@NTNU

Norwegian University of
Science and Technology

Method Tailoring in Agile Software
Development Projects

An Exploratory Case Study

Lars Krakevik

Master of Science in Engineering and ICT
Submission date: February 2018
Supervisor: Nils Olsson, MTP
Co-supervisor: Torgeir Dingsgyr, IDI

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering

Preface

This thesis concludes my five year master’s program in Engineering and ICT at the
Norwegian University of Science and Technology (NTNU). The master thesis was
conducted as an exploratory case study in the course Project and Quality Management
(TPK4920) over a period of one semester, and have been a very enlightening and
rewarding process.

Throughout the study program I have taken a broad selection of courses. In several
of these, agile software development have been a prominent theme that caught my
interest. I further pursued this in a specialization project prior to this thesis, which also
introduced me to the concept of method tailoring. I found this to be a very intriguing
and highly relevant topic in the context of agile software development projects that
have yet to be adequately investigated in research. This motivated to further explore
this in my master thesis.

First and foremost, I would like to give special thanks to my two supervisors for
creating this opportunity to pursue my interest for agile software development. A
big thank you to my main supervisor Nils Olsson for helpful guidance, feedback,
and continued support throughout. Thank you also to my co-supervisor Torgeir
Dingsg@yr for the many helpful guidance sessions, and for sharing your expertise on
agile software development and related topics.

I would also like to thank the companies and its representatives who gave me the
opportunity to study a very interesting project and use it as a case in my thesis.

Lastly, a thank you to my family for all the support and helpful advice all the way
from start to finish.

Trondheim, February 14, 2018

Lo lbeoct

Lars Krakevik

Summary

Information technology is becoming increasingly important for organizations and
individuals in today’s society. Software is a key part of this and can provide competitive
edge in a market characterized by constant change. This makes it challenging for
those who develop and deliver these products and services. To succeed from idea,
via development, testing and execution, an agile project method that enable quick
handling of change is essential.

Agile methods have typically recommended delivery of change and new features in
increments every two to four weeks. In recent times, a trend is observed towards
agile approaches that enable delivery on a continuous basis for additional benefits and
competitiveness. However, this requires companies to effectively tailor agile methods
and apply mature technology with aim towards this in their projects and deliveries.

Method tailoring is a very relevant issue in conjunction to this, which involves tailoring
of project methods to the actual needs and goals of a project context. This thesis was
conducted as a case study which main purpose was to explore a software development
project’s approach to method tailoring, and how an agile method was tailored in such
a manner that deliveries of software changes and new features could be done several
times a day. The main findings showed that ongoing tailoring was a necessary activity
for continuous improvement of the method in the project. A prominent characteristic
of the tailoring approach was that the project suppliers did not confine to a method
framework, but were flexible and selected agile practices from multiple methods
based on needs and experiences. This entailed a combination of agile practices into
a minimal method by omitting unnecessary practices and formalities. The tailored
method was based on a flow-based development model rather than an iterative model,
and consisted of several agile practices that together enabled the suppliers to deliver
continuously, promptly and with the right priorities.

Keywords: Agile methods and practices, method tailoring, continuous software
delivery, project management

Sammendrag

Informasjonsteknologi blir stadig viktigere for organisasjoner og enkeltindivider i
dagens samfunn. Programvare er en sentral del av dette, og kan gi konkurransefortrinn
i et marked som er preget av konstant endring. Dette gjgr det ekstra krevende for
de som utvikler og leverer disse produktene og tjenestene. Skal man lykkes fra idé,
via utvikling, test og produksjonsetting er en smidig prosjektmetodikk som raskt
handterer endringer vesentlig.

Smidige metoder har typisk foreslatt leveranser av endring og ny funksjonalitet i
inkrementer hver andre til hver fjerde uke. I nyere tid ser man en trend mot smidige
tilneerminger som muliggjgr leveranse pa en kontinuerlig basis for ytterligere fordeler
og konkurranseevne. Dette krever imidlertid at selskaper pa en effektiv mate tilpasser
smidige metoder og tar i bruk moden teknologi med sikte mot dette i sine prosjekter
og leveranser.

Metodetilpasning er et serdeles relevant tema i denne forbindelse, som tar for seg
tilpasning av prosjektmetoder til de faktiske behov og mal i en prosjektkontekst.
Denne avhandlingen ble gjennomfgrt som et case studie hvor formalet var a utforske
et programvareutviklingsprosjekts tilneerming til metodetilpasning, samt hvordan
en smidig metode ble tilpasset slik at leveranser av endringer og ny funksjonalitet
kunne gjgres flere ganger om dagen. Hovedfunnene viste at fortlgpende tilpasninger
var sentralt for kontinuerlig forbedring av metoden i prosjektet. En fremtredende
karakteristikk for tilnermingen var at man ikke begrenset seg til et metoderammeverk,
men var fleksible og valgte smidige praksiser fra flere metoder etter behov og erfaringer.
Dette innebar en kombinasjon av smidige praksiser til en minimal metode ved a utelate
ungdvendige praksiser og formaliteter. Den tilpassede metoden tok utgangspunkt i
en flytbasert utviklingsmodell fremfor en iterativ modell, og besto av flere smidige
praksiser som til sammen gjorde det mulig for leverandgrene a levere kontinuerlig,
raskt og med de rette prioriteringer.

Ngkkelord: Smidige metoder og praksiser, metodetilpasning, kontinuerlige leveranser,
prosjektledelse

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Description 4

1.2.1 Clarifications and Definitions 5
1.3 Scope e e e e e e 6
1.4 Target Audience e 7
1.5 Thesis Structure i e e e 8

2 Background Literature and Theory 11

2.1 Agile Software Development 11
2.1.1 Traditional versus Agile Software Development 11
2.1.2 Agile Principles and Agility 14
2.1.3 Towards Continuous Software Delivery in Agile Software Devel-

OPIMENt vttt et e e e e e e e e e e e 17

2.2 Agile Methods and Practices 18
2.2.1 Agile Methods Overview 18
2.2.2 Tterative Methods 19
2.2.3 Flow-based Methods 24
2.2.4 AgilePractices. 29

2.3 Method Tailoring it 31
2.3.1 Introduction to Method Tailoring Theory 31
2.3.2 Method Tailoring Approaches 34

2.4 Summaryo e e e e e e e e e e e e 39

3 Method 41
3.1 Literature Review e 41

3.1.1 Literature Inclusion and Exclusion Strategy 42

3.2 CaseStudyResearch 44

3.3 CaseSelection i e 46

3.4 Preparation for Data Collection 47

3.5 DataCollectiont 49
3.5.1 Semi-Structured Interviews 49

vii

viii

3.5.2 Observations and Document Analysis
3.6 Transcription of Recorded Interviews
3.7 Coding and Data Analysis
3.8 ReportingofResults
3.9 Confidentiality and Anonymization
3.10 Research validity, reliability and generalizability

4 Results
4.1 Overviewof theProject.
4.2 The Use and Tailoring of Agile Methods and Practices
4.2.1 Approach to Agile Method Tailoring
4.2.2 Agile Practices and Tailoring of Practices

5 Discussion
5.1 Problem Statement
5.1.1 Characteristics of the Agile Method Tailoring Approach
5.1.2 Combination of Agile Practices
5.2 Implications of theResearch
5.3 Research Limitations

6 Conclusion
6.1 Problem Statement e e e e e
6.2 Future Work e

Bibliography

A Appendices
A.1 Appendix A: Interview Guides Lo,
A.2 Appendix B: Agile Practices Survey
A.3 Appendix C: Confidentiality Agreement

57
57
61
62
67

83
83
83
88
94
97

99
99
103

105

List of Figures

2.1
2.2
2.3
2.4
2.5

2.6

2.7

2.8

3.1

4.1
4.2
4.3
4.4

4.5

The waterfall model (Royce, 1987)
Taxonomy of ISD agility (Conboy, 2009)
The Scrum development process framework (Scrum.org, 2017)
A typical Kanban board (Kniberg and Skarin, 2010)
A DevOps approach showing development and operations as a continuous
and integrated process (Atlassian, 2018)
Degree of adaptability of agile software development methods (Kniberg
and Skarin, 2010) e e e e
Contingency factors process for method selection (Campanelli and Par-
reiras, 2015) e
Method engineering process for method definition (From Campanelli and
Parreiras, 2015 based on Brinkkemper, 1996)

Node hierarchy used for coding the textualdata

Overall project organization
Cumulative flow diagram from the project
Sample configurable Kanban board layout from the project
The over time development towards more self-organizing and cross-

functional teams
Important functions of stand-up meetings in the project

List of Tables

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3

Traditional vs agile software development (excerpt from Nerur, Mahapa-

tra, etal., 2005) e e 15
Databases used for literaturesearch 42
Characteristics of the research methodology (Runeson and Host, 2008) . 45
Key figures related to interviews and resulting material 50
Overview of the roles of informants and the number of informants and

interviews foreachrole. 51
Overview of key stakeholders in the project 58
Overall role distribution in the project 60

Overview of identified agile practices from survey and additional practices
(Survey in Appendix A.2, based on Rodriguez, Markkula, etal. (2012)) . 69

Xi

Introduction

1.1 Background and Motivation

Information technology have become increasingly important for organizations and
individuals in society today. In association to this, software products and services
have come to play a key role, as is evidenced in the high investments in software
development projects in both the public and private sectors. However, the software
industry is known to be exposed to high amounts of change, which among other
factors have contributed to numerous challenges and also project failures (Highsmith
and Cockburn, 2001; Jorgensen, 2016). Some failures have been related to the project
methods used and their ineffectiveness in turbulent business environments. As a
result, this have led to development of project methods for software development
that are more capable of handling change and other known challenges. These are
known as agile methods, and have proved to be beneficial for managing software
development projects which often involve high risk and unstable requirements.

A collection of agile methods and practices have emerged that have become com-
monplace in practice. Examples of long-standing and widely used agile methods are
Extreme Programming (XP) and Scrum (Abrahamsson, Salo, etal., 2002; Rodriguez,
Markkula, etal., 2012; VersionOne, 2017). Founded on the principles of the agile
manifesto (Fowler and Highsmith, 2001), agile methods and their underlying prac-
tices embrace change through frequent delivery of working software, active customer
involvement, and team autonomy (Dyba and Dingsgyr, 2008; Lee and Xia, 2010).
Studies suggest that practitioners experience many advantages using agile approaches,
such as increased client benefits (Dyba and Dingsgyr, 2009; Jgrgensen, 2016). The
positive results have aroused great interest among many researchers and led to an
established field of research. Despite this, the area is still under constant development
and change, and new concepts and phenomena emerge that need to be explored. As
pointed out by some proponents, the area is characterized as very practitioner-driven
and research tend to lag behind as new themes emerge in practice. This leaves behind
a backlog of research issues, and a focus on empirical research have been requested
(Dingseyr, Nerur, etal., 2012; Dyb4 and Dingsayr, 2008).

2

The constant change in the area of software development is shown by a recent
trend observed in both practice and research. Organizations and projects that develop
software are steadily exposed to more demanding customers. Moreover, more business-
and safety critical systems require errors to be quickly fixed and resolved. This presses
forward a need to be able to create and handle change even faster than before in
order to stay competitive in industries and markets. These are among factors that now
motivate practitioners to adopt agile approaches that enable more rapid and frequent
delivery of software features all the way from development to execution. Fitzgerald
and Stol (2014) argue that this trend is manifest in developers’ increased use of certain
practices and techniques. Some good examples are DevOps, Continuous Integration
and Continuous Deployment which focus on removal of barriers and streamlining
of development processes for quicker end-to-end delivery. Dingsgyr and Lassenius
(2016) found that there have been a sharp increase in interest for DevOps and related
practices since 2012. Furthermore, agile methods such as Kanban (Kniberg and Skarin,
2010) is increasingly used as a complement or alternative to other agile methods in
this context (Fitzgerald and Stol, 2014). According to the annual State of Agile Report
by VersionOne, the use of Kanban techniques among respondents increased from 39%
to 50% from 2015 to 2016, while 71% of respondents had or planned to introduce
DevOps initiatives in their organizations (VersionOne, 2017). Overall, these figures
and recent research indicate a movement towards adoption of agile approaches that
enable even greater agility and other benefits in practice.

Dingsgyr and Lassenius (2016) describes the trend as a transition in agile software
development from what has been initial recommendations of monthly iterations with
Scrum, towards continuous delivery of software features. They argue that this idea
is in fact old, but that the possibilities have increased with maturing technology.
However, the state-of-the-art in agile software development is driven by the industry
and remains to be more researched (Dingsgyr and Lassenius, 2016). Based on this and
the above, one of the main motivations for this study is to investigate agile methods in
the context of this trend where changes and new features need to be created, handled
and delivered more rapidly and frequently than before.

