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Abstract
Epitaxial interfaces between graphene and GaAs(111) have been inves-
tigated through a first-principles study using density functional theory
(DFT). The GaAs(111) surface at the interface is assumed to be 2 × 2
reconstructed with Ga vacancies. Three different relative phase orienta-
tions between the GaAs(111) surface and graphene have been studied;
0◦, 16.1◦ and 30◦, respectively, where three translations of the 0◦ con-
figuration have been considered. Within the three considered epitaxial
phase orientations, the GaAs phase is strained in the (111) plane to
accommodate a lattice mismatch of 6.3%, 10% and -8.2% in the 0◦,
16.1◦ and 30◦ orientations, respectively. Biaxial straining of bulk GaAs
has been studied, both in the zincblende (ZB) phase ((111) plane) and
in the meta-stable wurtzite (WZ) phase ((0001) plane). The relative
stabilities of the two phases are found to depend on the degree of strain.
Biaxial straining of GaAs(111) surfaces have also been investigated.
The surface reconstruction energy is highly dependent on the degree of
strain for GaAs(111)-2 × 2 reconstructed surfaces.
The interactions between GaAs and graphene at the interface have been
studied by two different exchange-correlation functionals: The semi-
local GGA functional PBEsol, and the van der Waals (vdW) functional
optPBE. The latter is found to yield a significantly stronger interaction
energy, which signifies a substantial vdW contribution to the interactions
at the GaAs/graphene interface. The interaction energy between GaAs
and graphene is estimated for the five configurations considered. The
estimates vary in the range 0.24-0.31 J/m2. The strongest interaction
energy is found for the 30◦ configuration.
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Sammendrag
Epitaksielle grenseflater mellom grafen og GaAs(111) er undersøkt gjen-
nom en ab initio studie ved bruk av tetthetsfunksjonalteori. En 2×2
overflatereonstruksjon med Ga-vakanser er antatt å finne sted på grense-
flata. Tre ulike relative faseorienteringer mellom GaAs(111)-overflata og
grafen er studert, henholdsvis 0◦, 16.1◦ og 30◦, hvor tre translasjoner av
0◦-konfigurasjonen har blitt betraktet. I de tre betraktede epitaksielle
orienteringene er GaAs-fasen tøyd for å etterkomme en gittermistilpas-
ning på 6.3%, 10% og -8.2% i henholdsvis 0◦, 16.1◦ og 30◦-orienteringen.
Biaksiell tøyning av bulk GaAs er studert, både i sinkblende-fasen (i
(111) planet) og i den metastabile wurtzitt-fasen (i (0001) planet). De
relative stabilitetene til de to fasene er avhengig av graden av tøyning.
Biaksiell tøyning av GaAs(111)-terminert overflate har også blitt un-
dersøkt. Overflaterekonstruksjonsenergien er høyst avhengig av graden
av tøyning i GaAs(111)-2 × 2 rekonstruerte overflater.
Interaksjonene mellom GaAs og grafen i grenseflata har blitt studert
med to ulike exchange-korrelasjonsfunksjonaler: Det semi-lokale GGA
funksjonalet PBEsol og van der Waals funksjonalet optPBE. Sistnevnte
viser en signifikant mye sterkere interaksjonsenergi, som indikerer et
betydelig vdW bidrag til interaksjonene ved grenseflata mellom GaAs/-
grafen. Interaksjonsenergien mellom GaAs og grafen er estimert for
de fem ulike konfigurasjonene. Estimatene spenner energiintervallet
0.24-0.31 J/m2. Den sterkeste interaksjonsenergien er funnet for 30◦

konfigurasjonen.
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Chapter 1
Introduction

Semiconductor devises have in our modern society penetrated into a large part
of our lives as they are essential components in all modern elecronics. Ever
since the transistor was first developed by Bardeen, Brattain and Shockley in
1947 [6], the semiconductor manufacturing industry has been continuously
developing. The desire to constantly improve performance and create smaller,
cheaper and faster electronics is a strong driving force for the field of semi-
conductor research, which thus today is a reseach field which has attained
massive interest.

Semiconductor devices are traditionally silicon based. However, as silicon
seem to be reaching its limits of downscaling and improved performance [7],
other materials are being investigated for their potential in semiconductor
manufacturing. Much attention has been given to the III-V semiconductor
compounds for their potential in development of nano-scale electronics, such
as nanometer-scaled transistors [7, 8]. III-V semiconductors are materials
that combine elements from group III and V in the periodic table, such
as GaAs, AlAs, InAs and InP. Some of the III-V semiconductors also have
unique optical and optoelectronic properties, making them desirable materials
in optoelectronic devices such as lasers and light emitting diodes (LEDs)
[9]. Also, many of these material, exhibit extremely good electron transport
properties and frequency response [7].

Semiconductor nanowires have attained much interest with respect to the
development of future nanoscale electronics as they are highly versatile building
blocks. Parameters such as dimension, composition, architecture and doping
can be controlled, which implies enabling tailoring of their properties [10].
During the past decade semiconductor nanowires have been explored for the
potential to develop a new generation solar cells [11]. This research is fueled by
the ever desire to obtain solar cells with higher efficiency to a lower production
cost. The advantages of nanowires are firstly that during heteroepitaxal
growth, the nanowires are able to accommodate a larger lattice mismatch
with respect to the substrate compared to growth of thin films, opening for
a vast number of material possibilities for semiconductor heterostructure
manufacturing [12]. This also renders a flexibility in substrate choice, which
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2 Introduction

could reduce cost. Choosing a substrate material being e.g. transparent
and/or flexible could expand the integrating possibilities of solar cells in
buildings, and also implement solar cells into fabrics [11]. III-V nanowires
are attractive materials in optoelectronics, due to their unique absorption
and emission abilities [13]. This is due to the combined fact that nanowires
exhibit highly anisotropic properties because of their large aspect ratio and
the specific crystallographic structure that the III-V semiconductors may
exhibit at nanoscale, which can be very different from the bulk [13].

Graphene has in the recent few years been investigated for its potential as a
substrate for growth of nanowires, owing to the many extraordinary properties
of this unique material [1]. Having both superb mechanical properties, being
transparent, conductive and flexible [3], graphene is commonly referred to as
a "super material" in material science. Although graphene has been known to
be the basic building block for graphite for several decades, it was believed
until only ten years ago that graphene could not exist on its own as solely
a 2D material. However, in 2004 Novoselov and Geim were able to isolate a
single sheet of graphene, by the simple means of tearing the graphene layers in
graphite apart with Scotch tape [14]. This fairly primitive means of isolating
one atomic thick graphene, is due to the weak van der Waals forces that act
between the graphene layers in graphite, which makes it easy to tear them
apart.

The excellent properties of graphene, and the fact that it is a 2D material,
renders it a highly attractive substrate material for nanowire growth, opening
the possibility of e.g. designing highly flexible electronic components.

(a) (b)

Figure 1.1: Ref. [1] Munshi et al. have reported growth of GaAs nanowires on
graphene using Molecular Beam Epitaxy (MBE). (a) Shematics of the growth of
GaAs nanowires on graphene. (b) Model of potential epitaxial growth configurations
between GaAs and graphene.

A research group at Department of Electronics and Telecommunications



1.1 The present work 3

at Norwegian University of Science and Technology (NTNU) published in
2012 an article reporting growth of GaAs nanowires on graphene by molecular
beam epitaxy (MBE) (Figure 1.1(a)) [1]. In the same paper, a model for
epitaxial growth of GaAs on graphene is suggested. Graphene exhibits in-plane
hexagonal symmetry. As GaAs in the zinkblende crystallographic structure
also exhibits in-plane hexagonal symmetry in the [111] growth direction, this is
indeed the preferred growth direction of GaAs on graphene [1]. The presented
model of the different epitaxial growth configurations is however solely a
geometric consideration of different possibilities (Figure 1.1(b)). The epitaxial
structure at the interface between the GaAs nanowires and graphene is thus
not yet fully explored and understood. As the properties at the interface
of the heterostructure may differ from those of the individual phases, the
presence of the interface may alter the properties of the overall structure.
This will again affect the performance of the heterostructure component as a
whole. Therefore, it is important to investigate and understand the properties
at, and the impact of the present interface in the heterostructure.

1.1 The present work

In this Master Thesis the atomic and electronic structure at the interface
between GaAs and graphene is studied with a first principles approach, using
density functional theory (DFT). As of today, reported DFT studies performed
on such heterostructure interfaces are limited. Only a few other research
groups have conducted first principles studies on semiconductor/graphene
interfaces [15, 16]. The epitaxial structure and the strength and nature of
the interactions at such interfaces are still far from fully understood. The
present work is thus partly an effort to develop methodology for how to
construct a computational model that can provide physical information about
the structure and electronic properties at the interface. The present work is
also a contribution to gaining a better understanding of the nature of the
epitaxy and the energetic landscape at the interface. GaAs is chosen as a model
material as it is a promising material in future nanoscale electronics. However,
the findings in the present work can also apply to similar heterostructure
systems.

At the interface, weak van der Waals (vdW) forces act between the present
phases. These are non-localized dispersion forces that are not captured by
conventional local and semi-local exchange-correlation functionals used in DFT.
To capture these weak dispersion forces, specially developed vdW functionals
need to be used. However, the disadvantage with vdW functionals is that
they make calculations much more computationally demanding. Therefore,
both conventional functionals as well as vdW functionals have been tested to
gain knowledge about what the different functionals are able to capture, and
what the local and semi-local functionals fail to describe as compared to vdW
functionals.

To be able to understand the materials under discussion and their proper-
ties at the interface, it is important also to understand their bulk properties
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and bulk behaviour. Therefore, the respective bulk materials have been
investigated computationally.

Because of the strong energetic driving force associated with reconstruction
of the GaAs (111) free surface, it is reasonable to assume that a reconstruction
of GaAs at the interface between graphene and GaAs also could take place.
Yelgel et al. [15] and Hong et al. [16] have conducted first-principles studies
on the InAs/graphene interface, both finding that a surface reconstruction
of InAs at the interface is more energetically favourable than having a non-
reconstructed InAs surface. Different reconstructions of the GaAs (111) surface
have been reported in literature. Both a 2×2 reconstruction and a

√
19×

√
19

reconstruction have been observed with scanning tunneling microscopy (STM)
[17]. In the present work, a 2× 2 reconstruction of GaAs at the interface has
been assumed. A 2 × 2 reconstruction is the most simple assumption, and
a natural starting point. Further, different epitaxial configurations between
graphene and GaAs have been considered, based on the epitaxial configurations
within the model presented by Munshi et al. [1].



Chapter 2
Density functional theory

The scope of this chapter is to give a brief introduction to the fundamentals
of density functional theory (DFT). It is not intended to give a complete
quantum mechanical explanation of the theory, but merely give a compre-
hensive overview for the reader with no previous knowledge of DFT. For
further literature about DFT, it is referred to the references [18] and [19],
which are the two main references of this introduction to DFT. At the end
of this chapter, a brief introduction to the simulation package, Vienna Ab
initio Simulation Package (VASP) [20–23] is included, used to perform the
calculations in this present work.

2.1 The Schrödinger equation

The distribution of electron states in a material is predicted by the solution of
the Schrödinger equation. Consider a crystal in which the atoms are arranged
in a periodic manner. In the most general terms a system of interacting nuclei
and electrons can be described by the time-dependent Schrödinger equation
[19]:

i~
∂

∂t
ψ({rj}, {RJ}, t) = Hψ({rj}, {RJ}, t) (2.1)

where ψ is the system wave function, {rj} the electron positions, {RJ} the
nuclei positions, t is time and H the Hamiltonian of the system. Because of
the considerably larger mass of the positive nuclei compared to the electrons,
they have a much larger inertia, thus respond much more slowly to Coloumb
interactions. Therefore, the nuclei are considered to be fixed, and their
Coloumb potential is considered an external electrostatic field in which the
electrons are free to move around. This assumption is called the Born-
Oppenheimer approximation [24]. This reduces the problem to solving the
time-independent Schrödinger equation:

5



6 Density functional theory

 ~
2m

N∑
i=1
∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
i<j

U(ri, rj)

ψ = Eψ (2.2)

In equation 2.2 three terms are included in the Hamiltonian; from left
these are the electron kinetic energy operator, the potential energy operator
considering the electrostatic potential from the nuclei, and the potential energy
operator in which repulsive electron-electron forces are considered. The sums
run over all N electrons in the system. A bulk material consists of an excessive
number of electrons, thus the number N soon becomes very large and solving
the Schrödinger equation becomes a many body problem. Computationally,
this is an exhausting matter; but here is where density functional theory
comes into play.

2.2 The basis of DFT
Density functional theory solves the many-body problem by reformulating
the system wave function, which is a function of N variables, in terms of the
electron density n(r), a function of three spatial coordinates:

n(r) = 2
∑
i=1

ψ∗i (r)ψi(r) (2.3)

where the electron density is the sum over all the individual electron wave
functions i and the factor 2 accounts for the two possible electron spin states.
The basis for density functional theory is derived from a fundamental theorem
stated by P. Hohenberg and W. Kohn. The theorem states [25]:

Theorem 1. For a system of interacting electrons in an external potential,
the ground state energy is a unique functional1 of the electron density:

E[n(r)] =
∫
V (r)n(r)d3r + F [n(r)] (2.4)

Further, the ground state energy E0 can be found by minimizing the energy
functional with respect to the electron density, n0 being the ground state
density:

E0 = E[n0(r)] (2.5)

E[n(r)] is the energy functional, n(r) is the electron density, V(r) is the
external potential, and F[n(r)] is called the exchange functional. The exact
formulation of this functional is however not known. The exchange functional
will be addressed in more detail later in this chapter.

The second part of the Hohenberg Kohn theorem provides a method to
determine the ground state energy functional and finding the relevant electron
density by simply varying the electron density until the minimum of the energy
functional is reached. This is the variational principle.

1A functional is a function of a function
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2.3 The Kohn-Sham equations

The problem of handling an unknown functional, the exchange functional,
was resolved by Kohn and Sham [26]. They separated the exchange functional
into three parts,

F [n(r)] = T [n(r)] + EH [n(r)] + Exc[n(r)] (2.6)

where T [n(r)] is the kinetic energy of a non-interacting electron gas, EH [n(r)]
is the Hartree energy and Exc[n(r)] the exchange-correlation energy. The
Hartree energy is the total Coloumb interaction of the electrons with all the
other electrons in the system, and can be expressed by the electron density
by the following equation:

EH [n(r)] = e2

2

∫ ∫
n(r)n(r′)
|r− r’′|

d3rd3r′ (2.7)

The last term, the exchange-correlation energy, includes all the quantum-
mechanical effects that are not taken into account in the two former terms. An
example of this is the non-physical aspect of the Hartree energy, in which the
interaction of an electron with the electron density also includes a non-physical
self-interaction, as this electron is also included in the electron density. This
term needs to be approximated, and there are several approaches to resolving
this difficulty, which will be elaborated later in this chapter.

