations, or
long duration. Apparently, different results may be ob-
tained dependent on the wideness of the excitation and
the duration of the experiment.

V. MEDIA

The general method from the previous sections is now
applied to analyze a wide range of media of interest, start-
ing with simple passive and active media, and ending
with novel classes of active media.

A. Passive media

Passive media are simple to analyze, due to the ab-
sence of instabilities. Fourier analysis is therefore suffi-
cient, and the Fourier components wrt. kx and ω can
be interpreted straightforwardly. Although these facts
are well known, it is useful to demonstrate the formalism
before moving on to more complex cases.

A passive medium has Im ε(ω) > 0, Imµ(ω) > 0, and
Imn(ω) > 0 for ω > 0. Here n(ω) =

√
εµ is the refrac-

tive index, which is analytic in the upper half-plane [16].
Due to odd symmetry of these functions, Imnω/c ≥ 0 for
all real ω. Since Imnω/c is a harmonic function [17], it
takes its minimum on the real axis; thus Imnω/c ≥ 0 in
the closed upper half-plane. It follows that kz’s branch
points, kx = ±nω/c, do not cross the real kx-axis as we
reduce Imω towards zero. In Fig. 6 we show two differ-
ent possibilities; a passive medium which will turn out to
show positive refraction (b), and a passive medium with
negative refraction (c). Clearly, in both cases we can in-
tegrate along the real ω and kx axes, and the monochro-
matic and plane wave limits may be taken, leading to
fields with frequency ω1 and wavenumber Kx. The re-
sulting Kz shows the behavior of the wave in the medium.

We can find the sign of Kz by tracing arg kz as kx de-
creases from +∞ to Kx. For kx → +∞, kz → +ikx
(see Appendix A). As kx decreases, consider k2

z =
ε(ω1)µ(ω1)ω2

1/c
2 − k2

x, with the two zeros shown by the
solid arrow ends in Figs. 6b-c. Now, k2

z picks up phase
from the two zeros, but very little if Kx is in the regime
far away from the zeros. Since kz(kx, ω) is continu-
ous in kx away from the branch cuts, it follows that
Kz = kz(Kx, ω1) ≈ iKx in the regime to the right of the
zeros, corresponding to an evanescent behavior in the to-
tal internal reflection regime of large Kx. So far, we have
not invoked the properties of the medium; in other words,
the result is valid for all media and situations where the
monochromatic and plane wave limits exist.

As Kx becomes smaller, we must consider the two pas-
sive media separately. For the positive refractive medium
(Fig. 6b), since the right-hand zero is above the real kx-
axis, as we pass it on the way from large kx to small
kx, the phase arg k2

z reduces from π through π/2 to-
wards arg{ε(ω1)µ(ω1)}. Again, since kz(kx, ω) is con-
tinuous in kx away from the branch cuts, it follows that
arg kz(kx, ω1) goes from π/2 through π/4 towards the
small number arg{ε(ω1)µ(ω1)}/2. Thus, as expected, we
obtain a damped, propagating wave with wave vector di-
rected away from the source.

For the negative refractive medium (Fig. 6c), the right-
hand zero is below the real kx-axis. Thus we find that
arg k2

z increases from π to almost 2π, and therefore, arg kz
increases from π/2 to almost π. In other words, Kz will
be close to a negative number (negative refraction) in the
regime of small Kx.
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Imω

(a)
Reω

γ

Im kx

Re kx

(c)

Im kx

Re kx

(b)

ω1

FIG. 6. As Imω is reduced from γ to zero (a), kz’s branch
points, kx = ±√εµω/c, moves along the trajectories in (b) for
a passive, positive refractive medium, and (c) for a passive,
negative refractive medium.

B. Weak gain medium

We now consider a weak gain medium, or conventional
gain medium, with |Im ε| � 1 and |Imµ| � 1 for all
frequencies, and weak dispersion. For example, we can
consider a nonmagnetic medium with ε(ω) = 1 + χ(ω),
where Imχ(ω) is negative at the observation frequency,
and |χ(ω)| � 1 for all ω. When we reduce Imω as in Fig.
7a, the branch points kx = ±√εµω/c move according to
Fig. 7b. Thus, to be able to express the integral (14)
with real frequencies ω, it is necessary to deform the kx-
integration with detours. These detours are result of the
fact that the system supports amplifying side waves with
kx = ±√εµω/c.

Having taken the monochromatic limit, we consider
the possibility of approaching plane waves. According
to the discussion in Sec. IV, the limit σ → ∞ does
not exist when using excitation profiles of finite support;
then the side waves will diverge. However, for the gaus-
sian excitation profile u2(x), and provided |Im√εµω/c| ≤
|Re
√
εµω/c−Kx|, we can take the plane wave limit, since

then the side waves are very weakly excited. By tracing
arg kz as kx is reduced from ∞ (as in Sec. V A), we still
obtain Kz ≈ iKx in the total internal refraction regime
of large Kx. Thus the behavior remains approximately
evanescent there. For small Kx, since we have passed the
zero from below, we get argKz ≈ arg{ε(ω1)µ(ω1)}/2.

Imω

(a)
Reω

γ

Im kx

Re kx

(b)

ω1

FIG. 7. As Imω is reduced from γ to zero (a), kz’s branch
points, kx = ±√εµω/c, moves along the trajectories in (b) for
a weak gain medium. The integration path in the kx-domain
must detour around these branch points.

This represents a weakly amplified wave.

