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Problem Description

Investigate the use of position control in inductive power transfer, and how it
compares to state-of-the-art methods for inductive power transfer control.
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Abstract

English
The objective of this thesis has been to investigate the use of position con-
trol in inductive power transfer and how it compares to the state-of-the-art
methods for inductive power transfer control.
In this thesis we have:

• Outlined the basic principles for the design and control of IPT systems
for high power applications

• Calculated magnetic field for a thin circular coil and mutual inductance
between two thin circular coils

• Calculated transfer functions for SS compensated IPT systems for CR
and CV load

• Demonstrated position control for lateral and axial displacement of the
receiving coil relative to the transmitter

The use of position control to keep the mutual inductance constant and thus
optimize the efficiency of an IPT system has been investigated. With oper-
ations in the nearfield region, the mutual inductance is highly volatile, both
for axial and lateral movement. Maintaining a constant reference position
in this region imposes demanding requirements on both the controlling unit
and the mechanical apparatus responsible for the physical movement. The
farfield operation, however, is more forgiving.

Complete system analysis has to be done for each specific implementation, as
the inertia of the system and the input dynamics must be known. The added
cost of implementing and maintaining such a system needs to be considered.
It is argued that for most high power applications, the state-of-the art solu-
tion is better for most high power applications. Tight position control may
still have its niche applications.
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Future work in this field, need to consider a specific application in order to
get reliable information regarding the most important parameters: position
measurements, actuators and life-cycle costs. Another line of future work is
to continue the work of modelling the mutual inductance for general rela-
tive movement and try to find approximative solutions that can be used for
simpler design of new systems.

Norwegian
Målet med denne oppgaven har vært å undersøke bruken av posisjonskon-
troll i induktiv kraftoverføring og hvordan det sammenlignes med de nyeste
metodene for induktiv kraftoverføringskontroll.
I denne oppgaven er det:

• Skildret de grunnleggende prinsippene for design og kontroll av IPT-
systemer for høyeffektapplikasjoner

• Beregnet magnetfelt for en tynn sirkulær spole og gjensidig induktans
mellom to tynne sirkulære spoler

• Beregnet overføringsfunksjoner for SS-kompenserte IPT-systemer for
CR og CV-last

• Demonstrert posisjonskontroll for lateral og aksial forskyvning av mot-
taker spolen i forhold til sender spolen.

Bruk av posisjonskontroll for å holde gjensidig induktans konstant og dermed
optimalisere effektiviteten til et IPT-system er blitt undersøkt. Med op-
erasjoner i nærområdet, er den gjensidige induktansen svært volatil, både
for aksial og lateral bevegelse. Ved å opprettholde en konstant referansepo-
sisjon i denne regionen stilles strenge krav til både kontrollenheten og det
mekaniske apparatet som er ansvarlig for den fysiske bevegelsen. Fjærnfelt-
operasjonen er imidlertid mer tilgivende.

Fullstendig systemanalyse må gjøres for hver spesifikk implementering, da
tregheten til systemet og inngangsdynamikken må være kjent. Den ekstra
kostnaden ved å implementere og vedlikeholde et slikt system må vurderes.
For de fleste høyeffektapplikasjoner er andre moderne løsninger sannsynligvis
bedre for de fleste applikasjoner med høy effekt. Posisjonskontroll kan fort-
satt ha sine nisjeprogrammer.
Fremtidig arbeid på dette feltet må se spesifikt på en bestemt applikasjon for
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å få pålitelig informasjon om de viktigste parameterne: posisjons målinger,
aktuatorer og livssykluskostnader. En annen retning for fremtidig arbeid er
å viderføre arbeidet med å modellere den gjensidige induktansen for generell
relativ bevegelse og forsøke å finne approksimative løsninger som kan brukes
til enklere design av nye systemer.
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Chapter 1

Introduction

Wireless inductive power transfer, IPT for short, is a technology where elec-
tric power is wirelessly transferred between two coils. The concept has a long
history and was demonstrated by Nicola Tesla himself, in the beginning of
the 20th century (3) . Though, due to the technological limitations of the era,
price vs. efficiency and lack of means to regulate the process, the prospect
of wireless energy transfer looked bleak, and interest in further investigation
quickly waned.

Now, at the beginning of the 21st century, with a century’s worth of techno-
logical advancements past, IPT is back with a vengeance. The first use of
IPT has been in applications such as industrial automation, medical implants,
security system, clean rooms and consumer electronics (portable electronic
devices) where the power requirements are relatively low and where trans-
mitter and receiver can be brought relatively close (13; 3). However, it is
especially the last few years’ rise in electrical vehicles populating the roads
which has ushered a focus on using and improving IPT, to deliver power
to batteries wirelessly. Ambitions stretch from designing stationary wireless
charging system unaffected by chemicals, dirt or weather, to the seemingly
more daunting task of dynamically charging a moving vehicle along the road.

Even with the advancements of technology, there are certain physical char-
acters of the IPT technology which will limit the energy transfer efficiency.
For existing low energy solutions such as wireless mobile phone charging,
a 10-30 % energy loss is acceptable. However, for high energy applications
such as vehicle battery charging, even a 10 % energy loss is substantial and
unfavorable. Carefully designing specifically variables such as the positioning
between sending and receiving coils, resonance frequencies and circuit and
magnetic design will determine efficiency and usability of the system in prac-
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CHAPTER 1. INTRODUCTION 2

tical applications (5). Thus, efforts have to be made to develop high energy
wireless IPT systems, which reduces the transmission energy dissipation to
acceptable levels. For high power applications with loose coupling (medium
to long relative distance) between transmitter and receiver, capacitive com-
pensation networks are necessary in order to compensate for the reactive
losses caused by low magnetic coupling.

The objective of this thesis is to investigate the use of position control in
inductive power transfer and how it compares to the state-of-the-art methods
for inductive power transfer control. IPT system are designed for a specific
nominal distance between transmitter, and careful selection of components,
magnetic design, rectifiers and switching power supply are needed in order to
minimize losses and maximize system throughput. Once the IPT system has
been designed, any relative movement between transmitter and receiver will
move the system from its optimum. In order to bring the system back close
to optimal operation, there are only three possible ways to control a basic
IPT system: increase transmitter current, increase the operating frequency
or controlling the magnetic coupling between transmitting and receiving coils.

In this thesis, the control of influence on transmission efficiency of the relative
position between coils is investigated in detail and the behavior and chal-
lenges with a position regulated IPT system will be demonstrated. Specifi-
cally, this work makes the following contributions:

• Systematic presentation of the basics of IPT circuit design and behavior
in chapter 2

• Establish how the magnetic coupling varies with distance and misalign-
ment in chapter 3

• In chapter 4, derivation of transfer functions for a series-series (SS)
compensated IPT systems, which demonstrates challenges in system
design

• In chapter 5, through Matlab system modelling and simulations, demon-
stration of the influence of coil positioning on the coupling coefficient,
how this further effects transmission efficiency, and how a position reg-
ulator can be used to ensure optimal energy transmission.

• Discussion about the practical applicability of position control as a
mean to stabilize power transfer in IPT systems
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Three appendices are included: In appendix A a detailed derivation of
some of the results about magnetic field and mutual inductance are given.
Appendix B contains a detailed derivation of the frequency response for a SS
compensated IPT system



Chapter 2

Background

This chapter will touch on a few topics central to inductive power transfer.
Individual components and phenomena of importance are explained, as well
as how they interact with each other. The aim is to have a basic understand-
ing of how a IPT operates, common design differences, and what the biggest
obstacles to overcome are.

In chapter 2.1 we give an introduction to the basic of controlling an IPT
system. The basic circuits design for resonant energy transfer is explained in
chapter 2.2 and the relation between circuit design and mutual inductance
is discussed in chapter 2.3. In chapter 2.4 the system characteristics of an
IPT system are discussed: Operational mode, topology and bifurcation. The
often conflicting factors to consider in order to maximize output power is
considered in chapter 2.5. Achieving stable output power through control is
the topic of chapter 2.6.

The two most important papers for this chapter is ((18; 17)). However,
there are a number of papers available with a good overview of wireless power
transfer and its applications (Barman et al. (3); Covic and Boys (11); Brecher
and Arthur (7); Fernández et al. (13); Li and Mi (22)),and quite a few that
dig into the details on optimised design of IPT systems both in general and
for specific applications (Bosshard et al. (5); Wang et al. (29); Steigerwald
(26); Diekhans and Doncker (12); Boys et al. (6); Wang et al. (30); Garnica
and Lin (16); Kurs (21); Mur-Miranda et al. (23)).
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2.1 Introduction
There are two simple and interrelated physical principles that forms the basis
for wireless power transfer:

A current in a wire produces a magnetic field that permeates the volume
around it.

and

A surface enclosed by a wire exposed to a time-varying magnetic field will
generate a voltage in the wire.

Like a transformer, the basic principle behind inductive power transfer is
to use a primary electric circuit to generate a magnetic field, which in turn
induces a voltage in a secondary electric circuit away from the primary cir-
cuit. The problem is that we want to transfer energy over some distance,
and unlike a transformer the coupling between the primary and secondary
circuit may be low.

The maximum power that can be drawn from the secondary circuit is in
most application not sufficient. In order to increase the maximum power
output, a capacitor is added in the pickup circuit, and the system is oper-
ated in resonance with the primary circuit. It has been shown ((6)) that in
resonance the maximum output power is:

Pout = ωI2
1
M2

L2
Q (2.1)

Here ω is the operating frequency and I1 is the current in the primary cir-
cuit. M is the mutual inductance, which is a function of the relative distance
between the two coils. L2 is the inductance in the pickup circuit and Q is the
tuned quality factor. The equation captures the basic challenges with IPT
and controlability, and eq. 2.1 will be discussed in detail in later chapters.

As mentioned in the introduction chapter, for applications where there is
relative movement between the two coils, it is necessary to apply some sort
of control if the system is required to maintain a stable output power. In
order to be able to quantify the requirements for the controller, some back-
ground info on the basic IPT system design elements and considerations is
given in this chapter, and the basic concept of mutual inductance is disclosed.
When this information has been established, it is shown, with reference to
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equation 2.1, how a stable output power can be achieved either through in-
put frequency regulation or relative position control between the two coils.
Furthermore, the level of which the different variables as given in equation
2.1 can be tuned to maximize the output power is succinctly given.
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2.2 IPT fundamentals

Figure 2.1: Basic Circuit Model

In its most rudimentary form, an inductive power transfer (IPT) system
consist of a primary (sending, transmitter) circuit, and a secondary (pickup,
receiver) circuit, as shown in figure 2.1 for a SS topology (see 2.4 for possible
topologies)

Each circuit usually consists of a resistance, inductance and a capacitance.
The resistance in the primary circuit, Rp, represents the resistance in the cir-
cuit that causes unwanted ohmic losses.The secondary circuit is often mod-
eled with two resistances; Rs is the resistance in the secondary circuit that
results in unwanted ohmic losses, and RL is the load resistance . When an-
alyzing lossless cases, the values of the intrinsic resistances, Rp and Rs, are
zero:

Rp = Rs = 0 (2.2)

The load resistance, often denoted RL or Req varies greatly with the design
of the system. This is the reason it is preferable to express additional com-
plexity of the circuit through the load.

When power is applied to the primary circuit, the current ip will gener-
ate an electromagnetic field which varies with a frequency ωp. This is the
same frequency as that of the applied source voltage/current. IPT’s usu-
ally operate in the kHz −GHz range, which is one of the reasons frequency
converters are used for making sure that the input current/voltage has the
desired frequency. Being able to alter this frequency ωp, makes it possible
to tune it to the primary circuits own frequency ω0. The primary circuits
resonance frequency is defined as:
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ω0 = 1√
CpLp

(2.3)

If the applied power has a frequency that is equal to the circuit’s resonance
frequency, the power will be transferred from the source to the end of the
circuit without any reactive losses. The same holds for the secondary circuit
if its inductance and capacitance is tuned to a frequency equal ω0.

In addition to these beneficial characteristics, the air gap between the two
coil is a critical part of an IPT, with a lot of nuances on how to bridge the
divide between the two coils. Knowledge on the next topic of mutual in-
ductance is vital for understanding the influence of the air gap between and
position of the two coils.

2.3 Mutual Inductance
When an electromagnetic field generated by a coil is picked up by another
adjacent coil, the two coils are linked together by a common magnetic flux;
they share a mutual inductance between them. With no losses the mutual
inductance is:

M =
√
LP ∗ LS (2.4)

This is for zero flux leakage and perfect coupling, which is more applicable
for transformers than for IPT, where distance and/or orientation between the
coils result in a change in the amount of magnetic flux the two coil shares
between them. For IPT, the coefficient "k" describes the "state" of the induc-
tive coupling between the two coils. It is defined as:

k = M√
LP ∗ LS

, k ∈ [0, 1] (2.5)

The coupling coefficient is usually expressed as a decimal value although per-
centage is occasionally used. A rearrangement gives the common expression
for mutual inductance, used for IPT:

M = k
√
LPLS (2.6)

What can be seen from equation 2.6 is that in order to have high mutual
inductance, large quality coils are important.