In the Kohn-Sham approach, the electron wavefunctions are treated as
being non-interacting, which simplifies the problem of finding the system
wavefunction extensively. Thus, the system wavefunction can be found by
solving a system of single-electron equations given by:[

− ~2

2m∇
2 + V (r) + VH(r) + Vxc(r)

]
= εiψi(r) (2.8)

where the single electron Hamiltonian includes from the left, the kinetic
energy operator, the external potential from the positive nuclei, followed by
two potentials stemming from the two last terms in the separated exchange
functional F [n(r)], given by equation 2.6, the Hartree potential,

VH = e2
∫

n(r′)
|r− r′|d

3r′ (2.9)

and the exchange-correlation potential,

Vxc(r) = δExc(r)
δn(r) (2.10)

.
The set of equations on the same form as equation 2.8 constitute the Kohn-
Sham equations [26].
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2.4 The exchange-correlation functional
It is previously mentioned that the exchange-correlation functional is not
precisely known and therefore needs to be approximated. The most simple
approach is the Local Density Approximation (LDA) [27]. The basis of this
approximation is that the exchange-correlation functional indeed is precisely
known for one specific case, where the electron density is independent of
position r, namely the uniform electron gas. Thus, in the local density
approximation it is assumed that for every position r the exchange-correlation
functional is equal to the known functional of constant electron density, given
that this density equals n(r),

Vxc = V electron gasxc [n(r)]. (2.11)

Although this may appear to be a very rough approximation, LDA has shown
to give very good results in predicting physical properties for a range of
systems.

From this starting point, there exists many approximations that seek to
increase the accuracy compared to the LDA. The best known scheme for
approximating the exchange functional apart from LDA is the Generalized
Gradient Approximation (GGA). As the name suggests, also the gradient of
the density is taken into consideration in this approximation, as well as the
density itself:

EGGAxc [n(r)] =
∫
f((n(r)),∇n(r))d3r (2.12)

However, as opposed to LDA, the GGA scheme is not unique. Thus, there is
a vast number of possibilities as to which form of the function f((n(r)),∇n(r))
could take. Two schemes that have shown to be very successful are the PW91
scheme by Perdew and Wang [28, 29] and the PBE scheme by Perdew, Burke
and Ernzerhof [30, 31], and named thereafter.

2.5 Calculation scheme
The Hohenberg-Kohn theorem gives rise to a method of finding the ground
state electron density, by varying the energy functional until the minimum
of the functional is reached. Further, the Kohn-Sham equations provide
the necessary mapping of the correlated electron-wavefunctions into a set of
handleable non-interacting wavefunctions. This provides a strategy for solving
the initial problem of achieving the system wavefunction from the many-body
Schrödinger equation, eq. 2.1. The procedure is given in the following scheme.

1. An initial trial density is suggested.

2. From this trial density the Hartree potential can be calculated.

3. Based on the Hartree potential the single-electron wavefunctions can be
found from the Kohn Sham equations.
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4. The new electron density from equation 2.3 based on the wavefunctions
found from the Kohn-Sham equations is calculated.

5. The found electron density is used as a new trial density. The procedure
is then repeated from step 1 and run iteratively until the density that
minimizes the energy functional is found.

2.6 Hellmann-Feynman forces
When the electronic convergence loop given by the calculation scheme in
section 2.5 has reached a minimum energy level for a given ionic configuration,
forces exerted on the ions can be calculated. The calculated forces can then
be used to move the ions, achieving a new ionic configuration, for which a
new electronic loop can be run.

These analytic forces can be obtained from the Hellmann-Feynman theorem
[32, 33]. This theorem states that if the electron wavefunctions have reached
the Kohn-Sham eigenstates, the force contribution from the electrons exerted
on an ion J is the partial derivative of the Kohn Sham energy with respect to
its position RJ , thus

FelecJ = − ∂E

∂RJ
(2.13)

We refer to the forces acting on the ions as Hellmann-Feynman forces, which
are to be calculated for each ionic position update.

2.7 Computational approaches to DFT
Solving eq. 2.2, even with the tool of DFT, is computationally exhausting.
Therefore, there are several approaches to reduce the computational load.

2.7.1 Energy cutoff

In a periodic potential, as in a crystalline material, the eigenfunctions of the
wave equation may be expressed as a product of a plane wave and a periodic
function uk(r), with periodicity equal to the potential. This is the Bloch
theorem, and such functions are called Bloch functions [34]:

ψk(r) = eik·ruk(r) (2.14)

Because uk(r) has the crystal periodicity, it can be expressed in terms of a
Taylor series,

uk(r) =
∑
G
cGe

iG·r (2.15)

which is a sum of plane waves with wavevector G, where G is a reciprocal
lattice vector, thus G = m1b1 + m2b2 + m3b3. Recall that the reciprocal
lattice vectors are defined in a way such that b1 · aj = 2πδij , δij being the
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Kronecker delta, such that G ·ai = 2πmi. Combining equations 2.14 and 2.15
gives

ψk(r) =
∑
G
ck+Ge

i(k+G)r (2.16)

i.e a sum of plane waves, with a modified wavevector including k. The
consequence of equation 2.16 is that determining the wavefunction for each
k vector involves a summation over infinitely many G vectors, which in a
numerical perspective is not feasible. Consider the energy of a plane wave
with wavevector k’=G+k:

E = ~2

2m |k + G|2 (2.17)

Because systems tend to seek towards an energy minimum, the higher energy
levels are considered less significant than the lower ones, and with respect to
calculating the plane wave for a given k vector, only the G vectors up to a
certain Gmax are considered, such that

ψk(r) =
∑

|G+k|<Gcut

ck+Ge
i(k+G)r (2.18)

where we have defined an energy cutoff

Ecut = ~
2mG2

cut (2.19)

2.7.2 k-space

A neat consequence of the Bloch theorem is that all unique k vectors are
found within the first Brillouin zone (BZ). This comes from the fact that every
chosen k vector outside of the first BZ can be translated back into this zone
by an appropriate choice of reciprocal vector G. Thus, any k vector exceeding
the first BZ does not provide any more physical information, and therefore,
solving the wave equation reduces to solving for wavevectors confined within
the first BZ. However, numerically, one cannot do a continous integration
over all possible wavevectors, and thus k-space has to be discretized. This
is done by projecting a mesh onto the first BZ and find the solutions for the
wavefunctions at the mesh points.

2.7.3 Pseudopotentials

The number of electrons in a crystal quickly reach very large values as the size
of the crystal grows. Take silicon with atomic number 14 in the periodic table
as an example. There will be 14 electrons associated with each atom. For a
single unit cell consisting of 8 atoms, the number of electrons is 112. Mininizing
the energy functional with all electrons being free to move around clearly
becomes a computationally costly process. Therefore, pseudopotentials are
introduced, in which electrons in the inner shells are frozen and thus considered
a part of an effective external potential, constituted of the nucleus and the
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frozen electrons. One can argue that this is a reasonable approximation as
the inner electrons are more bound than the outer ones. Pseudopotentals are
commonly referred to as soft or hard, and this reflects upon the cutoff-energy
for the plane wave basis. The softer the potential, the lower cutoff energy is
needed.

2.7.4 Convergence

Convergence is an essential aspect of DFT calculations. Because these are
numerical calculations there will be round-off errors along the calculation
pathway. The level of accuracy of the calculations will depend on how well
the calculations are converged. In order to have a well converged system,
a sufficiently fine k-mesh needs to be projected onto the BZ. Thus, before
performing calculations on a system, convergence tests should be performed,
to assure that a sufficient number of k-points are used. k-point density
convergence tests are performed by calculating the system energy as a function
of number of k-points. The higher the k-point density, the more accurate the
results. However, along with higher accuracy comes a higher computational
work load. There will always be a trade-off between the the computational
work and the accuracy of the calculations. The level of convergence of a system
can thus be indicated by the size of the energy fluctuations for the chosen
k-point density. Moreover, one needs to assure that the plane-wave basis set
is large enough, by setting a sufficiently high cutoff-energy. Cutoff-energy
convergence tests are performed analogously to k-point tests by calculating
the system energy as a function of cutoff-energy.

2.7.5 Limitations of DFT

When performing calculations within DFT, it is important to understand
the limitations of the theory. Firstly, we need to understand the concept of
convergence. DFT calculations do not provide us with the exact solution
of the Schrödinger equation because the exact energy functional described
in the Kohn-Hohenberg theorems is simply not known. Thus, convergence
in relation to DFT does not mean convergence towards the true solution.
Therefore, when performing DFT calculations, this will always be an intrinsic
uncertainty, and magnitude of this uncertainty between the calculated solution
and the real solution is not completely known. Except from this there are
some well known examples in which DFT clearly show its limitations. The
most important ones are briefly elaborated below.

Underestimating Band-gaps DFT calculations generally underesti-
mates band gaps. This has to do with the fact that DFT does not deal well
with exited electronic states, because the Hohenberg-Kohn theorem which is
the fundament of DFT in principle only applies to ground-state energies.

Overbinding A limitation that in particular is related to the LDA func-
tional is the tendency of overbinding. This is reflected in an underestimation
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of lattice parameters while cohesive energies and elastic moduli are typically
overestimated.

Neglecting van der Waals interactions An important limitation to
DFT, using the standard functionals LDA and GGA, is that long range
non-covalent interactions cannot be treated. The binding energy curves
decay exponentially with density overlap, thus, does not capture the vdW
interactions that decays as − A

R6 . (see Section 3.3).

2.8 Non-Localized Exchange Correlation Function-
als
In Section 2.4 the simplest and most conventional exchange functionals are
presented. However, these functionals are localized (LDA) or semi-localized
(GGA), that therefore make them unable to predict properly certain physical
properties. The most important properties that DFT with the traditional
functionals fail to predict are described in Section 2.7.5. There is however a
constant effort to develop functionals that are able to overcome these well-
known limitations. In fact, developing methods that include dispersion has
been a very important field within DFT the last decade [35].

2.8.1 van der Waals functionals

van der Waals (vdW) functionals are non-localized exhange functionals that
are developed to take van der Waals interactions into account. There exist
several different schemes for how to add dispersion into the current DFT
approximations. The vdW-DF method proposed by Dion et al. [36] is the
original functional accounting for dispersion interactions that is based directly
on the electron density. This functional takes the form:

Exc = EGGAx + ELDAc + Enl (2.20)

Here, EGGAx is the exchange energy, which uses the revPBE GGA functional
[37], and the ELDAc is the correlation term, using the LDA approximation.
The last term, Enl, approximately accounts for the non-local correlations.
Several functionals aiming at improving the original vdW-DF scheme, have
further been proposed. Promising improved functionals are the ’opt’ function-
als, optPBE-vdW, optB88-vdW and optB86-vdW, for which the exchange
functionals are optimized for the correlation term [38].

2.9 VASP

The Vienna Ab initio Simulation Package (VASP) [20–23] is used to perform
the calculations in the present work. Hereunder is given a brief insight into
how calculations are performed with VASP. More technical details about
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the actual input parameters and example files can be found in Appendix A.
Running a simulation in VASP requires four main input files.

• INCAR

• POSCAR

• KPOINTS

• POTCAR

The INCAR file is the file that contains most of the calculation spe-
sifications. This file may contain a set of different tags determining how to
initialize and run calculations, convergence criteria etc.

The POSCAR file contains the size and geometry of the supercell.
The supercell is described by the vectors spanning the cell volume, and the
fractional coordinates within this cell volume.

The KPOINTS file contains specifications for the k-point mesh pro-
jected onto the Brillouin zone. In this file one also specifies where the mesh
should be centered within the BZ.

The POTCAR file contains information about the pseudopotential
used. VASP provides a catalogue containing already calculated pseudopoten-
tials for a large list of elements in the periodic table. Different pseudopotentials
can also be chosen for each element.





Chapter 3
Materials and Background

In the present chapter important properties of graphene and GaAs are de-
scribed. Special attention is given to the electronic properties of the respective
materials and their implications with respect to atomic structure and func-
tional properties.

3.1 Graphene
Graphene is a two dimensional material consisting of carbon atoms arranged
in a honeycomb structure, where each atom is bound to three other atoms.
Graphene is the basic unit for a vast number of different graphitic materials of
different dimensionality: rolling up graphene sheets creates one dimensional
nanowires, fullerenes are molecules that are simply wrapped up graphene
sheets and stacking graphene layers on top of each other gives the 3D material
graphite (Figure 3.2) [2]. Graphite exists in three different polymorphs,
having the space groups P63mc, P63/mmc and R3̄d, respectively. These three
polymorphs are very close in energy as they only differ in the stacking of the

(a) (b)

Figure 3.1: (a) Honeycomb structure of graphene. (b) Ref. [2] Bandstructure of
graphene. The Dirac point, where the conduction band and valence band meet is
shown in the circular frame to the right.
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Figure 3.2: Ref. [3]. Graphene is the basic unit for many different graphitic
materials. A graphene sheet can be wrapped up to a fullerene, rolled up into a
nanowire or stacked to form graphite.

graphene sheets which are interacting only through weak van der Waals forces.
Graphene, although known for several decades was not isolated until 2004,
when Novoselov et al. [14] demonstrated preparation of thin graphitic sheets
down to single layer graphene with of mechanical exfoliation, by the simple
means of Scotch tape used to peel the graphene layers in graphite from each
other.

Carbon is element No. 6 in the periodic table, thus containing 6 electrons,
which in the atomic ground state is in the configuration 1s22s22p2. Each
carbon atom in graphene is sp2 hybridized, implying a mixing of the 2s and two
2p orbitals in carbon. The sp2 hybridization gives rise to the trigonal, planar
structure in graphene, where overlapping sp2 orbitals create strong interplanar
σ-bonds. The C-C bond length is 1.42 Å [2]. Each bond is separated by an
angle of 120◦. The remaining p orbital, the pz orbital, points orthogonal to
the plane. Overlap of neighbouring pz-orbitals gives rise to the formation of
π-bands. Each pz-orbital contains a single electron, thus the created π-bands
are half-filled [2]. The dispersion of the pz-orbitals gives rise to formation
of a bonding π-band (the valence band) and a higher energy anti-bonding
π*-band (the conduction band) [39]. The valence band and the conduction
band touch at exactly six points, called the Dirac points or K points. These
points are at the corners of the Brillouin zone. Thus, graphene is often in
literature referred to as a zero-gap semiconductor. In the low energy regime,
for low energy electron excitations, the bands have linear dispersion:

E = vF~|k| (3.1)

In equation 3.1 vF is the Fermi velocity, ~ is the Planck constant scaled with
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the 1
2π and |k| is the absolute value of the wave vector, near the K point. It

turns out that the electrons in graphene behave like relativistic particles. The
energy of a relativistic particle is given by:

E =
√

(mc2)2 + (pc)2 (3.2)

where m is the particle restmass, c is the particle velocity and p its momentum
(p = ~|k|). Comparing this with equation 3.1, it is found that the electrons
in graphene in the low energy limit (where the dispersion is linear) behave
like massless particles, or Dirac Fermions [40]. This gives rise to many of the
unusual properties of graphene. One interesting property of Dirac fermions
is that they can escape the presence of localized potentials caused by e.g.
impurities in the material, where ordinary electrons would be trapped. This
enables such electrons in graphene to travel large distances, in the order of
micrometers, without scattering [2].

Graphene is a highly flexible material. This is due to the out-of-plane
phonon modes present, which one does not find in 3D materials [2]. The
softness that graphene exhibits, has led to the investigation of graphene as an
electronic membrane [41]. Due to its flexibility, rippling of the graphene sheet
may occur, which again can alter the electronic structure of flat 2D sheets.
One mechanism for altering electronic properties is rehybridization as a result
of rippling [41].