As an alternative, we can take the plane wave limit
while keeping the Bromwich integration path at Imω =
γ, leading to a single wavenumber Kx. Then we can de-
form the Bromwich path towards the real axis; however,
there will be branch points close to ω = Kxc, above the
real axis. This means that the system supports absolute
instabilities, and that the real frequencies is not meaning-
ful in general. The absolute instabilities are again a result
of diverging side waves, being excited infinitely far away
from the observation point. However, as shown in Ref.
[5], as long as the excitation frequency ω1 is far away from
Kxc, we can interpret the field as “quasi-monochromatic”
up to a certain time, where the diverging side waves start
to dominate.

C. Non-magnetic negative index medium

If the permittivity and permeability from the negative
index medium in Sec. V A are denoted εp and µp, we let
the permeability of an active, nonmagnetic medium be
ε = εpµp. Clearly, the behavior of the branch points and
the integration paths becomes identical to that in Fig. 6c,
and we get a negative refractive index at the frequency
shown in the figure. This type of media was suggested
in Ref. [6] and analyzed in Ref. [7]. When a plane wave
is normally incident from vacuum, a backward wave is
excited in the medium, drawing energy from the medium
and propagating energy towards the interface [7].
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Im kx
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FIG. 8. Plot (a) shows n(ω) as given by (31). Plot (b) shows
the trajectories of kz’s branch points, kx = ±n(ω)ω/c, as
Imω is reduced from γ to zero, and Reω = ω1. The values
for ω = ω1 are shown with solid arrows. The branch cuts in
the kx-domain, for ω = ω1, can be taken along the trajecto-
ries (b, solid lines); however, it is convenient to use analytic
continuation to deform them into the solid lines shown in (c).
The integration path in the kx-domain (dashed) must detour
around the branch cuts.

D. Anti-evanescent medium

Having analyzed previously known media with the ω-
and kx-integration formalism, we now consider how the
formalism can be used to predict novel classes of media.
As we reduce Imω from γ to zero, the trajectories of
kz’s branch points may be more complicated than in the
previous examples.

Consider a nonmagnetic medium with permittivity

ε(ω) = (n(ω))2, (31)

where

n(ω) = 1− Fω2
0

ω2
0 − ω2 − iΓω , (32)

and F > 0 (see Fig. 8a). Provided F < 1, the zeros of
ε(ω) are located in the lower half-plane, so the medium
does not contain absolute instabilities. Hence we may
consider the monochromatic limit. We take F = 0.5 and
Γ = 0.05ω0, and consider the observation frequency ω1 =
0.71ω0, for which Ren(ω1) = 0 and Imn(ω1) = −i0.072.

The trajectories of kz’s branch points, kx = ±n(ω)ω/c,
as Imω is reduced from γ to 0 while Reω = ω1, are shown

in Fig. 8b. For ω = ω1 we can take the branch cuts along
the solid lines in Fig. 8c, and the integration path along
the dashed line. We let the two branch cuts approach
each other. Considering an incident wave from vacuum,
we calculate the transmitted field using the Fresnel equa-
tion (13b). For the frequency ω1 we get

2π
E(x, z, ω1)

V (ω1)
(33)

=

∫ ∞

−∞
U(kx)

2k1ze
ik2zz

k1z + k2z
eikxxdkx

+

∫ kb

−kb
U(kx)

(
2k1ze

ik2zz

k1z + k2z
− 2k1ze

−ik2zz

k1z − k2z

)
eikxxdkx.

Here the integration
∫ kb
−kb is along a vertical path from

the lower to the upper branch point (indicated with solid
arrows in Fig. 8c); immediately to the right of the branch
cuts.

To interpret (33), we note that k2
z = εµω2/c2 − k2

x is
negative for real kx and also along the vertical integration
paths in Fig. 8c. Since kz → +ikx for kx → +∞, kz must
be positive imaginary for real kx away from the branch
cuts. Along the imaginary axis, however, kz becomes
negative imaginary, due to the presence of the right-hand
branch cut. We choose an excitation U(kx) = U1(kx),
with Kx = 0 (normal incidence). Clearly, the plane wave
limit does not exist, as the second integral in (33) involves
complex kx’s for which U1(kx) diverges as σ → ∞. For
a finite, though large σ, the field is dominated by the
second integral in (33). As a result of the two terms of
the second integral, the field contains a superposition of
modes with both signs of kz; evanescent (Im kz > 0) and
anti-evanescent (Im kz < 0).

The situation is different if we take the plane wave
limit before the monochromatic limit. If we still assume
Kx = 0, we have K2z = +n(ω)ω/c. Both limits exist,
and we end up with the monochromatic field amplitude

E(x, z, t) =
2K1z

K1z +K2z
eiKxx+iK2zz−iω1t. (34)

For the medium in this example, n(ω) is negative imagi-
nary at the observation frequency ω = ω1. Thus we have
an anti-evanescent behavior.

In other words: Let the beam width σ be fixed and
finite. Then, after sufficiently long time, the field will be
a superposition of evanescent and anti-evanescent modes.
On the other hand, for σ →∞, and after a long time the
field will be purely anti-evanescent.

E. Simultaneous refractive index medium

Consider the example in Fig. 9. As ω approaches the
real axis, the branch point in the first quadrant moves
via the forth to the third quadrant. The integration path
therefore becomes zigzag. We consider an incident wave
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γ

Im kx

Re kx

Im kx

Re kx

(b)

(c)

ω1

FIG. 9. As Imω is reduced from γ to zero (a), kz’s branch
points, kx = ±√εµω/c, move along the trajectories (b). By
deforming branch cuts and integration paths, we get situation
(c). In (b) the branch cuts are taken to be along the trajec-
tories, while in (c) they are deformed into the solid lines.