Most agile methods such as Scrum and XP were originally designed with respect
to a time-based iterative model where software features are delivered, or at least
completed and shippable, every two to four weeks. The question is then whether
new methods are required or if the existing ones may be used and tailored with the
aim of continuous software delivery. This brings us to another stream of research
which is not directly related to recent trends, but is central to the background and
motivation of this study; namely research on method tailoring. When practitioners

Chapter 1 Introduction

adopt methods and report promising results, others often reuse these with the hope
that they will improve their own projects. However, there has been a long-standing
acknowledgement that project methods are not universally applicable in their original
format due to differences in context (Conboy and Fitzgerald, 2010). This is perhaps
particularly true for software development projects because of the high complexity
and changeability of software (Brooks, 1987). As a result, software development
methods should be tailored to the actual needs of the contexts in which they are to
be used to achieve optimum effect. This have come to represent a separate stream of
research which have focused on how software methods, including agile methods, may
be tailored (Campanelli and Parreiras, 2015). Much of this research focus on possible
approaches to method tailoring that may be used in practice. Conboy and Fitzgerald
(2010) illustrates one approach where an existing agile method is selected and tailored
to better suit a project’s needs. Another possible approach is to tailor a method through
a combination of practices from a selection of agile methods (Fitzgerald, Hartnett,
etal., 2006). Moreover, tailoring a method may not only make it a better initial fit,
but can directly contribute to increased agility by actively tailoring the method to

changes in the environment (Henderson-Sellers and Serour, 2005; Turk etal., 2002).

Method tailoring is arguably therefore very relevant in today’s challenging business
environment where change is more present, and where there is more pressure on
being agile in both organizations and projects.

Tailoring of agile methods is a research theme that have gradually gotten increased
attention, but the total amount of research is still relatively small (Campanelli and
Parreiras, 2015). Some of the existing research have focused on more traditional
agile contexts with emphasis on how specific methods such as Scrum and XP may be
tailored (e.g., Conboy and Fitzgerald, 2010; Fitzgerald, Hartnett, etal., 2006). Recent
publishing have also studied tailoring of agile methods for use in large-scale projects
(Rolland etal., 2016). This master thesis, however, will study method tailoring in the
context of the emerging trend towards continuous software delivery in the software
industry. Very little research was identified which study method tailoring in this
modern and relevant context.

One last notable motivator for the chosen research direction was the case which is
studied in this master thesis. I was lucky to come across a case that had adopted and
tailored an agile method where software was delivered on a daily (i.e. continuous)
basis. While agile method tailoring could have been studied in a more traditional
agile project, it was arguably more interesting and relevant to study this in a more
modern setting.

1.1 Background and Motivation

3

4

1.2 Problem Description

In the previous section (Section 1.1) I mentioned the request and need for more em-
pirical research on topics related to agile software development. Then, a background
and a motivation for research on agile method tailoring in the context of recent trends
was given. In this study, this context will be viewed as a trend towards continuous
software delivery. In order to clarify some of the terms and words used in the following
problem statement and research questions, clarifications are made in Section 1.2.1.
Some justifications for and explanations of the research questions are also provided
after each question.

Based on the background and motivation, the following problem statement was
chosen:

How can agile methods be tailored with aim towards continuous software
delivery in projects?

In order to illuminate and answer the problem statement, two research questions was
formed to be investigated in a real case:

RQ1: What characterizes an agile method tailoring approach in a modern
software development context?

An essential part of tailoring an agile method in practice is the approach used. Method
tailoring approaches have previously been a topic of research and review, and deals
with how practitioners may tailor software methods to a situation (Campanelli and
Parreiras, 2015). From my own literature review, it was evident that little research
have been conducted on method tailoring and possible approaches in modern settings
where software is delivered on a continuous basis. An approach is here not strictly
defined, but what I am looking to investigate is the prominent characteristics of
how agile method tailoring can be conducted in practice. Some existing tailoring
approaches previously suggested in literature will be provided in the theory chapter
(Section 2.3) and used to support the analysis and discuss findings.

RQ2: How were practices combined into an agile method with aim towards
continuous software delivery?

Chapter 1 Introduction

An additional contribution to answering the problem statement is an analysis of the
resulting tailored method in the studied case. In this regard, I will focus on the agile
practices that were prominent and which contributed to the ability to deliver software
on a continuous basis. Little empirical research was identified that investigate how
agile methods and practices can be combined (thus tailored) into an agile method in
contexts where software is developed and delivered continuously.

1.2.1 Clarifications and Definitions

Two clarifications will be made regarding some of the terms and words used in the
problem statement, research questions, and the thesis throughout. This should also
contribute to a clearer understanding of how I intend to answer the problem statement
and research questions.

Method tailoring

Existing literature have used several different terms interchangeably for the notion
of tailoring methods to different situations. Some examples are method tailoring,
method adaptation, method configuration, and method customization (Aydin etal.,
2004; Conboy and Fitzgerald, 2010; Fitzgerald, Hartnett, etal., 2006). It seems to
be that researchers have applied different terms for the same concept, with slight
variations. However, the term method tailoring is prominently used as an umbrella
term for the domain and its underlying concepts. Thereby, method tailoring is also
used as an umbrella term in this study. For the purpose of this study, a definition of a
method and method tailoring is provided. A method will be defined as:

“an approach to perform a systems development project, based on a specific
way of thinking, consisting of directions and rules, structured in a systematic
way in development activities with corresponding development products”
(Brinkkemper, 1996)

Furthermore, method tailoring will be defined as:

”a process or capability in which human agents through responsive changes in,
and dynamic interplays between, contexts, intentions, and method fragments
determine a systems development approach for a specific project situation”
(Aydin etal., 2004).

1.2 Problem Description

6

According to Aydin et al. (2004), method fragments can be a description of a software
development method, or any coherent part thereof. It can be principles, fundamental
concepts, products to be delivered, development activities, techniques, tools, etc.
Method fragments is a central concept in method tailoring theory, which will be
covered in Section (2.3.2).

Continuous software delivery

The second clarification is regarding the meaning and scope of the words "continuous
software delivery" in the problem statement and research question.

The focus of this study is to investigate tailoring of agile methods, but more specifically
in the context of the recent trend observed in practice. That is, the change in agile
approaches from what have been typical recommendations of iterative deliveries every
two to four weeks (frequently), towards delivery of software features up to multiple
times a day (continuously).

An increasing number of software development approaches and principles tend to
include the word "continuous" nowadays. Examples are Continuous Integration (CI),
Continuous Deployment, and even Continuous Delivery (CD) (Fitzgerald and Stol,
2014). These are fairly technical engineering practices, but play an important role in
improving the speed of software delivery in modern projects. However, it should be
noted that the problem statement and research question does not refer specifically to
any of these practices. In particular, the practice of Continuous Delivery (CD) should
not be confused with the words "continuous software delivery" used in this study. That
is not to say that none of these practices will be brought up, as they are important
agile practices in this context. That said, this study will mainly focus on agile methods
and tailoring from a management perspective, and not dive into many details on
technical engineering practices such as those above.

1.3 Scope

Some constraints exist in the scope of this study. First and foremost, the main
purpose have been to answer the problem statement by more specifically answering
the underlying research questions. When doing so, this mainly involves concepts
related to agile methods and method tailoring. In general, software engineering can be
regarded as a wide and multi-disciplinary field, with management being one important
aspect. This study will be done from a management perspective, and will not dive

Chapter 1 Introduction

into much detail on aspects such as technical development practices, techniques, or
technologies. Concepts related to areas such as organization and contracts have also
been raised in this study when relevant, but without going into particular detail. The
concepts that are most important for this study are introduced in the background
literature and theory in Chapter 2.

The problem statement and underlying research questions will be answered based on
the findings that were considered relevant from the analysis of collected data, and
the available theoretical basis provided in Chapter 2. Much data were collected about
the studied case and analyzed, but only the findings relevant within the scope of the
research have been included in the results in Chapter 4.

The purpose of this study was not to develop new theories, critically test existing
theories, nor attempt to make many bold generalizations beyond the studied case.
Instead, it aimed at exploring a modern development context to contribute to research
and practice with new and hopefully valuable, empirical insight. Towards the end of
the discussion chapter, an evaluation of the implications of this study towards practice
and research is done (Section 5.2).

1.4 Target Audience

This study is targeted at multiple audiences. First and foremost, it should be of great
interest to agile communities, which also includes the project management community.
This includes both researchers and practitioners who have an interest in agile software
development and method tailoring.

Researchers may have particular interest in this work if they seek a thorough de-
scription of a real world case or inspiration for future research directions on method
tailoring and agile methods and practices. Empirical research such as this can be of
high value, and only a limited amount is currently available on these topics.

Practitioners that are either novice or experienced in agile software development, but
who seek new information and inspiration for their software development projects
should also find this work relevant. It may be particularly relevant for project managers
whose role is important when it comes to facilitating the use and tailoring of project
methods, such as agile methods, in development projects.

1.4 Target Audience

7

8

It should be made clear that the reader is expected to have some understanding
of fundamental ideas in agile software development, agile methods, and project
management. In addition, the reader should possess some knowledge on related
concepts such as information technology.

1.5 Thesis Structure

Below is an overview of the remaining chapters of this thesis and what the reader can
expect to read about in each of the subsequent chapters.

Chapter 2 - Background Literature and Theory

Includes important aspects related to agile software development, an overview and
description of relevant agile methods and practices, and an introduction to method
tailoring and known tailoring approaches. The purpose is to provide the reader with
a good understanding of these concepts, and also serve as a theoretical basis for
discussion of results.

Chapter 3 - Method

Contains detailed descriptions, explanations, and justifications on how the study was
conducted. The whole process from conducting the literature review, data collection,
analysis and reporting is covered. The last two sections deals with how the research
complied to confidentiality agreements, and tactics that were used to improve research
validity.

Chapter 4 - Results

Presents the results from the analysis of the collected data. An overview of the studied
project is first presented to provide initial context. Then the results directly related to
method tailoring and the agile method and practices in the case are presented.

Chapter 5 - Discussion

Contains the discussion of the results towards each of the two research questions
and theory. The second last section discusses the implications of the research to
research and practice. The last section provides an assessment of the limitations of
the research.

Chapter 6 - Conclusion

Presents the conclusions of the study with regard to the problem statement and the

Chapter 1 Introduction

research questions. Each of the two research questions are answered based on what
has been learned throughout the study, with emphasis on the discussion. Lastly,
suggestions for future work are presented.

1.5 Thesis Structure

9

Background Literature and 2
Theory

The purpose of this chapter is twofold. For one, provide the reader with a relevant
background on key concepts of the study through a presentation of existing literature
and theory. Secondly, it will serve as a theoretical foundation for discussing the results
later in Chapter 5.

The chapter is comprised of four main sections. The first section introduces agile
software development and important aspects and issues. In the second section, agile
methods and practices are presented with focus on those that are most relevant for this
study. The third section is dedicated for introducing method tailoring and scientific
references related to this. Lastly, a short summary is done with the intention to recap
important concepts of the chapter and clarify how these fits in with the rest of the
research.

2.1 Agile Software Development

In this initial section an introduction to agile software development will be presented.
This includes a brief comparison to its predecessor, traditional software development,
and some benefits and challenges related to agile software development. After this,
agile principles and a definition of agility will be provided. Lastly, a brief background
on the emerging trend towards continuous software delivery is included.

2.1.1 Traditional versus Agile Software Development

Software development is generally conducted under what can be said to be two
paradigms: traditional software development and agile software development. Both
are used in practice today. However, agile software development arose as a response
to the challenges of traditional development, and is considered to be an improvement
in many contexts. The foundation for agile software development was laid in 2001
with what is known as the agile manifesto (Fowler and Highsmith, 2001). Prior to
this movement, the alternatives to software development were traditional approaches.

11

12

Several approaches to software development fall within this category, with the Wa-
terfall model being one much used example (Royce, 1987). Common to these are
that they are characterized as plan-driven and that they place much emphasis on
extensive documentation. The essential purpose of this is to avoid changes to occur,
thus reducing costs (Highsmith and Cockburn, 2001).