3.2 GaAs

For this section the primary reference is Ref. [42].
Gallium Arsenide is a III-V binary semiconductor compound consisting of

the group III element Gallium (Ga) and the group V element Arsenic (As). In
bulk, GaAs attains the zincblende (ZB) crystal structure as seen in Figure 3.3.
The ZB structure is a face centered cubic (FCC) lattice with a basis given by :

~r1 = [000], ~r2 = [14
1
4

1
4 ] (3.3)

Figure 3.3: Zincblende crystal structure. To the right the zincblende structure
along its [111] direction is visualized. The in-plane hexagonal structure is apparent.
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The crystal binding in a material is highly dependent on the electronic
structure of the specific material. Gallium has the electronic configuration
[Ar]3d104s24p1, whereas Arsenic has the configuration [Ar]3d104s24p3. In the
zincblende structure the atoms are tetrahedrally coordinated, in which each
atom is bonded to four other atoms of the opposite element. This tetrahedral
coordination is obtained through an sp3 hybridization of the 4s and the three
4p orbitals of Ga and As. Overlap of these hybridized orbitals creates highly
directional, covalent sp3-bonds between the atoms in the crystal. Because Ga
is a less electronegative element than As, As atoms pull more on the electrons
in the sp3-bonds. The covalent bonds thus have heteropolar character.

GaAs is a direct bandgap semiconductor. In general, semiconductors
exhibit either a direct or an indirect bandgap. This is a feature related to the
bandstructure of the material, which again is a characteristic depending on
the energy dispersion in the material. The energy dispersion describes how
the available energy states depend on the crystal momentum (the k vector).
If the highest available energy in the valence band and the lowest energy
in the conduction band is given for the the same crystal momentum, the
semiconductor has a direct bandgap. If however these energies correspond
to different wavevectors, the semiconductor has an indirect bandgap (Figure
3.4). This has implications for the light emitting and absorbing ability of
the material. Materials that exhibit a direct bandgap, such as GaAs, have
the ability to directly absorb and emit photons because electrons can be
directly excited to the conduction band and recombine without any change in
momentum. This is why GaAs in a promising material for applications within
optoelectronics. However, for materials with an indirect bandgap, this is not
directly possible; for excited electrons to re-enter the valence band, additional
momentum needs to be transferred to the crystal lattice.

Figure 3.4: Schematics illustrating a direct bandgap (left frame) and an indirect
bandgap (right frame).
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Semiconductor nanowires

Semiconductor nanowires have caught attention because of unique electronic
properties related to the structure of these quasi-one dimensional materials.
The large aspect ratio of semiconductor nanowires induces very anisotropic
properties [13, 43]. At the nanometer scale, electronic and optical properties
may differ from the bulk material. Also the crystal structure may be affected by
the reduced dimensionality. III-V nanowires show a ZB and WZ polymorphism
[1, 16, 44]. Nanowires have a preferential growth along the [111]([0001])
crystallographic direction for cubic (hexagonal) crystals [45]. Because the ZB
structure and the WZ structure are very similar along these directions, both
exhibiting in-plane hexagonal symmetry, the polyomorphism is manifested
in stacking faults and twin defects [13]. The crystallographic structure has
impact on the electronic structure of the nanowires, and is thus very important
to control for reproducibility of the electronic and optoelectronic performance
[46].

3.2.1 Surface reconstruction

At the surface of a material, atoms may shift their position to minimize the
surface energy. Whereas metals tend to simply relax the atomic positions
at the surface, without any prominent structural changes, semiconductor
materials tend to undergo surface reconstruction. This is because of the
different nature of the bonds in metals and semiconductors, respectively. In
metals, electrons are free to move around, whereas in semiconductors, the
strong directionality of the covalent bonds limit the flexibility of the electrons
to move. Surface reconstruction may involve large displacements of the atoms
in the atomic layers closest to the surface, which involves a change in the
periodicity at the surface compared to the bulk. The surface then normally
exhibits a larger periodicity than its bulk. [47]

It is well established that GaAs(111) will reconstruct at the surface due to
the high energy cost of having partially filled surface bonds [48]. There have
been reported several different possible surface reconstructions that GaAs(111)
surfaces can adopt, e.g. both 2× 2 and

√
19×

√
19 [17].

The GaAs(111) 2× 2 Ga vacancy model

A vacancy buckling model presented by Tong et al [4] describes a 2 × 2
reconstruction on (111) surfaces on III-V semiconductor compounds.

In this model, a group III vacancy is present at the surface for every third
group III element, giving rise to the 2 × 2 periodicity. Since the group III
atoms present at the surface are bound to three other group V atoms, each
vacancy present creates three group V dangling bonds, with which a charge
of 5

4e
− is associated. Because of the vacancies present at the surface, there

is an equal number of group III and group V dangling bonds. The highly
unstable surface dangling sp3-bonds associated with the group III elements,
each having a charge of 3

4e
− associated with them, rehybridizes into sp2

type orbitals in order to lower the surface potential energy. The sp2 orbitals
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Figure 3.5: Ref. [4] Top schematic view of the 2 × 2 vacancy buckling model. A, B
and C denote surface Ga atoms, a,b,c and d are As atoms in the layer below. Atom
E is a third layer Ga atom.

are planar and form an orbital configuration where the angle between each
orbital is approximately 120◦. Thus the surface bilayer becomes flattened,
because the surface group III elements move inward to form sp2-orbitals. The
group V elements on the other hand rehybridize to form three p-type orbitals,
leading the surface bonds on the reconstructed surface to be a mix between
sp2-character and p-character. The model is experimentally supported by
Tong et al. [4] by Low Energy Electron Diffraction (LEED) analysis of the
GaAs (111) surface.

It is this 2× 2 reconstruction that is assumed at the GaAs(111) surface in
this work.

3.3 van der Waals interactions
van der Waals forces are expected to play an important role in studying the
nature of interactions between GaAs and graphene at the interface. A short
elaboration of the physical understanding of such forces is therefore included.
The references used for the following section on van der Waals interactions
are ref. [34] and ref. [42].

Van der Waals interactions occur as a consequence of the fact that the
charge distribution around an atom is not fixed. In fact if the charge distribu-
tion around a neutral atom was homogeneously and spherically distributed
around the atom, the potential around the atom would be zero, and an inert
atom would not show any cohesion. However, the electronic charges in an atom
moves around, and spontaneously induces dipole moments in the atom. This
can further induce dipole moments in other atoms, thus causing an attractive
force between the atoms. Modelling two atoms as harmonic oscillators, one
can deduce that the attractive energy scales with the inverse of the atomic
distance to the power of six:
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δU = − A

R6 (3.4)

where δU is the interaction energy, A is a constant factor and R is distance
between the atoms. The vdW interactions are not dependent on any charge
density overlap.

3.4 Previous DFT studies

Figure 3.6: Ref. [1] Epitaxial configurations of GaAs on graphene, proposed by
Munshi et. al. A perfect epitaxial interface between GaAs and graphene is assumed.
The interface Ga atoms on top of graphene are visualized. The dotted lines are
guidance to the eye to help visualize the different relative phase orientations.

There are limited DFT studies performed on semiconductor/graphene in-
terfaces. Hong at al [16], who have also demonstrated growth of double
heterostructure InAs/graphene/InAs have performed first principle calcu-
lations studying the InAs/graphene interface. They found that an InAs
reconstructed interface with In vacancies is energetically more stable than
the non-reconstructed interface in the In-terminated surface layer. Also, the
equilibrium vdW heterointerface gap between the graphene layer and the
InAs layer was found to be 3.1 Å. Yelgel et al. [15] have conducted a first
principle investigation in the electronic properties and equilibrium geometry
of graphene on InAs(111). From this study it was found that the equilibrium
distance between the graphene and InAs(111) is 3.054 Å, thus in accordance
with the findings of Hong et al. It is also found that the graphene layer
buckles by 0.053 Å. Through band structure calculations it was shown that
the system has metallic character. Adsorption of both In- and As-terminated
InAs(111) was calculated, in which deposition of In terminated surfaces on
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graphene was shown to be exothermic, whereas deposition of As-terminated
surfaces was endothermic. This indicates that by growth of InAs on graphene,
one would expect In-termination at the interface.

Munshi et al. [1] have presented a model for epitaxial growth positions
of GaAs on graphene. Figure 3.6 shows the suggested atomic arrangements
for GaAs(111) growth on graphene. This model assumes perfect epitaxy, and
does only consider atomic positions of the interface semiconductor layer above
a bridge between two carbon atoms and above the center of a hexagon in
the graphene. The site right above a carbon atom is neglected in the model.
This is based on previous DFT calculations by Nakada et al. [49] on adatom
adsorption, finding that the top position is unfavourable for semiconductor
atoms.



Chapter 4
Computational details

In the present chapter computational details for the calculations performed
during the present project are described. All calculations were performed
with VASP[20–23], and the Projector Augmented Wave (PAW) method [50]
was used throughout all calculations.

This chapter contains three main sections. First, details on calculations
performed on bulk GaAs and graphite are described, second, the construction
of GaAs slab supercells and all related calculation details are described, and
third, details related to heterostructure calculations are elaborated.

4.1 Bulk GaAs and graphite
In order to understand the interface between GaAs and graphene, it is neces-
sary to fully understand the properties of the individual materials. Therefore
calculations on both bulk GaAs and graphite were performed.

For all bulk GaAs calculations the VASP 5.3.3 version was used, and
calculations were performed with the PBEsol functional [51]. The potentials
Ga_d(s2p1) and As(s2p3) were used, supplied with VASP. The Ga_d po-
tential includes the Ga d electrons, and this potential is chosen for a slight
improvement in the accuracy of the calculations. Electron wave functions
were expanded in plane waves up to a kinetic energy cutoff of 400 eV. For this
choice of cutoff energy, an energy convergence within 1 meV was achieved, as
seen from cutoff-convergence testing (Figure 4.1).

4.1.1 Straining of bulk GaAs

The effect of biaxial straining of bulk GaAs zinkblende (ZB) within the (111)
crystallographic plane and bulk GaAs wurtzite (WZ) within the (0001) plane
was studied. These specific planes were studied because they are the planes
perpendicular to the preferred growth directions of GaAs nanowires grown
on graphene, in the ZB and WZ structure, respectively. This is due to the
fact that graphene exhibits an in-plane hexagonal symmetry, as does the

23
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Figure 4.1: Total energy per atom as function of cutoff energy for GaAs. Calcula-
tions are performed with PBEsol. The PAW potentials Ga_d(s2p1) and As(s2p3)
are used.

(111) plane in the ZB structure and the (0001) plane in the WZ structure.
The unit cell for the WZ structure is seen in the frame to the left in Figure
4.2. For the ZB structure, a supercell was constructed for which the (111)
plane corresponds to the supercell ab-plane and the c parameter accordingly
corresponds to the [111] direction, as illustrated in the frame to the right in
Figure 4.2.

Initial fully relaxed supercells of WZ and (111) oriented ZB were calculated,
with a self-consistent field (SCF) convergence energy of 1.0×10−9 eV. k-point
convergence testing was done, seen in Figure 4.3. The Brillouin zone was
sampled for both WZ and ZB supercells with a 12 × 12 × 8 Γ-centered k-
point mesh, which gave total energies per atoms converged well within 1
meV. Structural relaxations of unit cell volumes and atomic coordinates were
performed until all Hellmann-Feynman forces on the ions converged to a level
below 0.001 eV/Å.

Figure 4.2: Visualization of the WZ structure and the ZB structure. In the left
panel, the unit cell for WZ is shown, for which the (0001) plane is highlighted in
orange. In the right panel, the cubic unit cell for the ZB structure is shown, for
which coordinates have been transformed to obtain a [111] oriented cell. The (111)
plane is highlighted in orange in both the cubic cell and the rotated supercell.
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Figure 4.3: Total energy of GaAs per atom as function of k-point density, with a
cutoff energy of 400 eV. The density is given as the total number of k-points (k),
scaled with the reciprocal unit cell volume (Vr). Calculations are performed with
PBEsol. The PAW potentials Ga_d(s2p1) and As(s2p3) are used.

Biaxial strain calculations were performed with a special version of VASP,
an "ab-fix" version, where the a and b supercell lattice parameters are kept
fixed and the c parameter is allowed to change during cell volume relaxation.
This version of VASP is compiled for the specific purpose of being able to relax
the total volume in only one dimension. Thus, during strain calculations, the
a and b parameters were successively decreased and increased, and for each
successive step the c parameter was free to relax. Calculation parameters were
the same as described for initial structural relaxations. For further details on
calculation parameters, see the INCAR file for these calculations (Appendix
B.1.1)

4.1.2 Density of states calculations of bulk GaAs

Density of states (DOS) calculations were performed on fully relaxed, un-
strained WZ and ZB structures. For the ZB structure, a cubic supercell was
used as seen in Figure 4.2, for which the Brillouin zone was sampled with a
10× 10× 10 Γ-centered k-mesh, corresponding to a k-point density with total
energy per atom well converged within 1 meV/atom.

DOS calculations were performed in two steps. Firstly, a calculation
was performed for which a self-consistent charge density was calculated and
written. In this run, an SCF convergence energy of 1.0×10−9 eV was used,
and the supercell volumes and all atomic positions were kept fixed. In the
second calculation step, the charge density was kept fixed. This step is a
non-SCF calculation, for which the charge density was fixed to the density
obtained from the former SCF-run. During this run, all k-points were treated
independently. The k-point densities were increased to 24× 24× 16 for WZ
and 24× 24× 24 for ZB, for increased calculation accuracy. The INCAR files
for the two calculation steps are included in Appendix B.1.2.
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Figure 4.4: Total energy per atom for graphite P63mc as function of cutoff en-
ergy. Calculations are performed with the optPBE functional, with PAW potential
C_h(s2p2). Cutoff testing is performed with two different Γ-centered k-meshes, as
indicated in the figure.

4.1.3 Density of states calculation of graphite

DOS calculations of graphite P63mc were performed. These calculations were
performed with the optPBE functional [35], using the potential C_h(s2p2).
The _h implies that this is a hard potential. It is thus more accurate, however
it requires a higher cutoff energy than standard potentials. A hard carbon
potential was used as calculations with standard carbon potential (C(s2p2))
did not sufficiently converge with optPBE. Full cell volume relaxations were
initially performed. Electron wave functions were expanded in plane waves up
to an energy cutoff of 910 eV, which in accordance with convergence testing
yielded energy convergence within 1 meV/atom, as seen in Figure 4.4. The
Brillouin zone was sampled with a 15×15×5 Γ-centered k-mesh. A 21×21×6
sampling was tested as well, differing in energy from the 15× 15× 5 sampling
with less than 1 meV/atom. The INCAR file for cell volume relaxation is
included in Appendix B.2.1.

DOS calculations for graphite were performed similarly to the above
described procedure for GaAs. In the self-consistent calculation step the
Brillouin zone was sampled with a 15× 15× 5 Γ-centered mesh and this was
increased to 18 × 18 × 6 in the the second run, to achieve higher accuracy.
The INCAR files for the two calculation steps are included in Appendix B.2.2

4.2 GaAs surface reconstruction

4.2.1 Construction of supercells for modelling surface reconstruction

The supercell that is constructed to model GaAs(111) 2 × 2 surface recon-
struction is to a large extent based on the slab model of GaAs presented by



4.2 GaAs surface reconstruction 27

Figure 4.5: Visualization of the constructed supercell with a GaAs symmetric
double-slab and an artificial midlayer, where the As-atoms at the midlayer interface
are saturated with 0.75e− pseudo-hydrogen. The midlayer interface is shaded in red.
The atoms within the red shaded area are kept fixed throughout all calculations due
to large repulsive forces. In the box to the right the interface bilayer is also viewed
along the c direction of the cell.