A(kx, ω) = U(kx)V (ω) from a passive medium (medium
1) to the medium under investigation (medium 2), and
calculate the transmitted field using (13b). Using the
integration path in Fig. 9c, this leads to

2π
E(x, z, ω1)

V (ω1)
(35)

=

(∫ −kb
−∞

+

∫ ∞

kb

)
U(kx)

2µ2k1ze
ik2zz

µ2k1z + µ1k2z
eikxxdkx

+

∫ kb

−kb
U(kx)

(
4µ2k1ze

ik2zz

µ2k1z + µ1k2z
− 2µ2k1ze

−ik2zz

µ2k1z − µ1k2z

)
eikxxdkx

+

∫

vertical detours

U(kx)
2µ2k1ze

ik2zz

µ2k1z + µ1k2z
eikxxdkx.

In (35) kb is the real part of the branch point in the first
quadrant, and the last integral represents all vertical in-
tegration paths in Fig. 9c, letting the up-and-down paths
around a branch cut be infinitely close to each other. In
the third line of (35), k2z is the value along the upper
integration path, above both branch cuts.

Considering the observation frequency ω1 (monochro-
matic limit), we now take the plane wave limit σ → ∞.
Using the gaussian excitation U2(kx), the limit exists pro-
vided |Im kx| ≤ |Re kx−Kx| on the integration path. We

then end up with

E(x, z, t) (36)

=

(
4µ2K1ze

iK2zz

µ2K1z + µ1K2z
− 2µ2K1ze

−iK2zz

µ2K1z − µ1K2z

)
eiKxx−iω1t.

With an excitation u(x) of finite support, the limit would
not exist; however, we may come as close as we wish to
the field (36) by ensuring that the medium have branch
points sufficiently close to the real kx-axis.

On the other hand, by taking the limit σ →∞ without
taking the monochromatic limit, we get

E(x, z, t) =
1

2π

∫ iγ+∞

iγ−∞
V (ω)

· 2µ2K1z

µ2K1z + µ1K2z
exp(iKxx+ iK2zz − iωt)dω. (37)

However, moving the integration path down to the real
ω-axis requires K2z to be analytic for Imω ≥ 0. Even for
weak gain media this will not be the case [5], except for
the special case Kx = 0.

If Kx = 0, and both
√
εµ and the Fresnel transmission

coefficient are analytic for Imω > 0, the integration path
can in fact be moved down to the real ω-axis. In the
monochromatic limit we then get

E(x, z, t) =
2µ2K1z

µ2K1z + µ1K2z
eiKxx+iK2zz−iω1t, (38)

with K2z = +n(ω1)ω1/c, and n(ω) is given by (32). This
differs from (36), and once again the two orders of the
monochromatic and plane wave limits yield different re-
sults.

In other words: Consider the case Kx = 0, for a suf-
ficiently large, but finite σ. In the monochromatic limit
t→∞, the field will then be approximately given by (36),
i.e. a superposition of waves with wavenumber +K2z and
−K2z in the z-direction. However, if σ → ∞ first, the
monochromatic limit leads to a plane wave propagating
in the z-direction, with wavenumber +K2z. From this
it is understood that simultaneous refraction is a two-
dimensional effect. In the case of a finite σ there will
always be oblique waves with kx 6= 0 excited, no mat-
ter how large σ is. After a sufficiently long time t these
oblique waves will somehow establish waves along the z-
direction with both signs for K2z. However, if σ →∞ is
taken first, there will be no oblique waves excited. The si-
multaneous refracting waves can thus not be established.
This latter situation is one-dimensional, as the excitation
u2(x) is constant for all x, and Kx = 0.

Trajectories for kz’s branch points, similar to those in
Fig. 9b, can be achieved using the same medium as
in the previous example, but at a slightly higher ob-
servation frequency ω1 = 0.853ω0. At this frequency
|Im kx| ≤ |Re kx −Kx| on the integration path (Fig. 9c),
so the limit σ →∞ exists, and we end up with (36). For
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this medium both
√
εµ and the Fresnel transmission co-

efficient are analytic in the upper half plane. Taking the
plane wave limit Kx = 0 before the monochromatic limit
would thus lead to (38).

The time domain response of the medium with refrac-
tive index (32) was simulated using Kelley and Luebbers
Finite Difference Time Domain (FDTD) method [18] for
Lorentzian media [19]. In the simulation the situation
with a current source in z = 0 was implemented. In this
case the inverse Fourier transform will look the same as
in (35), except that the Fresnel transmission coefficients
are replaced by ±µ/2kz. Clearly, as long as n(ω) is kept
fixed (given by (32)), the response will essentially be the
same if we let ε(ω) = µ(ω) = n(ω), rather than µ = 1
and ε(ω) = (n(ω))2. For Kx = 0, ω1 = 0.853ω0, and a
finite, but large σ, the simulation result should approach
(36) after sufficiently long time. It turns out, however,
that the time it takes to reach the monochromatic limit
is much longer than what is possible to simulate.

The simulations show that the fields grow rapidly as
they propagate, both in the x and z-direction. This rapid
growth is explained as follows. Since the excitation van-
ishes for t < 0, it will contain other frequencies than just
the observation frequency. Even though the frequency
spectrum has a large peak at ω1, the frequencies around
resonance ω0 will dominate for a very long time, due to
very high gain there. Indeed, n(ω0) = 1− 10i, so at res-
onance the forward propagating wave (kx = 0) will grow
as exp(20πz/λ), where λ is the vacuum wavelength, as
it propagates in the z-directions. Also the side waves,
with kx = ±n(ω0)ω0/c and kz = 0, will grow at this rate
in the ±x-direction. Since |Im kx| > |Re kx| these side
waves will be strongly excited, a fact that is also seen
in the simulations. For t → ∞ the excitation only con-
tains ω1, and the field should approach (36). However,
as can be verified using frequency-domain simulations,
it takes a very long time for the transients to die out,
and it therefore appears impossible to see simultaneous
refraction with time-domain simulations.