In the waterfall model, the requirement specification is formulated in detail in co-
operation with the client before development has begun. Then the product follows
a set of predefined and sequential phases in a manner that resembles a waterfall,
before a complete product is completed and delivered (Royce, 1987). This has been
criticized because the model does not involve the customer other than in the initial
stages of the development process (Petersen et al., 2009). As software development
projects become larger and more complex, it becomes difficult to define all require-
ments in advance. In addition, there is an increased risk that major changes must be
made in later stages, which can be costly and end with unsatisfactory results. There
are also many dependencies between the sequential phases, which means that the
development model provides little flexibility.

System Requirements —¢

Software Requirements —‘

Analysis —#

Program Design —'L

Coding *

Testing —'L

Operations

Figure 2.1.: The waterfall model (Royce, 1987)

Projects became more complex and demanding in the 1990s, and developers ex-
perimented with new approaches to software development. This eventually led to
the movement known as agile software development. Agile software development
improved on traditional approaches by recognizing that project requirements can

Chapter 2 Background Literature and Theory

not all be foreseen prior to development. In addition, agile software development
emphasizes delivery of high quality software through creativity and collaboration
among developers, and cross-functional and self-organizing teams that possess the
necessary skills and empowerment to manage and handle their own work (Highsmith
and Cockburn, 2001; Lee and Xia, 2010; Moe etal., 2009). Instead of planning for
changes that may occur, the goal is to handle changes as they arrive in a cost-effective
manner (Williams and Cockburn, 2003). Agile software development is primarily
based on a set of principles and values. Several agile methods have emerged as a
result of the agile software development paradigm. However, many of these are based
on previous methods and practices. The difference with agile methods, is that they
adhere to agile principles and values (Cohen etal., 2004). These are summarized in
the four core values in the agile manifesto (Fowler and Highsmith, 2001):

Individuals and interactions over processes and tools

Working software over comprehensive documentation

* Customer collaboration over contract negotiation

Responding to change over following a plan

While the items to the left are most valued, agile software development also value the
items to the right. Thus, agile software development does not abandon activities such
as planning and documentation, but keeps it to a minimum (Fowler and Highsmith,
2001).

Research indicate that agile software development have been met with much posi-
tivism. Practitioners are more satisfied, achieve better results, and deliver increased
client benefits using agile approaches (Dyba and Dingsgyr, 2009; Jgrgensen, 2016;
Rodriguez, Markkula, etal., 2012). Some reported benefits have appeared in easy
adoption, customer collaboration, work processes for handling defects, learning
among developers, thinking ahead of management, focusing on current work for
engineers, and software estimation (Dyba and Dingsgyr, 2009). Other prominent pos-
itive effects are improved team communication, enhanced ability to adapt to changes,
and increased productivity (Rodriguez, Markkula, etal., 2012). However, there are
also numerous issues and challenges that are being studied in relation to the area
(Dingsg@yr, Nerur, etal., 2012). A key element in agile software development is more
frequent delivery of working software and increased customer focus through frequent
involvement of customers and stakeholders. Adequate customer collaboration have
consequently been considered a key success factor in agile software development
(Hoda etal., 2011; Misra etal., 2009). Jgrgensen (2016) found that agile projects
where the customer is involved through frequent deliveries, is open to a flexible scope,

2.1 Agile Software Development

13

14

and avoid fixed-price contract types increases the likelihood of project success. Vinekar
etal. (2006) even argue that agile methods are dependent on an on-site customer to
identify and prioritize features, provide feedback, and guide change throughout the
course of development. With demands such as these, organizational culture and other
external factors can be a challenge. This can impact the deployment of agile methods
and practices in various ways, and causes challenges that requires organizations to
adapt to agile ways of working (Gandomani etal., 2013; Gregory etal., 2016; Nerur,
Mahapatra, etal., 2005). Agile software development also requires forms of manage-
ment and control other than what have been previously seen in traditional approaches.
Instead of a command-and-control control regime like in traditional approaches, agile
software development prefer leadership and collaboration (Nerur, Mahapatra, etal.,
2005). Other known barriers to agile adoption can also be found within categories
such as process, people and technology (Gandomani et al., 2013; Nerur, Mahapatra,
etal., 2005). Overall, this shows that agile software development are not a phenomena
without flaws despite the many benefits over traditional approaches.

A comparison of characteristics between traditional and agile software development is
summarized in Table 2.1.

2.1.2 Agile Principles and Agility

The agile manifesto further contain 12 principles. These have since served as a basis
for the many agile methods and practices that practitioners adopt. However, the
principles are not a formal definition of agility, but represent guidelines for developers
who want to practice agile development (Dingsgyr, Nerur, etal., 2012). The principles
are written as follows (Fowler and Highsmith, 2001):

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

Chapter 2 Background Literature and Theory

Traditional

Agile

Fundamental Systems are fully specifiable, | High-quality, adaptive soft-
Assumptions predictable, and can be built | ware can be developed by
through meticulous and ex- | small teams using the prin-
tensive planning. ciples of continuous design
improvement and testing
based on rapid feedback and
change.
Control Process centric People centric

Management Style

Command-and-control

Leadership-and-
collaboration

Role Assignment

Individual — favors special-
ization

Self-organizing teams — en-
courages role interchange-
ability

Communication

Formal

Informal

Customer’s Role

Important

Critical

Project cycle

Guided by tasks or activities

Guided by product features

Desired
Organizational
Form/Structure

Mechanistic (bureaucratic
with high formalization)

Organic (flexible and partic-
ipative encouraging cooper-
ative social action)

Table 2.1.: Traditional vs agile software development (excerpt from Nerur, Mahapatra, et al.,

2005)

10.
11.

12.

. The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

. Working software is the primary measure of progress.

. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.
Continuous attention to technical excellence and good design enhances agility.
Simplicity-the art of maximizing the amount of work not done-is essential.

The best architectures, requirements, and designs emerge from self-organizing
teams.

At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Many agile methods have emerged to include practices based on these principles

such as frequent software delivery, active customer participation, self-organizing and

2.1 Agile Software Development

15

cross-functional teams, and continuous improvement with retrospectives. Some of
these are further examined in Section 2.2.

Agility has been a key concept in other areas of business and management prior to
agile software development (Cockburn, 2002; Conboy, 2009; Nerur and Balijepally,
2007). There is still a debate in the research community about what agility in the
context of software development actually entails. As a result, several definitions have
been proposed (Dings@yr, Nerur, etal., 2012). Conboy (2009) proposed a definition
and a taxonomy of agility in context of information systems development (ISD).
Based on the related concepts flexibility and leanness from the fields management and
manufacturing respectively, he developed a definition for agility as (Conboy, 2009,
p. 336):

"the continual readiness of an ISD method to rapidly or inherently create
change, proactively or reactively embrace change, and learn from change
while contributing to perceived customer value (economy, quality, and sim-
plicity), through its collective components and relationships with its environ-
ment."

Based on the definition, he also developed a taxonomy for ISD agility, which was also
tested on two software development projects in practice. The taxonomy is presented
in Figure 2.2. In the taxonomy it is emphasized that agility, as defined, is achieved

1. To be agile, and ISD method component* must contribute to one or more of the
following:
a) creation of change

b) proaction in advance of change
c) reaction to change
d) learning from change

2. To be agile, an ISD method component must contribute to one or more of the following,
but must not detract from any:
a) perceived economy

b) perceived quality
c) perceived simplicity

3. To be agile, an ISD method component must be continually ready i.e. minimal time and
cost to prepare the component for use.

* An ISD method component refers to any distinct part of an ISD method.

Figure 2.2.: Taxonomy of ISD agility (Conboy, 2009)

through the collection of components in a software development method. Method

16 Chapter 2 Background Literature and Theory

component refers to the different parts that a method may consist of, such as practices.
To elaborate on the taxonomy, a method component must contribute to agility through
creation of, handling, or learning from change. It must also contribute to both
economic benefits, quality, and simplicity. For example, if extensive documentation
contributes to quality and simplicity, but is not perceived to have economic benefits
due to rapid obsolescence, the practice is not regarded as agile (Conboy, 2009). Finally,
it is stated that agility is achieved if a method component is practical and efficient
in use. Conboy, 2009, p. 341 exemplifies this: "Continual readiness of the method
component is also a prerequisite. For example, acceptance tests certainly contribute to
agility in some circumstances; but if it takes hours to prepare tests every time they run,
then their contribution to agility is unclear".

Conboy (2009) states that some methods and practices that appear as agile are not
necessarily so in any given project. This suggests that tailoring of methods is necessary
to maintain agility. This is also supported by Turk etal. (2002), who argue that the
degree of agility in a development process can be defined based on a project team’s
ability to dynamically adapt the process based on changes in the environment. They
imply that high levels of agility depend largely on adaptive methods and experienced
developers who know how to tailor the methods effectively. Similarly, Henderson-
Sellers and Serour (2005) argue that agility involves the ability to adjust and fine-tune
development methods as needed, as well as handle requirement changes. In other
words, researchers claim that agility in practice involve more than strictly following a
set of predefined agile methods, but requires active supervision and tailoring of these
to be agile.

2.1.3 Towards Continuous Software Delivery in Agile
Software Development

The meaning and practice of agile methods has been constantly changing. Baskerville
etal. (2011) found that the development of agile approaches seemingly followed a
repeating two-stage pattern between change in context and change in process. The
reason seemed to be that changes in market situations and circumstances affect how
agile approaches are practiced and evolved. This is interesting, because it brings us
to newer trends which shows that agile software development experiences a shift
in the meaning of "frequent delivery". For long "frequent delivery" have been used
in agile software development to refer to software delivery typically every couple
of weeks to once every month. This is evident in the agile manifesto (Fowler and
Highsmith, 2001), as well as long-standing agile methods such as Scrum (Schwaber,

2.1 Agile Software Development

17

18

2004) and Extreme Programming (XP) (Beck, 2004). For many years, this delivery
rate have evidently provided big improvements over traditional methods such as the
waterfall model (Royce, 1987). However, newer trends show a replacement of the
word "frequent" with the word "continuous" to refer to a change towards delivery
on a daily basis (i.e. continuously). This trend has been discussed by researchers
such as Fitzgerald and Stol (2014), who see this trend with a holistic perspective.
They also refer to a family of practices, that have become central in this shift towards
even more rapid delivery. Among these are the fairly technical engineering practices
Continuous Integration and Continuous Deployment, which are also important in the
emerging DevOps phenomenon (Section 2.2.3). They also mention Kanban (Section
2.2.3) as an agile method that have been increasingly used in conjunction with these
practices. These terms will all be described in greater detail later in this chapter.
Overall, this trend suggest that there is a change in context where there is a push
towards being able to deliver with a shorter time-to-market and more frequent than
before. Ultimately, this makes it possible for organizations to more quickly handle
change and stay more competitive, but also depend more on agile methods to provide
sufficient agility in project contexts.

2.2 Agile Methods and Practices

This section will first present an overview of agile methods and a general introduction
to what we know about these. After this, some of the most used agile methods and
underlying practices will be described in more detail with emphasis on the ones that
are most relevant to this study. These have been categorized under two overarching
classifications; iterative methods and flow-based methods respectively. Lastly, a section
is dedicated to present an overview of important agile practices for this study.

2.2.1 Agile Methods Overview

Since the origin of the agile manifesto, a variety of different agile methods have
emerged to guide development of high-quality software in an agile manner. Some
widely used agile methods are Scrum, Extreme Programming (XP), Agile Modeling,
Feature Driven Development (FDD), Kanban, Adaptive Software Development, Dy-
namic Systems Development Method (DSDM), and Test Driven Development (TDD)
(Rodriguez, Markkula, etal., 2012).

Chapter 2 Background Literature and Theory

Many agile methods are typically based on an incremental and iterative model for
software development. This means that software development is broken down into
increments where batches of software features are designed, developed, tested, and
sometimes delivered, in repeated cycles. Recommended iteration lengths vary from
one week to six weeks depending on the method (Abrahamsson, Salo, etal., 2002).
This can enable adequate stability and predictability in the development environment,
while at the same time support frequent releases to get feedback and adjust to change.
Among the above list of widely used methods most of them are based on an iterative
model, with Scrum and Extreme Programming (XP) being the two that are seemingly
most used in practice (Rodriguez, Markkula, et al., 2012; VersionOne, 2017).

Furthermore, methods have started to appear that are based on another model, namely
a flow-based development model. Unlike an iterative model, a flow-based model es-
tablishes design, development, testing, and delivery of independent software features
as a continuous process. In other words, software features are not batched together
as a larger increment to be completed within a given iteration length (Fitzgerald and
Stol, 2014). In practice, this can be understood as each individual feature being one
very small increment which has its own very short iteration. This can have advantages
over the iterative development model described above, such as more flexibility in
the development process (Birkeland, 2010). Among the above list of widely used
methods, Kanban is the only method that may be classified as flow-based. The concept
of "flow" will be further described in the section on Kanban (Section 2.2.3).

