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Abstract 
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways 
of interacting with innate immune signaling, as they may both activate and evade certain pathways. 
Gram-negative bacteria can exhibit specialized nano-machine secretion systems for delivery of effector 
proteins into mammalian cells. Bacterial type III, IV and VI secretion systems are known for their impact 
on caspase-1 activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β 
and IL-18, key participants of anti-bacterial responses. Here we discuss how these secretion systems can 
mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between 
secretion-system mediated activation and inhibition can determine net activation of inflammasome 
activity, and control inflammation, clearance or spread of the infection.    
 
Innate Immunity 
 Innate immunity plays a critical role in controlling the spread of microbes which breach physical and 
integumentary barriers. Innate immune cells - such as macrophages, neutrophils, dendritic cells - sense 
conserved and recognizable pathogen- and danger-associated molecular patterns (PAMPs and DAMPs) 
through pattern recognition receptors (PRRs)(1,2). Activation of such receptors turns on intracellular 
pathways to relay the signal to the DNA level and activate transcription of cytokines, chemokines, 
interferons, and other factors important for priming an immune response. PRR families include NOD-like 
receptors (NLRs), Toll-like receptors (TLRs), AIM2-like receptors, and others. 
 TLRs represent an key class of PRRs, capable of recognizing a range of bacterial and viral molecules 
to initiate an innate immune response arrest a potential infection in its early stages. TLRs 2, 4, 5, and 6 are 
located at the cell surface and recognize PAMPs including Pam2Cys4 from Gram-positive bacteria (TLRs 2 
and 6), LPS from Gram-negative bacteria (TLR4), and bacterial flagellin (TLR5) among others(1). TLRs 3, 
7, 8, 9, 11, and 13 are found on endosomal membranes and primarily recognize nucleic acids. 
 Activation of transcription factor NF-kB downstream of certain TLRs results in production of 
chemotactic and pro-inflammatory cytokines including TNFa, IL-6, IL-8, IL-1β, and IL-18. The latter two 
cytokines, IL-1β, and IL-18, are particularly powerful immune orchestrators but require post-translational 
modification by enzymatic cleavage in order to be secreted in their mature forms. This enzymatic processing 
is classically accomplished via molecular complexes called inflammasomes. These complexes form upon 
activation of additional PRR sensors, ensuring the specificity of IL-1β/IL-18-dependent immune responses. 
 
Inflammasomes and their Role in Disease 
 Inflammasomes are increasingly recognized as critical orchestrators of immunity. These multi-
molecular protein complexes are at the center of a variety of pathways in innate immune cells, including 
cytokine production(3), cytoskeletal remodeling(4), and cell death(5). Inflammasome formation is initiated 
when a pathogen or danger-associated molecular patterns (PAMP or DAMP) are recognized and triggers 
signaling often via NOD-like receptor (NLR) protein such as NLRP3 or NLRC4. This results in nucleation 
and oligomerization of the adaptor protein Asc at the site of the NLR, and recruitment of pro-caspase-1 to the 
CARD domain of Asc(6). Dimers of pro-caspase-1 are then cleaved to active caspase-1 through 



autoproteolysis, which then catalyzes the final processing of pro-IL-1β and pro-IL-18 into their mature 
secreted forms. Activation of caspase-1 is also accompanied by an inflammatory form of apoptosis, termed 
pyroptosis. Non-canonical caspase-11 inflammasomes, as well as pathways dependent on caspase-8 or 
neutrophil proteases have also been described(7-10).  
 Inflammasome-dependent secretion of IL-1β and IL-18 is critical for immune control of many 
microbes(11-16), and may play an important role in vaccine adjuvant-induced responses(17). However, 
dysregulation or inappropriate activation of inflammasomes can also produce severe autoinflammation(18-
21) and contribute to autoimmune disorders(22-24), Alzheimer's disease(25), Parkinson's Disease(26), and 
many other pathologic processes. To some extent the roles of IL-1β and IL-18 overlap(27). Prominent effects 
of IL-1β include recruitment of neutrophils to sites of infection, promoting endothelial cell adhesion, and 
stimulating adaptive Th17 responses. An important role of IL-18 is to induce NK cells and T-cells to produce 
IFN-g, which activates macrophages. IL-1β in particular tends to cause host tissue damage, whereas IL-18 
tends to have a less detrimental effect while still helping to control infection. This can be critical for the 
clearance of intracellular pathogens, and for efficient activation of adaptive immune responses. Consequently, 
inflammasome-activated caspase-1 and subsequent levels of IL-1β and IL-18 secretion are key events in 
many infectious and non-infectious diseases. 
 
Heterogeneity of Inflammasome structure, activation, and regulation mechanisms 
 Consistent with the delicate balance needed between a sufficiently robust immune response and 
minimal tissue damage, sophisticated mechanisms exist to tightly regulate the specificity and sensitivity of 
inflammasome pathways. While the general model of NLR-Asc-Caspase-1 from early inflammasome studies 
is useful for a basic conceptualization of this system, the extent of its heterogeneity is being increasingly 
recognized and appreciated. 
 Recent findings have suggested that inflammasome complexes involve organized helical structures 
and the creation of fibril like structures(28), where the NLR or AIM2 nucleates Asc fibril polymer formation 
and finally caspase-1 polymers, culminating in formation of cleaved caspase-1. The structures can be viewed 
as supramolecular organizing centers (SMOCs). 
 NLR molecules such as NLRP1, NLRP3, NLRP6, and NLRP12 contain LRRs which are believed to 
be involved in activation, an ATPase NACHT domain (except NLRP1), and a pyrin domain through which 
they interact with Asc. However NLRC4 (sometimes referred to as IPAF) contains a CARD domain, which 
recruits Asc but can also directly recruit caspase-1. Although NLRC4 activation is more robust in the 
presence of Asc, it is not required. NLRP1b(29) and NOD1(30) can also activate caspase-1 independently of 
Asc.  
 Non-NLR sensors such as Pyrin, IFI16, and AIM2 also exist; these proteins contain Asc-interacting 
pyrin domains, but lack the LRR domains present on many other signaling molecules. Instead, AIM2 and 
IFI16 contain DNA-sensing HIN domains(31), and have been reported to respond to viral as well as bacterial 
DNA in the cytosol(32-34). In the case of Pyrin, a directly activating pathogen ligand has not been 
established but it has been proposed that this pathway responds to pathologic Rho-GTPase activity induced 
by multiple Gram-negative pathogens(18). 
 The case of Pyrin also demonstrates that inflammasome activation is not necessarily the result of a 
direct interaction of a sensor with a PAMP or DAMP ligand. The Pyrin inflammasome can be made hyper-
active by mutations in the SPRY domain(35) or other domains(36); in humans such mutations are the cause 
of the most common autoinflammatory disease - Familial Mediterranean Fever (FMF)(37). The mechanisms 
of Pyrin activation and regulation are still being actively studied. Activity of the Pyrin inflammasome may be 
influenced by PSTPIP1(38), Siva(39), certain 14-3-3 isoforms(36,40), the leading edge of polymerizing 
actin(41), and a diverse variety of microbial molecules(42). Very recently, PKN1/2 kinases have also been 
implicated in controlling Pyrin activation by phosphorylating Pyrin to an inactive, 14-3-3 bound form(43), 
and the mevalonate pathway also regulates Pyrin inflammasomes(44). Many aspects of the activation 
mechanism remain unknown, but the emerging picture is one where Pyrin is triggered by perturbations in 
intracellular homeostasis, which are sensed by the endogenous signaling partners of Pyrin rather than by 
direct binding of a pathogenic ligand to Pyrin. 



