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Abstract. The upcoming profiling API standard OMPT can describe al-
most all profiling events required to construct grain graphs, a recent vi-
sualization that simplifies OpenMP performance analysis. We propose
OMPT extensions that provide the missing descriptions of task creation
and parallel for-loop chunk scheduling events, making OMPT a suffi-
cient, standard source for grain graphs. Our extensions adhere to OMPT
design objectives and incur a low overhead for BOTS (up to 2% over-
head) and SPEC OMP2012 (1%) programs. Although motivated by grain
graphs, the events described by the extensions are general and can enable
cost-effective, precise measurements in other profiling tools as well.
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1 Introduction

Programmers are required to write parallelized code to take advantage of the
multiple cores and accelerators exposed by modern processors. The OpenMP
standard API [3] is among the leading techniques for parallel programming used
by programmers. All programmers have to do is incrementally insert OpenMP
directives into otherwise serial code. The directives are translated by compilers
into parallel programs that are scheduled by runtime systems.

Getting OpenMP programs to perform well is often difficult since program-
mers work with limited information. Program translation and execution hap-
pens in the background driven by compiler and runtime system decisions un-
known to programmers. Performance visualizations depict these background
actions faithfully and do a poor job of connecting problems to code semantics
understood by programmers.

The grain graph is a OpenMP visualization method for OpenMP that shows
performance problems on a fork-join graph of grains – task and parallel for-loop
chunk instances [15]. Problem diagnosis becomes effective since programmers
can easily match the fork-join structure to the code they wrote. Insightful metrics
derived from the graph guide optimization decisions. The graph is constructed
post-execution using profiling measurements from the MIR runtime system [14].



We have previously found [11] that except for task creation and parallel
for-loop chunk scheduling, the upcoming OpenMP Tools API (OMPT) [7, 19]
standard can describe all profiling events required to obtain measurements
for grain graphs. In the paper, we propose OMPT extensions that provide the
missing descriptions. Our extensions adhere to the design objectives of OMPT
and incur a low overhead for standard benchmarks and programs from EPCC [1,
2] (up to 3% overhead for schedbench excluding statically scheduled loops with
small chunks, 2.7% for taskbench), BOTS [6] (2%) and SPEC OMP2012 [17] (1%),
when evaluated extensively with and without OMPT tools attached. Although
our extensions are motivated by grain graphs, the events they describe are
general and can enable cost-effective, precise measurements in other profiling
tools as well.

2 Background

We explain required background information on OMPT and grain graphs in the
section.

2.1 OMPT

The OpenMP Tools API (OMPT) [7,19] is an upcoming addition to the OpenMP
specification to enable creation of portable performance analysis tools. OMPT
supports asynchronous sampling and instrumentation-based monitoring of
runtime events.

Tools based on OMPT, hereafter simply called tools, are a collection of func-
tions that reside in the address space of the program being profiled. During
startup, the runtime system calls the tool’s initialization function, which in turn
registers callback functions with the runtime system to be called at specific
events such as starting a thread, starting a worksharing region, task creation,
and task scheduling.

The foremost design objectives of OMPT [7] are:

– Tools should be able to obtain adequate information to attribute costs to
application source code and the runtime system.

– OMPT support incorporated in an OpenMP runtime system should add
negligible overhead when no tool is in use.

2.2 Grain graphs

The grain graph is a recent visualization method for OpenMP that works at the
level of task and parallel for-loop chunk instances, collectively called grains [15].
The graph captures the fork-join program progression familiar to programmers
by placing parent and child grains in close proximity without timing as a place-
ment constraint. Grains with performance problems such as work inflation,
inadequate parallelism, and low parallelization benefit are pin-pointed on the
graph. Example grain graphs are shown in Figure 1.
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Fig. 1: Example grain graphs. (a) Graph of BOTS Fibonacci program for small
input (n=32,cutoff=4). Grain colors encode location in source code. (b) Graph of
a simple OpenMP parallel for-loop with 10 iterations executed on two threads
with the dynamic schedule. Grain colors encode the worker thread. Problematic
chunks (here, those with low parallel benefit) are pinpointed with a superim-
posed red highlight and other chunks are dimmed.

The grain graph visualization is implemented in a reference prototype [16]
that relies on detailed profiling measurements from the MIR runtime sys-
tem [14]. Per-grain metrics from MIR such as execution time and parallelization
cost are combined with the grain graph structure to derive metrics that guide
optimizations.