Overall, there are differences in all of the agile methods. Only a couple of methods,
such as Dynamic Systems Development Method (DSDM), cover all development phases
fully. Other methods only focus on some aspects of development. For example, Scrum
and Kanban mainly covers aspects related to project management, while Extreme
Programming (XP) focus more on fairly technical software development practices
(Abrahamsson, Salo, etal., 2002; Kniberg and Skarin, 2010). The fact that many
methods only cover certain aspects means that one method alone may not be able to
cover all of a projects needs. This is one of the main motivations for method tailoring,
which will be covered in Section 2.3.

2.2.2 lterative Methods

This section presents the two agile methods Scrum and Extreme programming (XP),
which are most relevant for this study. Common to these two are that they adopt an
iterative model to software development.

2.2 Agile Methods and Practices

19

20

Scrum

Scrum is a software development process framework for incrementally and iteratively
building software in complex environments for small teams (Rising and Janoff, 2000;
Schwaber, 2004; Sutherland, J. and Schwaber, K., 2016). The framework is comprised
of a set of roles, artifacts, events, and guidelines for software development. According
to research and surveys it is the most adopted agile method by practitioners today by
a seemingly large margin (Rodriguez, Markkula, etal., 2012; VersionOne, 2017).

Collectively, the roles in Scrum are all part of The Scrum Team. This include the
Product Owner, Scrum Master, and The Development Team. The artifacts are the
Product Backlog, Sprint Backlog, and the Increment. And the events are the Sprint,
Sprint Planning, Daily Stand-ups, Sprint Review, and Sprint Retrospective. The overall
process and how these components relate is illustrated in Figure 2.3.

Retrospective
T &
[T1

Sprint Sprint
Planning Review

Product Sprint Increment
Backlog Backlog

7 Scrum Tea™

Scrum Framework © Scrum.org

Figure 2.3.: The Scrum development process framework (Scrum.org, 2017)

The Scrum Process

In Scrum, increments of software is completed in iterations called Sprints. The goal
of a Sprint is to finish developing a predecided set of software features within a time
frame of two to four weeks. Product features are kept in the Product Backlog, which
contains all the known and remaining work to be done in a project. The features are
prioritized and managed by a Product Owner. Each Sprint, a collection of high-priority
features are selected from the Product Backlog by the Scrum Team to be implemented.
These are kept in a Sprint Backlog, which represents the work to be done in a given
Sprint. This is done in the Sprint Planning meeting (Schwaber, 2004; Sutherland, J.
and Schwaber, K., 2016).

Chapter 2 Background Literature and Theory

The software is developed by the Development Team which is self-organizing and cross-
functional. Self-organizing teams are empowered by the surrounding organization
to make their own decisions on how to complete the work within a Sprint. Cross-
functional teams consist of the necessary competencies to accomplish their work
without external support. The only arena for day-to-day coordination between team
members is the Daily Scrum, often called Daily Stand-up. Scrum emphasize that more
time should be spent on creating working software, and less time in meetings. Daily
Stand-up have a recommended duration of 15-minutes. As is implied, the event is
performed while standing. The idea is that this leads to discomfort in the long run,
thus minimizing the duration of the event. Each developer addresses the following
three questions during the Daily Stand-ups:

1. What did I do yesterday that helped the Development Team meet the sprint
goal?

2. What will I do today to help the Development Team meet the sprint goal?

3. Do I see any impediment that prevents me or the Development Team from
meeting the sprint goal?

In larger projects with multiple Scrum Teams, a Scrum of Scrums meetings may be
used for inter-team coordination in addition to Daily Stand-ups within each team
(Schwaber, 2004). One way to do this is to have selected representatives from each
team attend this meeting a couple of times a week, which have previously been found
to be effective for inter-team coordination in practice (Dingsgyr, Moe, etal., 2017).

When a Sprint period have reached its end, a Sprint Review is performed where the
team, customers and other key stakeholders are involved for a more comprehensive
demonstration and inspection of the work. This is an opportunity for collecting
feedback, which can be used to adjust the Product Backlog according to customer
needs. This can make Scrum suitable for situations where it is difficult to plan ahead,
since planning and scope adjustment can be done frequently throughout the project.

The Sprint Retrospective is the last event of a Sprint, which is a session where the
team inspects itself and reflects on possible improvements, both in the process and in
the backlog. Thus, frequent attention to improvement is a key part of Scrum.

In Scrum, the Scrum Master represents a dedicated role for facilitating the Scrum
Team throughout the development process. The responsibility is mainly aiding the

team members to practice Scrum correctly, and remove impediments in the process.

2.2 Agile Methods and Practices

21

22

Importantly, the Scrum Master is not a project manager, and should not control nor
manage the team’s work (Schwaber, 2004; Sutherland, J. and Schwaber, K., 2016).

Extreme Programming

Extreme Programming (XP) is an iterative agile method that focuses on best practices
for software development. It was first introduced in 1999 (Beck, 1999), and is
still one of the most widely used agile methods (Rodriguez, Markkula, etal., 2012;
VersionOne, 2017). While Scrum is more project management oriented and exists
as a process framework, XP is more concerned about the use of different practices
to facilitate frequent and cost-efficient delivery of working software. There are 12
different practices in XP. Although it has been revised before to include more practices
(Beck, 2004), this section will concentrate on the original 12 practices which are most
widely used (Conboy and Fitzgerald, 2010). In addition to being known for focusing
on concrete practices, XP is also described as a philosophy and set of principles. Beck
(2004) describe XP to include:

* A philosophy of software development based on the values of communication,
feedback, simplicity, courage, and respect.

* A body of practices proven useful in improving software development. The
practices complement each other, amplifying their effects. They are chosen as
expressions of the values.

* A set of complementary principles, intellectual techniques for translating the
values into practice, useful when there is not a practice handy for your particular
problem.

* A community that shares these values and many of the same practices.

Extreme Programming also emphasize that its practices are meant to be picked and
used based on the context at hand (Beck, 2004). Thus, XP can be a well suited candi-
date for tailoring project specific agile methods (Abrahamsson, Warsta, et al., 2003;
Fitzgerald, Hartnett, etal., 2006). XP emphasize simplicity and flexibility as described
by Lindstrom and Jeffries (2004, p. 43): "Whereas many popular methodologies try to
answer the question what are all of the practices I might ever need on a software project?;
XP simply asks, what is the simplest set of practices I could possibly need and what do I
need to do to limit my needs for those practices?". However, some have also pointed out
that the method’s practices are very much overlapping and complementary, and that
they are most effective when used together. Thus, some argue that the benefits of XP

Chapter 2 Background Literature and Theory

is only achieved when all of it’s practices are adopted as a whole (Fitzgerald, Hartnett,
etal., 2006).

The 12 practices of XP are portrayed in the following list (based on Beck, 2004;
Conboy and Fitzgerald, 2010; Dyba and Dingsgyr, 2008; Lindstrom and Jeffries,
2004):

1.

10.

The Planning Game: An activity for predicting what will be accomplished by
the due date of an iteration, and determining what to do next. This includes
release planning and iteration planning.

Small Releases: XP teams should break down tasks in order to be able to deliver
small releases frequently. Typically every two weeks. This increases visibility of
the work, and possibility for frequent feedback.

. Metaphor: The development team develop a common understanding of the

software and how it is supposed to work.

. Pair Programming: Developers program in pairs on the same computer. This

enables developers to communicate and review code, with the aim of producing
better quality code.

Simple Design: XP teams develop software to a simple design. The developers
should start simple, and improve the software through testing and design.

. Testing: Developers continuously write tests as they make changes or create new

functionality. The software is required to pass the tests to demonstrate working
code before integrating the code, and that they meet customer expectations and
specifications.

Refactoring: Code is frequently revisited, restructured, and improved to create
better quality software. This can be particularly useful to improve non-functional
attributes of software such as simplicity, flexibility, etc.

Continuous Integration: Code is integrated and built up to several times a day.
By integrating small changes frequently into a common code base, developers
can avoid serious problems or difficulties trying to integrate lots of accumulated
work.

Collective Code Ownership: The developers in the team are all responsible
for all the code. In practice, any developer can make changes anywhere in the
system, any time.

Sustainable pace: The team works hard, but at a sustainable pace to avoid
burnout in the long term.

2.2 Agile Methods and Practices

23

24

11. On-site customer: All the contributors to an XP project sit together as members
of one team - the Whole Team. This includes key customer representatives, who
provides the requirements, sets the priorities, and steers the project.

12. Coding Standard Developers adhere to a common set of rules for producing
high quality code.

2.2.3 Flow-based Methods

This section will present the flow-based methods that are relevant for this study:.
This includes Kanban and DevOps respectively. Already here, I want to point out
that DevOps is fairly new and not clearly defined in research or practice as of yet.
As a result it is neither properly established as a method at this point. However,
some propose it as a method and it consists of practices and principles for software
development on par with other methods. It is also related to a flow-based way of
thinking.

Kanban

Kanban is an agile method that is flow-based and increasingly used in practice. It
is still not as widely used as iterative methods such as Scrum and XP (Rodriguez,
Markkula, etal., 2012; VersionOne, 2017).

Kanban means "signboard" in Japanese, and originates from Lean manufacturing. In
Lean manufacturing, Kanban is a flow-control mechanism for a pull-driven production
system. In upstream processing like manufacturing, a pull-system is one which
activities are triggered by downstream processing signals (Ikonen etal., 2010), i.e.
work moves upstream when there is capacity and need. The core concept in Kanban
in manufacturing is to visualize and control the flow of work. Work is visualized using
a board containing cards that represent the work, hence the name.

The ideas of Kanban have since found its way to agile software development. Pop-
pendieck and Poppendieck (2003) suggested possible translations of Lean principles
into agile practices for software development, which they coined as Lean Software
Development. Fundamental to Lean, and "Lean Thinking", is the principle of reducing
waste. That is, everything that does not add value to the delivered product should
be avoided. There are also other Lean principles. Some examples are the principle
to deliver as fast as possible for very frequent feedback, to empower teams to bring
decision-making down to the team level, and see the whole to avoid optimization of

Chapter 2 Background Literature and Theory

only parts of the product at the expense of the whole. Kanban emerged as an agile
approach for developing software according to some of these Lean principles (Ahmad
etal., 2013; Kniberg and Skarin, 2010; Poppendieck and Poppendieck, 2003).

Another key concept in "Lean Thinking" is that of flow (Poppendieck and Poppendieck,
2003), which we have already touched upon. Fitzgerald and Stol (2014) described
"flow" in development as all the connected set of value-adding actions performed on a
software feature from design to deploy. They distinguished this from iterative methods
by adding that flow implies that each task should essentially flow through the process
one-by-one, and not be batched and queued together as larger deliveries. This also
require the process to be established as an end-to-end concept which includes every
activity from identification of a feature to deployment to a production environment
(Fitzgerald and Stol, 2014). Kanban in software development can be used to visualize
and measure the flow of work in such an end-to-end process.

Implementations of Kanban in software development is relatively simplistic compared
to agile methods such as Scrum and XP (Section 2.2.2). Kanban mainly consist of
three practices (Kniberg and Skarin, 2010):

1. Visualize the workflow
2. Limit work-in-progress (WIP)

3. Measure the lead time (i.e. average time to complete one task)

Work in Kanban are the tasks, e.g. software features, to be implemented in a project.
Kanban suggests that work is broken down into smaller work packages. This makes it
easier to limit the amount of work in progress, which again decreases lead time (i.e.
makes delivery faster) and improves quality of work (Ahmad etal., 2013). Work is
visualized in Kanban using a Kanban board. A Kanban board consists of a number of
columns in which work packages flows through. Work packages are often represented
as small descriptions in the form of cards in the columns. The idea is that cards, that is
the work to be done, flow independently across the columns from start (e.g. backlog)
to finish (e.g. deployment). Moreover, research have suggested that there is no agreed
upon standard on how a Kanban board should be configured in software development.
Some seemingly typical column categories used in Kanban boards in practice are
"specification/analysis", "build/development", "test/acceptance", and "deploy/release"
(Corona and Pani, 2012). One example of a Kanban board is illustrated in Figure
2.4.

2.2 Agile Methods and Practices

25

26

Limiting work-in-progress (WIP) implies limiting the amount of cards that are present
in each of the columns in the Kanban board at any one time. The idea is that too
much active work-in-progress decreases transparency and focus. This may eventually
lead to bottlenecks and waste, which again reduces productivity and flow (Ahmad
etal., 2013; Kniberg and Skarin, 2010).