 Other inflammasomes require cofactors for activation as well. The NLRC4 inflammasome is well 
known for recognizing flagellin, yet NLRC4 does not bind flagellin directly; instead, the presence of flagellin 
is relayed to NLRC4 by NAIP proteins which directly bind the ligand(45,46). NLRP3, often regarded as the 
quintessential classical inflammasome component, also has a complex mechanism of activation which senses 
DAMPs and PAMPs indirectly. NLRP3 can be activated by a variety of triggers including excessive influxes 
of calcium and/or efflux of potassium, oxidative damage, elevated ATP levels, and bacterial pore-forming 
toxins, crystallized molecules such as silica or uric acid, oxidized mitochondrial DNA, and many others(47). 
Activation by mitochondrial DNA appears attractive as a unifying mechanism, since the other activating 
events may trigger the upstream damage which causes the release and oxidation of mitochondrial DNA. How 
NLRP3 is involved in signaling in response to mitochondrial DNA is still incompletely understood. The 
mitochondrial DNA hypothesis may also explain observations that autophagy is associated with reduced 
inflammasome activation(48), as turnover of damaged mitochondria as well as ubiquitinated inflammasome 
components increases(49-51). If so, a recent study by Orlowski et al showing that multiple endogenous 
cathepsins potentiate NLRP3 activity may reveal another important mechanism of inflammasome 
regulation(52), considering that cathepsin activity is known to inhibit autophagy(53,54). However, other 
regulators may also contribute to signaling via this important pathway. Several studies have proposed NEK7 
as a key participant in NLRP3-induced caspase-1 cleavage and cell death(55-57).  
 Another important NLRP3-activating mechanism occurs through upstream recognition of 
intracellular LPS by caspase-11. In this pathway, termed the non-canonical inflammasome, LPS-activated 
caspase-11 cleaves gasdermin D, which  is involved in caspase-11 and caspase-1 dependent pyroptosis and 
NLRP3-dependent caspase-1 activation(58,59). Mechanistically, it has been proposed that gasdermin D 
forms pyroptotic pores in host cell membranes, and may even kill intracellular bacteria(60-63). Caspase-11 
activity depends on interferon pathways, as TLR4, TRIF, and IFNAR1 deficient cells show heavily 
impaired caspase-11 processing(64). Recently it was shown that type-I interferons activate guanylate 
binding proteins (GBPs) which are involved in trafficking proteins to the plasma membrane or 
membranes of intracellular organelles, and are required for activation of the inflammasomes pathways as 
well as other antimicrobial actions in response to vacuolar Gram-negative bacteria(65-69). However, 
while the non-canonical caspase-11 inflammasome plays a critical role in host defense against intracellular 
Gram-negatives(64,70-72), mice lacking gasdermin D or caspase-11 are also protected from high dose LPS-
mediated septic shock(58,73). 
 It is also important to note that some NLRs, such as NLRP6 and NLRP12, may have both pro- and 
anti-inflammatory functions(74-76). NLRP6 was shown to negatively regulate NF-kB driven innate immune 
responses and actually impede clearance of bacterial pathogens(77). Interestingly, in gut epithelial cells and 
neurons NLRP6 has a protective effect independent of inflammasome activity(78,79). NLRP6 was recently 
shown to recognize dsRNA together with Dhx15 (another potential cofactor), and play an important role in 
defense against norovirus in the gut independently of caspase-1(80). The unusual functions of NLRP6 
complicate the evaluation of mechanisms of its involvement in inflammasome processes. 
 In some disease contexts NLRP12 may also forms an Asc-dependent inflammasome and promote 
caspase-1 activation. NLRP12 contributes to caspase-1 activity and IL-1β production in response to Y. 
pestis(76) and K. pneumoniae(81) and Plasmodium(82). To date, however, no specific trigger of an NLRP12 
inflammasome has been identified. Like NLRP6, NLRP12 has been suggested to negatively regulate NF-
kB(83) and to limit inflammatory immune responses both in the intestines and in neurons(84,85), and 
NLRP12 can suppress immune responses to Salmonella infection.  
 A number of pathways are also capable of processing IL-1β and IL-18 independently of 
inflammasomes. Indeed, the IL-1β response to certain stimuli can be nearly unchanged in mice lacking 
caspase-1 or Asc(86-88). Several neutrophil proteases including serine proteinase-3, cathepsin G, and 
neutrophil elastase are known to directly process IL-1β and IL-18(89). In addition, caspase-8 can activate 
caspase-1 through an incompletely understood mechanism(90-92); however, caspase-8 has also been reported 
to process IL-1β independently of caspase-1(10,93,94). 
 Finally, it should be noted that inflammasome expression varies by cell type, stage of maturation, and 
type of activation. Expression of NLRP3, for example, is generally too low under resting conditions and 



needs to be induced by priming (usually with lipopolysaccharide) before it may be activated. By contrast, 
expression of NLRC4 relative to NLRP3 may inverse within hours of stimulation in some cells(95), which 
may have important implications for studies involving long periods of priming or infection. Priming is also 
sometimes necessary to induce expression of Pyrin(96), which Gavrilin and colleagues showed to be lost in 
macrophages upon differentiation; however, monocytes and PBMCs differentiated in the presence of 
additional growth factors restores Pyrin expression(97). Similarly, NLRP12 may have low expression in fully 
differentiated macrophages but is present in neutrophils(98). For these reasons, inflammasome studies in any 
cell line should be carefully scrutinized for appropriate expression of relevant components. However, some 
inflammasome components may not even be properly expressed in certain mouse strains. A known example 
is NLRP1b, as several common strains including C57Bl/6 lack a functional protein, and this correlates with 
lack of sensitivity of cells towards anthrax lethal toxin (99). Expression of cofactors involved in regulation of 
various inflammasomes may also differ significantly. Therefore, caution is warranted before drawing 
conclusions following negative results in inflammasome studies, both in vitro and in vivo.  
 In summary, the remarkable variety in these pathways raises questions about what defines an 
inflammasome, and should caution against generalizations about their mechanisms. New developments have 
uncovered additional members of several pathways. Considerable effort (for example, by utilizing 
CRISPR/Cas9 technology) is being spent on expanding the numbers of players, and will undoubtedly help 
with further characterization of signaling events. 
 