Due to numerical errors artificial reflections from the
simulation grid may also occur. If such artificial reflec-
tions occur before the monochromatic limit is reached,
the simulation will never be able to reveal simultaneous
refraction: waves may be reflected back and forth, be-
ing amplified as they propagate, and the solution will
eventually grow with time even at fixed points in space.
This is what happened in the simulations of the medium
with permittivity and permeability given by n(ω) in
(32), at the expected simultaneously refracting frequency
ω1 = 0.853.

Nistad and Skaar showed that negative refraction can
occur with arbitrarily low loss, if there is a steep drop in
Imn(ω) just below the observation frequency ω1 [13]. It
is similarly possible to achieve a negative refractive index
n =
√
εµ at arbitrarily low gain through a steep drop in

Imn(ω) just above the observation frequency. For such a
medium, the trajectories of kz’s branch points will in fact
be similar to those in Fig. 9b for the frequencies where

n(ω) < 0. One such medium, where the maximum gain
was reduced to Imn(ω) = −2, was simulated, but also
for this medium artificial reflections destroy the validity
of the simulation solution before the transients die out.
For FDTD simulations to be able to reveal simultaneous
refraction, media with a significantly lower gain, while
having branch point trajectories as in Fig. 9b, must be
found.

VI. DISCUSSION AND CONCLUSION

Wave propagation in gain media has been considered
by a Fourier–Laplace integral in space and time. How the
correct monochromatic and plane wave limit can be taken
is demonstrated, by deforming the integration surface in
complex frequency-wavenumber space. In some cases it
is possible to deform the inverse Laplace transform down
to the real ω-axis, at the expense of deforming the inverse
Fourier kx-integration path. For active media where this
can be done, the path will contain complex kx, represent-
ing amplified waves as they propagate in the x-direction.
If such a deformation is not possible, the inverse Laplace
transform will contain complex frequencies, and the field
will therefore grow exponentially with time, even at a fixe
point in space: there is an absolute instability.

It is shown that the monochromatic and plane wave
limits generally do not commute; for example, one order
may lead to a diverging field, while the other order leads
to a finite field. The plane wave limit may be dependent
on whether it is realized by a gaussian excitation or a
finite support excitation of infinite width. This is because
amplifying side waves are less excited by the gaussian
excitation.

The general path deformation theory is applied to an-
alyze familiar passive and active media, and to predict
media with novel properties. In particular it shown that
certain gain media may be simultaneous refracting, i.e.
they refract positively and negatively at the same time.
It is argued that this is a two-dimensional effect, i.e. it
will not occur if an infinitely wide source produces a wave
propagating only in the z-direction. The monochromatic
plane wave response of the media generally depends on
which of the limits is taken first, or the width of the
source relative to the duration of the experiment as both
of these parameters tend to infinity.

An example of such a simultaneous refracting medium
is given. For a large, but finite width of the source, this
medium should be simultaneous refracting after a suffi-
ciently long time, i.e. in the monochromatic limit. In
attempt to visualize the effect, and to independently ver-
ify the theory, time domain simulations of this medium
were performed. However, the simulations were not able
to visualize the effect, as the monochromatic limit never
was reached. The suggested medium has a very large gain
at resonance, so the frequencies of the transients close to
resonance will be strongly amplified as they propagate
into the medium. Due to the occurrence of artificial re-
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(a)
Reω

Re kx

(b)

γ

Imω

Im kx

FIG. 10. For a fixed ω, with Imω > γ and Reω > 0 (indicated
by an open circle in the complex ω-plane (a)), the zeros of
k2z = εµω2/c2 − k2x are shown in the complex kx-plane (b).
For large Imω, the zeros kx = ±√εµω/c are located away
from the real axis.

flections before these transients die out, simultaneous re-
fraction is therefore not seen in the simulations. Similar
stability problems are expected for experimental realiza-
tions. It should therefore be investigated if simultaneous
refracting media with significantly less gain exist.

Appendix A: Properties of kz(kx, ω)

We here consider the properties of the function
kz(kx, ω) along the real kx-axis, and in a region Imω > γ.
We prove that kz(kx, ω) is zero-free and analytic in both
arguments. Moreover, kz → +ω/c for ω → ∞ and fixed
kx, and kz → +ikx for kx → +∞ and fixed ω. Initially,
we require γ to be large, such that εµ is close to unity in
the region. In Sec. III, we use analytic continuation to
make use of the results in a larger region (i.e., reduce γ).

First, we consider the zeros of kz(kx, ω), given by kx =
±√εµω/c, see Fig. 10. None of these is located at real
kx, since ω is complex in the region Imω > γ and εµ is
close to unity there: Consider first a region characterized
by a bounded Reω. If a zero existed for positive kx, we
could just increase γ (and therefore Imω) such that

√
εµ

gets closer to unity and argω increases; then the zero
would move away from the real kx-axis. Next, consider
Reω → ∞. Since

√
εµ = 1 + O(ω−2), the zeros are

located at kx = ±ω/c + O(ω−1). Thus kz(kx, ω) has no
zeros approaching the real kx-axis as Reω →∞.