For measuring lead time, different tools are used in practice. One possibility is to
use Cumulative Flow Diagrams (CFD), which may be used to visualize and measure
WIP and average lead times. CFDs can be used to keep track of the accumulation
of work in the different columns of a Kanban board. Thus, it is a practical tool for
highlighting whether there are bottlenecks or other issues in the process (Corona and
Pani, 2012).

Kanban is simplistic in that it only focuses on a few rules for visualizing workflow.
Furthermore, it does not define specific roles or arenas for coordination, such as a
Product Owner or Daily Stand-ups found in Scrum (Section 2.2.2). Neither does it
suggest any best practices for developing software such as those found in Extreme
Programming (Section 2.2.2). Its simplicity makes it relatively easy to implement and
adapt (Kniberg and Skarin, 2010). It is also sometimes used in combination with
other methods such as Scrum, sometimes separated out as its own method named
Scrumban (Ahmad etal., 2013). In recent times, Kanban have been increasingly used
in contexts that pursue continuous software delivery (Fitzgerald and Stol, 2014).

To do Dev Test Release Donel
] 3 2 3

Bl | TEl | [al |
Lol | [en | LEW '

-

Figure 2.4.: A typical Kanban board (Kniberg and Skarin, 2010)

Chapter 2 Background Literature and Theory

DevOps

DevOps is a term that has been popularized in the software industry in recent times,
and is seeing increased use in agile organizations and projects (Brown etal., 2017;
VersionOne, 2017). In practice, DevOps has evolved into involving several practices
and principles (Lwakatare etal., 2016a). However, research also suggest it is still
unclear how DevOps should be defined, and there seems to exist some blur regarding
what it actually entails (Lwakatare etal., 2016b). A recent study proposed it as a
promising early-stage project method, but acknowledged that this is not yet well
established (Banica etal., 2017). Some other words used in literature to describe
what DevOps entails include a culture, mind-set, principle, and a set of practices.
According to Dingsgyr and Lassenius (2016), DevOps and related concepts is currently
very practitioner-driven and research is lagging behind. All in all, DevOps seems to
be a multi-faceted concept in an early stage of research. I will further present what
seems to be the key elements of DevOps based on promising recent literature that has
studied its application in practice.

DevOps is a merger of the words "developer" and "operations". In this case, developers
are those who create software features, while operations personnel are those who
ready, deploy and operate the software features and underlying systems. Traditionally,
organizations have made a distinction between these into separate silos. However, it
has been acknowledged that this represents a harmful disconnect between important
activities (Fitzgerald and Stol, 2014). According to Humble and Molesky (2011), one
main purpose of DevOps is to align the incentives of both developers and operations
personnel. In practice, DevOps therefore promotes closer collaboration between or a
merging of development and operation to remove what often represents a bottleneck
between the two. This can make development and operations into an integrated
end-to-end process. DevOps has an important place in the recent trend of continuous
software delivery for this reason (Fitzgerald and Stol, 2014).

Some definitions of DevOps have been suggested by researchers. One suggested
definition is "a mind-set substantiated by a set of practices to encourage cross-functional
collaboration between teams — especially development and IT operations — within a
software development organization, in order to operate resilient systems and accelerate
delivery of change" (Lwakatare etal., 2016a, p. 7). Furthermore Lwakatare etal.
(2016b) argue that the set of practices in DevOps originated from existing agile
practices, and that it is also to a large extent informed by lean principles. According to
Lwakatare et al. (2016a), the practices involved in DevOps varies in projects studied

2.2 Agile Methods and Practices

27

28

in practice. Through a study of DevOps among practitioners, they found that DevOps
practices can typically be categorized into five main dimensions:

. Collaboration: DevOps emphasize close collaboration between developers and

operations personnel. This tend to require a rethinking and reorientation of
roles and teams in development and operations activities in organizations and
projects. Moreover, this can empower teams, especially developers, to gain more
control over system operability which in turn may broaden their skillset and
knowledge.

. Automation: One goal of DevOps is to increase the speed and frequency of the

delivery and deployment process. In order to achieve this, DevOps try to remove
error-prone manual processes through automation practices. This emphasizes
automation of build, test, and deployment processes. Typical agile practices
that may be used for this are Continuous Integration which is found also in
XP (Section 2.2.2) and the extended practice Continuous Deployment which is
explained in the section on agile practices (Section 2.2.4).

. Culture: Many argue that important to DevOps is also to have a focus on

culture. It requires organizational and cultural change in order to create an
empathic, supportive, and good working environment between development
and operations. Empathy in a DevOps culture allows software developers and
operators to help each other deliver the best software possible.

. Monitoring: DevOps may support feedback loops through monitoring practices.

This typically implies monitoring systems in order to detect potential defects early.
This can be done through well-instrumented software systems and aggregate
monitored data into rich insights. This can also potentially reduce the need for
extensive testing before deployment.

. Measurement: DevOps practitioners use metrics practices to monitor and assess

the performance of their systems. Metrics may also be useful for assessing system
quality and stability.

The proposed definition of DevOps and the five dimensions show principles and
practices which have much in common with agile values and other agile methods.
The integration between development and operation activities through DevOps can
be viewed as a continuous process. Figure 2.5 illustrates a typical approach to
development and operations in a DevOps environment.

Chapter 2 Background Literature and Theory

Figure 2.5.: A DevOps approach showing development and operations as a continuous and
integrated process (Atlassian, 2018)

2.2.4 Agile Practices

Agile methods are essentially composed by agile practices. As previously mentioned,
agile practices should help accomplish agility in a method (Conboy, 2009). Agile
practices can be grouped into the three groups management practices, software process
practices, and software development practices (Lee and Yong, 2013). Examples of agile
management practices are on-site customer, daily stand-up meetings, self-organizing
teams, and open work area. Software process practices can be to use simple design,
collective code ownership, and frequent delivery of working software. Software devel-
opment practices may be pair programming, unit testing and continuous integration
to name a few. Collectively, these are among others that may be combined to guide
agile software development in a project or organization. As was learned earlier, many
of these agile practices are found in standard agile methods such as Scrum, Extreme
Programming, and Kanban. Some practices have also emerged without being related
to a specific agile method, such as Continuous Deployment which is soon explained.
In a scientific survey on the usage of agile methods in the Finnish software industry,
which is also considered a reliable survey (Stavru, 2014), the following list were the
most widely used agile practices (Rodriguez, Markkula, etal., 2012):

1. Prioritized work list

2. Iteration/sprint planning

2.2 Agile Methods and Practices

29

30

Daily stand-up meetings

Unit testing

Release planning

Active customer participation

Self-organizing teams (i.e. self-managing teams or autonomous teams)

Frequent and incremental delivery of working software

v ® N o kW

Automated builds

10. Continuous integration

11. Test-driven development (TDD)
12. Retrospectives

13. Burn-down charts

14. Pair programming

15. Refactoring

16. Collective code ownership

It may be worth noting that Rodriguez, Markkula, etal. (2012) suggest no one-to-one
relationship between these practices and agile methods, and do not describe them
in any particular detail. For example, prioritized work list, daily stand-up meetings,
and retrospectives may be used as part of several methods, but may be implemented
differently. The list is still a useful overview of various widely used agile practices
without specifying implementation details.

Furthermore, I will present two practices that are relevant to this study, but have
not yet been properly described in the included literature on agile methods. The
first one is self-organizing teams, which is also found in the above list of most widely
used practices. The second one is Continuous Deployment, which is a practice that
is not in the top list, but is important in DevOps and in recent trends in software
development.

Self-organizing teams

Agile software development focus less on teams consisting of specialized roles, and
focus more on self-organizing teams that encourage role interchangeability (Nerur,
Mahapatra, etal., 2005). Terms like self-managing and autonomous teams is used
interchangeably for this practice. The practice involves giving teams the authority and
capability to effectively organize and manage their own work. According to Moe et al.

Chapter 2 Background Literature and Theory

(2009), self-managing teams offer potential advantages over traditionally managed
teams as they bring decision-making authority to the level of operational problems
and uncertainties, and thus increase the speed and accuracy of problem solving. The
practice have been valued in agile methods, such as Scrum and XP (Section 2.2.2), for
these reasons and is also emphasized in the agile manifesto (Fowler and Highsmith,
2001). The performance of self-managing teams depends not only on the team’s
competence in managing and executing its work but requires management to facilitate
an appropriate organizational context. Fully self-managing teams consist of cross-
trained generalists who can take on several different tasks, which are collocated, and
who build trust and commitment (Moe etal., 2009).

Continuous Deployment

In the section about XP (2.2.2), Continuous Integration (CI) was listed as one of
its practices. While Continuous Integration mainly focuses on automation of the
code integration and build process, Continuous Deployment is a logical extension.
Continuous Deployment entails automating the entire workflow all the way from
integrating and building good code to deploying it to to some environment such as
production, but not necessarily to actual users (Fitzgerald and Stol, 2014). The goal is
to reduce the time and resources it takes to deploy new software features or changes,
and consequently lead to more rapid releases of software (Rodriguez, Lwakatare, etal.,
2017). Continuous Deployment, and thus also Continuous Integration, are practices
that are often used in conjunction with DevOps, which we previously learned (Section
2.2.3).

2.3 Method Tailoring

This section will present a background on method tailoring based on relevant scientific
references. First, an introduction to method tailoring theory is given. Then, different
approaches to method tailoring will be described as they appear in literature.

2.3.1 Introduction to Method Tailoring Theory

Both practitioners and researchers are continuously looking for new and better ways
to develop software. As new methods arrive, practitioners tend to adopt them in
hope that they will solve their own software development challenges (Brooks, 1987;
Conboy and Fitzgerald, 2010). Brooks (1987) highlighted a problem with this. He
argue that the constant strive for new and simplified models that can be reused

2.3 Method Tailoring

31

32

to reliably develop complex software across projects is misguided, saying "there is
no silver bullet". He argued that software is fundamentally challenging because of
its inherent properties; complexity, conformity, changeability, and invisibility. As a
result, software can often be more complex than any other human constructions.
The complexity of software makes it difficult to maintain a complete overview which
may lead to technical and managerial problems. Complexity also increases due to
the need for conformity to different interfaces. Software is easily changeable, often
easier than making changes in products found in construction and production. This
inherent property can be a good thing, but also causes challenges. In construction
and manufacturing you work with physical products, while software is invisible and
difficult to visualize. Combined, these features make software challenging and full of
changeable variables. This ultimately requires a lot of flexibility in the methods you
use to create software (Brooks, 1987; Conboy and Fitzgerald, 2010).

As a result, methods are often not reused in its original textbook format in practice
(Conboy and Fitzgerald, 2010). Instead, practitioners make their own variants that
better suit their needs in different project contexts, often based on existing methods
and practices (e.g., Fitzgerald, Hartnett, etal., 2006; Rolland et al., 2016). This has
been researched in different software development contexts, and consequently differ-
ent terms have been used. In Section 1.2.1, I concluded that the most commonly used
term among researchers seems to be method tailoring. In Section 1.2.1, method tailor-
ing was defined as "a process or capability in which human agents through responsive
changes in, and dynamic interplays between, contexts, intentions, and method fragments
determine a system development approach for a specific project situation". Other terms
such as method adaptation, context-based method use, method assembly, and method
configuration have also been used in research. Common to this research is that it
focuses much on identifying possible approaches to method tailoring which may be
used to tailor methods in practice. Many of the approaches are similar, and Fitzgerald,
Hartnett, etal. (2006) among others argue that these can be categorized within two
overarching approaches to method tailoring; method engineering and contingency
factor approaches. These will be presented in more detail in the next section 2.3.2.

Conboy and Fitzgerald (2010) argued that method tailoring is particularly important
for agile methods for several reasons. Agile software development introduce new
issues and complexities through its values and principles such as "individuals and
interactions over processes and tools". In this case, they argue that agile practices
needs to be much more focused on elements such as personal characteristics and team
dynamics. Another example they made, is the emphasis on close collaboration with
stakeholders. This puts more pressure on tailoring to effectively support interaction

Chapter 2 Background Literature and Theory

with stakeholders and complexities within their organizations. While agile methods
are in most cases an improvement upon traditional methods, the vast set of values
and principles induce increased complexity and problems that makes adoption and
tailoring of agile methods challenging.