Secretion systems of bacterial pathogens 
 The ability to export molecules to manipulate the host environment is an essential ability of 
bacterial pathogens. Some of the most virulent Gram-negative bacteria have evolved type 3, 4 and 6 
secretion systems capable of penetrating host cells and injecting effector proteins to alter normal cellular 
processes in ways that benefit the pathogen. Thus, these secretion systems are typically essential virulence 
factors. Examples of such bacteria - Salmonella, Shigella, Francisella, Legionella, Burkholderia, 
Pseudomonas, Yersinia, and others - infect millions of patients worldwide, with a large number of deaths. 
In addition to the health and economic burden owed to these pathogens, some are candidates for bioterror 
and biowarfare. 
 There has been significant progress in understanding the structural and mechanistic aspects of 
bacterial secretion systems(100). Yet the complex roles they play in the host-pathogen interaction, 
particularly as they pertain to immune responses, are only beginning to be recognized and appreciated. 
Considering the breadth of pathways involved in inflammasome regulation described earlier, it should be 
reasonably expected that molecules delivered by bacterial secretion systems with the design to manipulate 
host cell homeostasis would in one way or another influence inflammasome pathways. The functions of 
many of these molecules remain unknown or incompletely characterized, keeping this field rich with 
questions and opportunity for inquiry. 
 Of the six secretion systems known in bacteria, the type III secretion system, (T3SS), type IV 
secretion system (T4SS), and type VI secretion system (T6SS) are associated with the most virulent 
human pathogens. Examples of pathogens with a T4SS are Legionella and Burkholderia bacteria, as well 
as Helicobacter pylori (not discussed in this review). The T6SS was discovered relatively recently, and is 
present in Vibrio, Pseudomonas, Burkholderia, and Francisella species. 

Of these secretion systems, the T3SS is the best studied and common to some of the most 
important and harmful bacterial pathogens (Yersinia, Salmonella, Shigella, Burkholderia, Pseudomonas, 
and others). The delivery apparatus of the T3SS has remained well conserved across species, and consists 
of the basal body, the needle, and a pore-forming complex at the tip. This structure is critically important 
for virulence; however, some key components cannot be easily altered without significantly 
compromising the ability to deliver effectors(101). Perhaps for this reason the secretion systems of 
several pathogenic species have become recognizable immune targets, or pathogen-associated molecular 
patterns (PAMPs) - molecules which are pathognomonic with bacterial infection for host immunity. 
Cytokine responses to the T3SS tend to be quite robust and may involve the activation of toll-like 
receptors and inflammasomes(45,102). Likewise, T3SS “injectisome” proteins, particularly those 



involved in attachment and penetration of the host cell, have a disproportionate number of immune 
epitopes compared to other bacterial proteins (IEDB.org); several of these are established protective 
antigens that confer adaptive immunity against the pathogen(103). Consequently, there is constant 
evolutionary pressure on T3SS pathogens to limit or manipulate the host response to its T3SS, and 
likewise there is pressure on the host to develop sophisticated methods of immune recognition with 
minimal immunotoxic harm to self. 
 
Interactions of specific bacterial secretion systems with inflammasomes 
 
Salmonella 

Species of the Gram-negative Salmonella genus are the leading source of acute gastroenteritis 
worldwide, resulting from foodborne poisoning through consumption of contaminated poultry, pork, 
eggs, and milk. In total, Salmonella causes estimated 1.3 billion cases of human disease each year and as 
many as 800,000 deaths (104-106). Salmonella enterica serovar Typhi, spread through contaminated 
water, causes up to 20 million cases and 220,000 deaths per year globally(107). The combined 15.2 
million disability-adjusted life years (DALYs) lost per year due to typhoidal and non-typhoidal 
Salmonella(108) make it the second greatest bacterial contributor to global disease burden after 
tuberculosis. 
 S. enterica serovar Typhimurium, one of the most common serovars causing nontyphoidal 
salmonellosis, is a facultative intracellular bacterium able to survive and reproduce both inside and 
outside of host cells. This adaptability requires a large number of genes which are distributed throughout 
the Salmonella genome, distinguishing it from many other pathogens whose virulence genes are typically 
more compartmentalized(109). Horizontal transfer of pathogenicity islands (so called because of their 
absence in nonpathogenic serovars) gives some S. enterica serovars the ability to survive inside host cells 
and effectively evade the immune system. 

The two major virulence determinants of S. enterica, such as serovars Typhimurium and Typhi, 
are the pathogenicity islands SPI-1 and SPI-2. These gene clusters encode two type III secretion systems 
(T3SS) capable of forming needle-like structures on the surface of the bacteria through which more than 
thirty specialized effector proteins can be injected directly into host cells(110,111). 

SPI-1 is a 40-kb region which encodes two distinct regulatory proteins, InvF and HilA, in 
addition to a T3SS termed Inv/Spa and a cluster of effector proteins. This secretion system was shown to 
be necessary for bacterial contact with host cells, and effectors secreted through this system trigger host 
cell pathways to internalize the bacteria(112).  

The second pathogenicity island, SPI-2, encodes a two-component regulatory system as well as 
another distinct T3SS (Spi/Ssa) which is a major virulence factor found in all subspecies of S. 
enterica(113,114). The Spi/Ssa T3SS of the SPI-2 pathogenicity island differs in structure and function 
from the Inv/Spa T3SS of the SPI-1, and while Inv/Spa mediates uptake of the bacterium, Spi/Ssa enables 
the survival and replication inside the host cell(113,114).  



 
Figure 1. NLRC4 inflammasome structure and common recognition patterns of flagellin and T3SS 
molecules. Known activators include Salmonella, Shigella, Burkholderia, Pseudomonas, and Yersinia. In 
the upper left are shown homologs of PrgI and PrgJ which are known or predicted to activate NLRC4 via 
NAIP1 or NAIP2, respectively. 

 
During enteric infection S. enterica invades the intestinal mucosa, followed by phagocytic uptake 

or entry into non-phagocytic enterocytes(105). The bacteria restricts the expression of SPI-1 and SPI-2 
until it encounters the appropriate host environment, at which point it expresses the T3SS genes required 
for further survival and propagation(115,116). Culturing S. Typhimurium at different conditions can 
mimic different host environments. For example, bacteria grown to log-phase will increase expression of 
SPI-1(117), but at stationary phase expression of SPI-1 decreases while expression of SPI-2 will 
increase(118). Thus, the bacterium seems to sense whether it is in an extracellular or intracellular 
environment, and alter the expression of its virulence factors for optimal adaptation. 

The host immune system is able to sense and react to these bacterial factors. S. Typhimurium 
expressing SPI-1 and the Inv/Spa T3SS induces rapid macrophage cell death and IL-1β production, which 
is dependent on NLRC4 as well as the NLR apoptosis inhibitory proteins (NAIPs)(45,119). As mentioned 
previously, NAIPs interact with NLRC4 upon sensing PAMPs and DAMPs, and trigger activation of the 
NLRC4 inflammasome. Mice express four NAIP paralogs (NAIP 1, 2, 5 and 6) of which NAIP5 and 
NAIP6 detect bacterial flagellin, NAIP2 detects the Inv/Spa T3SS inner rod protein PrgJ(45,119), and 
NAIP1 and its human homolog NAIP detect the Inv/Spa T3SS needle protein PrgI(102,120-122). 
Interestingly, there is only one known human NAIP protein, and this molecule  may be responsible for 
detecting both PrgI and flagellin(123). 