Parallel benefit is a derived metric equal to a grain’s execution time divided
by its parallelization cost including creation time. Parallel benefit aids inlining
and cutoff decisions by quantifying whether parallelization is beneficial. Grains
with low parallel benefit should be executed sequentially to reduce overhead.

3 Extending OMPT

We propose two extensions to make OMPT a sufficient source for descriptions of
profiling events required to construct grain graphs. The first extension enables
measuring time spent in creating task instances. Task creation time is required
to derive the parallel benefit metric of grain graphs. The second extension de-
scribes detailed parallel for-loop execution events including chunk assignment,
enabling performance analysis at the chunk-level – a key feature of grain graphs.
Both extensions adhere to OMPT design objectives (Section 2.1) and separate
concerns similar to the rest of the interfaces. More details about the extensions
follow.



3.1 Task Creation Duration

Creating a task instance typically involves pushing it into a task queue after
allocating and initializing book-keeping data structures. This can take an uneven
amount of time subject to memory allocation latencies and queue contention.
An existing callback in OMPT called ompt_callback_task_create can notify tools
that task creation is taking place. However, it does not allow measuring the
duration of the process. Allowing tools to determine per-task creation time
enables precise guidance about inlining and cutoffs. Also, situations where task
creation duration estimates computed by tools are outdated or mismatched with
the runtime system can be avoided.

To extend OMPT with the ability to inform tools about task creation duration,
we considered three alternative approaches:

1. Add an endpoint parameter to the ompt_callback_task_create callback, and
let the callback be invoked both at the start and end of task creation. This
enables tools to measure the time between calls at the expense of changing
the signature and the semantics of an existing callback.

2. Introduce a new callback that denotes the beginning of task creation and let
the existing callback ompt_callback_task_create be called at the end of task
creation. This approach differs from the first in that it avoids changing the
signature of an existing callback but introduces a new one. An advantage
of the approach is that tools can measure other metrics and not just time
between the begin and end callbacks.

3. Measure the task creation duration inside the runtime system and report it to
the tool as an extra parameter to ompt_callback_task_create. The advantage
of this approach is that it avoids an additional callback invocation before
each task creation event. However, it forces tools to agree on the notion
of time. Some tools may require time measured in processor cycles, while
others may only need microsecond precision. To complicate things further,
the runtime system may decide to measure elapsed processor cycles using a
hardware performance counter – a scarce resource for tools. In the case that
multiple cycle counters exist, the tool would not necessarily know which
counter is used by the runtime system.

We chose the third approach because it reduced callback overhead and was
specific to time. The time agreement disadvantage was solved by allowing tools
to register a function in tool-space that returns the current time. This function is
called by the runtime system before and after task creation, and the difference
between the two time values is returned as a callback parameter.

Our design for the task creation duration extension has the following new
function signatures:



// The signature of the new ompt_tool_time callback to

// register a tool-space time function

typedef double (*ompt_tool_time_t) (void);
// The proposed new signature to ompt_callback_task_create

typedef void (*ompt_callback_task_create_t) (
ompt_data_t *parent_task_data,
const ompt_frame_t *parent_frame,
ompt_data_t *new_task_data,
ompt_task_type_t type,
int has_dependences,
double event_duration, // A new addition to return duration

const void *codeptr_ra
);

The event_duration parameter is typed as a double-precision floating point
number to give tools increased precision and be consistent with omp_get_wtime.
If the tool has not registered an ompt_tool_time function, the event_duration is
reported as 0. We chose to return 0 instead of falling back to a low-precision
timer consistent with omp_get_wtime so that no extra timing overhead is incurred
if tools opt out of registering a time function. The value 0 is also returned if the
runtime system or compiler decides the task creation duration is lower than the
overhead to call the ompt_tool_time function twice.

3.2 Extended For-loop Events

Currently, OMPT lacks interfaces to understand chunks. Parallel for-loop sup-
port is also meager. The existing loop-focused callback ompt_callback_work car-
ries little information about looping parameters. Tools can help programmers
correctly diagnose parallel for-loop problems if enabled with per-chunk metrics
such as creation duration, execution duration, and iteration range, as demon-
strated by grain graphs [15].

We propose extending OMPT with two new callbacks, one for chunks and
the other for loops, that improve the quality of information provided at loop
events to tools, enabling them to measure the execution time of individual
chunks and map chunks to iterations or worker threads.

The signatures for the new callbacks are shown below.