Another argument for the importance of agile method tailoring lies in the definition
of agility. This was briefly brought up when presenting agile principles and defining
agility in Section 2.1.2. The goal of agile methods is to assist developers with creating
high-quality software in an agile manner. Agile methods are supposed to be ’just
enough’ methods as they seek to avoid prescribing cumbersome and time-consuming
processes that add little value to the final product and elongate the development
process (Fitzgerald, Hartnett, et al., 2006; Highsmith and Cockburn, 2001). It revolves
a lot about being able to change, not only the product, but also the way you work
(Conboy, 2009). As a consequence, researchers suggests that agility must also be
incorporated into the methods by deliberately designing lightweight agile methods
that are amenable to tailoring (Abrahamsson, Warsta, et al., 2003; Henderson-Sellers
and Serour, 2005; Turk etal., 2002). Software development methods that are very
prescriptive in nature are argued to be less adaptive and amenable to tailoring. A
method is prescriptive if it require specific "rules" to be followed such as "the projects
always use timeboxed incremental development cycles with a maximum increment
length of two to four weeks". While many methods suggest such rules, some original
literature on certain methods also acknowledge and expresses that the rules should
not always be followed as-is in any situation. Some literature also provide guidance
on how the method can be tailored. When this is the case, the method can be regarded
as amenable to tailoring even though it is prescriptive in the first place (Abrahamsson,
Warsta, etal., 2003).

Kniberg and Skarin (2010) argue that the degree to which a method is adaptive to a
situation depends on the number of rules present in the method. By "rules" they refer
to parts and practices of the method such as artifacts, roles, and activities. A large
amount of strict rules gives many constraints, and thus fewer options open. Agile
methods are generally regarded as lightweight methods that contain few rules. For
example, one important value in agile development is "individuals and interactions
over processes and tools" (Fowler and Highsmith, 2001). However, some agile methods
are more prescriptive than others. Traditional software development methods are
comparatively even more prescriptive than agile methods, which makes them less
amenable to tailoring. Kanban (Section 2.2.3) only contain three rules which makes
it more amenable to tailoring. Abrahamsson, Warsta, etal. (2003) argue that Scrum
and XP (Section 2.2.2) are also amenable to tailoring. Not only because they contain

2.3 Method Tailoring

33

34

relatively few rules, but because they don not force all the rules and acknowledge that
tailoring might be needed in their original literature. Other research also demonstrate
that methods such as Scrum, XP, and Kanban have been tailored in various ways in
software development projects (e.g. Conboy and Fitzgerald, 2010; Corona and Pani,
2012; Fitzgerald, Hartnett, etal., 2006). Kniberg and Skarin (2010) illustrate the
degree of adaptability of some known methods as shown in Figure 2.6. As illustrated,
they argue that a "Do Whatever"-method that prescribe no rules is the most adaptive

in comparison.

More prescriptive More adaptive
<€ - L S @ - >
RUP XP Scrum Kanban Do Whatever

(120+) (13) (9) (3) (0)

Figure 2.6.: Degree of adaptability of agile software development methods (Kniberg and
Skarin, 2010)

2.3.2 Method Tailoring Approaches

Different approaches to tailoring software development methods exist. Researchers
have identified approaches from practice and suggested new ones based on research.
Research on method tailoring existed prior to agile software development. However,
with the paradigm shift, new research explored method tailoring approaches also in
the context of agile methods. In fact, the interest for method tailoring have steadily
increased following the release of the agile manifesto (Campanelli and Parreiras,
2015). Since then, researchers have applied existing approaches also in context of
agile methods (e.g., Conboy and Fitzgerald, 2010; Fitzgerald, Hartnett, et al., 2006).

Chapter 2 Background Literature and Theory

There are mainly two overarching approaches or categories of method tailoring
identified in research, namely contingency factor approaches and method engineering
(Campanelli and Parreiras, 2015). However, Campanelli and Parreiras (2015) found
in their recent comprehensive literature review on the topic that some research papers
did not classify or explain the approach used. Thus, it is unclear whether those could
be categorized into the two main overarching approaches or not. The two overarching
approaches will be described in the next two subsections.

Pedreira etal. (2007) differentiate between formal and informal approaches to tailor-
ing. They found that most research papers propose some formal approach, rules or
guidelines to systematically tailor a software process. This formality is also evidenced
in the two overarching approaches to be described in the next subsections. Moreover,
they also found that tailoring is often performed in an informal manner in practice
(i.e. little or no formal process, rules or guidelines for tailoring). Large organizations
had a tendency to take on more formal approaches to tailoring, while in smaller
organizations or projects it seemed more practical with informal tailoring. This have
been observed in other research as well, where it has been described as ad hoc and
unstructured tailoring approaches (Conboy and Fitzgerald, 2010). In other words,
practitioners often do not follow formal and prescriptive approaches as proposed in
method tailoring research. Some have argued that this may be problematic as it may
potentially cause suboptimal results, or that little is learned about tailoring efforts
across projects (Conboy and Fitzgerald, 2010). Moreover, Patel etal. (2004) found
that teams in practice often tailored methods based on past experiences. This was
also found in the case study by Fitzgerald, Hartnett, etal. (2006) where an informal
approach was used. One benefit of a more systematic, formal and less ad hoc approach
to tailoring is that the result would not depend so much on skills and past experiences
(Pedreira etal., 2007).

Contingency factor approaches

Contingency factor approaches, also called contingency-based method selection (Con-
boy and Fitzgerald, 2010), is a method tailoring strategy that involves selecting a
specific existing method that is best suit for a particular context (Iivari, 1989). The
approach is based on the premise that no method is universally applicable; there is
no silver bullet. Central to this approach is that teams or organizations that wishes
to apply it must be experienced with multiple different methods. They must also
be able to evaluate which method is best suited for the given context based on the
contingencies of the situation. For this, various criteria for tailoring can be used for
evaluation. Such criteria may be based on influencing factors such as team size and

2.3 Method Tailoring

35

36

team distribution, external factors such as contract type and client availability, and a
multitude of other factors that influence a software development process (Campanelli
and Parreiras, 2015; Kalus and Kuhrmann, 2013).

A contingency factor approach is argued to be a challenging approach in practice, and
contain several flaws. For one, extensive experience and knowledge on multiple or
even one method have seemingly been rare among developers in practice. When this
is the case, it may negatively affect the effectiveness of tailoring efforts (Conboy and
Fitzgerald, 2010). Overall, it is thought that achieving much competence with many
methods is unlikely to be the case for many. The second major flaw with contingency
factor approaches is that they assume that some specific existing method can cover all
the needs and contingencies of a situation. In other words; if you have many enough
variants of agile methods, you will find one that suits your particular project (Iivari,
1989; Kumar and Welke, 1992). Furthermore, contingency factor approaches are not
concerned with adapting existing methods or generating new ones. These aspects and
assumptions are arguably contradictory with a core premise of method tailoring in
the first place; that all project contexts are different and that no predefined method
can be applied to cover all needs of any given project.

Figure 2.7.: Contingency factors process for method selection (Campanelli and Parreiras,
2015)

Method Engineering

Method engineering approaches proposes that methods should be created or "en-
gineered" to be applied to specific development situations. A method engineering
approach acknowledges that a method to guide development is indeed advantageous

Chapter 2 Background Literature and Theory

in projects, but recognizes that no predefined method can cover all needs (Harmsen
etal., 1994).

Method engineering involves creating situation specific methods from pre-defined
and pre-tested method fragments (Kumar and Welke, 1992). A method fragment can
be a description of a software development method, or any coherent part thereof.
It can be principles, fundamental concepts, products to be delivered, development
activities, techniques, tools, etc. (Aydin etal., 2004). As a result, method engineering
can be described as a meta-method process (Kumar and Welke, 1992). The approach
can be used to create methods by mixing and matching method fragments into a
more suitable method. Campanelli and Parreiras (2015) found that method engineer-
ing was the most used tailoring approach by a large margin based on the existing
catalog of research. The research suggests that the selection and combination of
method fragments requires a fragment repository and a dedicated method engineer to
handle the repository in order to be operational (Fitzgerald, Russo, etal., 2000). In
association to this, a common recommendation in research is also to use specialized
computer-aided tools to support the method engineering process (Brinkkemper, 1996;
Henderson-Sellers and Ralyte, 2010). Figure 2.8 illustrates a method engineering
process from one of the initial works on method engineering (Brinkkemper, 1996).

Project

Environment

Project factors

Project
Characteristcs

Methods
Technigues
Tools

Characterisation Validation

Method Additions and

fragments - updates

Fragments
Repository

Fragments
Selection

Fragments
Administration

Selected method

Request for new fragments
fragments

Adaptation requests Experience

accumulation
Fragments Project
Assembly Performance

Situational method

Figure 2.8.: Method engineering process for method definition (From Campanelli and
Parreiras, 2015 based on Brinkkemper, 1996)

2.3 Method Tailoring

37

38

Method engineering, including contingency factor approaches, have generally been
portrayed as very formal and structured forms of method tailoring that have been
based on theoretical and conceptual arguments. Fitzgerald, Hartnett, etal. (2006,
p. 203-204) describe this as a marked feature of method tailoring research: "both
the contingency and method engineering research is that they are largely deductive in
nature and employ theoretical and conceptual arguments to support how methods should
be tailored or constructed". As is illustrated in Figure 2.8, method engineering is
a comprehensive and very defined process. Because of this, it has received some
skepticism regarding practical applications and whether such a process is actually
welcome in many organizations or projects. The high degree of formality and resources
required to implement and use the proposed approaches are among the biggest
challenges and potential problems with these from a practical perspective (Campanelli
and Parreiras, 2015; Fitzgerald, Hartnett, etal., 2006).

Fitzgerald, Hartnett, etal. (2006) found through case study research that a similar
approach to method engineering may be successfully and purposefully done without
having dedicated method engineers or a repository of method fragments. In their case
study, practitioners had purposefully selected various practices from the agile methods
Scrum and XP specifically and combined them into their own tailored method with
satisfactory results. They also found that the tailoring was to a large extent done
based on previous experience and understanding of the individual agile practices.
Similarly, Conboy and Fitzgerald (2010) studied how practitioners tailored XP by
selecting suitable XP practices for different situations. These approaches shared the
same fundamental philosophy as method engineering, where suitable methods were
created based on a selection of practices, but in a much less formal and structured
manner.

Chapter 2 Background Literature and Theory

2.4 Summary

This chapter has provided a thorough review of important concepts related to agile
software development and method tailoring.

The initial section included a comparison with traditional methods and a presentation
of both benefits and challenges related to agile software development. This was
followed by a more in-depth look on the concept of agility and what it means for
a software project method to be agile. Thereafter, the initial section ended with a
brief introduction to the recent trends towards continuous software delivery. These
initial aspects provides a valuable background and perspective for later discussion of
findings in this study.

The second section proceeded with learning about both iterative and flow-based agile
methods and an overview of widely used agile practices. This background will be
useful for understanding the agile methods and practices used in the case to be studied,
and how these were tailored compared to methods and practices in literature.

The third section introduced method tailoring and motivations for why tailoring of
agile methods is necessary and important. The section also introduced concepts such
as method adaptability, and characteristics of proposed tailoring approaches such
as the contingency factors and method engineering approaches. The literature on
method tailoring is central to this study, and will prove valuable for evaluating and
discussing the approach to method tailoring in the case.

2.4 Summary

39

Method

The method chapter will present the guidelines and approach used for conducting
this research. The first section will give an overview on how the literature review
was performed. Furthermore, case study will be introduced as the chosen research
strategy. This includes describing key research procedures, such as case selection, data
collection, and data analysis. Thereafter, some clarifications regarding the reporting
of the results and confidentiality is provided. The last section of the chapter presents
the main tactics that were used to improve the validity of the research. Justifications
for the choices made will be provided when appropriate.

3.1 Literature Review

A literature review was a key part of this study. The literature review was performed
in order to explore possible and relevant research topics, to get a grip on existing
research related to the chosen topic, and to form the theoretical basis for the study.
Reviewing literature was an ongoing activity from start to finish.

The overall strategy for searching for literature was inspired by the structured approach
suggested by Webster and Watson (2002) summarized as follows:

1. Use databases such as Web of Science! to accelerate identification of relevant
articles using selected keywords. Since the keywords are unlikely to catch all
relevant articles, scanning through leading journals where major contributions
are likely to be found is a useful way to catch others you have missed. Since
software engineering is a multi-disciplinary field of research, it may also be
necessary to look for journals in other related disciplines.

2. Go backwards by reviewing the citations for the articles that were identified in
step 1) to determine other articles to consider.

3. Go forward by using databases such as Web of Science to find the articles
identified in the previous steps and evaluate whether they are relevant for the
review.