As mentioned above, S. Typhimurium grown to stationary phase (mimicking an intracellular 
niche) will upregulate SPI-2 while downregulating SPI-1. Macrophages infected with these bacteria will 



undergo a much slower cell death (12-17 hours compared to 1-2 hours for log-phase bacteria), which is 
not dependent on the Inv/Spa T3SS. Instead, this cell death is triggered by the Spi/Ssa T3SS and occurs 
predominantly through NLRP3 and the noncanonical caspase-11 inflammasome, and to a lesser extent 
through NLRC4(124). The Spi/Ssa T3SS is used by the bacteria to inject effector proteins into the cell 
cytoplasm, but it also allows translocation of flagellin protein which triggers the NLRC4 inflammasome. 
Using a Δfla mutant which does not produce flagellin, Broz et al showed that S. typhimurium initiates two 
host inflammasome pathways, with the presence of flagellin and SPI-2 respectively triggering NLRC4 
and caspase-11, likely with the SPI-2 needle mediating transfer of flagellin and LPS (124). 

Caspase-11 is capable of detecting intracellular LPS through an TRIF/interferon assisted 
pathway(64) and activate what has been termed a non-canonical inflammasome, leading to release of IL-
1β and IL18 and initiation of pyroptosis(7,73,125). It was proposed that caspase-11 binds directly to 
LPS(126) leading to cleavage of gasdermin D and initiation of cell death(58,127). The Spi/Ssa T3SS 
encoded by SPI-2 may introduce bacterial LPS into the host cytoplasm, activating caspase-11. The fact 
that some caspase-11 dependent IL-1β production still occurs in the absence of SPI-2 suggests that LPS 
may be delivered into the cytosol through an alternative mechanism, perhaps through the function of 
guanylate binding proteins (GBPs). 

 
S. Typhimurium has several mechanisms to avoid immune detection and maintain an intracellular 

growth niche. The bacteria shifts from SPI-1 to SPI-2 expression, and also down-regulates flagellin 
expression in order to minimize activation of NLRC4. SPI-2 drives the expression of the Spi/Ssa T3SS, 
which the bacterium uses to secrete effector proteins that help it persist in its vacuolar niche. One secreted 
protein, SifA, induces stabilization of the vacuole by microtubules, and is critically important for 
virulence(71,128). Yet the Spi/Ssa T3SS, which is required by the bacteria for virulence, also activates 
inflammasome pathways by the mechanisms described above and results in the eventual clearance of the 
pathogen.  
 
Yersinia 
 Yersinia pestis is the etiologic agent of some of the deadliest pandemics in human history, with 
total deaths in the hundreds of millions. Y. pestis continues to cause disease worldwide, particularly 
impacting the African sub-continent(129). However, Y. pestis is endemic in rodents in the Western North 
America, and sporadic cases of infection and death in the United States. 
 Human-pathogenic Yersiniae share a pCD1/pYV plasmid-encoded conserved T3SS with largely 
similar needle structure and injected effector proteins (Yops). These Yops play an important role in 
suppressing host immune functions and promoting bacterial survival. Avoiding immune surveillance is 
particularly important to the biological strategy of the Y. pestis, the etiologic agent of plague; immune 
evasion enables this pathogen to cause systemic disease with high mortality. Lack of a functional T3SS 
renders Y. pestis and the related enteropathogens Y. pseudotuberculosis and Y. enterocolitica essentially 
avirulent(130-135), although some aspects of disease may be observed with Y. pseudotuberculosis 
lacking T3SS(136). 
 In the case of Yersinia, a robust early immune response orchestrated by Interleukin-1β (IL-1β) 
and IL-18 favors host survival(76,137). The expression of these cytokines is effectively suppressed by 
injected Yops, despite evidence that Yersinia can activate the NLRP3, NLRC4, and NLRP12 
inflammasomes(76,138), as well as a non-canonical caspase-8 pathway(91,92). How specific Yersinia 
molecules activate and inhibit these pathways is not fully understood.  
 In the case of NLRP3 and NLRC4, activation depends on the presence of the functional T3SS 
apparatus(90,138,139), and may be triggered by parts of the injectisome structure itself, such as YscI(140) 
or YscF(141). Other possible mechanisms for NLRP3 activation include hyper-translocation of the 
YopB/D translocon into the cell cytoplasm(139), and the destabilizing effects of a large pore in cell 
membrane or endosomes(142). It is also possible that in the presence of a functional needle, other 
molecules (e.g. LPS) pass from the bacterium into the host cytoplasm and activate inflammasome 
pathways. While the details of the mechanism(s) are not yet clear, inflammasome activation by the 