CHAPTER 2. BACKGROUND 9

Furthermore, we see that the coupling coefficient has more influence on the
mutual inductance than the coil selection. The coupling coefficient is strongly
connected to the relative distance and orientation between the two coils. The
figure below illustrates the three spatial degrees of freedom that affects the
coupling coefficient of the system. The exact relationship between the cou-
pling coefficient and the displacement is a complex subject, that requires an
analysis of the magnetic field strength and shape. This will be covered in
Chapter 3 and Appendix A.

Nominal Operating

Point

Axial Displacement Lateral Displacement Angular Displacement

Primary

Secondary

Coil

Coil

Figure 2.2: Three Cases of Displacement

2.4 System Characteristics

2.4.1 Configurations
There are two main types of configurations in an IPT system; constant re-
sistance (CR) and constant voltage (CV). The constant resistance model is
used when the load is purely resistive. In a lot of IPT applications, power
is delivered wirelessly to a battery, where maintaining a stable rated voltage
is in focus. Hence, for such systems constant voltage load is the applicable
model.



CHAPTER 2. BACKGROUND 10

Table 2.1: Topology Key Metrics

Configuration Series Parallel
Secondary impedance [Zs] jωLs + 1

jωCs
+R jωLs + 1

jωCs+ 1
R

Load Voltage [VL] IsR Vs
Load current [IL] Is

Vs
R

Reflected resistance ω2
0M

2

R
M2R
L2
s

Reflected reactance 0 −ω0M2

Ls

Secondary Quality factor [Qs] ω0Ls
R

R
ω0Ls

2.4.2 Topology
The topology of an IPT system is the arrangement of the components in the
system. The topology can be complex, but will usually be a combination of
only four basic configurations. There are no clear best alternative, as each
configuration have different advantages and drawbacks. The four basic ones
are:

• Series - Series [SS]

• Series - Parallel [SP]

• Parallel - Series [PS]

• Parallel - Parallel [PP]

According to (26) the correct topology are dependent on the constraints im-
posed on the system. Series configuration on the primary side allows for a
lower primary voltage, while a parallel configuration gives a high primary
current. On the secondary side a series configuration gives stable voltage
while a parallel setup gives a stable current. Table 2.1 shows some key prop-
erties of the secondary side with different topology configurations.

It is important to note that some of the unwanted effects accompanying a
topology can be resolved using different techniques. An example of this is
canceling out the reflected reactance of a secondary parallel configuration by
tuning it out, because it is independent of the load.(30)
The quality factor for the configurations are shown in table 2.2 (29). The
Q-factor plays a big part in the magnetic losses in the circuit, and as such
the overall efficiency of the system. We will come back to this later when
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Table 2.2: Q-factor Topologies

QP QS

Series
Secondary

LPR
ω0M2

ω0LS
R

Parallel
Secondary

ω0LPL
2
S

M2R
R

ω0LS

discussing efficiency. For now just note that the component values relates to
the Q-factor quite differently for the two configurations, and as such must
be carefully considered.

2.4.3 Bifurcation
Bifurcation is generally described as a topological change in system be-
haviour, caused by a small smooth change in the parameters of the system.
In IPT, bifurcation manifests itself when a small change in system parame-
ters results in the system going from having a singular resonant frequency to
having three resonant frequencies. In (29) it is shown how careful design for
the different topologies can avoid bifurcation, see table 2.3. The result for a
SS compensated topology has also been derived in appendix B,

Table 2.3: Q-factors to avoid bifurcation

SS QP >
4Q3

S

4Q2
S−1

SP&PP QP > QS + 1
QS

PS QP > QS

However, it is possible to take advantage of the bifurcation phenomena as
described in (18) where an unbalancing factor ”xu” defined as:

x2
u = Lp

Ls

(Vs
Vp

)2
(2.7)

An unbalancing of ”xu” >1 may be added in order to prevent bifurcation.
However, it may instead purposely designed with ”xu” values < 1. This
results in a small degree of bifurcation with the two additional resonance
tops moving away from one another. The frequency band between the two
of them is still one of high efficiency. In (5) they found the drop in efficiency
not to be significant as long as the unbalancing is kept within 10 − 20%.
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This allows for a system with high efficiency over a larger range of coupling
conditions.

2.5 Efficiency: Maximum output power
The efficiency of a SS configuration shown in the figure 2.1is:

η = i22RL

i21(RS +Rp) + i22(Rs +RL) (2.8)

From 2.8 it is evident that reducing the source and primary impedance, will
yield a better efficiency. We can rewrite 2.8 and express it in terms of "Q"
and "k" (22):

ηmax =
 k ∗Q

1 +
√

1 + (k ∗Q)2

2

(2.9)

This equation explains how alignment affects the efficiency through "k" and
can according to (22) be viewed as a general formula to gauge power transfer
efficiency, as it is valid for multiple forms of compensation networks. Figure
2.3 shows a plot of a select values of Q and k. If the value for "k" is too

Q
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Efficiency as a function of k and Q

k = 0.01

k = 0.03

k = 0.05

k = 0.1

k = 0.2

Figure 2.3: Efficiency as a function of Q and k

low, the drop in efficiency is substantial, and would need a really high Q
to compensate. This are considerations done during the design of the sys-
tem. Another aspect is the operation of the system. As stated earlier the
coupling might change during operation, and this will impact the efficiency
of the system as less power will be transferred over the link. As such this
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needs to be compensated, so that rated power can be delivered to the load.
From equation 2.1 with equal inductance’s on primary and secondary side
(Lp = Ls) it can be expressed as:

Pout = ω × k2 × L× I2
1 ×Q2 (2.10)

We see from the equation 2.10 that given a 50 % drop in coupling coefficient
we can compensate by either:

• increase the frequency to 400 % of nominal value

• increase the primary current to 200 % of nominal value

• increase the secondary quality factor to 400 % of nominal value

Increasing the primary current is the last resort, since it will maintain the
rated output power, but it will also put more stress on all the components
as well. As such the solution usually leads to a lower efficiency.

Increasing the frequency might seem like a good idea, but the frequency
dependency is more complex than equation 2.10 reveals, and it might not
bring about the benefits expected.

Increasing the quality factor of the secondary circuit is a good solution, but
this compensation has it’s limits. Increasing it too much will narrow the
operating bandwidth, and as a result the system will be difficult to tune cor-
rectly as well to re tune over time as component decay affects the nominal
operating frequency.

The ideal solution is to maintain the coupling coefficient, as the only draw-
back is the investment cost in making the magnetics better and the increase
in volume.(10)

The coupling coefficient variations during operation, sets the VA rating on
the input converter. Mathematically:(29)

Sp ≈
kmax
kmin

× Prated (2.11)

As such minimizing the coupling coefficient variations, allows for lowering
the rating of the converter, and as such the price of the system.
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As mentioned earlier a high quality factor of the secondary circuit increases
the output power. Systems with a fixed frequency, closely matching the VA
ratings of the primary and the secondary circuits, provides normally the best
operating condition(10). The largest lateral displacement at maximum VA
rating tolerated is:

k ×Qs ≈ 1 (2.12)
Equation 2.12 shows that a large quality factor of the secondary circuit,
increases the lateral offset tolerated. There is however a catch as the magnetic
losses of both primary and secondary at rated power are proportional to
Qs/QL (Takanashi et al.) . QL is the native Q-factor of the inductor:

QL = ωL

rac
(2.13)

, where rac is the intrinsic resistance of the wire in the coil at the operating
frequency.
Another expression for QL is:

QL = ω

BW
(2.14)

Here BW is the bandwidth of the tuned circuit. With this relation, it is
clear that in order to increase the output power by increasing Qs, QL has to
be high as well. This keeps the magnetic losses low, but also decreases the
transfer bandwidth, making tuning increasingly difficulty as QL is raised.

2.6 Control and stability of output power
Equation 2.1 gave the relationship between output power and different system
variables as:

Pout = ωI2
1
M2

L2
Q = a· b (2.15)

Where a = ωI2
1 and b = M2

L2
Q. There are in principle two methods that can

be used for maintaining a stable output power when the relative position
varies:

a. Vary the frequency and/or the magnitude of the current in the primary
circuit→ using a to compensate for changes in b due to position variation.

b. Eliminating the variations in the mutual inductance by control of the
relative position between the two coils −→ keeping a constant, directly
regulate the position to ensure b is as close to constant as possible.
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a. Vary input frequency or - current. As mentioned in the introduc-
tion, the method of regulating the output power by mean of input circuit
frequency control, is by far the most promising method, and multiple sys-
tems have been proposed.

Giuseppe Guidi and Jon Are Suul have developed a method for minimiz-
ing the rating requirements of power electronic converters in IPT systems
intended to transfer rated power over a wide range of coupling conditions.
The increased operating range is achieved by designing the coils with a small
unbalance factor, compared to the ideal and well-known conditions of per-
fectly matched load, resulting in operation at rated load that is beyond the
bifurcation limit of the system. The global ZVS(Zero Voltage Sum) condi-
tions at rated power is ensured by slightly detuning the resonant frequencies
of both primary and secondary coils. The method is experimentally demon-
strated for coupling variations as high as 275 % Guidi (17); Guidi and Suul
(18).

b. Position Control. The focus in this work, the latter method using
position control, is quite straightforward and well known - at least when the
masses involved are small and the needed accelerations and forces are not
too high.

2.7 Summary
In this chapter the basic circuit design of WPT systems have been shown,
together with the different configurations that can be used to obtain differ-
ent overall system characteristics. Furthermore, the basic concept of mutual
inductance was given, and it was shown how the mutual inductance varies
with the coupling coefficient k, which in turn varies with the relative position
between sending and receiving coils in the WPT systems. Lastly, the output
power and its relationship to the relative position was discussed, and two
methods for ensuring a stable output power in presence of varying position
was given.

The method of directly controlling the relative position is the method to
be implemented here. Before this can be done, the concept of mutual induc-
tance and how it relates to the position through k will be derived subject
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to sound assumptions. This is necessary to be able to design a plausible
controller, and demonstrates in detail the complexity of position control in
WPT systems.

Subsequently, the transfer functions for specific IPT system configurations,
some of which ares given in Guidi (17); Guidi and Suul (18), are derived
in order to set up the system model correctly, and to be able to directly
compare performance with their method. Additionally, the response using
the derived relationships is compared to the responses as given by Guidi and
Suul, supporting their findings.



Chapter 3

Magnetic field and coupling

In order to control the mutual inductance when position changes, we need to
know how the mutual inductance and the magnetic field varies with the rel-
ative orientation of two coils. A general discussion about the magnetic field
from realistic transmitter, requires detailed modelling of a specific magnetic
configuration which is beyond the scope of this master thesis. In order to get
an understanding on how the magnetic field and mutual inductance varies
with position, we choose to study one of the simplest IPT arrangement, that
of two circular thin wire coils.

This chapter presents a summary of the theory and formulas used for calcu-
lating magnetic field and mutual inductance. In appendix A, a much more
detailed description is given. In 3.1, mutual inductance and the coupling
coefficient are defined and a summary of formulas and methods for calcu-
lating the magnetic field and mutual inductance is given. In section 3.2 the
magnetic field from a circular loop is calculated. The mutual inductance
between two circular loops is derived in section 3.3 for two coil arrangement
with circular coils. The first one is for two coaxial circular loops and for the
second arrangement the receiving coil is displaced from the symmetry axis
of the transmitter coil.

3.1 Mutual inductance and coupling coeffi-
cient

Let Γ be a curve in space enclosing a surface Ω, and let ~B(~r, t) be the
magnetic field through that surface. The magnetic flux through the surface
is defined as:

17
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Φ(t) =
∫
Ω

~B(~r, t) · ~dS (3.1)

If the curve Γ represents an electric circuit, the electromotive force (emf)
generated in the circuit is:

ε(t) = −dΦ(t)
dt

(3.2)

This is Faraday’s law, which states that if the magnetic field, or the enclosed
surface is time-varying, a voltage is generated that opposes the change in the
magnetic flux.

A closed electric loop will, as will be shown later, generate a magnetic field.
Since the loop encloses a surface, it will experience a flux and emf due to
the field it has generated. If I is the current through the circuit, the emf
generated by self induction is:

ε(t) = −LdI(t)
dt

(3.3)

where L is the self inductance. This is of course the standard equation for
an inductance, and L depends on the characteristics of the material and the
frequency used.