Kaxiras et al. [52].
The construction of a slab model in order to reproduce a 2x2 surface recon-

struction of GaAs(111) is not straight forward, and poses a few computational
challenges. Firstly, all calculations are performed with periodic boundary
conditions. This implies that the supercell structure is being periodically
repeated throughout space. In order to model a surface within a supercell,
a GaAs slab is constructed with a vacuum region above and below the slab
within the supercell. However, simply carving GaAs along its (111) plane
will render two different polar surfaces on each side of the slab, one being
As-terminated ([1̄1̄1̄] direction) and the other being Ga-terminated ([111]
direction). Due to periodic boundary conditions, the different polarity of
two different surfaces on the slab will create an artificial field that will affect
the surface reconstruction [52]. This is due to the different states of the
dangling bonds on the As-terminated surface and the Ga-terminated surface,
respectively, which with periodic boundary conditions would lead to charge
transfer between the different surfaces [52].

In order to avoid such artificial fields, a mirror symmetry is imposed
onto the GaAs slab. Thus, instead of having a single slab, a double slab is
constructed (Figure 4.5). The mirror symmetry ensures that the same surface
is exposed on both sides of the slab. In the present model, Ga is the surface
terminating layer on both sides of the slab. When imposing this non-physical
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mirror symmetry onto the slab, creating a double slab, there will be two
same-atom planes (in our model these are As-planes) at the interface, in the
middle of the double slab as seen in Figure 4.5. The As-dangling bonds at the
interface are saturated with 0.75e− pseudo-hydrogen. This is done to avoid
charge buildup at the interface which would also lead to a charge transfer from
the interface to the slab surface. The reason for this is that each As dangling
bond at the interface have a 5

4e
− charge associated with them, since As has a

valence of five and the atoms are all sp3 hybridized. Bond formation of two
such orbitals would lead to an excess charge of 1

2e
− in an anti-bonding state,

that would transfer to the surface region because of the lower laying state
of the dangling Ga-bonds, for which a charge of 3

4e
− is associated with each

dangling bond. This charge transfer is avoided by saturating the As-bonds in
the interface region with pseudo-hydrogen having a charge of 0.75e−.

The double slab consists of two times eight layers, thus two times four
Ga-layers and As-layers respectively, as is seen in Figure 4.5. The supercell
consists in total of 30 Ga atoms, 32 As atoms and 8 pseudo-hydrogen atoms.
The two excess As atoms as compared to the number of Ga atoms are due to
the two vacant Ga sites associated with the two Ga-surfaces on the double
slab. The bond-lengths are initially set to the literature value of bulk GaAs,
5.653 Å [53].

For the purpose of comparison in further calculations, also a GaAs slab
supercell without Ga vacancies present at the surface is constructed. This
supercell therefore has two more Ga atoms present, one for each of the two
surfaces on the slab. Apart from this, the supercell construction is identical
to the double-slab supercell previously described. The latter supercell will be
referred to as the bulk-terminated slab.

4.2.2 Computational scheme for relaxation of supercell

The constructed double slab model with Ga vacancies was relaxed in order to
obtain a (111) 2× 2 reconstructed surface structure. The calculations were
performed with the VASP 5.3.3 version. The calculations were performed
with the PBEsol functional, and the PAW potentials Ga_d, As and .75H,
supplied with VASP, were used. The Ga_d potential includes the d orbital
for Ga. The .75H pseudo-hydrogen has a valence of 0.75e−. As for bulk GaAs,
electron wave functions were expanded in plane waves up to a kinetic energy
cutoff of 400 eV. The electronic convergence criterion was set to a SCF energy
of 1.0× 10−9 eV. The supercell volume was fixed, whereas atomic positions
were allowed to relax. However, selective dynamics was used to fix the atomic
coordinates of the As atoms and the pseudo-hydrogens in the midlayers of
the double slab, due to the here present strong, repulsive forces. Because of
the unavoidable, strong forces at the midlayer interface in the double slab,
ionic relaxation was done with a convergence criterion which considers the
total energy within the supercell, rather than forces acting on each atom
individually, in order to get convergence. Convergence testing with different
k-point densities and different values for the convergence criterion of the
total supercell energy was done, seen in Figure 4.6. The Brillouin zone was
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Figure 4.6: Total energy per atom for different restrictions of the atomic convergence
criterion for GaAs double-slab supercells. The numbers given in the legend are
the total energies, in eV, that the supercell energy must be converged within. The
convergence testing is performed with fixed cell volume. Calculations are peformed
with the PBEsol functional with the PAW potentials Ga_d(s2p1), As(s2p3) and
.75H.

sampled with a 4× 4× 1 Γ-centered k-mesh, giving energy convergence within
a few meV/Å. Different values for the ionic convergence criterion yielded
small energy differences, and visual inspection of the resultant structures after
relaxation revealed no visually detectable structural alteration for convergence
criteria lower than 0.01 eV/Å. Atomic coordinates varied within an order of
magnitude of 10−3Å. The INCAR file for supercell relaxation is included in
Appendix B.3.1.
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Figure 4.7: Total GaAs slab supercell energy as function of distance between the
periodically repeated GaAs slabs.
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In order to assure that the vacuum is sufficiently large such that the peri-
odically repeated GaAs-slabs do not interact with each other, test calculations
were performed where the vacuum regions were successively increased, and no
significant change in energy was detected. The total supercell energy varied
within a few meV for testing of larger vacuum regions than the initial 2× 8 Å,
seen in Figure 4.7. No further structural change could be observed by visual
inspection.

4.2.3 Chemical potential of solid Ga and graphite

Figure 4.8: Crystallographic structure of orthorombic Ga metal.

For the purpose of calculating the surface reconstruction energy of GaAs(111)-
2× 2 surfaces with Ga vacancies, the chemical potential of Ga was calculated.
The chemical potential of solid Ga is simply the energy per atom in the equilib-
rium Ga(s) structure. At ambient conditions Ga is a metal with orthorombic
crystal structure, as seen i Figure 4.8.

The PAW potential Ga_d was used, supplied with VASP, and calculations
were performed with the PBEsol functional. The Brillouin zone was sampled
with a Γ-centered 12×12×8 grid, giving converged energies within 1 meV/atom.
Electron wave functions were expanded up to a kinetic energy cutoff of 400
eV. Relaxations were performed with a SCF energy of 1.0×10−9 eV and until
Hellmann-Feynman forces on all atoms have reached a value below 0.001 eV/Å.
Different settings for the partial occupancies of the wavefunctions were tested.
In the INCAR file this corresponds to the ISMEAR tag. Gaussian smearing
(ISMEAR = 0) and the method of Methfessel-Paxton [54] for order 1 and 2
(ISMEAR = 1 and ISMEAR = 2, respectively) were tested, for two different
σ-values, i.e. smearing widths. This is shown in Figure 4.9. The different
smearings yielded values for chemical potential of Ga varying within 0.1 meV.
The INCAR file for the Ga metal relaxation is included in Appendix B.3.2.

4.2.4 ab-plane straining of GaAs slab

The effect of biaxial straining in the ab-plane of the GaAs slab supercell was
tested. ab-plane straining was performed for GaAs slabs both with surface
reconstruction and with bulk-termination. The calculation parameters were
equal for both systems and equal to the calculation parameters for relaxation
of the GaAs reconstructed slab (see Section 4.2.2). Thus, for each strain
calculation, all ions within the supercell were allowed to relax except from
the midlayer pseudo-hydrogen-terminated As atoms. Also, the c parameter
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Figure 4.9: Chemical potential for Ga(s) calculated with different smearing methods
and smearing widths. The x axis values 0, 1 and 2 correspond to Gaussian smearing
and the method of Methfessel-Paxton of order 1 and 2, respectively.

was kept constant for all values of strain. The slabs were strained up to 15%
both in compressive and tensile mode.

4.2.5 GaAs slab DOS calculations

DOS calculations were performed on GaAs slabs both in relaxed and strained
conditions. The calculation procedure was the same as described in Section
4.1.2, thus a two step calculation scheme, with a selfconsistent and a non-
selfconsistent run. In the first run the Brillouin zone was sampled with a
4×4×1 Γ-centered mesh, whereas this was increased to a 5×5×1 Γ-centered
mesh in the second run. Calculation parameters were otherwise the same as
for DOS calculations on bulk GaAs.
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4.3 Heterostructure calculations

4.3.1 The heterostructure supercells

Five different atomic configurations at the epitaxial interface between graphene
and GaAs are proposed. These configurations are described by the epitaxial
model presented by Munchi et al [1]. However, in this model a bulk terminated
GaAs surface at the interface is assumed. Here, it is proposed that the GaAs
(111) surface at the GaAs/graphene interface is 2× 2 reconstructed according
to the vacancy buckling model described in Section 3.2.1. The five structural
configurations that are proposed are shown in Figure 4.10. There are three
different suggested relative rotations between graphene and GaAs; a 0◦, 16.1◦
and 30◦ phase orientation relative to graphene. The different orientations
correspond to the relative rotations of the in-plane hexagonal pattern of the
interface Ga atoms and graphene respectively. For the 0◦ orientation, three
in-plane translations are considered; one in which all interface Ga atoms are
positioned right above a carbon atom, one in which the interface Ga atoms
are situated above a C-C bond and one where the Ga atoms are placed above
the middle of the hexagonal ring in graphene. Based on the positioning of
the interface Ga atoms, these configurations will be referred to as Top (T),
Bridge (B) and Hollow (H) configurations, respectively (Figure 4.11). For the
16.1◦ and the 30◦ orientations, only one translation is considered. This is due
to the fact that these configurations cannot be translated such that all the
interface Ga atomic positions are situated on either a Top, Bridge or Hollow
site, which are the ones here considered. For these two orientations, all the
Ga atoms at the interface are at bridge sites.
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(a)

(b) 0◦ 6.3% strain

(c) 16.1◦ 10.0 % strain (d) 30◦ -8.2% strain

Figure 4.10: (a) Heterostructure slab, periodically extended in the ab-plane for
visualization. The GaAs slab is the GaAs reconstructed structure obtained after
relaxation. (b), (c) and (d) The five different configurations considered of GaAs
on graphene. The dotted lines are meant as a guidance for the eye to visualize the
hexagonal pattern of the interface Ga atoms, and the relative rotation of this with
respect to graphene.
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The supercell is constructed by placing three graphene layers above and
below the relaxed GaAs double slabs, and thereafter strained to accommodate
different lattice mismatches (described in Section 4.2). Initially, in employing
conventional semi-local functionals during calculations, the supercells contain
an 8 Å vacuum region above and below the graphene layers, to reassure
no interaction between the periodically repeated GaAs slabs. However, in
calculations performed with vdW functionals these two vacuum regions are
removed. Due to the fact that such functionals are non-localized, they are
computationally more demanding, and the computational work-load depends
on the filling of the cell, thus scaling with the amount of vacuum in the cell.
Therefore, in order to reduce computational load, the vacuum regions are
removed from the supercells.

(a) Top (b) Bridge (c) Hollow

Figure 4.11: Different sites on graphene, top, hollow and bridge sites respectively.

4.3.2 Computational scheme for heterostructure calculations

During all calculations performed on heterostructure supercells the VASP
5.3.5 version was used. This simply is an upgraded version of VASP that
was released during the course of the present study, and has no influence on
the results of this present work. The standard PAW potentials Ga(s2p1) and
As(s2p3) were used along with .75H pseudo-hydrogen, for the atoms within
the GaAs slab. Changing the Ga potential from Ga_d(s2p1) to standard
Ga(s2p1) was only done to save computational work load, as the the size of
the supercell itself along with the number of atoms within the cells make
calculations computationally demanding.

Coarse geometry optimization - energy mapping as function of GaAs/graphene
distance

Evaluation of functionals was performed on the heterostructure supercells by
evaluating the total energy of the supercells as function of distance between
graphene and GaAs. The conventional, semi-local PBEsol functional and the
vdW functional optPBE were both evaluated. For optPBE, both standard
carbon potential (C(s2p2)) and hard carbon potential (C_h(s2p2)) were tested.
For calculations on pure graphite using optPBE, the hard carbon potential
was necessary to use in order to get sufficient energy convergence. However, as
the hard potentials are computationally much more demanding than standard
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potentials, and because of the computationally demanding system under study,
the effect of applying standard carbon potential as compared to hard ones
was of interest to investigate.

In calculations with standard C potential, electron wave functions were
expanded to a kinetic energy cutoff of 550 eV. This cutoff was set based on the
default energy cutoff provided with the PAW potential supplied with VASP
(which is 400 eV), and then increased by 30%. For calculations with hard
carbon potential, the cutoff energy was set to 910 eV, as for bulk graphite
calculations. The Brillouin zone was sampled with a Γ-centered k-point grid of
2× 2× 1. Static calculations were performed for which no ionic relaxation was
allowed to occur. The SCF energy convergence criterion was set to 1.0× 10−6

eV. For calculations with the PBEsol functional, during which the supercells
have vacuum regions both below and above the heterostructure slabs, the
graphene layers for each calculation with varying distance were subsequently
shifted a distance further away from the GaAs slab without altering the cell
volume. Internal bond lengths within the GaAs slab were kept constant.
However, for calculations performed with the vdW functional optPBE, the
vacuum regions were removed, as explained earlier. Thus in order to increase
the GaAs slab/graphene distance, the cell volume was forced to successively
expand in the c-direction of the supercells. The internal relative coordinates
were rescaled for each calculation such that internal bond lengths were kept
constant. The GaAs/graphene distance was varied from 1 Å to 5 Å, with a
step length of 0.2 Å.

Based on the functional testing, all further calculations performed on
heterostructure supercells were done with optPBE and standard carbon
potential.

The energy mapping as function of distance between GaAs and graphene
yielded an equilibrium distance for which the total supercell energy was the
lowest. This equilibrium distance changed for the two different functionals, but
both calculation runs performed with optPBE (with standard and hard carbon
potential, respectively) yielded the same equilibrium position. In an effort to
fine tune this equilibrium distance, a second calculation run was performed for
which a smaller step length was used. Calculation parameters were the same
as described above for optPBE calculations with standard carbon potential.
The interval of distance for which energy was mapped was 0.4 Å around
the equilibrium distance established through the former calculations. The
steplength was 0.04 Å. The INCAR file for static calculations is included in
Appendix B.4.1.

Fine geometry optimization

Following the static energy mappings, dynamic relaxations at the interface
were performed. The starting points for the structural relaxations were
the most energetically favourable structures with respect to GaAs/graphene
distance for the different configurations. The optPBE functional was applied
with standard carbon potential. During relaxation, selective dynamics was
used to fix all atoms except from the interface GaAs bilayer along with all
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graphene layers, which were allowed to move in x, y and z directions. A
Γ-centered k-point grid of 2 × 2 × 1 was used to sample the Brilloiun zone
along with a cutoff energy of 550 eV. The convergence cristerion for the SCF
energy was set to 1.0×10−6 eV and ions were let to relax until the total energy
had reached a value below 0.01 eV. As for relaxation of the single GaAs slabs,
an ionic convergence criterion based on the total energy chosen due to the
strong forces within the GaAs slab, and also because we here consider an
interface between two materials. Forces at the interface are considerably
stronger than forces on atoms in bulk materials. The INCAR file for dynamic
calculations is included in Appendix B.4.2.

4.3.3 Density of states calculations

DOS calculations were performed for dynamically relaxed structures (described
in Section 4.3.2). In order to calculate accurate DOS, two calculation steps
were performed, as described in Section 4.1.2. In the first SC run a k-point
grid of 2× 2× 1 was used to map the Brillouin zone, which was increased to
4× 4× 1 in the second non-self-consistent run. The cutoff energy was 550 eV,
and the SCF energy convergence criterion was set to 1.0×10−6 eV. INCAR
files for the two DOS calculations are found in Appendix B.4.3.