injectisome is effectively blocked by YopK(138). Brodsky, Marketon and colleagues propose that this 
effector operates at the host side site of the translocon and regulates the delivery of other Yops(139,143). 
It is not clear if YopK may prevent the unintended entry of bacterial components other than Yops into the 
host cell. Potentially, YopK could also conceal inflammasome-activating components of a hyper-
translocated injectisome, or stabilize the pore to prevent membrane-damage associated inflammasome 
activation. 
 There is also some evidence indicating that YopE, an effector with GTPase activating protein (GAP) 
activity which inhibits RhoA/G, Rac1, and Cdc42, can also inhibit inflammasome activation by stabilizing 
the injectisome pore (142,144). An early report by Schotte and colleagues suggested that the Rho-GTPase 
inhibitor YopE may modulate caspase-1 activation in a manner dependent on Rac1(4). Although this finding 
has not received much followup in the inflammasome field, it points to an understudied role of cytoskeletal 
guanine nucleotide exchange factors (GEFs) and GAPs in inflammasome regulation. Many pathogens target 
host GTPases to inhibit motility and phagocytosis, and there is compelling recent evidence that these 
pathways can play important roles in regulating inflammasomes(7,42,145). Examples of other bacterial 
effectors with GAP functions include Salmonella SptP and Pseudomonas ExoS/ExoT(146). Yersinia YopT 
has protease activity towards Rho GTPases and can thus also inactivate this pathway(147). In the case of 
YopE, it is also possible that its Rho-GTPase inhibiting function induces activation of one inflammasome 
pathway, such as Pyrin (42,148), but inhibits another (perhaps, NLRP3) (4,142,144,149); however, this 
perceived inhibition could also be influenced by YopE regulation of T3SS effector secretion. Our own studies 
(Ratner et al, submitted) strongly suggest that YopE activates a Pyrin inflammasome pathway. 
 The Yersinia effector YopM also limits caspase-1 mediated IL-1β/IL-18 production through 
another incompletely understood mechanism. YopM was originally proposed to directly bind and inhibit 
caspase-1(150), yet subsequent results could suggest an alternative indirect ability of YopM to inhibit 
caspase-1, dependent on the presence of the cytoskeletal scaffolding protein Iqgap1(151). Furthermore, 
bindings partners of YopM include kinases Prk1/2 (also called PKN1/2) and Rsk1/2(152,153); interaction 
with the latter (also known as S6 ribosomal kinase) with the C-terminus of YopM has also been suggested to 
be important for caspase-1 inhibition and promotion of virulence by this effector(151,153). Recently, Pkn1/2 
have been implicated in Pyrin inflammasome regulation(43). YopM is a homolog of E3-ubiquitin ligases 
IpaH (Shigella) and SspH1 (Salmonella), which have no known roles in caspase-1 regulation. Yet YopM 
does control IL-1β and IL-18 production in vivo, and contributes to virulence in a manner dependent on IL-
1β, IL-18, and caspase-1(90). Our recent results (Ratner et al, submitted) suggest that YopM binds a complex 
of RSK1, PKN1 and Pyrin, and blocks YopE-induced Pyrin inflammasome activation and not needle/rod 
induced NLRP3/NLRC4 activation. 
 Another effector, YopJ, robustly suppresses IL-1β and IL-18 precursors as well as other NF-kB 
dependent cytokines(90,154,155), but also triggers caspase-8 dependent activation of caspase-1, IL-1β 
and IL-18 at low levels(91,92,156). Caspase-8 is important in host defense against Y. pestis(92,137), but it 
is not clear whether this is due to its role in processing IL-1β/IL-18, its pro-apoptotic activity, or its role in 
regulating other NF-kB dependent cytokines. In vitro studies indicate that YopJ is an acetyltransferase 
targeting IKKβ(157), MAP Kinase Kinases(158,159), and the MAP3K, TAK1(160,161). YopJ has also 
been reported to behave as a deubiquitinase(162,163). Interestingly, the catalytic activity of YopJ 
positively correlates with its ability to induce caspase-8 dependent cytotoxicity and IL-1β secretion, and 
may affect virulence(164,165). Indeed, some studies in non-microbial systems indicate that inhibition or 
lack of IKK β /MAPK leads to a paradoxical increase in IL-1β secretion and caspase-8 activation despite 
an expected anti-inflammatory effect(166-168). One possibility is that the non-canonical caspase-8 
pathway could be part of a host trapdoor mechanism for IL-1β/IL-18 production, designed to be triggered 
when effectors participating in disease processes such as YopJ attempt to suppress the critical NF-
kB/MAPK pathways after surface receptor activation. 
 
Burkholderia 
 Burkholderia species are closely related to Pseudomonas, and include several opportunistic 
pathogens which can cause serious disease in humans. B. pseudomallei causes the highly lethal disease 



melioidosis, and has even been considered as a candidate for biowarfare. Many species of Burkholderia 
are considered harmless; however, cystic fibrosis (CF) patients are uniquely susceptible to chronic lung 
infection with Burkholderia species, including ones which normally do not cause disease in humans.  
 Burkholderia pathogens are able to survive inside macrophages, and infection is typically 
eventually resolved by adaptive immunity. Nevertheless, in the early stages of infection, the Burkholderia 
secretion systems interact with several inflammasomes with important consequences for the course of 
disease. Some polymorphisms of NLRC4, for example, significantly impact survival in melioidosis in 
humans(169). 
 In general, it is difficult to distinguish whether effectors or secretion systems themselves are 
responsible for activating an inflammasome, and it is even more challenging when multiple interacting 
secretion systems are present. B. cenocepacia has a T2SS, T3SS, T4SS, and T6SS, each of which may 
contribute to activation NLRP3 and possibly to a lesser extent NLRC4(170). The T6SS and T2SS 
cooperate in the delivery of metalloproteinases zmpA and zmpB, which are essential for intracellular 
survival and also partially contribute to NLRP3 activation. Yet there seem to be other NLRP3 activators 
which have yet to be identified, and may include structural components of the secretion systems or other 
translocated proteins. 
 By contrast, B. pseudomallei does not seem to trigger NLRP3 activation in macrophages, but 
instead the early inflammasome response appears entirely dependent on NLRC4(171). This 
inflammasome activity arrests replication of intracellular bacteria. The NLRC4 activation appears to be 
primarily driven by the flagellin protein FliC and the basal body protein BsaK - a homolog of the 
NLRC4-activating PrgJ protein in Salmonella. Later in infection, IL-1β secretion is driven by an NLRC4-
independent pathway, and is curiously accompanied by caspase-1 independent cell death. Both NLRC4 
and TLR5 are required for host survival and resolution of B. pseudomallei lung infection in vivo, but 
indeed there appears to be another unidentified inflammasome activated later during infection(169). 
Although some inflammasome activity is essential for the host response, production of IL-1β specifically 
leads to excessive neutrophil recruitment and elastase-mediated lung damage(172). Rather than resolution 
of infection, this results in increased host mortality and systemic invasion by the pathogen. Instead, it is 
IL-18 production by inflammasome activity which appears to assist survival and bacterial clearance. 
 B. cenocepacia, a particularly antibiotic-resistant bacterium that is often problematic when 
appearing in CF patients, has also been shown to activate the Pyrin inflammasome in human monocytic 
cells by Gavrilin, Wewers and colleagues(173), and this type of activation was recently also demonstrated 
in mice(42). The T6SS, but not the T3SS activates Pyrin and induces its recruitment to phagosomes. The 
B. cenocepacia T6SS is known to disrupt Rho-GTPases and cytoskeletal regulation(174-176), which are 
events that have been hypothesized to activate Pyrin(18,41,42,177,178). This ability may be associated 
with the effector TecA, which induces RhoA covalent modification (deamidation) in the GTPase switch-I 
region(179). Loss of Pyrin is associated with increased intracellular bacterial survival, but also reduced 
inflammation in the lungs of infected mice(42). This may be an important insight for CF lung infection 
with Burkholderia species, as evidence suggests higher mortality and ineffective clearance of the related 
P. aeruginosa pathogen associated with increased inflammasome responses. 
 