Second, we argue that kz(kx, ω) is analytic in both
arguments. The analyticity in ω has already been estab-
lished (9), and the analyticity in kx is immediate from
(7) provided there are no sign changes. Indeed, such sign
changes are impossible: If kz(kx, ω) were discontinuous
in kx, we could find a (kx, ω) and a tiny δ such that
kz(kx + δ, ω) ≈ −kz(kx, ω). This leads to a contradiction
since kz(kx, ω) is zero-free and continuous in ω in the re-
gion Imω > γ, and kz(kx + δ, ω)→ kz(kx, ω) as ω →∞

there.
It is interesting to examine the behavior of kz in the

limit of large kx. The sign of kz for active media in the
total internal reflection regime has been discussed exten-
sively in previous literature [3–5]. For kx = 0, we have
kz ≈ ω/c in the region Imω > γ. As kx increases along
the dashed line in Fig. 10, the complex argument of k2

z

increases according to the zero configuration in the fig-
ure. Since kz is a continuous function of kx it follows
that as kx → +∞, kz → +ikx. This seems to predict an
evanescent behavior in the total internal reflection regime
of large kx; however, it is important to remember that
we only have considered the complex frequencies with
Imω > γ. Interpretation at real frequencies is possible
under certain circumstances (Section V B) [4, 5]; how-
ever, for conventional, weak gain media it turns out to
be an instability associated with amplified side waves.

We now prove that our solutions to Maxwell’s equa-
tions are consistent with the earlier assumptions about
absolute integrability wrt. kx and ω, to enable the use
of Fubini’s theorem. First, consider the situation associ-
ated with the Fresnel equations (13), where the excitation
takes the form of an incident wave. For kx = 0 recall that
µ2k1z ≈ µ1k2z ≈ ω/c in the region Imω > γ. We let kx
increase along the dashed line in Fig. 10. Since the figure
(approximately) represents the zero configuration of any
of the functions µ2k1z and µ1k2z, these functions cannot
take opposite signs. Thus, from (13) we find that the
reflected and transmitted fields (B and C) adopts the
absolute integrability from the excitation A.

For the solution (12) associated with a current source,
we define ωJ(kx, ω) as the excitation. Since kz has no
zeros in the region of integration, not even at ω → ∞
and/or kx → ∞, it follows that both the electric and
magnetic fields adopt the absolute integrability from the
excitation.

Appendix B: The Titchmarsh theorem for causal
diverging functions

Let E(t) be a causal function,

E(t) = 0, for t < 0, (B1)

with no larger than exponential growth for large t:

|E(t)| ≤ E0 exp(γ0t). (B2)

Here, E0 and γ0 are positive constants. Let γ > γ0, and
write F(t) = E(t) exp(−γt). We assume that F is square
integrable, which is usually automatically satisfied given
(B2). Consider the Laplace transform of E(t):

E(ω) =

∫ ∞

0

E(t) exp(iωt)dt, (B3)

where Imω ≥ γ. The inverse Laplace transform is

E(t) =
1

2π

∫ iγ+∞

iγ−∞
E(ω) exp(−iωt)dω. (B4)
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Making the substitution ω′ = ω− iγ in the integral, (B4)
becomes

F(t) =
1

2π

∫ +∞

−∞
E(ω′ + iγ) exp(−iω′t)dω′. (B5)

Thus, F(t) and E(ω′+ iγ) form a Fourier transform pair.
Since F(t) = 0 for t < 0, and F is square integrable,
Titchmarsh’ theorem tells us that

E(ω) is analytic for Imω > γ, (B6)

and there is a uniform bound K such that

∫ ∞

−∞
|E(ω′ + iγ′)|2dω′ ≤ K <∞, for all γ′ ≥ γ. (B7)

By running the above argument in the reverse direc-
tion, we obtain the converse result: Let a function E(ω)
satisfy (B6) and (B7) for some K. Then, the inverse
transform (B4) satisfies (B1) and (B2), where we now
put γ0 = γ.
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B Matlab FDTD 2d code

1 %%Triangular passive negative refracting medium
2 %LorList = newMediumPassive; wc=1.06;
3

4 %%Triangular active negative refracting medium
5 LorList = newMedium; wc=0.97;
6

7 %%Triangular active negative refracting medium, with reduced number of Lorentzians (by varying
Gamma)

8 %LorList = LorSuperposition3();wc = 0.96;
9

10 %%Absolute instabilities (zero in upper half-plane)
11 % LorList=[ %Amplitude Resonansfrekvens Gamma
12 % 1.500 0.8 0.1500
13 % -0.15 1.1 0.3];wc = 1.2;
14

15 %%Weak gain medium
16 %LorList = [-0.05 1 0.1]; wc = 1;
17

18 %%Strong passive Lorentzian for negative refraction
19 %LorList = [100 1 0.1]; wc=7.14;
20

21 %%Strong active Lorentzian for negative refraction
22 %LorList = [%Amplitud e Resonance frequency Gamma
23 % -0.5 1 0.05]; wc=0.853;
24

25

26 %% Non-magnetic negative refracting medium
27 % LorList = [ 2.43811 2.638176 0.150689
28 % -0.1434 3.768053 0.150692];wc=3.883;
29

30 %%Passive negative refraction medium
31 % LorList = [20 1 0.2]; wc=sqrt(11);
32

33 SamplesPerPeriod = 30; %Number of samples per time period at
observation frequency

34 Nperiods = 7; %Number of time periods
35 SPeriods = 1; %Number of periods being saved for videos

etc
36

37 Nt = SamplesPerPeriod*Nperiods; %Number of time steps
38 Np = SamplesPerPeriod*SPeriods; %Save field at the time steps Nt:Nt+Np
39