// The proposed ompt_callback_chunk signature

typedef void (*ompt_callback_chunk_t) (
ompt_data_t *task_data, // The implicit task of the worker
int64_t lower, // Lower bound of chunk

int64_t upper, // Upper bound of chunk

double create_duration, // Interval found from tool-supplied instants
int is_last_chunk // Is it the last chunk?

);



// The proposed ompt_callback_loop signature

typedef void (*ompt_callback_loop_t) (
omp_sched_t loop_sched, // Actual schedule type used

ompt_scope_endpoint_t endpoint, // Begin or end?
ompt_data_t *parallel_data, // The parallel region

ompt_data_t *task_data, // The implicit task of the worker

int is_iter_signed, // Signed loop iteration variable?

int64_t step, // Loop increment

const void *codeptr_ra // Runtime call return address

);

The proposed callback ompt_callback_chunk is called before a chunk starts ex-
ecution. It describes the iteration range and creation time of the chunk. Chunk
creation time is calculated using a tool-space ompt_tool_time function if pro-
vided, similar to approach for tasks (Section 3.1). The information can be used
by tools to identify chunks that execute shorter than their creation time and
guide chunk size selection, as demonstrated by grain graphs.

The new loop callback ompt_callback_loop is meant to be called instead of the
existing ompt_callback_work whenever a parallel for-loop is encountered. This
callback provides additional loop-level information such as loop increment and
the schedule type at runtime. Schedule type is not always set in the source code
and can be decided by the compiler, runtime system, and environment variables.
The is_iter_signed parameter is used to inform tools about the signedness of
the iteration variable, so that tools can cast the iteration bounds reported by
ompt_callback_chunk to the correct type.

The extensions require minimal changes to existing OMPT implementations.
The ompt_callback_work callback is simply replaced by ompt_callback_loop in
code that processes the for construct. Calls to ompt_callback_chunk should be
made in runtime system functions that handle assignment of chunks to worker
threads executing dynamically scheduled for-loops.

A relatively larger change is required to handle statically scheduled for-loops
where worker threads calculate their chunk iteration ranges directly through
code inserted by the compiler. In this case, compilers should additionally gener-
ate calls to ompt_callback_chunk, preferably through a call to the runtime system.
Calling the runtime system for every chunk is expensive if chunk sizes are small.
We avoid this overhead when there is no tool attached, or when the attached
tool has not registered for the ompt_callback_chunk callback, by conditionally
calling the runtime system as shown in the pseudocode snippet below.



bool callbackPerChunk = __omp_runtime_should_callback_per_chunk();
while (UB = min(UB, GlobalUB), idx = LB, idx < UB) {

if (callbackPerChunk) {
__omp_runtime_for_static_chunk(...)

}

for (idx = LB; idx <= UB; ++idx) {
BODY;

}

LB = LB + stride; UB = UB + stride;

}

Notice that the snippet does not contain code to compute chunk creation
time. For statically scheduled loops, we chose to return 0 as the creation du-
ration in the ompt_callback_chunk callback since only a few simple operations
are required to create a chunk. Compiler writers can instead decide to call the
tool-space time function if chunk creation is more involved.

4 Evaluation

Evaluation of the proposed extensions is discussed in this section.

4.1 Experimental Setup

Our test machine has two Intel Xeon E5-2630 2.2Ghz 10-core processors. Each
core has private 32KB L1 instruction and data caches, and a 256KB L2 cache.
Each processor has a shared 25MB L3 cache. Hyper-threading is disabled. The
system has 64GB RAM and runs CentOS Linux with kernel version 3.10.

We selected a wide range of benchmarks to test the extensions. Our bench-
mark set consisted of schedbench and taskbench micro-benchmarks from the EPCC
OpenMP micro-benchmark suite [1, 2] and programs from BOTS [6] and SPEC
OMP2012 [17].

Benchmarks from schedbench and taskbench capture overhead of support-
ing parallel for-loops and tasks respectively. Both sets have the following pa-
rameters: Outer repetitions specifies how many times to repeat the test, test time
specifies the target time for each test, and delay time specifies the busy-wait
duration inside loop iterations and tasks. We parameterized schedbench with
50 outer repetitions, test time 30 ms, delay time 0.1µs, and 4096 iterations per
thread to produce the same conditions on our modern test system as the original
authors of schedbench [1]. We used default parameters for taskbench except for
increasing the number of outer repetitions to 50 and the test time to 30 ms to
significantly reduce variance. We report median measurements of 20 runs for
schedbench and taskbench benchmarks.