Pseudomonas 
 Certain Pseudomonas species, particularly Pseudomonas aeruginosa, are important opportunistic 
and nosocomial pathogens. They are particularly dangerous for immunocompromised and severely ill 
patients, as well as individuals with cystic fibrosis (CF). P. aeruginosa is able to establish chronic lung 
infection in CF patients due to the uniquely permissive environment of the CF lung; the ensuing 
inflammation results in progressive lung damage and is currently the leading cause of death among CF 
patients. Given the high hazard that P. aeruginosa poses to the sizable population of individuals with CF 
worldwide, inflammasome responses to this pathogen in the context of the CF lung deserve special 
attention. 
 The relationship between Pseudomonas infection and inflammasomes is complex and 
controversial. Some studies indicate reduced bacterial clearance when inflammasome activation is 



defective(180). Yet a majority of studies suggest that inflammasome activation is counterproductive to 
bacterial clearance, particularly in the lungs, and may even exacerbate tissue damage and 
mortality(95,181-185). In the study by Faure et al, it appears that inflammasome-driven IL-18 dampens 
IL-17 activity, which is critical for clearing Pseudomonas lung infection. It is possible that these 
discrepancies highlight a difference between corneal infection, where an IL-1β/IL-18 response is 
beneficial to the host, and lung infection, where the same type of response is inappropriate. A curious 
observation is that P. aeruginosa appears to exploit the regulation of host autophagy by IL-1β and 
caspase-1, with the net result that inflammasome activation promotes the survival of the 
pathogen(95,186,187). 
 Pseudomonas is primarily known to activate NLRC4 and NLRP3, although a caspase-1 
independent pathway will also be discussed. The AIM2 inflammasome does not appear to be 
activated(188). The Pseudomonas RhsT protein has been suggested to be an inflammasome activator, 
however the authors do not elaborate on possible mechanisms(184). RhsT contains conserved sequence 
homology with the Clostridium  difficile toxin B (TcdB), a RhoA modifier and inhibitor, and a known 
activator of the Pyrin inflammasome. Whether this protein indeed activates Pyrin or another 
inflammasome warrants investigation, as the RhsT family proteins are widespread and conserved among 
many pathogens, including several that have been shown to activate Pyrin.(42)  
 The NLRC4 inflammasome is activated by multiple Pseudomonas molecules, likely including the 
T3SS injectisome itself, both in vivo and in vitro(181,189). Potentially recognized injectisome 
components include PscI (a homologue of the NLRC4-activating Salmonella basal body protein PrgJ), 
and PscF (a homologue of Yersinia needle protein YscF). NLRC4 is also known to be activated by 
flagellin proteins of many bacterial species, and Pseudomonas flagellin follows this pattern as well(185). 
It is worth noting that NLRC4 activation correlates with bacterial motility, and some investigators have 
suggested that it may be flagellar motility, rather than the flagellin protein per se, which leads to 
phagocytosis and inflammasome activation(190,191). Yet this view is challenged by experiments 
showing that surfactant protein A directly binds recombinant flagellin as well as live Pseudomonas in 
vitro and in vivo, enhancing the phagocytosis and capacity of both to activate NLRC4(192). Findings by 
Anantharajah and colleagues also suggest that IL-1β release and pyroptosis are not correlated to flagellar 
motility(193). Thus, it is possible that decreased inflammasome activation by non-motile Pseudomonas is 
due to reduced contact with host cells; this is especially worth considering given that clinical isolates of 
Pseudomonas from chronically infected lungs are typically mucoid strains, which are resistant to contact 
with immune cells and phagocytosis. 
 The P. aeruginosa T3SS has been shown to activate both NLRP3 and, surprisingly, NLRC4 by 
inducing mitochondrial damage and DNA release(95,186). In the latter study, Jabir et al demonstrated 
mitochondrial DNA binding to NLRC4 downstream of Pseudomonas infection, uncovering aspects of the 
NLRC4 mechanism which may have been previously overlooked(187,194). Pseudomonas-triggered 
inflammasome activation induces autophagy, which seems to be associated with defective killing of the 
bacteria. Moreover, in an acidic microenvironment, as is typically the case in bacterial infection foci, 
Pseudomonas T3SS triggers enhances inflammasome activation immune cells(195). This may be 
significant because acidic conditions are known to favor autophagy(196-198), further assisting bacterial 
survival. Cumulatively this adds to a growing body of evidence that in most cases, inflammasome 
activation infection with P. aeruginosa is ineffective and histotoxic - particularly in the lung where 
excessive inflammatory damage is associated with worse clinical outcome. 



 
Figure 2. NLRP3 inflammasome structure and function, including the non-canonical caspase-11 pathway. 
Known activators are in red, and triggering molecules and processes are detailed. 
 
 These findings may help explain why CF patients are more vulnerable to P. aeruginosa lung 
infection. First, the pH of the CF lung is more acidic than in healthy individuals(199,200), which was 
shown to negatively impact bacterial killing by Pezzulo and colleagues(201). According to the studies 
cited earlier, this lower pH would be associated with even greater inflammasome activation and decreased 
bacterial clearance. Second, a recent elegant study by Rimessi and colleagues demonstrated that 
Pseudomonas activates NLRP3 and NLRC4 more strongly in CF cells due to intrinsically impaired 
calcium homeostasis(202). CFTR is a chloride ion channel, and its deficiency leads to abnormally high 
intracellular and mitochondrial calcium levels. P. aeruginosa infection triggers additional calcium entry 
via the mitochondrial calcium uniporter, resulting in greater mitochondrial damage, oxidative stress and 
subsequent NLRP3 activation in CF cells. Thus, the intrinsically aberrant calcium homeostasis and 
increased acidity exacerbate the inappropriate inflammasome activation in response to P. aeruginosa, and 
lead to exaggerated neutrophil influx with subsequent lung damage by neutrophil elastase despite 
perpetual failure to clear the bacteria. Indeed, inhibiting the Pannexin-1 (P2X7) channel with probenecid 
prior to Pseudomonas infection successfully prevents calcium influx-driven caspase-1 activation, and 
reduces the severity of infection in vivo(203,204).  
  Yet if caspase-1 inhibition in the lung is beneficial for the host and detrimental for Pseudomonas, 
then what is the significance of ExoU - a Pseudomonas T3SS toxin which is reported to be a potent 
caspase-1 inhibitor? According to Anantharajah and colleagues, IL-1β secretion is abrogated in the 
presence of ExoU, and pyroptosis is replaced with rapid cell death(193), which is not caspase-8 



dependent(92) and is likely necrotic(205). Neither the mechanism of cell death nor caspase-1 inhibition 
are fully understood. ExoU is a phospholipase, which is unique among T3SS effectors(205), and it is 
apparently able to effectively suppress both NLRC4-dependent and independent caspase-1 processing. 
However, Pseudomonas strains which lack ExoU appear to have a competitive advantage over ExoU(+) 
strains(206). Over time, the clinical isolates recovered from chronic Pseudomonas lung infections tend to 
becomes ExoU(-), non-motile, and often completely lacking a T3SS. 
 In addition to NLRP3 and NLRC4, Pseudomonas also appears to trigger a non-canonical 
inflammasome pathway. This pathway appears to be influenced by pilin and requires a functional T3SS, 
but is not dependent on NLRP3, NLRC4, or Asc(207). Karmakar et al also identified a pathway of IL-1β 
production by neutrophils in response to Pseudomonas corneal infection which is independent of Asc and 
caspase-1, but dependent on the activity of neutrophil elastase and serine proteases(180). Here, IL-1β was 
found to be necessary for bacterial clearance from the cornea, in contrast to the detrimental effects of IL-
1β in Pseudomonas lung infection. Others have also reported a neutrophil-driven pathway in response to 
Pseudomonas with similar non-canonical characteristics(182,208), with potential regulation by 
Pstpip2(208). If these studies indeed describe a single pathway, then the fact that it is independent of 
caspase-1 narrows the possibilities of enzymes known to directly cleave IL-1β to caspase-8, neutrophil 
elastase, proteinase 3, and cathepsin G. Although evidence to confidently exclude a role for caspases-8 
and 11 is incomplete, currently it appears Pseudomonas does not strongly activate these 
pathways(7,64,92). Synthesizing all of these results may suggest a scenario where pilin is secreted by the 
Pseudomonas T3SS, and perhaps activates direct processing of IL-1β and IL-18 by neutrophil serine 
proteases independently of inflammasomes or caspase-1, although there may be other interpretations as 
well. 
 