40 eps_vac = 1; %Epsilon for the (non-dispersive) medium to
the left of the boundary

41 mu_vac = 1; %Mu for the (non-dispersive) medium to the
left of the boundary

42

43

44 a = 0.7; % = dt/dz. Stability parameter, must be
less than 1/sqrt(2) for 2D

45 dt = 2*pi/(wc*SamplesPerPeriod); %Time step
46 dz = dt/a; %Spacial step (dx = dz)
47

48

49 sigma = 2;
50 Nsigma=round(sigma/dz);
51 Nz = round((Nt+Np)*a);
52 W=3;
53

54

55 Nx = 2*W*Nsigma+1+round(2*Nz);
56

57 Npsi_e = length(LorList(:,1));
58 Npsi_m = Npsi_e;
59

60 %Current source in z=0 situation
61 %The electric and mangetic fields
62 Hx = zeros(2,Nx,Nz+1);
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63 Hz = zeros(2,Nx+1,Nz);
64 E = zeros(2,Nx,Nz);
65

66 %The convolution summation variables
67 psi_e = zeros(Npsi_e,Nx,Nz);
68 psi_mx = zeros(Npsi_m,Nx,Nz-1);
69 psi_mz = zeros(Npsi_m,Nx-1,Nz);
70

71 %Fresnel situation
72 % %The electric and mangetic fields
73 % Nz0 = round(Nz/3);
74 %
75 %
76 % Hx = zeros(2,Nx,Nz+1);
77 % Hz = zeros(2,Nx+1,Nz);
78 % E = zeros(2,Nx,Nz);
79 %
80 % %The convolution summation variables
81 % psi_e = zeros(Npsi_e,Nx,Nz-Nz0);
82 % psi_mx = zeros(Npsi_m,Nx,Nz-Nz0);
83 % psi_mz = zeros(Npsi_m,Nx-1,Nz-Nz0);
84

85

86 %Lists of the Lorentzian parameters
87 F = LorList(:,1); %F
88 Gamma = LorList(:,3); %Gamma
89 w0 = LorList(:,2); %omega_0
90 w1 = sqrt(w0.ˆ2-Gamma.ˆ2 /4); %Omega_1
91

92

93 %Assign variables to some frequently used expressions
94 D = exp((-1i*w1 - Gamma./2).*dt);
95 C = (1-D);
96

97 %Electric chiˆ0 and xiˆ0
98 chi0 = F.*w0.ˆ2.*C./(w1.*(w1-1i*Gamma./2));
99 xi0 = -F.*w0.ˆ2.*(1i*C./(w1-1i*Gamma./2)+dt*D)./(dt*w1.*(w1-1i*Gamma./2));

100

101 %Electric Delta chiˆ0 and Delta xiˆ0
102 Dchi0 = C.*chi0;
103 Dxi0 = C.*xi0;
104 Dchixi = Dchi0-Dxi0; %frequently used
105 A = (1+real(sum(chi0)) - real(sum(xi0)));
106 B = (1-real(sum(xi0)));
107

108 %Magnetic Chiˆ0, xiˆ0 Delta chiˆ0, Delta xiˆ0, A and B
109 %mu = epsilon
110 chi0m = chi0;
111 xi0m = xi0;
112 Dchi0m = Dchi0;
113 Dxi0m = Dxi0;
114 Dchixim = Dchi0m - Dxi0m;
115 Dm = D;
116

117 %mu = 1
118 % chi0m = 0;
119 % xi0m = 0;
120 % Dchi0m = 0;
121 % Dxi0m = 0;
122 % Dchixim = 0;
123 % Dm = 0;
124

125 Am = (1 + real(sum(chi0m)) - real(sum(xi0m)));
126 Bm = (1-real(sum(xi0m)));
127

128

129 %The source
130 source_center = floor(Nx/2)+1;
131 source_start = source_center-W*Nsigma;
132 source_end = source_center+W*Nsigma;
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133 source = source_start:source_end;%source_center-round(sigma/dx):source_center+round(sigma/dx);
134 Tri = exp(-(source-source_center).ˆ2 /(2*Nsigmaˆ2));%triangularPulse(source(1),source(length(

source)),source);%
135

136 %Parameters for gaussian excitation in time
137 duration = 0.5*Nt;
138 width = 0.5*duration;
139

140 Tsteps = 1:(Nt+Np);
141 gauss = 0.5*(1 + erf((Tsteps-duration)/(sqrt(2)*width)));
142 gauss(:) = 1; %Abrubt onset of source
143

144 %Kx!=0
145 Kx = 0;
146

147 Hx(2,source,1) = gauss(1)*sin(Kx.*(source-source_center)*dz-wc*(0.5).*dt).*Tri; %-exp(-(0.5-
duration).ˆ2 *width).*

148

149 E(1,:,1) = (a/eps_vac)*(-Hx(2,:,1))/A;
150 psi_e(:,:,1) = (Dchi0 - Dxi0)*E(1,:,1);
151

152 %Iterate through time steps
153 for n=2:Nt
154 % tstart = tic; %Measure how long time each time step takes
155

156 %Hx(2,source,1) = Hx_source(n)*Tri;
157

158 %Kx!=0
159 Hx(2,source,1) = gauss(n).*sin(Kx.*(source-source_center)*dz-wc*(n-0.5).*dt).*Tri;%-exp(-((

n-0.5)-duration).ˆ2 *width).*
160

161 %Current source in z=0 situation
162

163 % %Update electric and magnetic fields
164 Hx(2,:,2:Nz) = (Bm*Hx(1,:,2:Nz) + a*(E(1,:,2:Nz) - E(1,:,1:Nz-1)) + real(sum(psi_mx,1)))/Am