We included all programs from BOTS and C/C++ programs from SPEC
OMP2012 in our benchmark set. We used large inputs when available, medium



otherwise for BOTS programs. The task creation cutoffs used with BOTS pro-
grams were 256 for FFT, 20 for Fib, 8 for N Queens, 5 for Floorplan, 3 for Strassen,
and 2 for Health. For Sort, the sequential merge and quicksort cutoffs used were
2048 and the insertion sort cutoff was 20. Reference inputs were used for SPEC
OMP2012 programs except 376.kdtree. This program has a bug found by grain
graphs [15] that SPEC has since acknowledged and resolved to fix in a future
release. Providing the reference input to the bug-fixed version of 376.kdtree
lowers the parallelism exposed, so we increased the cutoff from 2 to 8. Nested
parallelism in 352.nab causes high execution time variance, so we ran it with
nested parallelism disabled. We report median measurements of 20 and 12 runs
for BOTS and SPEC OMP2012 programs respectively.

We ran benchmarks with and without a tool attached. The setup without an
attached tool is called no tool in the paper. The attached tool had two flavors: a
no callbacks variant that registered no callbacks and a with callbacks variant that
registered relevant callbacks but did not execute any code within.

All benchmarks were run on 20 threads, with each thread pinned to a core.
Threads with even IDs were pinned to cores on the same processor. Those with
odd IDs were pinned to cores on the other processor.

Benchmarks, tools, and different versions of the LLVM OpenMP runtime
were compiled using LLVM Clang version 4.0 with −O3 optimization. The
default OpenMP runtime system of Clang 4.0 supports an outdated OMPT
specification. We refer to this runtime system as TR2 since it supports a subset
of the OMPT Technical Report 2. The group behind OMPT has augmented TR2
with support for the more recent OMPT Technical Report 4 [18]. We refer to this
runtime system as TR4. We modified TR4 to include our extensions and called
it TR4E. We also modified Clang to generated code that supports the chunk
scheduling extension in statically scheduled for-loops. This modified compiler
was used to compile benchmarks that linked with TR4E. Our modifications in
TR4E and Clang are consistent with the prevailing implementation style and
are publicly available for review [12].

Runtime system for construct task construct

TR2 ompt_event_loop_begin

ompt_event_loop_end

ompt_event_task_begin

TR4 ompt_callback_work ompt_callback_task_create

TR4E ompt_callback_loop

ompt_callback_chunk

ompt_callback_task_create

Table 1: Callbacks registered by the with callbacks tool variant are runtime system
specific.

Callbacks registered by tools are shown in Table 1. These differ because the
runtime systems support different versions of OMPT. TR2 did not have a direct



equivalent to the ompt_callback_task_create callback of TR4. We used the TR2
callback ompt_event_task_begin, a close match called once before task execution.

4.2 Experimental Results

Overhead of supporting the extensions and attaching tools are discussed in the
section. We refer to callbacks that describe parallel for-loop and chunk events
as loop and chunk callbacks respectively.

The EPCC micro-benchmarks schedbench and taskbench work by first per-
forming some work W sequentially without using OpenMP, and then doing
the same amount of work W on N threads using OpenMP. The difference in
execution time of the two work operations is reported as timing overhead by
the micro-benchmarks. We report these timing overhead measurements relative
to our baseline TR4, calling them relative overhead in the paper.

Results of schedbench experiments are shown in Figure 2. TR2 has the lowest
relative overhead since it supports an outdated OMPT implementation with
fewer features. TR4E incurs less than 1% overhead over TR4 when no tool is
attached, except for the guided schedule with chunk size 1 where the difference
is 2.8%. When a tool with no callbacks is attached, the guided schedule again
experiences the highest increase in overhead, up to 2.5%. The tool variant with
callbacks registers the loop callback with all runtime systems, and additionally
the chunk callback in TR4E. With callbacks registered, TR4E incurs up to 3%
higher overhead than TR4, except for the case of statically scheduled loops
with chunk sizes below 32 where enabling the conditional per-chunk runtime
system call (Section 3.2) incurs up to 50% overhead given the fine-grained nature
of iterations. The overhead of the chunk callback is low in all other scenarios.
We also ran tests where only the loop callback is registered in TR4E. Results of
these tests are not discussed in the paper due to space reasons and available in
an external database for review [10].