Francisella 

The facultative intracellular bacterium Francisella tularensis is the causative agent of tularemia, 
an acute systemic disease typically presenting as pneumonia, with high mortality. It is a highly virulent 
pathogen which, like Y. pestis, is classified as a category A select agent with the potential to be used for 
bioterror and biowarfare. For non-select agent research, the model of choice is often F. tularensis 
subspecies holarctica (Live Vaccine Strain, LVS) or F. novicida, as it is virulent in mice but attenuated in 
humans(209-211). 

F. novicida avoids degradation by phagocytes by escaping from the phagosome into the cytosol, 
where it is then free to replicate. However, upon escape from the phagolysosome, F. novicida triggers 
caspase-1 cleavage and IL-1β secretion(212). Francisella activates AIM2 in mice but, unlike the other 
pathogens discussed in this review, does not seem to activate either NLRC4 nor NLRP3(213,214). In 
human cells both NLRP3 and AIM2 are triggered(214). Activation of NLRP3 was recently corroborated 
by another study where human monocytes produced IL-1β in response to Francisella bacteria and 
ATP(215); this IL-1β secretion also required K+ influx, suggesting an NLRP3-dependent mechanism. 
Perhaps a Francisella effector is able to inhibit NLRP3 activation in mice but not in humans(216), or 
mice and humans have other potential differences in NLRP3 regulation. Another mouse-human difference 
concerns Francisella activation of the Pyrin inflammasome. Gavrilin and colleagues showed that in 
human monocyte-derived macrophages and THP-1 cells, Francisella triggers the Pyrin 
inflammasome(97). This contrasts with findings by Fernandes-Alnemri et al, who showed that mice 
lacking Pyrin still produce IL-1β in response to Francisella, while mice lacking AIM2 produce little to 
none. Significant differences in the protein sequences of mouse Pyrin versus human Pyrin may partly 
explain this discrepancy(217). 

The mechanism by which F. novicida activates AIM2 is also unusual, occuring through an IRF-1 
dependent pathway(218). Activation of the cytosolic DNA sensor cGAS and STING in response to 
cytosolic F. novicida leads to IRF-1 mediated transcription of GBPs; specifically, GBP 2 and 5 were 
found to lead to activation of AIM2, but not NLRP3, in a dsDNA dependent manner in mouse 
macrophages. These GBPs have been proposed to be involved in the lysis of the bacteria or the bacteria 
containing vacuole, thereby releasing bacterial DNA into the cytoplasm(69,218,219). As mentioned 



earlier, the AIM2 inflammasome assembles upon directly binding dsDNA via the HIN domain(31,220-
222). Yet the study by Man and colleagues shows that although AIM2 and cGAS can both bind dsDNA, 
cGAS activation is upstream of AIM2 and is necessary for inflammasome formation in response to F. 
novicida. Both AIM2 and IRF1 were required for restriction of F. novicida replication in vitro, and 
survival in vivo(218). Potentially, interferon signaling could be necessary to increase AIM2 expression, 
however other studies show that even small amounts of transfected dsDNA are enough to rapidly trigger 
activation of the AIM2 inflammasome(223). A specific trigger of this pathway is not known, although 
one possibility is that the F. novicida activator of STING is a secreted cyclic nucleotide, similar to L. 
monocytogenes(224). 

Cytosolic LPS from the intracellular F. novicida would be expected to also trigger caspase-11 
activation. However, Francisella produces tetra-acylated rather than hexa-acylated LPS, which loses its 
ability to bind and activate caspase-11(73). This is a similar strategy to that of Y. pestis, limiting 
activation of TLR4(137), and downstream expression of inflammasome factors such as NLRP3, pro-
caspase-1, pro-IL-1β, and pro-IL-18. 

The Francisella pathogenicity island (FPI) encodes 16-19 genes which express a Type VI 
secretion system (T6SS) which is required for virulence. The IglC T6SS protein induces phagosome 
rupture and allows Francisella to escape into the cytosol(210). This is in contrast to S. typhimurium, 
which secretes factors in order to stabilize the phagosome and avoid cytosolic entry. Francisella lacking 
functional IglC fail to escape the phagosome, and also fail to trigger the AIM2 inflammasome(218). This 
suggests that activation of AIM2 requires the presence of the bacteria in the cytosol, and bacterial 
secretion of effectors and other factors into the cytosol from inside the phagosome may not be sufficient 
to trigger inflammasome activity. 

The function of IglC is still under investigation, and it may potentially be part of the T6SS 
apparatus itself(225); indeed, it appears to be a homolog of Hcp, which is thought to form the tube-like 
structure of the T6SS for delivery of effectors(226,227). In this case, an IglC mutant may fail to activate 
AIM2 simply because the activating molecule (presumably, DNA) is not translocated into the cytosol.  

 



 
Figure 3. Pyrin inflammasome structure and function. Francisella and Burkholderia are known activators 
of Pyrin, the Burkholderia T6SS effector TecA inhibits RhoA and triggers Pyrin. Yersinia YopE is a 
proposed Pyrin activator based on its ability to inhibit RhoA via the YopE GAP activity. 

 
Legionella 

Legionella pneumophila is a Gram-negative intracellular pathogen responsible for the respiratory 
infection known as Legionnaire's disease. The ability of Legionella to survive inside macrophages and the 
way it interacts with inflammasomes is in many ways comparable to Salmonella. After phagocytosis, 
survival and replication by L. pneumophila requires inhibition of phagosome-lysosome fusion, so that the 
bacteria may persist in a protected vacuole. The requirement to stabilize this intracellular niche is evident 
from the fact that bacteria that are incapable of growing inside host cells are also incapable of causing 
disease in animals(228). However, upon sufficient replication the bacteria induces rupture of the vacuole 
followed by lysis of the infected cell(229). This releases the bacteria into the host environment, allowing 
it to infect more cells and for the infection to continue. 

Legionella has a type IV secretion system (T4SS) encoded by a region of the genome called icm 
(intracellular multiplication). The T4SS translocates hundreds of effector proteins into the cytoplasm in 
order to stabilize the bacterial vacuole and establish a replicative niche(228-231); this high number of 
effectors distinguishes Legionella among pathogens with secretion systems. Most of the effectors are 
involved in manipulating host pathways to prevent fusion of the bacterial vacuole with lysosomes(232). 