Now assume we have two circuits in proximity to each other, with current Ia
and Ib respectively, and let La and Lb be the corresponding inductances. We
can now write:

εA(t) = LA
dIA
dt

+MBA
dIB
dt

(3.4)

εB(t) = LA
dIB
dt

+MAB
dIB
dt

(3.5)

where MAB is the mutual inductance between the two circuits. Due to sym-
metry, the two mutual inductances has to be equal:

M = MAB = MBA (3.6)

By considering the total magnetic energy of the system, it can be shown that
M , LA and LA has to satisfy the inequality (14):

M2 ≤ LALB (3.7)
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Introducing the coupling coefficient, the relation between the mutual induc-
tance and the self-inductances may be defined as

M = k
√
LALB (3.8)

where k is the coupling coefficient which varies between 0 and 1. The coupling
coefficient and the mutual inductance contains all the information about the
magnetic coupling between the two circuit, and how the coupling between
the two circuits varies with the relative distance between the two circuits. In
order to evaluate if control is viable, we need to find a process model which
in our case is the mutual inductance.

3.1.1 Calculating magnetic fields and mutual induc-
tance

The magnetic flux and the mutual inductance may be calculated in various
ways, and the starting point for calculations varies a lot in the literature.
Our approach is to calculate the flux through the receiver loop by evaluating

Φ(t) =
∮
Γ2

~A(~r, t) · ~dl (3.9)

to calculate the flux through a surface enclosed by a curve Γ2 which represents
our receiver loop. Here ~A(~r, t) is the vector potential produced by the source
loop:

~A(~r, t) = µ0

4π

∫
V

~j(~r0, t)
|~r − ~r0|

d3r0 (3.10)

where V is the volume of the source loop and ~j(~r0, t) is the current density
throughout the volume. If we can find an expression for the vector potential,
the magnetic field ~B(~r, t) can be found relatively easy through

~B(~r, t) = ∇× ~A(~r, t) (3.11)

So far, no approximations has been made and eq. 3.9-3.11 is the equations
to be used (numerically) for complex geometries for source and/or receiver
circuits.

Thin wire approximation We will in this thesis only consider wires car-
rying a current I where the shape and dimension of the cross section is very
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small compared to the length of the wire. It is shown in appendix A that
with this approximation the vector potential is:

~A(~r, t) = µ0I(t)
4π

∫
Γ

1
|~r − ~r0|

~dl0 (3.12)

where ~dl0 is a line element tangential to the wire. The obvious advantage
is that we have replaced a volume integral with a line integral along the
wire. The disadvantage is that the resulting integral is singular on the wire,
and the results is not valid close to the source loop. We will not consider
this further in this thesis.It should be observed from eq. 3.12 that the time
dependency of ~A(~r, t) is only through the current I(t) which makes it very
easy to find the mutual inductance once the flux is known.

3.2 Magnetic field from circular loop
In the rest of this chapter we will consider a circular loop both as source and
receiver circuit.

3.2.1 Vector potential
First we consider a circular wire in the xy-plane with center at (0,0,0) and
radius a, carrying a current I. It is shown in appendix A that the vector
potential from this wire in a position (ρ, z) is:

~A(~r) = µ0Ia

π
√

(ρ+ a)2 + z2

(2−m2)K(m)− 2E(m)
m2 ~eθ (3.13)

where K(m) and E(m) are complete elliptic integrals of first and second kind,
and where we have defined

m2 = 4ρa
(ρ+ a)2 + z2 (3.14)

The vector potential in a point has direction tangential to a circle with center
on the symmetry axis and through the point.

3.2.2 Magnetic field
The magnetic field may be calculated from the vector potential ~A(~r) by using
3.11. The results in cylindrical coordinates is:

Bρ(ρ, z) = Cz

2α2βρ
[α

2 + β2

2 E(m)− α2K(m)] (3.15)
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Figure 3.1: Coil arrangement for two coaxial circular loops

Bz(ρ, z) = C

2α2β
[α2K(m) + (a2 − ρ2 − z2)E(m)] (3.16)

where
C = µ0I

π
(3.17)

α2 = (a− ρ)2 + z2 (3.18)

β2 = (a+ ρ)2 + z2 (3.19)

m2 = 4aρ
(a+ ρ)2 + z2 = 1− α2

β2 (3.20)

The axial field (in the z-direction) for a circular loop as a function of dis-
tance from the symmetry axis is shown in Figure 3.2 for distances not too far
from the loop. It is seen that close to the plane of the current loop the axial
field changes rather abruptly close to the wire. Furthermore, the magnetic
field switches direction from the positive z-direction to the negative. The
distance from the axis where the change of direction happens is ρ = a at the
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Figure 3.2: Axial magnetic field as a function of distance from the symmetry
axis for 4 distances along the axis: z = 0.1a, 0.2a, 0.4a and 0.8a

wire plane, and increases the further away from the axis one moves. If we
consider the magnetic flux through another coaxial circular shaped wire loop
in a plane parallel to the xy-plane, it will be positive. However, if we move
this coil further and further away from the axis in the near field the flux will
at some distance become negative.

The axial field (in the z-direction) further away from the loop plane is shown
in Figure 3.3. It is seen that the magnetic field changes more smoothly with
distance from the axis, but it still becomes negative some distance from the
axis.

The radial field is shown in Figures 3.4 and 3.5 for the same distances as
for the axial field. For distances close to the loop, the radial field is sharply
peaked around ρ = a and above.
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Figure 3.3: Axial magnetic field as a function of distance from the symmetry
axis for 4 distances along the axis: z = a, 2a, 4a and 6a
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Figure 3.4: Radial magnetic field as a function of distance from the symmetry
axis for 4 distances along the axis: z = 0.1a, 0.2a, 0.4a and 0.8a
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Figure 3.5: Radial magnetic field as a function of distance from the symmetry
axis for 4 distances along the axis: z = a, 2a, 4a and 6a



CHAPTER 3. MAGNETIC FIELD AND COUPLING 25

3.3 Mutual Inductance between two circular
loops

We will in this section calculate the mutual inductance between two circular
loops.

Coaxial loops We consider the mutual inductance between two coaxial
circular loops. The first loop, loop 1, has radius a and is located in the xy
plane, centered at origin. The second loop, with a radius b is located in a
plane parallel to and a distance z away from the xy plane. We are interested
in the mutual inductance between the two loops caused by a current I in
the first loop. It is shown in appendix that the mutual inductance for two
coaxial circular loops is

M = 2µ0ab√
(a+ b)2 + z2

(2−m2)K(m)− 2E(m)
m2 (3.21)

, where
α2 = (a− b)2 + z2 (3.22)

β2 = (a+ b)2 + z2 (3.23)

m2 = 1− α2

β2 (3.24)

It is sometimes useful to have a simplified expression for the mutual induc-
tance avoiding the two complete elliptic integrals. However, it is shown in
appendix A that replacing the elliptic integrals with their Taylor series form
gives an expression that is useful only in the farfield. By manipulating the
expressions for the elliptic integrals, we have shown that a more useful ap-
proximation for the mutual inductance is to the first order:

M1 = 4πµ0(ab)2

(β + α)3 (3.25)

The first and second order approximation are shown in figure 3.6 and the
relative error using the approximations are shown in figure 3.7.It is seen that
the even the first order approximation is valid for separation of one radius
and above.
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Figure 3.6: Mutual inductance between two coaxial, equal sized coils as
a function of separation. The first (non-vanishing) and second order new
approximations are included.

0 0.5 1 1.5 2 2.5 3

-10

-8

-6

-4

-2

0

First order

Second order

Figure 3.7: Relative error by using the new first and the second order ap-
proximation for the mutual inductance between two coaxial, equal sized coils
as a function of separation



CHAPTER 3. MAGNETIC FIELD AND COUPLING 27

3.3.1 Lateral displaced loops

Figure 3.8: Coil with lateral displacement. The receiving coil is displaced a
distance ∆ form the axis at a distance Z from the transmitting coil. To the
right is a projection of the geometry to the xy plane.

Again we consider two circular coils, the transmitter with radius a and center
in origo, and the receiver with radius b in a plane parallel to the xy-plane.
The receiver is an axial distance z from the transmitter and is displaced
laterally a distance ∆. The configuration is shown in 3.8. In Appendix A, it
is shown that for this configuration the mutual inductance may be expressed
as:

M = 2µ0ab

π

∫ π

0
dφ
b+ ∆ cosφ

ρβ
Γ(m) (3.26)

Here we have:
α2 = (a− ρ)2 + z2) (3.27)
β2 = (a+ ρ)2 + z2) (3.28)

Γ(m) = (2−m2)K(m)− 2E(m)
m2 (3.29)

m2 = 1− α2

β2 (3.30)
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It has not so far been possible to find an exact analytic expression for M from
eq. 3.26 and it had to be integrated numerically. The mutual inductance as
a function of lateral displacement has been calculated for several distances
from the transmitter. The results are shown in figures 3.9 and 3.10. The
effect of the large variation of the magnetic field close to the wire is apparent
even in the mutual inductance.
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Figure 3.9: Mutual inductance between two coaxial, equal sized coils as a
function of lateral separation for axial distances z = 0.1a, 0.2a, 0.4a, 0.6a
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Figure 3.10: Mutual inductance between two coaxial, equal sized coils as a
function of lateral separation for axial distances z = a, 2a, 4a, 6a

3.3.2 Summary
The most important relationship required for position control in IPT is how
the coupling coefficient or mutual inductance varies with position. We have
modelled the magnetic field from a thin circular wire for this purpose.

The magnetic field from a circular loop can be expressed in closed form
as a weighted sum of elliptic integrals and has been known for years. The
magnetic field has here been calculated and implemented, in Matlab, for two
reasons; One is that the magnetic field gives and indication of the possible
variations in the mutual inductance. The other reason is that it can be used
to verify the calculation of the magnetic flux and thus the mutual inductance.

The mutual inductance between two circular coils is much more complicated
to calculate than the magnetic field, and only the case with coaxial loops is
known in closed form. One result in this chapter is that we have developed
an approximate expressions that is valid for small distances between the two
coils. A model has been developed for two special cases: for relative coaxial
movement along the axis of symmetry and relative movement of the receiver
in a plane parallel to the transmitter plane. In the model, the two coils don’t
need to be equal size.



Chapter 4

Frequency response for IPT
systems

One of the main objective of this work has been to investigate how position
control compares with state-of-the-art methods for inductive power trans-
fer control.In order to do a qualitatively and quantitatively comparison, we
need to be able to calculate the result from state-of-the-art methods. What
is considered state-of-the-art depends on the application, (11), but for induc-
tive power transfer for high power, high efficiency systems the recent work of
Giuseppe Guidi and Jon Are Suul, both (17) and (18) and pending patents,
would definitely count as state-of-the art.

In this chapter the frequency characteristics for an SS compensated inductive
power transfer (IPT) system are described and give some specific examples.
The discussion given here is based on Guidi (17) and Guidi and Suul (18),
who has derived the transfer function for the lossless case. They also dis-
cusses the case with loss, but does not provide the transfer functions for it.
In Appendix B several transfer functions for SS compensated is derived for a
lossy case. The lossless case will of course only be a special, simplified case.
Only the results and some examples are given here.

The transfer functions for a SS-compensated IPT configuration will be of
great importance when designing and tuning the system. Some of the trans-
fer functions will the basis for the simulation model, and will be discussed in
greater detail in Chapter 5.
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4.1 Introduction
All IPT systems operating in resonant mode requires tuned circuitry in both
receiver and sending circuits in order to achieve high throughput with min-
imum losses. One form of compensation, is SS compensation which means
that both sending and receiving circuits has series compensation. SS com-
pensated IPT system was the main focus of Guidi and Sul and this is the
case that will be discussed here. For the other three combination of series
and paralell compensation, the reader is referred to Wang et al. (29). It will
be relatively easy to extend the work done here to the other forms of com-
pensation circuitry.

Figure 4.1 shows a simplified topology for an IPT circuit with SS compen-
sation. Most of the symbols used are standard, with M being the mutual
inductance between the two circuits. A cautious note about notation is in
place here: In this thesis, we have chosen to use p and s as subscripts for the
primary (sending) and secondary (pickup) circuit, respectively. This is the
convention that is most common in literature. It should be noted however,
that in in some of the papers cited, p and s is used as subscript for pickup
and sending circuits, respectively, which may sometimes be a bit confusing.
In deriving the frequency characteristics we have used Laplace transform,
and use s = jω to convert the result to frequency.