Results of taskbench experiments are shown in Figure 3. We note that perfor-
mance flaws of TR2 have been rectified in the TR4. Specifically, thread synchro-
nization needed to assign unique task IDs in parallel for OMPT callbacks in TR2
is problematic and increases overhead for NESTED TASK and PARALLEL TASK
micro-benchmarks when a tool is attached. MASTER TASK generates tasks only
on the master thread, and therefore is not affected. TR4E adds negligible task
creation overhead over TR4 since it requires less than 1% extra instructions.
With no tool attached, the highest increase in overhead is 1.7%, seen with the
MASTER TASK micro-benchmark. When the tool variant that does not regis-
ter callbacks is attached, PARALLEL TASK incurs a 2.7% increase in overhead.
Registering callbacks shown in Table 1 leads to equal overheads in TR4 and
TR4E.

Results of experiments with SPEC OMP2012 and BOTS programs are shown
in Figure 4. We compare overall execution times to evaluate the overhead of the
proposed extensions. Alignment and SparseLU are present in both benchmark
suites. We show variants from SPEC OMP2012 since they use larger inputs.
Most programs see no change in execution times. 376.kdtree runs 4% faster due
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Fig. 2: Relative overhead of loop-based extensions measured with schedbench
micro-benchmarks are up to 3% except for statically scheduled small chunks
that require a runtime system call per-chunk. TR4 is the baseline.

to incidental optimization opportunities used by the modified Clang 4 compiler.
Also, this program does not run to completion with an attached tool even after
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Fig. 3: The proposed task creation extension incurs up to 2.7% relative overhead
for taskbench micro-benchmarks. TR4 is the baseline.

5 hours of execution due to the previously mentioned problem with parallel
task ID assignment in TR2, so the results are omitted. With no tool attached,
372.smithwa and Health run 1% slower. When the tool variant that does not
register callbacks is attached, no significant slowdown is observed. Registering
callbacks causes Health to run 2% slower on TR4E.

5 Related Work

The main motivation for the proposed extensions is to construct grain graphs
portably. However, the events described by the extensions have found use in
other profiling APIs and tools.

The POMP API [13], a base for OMPT, included events to describe the start
and completion of for-loop chunks.

Qawasmeh et al. [20] analyze timing and cache performance of runtime
events including task creation to decide on optimal scheduling strategies in the
OpenUH runtime system. They extend [21] the Sun/Oracle Collector API [9]
to record the events. The task creation event in their design is described using
separate start and stop events. The same two events are used by Servat et al. [22]
for instrumenting the Nanos++ runtime system.
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Fig. 4: SPEC OMP2012 and BOTS programs incur up to 1% and 2% overhead
respectively with the proposed extensions. TR4 is the baseline. Programs with
alpha-numeric names are from SPEC OMP2012.

The proposed chunk callback enables tools to understand and support for-
loops better. For example, Yoga et al. [23] build data race detectors that rely on
structured parallelism events such as task creation and synchronization events
to flag conflicting memory accesses in Intel TBB programs. Their technique can



potentially be extended to OpenMP for-loop chunks by plugging in our chunk
callback and treating chunks as tasks.

Drebes et al. [5] augment the LLVM OpenMP runtime system to collect paral-
lel for-loop chunk traces. The traces are used to map chunks to worker threads
in their Aftermath tool [4], enabling diagnosis of load imbalance problems.
Unlike our extension, their implementation does not trace chunks of statically
scheduled parallel for-loops – a dominant parallelization pattern. Excluding
367.imagick, 91/105 parallel for-loops in SPEC OMP2012 are statically sched-
uled.

Intel’s VTune Amplifier [8] recently improved its OpenMP debugging fea-
ture set by characterizing loop schedules, chunk sizes, and time spent scheduling
iterations. These are understood through source code inspection and sampling,
provided profiled programs use Intel or GCC runtime systems. Our proposed
OMPT extensions enable tools to portably compute similar metrics without
need for source code inspection.

6 Conclusions

We presented extensions to OMPT that add a time duration parameter to the task
creation callback, improve information provided by the loop callback, and in-
troduce a new callback to describe chunk events, with the intention to construct
grain graphs portably from any OMPT-compliant runtime system. Overhead
incurred by the extensions with or without tools attached is low – up to 3% for
EPCC micro-benchmarks, excluding the use of the chunk callback for statically
scheduled chunks of sizes below 32. Programs from BOTS and SPEC OMP2012
slowdown negligibly, with only outliers slowing down by up to 2% and 1% re-
spectively. The extensions adhere to OMPT design objectives, are implemented
in a consistent, maintainable manner in a standard toolchain, and are publicly
available [12]. Although motivated by grain graphs, the events described by the
extensions are general and can enable cost-effective, precise measurements in
other profiling tools as well.
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