;
165 Hz(2,2:Nx,1:Nz) = (Bm*Hz(1,2:Nx,1:Nz) - a*(E(1,2:Nx,1:Nz)-E(1,1:Nx-1,1:Nz)) + real(sum(

psi_mz,1)))/Am;
166 E(2,:,1:Nz) = (B*E(1,:,1:Nz) + a*((Hx(2,:,2:Nz+1)-Hx(2,:,1:Nz) - Hz(2,2:Nx+1,:) + Hz(2,1:Nx

,:))) + real(sum(psi_e,1)))/A;
167

168 %Update convolution summation variables
169 psi_e = bsxfun(@times,E(2,:,1:Nz),Dchixi) + bsxfun(@times,E(1,:,1:Nz),Dxi0) + bsxfun(@times

,D,psi_e);
170 psi_mx = bsxfun(@times,Hx(2,:,2:Nz),Dchixim) + bsxfun(@times,Hx(1,:,2:Nz),Dxi0m) + bsxfun(

@times,Dm,psi_mx);
171 psi_mz = bsxfun(@times,Hz(2,2:Nx,1:Nz),Dchixim) + bsxfun(@times,Hz(1,2:Nx,1:Nz),Dxi0m) +

bsxfun(@times,Dm,psi_mz);
172

173 %
174 %%Fresnel situation
175 % Hx(2,:,2:Nz0) = Hx(1,:,2:Nz0) + (a/mu_vac)*(E(1,:,2:Nz0) - E(1,:,1:Nz0-1));
176 % Hx(2,:,Nz0+1:Nz) = (Bm*Hx(1,:,Nz0+1:Nz) + a*(E(1,:,Nz0+1:Nz) - E(1,:,Nz0:Nz-1)) + real(

sum(psi_mx,1)))/Am;
177 %
178 %
179 % Hz(2,2:Nx,1:Nz0) = Hz(1,2:Nx,1:Nz0) - (a/mu_vac)*(E(1,2:Nx,1:Nz0) - E(1,1:Nx-1,1:Nz0));
180 % Hz(2,2:Nx,Nz0+1:Nz) = (Bm*Hz(1,2:Nx,Nz0+1:Nz) - a*(E(1,2:Nx,Nz0+1:Nz)-E(1,1:Nx-1,Nz0+1:Nz

)) + real(sum(psi_mz,1)))/Am;
181 %
182 % E(2,:,1:Nz0) = E(1,:,1:Nz0) + (a/eps_vac)*(Hx(2,:,2:Nz0+1)-Hx(2,:,1:Nz0) - Hz(2,2:Nx+1,1:

Nz0) + Hz(2,1:Nx,1:Nz0));
183 % E(2,:,Nz0+1:Nz) = (B*E(1,:,Nz0+1:Nz) + a*(Hx(2,:,Nz0+2:Nz+1) - Hx(2,:,Nz0+1:Nz) - Hz(2,2:

Nx+1,Nz0+1:Nz) + Hz(2,1:Nx,Nz0+1:Nz)) + real(sum(psi_e,1)))/A;
184 %
185 % %Update convolution summation variables
186 % psi_e = bsxfun(@times,E(2,:,Nz0+1:Nz),Dchixi) + bsxfun(@times,E(1,:,Nz0+1:Nz),Dxi0) +

bsxfun(@times,D,psi_e);
187 % %psi_mx = bsxfun(@times,Hx(2,:,Nz0+1:Nz),Dchixim) + bsxfun(@times,Hx(1,:,Nz0+1:Nz),Dxi0m)

+ bsxfun(@times,Dm,psi_mx);

85



188 % %psi_mz = bsxfun(@times,Hz(2,2:Nx,Nz0+1:Nz),Dchixim) + bsxfun(@times,Hz(1,2:Nx,Nz0+1:Nz),
Dxi0m) + bsxfun(@times,Dm,psi_mz);

189

190 Hx(1,:,:) = Hx(2,:,:);
191 Hz(1,:,:) = Hz(2,:,:);
192 E(1,:,:) = E(2,:,:);
193 disp(n/(Nt+Np));%Output how far we have gotten
194 end
195

196

197 %Start saving the electric field for the time period Np*dt
198 Ep = zeros(Np,Nx,Nz);
199 Ep (1,:,:) = E(2,:,:);
200

201 for n=2:Np
202 Hx(2,source,1) = gauss(n+Nt-1).*sin(Kx.*(source-source_center)*dz-wc*((n+Nt-1)-0.5).*dt).*

Tri;
203 %
204 % %Current source in z=0 situation
205

206 %Update electric and magnetic fields
207 Hx(2,:,2:Nz) = (Bm*Hx(1,:,2:Nz) + a*(Ep(n-1,:,2:Nz) - Ep(n-1,:,1:Nz-1)) + real(sum(psi_mx

,1)))/Am;
208 Hz(2,2:Nx,1:Nz) = (Bm*Hz(1,2:Nx,1:Nz) - a*(Ep(n-1,2:Nx,1:Nz)-Ep(n-1,1:Nx-1,1:Nz)) + real(

sum(psi_mz,1)))/Am;
209 Ep(n,:,1:Nz) = (B*Ep(n-1,:,1:Nz) + a*((Hx(2,:,2:Nz+1)-Hx(2,:,1:Nz) - Hz(2,2:Nx+1,:) + Hz

(2,1:Nx,:))) + real(sum(psi_e,1)))/A;
210

211 %Update convolution summation variables
212 psi_e = bsxfun(@times,Ep(n,:,1:Nz),Dchixi) + bsxfun(@times,Ep(n-1,:,1:Nz),Dxi0) + bsxfun(