Figure 4.1: Circuit topology for series compensated primary and secondary
circuit

The transfer functions has been derived for two cases:

• Constant Resistive load (CRL)

• Constant voltage load (CVL)
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4.2 Transfer functions
The most useful transfer functions and relations are listed here. The transfer
function from primary current to secondary current is:

Gi,ss = is
ip

= Mωss

Zs + 2ζ
ωsCs

(4.1)

The sending impedance is the impedance seen from the input terminals:

Zpt = vp
ip

= Zp −
M2ω2

ss
2

Zs + 2ζ
ωsCs

(4.2)

The sending impedance may be expressed as

Zpt = Zp + Zr (4.3)

, where Zr is the reflected impedance:

Zr = − M2ω2
ss

2

Zs + 2ζ
ωsCs

(4.4)

The reflected impedance may be thought of as the impedance of the sec-
ondary circuit as seen from the primary circuit. The last transfer function is
the transfer function from primary voltage to secondary voltage:

Gv,ss = vs
vp

= R

Zpt
Gi,ss (4.5)

The complex power transferred to the load is

Sl = vsi
∗
s =

Gv,ssG
∗
v,ss

R
|vp|2 (4.6)

The complex power transferred to the secondary circuit is

Sp = vri
∗
p = Zr

ZptZ∗pt
|vp|2 (4.7)

The power transferred to the secondary circuit is thus

Pp = Re(Zr)
|vp|2

|Zpt|2
(4.8)
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Primary Secondary
Parameters:
Cp = 42.2 nF Cs = 42.2 nF
Lp = 32.7 µH Ls = 32.7 µH
Qp = 150 Qs = 150
k = 0.35
Calculated:
R =9.743 Ω
fp = 135 kHz fs = 135 kHz

Table 4.1: Parameters used for case with loss

4.2.1 Resistive Load
We will here give some examples of the transfer functions given in the last
section for constant resistive load. We consider two cases. The first example
is with loss and the parameters are given in table 4.1. The other example is
without loss, which is the same except that Rp = Rs = 0 (Qp = Qs = ∞).
The current-to-current transfer function for the case of purely resistive load
is:

Gi,ss = is
ip

= Mω2
sCss

2

s2 + 2(ζs + ζ)s+ 1
Figure 4.2 shows the secondary to primary current transfer function for the
parameters in table 4.1. As long as the secondary circuit resistance is a lot
smaller than that of the load resistance it will not alter the transfer function.
Thus the lossless case is more or less identical to that in figure 4.2.
The reflected impedance is:

Zr = − M2ω3
sCss

3

s2 + 2(ζs + ζ)s+ 1 (4.9)

Figure 4.3 shows the reflected impedance for the lossless case. The case
with Qp = Qs = 150 is almost identical to the lossless case, so Qp = Qs =
15 is shown for comparison with the lossless case. The expression for the
sending impedance, eq. 4.3, is a bit more complicated than the two previous
expressions:

Zpt = η2(1− k2)s4 + 2η[ζp + ηζT ]s3 + [η2 + 1 + 4ζpζT ]s2 + 2[ηζp + ζT ]s+ 1
sωsCp[s2 + 2ζT s+ 1]

(4.10)
With Gi,ss and Zpt known, the transfer function from primary to secondary
voltage may be calculated from 4.5. This transfer function is shown in Figure
4.4
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Figure 4.2: CR - Secondary to primary current transfer function for k =
0.35, Qp = Qs = 150
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Lossless case We now consider the lossless case, ζp = ζs = 0, with equal
primary and secondary circuit resonance frequencies, η = 1. In this case, the
sending impedance is:

Zpt = 2ζk2ω5 − j(1− ω2)[(1− ω2)2 − k2ω4 + 4ζ2ω2]
ωωsCp[(1− ω2)2 + 4ζ2ω2] (4.11)

From this result it is clear that the reactive part of the sending impedance
is zero for ω = 1 as expected. However, there may potentially be four more
zeros for the reactive part of the sending impedance. These possible zeros is
the solution of the equation:

(1− ω2)2 − k2ω4 + 4ζ2ω2 = 0 (4.12)

For an ideally matched load, this equation has real solutions only if

k ≥ k0

√
1− k2

0
4 (4.13)

This means that in order to avoid bifurcation, the requirement for the oper-
ation of a lossless IPT system is

k < k0

√
1− k2

0
4 (4.14)

4.2.2 Constant Voltage Load
We will now consider a system in which the load voltage is constant. The
load can not be modelled as an equivalent constant resistance, and although
the functional relationship between output current and output voltage can
be modelled as

vs = Ris (4.15)
R will now depend both on frequency and also on the load voltage. The
phase of the secondary current must be equal to the phase of the secondary
voltage, which means that R will be real. We see that if the angle between
the current and voltage is zero(in phase), the load is purely real and only
active effect is dissipated. It is possible to find an explicit expression for R
as a function of supply and load voltages. However, here we will only give
the implicit expression for R;

−[M2ω2
ss

2 |vp|2

|vs|2
+ |Zp|2]R2 = |ZpZs −M2ω2

ss
2|2

+ 2R[|Zp|2Rs −M2ω2
ss

2Rp] (4.16)
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We will here give some examples of the transfer functions for the constant
voltage load. We consider two cases. The first one is given in table 4.2. The
other example is without loss, Rp = Rs = 0 (Qp = Qs = ∞). Figure 4.5

Primary Secondary
Parameters:
Cp = 42.2 nF Cs = 42.2 nF
Lp = 32.7 µH Ls = 32.7 µH
Qp = 150 Qs = 150
k = 0.35
Calculated:
R =9.743 Ω
fp = 135 kHz fs = 135 kHz

Table 4.2: Parameters used for case with loss

shows the load resistance for the lossless case and for Qp = Qs = 150.
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Figure 4.5: CV - Load Resistance for k = 0.35, Qp = Qs = 150 and lossless

Figure 4.6 shows the power transferred to the load for the lossless case
and for Qp = Qs = 150.
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Figure 4.6: CV- Power transferred for k = 0.35, Qp = Qs = 150 and lossless

Figure 4.7 shows the sending impedance for the lossless case and for
Qp = Qs = 150.
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Figure 4.7: Sending impedance for CV for k = 0.35, Qp = Qs = 150 and
lossless

Lossless case For the lossless case, Rs = Rp = 0, the equation for the load
resistance simplifies a lot and it is shown in Appendix B that:

R = 1
ωsCs|s|

|η2(1− k2)s4 + (η2 + 1)s2 + 1)|
[η4( k2

x2
µ
− 1)s4 − 2η2s2 − 1] 1

2
(4.17)

Since R has to be real, the expression under the root sign has to be nonneg-
ative. With s = jω this requires that

[
1− η2(1− k

xµ
)ω2

][
(1 + k

xµ
)η2ω2 − 1

]
> 0 (4.18)

and
ωp√

1 + k
xµ

< ω <
ωp√

1− k
xµ

(4.19)

, which is the range for which operation is possible in the constant voltage
case

In figure 4.8 we see a comparison between a SS-IPT system with optimally
matched CR load at resonant frequency, and a system with CV load.
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4.3 Summary
The mathematical expressions for the various transfer functions for an SS-
compensated IPT system from the basic circuit equations have been derived.
These expressions have been implemented in Matlab, and we are now able to
calculate transfer functions and power output for any SS compensated IPT
system with CR or CV load. The transfer functions for the lossless case has
been verified by comparing our results with the result from (18). Without ac-
cess to the expression for the transfer functions for the lossy case, the results
have been verified by comparing plots of transfer functions with correspond-
ing ones in the aforementioned paper. One example is 4.8 and figure 5 in (18).
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Results

In this chapter we will present the design of the IPT system used in the
simulation, as well as the parametric values of the individual components.
The position controller will be explained, and we will show how they all come
together in the simulink model. For the simulations themselves, we will be
looking at two different cases of misalignment; axial and lateral. Within each
case we will look at the system response for a few different types of input,
to get a better understanding of the behaviour of the system given different
operating conditions.

For the two cases of axial and lateral misalignment, an attempt to explain
the relationship between the offset distance and the coupling coefficient will
be provided. I would however like to preface that the relationship between
the two are quite complex, and beyond the scope of a master thesis.

Before the model and results for the two cases are given, we revisit the
control theory which is applicable to add some context:

Regulation and Tracking Suppose the reference signal to a state feed-
back system is zero and the response of the system is caused by some nonzero
initial conditions. The problem is to find a state feedback gain so that the
responses in the system will die out at a desired rate. This problem is refer-
enced to as the regulator problem. This setting can be seen in many aspects
of industry: maintaining liquid levels in a tank, and maintaining a steady
course through use of auto pilot. A related problem is that of tracking. Sup-
pose that the reference signal is constant. Then the problem is to design a
system so that the output converges to the reference signal when time move

41
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towards infinity. This is called asymptotic tracking of a step reference input.
If the reference signal is not constant, the tracking problem of the signal
is called servomechanism problem(9). It is a problem of this nature that is
examined in this section; how to track the ship as it is subjected to waves to
ensure the most effective power transfer.

Position Control How to position a flexible mechanical armature to fol-
low a ship being subjected to waves, while ensuring the most effective power
transfer is the problem being explored. One must determine the voltage in-
put to the motor controlling the movement and speed of the armature, such
that it tracks the motion of a ships hull. The combination of the distance
sensor, regulator and the armature has to be exceedingly faster than the
wave dynamics, as a minor change in the k-factor results in a significant loss
of effectiveness 2.10. A fast position control regulator can be obtain through
pole placement manipulation; a procedure to place the closed-loop poles of
the plant in predetermined locations in the s-plane.

5.1 IPT model
The IPT is designed such that it delivers Prated to the load, at a fixed fre-
quency ω0, and a high quality factor. Using the model, it will be shown how
an offset from the nominal distance affects the coupling coefficient, and as
a consequence the output power through the relationship given in equation
2.10. The loss in output power is compensated by increasing the primary
current to maintain rated power delivered to the load. The drawback is a
that an increase in the primary current also will of lower the overall efficiency
of the circuit. Even so, the decision here is to focus on keeping the coupling
variations as low as possible, as it allows for the use of a lower rated con-
verter, as described by equation 2.11.

Table 5.1 shows the values used in the setup. The theoretical efficiency
is calculated from equation 2.9. Coil material and shape have not been con-
sidered, and we are therefore assuming no magnetic losses. rp and rs are the
radius of the primary and secondary coil, respectively. Dnom is the nominal
axial distance used in all the simulations.
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Table 5.1: IPT Metrics

PRated 10 kW
ω0 15 kHz
Lp 300 mH
Ls 300 mH
Cp 14.82 nF
Cs 14.82 nF
knom 0.59
QS 150
Dnom 0.10 m
rp 0.20 m
rs 0.20 m
η 98.32 %

5.1.1 Position Control
As mentioned earlier, in order to have a fast, precise and stable position
controller, so that the plant output follows the reference as close as possible,
a detailed physical description of the system, or mathematical equations for
modeling the system, are needed. In this thesis we are not looking at a specific
system and will model the control as a servomechanism. This controller uses
error sensing negative feedback to reduce or eliminate the error. The input to
the controller is the positional difference between the secondary coil current
position, and it’s nominal position. Below is a schematic of the controller:

β

r y
H(s)ol

Figure 5.1: Negative Feedback Controller

The controller then act as a self-controlling process, and can be thought
of as the physical system responsible for moving the primary coil and the
regulator, represented as one. The controller is designed to have a phase
displacement, to represent the imagined inertia of the physical system.
H(s)ol is the open loop transfer function, and β is the feedback factor, that
governs the amount fed back from the output signal. Together they form
the closed loop transfer function that describes the controller H(s)cl. The
following values where used:

H(s)cl = 83.33
s2 + 22.83s+ 83.33 (5.1)
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With its gain and frequency characteristics given in C.1.

5.2 System model
The complete system model is shown in figure 5.2 with the source feeding the
regulator the measured offset(m) from the set point value. The regulator then
attempts bring the offset back to zero again. The result is then sent to a block
that generates a coupling coefficient based on nominal operating distance
and the remaining position error supplied by the regulator. The formula is
different for the two cases of axial and lateral offset. The coupling coefficient
is then fed to the IPT system which calculates power output according to
equation 2.10.

Figure 5.2: System Model

5.3 Use cases
We will look at three different scenarios

• Step Response - A sudden change in position

• Wave Dynamics - A slowly varying position

• Drift - A shift to a new position

The impulse response shows how the controller handles a sudden shift in
distance. The desired response of the controller is to reach the desired value,
in this case zero offset between the primary and secondary coil, as fast as
possible, with little to no oscillations before settling, to minimize the amount
of movement.
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The wave response subjects the system to a continuous sine wave, where
the amplitude is the distance we will drift across our optimal point. In the
case of axial displacement this signal is bounded due to the potential colli-
sion between primary and secondary coils at higher amplitudes. There are
no bounds on the movement in the opposite direction.

Noise is added to the wave signal, in order to see what effects it will have on
the system and make the scenario more realistic, as the input in most real
applications rarely consists of a pure sine wave with no harmonics.