Some effectors such as SidF and SdhA prevent the host cells from undergoing apoptosis in order to limit 
inflammatory responses and immune detection(233,234). 

Despite having a T4SS rather than a T3SS, Legionella activates inflammasomes by mechanisms 
similar to those of Salmonella. The Legionella T4SS transolcates LPS into the cytosol where it triggers 
activation of the non-canonical caspase-11 dependent NLRP3 inflammasome (235,236). Pyroptosis 
requires caspase-11, but not NLRP3 in cells infected with Legionella, which is consistent with the 
gasdermin D-dependent mechanism proposed by Kayagaki and colleagues(58). Interestingly, it has also 
been reported that activated caspase-11 induces fusion of the L. pneumophila-containing phagosome to 
the lysosome through actin remodeling(72). 

Legionella flagellin translocated into the cytoplasm through its secretion system is detected by the 
NLRC4 inflammasome through the adaptor molecule Naip5(16,236-239). In other bacteria, the T3SS 
needle protein PrgJ and its homologs may also trigger NLRC4, however Legionella lacks a T3SS and 
flagellin may be the only NLRC4 activator in this pathogen. This NLRC4 pathway seems to be sufficient 
for controlling bacterial replication, based on evidence that deficiency of caspase-1 but not caspase-11 
impairs bacterial clearance both in vitro and in vivo(240). However, lack of caspase-1 is functionally 
similar to a lack of caspase-11 and NLRC4, so it is not possible to evaluate the relative importance of the 
caspase-11 pathway using a capase-1 deficient model. Given the robust caspase-11 dependent activation 
of caspase-1 by L. pneumophila lacking flagellin(236), as well as its role in fusing the bacterial vacuole 
with lysosomes(72), it is conceivable that caspase-11 may be redundant with NLRC4 and sufficient for 
bacterial control on an NLRC4 -/- background. Legionella lacking the T4SS (dotA -/-) does not show any 
inflammasome activation or cell death(236), most likely because these mutant bacteria fail to secrete LPS 
and flagellin along with essential effector proteins to stabilize the vacuole. This results in normal 
trafficking of the bacterium to the lysosome where it is efficiently neutralized(237). 
 
Shigella 

The Gram-negative Shigella is the causative agent of shigellosis, a foodborne illness prevalent in 
developing countries. Shigella results in severe gastrointestinal disease in humans, but does not seem to 
cause significant disease in other animals. It invades the colonic and rectal mucosa leading to leukocyte 
recruitment, severe inflammation, and often bloody diarrhea (dysentery) which leads to further spread of 
infection in poorly sanitized regions. Like several other pathogens discussed in this review, the ability of 
Shigella to survive intracellularly is a central part of its infection strategy. 

Shigella is closely related to Salmonella, but one major distinction is that Shigella may 
lackflagella. Like S. typhimurium, pathogenic Shigella species, like S. flexneri, S. sonnei, S. dysenteriae 
and S. boydii, are capable of entering gut epithelial cells as well as macrophages, and trigger rapid cell 
death. Shigella also uses a T3SS to secrete effectors which induce vacuole rupture and release the bacteria 
into the cytosol. Although Shigella lacks flagellin it still readily triggers the NLRC4 inflammasome 
through the same T3SS it uses to escape this vacuole. NLRC4 is activated by Naip2, which detects the 
inner rod protein MxiI(241), and Naip1, which recognizes the needle component MxiH(102,122,242).  

Release of Shigella into the cytoplasm of the host cell also triggers IFN dependent caspase-11 
activation(64), with downstream activation of caspase-1 through the non-canonical inflammasome, 
secretion of IL-1β and IL-18, and pyroptosis via gasdermin D(58). It was also reported that caspase-4, the 
human homolog of caspase-11, is involved in host resistance to Shigella(243); however, Shigella secretes 
the effector protein OspC3 which inhibits caspase-4 activation. It is interesting that OspC3 is highly 
specific to caspase-4 and does not inhibit caspase-11, suggesting the preference Shigella has for infecting 
humans 

The Shigella T3SS also appears to induce autophagy(244), which is known to suppress 
inflammasome activation; inhibition of autophagy promoted cell death in infected macrophages, which is 
again suggestive of pyroptosis. In the absence of caspase-1 or NLRC4 autophagy was dramatically 
enhanced, which is consistent with reports that caspase-1 negatively regulates autophagy(187). 

Similar to Yersinia, Shigella modifies its LPS in order to evade immune detection(245). Paciello 
and colleagues show that during intracellular replication, Shigella predominantly expresses tri- and tetra-



acylated LPS with fewer acyl chains in lipid A than when it is cultured in growth media. This 
hypoacylated LPS is much less potent in activating TRL4, resulting in limited expression of pro-caspase-
1, pro-IL-1β, and pro-IL-18. However, the authors also suggest that in late infection, when Shigella is 
obligated to proliferate extracellularly due to decreasing access to live local cells to infect, the bacteria 
reverts to production of immunopotent hexa-acylated LPS. This allows leukocytes to respond to the 
pathogen more effectively and eventually clear it from the body. 

 
Escherichia 
 Several Escherichia coli types affecting human health, such as Entero-Pathogenic E. coli (EPEC) 
and Entero-Hemorrhagic E. coli (EHEC) harbor a T3SS and trigger IL-1β release, however, it is possible 
that the mechanisms behind the IL-1β production in some settings may differ from other bacteria. One 
study indicated that NLRP3-dependent EHEC-induced IL-1β was independent of the T3SS but dependent 
upon formation of RNA:DNA hybrids(246), and another report suggested that inflammasome activation 
via NLRP3 was triggered by viable E. coli and their mRNA(247). However, E. coli also is able to trigger 
T3SS-dependent effects, such as activating NAIPs/NLRC4 via T3SS needle/rod components EprJ, EscI 
and EprI(45,248), and the effector NleA may inhibit NLRP3 stimulation(249). Other human pathogens, 
like Vibrio and Chlamydia also harbor secretion systems with potential of modulating inflammasome 
activities. 

 
Conclusion 
Bacterial secretion systems interact with inflammasome pathways in many different fashions, both with 
activating and inhibitory functions.  Responses can be initiated by translocon/pore formation, directed by 
secreted effector proteins or by components such as flagellin or LPS channeled through the needle. Each 
pathogen has its distinct way of interacting with the host innate immune system, and can harbor inhibitory 
proteins suppressing inflammasome activation, but the host may have evolved mechanisms to sense these 
key virulence factors. However, it is often a battle between blocking and activating forces with regard to 
net effect on innate immunity, and there is likely a delicate balance that will decide if and how the 
pathogen may cause disease. This is a fascinating field, more progress is likely to increase the perceived 
complexity of these mechanisms, but may also to help in the design of new therapeutics for inflammatory 
diseases. 
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