@times,D,psi_e);
213 psi_mx = bsxfun(@times,Hx(2,:,2:Nz),Dchixim) + bsxfun(@times,Hx(1,:,2:Nz),Dxi0m) + bsxfun(

@times,Dm,psi_mx);
214 psi_mz = bsxfun(@times,Hz(2,2:Nx,1:Nz),Dchixim) + bsxfun(@times,Hz(1,2:Nx,1:Nz),Dxi0m) +

bsxfun(@times,Dm,psi_mz);
215

216

217

218

219 %Fresnel
220 %Update magnetic and electric fields
221 % Hx(2,:,2:Nz0) = Hx(1,:,2:Nz0) + (a/mu_vac)*(Ep(n-1,:,2:Nz0) - Ep(n-1,:,1:Nz0-1));
222 % Hx(2,:,Nz0+1:Nz) = (Bm*Hx(1,:,Nz0+1:Nz) + a*(Ep(n-1,:,Nz0+1:Nz) - Ep(n-1,:,Nz0:Nz-1)) +

real(sum(psi_mx,1)))/Am;
223 %
224 % Hz(2,2:Nx,1:Nz0) = Hz(1,2:Nx,1:Nz0) - (a/mu_vac)*(Ep(n-1,2:Nx,1:Nz0) - Ep(n-1,1:Nx-1,1:

Nz0));
225 % Hz(2,2:Nx,Nz0+1:Nz) = (Bm*Hz(1,2:Nx,Nz0+1:Nz) - a*(Ep(n-1,2:Nx,Nz0+1:Nz)-Ep(n-1,1:Nx-1,

Nz0+1:Nz)) + real(sum(psi_mz,1)))/Am;
226 %
227 % Ep(n,:,1:Nz0) = Ep(n-1,:,1:Nz0) + (a/eps_vac)*(Hx(2,:,2:Nz0+1)-Hx(2,:,1:Nz0) - Hz(2,2:Nx

+1,1:Nz0) + Hz(2,1:Nx,1:Nz0));
228 % Ep(n,:,Nz0+1:Nz) = (B*Ep(n-1,:,Nz0+1:Nz) + a*(Hx(2,:,Nz0+2:Nz+1) - Hx(2,:,Nz0+1:Nz) - Hz

(2,2:Nx+1,Nz0+1:Nz) + Hz(2,1:Nx,Nz0+1:Nz)) + real(sum(psi_e,1)))/A;
229 %
230 % %Update convolution summation variables
231 % psi_e = bsxfun(@times,Ep(n,:,Nz0+1:Nz),Dchixi) + bsxfun(@times,Ep(n-1,:,Nz0+1:Nz),Dxi0) +

bsxfun(@times,D,psi_e);
232 % %psi_mx = bsxfun(@times,Hx(2,:,Nz0+1:Nz),Dchixim) + bsxfun(@times,Hx(1,:,Nz0+1:Nz),Dxi0m)

+ bsxfun(@times,Dm,psi_mx);
233 % %psi_mz = bsxfun(@times,Hz(2,2:Nx,Nz0+1:Nz),Dchixim) + bsxfun(@times,Hz(1,2:Nx,Nz0+1:Nz),

Dxi0m) + bsxfun(@times,Dm,psi_mz);
234

235 Hx(1,:,:) = Hx(2,:,:);
236 Hz(1,:,:) = Hz(2,:,:);
237

238 disp((Nt+n)/(Nt+Np));%Output how far we have gotten
239 end
240

241
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242

243 %Plot parameters
244

245 K=1;
246 L=round(50/dz);
247 m=1; %Movie counter
248 plot_width = round(50/dz);
249 source_plot = source_center-round(plot_width):source_center+plot_width;
250 %source_plot = 1:Nx;
251 Q = 1;
252

253

254 for n = 1:Np;
255 P=1;
256 frame = imagesc(((0:L-1))*dz,(source_plot-source_center)*dz,squeeze(Ep(n,source_plot,K:L))

,[-P P]);
257

258

259 %frame = imagesc(((0:L-1)-Nz0)*dz,(source_plot-source_center)*dz,squeeze(Ep(n,source_plot,
K:L)),[-P P]);

260 colorbar;
261 set(frame,’AlphaData’,100);
262 set(gca,’fontsize’,14);
263 set(gca,’dataAspectRatio’,[1 1 1]);
264 xlabel(’z’,’fontsize’,20,’Interpret’,’latex’);
265 ylabel(’x’,’rot’,0,’fontsize’,20,’Interpret’,’latex’);
266 (Nt+n)*dt
267 pause(0.01);
268

269 % %plot(((0:L-1)-Nz0)*dz,squeeze(Ep(n,source_center+round(0/dz),K:L)));
270 % plot(((0:L-1))*dz,squeeze(Ep(n,source_center+round(0/dz),K:L)));
271 % P=1e2;
272 %
273 % %set(gca,’XLim’,[-Nz0*dz (L-1-Nz0)*dz]);
274 % set(gca,’XLim’,[0 (L-1)*dz]);
275 % set(gca,’YLim’,[-P P]);
276 % set(gca,’fontsize’,14);
277 % xlabel(’z’,’fontsize’,20,’Interpret’,’latex’);
278 % ylabel(’E(z)’,’fontsize’,20,’Interpret’,’latex’);
279 % pause(0.01);
280 % (Nt+n)*dt
281 end
282

283 % %Save movie to file
284 % filename = ’evanescent_gain_k1.avi’;
285 % movie2avi(M,filename);
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