Unlike the instantaneous movement of the impulse response, the drift re-
sponse is a ramp function that mimics a movement from the nominal oper-
ating point to a new point a set distance away, with a given parameter for the
speed of the change in position. The set distance used equates to a change
in coupling coefficient of 275% to use as a basis for comparison against the
results of (18).

5.4 Axial Displacement
Introduction

Axial displacement is a relative movement of the secondary coil along the
common central axis of the two coils, either towards (negative movement) or
away (positive movement) from the primary coil. In this case it is considered
to be the only degree of freedom the system will exhibit during the simula-
tion.The concept is illustrated in fig 5.3 below.

Nominal Operating

Point

Axial Displacement

Primary

Secondary

Coil

Coil

Figure 5.3: Axial - Displacement
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Coupling Coefficient

The coupling coefficient for the Axial case is modeled after equation A.35
with the use of equation 2.5 to get the coupling coefficient.

Parameters

Below is a list of key parameters used in the simulations.

• Step Response - Step value of 0.1 at 10 seconds

• Wave Dynamics - Amplitude of 0.05 at a frequency of 0.125 Hz

• Ramp Response - Slope of 0.0042 equals a variance in k of 275%

5.4.1 Simulations
Step Response
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Figure 5.4: Step Response

In figure 5.4 we see a step of 0.1 metres away from the secondary coil. This
is a doubling in value from the nominal operating point. As can be see the
system is quick to catch up, taking about 2 seconds before nominal operating
value is regained.
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Figure 5.5: Step Response - Coupling Coefficient

As suspected we see from figure 5.5 that the coupling coefficient plummets,
experiencing a 227 % change. We see the massive impact this has on the
output power in figure 5.6 where a doubling from that of the nominal oper-
ating distance, reduces the output power to one fifth of the rated value.
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Figure 5.6: Step Response - Output Power

Slow Moving Waves

From figure 5.7 it can be seen that we are lagging a little behind the refer-
ence value, as was wanted. The delay is caused due to the error passed on
through the system is also a sine wave with an amplitude of about 0.01 m.
This means we have a variation of 20% (11cm - 9cm) around the nominal set
point(10 cm). We see how this affects the coupling coefficient in figure 5.8.
The change in coupling is about 18% from kmin to kmax, which is in stark
contrast to the case of no position control, where the change is over 250%.
We also see that the effects of the noise is beginning to become noticeable.
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Figure 5.7: Wave Dynamics
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Figure 5.8: Wave Dynamics - Coupling Coefficient

Now the noise is quite prevalent in 5.9. Also take note of the variation in
power delivered to the load is about 50 %; because we do not stray too far
from the nominal operating point, the impact on the output power is not
that severe.
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Figure 5.9: Wave Dynamics - Output Power
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Drift
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Figure 5.10: Ramp Response

In figure 5.10 we see the secondary coil is slowly drifting away from the
primary coil, though as seen the regulator keeps the primary coil in tow.
The movement of a little over 12 cm equates to a 275% change in coupling
coefficient as seen in figure 5.11.
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Figure 5.11: Ramp Response - Coupling Coefficient

Note the slight difference from the reference value in 5.11, is due to the
feedback controller having a small error, as its gain is not a perfect 1. This
small error is then up scaled trough out the process and end up as a 2% error
in the output power, seen in figure 5.12.
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Figure 5.12: Ramp Response - Output Power

5.5 Lateral Displacement
Introduction

Lateral displacement is the movement of the secondary coil parallel to the
primary coil in x or y direction, with z direction being the axial movement.
In this case we only consider movement in the x direction for the simulations.
The movement is equal to that of y direction, as the coils are thought of as
perfectly circular. Movement is illustrated in fig5.3 below

Nominal Operating

Point

Lateral Displacement

Primary

Secondary

Coil

Coil

Figure 5.13: Lateral - Displacement

Coupling Coefficient

The coupling coefficient for the Lateral case is modeled after equation A.51
with the use of equation 2.5 to get the coupling coefficient.

Parameters

Below is a list of key parameters used in the simulations.
• Step Response - Step value of 0.4 at 10 seconds

• Wave Dynamics - Amplitude of 0.4 at a frequency of 0.125 Hz

• Ramp Response - Slope of 0.007 equals a variance in k of 275%
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5.5.1 Simulations
Step Response
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Figure 5.14: Step Response

From figure 5.14 we see the regulator follows the reference at a reasonable
rate, which was to be expected as the only thing that has changed from
the axial case is the step value, from 0.1 axial displacement to 0.4 lateral
displacement. This distinction is not something the controller is concerned
with, as it only task is to drive the perceived offset to zero.

There is, however, a noticeable difference when we look at figure 5.15, where
the coupling coefficient drops below zero. Remember the coupling coefficient
is defined as k ∈ [0, 1]; the reason it turns negative here is because the mutual
inductance becomes negative, and the way the coupling coefficient is calcu-
lated in the model, it does not correct for such an occurrence. The radius
of both coils are as mentioned earlier 20 cm, and a displacement of 40 cm
will have the primary and secondary coils side by side seen from the lateral
plane. Despite the nominal axial distance separating them is still 10 cm, the
mutual inductance goes negative because opposing magnetic field supersedes
the original magnetic field.
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Figure 5.15: Step Response - Coupling Coefficient

As to be expected there is no power transferred for an instance as can be
seen in figure 5.16.
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Figure 5.16: Step Response - Out Power

Slow Moving Waves
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Figure 5.17: Wave Dynamics

Again we see the regulator lagging a little behind 5.17, which is the same
as for the axial case. There are however prominent differences when looking
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at the coupling coefficient in figure 5.18, where we can see the unregulated
case really suffers from spending such a long time in the area where the
mutual inductance plummets. This is not the case with the regulated case,
where the coupling coefficient varies by approximately 20 % , which is about
the same as for the axial case. Notice however that the axial case also had
20% movement variation, while the lateral case has 42.5% variation, with a
variation amplitude of 8.5 cm.
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Figure 5.18: Wave Dynamics - Coupling Coefficient

In figure 5.19 we can see we have a 43% variation in output power, and that
the variation is not around the rated output power of 10000 kW, but have
dropped to 8500 kW.
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Figure 5.19: Wave Dynamics - Out Power
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Drift Response
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Figure 5.20: Simulation: Drift Response
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Figure 5.21: Simulation: Drift Response - Coupling Coefficient
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Figure 5.22: Simulation: Drift Response - Output Power

We can see that the figures depicting the lateral drift 5.20, 5.1, 5.22 are pretty
much the same as for the axial case, as the system is able to keep up with
the change in position.



Chapter 6

Discussion

The objective of this thesis has been to investigate the use of position con-
trol in inductive power transfer and how it compares to the state-of-the-art
methods for inductive power transfer control. It has been attempted to meet
the objective through the work as documented in this report:

• Basic principles for the design and control of IPT systems for high
power applications (Chapter 2)

• Magnetic field for a thin circular coil and mutual inductance between
two thin circular coils (Chapter 3)

• Transfer functions for SS compensated IPT systems for CR and CV
load (Chapter 4)

• Demonstrate position control for lateral and transversal displacement
of the receiving coil relative to the transmitter (Chapter 5)

In this chapter we will go through the results and discuss the validity of the
work done.

Magnetic field and Mutual Inductance
The most important relationship required for position control in IPT is how
the coupling coefficient or mutual inductance varies with position. We have
modelled the magnetic field from a thin circular wire for this purpose, and
this choice is a compromise between computational simplicity and relevance.
The magnetic field from a circular loop can be expressed in closed form as
a weighted sum of elliptic integrals and has been known for years Simpson
et al. (24). We have calculated and implemented, in Matlab, the magnetic
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field for two reasons. One is that the magnetic field gives and indication of
the possible variations in the mutual inductance. The other reason is that
it can be used to verify the calculation of the magnetic flux and thus the
mutual inductance, as will be explained shortly.

The mutual inductance between two circular coils is much more complicated
to calculate than the magnetic field, and only the case with coaxial loops is
known in closed form. One result from this thesis is that we have developed
an approximate expressions that is valid for small distances between the two
coils. A model has been developed for two special cases: for relative coaxial
movement along the axis of symmetry and relative movement of the receiver
in a plane parallel to the transmitter plane. In the model presented here, the
two coils don’t need to be equal size. Since the mutual inductance is sort of
the average magnetic field on a surface, we recreate the magnetic field from
the mutual inductance by considering a very small receiver.

What are the limitations of the calculations done? Here are a few:

Thin wire approximation - One very common assumption to make, which
have been adopted here, is to neglect the size (cross section) of the wire when
calculating the magnetic field from wires . This assumption breaks down close
to the wire, and therefore the results obtained are not valid (very) close to
the wire.

Simple and decoupled movements only - The axial and lateral move-
ments are evaluated independently of one another. For the lateral displace-
ment case only displacement in one direction is considered, though the two
possible lateral displacements directions are equal, and a combination of the
two can modeled as a sum of the individual movements. The combination
case of a lateral and axial displacement at the same time has not been con-
sidered. Though it can be intuitively understood from figure 3.6 and A.12
that a lateral displacement will have more dire consequences when the pri-
mary and secondary coils are close to one another. Nevertheless the system
only considers that the mechanical system only needs to move in one direc-
tion. This might also be a beneficial design choice, as developing a movable
mechanical system with one degree of freedom is considerably easier than
one with three or six. As such one could regulate only the degree of freedom
that is the most susceptible to change in position during charging conditions.

Angular Displacement has not been considered Time did not per-
mit this thesis to include considerations of movements other than coaxial
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and transversal movements parallel to the transmitter plane. One possible
mode is that the receiver oscillates slowly around an axis parallel to the
transmitter plane. The coupling coefficient is rather resistant to changes in
angular alignment, and it is likely that a relatively good estimate of the effect
is obtained by considering the effective area of the receiver. It is likely, that
the angular displacement has to be quite severe in order to have big impact
on the output power. Having a position control system for this operation
would require considerably more engineering, than for the other two cases of
misalignment.

Simple magnetic arrangements - We have seen how sensitive the mu-
tual inductance is to changes in distance close to the transmitter trough 3.6
and A.12. As explained earlier, it is important to remember that this is
for just one coil and only one turn. The mutual inductance can be made
less directionally dependent if the magnetic configuration of the system is
improved, by the use of advanced high quality coils and advanced magnetic
design.(10)

What are the consequences of these limitations? In the far field, where
the detailed geometry of the sender is less important, there are few obvious
consequences. In the near field the consequences are thought to be significant
and many, but the only way to know is to measure the mutual inductance
for a realistic magnetic arrangement.

Transfer functions
The mathematical expressions for the various transfer functions for an SS-
compensated IPT system from the basic circuit equations have been derived.
These expressions have been implemented in Matlab, and we are now able
to calculate transfer functions and power output for any SS compensated
IPT system with CR or CV load. The transfer functions for the lossless
case has been verified by comparing our results with the result from (18).
Without access to the expression for the transfer functions for the lossy case,
the results have been verified by comparing plots of transfer functions with
corresponding ones in the aforementioned paper. One example is 4.8 and
figure 5 in (18).



CHAPTER 6. DISCUSSION 58

Position control
A very basic negative-feedback controller has been implemented. The need
for advanced control may arise in practical implementations, but has to be
tailor made to the specific applications. A more advanced controller requires
knowledge of the actuating component responsible for the movement, as their
inertia and speed are essential. Simulations have been presented of the sys-
tem response for three typical deviations that are experienced in other control
applications:

Sudden change in position - The step function corresponds to a sudden
shift in position. We saw it has a large impact on the coupling coefficient, as
expected.

Slow moving wave - A sine wave is used as a crude simulation of a sce-
nario where the primary coil is able to change it’s position to some control
input. The secondary coil is affected by some environmental effect, and has
it’s position altered as a result. One example is small waves impacting a boat
with the receiver on board. The receiver moves back and forth because of
the waves, creating misalignment between the two coils. This movement is
represented as a sine signal with some gaussian white noise added to it. This
is of course a crude simplification of wave dynamics,thou for the scope of this
thesis, it is sufficient. The noise has been added to show how measurement
noise has a cascading effect on the system. The coupling coefficient is very
sensitive to movement, in particular in the near field. Since the power deliv-
ered to the load depends on the square of the the coupling the noise will be
further amplified.

Gradual change in position - The ramp function is used as a base case
to compare against the results of Guidi and Suul (18), who looked at 275 %
change in coupling coefficient over a short time span.