Chapter 5
Results

In this chapter the results of the present work are presented. The chapter is
divided into three main sections. In the first section bulk GaAs and graphite
are studied, respectively. Following the bulk calculations is the modelling
of and calculations performed on GaAs reconstructed supercells. Last in
this chapter, the results of the investigation of heterostructure interfaces are
presented.

5.1 Bulk GaAs and graphite

5.1.1 Straining of bulk GaAs

The energy penalty of biaxial straining of bulk GaAs, both zincblende (ZB)
and wurtzite (WZ), is studied. Since there is a lattice mismatch between
graphene and GaAs in the preferred growth directions of GaAs on graphene
([111] and [0001] for the ZB and WZ structure, respectively), epitaxial growth
would require GaAs to strain to some degree in these planes to adopt to
graphene. During the project work [5], it was established that the energy
penalty of in-plane straining of graphene is much higher than that associated
with isotropic straining of GaAs. Therefore, it is assumed that graphene at
the interface will not be significantly strained. This can be seen in Figure
5.1, taken from the project work [5], which shows the increase in energy as
GaAs is isotropically compressed and expanded and the increase in energy for
an in-plane compression and expansion of graphene. The curvatures of the
graphs indicate the relative stiffness of the two materials. Thus, graphene is
considerably harder to strain.

In the present work, the energy penalty of an ab-plane strain of the ZB(111)
and WZ(0001) planes is studied. That is a more realistic modelling of the
GaAs strain penalty at the interface than isotropic straining, because of the
ability of the nanowires to relax the structure in the direction perpendicular
to the interface as a response to ab-plane strain. Figure 5.2 shows the
energy as function of ab-plane straining for bulk GaAs ZB and WZ structures

37
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Figure 5.1: Ref. [5] Results from project work. Energy per formula unit calculated
as a function of normalized volume, where V0 is the volume given by the equilibrium
lattice constant for the respective materials. The energy is given relative to the
energy at zero strain. Calculations are performed with the LDA functional.

along with the energy difference between the two respective crystallographic
structures. GaAs ZB, which is the energetically favourable structure in
unstrained condition, becomes even more favourable with respect to WZ as
the material is being strained. However, for compression of the material, WZ
is slightly more energetically favourable. The relaxed c parameter for WZ, and
the corresponding c’ parameter for the [111] oriented ZB cell are plotted in
the lower panel in Figure 5.3. Figure 5.4 shows the supercells for WZ and [111]
oriented ZB. Because the ZB structure in the [111] crystallographic direction
is ABC stacked, the c parameter in the constructed [111] oriented ZB cell
includes three bilayers of GaAs. The WZ structure, on the other hand, is AB
stacked in the [0001] direction, thus the supercell includes two bilayers. For
comparison of the lattice parameters, the c’ parameter is therefore rescaled
to 2

3 . There is a prominent perpendicular response to the ab-plane straining,
as seen in Figure 5.3. The response of ZB and WZ is very similar, but for
increasing strain, the bond lengths perpendicular to the strained plane in ZB
decrease slightly more than for WZ.

5.1.2 Orbital resolved DOS for GaAs and graphite

For the purpose of having a reference of bulk electronic structure for GaAs
and graphite as compared to the slab systems and heterostructures which will
be addressed later on, density of states (DOS) calculations are performed for
both GaAs and graphite.

Orbital resolved DOS is calculated for both the ZB and the WZ structure
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Figure 5.2: Straining in the ab-plane of GaAs ZB(111) and GaAs WZ(0001). The c
parameter in the supercell is free to relax, whereas the a and b parameters are kept
fixed for each strain value. Upper panel: Energy per formula unit as function of
percentage strain. Lower panel: Energy difference between ZB and WZ as function
of strain.

of GaAs, in non-strained conditions, as seen in Figure 5.5. Both structures
exhibit a bandgap, as expected since GaAs indeed is a semiconductor. The
top of the valence band is dominated by As (p) states, whereas the bottom of
the valence band is slightly dominated by Ga (s) states for both ZB and WZ.
This is in accordance with expectations for a material with polar covalent
bonding: In the sp3 hybridized bonds, the less electronegative Ga atoms
donate electrons to the more electronegative As. The calculated bandgaps
are summarized in Table 5.1 along with the literature values for bulk GaAs
ZB. Close to the Fermi level of the calculated DOS for WZ, it can be seen
in Figure 5.5 that the As (p) states exceed the total DOS. Thus, the orbital
contributions obviously don’t add up to the calculated total DOS. This can,
however, be explained by numerical errors in the projection method used to
obtain orbital resolved DOS.

Figure 5.6 shows the orbital resolved DOS for graphite P63mc. The p
orbitals have been split up in px, py and pz orbitals, as these are highly
inequivalent. The s, px and py orbitals are sp2 hybridized to form the strong
intra-planar σ-bonds within each layer, and all the state contributions from
these orbitals are heavily buried at energies much lower than the Fermi level.
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Figure 5.3: Relaxed c parameter for GaAs WZ and corresponding c’ parameter for
ZB as function of ab-plane strain. The c’ parameter is rescaled with 2

3 for direct
comparison with the WZ c parameter.

However, the pz orbital, which is oriented perpendicularly to the graphene
sheets dominates the top of the valence band and the conduction band, as
expected, as this is in full accordance with theory.

5.1.3 Bandgap evolution of GaAs(ZB) as function of ab-strain

How the bandgap of ZB GaAs is affected by the ab-plane strain studied in
Section 5.1.1 has been investigated. Figure 5.7 shows the evolution of the
bandgap of ZB GaAs as function of ab-strain in the (111)-plane. The bandgap
peaks at two percent compressive strain, but decreases fast as the compressive
strain increases. For tensile strain, the bandgap is also significantly reduced as

Figure 5.4: Supercell structures for bulk WZ GaAs and [111] oriented ZB GaAs.
The GaAs structure is rotated for the purpose of making the ZB(111) plane equivalent
to the ab-plane for the purpose of ab-strain calculations.
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the tensile strain increases. Some deviation from the tendency of decreasing
bandgap for increasing tensile and compressive strain is observed for some
strain values, where the bandgap slightly increases. However, these deviations
are attributed to not fully converged calculations, and is not a physically
significant result, owing to the clear overall tendency of bandgap evolution
seen in the graph.
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Figure 5.5: Calculated density of states (DOS) for bulk GaAs, per formula unit
(f.u.). Upper figure shows the orbital resolved DOS for the wurtzite (WZ) structure
and the lower figure shows the orbital resolved DOS for the zincblende (ZB) structure.
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Table 5.1: Calculated bandgaps for GaAs zincblende (ZB) and wurtzite (WZ) at
zero strain.

Crystal structure Bandgap (eV)
ZB 0.424
WZ 0.449

ZB (literature value) 1.52 (0 K) [34]
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Figure 5.6: Orbital resolved density of states for grapite P63mc. The DOS is
plotted per formula unit (f.u.).
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Figure 5.7: Bandgap as function of percentage strain of GaAs zincblende structure
in the (111) plane. In the supercell, the (111) plane spans the ab-plane, which is
kept fixed during relaxation. The c parameter is free to relax.
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5.2 GaAs surface reconstruction
A reconstruction of the GaAs(111) surface at the GaAs/graphene interface is
assumed. This assumption is based on the observed and reported very strong
driving force for ZB GaAs(111) surfaces to reconstruct [17]. Only a 2 × 2
reconstruction has been considered here, described by the vacancy buckling
model [4].

Relaxation of the GaAs double slab described in Section 4.2 yields a slab
structure that is seen in Figure 5.8. Figure 5.8(a) shows the full double slab,
both with and without surface reconstruction, for comparison. The slabs are
periodically extended in the ab-plane for better visualization. Figure 5.8(b)
visualizes the outermost bilayer in two different orientations for the surface
reconstructed slab, which has flattened extensively compared to the bulk
bilayer atomic structure. This is in accordance with the vacancy buckling
model described in the literature [4], as this is a visual indicator of the
predicted rehybridization of the atoms within the interface bilayer. In bulk,
the Ga and As atoms are sp3 hybridized. However, as predicted by the model
of Tong et al. [4], the orbitals of the surface group III atoms, thus the Ga
atoms, rehybridize to form sp2 bonds, which are planar. This rehybridization
removes electrons from the initial dangling bonds at the surface and puts
them onto neighbouring As atoms. The present vacancies render the surface
As atoms with some partially filled orbitals which again enable the transfer of
electrons between the surface Ga atoms and the surface As atoms.
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(a)

(b)

Figure 5.8: Relaxed GaAs reconstructed slab, with Ga surface vacancies. (a) The
whole GaAs slab is visualized, periodically extendend in the ab-plane. (b) In the
figure to the left, the surface GaAs bilayer of the relaxed reconstruced surface is
viewed along the c-axis of the supercell. In the figure to the right a sideview of the
surface GaAs bilayer is shown, visualizing the flattening of this layer.
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5.2.1 Local density of states

Local density of states (LDOS) is calculated for three different bilayers of the
GaAs double-slab reconstructed supercell. The different regions for which
LDOS is calculated is depicted in Figure 5.9; the three outermost GaAs
bilayers, respectively. The innermost GaAs bilayer, for which As is terminated
with 0.75e− pseudohydrogen, is not studied as this layer is considered not to
provide any physically significant information because of the artificial slab
construction. Figure 5.10 shows the total LDOS for the three respective
bilayers.

In Figure 5.11 the orbital resolved DOS of the three different regions is
visualized. All three layers exhibit a bandgap. However, DOS of the three
bilayers are not the same. Bilayer 1 and 2 exhibit a bandgap of 0.30 eV,
whereas bilayer 3 exhibits a bandgap of 0.25 eV. Thus, the size of the bandgaps
are smaller in the GaAs double slab than for bulk ZB (see Table 5.1). In the
interface bilayer (bilayer 1), the As (p) orbitals dominate the valence band,
whereas right above the Fermi level, thus in the conduction band, Ga (p)
states dominate. For the uppermost bilayers (bilayer 2 and 3), the As (p)
orbitals are also dominating the valence band, however, not as prominently
as seen for bilayer 1.

Figure 5.9: Local DOS (LDOS) regions. B1, B2 and B3 are bilayer 1 (the surface
bilayer) bilayer 2 and bilayer 3, respectively.
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Figure 5.10: Local DOS per formula unit (f.u.) calculated for reconstructed slab
model. The regions corresponding to B1, B2 and B3, respectively are visualized in
Figure 5.9.
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Figure 5.11: Orbital resolved local DOS per formula unit (f.u.) for the regions
indicated in Figure 5.9.
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5.2.2 GaAs reconstruction energy

The reconstruction energy of the GaAs(111)-2× 2 surface with Ga vacancy is
given by the following equation:

Erec = 1
2 [Erel,vac − Eref + 2µGa] (5.1)

Here Erec is the reconstruction energy and Erel,vac is the relaxed slab structure
with Ga vacancies, thus for which reconstruction has taken place at the surface.
Eref is the initial slab structure with no Ga vacancies present, for which the
surface configuration of the double slab is the bulk GaAs configuration and
all bond-lengths correspond to literature bulk values. µGa is the chemical
potential of Ga in its reservoir. At ambient conditions Ga is a metal in solid
phase. The chemical potential of Ga is added to the equation in order to
attain mass balance. The factor 2 associated with the chemical potential is
due to the double slab structure containing two surface Ga vacancies. This is
also the reasoning for the factor 1

2 , as the energy difference inside the brackets
is associated with the formation of two reconstructed surfaces.

The calculations yield a value for the reconstruction energy of 2.33 eV per
2× 2 unit cell.

5.2.3 Reconstruction energy for strained GaAs(111) surfaces

Energy as a function of in-plane straining of the ab-plane for reconstructed
and non-reconstructed slabs is calculated. Figure 5.12(a) shows the total free
energy of strained supercells; reconstructed supercell and non-reconstructed
supercell with a bulk-terminated surface, respectively. Two times the chemical
potential of Ga metal is added to the supercell with a reconstructed GaAs
slab, for comparison of energies. The reconstruction energy is plotted as
function of strain in Figure 5.12(b). Between a compressive strain of 12% and
a tensile strain of 11%, the reconstruction energy is negative, thus, a recon-
struction is favourable. For some critical strain value the slope of the energy
difference between reconstructed and non-reconstructed supercell changes. At
a compressive strain of 8%, the energy gain of having a reconstructed surface
significantly decreases. The reconstruction energy is largest at a compressive
strain of 7%. At a tensile strain of 7%, there is a jump in the reconstruction
energy. The abrupt changes in reconstruction energy coincides with sudden
curvature changes for the bulk-terminated structure, as seen in Figure 5.12(a).
This is thus an indication of abrupt structural changes in the structure of the
bulk-terminated slabs.

The structures of bulk-terminated slabs are investigated for the strain-
regions -6% to -10% (compressive strains) and 5% to 9% (tensile strains).
Figure 5.13 shows the bulk-terminated structures within the mentioned strain
regions. In the upper frame, structures which are strained in tensile mode
are shown. The slab structure contracts in the direction perpendicular to
the strain. The outermost bilayer, highlighted in Figure 5.13, where there
are unsaturated dangling bonds, flattens, as for structures which are surface
reconstructed. Thus the outermost Ga atoms pull further in towards the
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adjacent As layer. Between a strain level of 7% and 8% the outermost Ga
atoms are shifted further in towards the bulk than the outermost As atoms
in the interface bilayer. Structures within the compressive strain region are
seen in the lower frame. The opposite structural change is observed. The
double slab expands in the direction perpendicular to the strained plane.
However, from a compressive strain of -8% to -9%, the interface bilayers
abruptly expand, as the interface Ga atoms are heavily pulled outwards, away
from the bulk.

Three different orientations of the GaAs phase on graphene are considered
for the heterostructure calculations. These orientations have each a different
lattice mismatch with respect to graphene, and thus the different epitaxial
configurations require different degrees of strain in the GaAs phase. It is
assumed that graphene is in a non-strained state at the interface. In the three
different relative phase orientations of GaAs and graphene that are studied,
0◦, 16.1◦ and 30◦, respectively, the ab-plane strain is summarized in Table
5.2. As calculated for bulk GaAs, the size of the bandgap is highly sensitive
to strain. In fact the DOS for slabs at the level of strain corresponding to the
three different phase orientations (seen in Figure 5.14) show that for all three
strain levels and for all bilayers 1, 2 and 3 (see Figure 5.9) the bandgap is lost.

Table 5.2: Relative GaAs/graphene phase orientations and their associated strain
level.

Orientation 0◦ 16.1◦ 30◦
Strain +6.3% +10.0% -8.2%
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Figure 5.12: (a) Total energy per unit supercell (u.sc) as function of ab-straining
for reconstructed and bulk-terminated supercells. For relative energy comparison,
2 × µ(Ga(s)) is added to the total energy of the reconstructed supercell. During
straining of the supercells, the a and b vectors are altered whereas the c parameter is
kept fixed. Selective dynamics is used, where the midlayer As and pseudo-hydrogen
atoms are kept fixed, and all other atoms are free to relax. (b) Reconstruction
energy as function of strain.
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Figure 5.13: Visualization of the structures for strained and relaxed bulk-terminated
structures in the strain-regimes , 5% to 9% (tensile strain), seen in the upper panel,
and -6% to -10% (compressive strain), seen in the lower panel. The evolution
of strains within the given regimes show abrupt structural alterations, which are
indicated in figures.
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Figure 5.14: LDOS for three different strain values of the reconstructed GaAs
slab. The regions B1, B2 and B3 are specified in Figure 5.9. The three strain
values correspond to the three different relative phase orientations considered in
the GaAs/graphene heterostructure calculations. +6.3% strain correspond to 0◦

orientation, -8.2% strain correspond to 30◦ orientation and +10.0% strain correspond
to a 16.1% orientation.
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5.3 GaAs graphene heterostructures
In the following section, the results for all heterostructure calculations are
presented. In the first part structural calculations are presented and secondly
electronic structure calculations are shown.