Thttps://webofknowledge.com/

41

42

Several scientific databases were used for literature search. A major part of the
literature was identified using deliberately selected search queries related to key
concepts of the research. Much literature was also discovered using a "snowball"
strategy by reviewing the references of key articles, as suggested in the approach by
Webster and Watson (2002). For practical reasons I did not spend much time scanning
through complete journals, but rather the reference lists of individual journal articles.
In addition, some very interesting articles were identified through article suggestion
services supported in search engines such as Elsevier’s database ScienceDirect?. The
service suggests similar or related articles based on the ones you visit. The databases
used to find literature are listed in Table 3.1.

Database Description Location

Science Direct Leading citation indexing ser- http://www.sciencedirect.com/
vice for scientific, technical, and
medical research

Google Scholar Free search engine which in- https://scholar.google.no/
dexes full-text or metadata for
academic literature across disci-
plines

Oria Citation indexing service pro- https://oria.no/
vided at Norwegian universities
which indexes academic litera-
ture across disciplines

Web of Science Scientific indexing service used https://webofknowledge.com/
for accessing leading scholary
literature across disciplines

Table 3.1.: Databases used for literature search

3.1.1 Literature Inclusion and Exclusion Strategy

The process of deciding which literature to include or to exclude from the search
results was an ongoing and iterative process. The initial evaluation of the literature
was done by reading the abstracts to evaluate whether the literature concerned
relevant topics and concepts. If it seemed relevant, I proceeded to do a more thorough
evaluation by scanning through the introduction, and the conclusions to get a grip of
the key findings. I primarily looked for three types of literature:

2http://www.sciencedirect.com/

Chapter 3 Method

* Literature that covered topics that could potentially be used as a theoretical
basis to support data analysis and discussion of results. These could for example
be research articles and systematic literature reviews on topics such as agile
software development, agile methods and practices, and method tailoring.

* Literature that could be used to provide background and context for the study.

* Existing empirical research that could potentially be incorporated into the study
later for comparison to my findings.

* Literature on writing and conducting research, in particular case study research.
This was to be used for both guidance on how to perform case study research,
and to underpin my research strategy choices which is to be presented further
into this chapter.

Important criteria for including core literature were also related to the quality of
the literature. A quality assessment was made for each article, book, etc. These are
typically the criteria that were used:

* The literature had a relatively high number of citations, and thus was likely
widely accepted by the research community.

* The literature itself used many references to support findings and the theme of
the research.

* The literature was empirical research, such as case study, survey, or experiment.
Secondary studies such as a literature reviews that drew upon other high quality
literature was also highly regarded.

* The literature was published in journals, or in some cases conferences. Some
other types of literature, such as books, were sometimes included if they were
evaluated to be of high relevance and had relatively many citations.

Not all criteria had to be met at all times. For example, if a study was very recently
published in a renowned journal by prominent researchers in the field, it would
naturally still not have many citations as of yet. It would, however, likely still be of
high quality because it met other criteria. In other cases articles from conference pro-
ceedings were used if they met other criteria and was regarded to be very interesting
and relevant. Not all papers were empirical research. For example, books or literature
explaining specific agile methods in general. In general, a combination of the above
criteria and the overall impression of the literature was used to evaluate its quality
and significance.

3.1 Literature Review

43

44

EndNote® was used for managing the bibliography. Scientific papers, including
references, could be downloaded directly from the search engines on the web and
loaded into EndNote. These were then categorized into groups based on the main
concepts that each paper dealt with. Using EndNote, references could be easily
exported to a LaTeX* bibliography format for citing while writing. Categorizing the
articles made it easier to keep track of relevant articles for different concepts. Towards
research completion, all included references were checked one-by-one for errors that
might have occurred when downloading the citations pre-formatted from the web.

3.2 Case Study Research

The research methodology adopted for this study was an exploratory single-case study.
In the background and motivation (Section 1.1), a motivation for more empirical
research on agile software development and agile method tailoring was provided. In
order to investigate these topics empirically, a qualitative approach was expedient.
While a quantitative approach could be used, a qualitative approach generally allows
for a more in-depth investigation of research questions due to factors such as more
flexible data collection methods (Runeson and Host, 2008).

The intent of this master thesis was to investigate how practitioners performed method
tailoring in software development projects, which made case study an appropriate
choice. Case study research has traditionally been widely used in social science.
Runeson and Host (2008) points out the relevance of case study as a research method
also within the software engineering field. They highlight software engineering as a
multi-disciplinary field with much in common with social science which often investi-
gates individuals, groups, organizations, and political phenomena. This is similar to
software engineering research, which mostly examines how software development,
operation, and management are conducted by individuals, groups, and organizations
in different circumstances (Runeson and Host, 2008). Therefore, case study is also a
good alternative for research in software engineering topics such as agile software
development.

Case studies are normally distinguished between single-case and multiple-case design.
Single-case focuses on studying one case, although with the possibility of incorporating
other case studies for comparison purposes (Yin, 2014). Since the timeframe and
the scope of this research was limited, studying a single case rather than multiple

Swww.endnote.com/

“https://www.latex-project.org/

Chapter 3 Method

cases was considered appropriate. Some case study articles on agile method tailoring
have been used to discuss and support findings. However, emphasis was not put on
comprehensive comparison with other case studies. Instead, this study has focused
on using the available theoretical basis as a whole to discuss and support findings.
Runeson and Hoést (2008) summarizes the characteristics of a case study as outlined
in Table 3.2. Consequently, these are also typical characteristics of this research. A

Methodology Primary objective Primary data Design

Case study Exploratory Qualitative Flexible

Table 3.2.: Characteristics of the research methodology (Runeson and Host, 2008)

case study uses a flexible design. This means that the parameters of the study, such
as research questions and interview guides, may be changed during the study. This
is opposed to a fixed research design, such as experiments or surveys, in which the
parameters are set in stone early on. This flexibility was utilized, and allowed the study
to emerge and evolve as the work went on. This was important, since little was known
about the case beforehand. Ultimately, this enabled more maneuverability in the study
as I learned more about the case and ability to go more in-depth on interesting topics
as they emerged. In this regard, both the problem statement, research questions, and
interview guides went through multiple iterations throughout the course of the study.
Moreover, the primary data collected was qualitative. That is, the data took the form
of words, descriptions, tables, figures, etc., and not statistical data (Runeson and Host,
2008).

There are different types of case studies, such as exploratory, explanatory, and descrip-
tive case studies. However, Runeson and Host (2008, p. 135) points out that case
study research have primarily been used for exploratory purposes, that is "finding out
what is happening, seeking new insights, and generating new ideas and hypothesis
for future research". When the studied case was initially identified, I learned that they
had adopted a modern approach to agile software development which was arguably
very interesting and relevant. However, it became apparent that little research had
previously been conducted on method tailoring in similar contexts. Moreover, the
conclusions of a recent systematic literature review on agile method tailoring argued
that future work should empirically explore how agile methods can be tailored, with
attention to tailoring approaches, in order to increase knowledge on the topic (Cam-
panelli and Parreiras, 2015). Oates (2006) describe an exploratory study as a research
strategy that can be used whenever there is limited support in the current literature on
the topic of interest. Thus, an exploratory investigation of a real-world setting can be

3.2 Case Study Research

45

46

done in order to acquire new insight, as well as to generate ideas for future research.
For these reasons, an exploratory case study was appropriate for this study.

Runeson and Host (2008) outline the the main steps in a case study research process
as follows:

1. Case study design: objectives are defined and the case study is planned

2. Preparation for data collection: procedures and protocols for data collection are
defined

3. Collecting evidence: execution with data collection on the studied case
4. Analysis of the collected data

5. Reporting

This also describes the overall process that was adopted for this case study. It is
worth noting that this was conducted as an iterative process, where each step was
done repeatedly during the course of the study. According to Yin (2014), an iterative
procedure is recommended. The details on how each step and underlying tasks was
conducted is described in the upcoming sections.

3.3 Case Selection

For case studies, the case and units of analysis should be selected intentionally to
ensure it is appropriate for what you want to study (Runeson and Host, 2008). 1
had a predetermined desire to study tailoring of agile methods, and therefore spent
much time initially looking for a project that seemed interesting and relevant to this.
Within practical research, one limitation is that a case is selected based on availability
(Runeson and Host, 2008). The case choice in this study was primarily based on
availability, but some time was spent initially to identify different case alternatives
and select one good candidate. Three software development projects were identified
and evaluated through conversations with key representatives from each project. A
summary of the criteria used to assess each case was:

» Agile methods and practices were used.
* The methods and practices were more or less tailored to the project context.

* The project should already have been ongoing for a good amount of time to
ensure that the project had a history, and that the participants had a reasonable
amount of experience from the case.

Chapter 3 Method

* It was possible to interview multiple people in different roles that had experience
working within the project to ensure that multiple viewpoints were covered.

¢ The interviews could be conducted in two rounds and last 30 minutes or more
to have time to dive into both broad and in-depth questions.

These criteria were required for the project to be accepted as a candidate. The
selected case for this study was particularly interesting and stood out among the other
candidates while also fulfilling the criteria.

Yin (2014) argue that for single-case design, a case can be selected that represents
a:

* critical test of existing theory

* extreme or unusual circumstance

* common case

* arevelatory or longitudinal purpose

I would argue that this case represents an extreme circumstance. 1 found very few
similar cases in method tailoring research or other studies in general. Also, the project
clearly represented a rather modern agile context compared to many others. The
implications of this was that I was able to study agile method tailoring in a rather
new and extreme circumstance, which was an excellent opportunity for gaining new
insight and also very interesting.

3.4 Preparation for Data Collection

For case study research it is recommended to maintain a case study protocol that

can be used as a plan and a guide for carrying out data collection and analysis work.

According to Runeson and Host (2008), a case study protocol defines the detailed
procedures for collection and analysis of the raw data. This has advantages such as
to not forget to collect data as intended, and to get a picture of what is required to
achieve data collection and analysis goals. During my work, I maintained a repository
of documents that contained plans for conducting interviews, a schedule for the overall
research, interview guides, information about informants, observation notes, formal
agreements and more. In addition, quite a bit of information about practicalities was
contained in e-mails. Although it might have been practical to collect everything in
one study protocol document, mine was more informal and consisted of a number of

3.4 Preparation for Data Collection

47

48

documents. Overall, this enabled me to keep track of the research work throughout,
and to better prepare for data collection procedures. Most of these documents have not
been included as appendices in this thesis to avoid leaking confidential information.

An important part of the preparation for data collection was to make sure that the
data to be collected was as high quality and rich as possible. There are multiple ways
to contribute to this, such as through triangulation strategies. Triangulation is when
you take different angles towards the studied object, with the intent to get a broader
picture of the case in study. In a case study, which is primarily qualitative in nature,
the quality of the study can be increased through triangulation (Runeson and Host,
2008). Four types of triangulation may be applied to case study research:

* Data (source) triangulation - where you use more than one source for data
collection, or collect the data at different occasions.

* Observer triangulation - where you use more than one observer in the study.

* Methodological triangulation - where you combine different types of data collec-
tion methods, e.g. qualitative and quantitative methods.

* Theory triangulation - where you use alternative theories or viewpoints.

This study primarily used data (source) triangulation. One importance in data collec-
tion in research is to use multiple sources for collecting data. This can be done to limit
the effects of one interpretation of one single data source (Runeson and Host, 2008).
If a conclusion can be drawn from several sources of information, the conclusion is
stronger than if the conclusion was based on a single source. This was important
during my data analysis, where I tried to draw conclusions based on the same or
similar statements from multiple informants whenever possible.

Because I was one person alone doing the data collection, observer triangulation was
not used. Methodological triangulation could have been used, but due to limited
availability of informants and the time schedule, I only focused on qualitative data
collection through interviews. I did use a form that was answered by some informants
during the interviews, but this was only intended as a starting point for qualitative
data collection. More on this in Section 4.2.2. I would argue that theory triangulation
was not used to any particular extent, although theory and literature was used to
discuss findings. This study was mainly exploratory and used an inductive approach
where I explored the case without strictly adhering to theories as an analysis lens.

Chapter 3 Method

3.5 Data Collection

For case-study research, one of the most important sources of evidence is the interview
(Yin, 2014). While surveys and experiments are particularly good for quantitative
research using more fixed research designs, interviews are often used in qualitative
research because rich data can be collected through guided and more in-depth conver-
sations. Runeson and Host (2008) refer that data collection methods may be divided
into three levels:

* First degree: Direct methods, such as interviews and questionnaires where the
researcher is in direct contact with the participants.

* Second degree: Indirect methods, where the researcher collects data, but not in
direct contact with the participants. For example observations, shadowing, and
video recording of the work place.

* Third degree: Study and analysis of existing work artifacts, such as documents,
requirement specifications, and reports.