Practical use of position control for IPT
Inductive power transfer applications ranges from battery charging of small
moving objects (i.e. drones and mobile robots) to battery charging of cars
and ferries. It goes without saying that the requirements with regards to
cost, payload, position measurements, actuators etc are hugely different in
the two cases. What are the issues that determines the viability of position
controlled IPT systems compared to conventional IPT systems?
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Position measurements - It is obvious from the earlier discussions that
position measurements are vital for an IPT position control system. If we
assume that we have control of the transmitter position, we still need in the
more general case to obtain 6 degrees of freedom (DOF) for the receiver ei-
ther by direct measurements or by receiving the position from the receiver.
This may not always be that easy to obtain, and there may be very differ-
ent measurement precision’s for the different DOFs. This situation may be
alleviated by the fact that in some cases not all DOFs are needed, and that
the major variation in position is in one or two directions only. Analysis and
decoupling of the possible movement of the receiver will thus be an impor-
tant design activity. Some DOFs may have a larger impact on efficiency than
other, at it may be possible to eliminate the need for control of some DOFs
by carefully designing the shape of the transmitter and receiver.

Actuators - One rather obvious disadvantage with position control is that
it includes moving mechanical parts, which are more prone to wear and tear.
If it is required to move large masses around, and large accelerations are
necessary, the needed equipment will be quite bulky and expensive. More-
over, large actuators able to move large masses also requires additional safety
measures. If relative motion in only one direction is required, things may dif-
ferent.

Cost - Without a specific application, no attempts have been made to com-
pare cost between a traditional IPT system and a position controlled system.
One design criteria for traditional system is trying to avoid bulky and ex-
pensive converters. However, this argument may be used against position
control since it is reasonable to assume that the cost of the actuators will be
rather high for high power applications.

Comparison - What to choose?
It may be possible to attain a higher efficiency using position control, than
that of the approach in (18) because the quality factor can be increased
further, the operational frequency kept constant and the bandwidth reduced.
However, a necessary requirement is that we are able to control the position
of the receiver. As has been discussed, this may or may not be possible, and
only a detailed analysis of the specific application can decide between the two
approaches. This approach is also susceptible to component degradation.
My personal opinion is that for most high power applications, the state-
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of-the art solution described is better by far. If one has access to position
measurements, it is probably better to use these measurements for predicting
movements and use the resulting predictions to further improve the current
and frequency control.



Chapter 7

Conclusion

The ability to optimize the efficiency of an IPT system, by maintaining the
most influential variable, the coupling coefficient at a constant optimum, has
been investigated. With operations in the nearfield region the mutual induc-
tance is highly volatile, both for axial and lateral movement. Maintaining a
constant reference position in this region imposes demanding requirements
on both the controlling unit and the mechanical apparatus responsible for
the physical movement. The farfield operation, however, is more forgiving.
Regardless, complete system analysis has to be done for each specific im-
plementation, as the inertia of the system and the input dynamics must be
known. The reference input has to be followed as closely as possible in order
to maintain high efficiency. The added cost of implementing and maintaining
such a system has also to be considered. As such position control can be a
valid solution in certain cases where the correct conditions are present. My
personal opinion is that for most high power applications, the state-of-the
art solution described by Guidi and Sul is better by far for most high power
applications. Tight position control may still have its niche applications.

Future Work
As has been discussed throughout this work, the use of position control has
to be decided on a case-by-case basis. Any future work need to consider a
specific application in order to get reliable information regarding the most
important parameters: position measurements, actuators and life-cycle costs.
Another line of future work is to continue the work of modelling the mutual
inductance for general relative movement and try to find approximative so-
lutions that can be used for simpler design of new systems.
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Appendix A

Magnetic field and Mutual
Inductance

There are two simple, interrelated, physic principles that forms the basis for
inductive power transfer. Firstly, when a charged particle is moving in space,
it produces a magnetic field. A current, which is a flow of charged particles,
will thus generate a magnetic field. Furthermore, a magnetic field exerts a
force on a moving charged particle and a magnetic field may thus generate
a voltage in an electric circuit. The basic principle behind inductive power
transfer is to use a primary electric circuit to generate a magnetic field which
in turn induces a voltage in a secondary electric circuit some distance away
from the primary circuit.

A.1 Formulas for calculating mutual induc-
tance

The magnetic flux and the mutual inductance may be calculated in various
ways, and the starting point for calculations varies a lot in the literature. We
will here give a summary of relevant formulas and approaches for calculating
the flux through a surface and the corresponding mutual inductance. We will
also, in some detail, show the results from the calculation of magnetic field
from a circular wire and the results from calculating the mutual inductance
between two wires. For further details the reader is referred to Jackson (20)
and Feynman (14).
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A.1.1 Calculating flux from the magnetic field
If ~B(~r, t) is known, calculating the magnetic flux requires calculating a double
integral. If the magnetic field is not known, the magnetic field from a source
current density ~j(~r0) in a volume V can be calculated from Biot and Savarts
law:

~B(~r) = µ0

4π

∫
V

~j(~r0)× (~r − ~r0)
|~r − ~r0|3

d3r0 (A.1)

A.1.2 Calculating flux from the vector potential
Instead of calculating the magnetic field directly, it is sometimes more con-
venient to first calculate the vector potential ~A(~r0) related to the magnetic
field through

~B(~r) = ∇× ~A(~r) (A.2)

and it can be shown that from Biot-Savarts law we get for the vector poten-
tial:

~A(~r) = µ0

4π

∫
V

~j(~r0)
|~r − ~r0|

d3r0 (A.3)

The magnetic flux through a surface Ω is:

Φ(t) =
∫
Ω

∇× ~A(~r, t) · ~dS (A.4)

Using Stoke’s theorem we can convert the surface integral in A.4 to a line
integral over the enclosing curve:

Φ(t) =
∮
Γ

~A(~r, t) · ~dl (A.5)

A.1.3 Thin wire approximation
We will in this thesis only consider wires where the shape and dimension
of the cross section is very small compared to the length of the wire. To
be more specific, we consider a wire with circular cross sectional radius δ
carrying a current I. ( The exact shape of the cross section is not important
in this context) It is reasonable to assume that if the radius is small enough,
the current density is constant over the cross section:

~j(~r0) = I

πδ2~e0 (A.6)
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, where ~e0 is a unit vector tangential to the wire. Using eq. A.6 in eq. A.3,
the integration over the cross section is now trivial and we are left with:

~A(~r) = µ0I

4π

∫
Γ

1
|~r − ~r0|

~dl0 (A.7)

, where ~dl0 is a line element tangential to the wire.

Mutual inductance with the thin wire approximation Using the
expression for ~A(~r, t) for a very thin wire, the magnetic flux becomes:

Φ(t) = µ0I

4π

∮
Γ2

∮
Γ1

~dl1 · ~dl2
|~r − ~r0|

(A.8)

Realizing that I is the only time varying variable in eq. A.8 we get

ε(t) = −µ0

4π
dI

dt

∮
Γ2

∮
Γ1

~dl1 · ~dl2
|~r − ~r0|

(A.9)

and finally

M = µ0

4π

∮
Γ2

∮
Γ1

~dl1 · ~dl2
|~r − ~r0|

(A.10)

, which is the Von Neumann formula for the mutual inductance between two
loops Γ1 and Γ2. For finding the mutual inductance between two circular
loops, we choose to first calculate the vector potential generated by the pri-
mary loop by using eq. A.7 and then calculate the flux through the second
loop by using eq. A.5. The added value of this approach is that when the
vector potential has been calculated, it is easy to calculate the magnetic field
through differentiation.

A.2 Magnetic field from circular current loop

A.2.1 Vector potential for a circular loop
We will calculate the vector potential for a conducting circular wire with
radius a, with center in origo carrying a current I as shown in figure A.1. In
eq. A.7, ~dl0 = adθ~eθ0 , and we get:

~A(~r) = µ0aI

4π

∫ 2π

0

1
|~r − ~r0|

dθ~eθ0 (A.11)
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Here
|~r − ~r0| =

√
(x− x0)2 + (y − y0)2 + z2

=
√
x2 + y2 + z2 + a2 − 2axcosθ0 − 2aysinθ0 (A.12)

~eθ0 = −sinθ0~i+ cosθ0~j (A.13)
, where~i and ~j are the unit vectors in the x- and y-direction, respectively.

Figure A.1: Schematic coordinate system for calculating vector potential for
a circular loop

It is evident that the vector potential and thus the magnetic field has to
be symmetric around the z-axis. We can therefore choose y=0 in (15), and
(14) takes the form:

~A(~r) = µ0aI

4π

∫ 2π

0

−sinθ0~i+ cosθ0~j√
x2 + z2 + a2 − 2axcosθ0

dθ0 (A.14)

Since sinθ0 is anti-symmetric about θ0 = 0, the integral along ~i is zero and
we are left with:

~A(~r) = µ0aI

4π
~j
∫ 2π

0

cosθ0√
x2 + z2 + a2 − 2axcosθ0

dθ0 (A.15)
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One final transformation is to convert (18) back from a point in the xz plane,
(x, 0, z) to a random point (ρ, θ, z). This is obtained by the transformation
y −→ ρ and ~j −→ ~eθ, which gives:

~A(~r) = µ0aI

4π ~eθ

∫ 2π

0

cosθ0√
ρ2 + z2 + a2 − 2aρcosθ0

dθ0 (A.16)

Using eq. (28) with c = ρ2 + z2 + a2 and d = 2aρ, we get:

~A(~r) = µ0aI

4π ~eθ
2
√

(ρ+ a)2 + z2

aρ
( ρ

2 + a2 + z2

(ρ+ a)2 + z2K(m)− E(m)) (A.17)

, where we have defined

m2 = 4ρa
(ρ+ a)2 + z2 (A.18)

A more convenient form of eq. (20) is:

~A(~r) = µ0I

4π 2
√
a

ρ

(2−m2)K(m)− 2E(m)
m

~eθ (A.19)

or
~A(~r) = µ0Ia

π
√

(ρ+ a)2 + z2

(2−m2)K(m)− 2E(m)
m2 ~eθ (A.20)



APPENDIX A. MAGNETIC FIELD AND MUTUAL INDUCTANCE 70

A.2.2 Magnetic Field from a circular loop
The magnetic field from a a circular loop carrying a current I may be cal-
culated from eq. A.2. The vector potential ~A(~r) given by eq. A.20, and in
cylindrical coordinates Aρ(~r) = Az(~r) = 0, and the magnetic field is

~B(~r) = −∂Aθ(ρ, z)
∂z

~eρ + 1
ρ

∂

∂ρ
(ρAθ(ρ, z))~ez (A.21)

or
Bρ(ρ, z) = −∂Aθ(ρ, z)

∂z
(A.22)

Bθ(ρ, z) = 0 (A.23)

Bz(ρ, z) = 1
ρ

∂

∂z
(ρAθ(ρ, z)) (A.24)

Calculating Bρ and Bz, using the expression for the derivative of elliptic
integrals given in eq. A.66-A.67 is quite straightforward but rather lengthy
and is omitted here. We will only give the results in cylindrical coordinates:

Bρ(ρ, z) = Cz

2α2βρ
[α

2 + β2

2 E(m)− α2K(m)] (A.25)

Bz(ρ, z) = C

2α2β
[α2K(m) + (a2 − ρ2 − z2)E(m)] (A.26)

, where
C = µ0I

π
(A.27)

α2 = (a− ρ)2 + z2 (A.28)
β2 = (a+ ρ)2 + z2 (A.29)

m2 = 4aρ
(a+ ρ)2 + z2 = 1− α2

β2 (A.30)

In (24) the magnetic field from a circular loop for both cylindrical, rect-
angular and spherical coordinates. In addition they have calculated explicit
formulas for the spatial derivatives of the magnetic field, which may be handy
if linearization is needed.
The axial magnetic field (in the z-direction) for a circular loop as a function
of distance from the symmetry axis is shown in Figure A.6 for distances not
too far from the loop. It is seen that close to the plane of the loop the axial
field changes rather abruptly close to the wire. It is seen that the magnetic
field switches direction from the positive z-direction to the negative. The
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Figure A.2: Axial magnetic field as a function of distance from the symmetry
axis for 4 distances along the axis: z = 0.1a, 0.2a, 0.4a and 0.8a

distance from the axis where the change of direction happens is ρ = a at the
wire plane, and increases the further away from the axis one moves. If we
consider the magnetic flux through another coaxial circular shaped wire loop
in a plane parallel to the xy-plane, it will be positive. However, if we move
this coil further and further away from the axis in the near field the flux will
at some distance become negative.
The axial field (in the z-direction) further away from the loop plane is shown
in Figure A.3. It is seen that the magnetic field changes more smoothly with
distance from the axis, but it still becomes negative some distance from the
axis.
The radial magnetic field is shown in Figures A.4 and A.5 for the same dis-
tances as for the axial field. For distances close to the loop, the radial field is
sharply peaked aroundρ = a and above. For later use, from A.25 the on-axis
magnetic field is:

Bz(0, z) = µ0Ia
2

2(a2 + z2) 3
2

(A.31)
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Figure A.3: Axial magnetic field as a function of distance from the symmetry
axis for 4 distances along the axis: z = a, 2a, 4a and 6a
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Figure A.4: Radial magnetic field as a function of distance from the symmetry
axis for 4 distances along the axis: z = 0.1a, 0.2a, 0.4a and 0.8a
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A.3 Mutual Inductance between circular loops

Figure A.6: Coil arrangement for coaxial loops

A.3.1 Coaxial loops
We consider the mutual inductance between two concentric circular loops.
The first loop, the transmitter, has radius a and is located in the xy plane,
centered at origin. The second loop, the receiver, with a radius b is located in
a plane parallel to and a distance z away from the xy plane. We are interested
in the mutual inductance between the two loops caused by a current I in the
first loop. The vector potential from the transmitter is given by eq. A.20.
At the receiver, ρ = b, and the vector potential is:

~A(~r) = µ0Ia

π
√

(a+ b)2 + z2

(2−m2)K(m)− 2E(m)
m2 ~eθ (A.32)

with
m2 = 4ab

(a+ b)2 + z2 (A.33)



APPENDIX A. MAGNETIC FIELD AND MUTUAL INDUCTANCE 75

In eq. A.5 ~dl = bdθ~eθ, and the integration is trivial. The flux is

Φ(t) = 2µ0Iab√
(a+ b)2 + z2

(2−m2)K(m)− 2E(m)
m2 (A.34)

, and the mutual inductance for two coaxial circular loops is

M = 2µ0ab√
(a+ b)2 + z2

(2−m2)K(m)− 2E(m)
m2 (A.35)

Now we define:
Γ(m) = (2−m2)K(m)− 2E(m)

m2 (A.36)

By introducing the power series for K(m) and E(m) in eq. A.36, we ob-
tain the following two first and second order approximations for the mutual
inductance:

M1 = πµ0(ab)2

2[(a+ b)2 + z2] 3
2

(A.37)

M2 = πµ0(ab)2

2[(a+ b)2 + z2] 3
2

[
1 + 3ab

(a+ b)2 + z2

]
(A.38)

The first approximation is obtained by retaining the first non-vanishing term
in the series expansions. If we divide with πb2, set b = 0 and multiply with
I, we end up with the magnetic field on axis given by A.26. (The magnetic
flux through a surface divided by the surface area is equal to the average
magnetic field over the surface.)

In figure A.7 the mutual inductance as a function of separation between
two equal-sized circular coils is shown. In addition, the two approximative
expressions from eq. A.37 and A.38 are included. It is seen that in the
nearfield neither of the two expressions are close to the exact solution. This
is also shown in figure A.8 where the relative error for the two approximate
expressions are shown.
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Figure A.7: Mutual inductance between two coaxial, equal sized coils as a
function of separation between them. In addition to the exact expression for
the mutual inductance, the first (non-vanishing) and second order approxi-
mations are included.
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Figure A.8: Relative error by using the first and the second order approxi-
mation for the mutual inductance between two coaxial, equal sized coils as a
function of separation
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We are now going to find another approximate expression for the mutual
inductance that is valid for smaller separation. We start with eq. A.36 with

m2 = 1− α2

β2 (A.39)

α2 = (a− b)2 + z2 (A.40)

β2 = (a+ b)2 + z2 (A.41)

m′ =
√

1−m2 = α

β
(A.42)

We will reformulate the expression for Γ(m) using eq. A.75 and A.76 with
the definitions above. This is quite straightforward, but lengthy and only
the result is shown here:

Γ(m) = 2β
β − α

[
K
(β − α
β + α

)
− E

(β − α
β + α

]
(A.43)

and the mutual inductance is:

M = 4µ0ab

β + α

K
(
β−α
β+α

)
− E

(
β−α
β+α

)
β−α
β+α

(A.44)

If we now expand the elliptic integrals we get:

M1 = 4πµ0(ab)2

(β + α)3 (A.45)

M2 = µ0πab(β − α)
(β + α)2

(
1 + 6 a2b2

(α + β)4

)
(A.46)

Comparing eq. A.37 and A.46 shows that the effect of the transformation is
to replace β with an average of β and α. The two approximations are shown
in figure A.9 and A.10.It is senn that the improvement is significant and even
the first order approximation is valid for separation of one radius and above.
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Figure A.9: Mutual inductance between two coaxial, equal sized coils as
a function of separation. The first (non-vanishing) and second order new
approximations are included.
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Figure A.10: Relative error by using the new first and the second order
approximation for the mutual inductance between two coaxial, equal sized
coils as a function of separation
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A.3.2 Lateral displaced loops

Figure A.11: Coil with lateral displacement. The receiving coil is displaced
a distance ∆ form the axis at a distance Z from the transmitting coil. To
the right is a projection of the geometry to the xy plane.

Again we consider two circular coils, the transmitter with radius a and
center in origo, and the receiver with radius b in a plane parallel to the
xy-plane. The receiver is an axial distance z from the transmitter and is
displaced laterally a distance ∆. The configuration is shown in A.11. From
the figure we have the following relations:

x′ = b cos(φ) (A.47)

y′ = b sin(φ) (A.48)

ρ =
√
x′2 + (y′ + b)2 =

√
b2 + ∆2 + 2b∆ sin(φ) (A.49)

tan θ = y′ + ∆
x′

= b sinφ+ ∆
b cosφ (A.50)

and

~eθ · ~eφ = [− sin θ, cos θ] · [− sinφ, cosφ] = cos(θ − φ) (A.51)
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In eq. A.5 ~dl = bdθ~eφ, and the mutual inductance may after some manipu-
lation be expressed as:

M = 2µ0ab

π

∫ π

0
dφ
b+ ∆ cosφ

ρβ
Γ(m) (A.52)

, where we have used the fact that because of symmetry we only need to
integrate from 0 to π. Here we have defined (similar to the axial case):

α2 = (a− ρ)2 + z2) (A.53)

β2 = (a+ ρ)2 + z2) (A.54)

Γ(m) = (2−m2)K(m)− 2E(m)
m2 (A.55)

m2 = 1− α2

β2 (A.56)

It has not so far been possible to find an exact analytic expression for M from
eq. A.52 and we have had to integrate it numerically. We have calculated the
mutual inductance as a function of lateral displacement for several distances
from the transmitter. The results are shown in

0 1 2 3 4 5

-0.5

0

0.5

1

1.5

2

2.5

M

z = 0.1

z = 0.2

z = 0.4

z = 0.6

Figure A.12: Mutual inductance between two coaxial, equal sized coils as a
function of lateral separation for axial distances z = 0.1a, 0.2a, 0.4a, 0.6a
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A.4 Complete Elliptic Integrals - Definitions
and useful formulas

Complete elliptic integrals are extensively used for calculating magnetic fields
from circular loops. A number of the various representations and transfor-
mations of elliptic integrals used in this thesis is listed here for convenience.
For more details see (4). The complete elliptic integral of first kind is defined
as

K(m) =
∫ π

2

0

dx√
1−m2sin2x

=
∫ π

2

0

dx√
1−m2cos2x

(A.57)

and the complete elliptic integral of second kind (Gradstheyn 8.111-3, 8.112-
2) is

E(m) =
∫ π

2

0

√
1−m2sin2xdx =

∫ π
2

0

√
1−m2cos2xdx (A.58)

The two functions are plotted in figure A.14. It is seen that K(m) is strictly
increasing function over m, while E(m) is strictly decreasing. E(m) is finite
for 0 ≤ m ≤ 1, while K(m) is singular for m=1 (a logaritmic singularity).
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Figure A.14: Complete Elliptic Integrals of First and Second Order

Since ∫ 2π

0
f(sin2x)dx = 2

∫ π

0
f(sin2x)dx = 4

∫ π
2

0
f(sin2x)dx (A.59)
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for any regular function f(x), it follows that it doesn’t matter which quadrant
the integration i (20) is taken over, and for instance

K(m) = 1
4

∫ 2π

0

dx√
1−m2sin2x

(A.60)

and so on.
Two other useful integral related to complete elliptic integrals are:∫ π

2

0

dx√
1 +m2sin2x

=
∫ π

2

0

dx√
1 +m2 −m2cos2x

= 1√
1 +m2)

K( m√
1 +m2

)

(A.61)
and ∫ π

2

0
dx
√

1 +m2sin2x =
√

1 +m2)E( m√
1 +m2

) (A.62)

Finally, combining these integrals we get∫ 2π

0

dx√
a+ bcosx

=
∫ 2π

0

dx√
a+ b− 2bsin2 x

2

= 2
∫ π

0

dy√
a+ b− 2bsin2y

= 2√
a+ b

∫ π

0

dy√
1− 2b

a+bsin
2y

= 4√
a+ |b|

K(

√√√√ 2|b|
a+ |b|) (A.63)

and
∫ 2π

0

√
a+ bcosxdx = 2

√
a+ b

∫ π

0

√
1− 2b

a+ b
sin2ydy

= 4
√
a+ |b|E(

√√√√ 2|b|
a+ |b|) (A.64)

We have only proved (26) and (27) for b ≥ 0. However it is easy to verify
the two formulas for b < 0.
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The last integral we need is:
∫ 2π

0

cosx√
c− dcosx

dx =
∫ 2π

0

−1
d
(c− dcosx) + c

d√
c− dcosx

dx

= −1
d

∫ 2π

0

√
c− dcosxdx+ c

d

∫ 2π

0

1√
c− dcosx

dx

= 4c
d
√
c+ d

K(
√

2d
c+ d

)− 4
√
c+ d

d
E(
√

2d
c+ d

)−

(A.65)

To calculate the magnetic field from the vector potential we need to differ-
entiate the compete elliptic integrals. From Gradshteyn 8.123:

dK(m)
m

= E(m)
m(1−m2) −

K(m)
m

(A.66)

dE(m)
m

= E(m)−K(m)
m

(A.67)

For m < 1 it can be shown from eq.(33) and eq. (34) that the series repre-
sentation is valid:

K(m) = π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2

m2n (A.68)

E(m) = π

2

∞∑
n=0

1
1− 2n

[
(2n)!

22n(n!)2

]2

m2n (A.69)

The first few terms in eq. A.68 and A.69 is:

K(m) = π

2

[
1 + 1

4m
2 + 9

64m
4 +O(m6)

]
(A.70)

E(m) = π

2

[
1− 1

4m
2 − 3

64m
4 +O(m6)

]
(A.71)

In figure A.15, we have plotted the relative error by using a 1, 2 or 3 term
approximation instead of the exact expression for K(m) and E(m) (keeping
only the first constant term is not considered as an expansion here). It is seen
from the figure that for m < 0.45 the relative error when retaining only the
leading non-trivial term is less than 5. However, for larger m, retaining only
one term is less useful.Moreover, for linear combinations of the two elliptic
integrals the error may be considerably larger and has to be checked.
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Figure A.15: Relative error for 2 to 4 term approximation of K(m) and
E(m), Kn is the n-term approximation to K(m)

From Bateman we have the two following transformations that will be
useful

K

[
1− k′
1 + k′

]
= 1 + k′

2 K(k) (A.72)

E

[
1− k′
1 + k′

]
= E(k) + k′K(k)

1 + k′
(A.73)

,where
k′ =

√
1− k2 (A.74)

Rewriting equation A.72 and combining eq. A.72 and A.73;

K(k) = 2
1 + k′

K

[
1− k′
1 + k′

]
(A.75)

E(k) = (1 + k′)E
[

1− k′
1 + k′

]
− 2k′

1 + k′
K

[
1− k′
1 + k′

]
(A.76)



Appendix B

Transfer functions for SS
compensated IPT systems

We will in this chapter derive the frequency characteristics for an SS com-
pensated inductive power transfer (IPT) system.The discussion given here is
based on Guidi (17) and Guidi and Suul (18), who has derived the transfer
function for the loss-less case, and discusses the lossy case but didn’t provide
the transfer functions for it.

All IPT systems operating in resonant mode requires tuned circuitry in
both receiver and sending circuits. SS compensation means that both sending
and receiving circuits has series compensation, and this is the case that will
be discussed here. For the other three combination of series and paralell
compensation, the reader is referred to Wang et al. (29).

In this appendix, we first derive the circuit equations and the transfer
functions. Then we derive the frequency response for two cases:

• Resistive load

• Constant voltage load

B.1 Circuit equations
In this appendix, we have chosen to use p and s as subscripts for the primary
(sending) and secondary (pickup) circuit, respectively. This is the convention
that is most common in literature. It should be noted however, that in in
some of the papers cited, p and s is used as subscript for pickup and sending
circuits, respectively, which may sometimes be a bit confusing. In deriving
the frequency characteristics we will use Laplace transform, and use s = jω
to convert the result to frequency. Figure B.1 shows a simplified topology

86
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Figure B.1: Circuit topology for an IPT circuit

for an IPT circuit.