5.3.1 Structural calculations

Testing of functionals

Different functionals and potentials are evaluated in order to investigate
the effect of and the differences of the respective functional and potential
combinations.

Three different relative epitaxial orientations are considered, where the
relative phase orientation between graphene and GaAs is 0◦, 16.1◦ and 30◦
with respect to the in-plane hexagonal symmetry. For the 0◦ orientation, three
translations are considered, for which interface Ga are positioned above Top
sites, Hollow sites and Bridge sites on graphene, respectively. In the 16.1◦
orientation and the 30◦ orientation the interface Ga atoms are positioned above
Bridge sites on graphene. Figure 4.10 visualizes the considered configurations.

Figure 5.15 shows how the supercell energy changes with distance between
the GaAs slab and the graphene layers. The energy on the y-axis is the total
supercell energy given relative to the minimum energy of each functional/po-
tential calculation, for comparison. These calculations are performed with the
PBEsol functional with standard carbon potential as well as with the vdW
functional optPBE, with both standard carbon and hard carbon potentials,
respectively.

There are significant differences between PBEsol and optPBE for all the
epitaxial configurations. For the three configurations within the 0◦ and for
the 30◦ orientation, a positive interaction for both optPBE and PBEsol is
observed. However the calculations on the 16.1◦ system within the PBEsol
functional reveal marginal positive interaction. Still, for the two former
orientations, the optPBE functional shows a clear improvement with respect
to the observed interaction energy, as these curves have a considerably larger
curvature. The difference between using standard and hard potential for
carbon within the optPBE functional is marginal for all configurations. Thus,
applying hard carbon potential for calculations with optPBE only contributes
to a quantitatively slightly higher precision of the calculation, however no
significant qualitative changes are observed. The equilibrium distance between
GaAs shifts to longer distances for the optPBE functional as compared to the
PBEsol for all configurations.

Energy as function of GaAs graphene distance

Energy as function of distance between GaAs and graphene is calculated
with a smaller step length (0.04 Å) around the equilibrium distance found
from the functional testing, which is seen in Figure 5.15. Because of the
different strain for the different orientations, the number of carbon atoms
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within each graphene sheet in the supercell varies for the different supercells.
For comparison of total supercell energies for the different configurations, n
times the chemical potential of carbon in graphite is therefore added to and
subtracted from the total supercell energies for the 30◦ and 16.1◦, respectively.
n is the difference in the number of carbon atoms between the 0◦ and the
30◦ supercells and the 16.1◦ and the 0◦ supercells, respectively. Comparing
total energies imply that the 30◦ orientation, where all atoms are positioned
on Bridge sites is the most stable one, as this configuration has the lowest
energy minimum. The Top configuration for 0◦ is the second most stable
configuration, closely followed by the Bridge configuration for 0◦. The Hollow
configuration is the least stable translation of the 0◦ configurations, whereas
the 16.1◦ configuration is the overall least stable configuration. This is also
the most heavily strained structure of the ones that have been investigated.
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Figure 5.15: Comparison of energy as function of distance between graphene and
GaAs slab in heterostructure supercell for calculations performed the vdW functional
optPBE and standard and hard carbon potentials, respectively. The total energy
is scaled with the minimum energy value calculated within its potential, in order
to compare the relative slopes of standard and hard carbon potential. The lines
connecting the data points are fitted spline curves, as a guidance to the eye.



56 Results

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

−1,099.2

−1,099.1

−1,099

-8.2% strain

To
ta
le

ne
rg
y/

u.
sc
.
(e
V
)

30◦ Bridge

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
−1,007.2

−1,007

−1,006.8

−1,006.6

−1,006.4

+6.3% strain

To
ta
le

ne
rg
y/

u.
sc
.
(e
V
)

0◦ Top
0◦ Bridge
0◦ Hollow

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
−968.3

−968.2

−968.1

−968

+10.0% strain

Distance between GaAs slab and graphene (Å)

To
ta
le

ne
rg
y/

u.
sc
.
(e
V
)

16◦ Bridge

Figure 5.16: Total energy as function of distance between GaAs and graphene,
calculated within optPBE using standard carbon potential. The total energies
are given per unit super cell (u.sc). There is an inequivalent number of carbon
atoms within each supercell with different orientation, which is a consequence of
the different degrees of strain. Therefore, the chemical potential of carbon P63mc
is added to the total energy of the 30◦ (-8.2% strain) and subtracted from energy
of the 16.1◦ (10%) orientation the number of times corresponding to the difference
in carbon atoms between the 0◦ and the 30◦ orientations and the 0◦ and the 16.1◦

orientations, respectively. This is done in order to compare total energies of the
supercells. The lines connecting the data points are fitted spline curves, as a guidance
to the eye.
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Relaxation of interface layers

Following static calculations to determine the equilibrium position between
graphene and GaAs, the interface GaAs layer, which during former static
calculations has been equal to a GaAs reconstructed surface towards vacuum,
is free to relax. All carbon atoms within the graphene layers are also free to
relax.

(a)

(b)

Figure 5.17: Ionic relaxation at the interface of (a) the 0◦ Top and (b) 30◦ Bridge
configuration, respectively. Relaxation is done with selective dynamics. The layers
within the shaded areas (the interface GaAs bilayer and the all graphene layers) are
free to relax in x, y and z directions, whereas all other atoms are kept fixed.

The two configurations found to be most stable from the former static
calculations are studied, namely the 0◦ Top configuration and the 30◦ Bridge
configuration. Figure 5.17 shows the interface of 0◦ Top configuration and 30◦
Bridge configuration before and after dynamic relaxation. The initial distance
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is the equilibrium distance found from static calculations. For both configu-
rations considered, the distance between GaAs and graphene is considerably
shortened as compared to what was found in the static calculations. Further,
the GaAs surface is more heavily altered in the proximity of graphene for the
30◦ Bridge configuration than the 0◦ Top configuration; Ga atoms are pulled
outward toward the interface graphene layer.

5.3.2 Electronic structure of 30◦ interface configuration

Local density of states

The structural calculations point towards that the 30◦ configuration is the
most stable of the different epitaxial configurations that have been investi-
gated within the constructed model. Therefore, a further electronic structure
investigation of the 30◦ configuration is conducted, by studying local density
of states (LDOS).

Figure 5.18 shows the different regions considered where local DOS have
been studied. The three outermost bilayers of GaAs have been studied, along
with the three graphene layers, as depicted in the figure. Figure 5.19 shows
the total LDOS for the GaAs layers (upper panel) and the graphene layers
(lower panel). Orbital resolved LDOS for different GaAs bilayers are shown in
Figure 5.20, and orbital resolved LDOS for the graphene layers are shown in
Figure 5.21. There is a charge accumulation at the Fermi level in bilayer 1
which is prominent compared to bilayers 2 and 3. A charge depletion at the
Fermi level is seen for the interface graphene layer compared to the two other
considered graphene layers. This might imply some charge transfer from the
graphene layer to interface GaAs layer, thus an indication of a certain degree
of covalence between GaAs and graphene.
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Figure 5.18: Local DOS (LDOS) regions. B1, B2 and B3 are bilayer 1 (the surface
bilayer) bilayer 2 and bilayer 3. G1, G2 and G3 referres to graphene layer 1 (the
layer at the interface) and the two layers beneath this, respectively, as illustrated in
the figure.
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Figure 5.19: LDOS for the dynamically relaxed heterostructure for the 30◦ orien-
tation. Upper panel shows the LDOS for the GaAs regions depicted in Figure 5.18.
Lower panel shows the LDOS for the three graphene layers depicted in Figure 5.18.
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Figure 5.20: Orbital resolved LDOS for GaAs regions described in Figure 5.18.
Upper panel shows the LDOS for the interface layer of GaAs, the mid panel shows
the LDOS for the second GaAs bilayer and the lower panel shows the LDOS for the
third GaAs bilayer.
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Figure 5.21: Orbital resolved LDOS for graphene regions described in Figure 5.18.
Upper panel shows the LDOS for the interface layer of graphene, the mid panel
shows the LDOS for the second graphene layer and the lower panel shows the LDOS
for the third graphene layer.



Chapter 6
Discussion

A computational model has been constructed to study the atomic and electron
structure at the interface between GaAs and graphene. The aim has not
been to construct a model which is able to capture and reproduce all aspects
of the interface, as this is simply not possible within the limits of DFT.
The main focus has been to study different epitaxial structures and relative
interaction energies. In these regards, methodology has been important in
terms of investigating which computational choices must be made to capture
the relative interactions at the interface. Electronic structure at the interface
has also been studied. However within the present model, investigation of
the electronic structure has rather been to gain qualitative insight, more than
obtaining precise quantitative information.

6.1 Epitaxial configurations
Five different epitaxial configurations have been studied; three different relative
in-plane phase orientations between ZB GaAs(111) and graphene: the 0◦, 16.1◦
and the 30◦ orientations, where three different translations of the 0◦ orientation
have been considered. These configurations have been chosen inspired by
those within the epitaxial model presented by Munshi et al. [1]. However, due
to the assumption of having a GaAs(111)-2× 2 surface reconstruction with
Ga vacancies, the in-plane structure of the interface Ga-atoms do not exhibit
perfect hexagonal symmetry since the surface atomic coordinates are slightly
shifted as compared to a bulk-terminated surface. The different configurations
have different degrees of in-plane (111) strain, in order to accommodate lattice
mismatch between GaAs and graphene at the interface. The strain values
associated with the different orientations are quite significant: 6.3% tensile
strain, 10.0% tensile strain and -8.2% compressive strain for the 0◦, 16.1◦
and the 30◦, orientations respectively. In the epitaxial model by Munshi et
al. [1] a fourth orientation is proposed, a 10.9◦ orientation. However, the
in-plane GaAs strain associated with this orientation is -22.7%, which is an
extreme compression, and physically not very plausible. The in-plane strain

63
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calculations of GaAs reconstructed slab structures, did not render a stable
reconstructed surface of the slab at this value of compressive strain and was
therefore not considered further in the heterostructure calculations.

6.1.1 The GaAs crystal structure

In the study of the epitaxial interface, only the GaAs ZB structure has been
considered. This is the energetically most stable structure in bulk. The study
of ab-strained GaAs, in the ZB(111) and the WZ(0001) planes, respectively,
show, however, that the relative stabilities of these two crystal structures are
sensitive to strain (Figure 5.4).

However, in consideration of GaAs nanowires, there is the complicating
element of size- and dimension-induced new properties. It has been reported
that nanowires are successfully grown in both the ZB structure [55], the WZ
structure [56] and mixed phases [1]. Johansson et al. [46] have reported
that the crystallographic structure in fact can be tuned, by controlling the
diameter of III-V semiconductor nanowires. Thus, even though only one
crystal structure has been considered within the constructed model in this
work, also the WZ structure can be realized.

6.1.2 The effect of strain

The bandgap evolution of ab-strained bulk ZB GaAs(111) (5.7) has been
studied. According to the present study, the bandgap is highly sensitive
to ab-plane straining. For sufficiently high strains, the bandgap becomes
insignificant and GaAs becomes metallic. Generally, if a semiconductor is
put under high compression, this will, for high enough compressions, lead the
semiconductor to become metallic. The reason for this is that the orbitals are
forced to overlap more and more, which leads the energy bands to broaden
until the valence band eventually overlaps with the conduction band. For
isotropic expansion of the material, an opposite effect is observed: as atoms
are pulled further apart from each other, the orbital overlap decreases, leading
to a larger bandgap. However, in this study, bulk GaAs has only been strained
in two dimensions. Atomic positions in the direction perpendicular to the
strain-plane are able to relax. Thus, in the strain-plane, the overlapping
of the orbitals increases and decreases, for compressive and tensile strain,
respectively, whereas in the perpendicular direction, a counteracting effect
is observed. This counteracting effect might explain the observed bandgap
evolution. However, further investigations into electronic effects of strain have
not here been conducted, as this was not the main focus of the present work.

The effect of straining GaAs slab structure supercells has been studied,
both with reconstructed surfaces and with bulk-terminated surfaces, for
comparison. In Figure 6.1 the energy of straining a GaAs slab structure with
surface reconstruction is replotted, but with energies scaled with the minimum
energy (at zero strain) to better see the energy penalty of straining. The
three considered orientations are also marked at their respective strain values.
The strain penalty is smallest for the 0◦ orientation, which has a strain of
6.3% associated with it, and largest for the 16.1◦ orientation, which has a
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Figure 6.1: Energy penalty of ab-plane straining per 2 × 2 reconstructed surface.
The different strains for the three different orientations considered, are marked with
dotted lines. E0 is the energy at zero strain.

strain of 10% associated with it. The strain penalty per 2× 2 unit cell is in
the order of many eV, which is a massive energy penalty. However, this is
essentially modelling of the strain in thin films because of the periodic boundary
conditions in the calculations. Because of the nature of the nanowires, they
are in fact able to accommodate much larger lattice mismatches than thin
films, thus the quantitative values of the strain penalties found for the different
configurations, are artificially high.

As a GaAs(111)-2 × 2 reconstruction is assumed to take place at the
GaAs/graphene interface, the energetic driving force for surface reconstruction
as function of strain has been studied, seen in Figure 5.12 in Chapter 5. Of
particular interest are the strain values associated with the three different
considered orientations, 0◦, 16.1◦ and 30◦ , respectively. Thus, Figure 5.12
is replotted in Figure 6.2, where these orientations are marked with the
respective strains associated with them. The 30◦ orientation is at a strain
value where the reconstruction energy is found to be almost at its maximum
value with respect to strain. The 16.1◦ orientation, however, requires a strain
value for which the driving force for reconstruction is significantly reduced
with respect to unstrained conditions.

6.2 Energy landscape at the interface

A main focus of the present work has been to establish an insight into
the methodology that is necessary for studying the energy landscape at
the interface. By this is meant how different configurations (relative phase
orientations and translations) vary in energy, and the nature and strength of
the GaAs/graphene interaction for the different configurations considered.
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Figure 6.2: The reconstruction energy per 2 × 2 surface unit cell as function of
strain in the ab-plane.

6.2.1 Functional evaluation

In evaluating the interaction energy between GaAs and graphene at the in-
terface, two different functionals have been evaluated, the semi-local PBEsol
functional and the vdW functional optPBE. The evaluation of these two
functionals revealed that vdW functionals are necessary in order to capture
the actual strength of interaction between GaAs and graphene. In fact the
semi-local PBEsol functional is not able to capture any significant interaction
compared to the optPBE functional. This is an indication that vdW interac-
tions account for most of the interaction between GaAs and graphene. Further,
with the optPBE functional, both standard and hard carbon potentials have
been evaluated. Hard potentials are more accurate, but require a higher
cutoff-energy, and are therefore more computationally costly. Evaluation
of the GaAs/graphene interaction energy, however, showed that there is no
significant qualitative difference between using standard and hard carbon
potentials. Therefore, for computational savings, standard carbon potential
was used throughout further heterostructure calculations within the present
model.

6.2.2 Estimate of interaction energy

Estimates of the vdW interactions for the different orientations at the interface
are made. These estimates are made based on the energy mapping plotted in
Figure 5.15.