Figure B.2: Circuit topology for series compensated primary and secondary
circuit

Figure B.2 shows an SS-IPT compensated circuit, where M is the mutual
inductance between the two circuits. The voltage equation for the primary
circuit is

vp − Zpip + sMis = 0 (B.1)

The primary circuit impedance may be expressed as

Zp = 1
sCp
{ s

2

ω2
p

+ 2ζp
s

ωp
+ 1} (B.2)

Here the standard symbols are used

Resonance frequency ωp = 1√
LpCp

Damping factor ζp = ωpRpCp
2 (B.3)

Q factor Qp = 1
ζp
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The voltage equations for the secondary circuit are

sMip − Zsis − vs = 0 (B.4)

where the secondary circuit impedance is

Zs = 1
sCs
{ s

2

ω2
s

+ 2ζs
s

ωs
+ 1} (B.5)

, with

Resonance frequency ωs = 1√
LsCs

Damping factor ζs = ωsRsCs
2 (B.6)

Q factor Qs = 1
ζs

The last equation needed is

vs = Ris (B.7)

where R is the load resistance.
It is convenient to rewrite the circuit equations in terms of a normalized
frequency:

Zp = 1
s
ωs
ωsCp

{(ωs
ωp

)2( s
ωs

)2 + 2ζp(
ωs
ωp

)( s
ωs

) + 1}

Zs = 1
s
ωs
ωsCs

{( s
ωs

)2 + 2ζs(
s

ωs
) + 1}

vp − Zpip +Mω2( s
ωs

)is = 0

Mωs(
s

ωs
)ip − Zsis − vs = 0

From now on we will let s
ω2
→ s whenever it is evident from the context that

we operate with normalized frequencies. The final set of circuit equations
are then:

Zp = 1
sωsCp

{η2s2 + 2ζpηs+ 1} (B.8)

Zs = 1
sωsCs

{s2 + 2ζss+ 1} (B.9)

vp − Zpip +Mωssis = 0 (B.10)
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Mωssip − Zsis − vs = 0 (B.11)

vs = 2ζ
ωsCs

is (B.12)

, where
ζ = RωsCs

2 (B.13)

η = ωs
ωp

(B.14)

If one prefers the frequency domain, the conversion is easily made by intro-
ducing s = jw into eq. B.6-B.10.

B.1.1 Transfer functions
For analyzing inductive power transfer we write down some of the transfer
functions that might be useful. By using eq. B.14 to eliminate vp from eq.
B.11 we get the transfer function from primary current to secondary
current:

Gi,ss = is
ip

= Mωss

Zs + 2ζ
ωsCs

(B.15)

By using the last identity in B.15 to eliminate ip from B.10 we get the pri-
mary impedance

Zpt = vp
ip

= Zp −
M2ω2

ss
2

Zs + 2ζ
ωsCs

(B.16)

which is the impedance seen from the primary circuit. This may be expressed
as

Zpt = Zp + Zr (B.17)

, where the reflected impedance is:

Zr = − M2ω2
ss

2

Zs + 2ζ
ωsCs

(B.18)

The last transfer function we need is the transfer function from primary
voltage to secondary voltage:

Gv,ss = vs
vp

= Ris
Zptip

= R

Zpt
Gi,ss (B.19)
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The complex power transferred to the load is

Sl = vsi
∗
s = vsv

∗
s

R

=
Gv,ssG

∗
v,ss

R
|vp|2 (B.20)

The complex power transferred to the secondary circuit is

Sp = vri
∗
p = Zripi

∗
p

= Zr
ZptZ∗pt

|vp|2 (B.21)

The power transferred to the secondary circuit is thus

Pp = Re(Zr)ipips∗

= Re(Zr)
|vp|2

|Zpt|2
(B.22)

B.2 Resistive Load

B.2.1 Transfer functions
The current-to-current transfer function for the case of purely resistive load
is given by eq. B.15:

Gi,ss = is
ip

= Mω2
sCss

2

s2 + 2(ζs + ζ)s+ 1 (B.23)

The reflected impedance follows from eq. B.18:

Zr = − M2ω2
ss

2

Zs + 2ζ
ωsCs

= − M2ω3
sCss

3

s2 + 2(ζs + ζ)s+ 1 (B.24)



APPENDIX B. TRANSFER FUNCTIONS FOR SS COMPENSATED IPT SYSTEMS91

The expression for the sending impedance, eq. B.16, is a bit more complicated
than the two previous expressions:

Zpt = Zp −
M2ω2

ss
2

Zs + 2ζ
ωsCs

=
Zp(Zs + 2ζ

ωsCs
)−M2ω2

ss
2

Zs + 2ζ
ωsCs

= [η2s2 + 2ζpηs+ 1][s2 + 2(ζs + ζ)s+ 1]− η2k2s4

sωsCp[s2 + 2(ζs + ζ)s+ 1]
(B.25)

, where we have used that

M2ω4
sCpCs = ω4

sk
2LsLpCpCs = ω4

sk
2 1
ω2
s

1
ω2
p

= η2k2 (B.26)

By expanding the nominator in eq.B.25 and introducing

ζT = ζs + ζ (B.27)

we finally get

Zpt = η2(1− k2)s4 + 2η[ζp + ηζT ]s3 + [η2 + 1 + 4ζpζT ]s2 + 2[ηζp + ζT ]s+ 1
sωsCp[s2 + 2ζT s+ 1]

(B.28)

B.2.2 Lossless case
We now consider the lossless case, ζp = ζs = 0, with equal primary and
secondary circuit resonance frequencies, η = 1. In this case, the sending
impedance is:

Zpt = (1− k2)s4 + 2ζs3 + 2s2 + 2ζs+ 1
sωsCp[s2 + 2ζs+ 1]

= (s2 + 1)[(s2 + 1)2 − k2s4 − 4ζ2s2] + 2ζk2s5

sωsCp[(s2 + 1)2 − 4ζ2s2] (B.29)

Converting to frequency (s = jw):

Zpt = 2ζk2ω5 − j(1− ω2)[(1− ω2)2 − k2ω4 + 4ζ2ω2]
ωωsCp[(1− ω2)2 + 4ζ2ω2] (B.30)
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From this result it is clear that the reactive part of the sending impedance
is zero for ω = 1, which is wanted. However, there may potentially be four
more zeros for the reactive part of the sending impedance. These possible
zeros is the solution of the equation:

(1− ω2)2 − k2ω4 + 4ζ2ω2 = 0 (B.31)

and expanded
(1− k2)ω4 − 2(1− 2ζ2)ω2 + 1 = 0 (B.32)

This may be written as:

(1− k2)(ω4 − 21− 2ζ2

1− k2 ω
2 + (1− 2ζ2)2

(1− k2)2 )− (1− 2ζ2)2

1− k2 + 1 = 0

(1− k2)(ω2 − 1− 2ζ2

1− k2 )2 − (1− 2ζ2)2

(1− k2) + 1 = 0(B.33)

This equation has real solutions only if

1− 1− 2ζ2

1− k2 < 0 (B.34)

or

4ζ4 − 4ζ2 + k2 ≥ 0
k ≥ 2ζ

√
1− ζ2 (B.35)

For an ideally matched load we have:

R = ωsk0Ls (B.36)

where k0 is the coupling coefficient for which the system is optimized. Since

ζ = 1
2ωsRCs = 1

2ωsCsωsk0Ls = 1
2k0 (B.37)

we get from eq. B.35:

k ≥ k0

√
1− k2

0
4 (B.38)

, which is the requirement for imaginary part of the sending impedance having
three zeroes.
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B.3 Constant Voltage Load

B.3.1 Transfer functions
We will now consider a system in which the load voltage is constant. The
load can not be modelled as an equivalent constant resistance, and although
the functional relationship between output current and output voltage can
be modelled as

vs = Ris (B.39)
R will now depend both on frequency and also on the load voltage. The
phase of the secondary current must be equal to the phase of the secondary
voltage, which means that R will be real. We see that if the angle between the
current and voltage is zero(in phase), the load is purely real and only active
effect is dissipated. We are now seeking an expression for R as a function of
supply and load voltages. By eliminating ip in eq. (B.10), we get:

vp = Zpip −Mωssis

= (ZpZs −M2ω2
ss

2)is + Zpvs
Mωss

= [(ZpZs −M2ω2
ss

2) +RZp]vs
MRωss

(B.40)

,which gives
MωsRsvp = [(ZpZs −M2ω2

ss
2) +RZp]vs (B.41)

By multiplying eq. B.42 with its complex conjugated equation (s→ −s), we
get:

−M2ω2
sR

2s2|vp|2 = [ZpZs −M2ω2
ss

2 +RZp][Z∗pZ∗s −M2ω2
ss

2 +RZ∗p ]|vs|2

and expanding the right-hand side

−M2ω2
sR

2s2 |vp|2

|vs|2
= (ZpZs −M2ω2

ss
2)(Z∗pZ∗s −M2ω2

ss
2) + ZpZ

∗
pR

2

+ [Zp(Z∗pZ∗s −M2ω2
ss

2) + Z∗p(ZpZs −M2ω2
ss

2)]R
= |ZpZs −M2ω2

s |2 + |Zp|2R2

+ [|Zp|2(Zs + Z∗s )−M2ω2
ss

2(Zp + Z∗p)]R (B.42)

Rearranging

−[M2ω2
ss

2 |vp|2

|vs|2
+ |Zp|2]R2 = |ZpZs −M2ω2

ss
2|2

+ 2R[|Zp|2Re(Zs)−M2ω2
ss

2Re(Zp)](B.43)
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we finally get

−[M2ω2
ss

2 |vp|2

|vs|2
+ |Zp|2]R2 = |ZpZs −M2ω2

ss
2|2

+ 2R[|Zp|2Rs −M2ω2
ss

2Rp] (B.44)

B.3.2 Lossless case
For the lossless case, Rs = Rp = 0, the last term in eq. (B.44) vanishes, and
the equation reduces to:

−[M2ω2
ss

2 |vp|2

|vs|2
+ |Zp|2]R2 = |ZpZs −M2ω2

ss
2|2

and
R = |ZpZs −M2ω2

ss
2|

[−M2ω2
ss

2 |vp|2
|vs|2 − |Zp|

2] 1
2

(B.45)

With
Zp = 1

ωsCps
(η2s2 + 1)

Zs = 1
ωsCss

(s2 + 1)

, we get

R =
| 1
ω2
sCpCss

2 (η2s2 + 1)(s2 + 1)−M2ω4
sCpCss

4|

[−M2ω2
ss

2 |vp|2
|vs|2 + 1

ω2
sC

2
ps

2 (η2s2 + 1)2] 1
2

=
| 1
ω2
sCpCss

2 (η2s2 + 1)(s2 + 1)−M2ω4
sCpCss

4|
1

ωsCs|s| [M
2ω4

sc
2
ps

4 |vp|2
|vs|2 − (η2s2 + 1)2] 1

2

= 1
ωsCs|s|

|(η2s2 + 1)(s2 + 1)−M2ω4
sCpCss

4|
[M2ω4

sc
2
ps

4 |vp|2
|vs|2 − (η2s2 + 1)2] 1

2
(B.46)

Introducing
x2
µ = Lp

Ls

|vs|2

|vp|2
(B.47)

, and replacing M with k, we get

R = 1
ωsCs|s|

|(η2s2 + 1)(s2 + 1)− η2k2s4|
[η4 k2

x2
µ
s4 − (η2s2 + 1)2] 1

2

= 1
ωsCs|s|

|η2(1− k2)s4 + (η2 + 1)s2 + 1)|
[η4( k2

x2
µ
− 1)s4 − 2η2s2 − 1] 1

2
(B.48)
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Since R has to be real, the expression under the root sign has to be nonneg-
ative. With s = jω this requires that

η4(k
2

x2
µ

− 1)ω4 + 2η2ω2 − 1 > 0 =⇒

η4 k
2

x2
µ

ω4 − η4ω4 + 2η2ω2 − 1 > 0 =⇒

η4 k
2

x2
µ

ω4 − (η2ω2 − 1)2 > 0 =⇒

(η2 k

xµ
ω2 − η2ω2 + 1)(η2 k

xµ
ω2 + η2ω2 − 1) > 0 =⇒

[
1− η2(1− k

xµ
)ω2

][
(1 + k

xµ
)η2ω2 − 1

]
> 0 (B.49)

and finally:
1

η
√

1 + k
xµ

< ω <
1

η
√

1− k
xµ

(B.50)

It is important to remember that the last equation is for the relative fre-
quency. Using ω → ω

ωs
and η = ωs

ωp
, we get:

ωp√
1 + k

xµ

< ω <
ωp√

1− k
xµ

(B.51)

, which is the range for which operation is possible in the constant voltage
case
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Figure C.1: Bode Plot of H(S)
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