This is done by plotting the total energies of the respective supercells as
function of d−6, where d is the distance between the GaAs slab and graphene.
In Figure 6.3 the total energies are scaled with the minimum energy for each
configuration. Further, the curves are linearly extrapolated to d−6 equal to
zero. This is done in order to estimate the total energy as d −→ ∞, since
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Table 6.1: Estimated interaction energies for different configurations along with a
calculated reference for interlayer binding energy in graphite P63mc and references
from experimental data reported in literature.

Configurations Interaction energy [J/m2]
0◦ Top 0.24
0◦ Bridge 0.26
0◦ Hollow 0.23
30◦ Bridge 0.31
16.1◦ Bridge 0.24

Graphite Interlayer binding energy [J/m2]
Calculated 0.21
Experimental 0.19 - 0.32 [57, 58]

this is the limit of no GaAs/graphene interaction. Energy is plotted against
d−6, because it scales with the attractive term in the Lennard Jones (LJ)
potential. This term in the LJ potential exactly represents van der Waals
interactions (see Section 3.3). The interaction energy is estimated by the
following equation:

Ei = 1
2(E − E0)/A (6.1)

where Ei is the estimated vdW interaction energy, E is the total energy of
the respective double-slab supercell, E0 is the minimum energy with respect
to GaAs/graphene distance and A is the supercell ab-plane area. The factor
1
2 accounts for the fact that there are two interfaces in the supercell.

Table 6.1 sums up the interaction energies calculated for the different
configurations along with the graphene interlayer binding energy.

The interaction energies are estimated based on the static calculations for
which the relative atomic positions at the interface have not been allowed
to move. In other words, the atomic coordinates in the GaAs slab are those
in the slab with the GaAs(111)-2 × 2 reconstruction terminated towards
vacuum. Thus, up to this point atomic coordinates have not been allowed
to move in response to interface interactions. As demonstrated through
dynamic relaxations considered for two of the configurations, an alteration
of the interface structure is indeed observed along with a shortening of the
GaAs/grahene distance (Figure 5.17). Thus, the real interaction energies
are possibly somewhat higher than the estimated values here. However, the
estimates still provide an idea about order of magnitude of the strength of
interactions, as well as relative differences between the different configurations.

The different configurations do not differ significantly in energy, however
the overall strongest interaction is found for the 30◦ Bridge configuration.
This is also the configuration that during static calculations was found to have
the shortest equilibrium distance between GaAs and graphene. Overall, the
Bridge configurations interact somewhat more strongly than the respective
other configurations. In the project work work [5], adatom adsorption of Ga
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and As single atoms onto graphene was studied. It was found the Ga is most
stable at a Hollow position and As is most stable in Bridge positions, a result
that is supported by Nakada et al. [49]. The present results, however, do
not support that Ga at the surface of GaAs is the most stable in a Hollow
position.

However, the fact that there are so small changes in the interaction energy
between the different configurations reflect that the strength of interaction
between GaAs and graphene is weak.

For a reference, the interlayer binding energy for graphite P63mc is calcu-
lated and plotted in Figure 6.4. The interlayer binding energy is found to be
0.21 J/m2. Experimental data that has been reported for the interlayer energy
span the energy interval of the estimated the GaAs/graphene interaction
energies found here, which can be seen in Table 6.1.

The interaction energies are in the same order of magnitude as the graphene
interlayer binding energy, and this is in good agreement with what has been
established here, that the nature of interaction between GaAs and graphene
is dominated by weak van der Waals forces.



6.2 Energy landscape at the interface 69

0 0.2 0.4 0.6 0.8 1
·10−3

0

1

2

d−6 (Å−6)

(E
-E

0)
/u

.sc
(e
V
) 0◦ T

(a) 0◦ Top

0 0.2 0.4 0.6 0.8 1
·10−3

0

1

2

d−6 (Å−6)

(E
-E

0)
/u

.sc
(e
V
) 0◦ B

(b) 0◦ Bridge

0 0.2 0.4 0.6 0.8 1
·10−3

0

1

2

d−6 (Å−6)

(E
-E

0)
/u

.sc
(e
V
) 0◦ H

(c) 0◦ Hollow

0 0.2 0.4 0.6 0.8 1
·10−3

0

1

2

d−6 (Å−6)

(E
-E

0)
/u

.sc
(e
V
) 30◦ B

(d) 30◦ Bridge

0 0.2 0.4 0.6 0.8 1
·10−3

0

1

2

d−6 (Å−6)

(E
-E

0)
/u

.sc
(e
V
) 16.1◦ B

(e) 16.1◦ Bridge

Figure 6.3: Estimation of interaction energy between GaAs and graphene for the
five different configurations considered. Total energy per unit supercell (u.sc.) is
plotted as function of d−6, where d is the distance between graphene and the GaAs
slab. The total energy is scaled with the equilibrium distance energy. Estimates are
made by linear extrapolation to zero. The linear extrapolations are based on the
three data points closest to d−6 = 0. T, B and H indicate Top, Bridge and Hollow
sites, respectively.
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Figure 6.4: Interlayer binding energy for graphite P63mc.
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6.3 Structural and electronic considerations

6.3.1 Structural relaxation of the 0◦ Top and the 30◦ Bridge configura-
tions

Structural relaxation of the 0◦ Top configuration and the 30◦ Bridge configu-
ration has been studied. These were the two most stable ones with respect to
total energy, seen in Figure 5.17. These studies showed that the presence of the
interface has an effect on the structure of GaAs at the interface. However, the
structural effect is significantly stronger for the 30◦ Bridge configuration than
the 0◦ Top configuration. Again, compared to studies of adatom interactions
with graphene, somewhat conflicting results are found here. According to the
project work [5] and the results of Nakada et al. [49] in the study of single
adatom interaction with graphene, As has an equilibrium distance closer to
graphene than Ga, thus indicating stronger interaction. However, as is seen
in the dynamic relaxation of the 30◦ orientation, where atomic coordinates in
the GaAs interface is structurally relaxed in all three directions, the Ga atoms
seem to interact more strongly as these are the ones that pull out towards
graphene (Figure 5.17). However, study of the interaction of single atoms with
graphene is a very simplified scenario, and thus it is perhaps not surprising
that one might find conflicting observations in studies of more structurally
complicated materials.

6.3.2 Electronic structure of the 30◦ Bridge configuration

Based on the calculated Local DOS for the 30◦ orientation (Figure 5.20 ),
GaAs is seen to be metallic, exhibiting no bandgap around the Fermi level.
Also, the LDOSes for GaAs differ considerably from the LDOSes found for
the GaAs reconstructed slab with no graphene present. Yelgel et al. have
done an ab initio study of the InAs(111)/graphene interface using DFT [15].
InAs and GaAs are highly similar materials. They report that the InAs at
the InAs/graphene interface also exhibits metallic character at the interface,
and they strongly and exclusively attribute this shift from semiconducting
to metallic character to the interaction of InAs with graphene. The lattice
mismatch for the configurations considered in the study of Yelgel et al. was
0.16%.

In the present work, however, it is found that the GaAs bandgap is also
heavily altered by biaxial strain, and for the interfaces considered, the strain
itself has reduced the bandgap of GaAs considerably.

Electron localization function

As a continued effort to investigate electronic structure, the electron local-
ization function for the 30◦ structure has been studied. The higher value
of the isosurface level, the more localized are the electrons included in the
visualization.

Figure 6.5 shows the electron localization function for three different
graphene layers in the supercell, and for each layer three different isosurface
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levels (ISL) are visualized. For the highest isosurface level the strong in-plane
σ-bonds are observed. For the lower isosurface levels, delocalized π bonds
around each hexagon are seen. There is no significant difference in the electron
localization functions for the three layers, except for the uppermost layer for
the lowest ISL, where interaction sites with GaAs are seen. The hexagonal
pattern of blue dots can be recognized, which indicates the sites of Ga at the
interface. Also, the interaction sites are not strictly on bridge sites, however,
they are positioned partly on bridge sites and partly on Top sites.

Figure 6.5: Electron localization function for three different graphene sheets in the
30 ◦ heterostructrue supercell. For each layer, three different isosurface levels are
visualized.

In Figure 6.6 the electron localization function around the interface along
the supercell b-direction is shown. At the highest visualized ISL the chemical
bonds (the sp2 orbitals) in graphene are seen along with the chemical bonds
in GaAs around the interface. At this level, no interaction can be observed
between GaAs and graphene. However, at an ISL of 0.2, interaction is indeed
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observed, although fairly weak.
Figure 6.7 shows the electron localization function for three different

isosurface levels for the three outermost GaAs layers in the relaxed 30◦
structure. For the interface layer the charge is highly concentrated on the
As atoms around the Ga vacancy. Although, atomic coordinates of the
reconstructed GaAs surface have changed in response to the presence of the
interface, the projected ab-plane symmetry is barely seen altered from the
GaAs(111)-2× 2 reconstructed surface terminated towards vacuum.

The two upper bilayers (B2 and B3) differ significantly from the interface
layer, which is what one should expect. For the highest ISL for the uppermost
bilayers, the tetrahedral coordination characteristic for sp3-bonds are clearly
seen.

Figure 6.6: Electron localization function shown at the interface between graphene
and GaAs in the dynamically relaxed 30◦ supercell, for different isosurface levels
(ISL).
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Figure 6.7: Electron localization function visualized for different regions of the
dynamically relaxed 30◦ Bridge cell for different isosurface levels (ISL).
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6.4 The Computational Model

The development of a computational model to study different epitaxial in-
terfaces between GaAs and graphene is not straight forward. In the present
work, a model has been constructed on the assumption that the GaAs(111)
surface at the interface under study is 2× 2 reconstructed with the presence
of Ga vacancies. A reconstruction of the GaAs surface is assumed based
on the both computationally and experimentally very strong driving force
for reconstruction at the GaAs(111) surface due to the energetically highly
unstable dangling bonds at the interface. There have been reported several
reconstructions of the GaAs(111) surface. However, as a 2× 2 reconstruction
is the most simple one, this is a natural starting point, and has been the only
considered reconstruction in this work. In the present work, the reconstruction
energy for the unstrained GaAs(111)-2× 2 surface was found to be 2.33 eV/
2× 2 unit cell. This is in good accordance with the calculated value reported
by Chadi et al. [59], of 2.3 eV/2× 2 unit cell.

The aim of this model is to provide knowledge about structural and
electronic properties at the interface between GaAs and graphene. In fact, the
main aim is to predict the properties at the interface between GaAs nanowires
and graphene, on which the nanowires are grown. However, providing such a
model within the framework of DFT is challenging, and one should be aware
of the limitations. The advantage of growing GaAs nanowires as compared
to thin films is not reflected very well within this model, with respect to the
energy penalty of straining GaAs. This has to do with the fact that nanowires
are able to accommodate a much larger lattice mismatch than thin films at
the interface because they have the ability to relax in the ab-plane in the
nanowires as one moves further away from the interface. Thus, there will be
an ab-plane strain gradient in the growth direction of the nanowire. This
feature is not captured by the simple slab model and the strain calculations
performed in the present work. Thus, calculations evaluating the effect of
strain are likely to overestimate the energy penalty for the nanowires at the
interface.

The estimated vdW interaction energy is a rough estimate, and merely
meant for relative comparison of the interaction energy for the different config-
urations, rather than a precise interaction quantification. Ideally, in estimating
the interaction energy, the GaAs/graphene gap within the supercells should be
successively increased until the two phases are no longer interacting. However,
due to the fact that vdW functionals converge increasingly slowly with more
vacuum in the cell, such an approach would be extremely computationally
demanding and ineffective.

6.4.1 Choice of functionals

The choices made with respect to functionals throughout the present project
have been made with the focus on studying atomic structures and relative
energies at the interface of GaAs. In the consideration of electronic structure,
and in particular calculations of the bandgap, it is a known limitation within
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DFT that the conventional functionals underestimates this property. vdW
functionals are neither optimized to improve this fact. In order to calculate
more accurate bandap values, hybrid functionals should be used. However,
in the present work, accurate quantification of electronic structure has not
been the aim, but rather gaining a qualitative understanding of what affects
the properties at the interface and trends in the evolution of properties with
respect to change of different parameters.

6.5 Further work
Throughout the present work it has become evident that investigations of
the structural and electronic properties at the GaAs/graphene interface, and
thus also similar interfaces, is a demanding task. The model constructed in
this work has its limitations with respect to providing quantitatively reliable
information about electron structure. Also, many assumptions that are
implemented in the model, need to be further validated. For example, only
the GaAs ZB structure has been considered at the interface. For further
structural considerations, the WZ structure should also be considered. As the
GaAs(111) surface has been reported to have more than one reconstruction,
this is also an aspect that could be further investigated.

In order to gain a more realistic image on how nanowires respond to
in-plane straining, classical molecular dynamics (MD) could be used. With an
MD approach, nanowires could be studied as a whole, because this method
is computationally much less demanding than DFT. However, it would not
provide any information about electronic structure. In order to capture all
aspects of the interface under study, a multiscale modelling approach is indeed
necessary.



Chapter 7
Conclusion

Epitaxial interfaces between GaAs(111) and graphene have been studied with
a first-principles approach, using density functional theory. Three in-plane
relative phase orientations 0◦, 16.1◦ and 30◦, and three different translations
of the 0◦ orientation have been studied. In the three translations, all interface
Ga atoms are positioned either right above a carbon atom (Top sites), above a
C-C bond (Bridge sites) or right above the center of a carbon hexagon (Hollow
sites). In the 16.1◦ orientation and the 30◦ orientation, all interface Ga atoms
are positioned on Bridge sites.

Within the epitaxial configurations considered, graphene is assumed to be
unstrained, whereas the GaAs phase is biaxially strained in the (111) plane
to accommodate lattice mismatch. The three phase orientations correspond
to a lattice mismatch of +6.3%, +10% and -8.2%, for the 0◦, 16.1◦ and 30◦,
respectively. The GaAs(111) surface is assumed to be 2 × 2 reconstructed
with Ga vacancies.

Biaxial straining of bulk GaAs, both in the ZB phase (in the (111) plane)
and the meta-stable WZ phase (in the 0001 plane) has been studied, to better
understand the impact of strain at the GaAs/graphene interface. Straining
influences the relative stabilities of the two phases. A study of the bandgap
evolution of GaAs ZB as function of biaxial strain, indicates that this property
also is highly sensitive to strain.

The GaAs(111)-2×2 reconstructed surface without the presence of graphene
has been studied. A mirror-symmetric GaAs double slab has been constructed
in order to model surface reconstruction. Biaxial straining of the surface
plane has a significant impact on the reconstruction energy. Straining also
influences the electronic structure of the surface; the GaAs surface and the
adjacent layers become metallic, rendering no bandgap.

The heterostructure interface has been studied by a stepwise structural
investigation followed by an investigation of the electronic properties. The
interactions between GaAs and graphene at the interface have been studied by
two different exchange-correlation functionals: The semi-local GGA functional
PBEsol, and the van der Waals (vdW) functional optPBE. This is done
by a static energy mapping where the distance between the two phases is

77
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varied. The optPBE functional yields a significantly stronger interaction
energy than the PBEsol functional. signifying a substantial vdW contribution
to the interactions at the GaAs/graphene interface. The optPBE functional
is necessary in order to study dispersion interactions.

The vdW interaction was estimated for each of the five configurations.
The interaction energy is found to span from 0.24-0.31 J/m2, where the 30◦
configuration is found most strongly interacting. However there are very
small differences between the configurations considered. All the estimated
interaction energies are in the same order of magnitude as the interlayer
binding energy of graphene, which is found to be 0.21 J/m2.

The present findings show that interactions at the interface between GaAs
and graphene are weak, and in terms of growth of GaAs nanowires on graphene,
the estimates of the interaction energies indicate that neither of the epitaxial
configurations considered are strongly favoured.
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Chapter A
VASP

In this appendix the general technical aspects of running calculations with
VASP are described. Details regarding the VASP files hereunder described
are found in the online VASP manual 1.

A.1 The Four Main Input Files
For every simulation to be run VASP requires four main input files:

• INCAR

• POSCAR

• POTCAR

• KPOINTS

INCAR

The INCAR file contains a series of input parameters that decides how a
calculation should be performed and which output files that are written. There
are a series of tags that can be set in the INCAR file; the example file below
shows some of the most important and general ones.

1http://cms.mpi.univie.ac.at/vasp/vasp/Contents.html
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Listing A.1: INCAR file

# gene ra l
SYSTEM = GaAs s u p e r c e l l
ISTART = 0
ICHARG = 2
INIWAV = 1
ISMEAR = 0
SIGMA = 0.01
EDIFF = 1.0 e−08
EDIFFG = −0.001
PREC = N
LREAL = AUTO

ENCUT = 400

NELM = 60
NELMIN = 2

ISIF = 3
IBRION = 2
NSW = 0
NPAR = 4

• ISTART Determines whether the initial wave functions should be set
by a WAVECAR file or specified by the tag INIWAV. The WAVECAR
is a VASP file can be calculated and contains information about the
wavefunctions for the system.

• ISCHARG Determines how the initial charge density is constructed.

• INIWAV Determines how initial wave functions are set up. This tag
is only set for start jobs, and not if the ISTART tag is set to read
WAVECAR.

• ISMEAR Determines the setting for the partial ocupancies of the wave-
functions.

• SIGMA Determines the smearing width in eV.

• EDIFF The self-consistent field (SCF) energy, which is the electronic
convergence criterion.

• EDIFFG Determines the ionic convergence criterion. A positive EDIFFG
implies that calculations stop when the supercell energy has reached a
value below this criterion, whereas a negative EDIFFG implies that the
Hellmann-Feynman forces acting on each atom individually must reach
a value below this criterion.

• PREC Specifies the precision mode of the calculations.
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• ENCUT Sets the cutoff energy.

• NELM Sets the maximum number of electronic steps if the EDIFF value
is not reached.

• NELMIN Sets the minimum value of electronic self-consistency steps.

• ISIF Determines whether the stress tensor i calculated, along with the
degrees of freedom which are allowed to change.

• IBRION Determines by which algorithm the atoms are updated and
moved.

• NSW Determines the number maximum number of ionic steps.

• NPAR Determines the parallelization of the calculations.

A.1.1 Specifying functionals

Specifying functionals are done by setting some extra tags in the INCAR. The
settings for PBEsol and optPBE are given in Listing A.2

Listing A.2: INCAR functional settings

#PBEsol
GGA = PS

#optPBE
GGA = OR
LUSE_VDW = .TRUE.
AGGAC = 0.0000

POSCAR

The POSCAR file (Listing A.3) contains all information about the geometry
of the supercell. In this file, the vectors spanning the supercell are specified
along with the coordinates of all atoms within the cell. The first line is a
comment line for naming the system. The second line contains a scaling value
for the vectors spanning the cell volume and all atomic coordinates. The
following three lines are cartesian vector coordinates spanning the volume
of the supercell. The sixth and seventh line provide the atomic species and
number of atoms within the cell per atomic species. It is crucial that the order
of the atomic species in the POSCAR file is in accordance with the order of
the potentials of the respective elements within the POTCAR file. On the
eight line, the mode Direct specifies that the following atomic coordinates
are given in direct, or fractional coordinates rather than in cartesian. The
remaining lines provide the fractional coordinates of the atomic positions
within the supercell.
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Listing A.3: POSCAR file

GaAs
1.00000000000000
5.66184470611923 0.00000000000000 0.00000000000000
0.00000000000000 5.66184470611923 0.00000000000000
0.00000000000000 0.00000000000000 5.66184470611923

Ga As
4 4

Direc t
0.000000000000000 0.00000000000000 0.00000000000000
0.000000000000000 0.50000000000000 0.50000000000000
0.500000000000000 0.00000000000000 0.50000000000000
0.500000000000000 0.50000000000000 0.00000000000000
0.249999985000002 0.24999998500000 0.24999998500000
0.750000000000000 0.75000000000000 0.24999998500000
0.750000000000000 0.24999998500000 0.75000000000000
0.249999985000002 0.75000000000000 0.75000000000000

POTCAR

The POTCAR file contains the physical information about the atoms specified
in the POSCAR file, thus all the pseudo-potentials for the different elements
are included in this file. The atomic order in the POTCAR file needs to be
the same as specified in the POSCAR file.

KPOINTS

The KPOINTS file contains the k-points in reciprocal space. Listing A.4
shows an example of a typical KPOINTS file. The first line in the KPOINTS
file (Listing A.4) specifies the generation of an automatic k-mesh in which
one only has to specify how the Brilloiun zone (BZ) is subdivided in each
direction along the reciprocal lattice vectors. The second line activates the
generation of the automatic mesh. The third line generates a Γ-centered
k-mesh, whereas the fourth line specifies the subdivision of the BZ. The last
line is an optional shift of the mesh. For all calculations in the present work,
a Γ-centered, automatically generated mesh has been generated. The shift of
the last line has also been set to zero throughout all calculations.

Listing A.4: KPOINTS file

Automatic mesh
0
Gamma
12 12 8
0 0 0
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A.2 Accurate DOS calculations
Accurate DOS calculations are performed in two steps. The first is a self-
consistent run, during which a CHGCAR is written, which is a file containing
the system charge density. This file is simply written by setting the tag
CHGCAR = .TRUE. in the INCAR file. The precision mode must be set to
"High" during this run.

A second non-self-consistent run is performed for which the charge density
is fixed throughout the calculation to the density found in the first, self-
consistent run. In this step the k-points are treated independently and the
k-point density should be increased. In Listing A.5 are given the specific tags
that need to be set for this run.

Listing A.5: Spesific tags in non-self-consistent calculations for accurate DOS

ICHARG = 11

PREC = High

# DOS
LORBIT = 11
EMIN = −10
EMAX = 10
NEDOS = 401

• ICHARG = 11 reads the charge density from the file CHGCAR.

• Prec = High Is set to achieve high precision of calculations.

• LORBIT = 11 provides orbital resolved wave functions.

• EMIN, EMAX determines the energy range in eV with a minimum and
maximum value, respectively, between which DOS should be calculated.

• NEDOS sets the resolution for the DOS.
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VASP files

B.1 Bulk GaAs

B.1.1 GaAs relaxation and ab-strain

The INCAR file applied for bulk relaxation and ab-strain calculations is shown
in Listing B.1.

Listing B.1: INCAR bulk relaxation and ab-strain

# gene ra l ENCUT = 400
SYSTEM = GaAs bulk
ISTART = 0 NELM = 60
ICHARG = 2 NELMIN = 2
INIWAV = 1
ISMEAR = 0 ISIF = 3
SIGMA = 0.01 IBRION = 2
EDIFF = 1.0 e−09 NSW = 50
EDIFFG = −0.001 NPAR = 4
PREC = N
LREAL = AUTO #PBEsol

GGA = PS

B.1.2 Bulk GaAs DOS

Listing B.2 shows the INCAR file for the selfconsistent run in bulk GaAs DOS
calculations. Listing B.3 shows the INCAR file for the non-selfconsistent run
in bulk GaAs DOS calculations.

Listing B.2: INCAR DOS selfconsistent run

SYSTEM = GaAs ENCUT = 400
ISTART = 0
ICHARG = 2 NELM = 60
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INIWAV = 1 NELMIN = 2
SIGMA = 0.01
EDIFF = 1.0 e−09 ISIF = 3
EDIFFG = −0.001 IBRION = 2
PREC = High NSW = 0
LREAL = .FALSE.
LCHARG = .TRUE. GGA = PS
LWAVE = .FALSE.

Listing B.3: INCAR DOS non-selfconsistent run

SYSTEM = GaAs NELM = 60
ISTART = 0 NELMIN = 2
ICHARG = 11 ISIF = 3
INIWAV = 1 IBRION = 2
ISMEAR = −5 NSW = 0
SIGMA = 0.01
EDIFF = 1.0 e−08 #PBEsol
EDIFFG = −0.001 GGA = PS
PREC = High
LREAL = .FALSE. # DOS
LCHARG = .FALSE. LORBIT = 11
LWAVE = .FALSE. EMIN = −10

EMAX = 10
ENCUT = 400 NEDOS = 401

B.2 Graphite P63mc

B.2.1 Volume relaxation

In Listing B.4, the INCAR file for full relaxation of graphite P63mc is shown.

Listing B.4: INCAR volume relaxation

# gene ra l ENCUT = 910
SYSTEM = graph i t e
ISTART = 0 NELM = 60
ICHARG = 2 NELMIN = 2
INIWAV = 1
ISMEAR = 0 ISIF = 3
SIGMA = 0.01 IBRION = 2
EDIFF = 1.0 e−09 NSW = 50
EDIFFG = −0.001 NPAR = 4
PREC = N
LREAL = .FALSE. #optPBE
LCHARG = .FALSE. GGA = OR
LWAVE = .FALSE. LUSE_VDW = .TRUE.
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AGGAC = 0.0000

B.2.2 DOS calculations

Listing B.5 shows the INCAR file for the selfconsistent run in bulk graphite
DOS calculations. Listing B.6 shows the INCAR file for the non-selfconsistent
run in bulk graphite DOS calculations.

Listing B.5: INCAR DOS selfconsistent run

# gene ra l ENCUT = 910
SYSTEM = graph i t e
ISTART = 0 NELM = 60
ICHARG = 2 NELMIN = 2
INIWAV = 1
ISMEAR = 0 ISIF = 3
SIGMA = 0.01 IBRION = 2
EDIFF = 1.0 e−09 NSW = 0
EDIFFG = −0.001
PREC = High #optPBE
LREAL = .FALSE. GGA = OR
LCHARG = .TRUE. LUSE_VDW = .TRUE.
LWAVE = .FALSE. AGGAC = 0.0000

Listing B.6: INCAR DOS non-selfconsistent run

# gene ra l ISIF = 3
SYSTEM = graph i t e IBRION = 2
ISTART = 0 NSW = 0
ICHARG = 11
INIWAV = 1 #optPBE
ISMEAR = 0 GGA = OR
SIGMA = 0.01 LUSE_VDW = .TRUE.
EDIFF = 1.0 e−08 AGGAC = 0.0000
EDIFFG = −0.001
PREC = High
LREAL = .FALSE. # DOS
LCHARG = .FALSE. LORBIT = 11
LWAVE = .FALSE. EMIN = −10

EMAX = 10
ENCUT = 910 NEDOS = 401

NELM = 60
NELMIN = 2
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B.3 GaAs surface reconstruction

B.3.1 Slab relaxation and ab-plane strain

In Listing B.7 the INCAR file for relaxation of GaAs slab supercells is included.
The same INCAR file is used for GaAs slab ab-strain calculations.

Listing B.7: INCAR slab relaxation

SYSTEM = GaAs ENCUT = 400
ISTART = 0
ICHARG = 2 NELM = 60
INIWAV = 1 NELMIN = 2
ISMEAR = 0
SIGMA = 0.01 ISIF = 2
EDIFF = 1.0 e−09 IBRION = 2
EDIFFG = 0.01 NSW = 50
PREC = High NPAR = 4
LREAL = .FALSE.
LCHARG = .FALSE.
LWAVE = .FALSE. GGA = PS
LVTOT = .TRUE.

B.3.2 Chemical potential of Ga metal

Listing B.8 shows the INCAR for calculation of the chemical potential of
Ga(s). Different values for the ISMEAR and SIGMA tag were tested.

Listing B.8: INCAR µ(Ga(s))

SYSTEM = Ga metal NELM = 60
ISTART = 0 NELMIN = 2
ICHARG = 2 ISIF = 3
INIWAV = 1 IBRION = 2
ISMEAR = ismear NSW = 50
SIGMA = sigma NPAR = 4
EDIFF = 1.0 e−09
EDIFFG = −0.001
PREC = High GGA = PS
LREAL = .FALSE.

ENCUT = 400
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B.4 Heterostructure calculations

B.4.1 Coarse energy mapping

Listing B.9 provides the INCAR file for static calculations with heterostructure
supercells. For calculations performed with PBEsol, the PBEsol functional is
specified rather than the optPBE functional.

Listing B.9: INCAR coarse energy mapping

# gene ra l NELM = 60
SYSTEM = he t e r o s t r u c tu r e NELMIN = 2
ISTART = 0
ICHARG = 2 ISIF = 3
INIWAV = 1 IBRION = 2
ISMEAR = 0 NSW = 0
SIGMA = 0.1 NPAR = 4
EDIFF = 1.0 e−06
EDIFFG = 0.01 #optPBE
PREC = Accurate GGA = OR
AMIN = 0.01 LUSE_VDW = .TRUE.
LREAL = Auto AGGAC = 0.0000

ENCUT = 550

B.4.2 Fine energy mapping

Listing B.10 shows the INCAR file for dynamic calculations with heterostruc-
ture supercells.

Listing B.10: INCAR fine energy mapping

# gene ra l NELM = 60
SYSTEM = he t e r o s t r u c tu r e NELMIN = 2
ISTART = 0
ICHARG = 2 ISIF = 2
INIWAV = 1 IBRION = 2
ISMEAR = 0 NSW = 50
SIGMA = 0.1 NPAR = 4
EDIFF = 1.0 e−06
EDIFFG = 0.01 #optPBE
PREC = Accurate GGA = OR
AMIN = 0.01 LUSE_VDW = .TRUE.
LREAL = Auto AGGAC = 0.0000

ENCUT = 550
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B.4.3 DOS calculations

In Listing B.11 the INCAR file for the selfconsistent of heterostructure DOS
calculations is shown, and in Listing B.12, the INCAR file for the non-
selfconsistent run is included.

Listing B.11: INCAR DOS selfconsistent run

# gene ra l NELM = 60
SYSTEM = he t e r o s t r u c tu r e NELMIN = 2
ISTART = 0
ICHARG = 2 ISIF = 2
INIWAV = 1 IBRION = 2
ISMEAR = 0 NSW = 0
SIGMA = 0.1
EDIFF = 1.0 e−06
EDIFFG = 0.01 #optPBE
PREC = High GGA = OR
AMIN = 0.01 LUSE_VDW = .TRUE.
LREAL = Auto AGGAC = 0.0000
LCHARG = .TRUE.
LWAVE = .FALSE.
LELF = .TRUE.

ENCUT = 550

Listing B.12: INCAR DOS non-selfconsistent run

# gene ra l ISIF = 2
SYSTEM = he t e r o s t r u c tu r e IBRION = 2
ISTART = 0 NSW = 0
ICHARG = 11 NPAR = 4
INIWAV = 1
ISMEAR = 0 #optPBE
SIGMA = 0.01 GGA = OR
EDIFF = 1.0 e−06 LUSE_VDW = .TRUE.
EDIFFG = 0.01 AGGAC = 0.0000
PREC = High
AMIN = 0.01 # DOS
LREAL = Auto LORBIT = 11

EMIN = −10
EMAX = 10

ENCUT = 550 NEDOS = 401

NELM = 60
NELMIN = 2
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