The first and second degree methods are generally considered advantageous in case-
study research because it allows the researcher to decide what data is collected and
in what format. Third degree methods serve as a good supplement, but does not
allow for the same amount of control (Runeson and Host, 2008). All three degrees
of data collection methods were used to varying extents. The choices will be further
described in the following sections about Semi-Structured Interviews and Observations
and Document Analysis.

3.5.1 Semi-Structured Interviews

Semi-structured interviews were used as the primary method for collecting evidence.
One reason for this choice was that few details about the case was known beforehand,
which made it challenging to know exactly what was relevant to ask up-front. Semi-
structured interviews allowed for some improvisation and exploration both during
and across interviews through both open and closed questions (Runeson and Host,
2008). Questions were planned up-front, but they could be modified and asked in a
different order depending on how the conversation developed. For these reasons, this
was a good choice for the primary data collection method for this case-study.

3.5 Data Collection

49

50

The interviews were conducted in two rounds. This was necessary because of the
initial lack of knowledge about the case of study, and for data triangulation. The goal
of the first round was therefore to get to know the people that worked in the project,
to get a good overall understanding of the case, and begin to ask some more focused
questions towards topics such as method tailoring. The first round was absolutely
necessary to uncover potential directions for further questions, and to minimize the
risk that important information was missed in the last round. The second round of
interviews was characterized by more closed questions and by going more in-depth
on topics of interest based on the analysis of the initially collected data.

All of the interviews in both rounds were relatively long, ranging between 40 minutes
to more than 1 hour in duration. This resulted in a large amount of material to be
analyzed. A total amount of 131 pages were transcribed from audio recordings of the
interviews. More on the transcription process in Section 3.6.

Average interview duration Total transcribed material

54 minutes 131 pages

Table 3.3.: Key figures related to interviews and resulting material

An overview of the interview participants based on roles, and the total number of
interviews conducted for each role is shown in the Table 3.4. While some informants
were interviewed once, others were interviewed two times. This was mostly a result
of limited availability of informants, since the interviews were conducted during busy
work hours. People in a variety of roles were interviewed. This ensured that data was
collected from subjects with a variety of different viewpoints, and thus contributed
positively to data triangulation as mentioned in Section 3.4. A total of nine interviews
were conducted, and a total number of six informants participated. Additionally, I was
also able to talk informally with more people from the project during observations
of project activities, in the hallways and during lunch. Notable observations that
were made during informal conversations were written down as notes. The interview
guides used during interviews have been enclosed in Appendix A.1.

3.5.2 Observations and Document Analysis

In addition to interviews, both observations and document analysis were done. Obser-
vations can be done to investigate how software engineers perform certain tasks that
can be of interest in the study (Runeson and Host, 2008). I was able to participate
and observe a total of four stand-up meetings while visiting the project premises. I

Chapter 3 Method

Role Number of informants Number of interviews

Designer 1 1
Developer 3 5
Interaction designer 1 1
Project manager 1 2
Sum 6 9

Table 3.4.: Overview of the roles of informants and the number of informants and interviews
for each role

was also able to observe other practices such as how the teams organized themselves
in the work place, how and where they held their meetings, how they used important
tools, and how the they involved and coordinated work with their customers.

Some existing documentation was also collected. This was very limited in comparison
to the interview material, and consisted mainly of two presentations containing general
information about the project as well as a few web pages. This was a useful source for
getting an initial understanding of the case and for retrieving illustrations which could
be included in the results. Some drawings were also done by the informants during
the interviews to illustrate concepts while talking which was also documented.

3.6 Transcription of Recorded Interviews

During the interview sessions it is recommended to record the discussion in a suitable
audio or video format (Runeson and Host, 2008). I chose to do audio recordings for
my interview sessions. Thus, I could focus on the conversation and questioning.

The audio recordings were transcribed after each round of interviews. The tool
Transcribe® by Wreally was used to transcribe the recorded audio to textual format.
Audio transcription was a very time-consuming process. Transcribe, however, made the
process less demanding by enabling automated pausing, rewinding, and resuming of
the audio in configurable time intervals. Moreover, the conversations were transcribed
in a manner that preserved as much information as possible as it was converted to text.
For example, longer pauses and hesitation in sentences, corrections by the informants,

Shttps://transcribe.wreally.com/

3.6 Transcription of Recorded Interviews

51

52

and so on was preserved through structured formatting. This ultimately gave more
context to the textual data, and more information to base the analysis on.

3.7 Coding and Data Analysis

The last and most essential step before reporting the actual findings were analysis of
the textual data. Data analysis involves examining, categorizing, tabulating, testing, or
otherwise recombining evidence, to produce empirically based findings (Yin, 2014).

When dealing with large amounts of qualitative data in a textual format it was useful
to use NVivo®, which is a tool specialized for doing qualitative data analysis. NVivo
supports importing textual data, searching, coding and queries, adding memos as
you work through the data, as well as functionality such as generating diagrams and
charts. This allows for a structured and convenient approach to analyzing qualitative
data, with many advantages over a more traditional "pen-and-paper" approach. The
main activity performed in NVivo was coding the textual data. The adopted approach
to coding was based on tutorials from NVivo, and can be summarized as follows:

1. Read through the textual data and identify concepts that could be of interest and
relevance to the research context and research questions (an inductive strategy).

2. Create nodes (i.e. categories) in NVivo for the identified concepts, and code (i.e.
categorize) the textual data to the appropriate node. The data should be coded
for broad concepts, not specific ideas.

3. Code similar ideas together, and avoid a deep and complex node hierarchy.

4. Use searching and queries in NVivo to identify emerging themes and patterns in
the data.

Moreover, emerging themes and patterns and the underlying coded data were further
manually examined. This was then interpreted and validated manually. Keyword
queries in NVivo made it easy to go back and confirm findings if there were any
uncertainties. The node hierarchy used for coding is illustrated in Figure 3.1.

The strategy for analysis was an inductive approach. That is, instead of starting the
analysis from a theoretical standpoint (deductive), the analysis was performed ground
up by working with the data to identify relevant concepts. Yin (2014) recommend
this approach as one of four possible approaches to case study analysis. An inductive

Shttp://www.gsrinternational.com/nvivo/what-is-nvivo

Chapter 3 Method

approach values freedom in exploring the case for interesting concepts relevant to the
research questions, rather than restricting oneself to a set of theoretical propositions
(Oates, 2006; Yin, 2014). Two potential pitfalls with this strategy is (a) if the
researcher has insufficient knowledge of the field of study, relevant concepts may be
hard to identify (Yin, 2014), and (b) the analysis is to some degree susceptible to
subjective bias due to the researchers previous experiences, learning, and prejudices
(Oates, 2006). In order to mitigate adverse results (a) much time was spent reviewing
literature in the area of study to improve my ability to identify concepts of interest
in the data, and (b) the data was frequently revisited to ensure that support for
inferences existed in the data. Data analysis was performed after the transcription
and anonymization of the first round of interviews were complete, and then again
after the second round of interviews.

Practices —\

S —
——————

Coordination

and
communicatio _]
—

Tailoring
(approach)

|
—_—

Documentatio
n

|

Requirements

Figure 3.1.: Node hierarchy used for coding the textual data

3.7 Coding and Data Analysis

P—— Method
Planning and Delivery
estimation model
P— Prerequisites
Principles P— History
P— Contract
Facilitation P— Goals and
strategy
\ J Stakeholders
(other)
Customer _J Organization Autonomous
involvement (customer) teams
Product
DevOps —J Organ!zatlon Whole Team
(project)
End-user
Channels

53

54

3.8 Reporting of Results

Reporting the results involved systematizing and presenting the key findings from the
analysis. One important clarification regarding the reporting of the results, is that
the data was collected in a project in Norway and the interviews were conducted in
Norwegian. Because the selected language for this master thesis was English, the
results had to be translated from Norwegian which was not always a straight forward
process. The results in Chapter 4 contain a high number of quotes from the interviews
which was also translated. These were carefully translated to the best of my ability to
not deviate from the original statements in Norwegian.

3.9 Confidentiality and Anonymization

When conducting a case study and dealing with data from real-world organizations,
ethical considerations are important. At design time, it is therefore necessary to
assess whether the information you will be dealing with is confidential information
or not. Thus, it is important that the researcher and the organization explicitly agree
on participation in the research and how the collected data is managed. Consent
agreements through contracts are a preferred way to handle this (Runeson and Host,
2008). A cooperative agreement and a confidentiality agreement was signed by both
parties prior to the data collection to comply to these aspects. The confidentiality
agreement (unsigned) is attached in Appendix A.3.

Every informant was made aware of what the data would be used for, and how I
intended to use the data. Informants were also offered the opportunity to review the
transcribed material or the results from the analysis prior to publication. However, it
was stated that this was not necessary as long as the data was properly anonymized.
This implied that the data should be anonymized in such a way that the people, the
supplier and the customer organization was not revealed in the final results. This
included that the data was not publicly released in any way.

As the data was transcribed, it was immediately anonymized by removing names of
companies, people, products and services, stakeholders, and other information that
was revealing. This made it more convenient when actually doing the analysis and
presenting the final results. All results from the studied case have been anonymized in
order to comply to confidentiality. This should not have any meaningful implications

Chapter 3 Method

on the results. The results were presented in such a manner that context was preserved
as much as possible without revealing identities.

3.10 Research validity, reliability and
generalizability

This section mainly focuses on the tactics used to improve validity in the study, which
also includes reliability and generalizability. Assessment of the actual limitations of
the study which may have impacted validity is presented in the end of the discussion
chapter (Section 5.3).

An important feature of a research design in general is that it is based on a logical
set of statements. The systematic and logical nature of research is what makes
research trustworthy and contributes to increased knowledge. However, a number
of pitfalls may contribute to decreasing the overall quality of research if not taken
into consideration in the research design (Yin, 2014). One important quality attribute
of a study is validity, which denotes its trustworthiness and the extent to which the
results are true and not biased by a researcher’s subjective point of view (Runeson
and Host, 2008). Validity must therefore be considered from the beginning of a study.
However, it is important to evaluate validity and whether there are any potential
threats to validity also after the analysis phase. Yin (2014) name four tests of validity
and corresponding tactics that may be used. These are also explained by Runeson and
Host (2008). In the following, these will be described and which tactics was used to
improve validity in this research.

Construct validity

Reflects on whether the studied operational measures are actually what the researcher
had in mind, and what is investigated according to the research questions. For this,
using triangulation is here a possible tactic (Runeson and Host, 2008; Yin, 2014).
Data triangulation was used in this study to improve construct validity, which was
explained in Section 3.4. Other forms of triangulation could potentially have been
used to further improve validity.

Internal validity

Concerns causal relationships and inference. Causal relationships are important in
explanatory case studies, and not of particular concern in exploratory case studies
(Yin, 2014). The second issue is regarding making inferences. The analysis of this

3.10 Research validity, reliability and generalizability

55

56

exploratory study was to a large extent about making inferences from the gathered
data. To ensure as good quality inferences as possible, I always tried to base these
on statements and patterns in the data from multiple sources. Since the number of
informants were relatively few inferences were in some cases based on one informant’s
statements, but the general understanding of the case and related statements by other
informants was used for support. However, this may be considered a weakness in the
research method, and could have been improved by interviewing more informants.

External validity (generalizability)

Concerns whether it is possible to generalize from the findings, and whether the
results are of relevance for other cases. Generalizing from case studies beyond the
immediate study is often regarded as misguided and have received some criticism over
the past. Case study research focus in-depth on specific situations and contexts which
limits the possibility for generalizing to other settings beyond the one that is actually
studied (Lee and Baskerville, 2003). Flyvbjerg (2006) stresses that this does however
not make case studies unimportant, but is necessary and valuable in line with other
methods because it provides in-depth insight in way that some other methods do not.
With this in mind, I was careful not be too bold and make generalized conclusions
beyond this study. However, one way to support external validity for case studies is to
generalize to theory (Yin, 2014). Therefore, I used existing theory to discuss findings
and for support when drawing conclusions.

The reader should be aware that some results from this study may not be generalizable
and thus not necessarily applicable to any given context. However, it is likely that
many of the findings may still be valuable and applicable to other projects in practice.
In fact, many of the findings regarding method tailoring and agile practices may be
applicable also to more general settings other than those who pursue continuous
software delivery specifically. Thus, the findings may very well be of interest to other
researchers and practitioners for use also in other contexts beyond this studied case.

Reliability

Concerns the extent to which the analysis is dependent on the specific researcher.
That is, whether the results would be the same if another researcher conducted the
same study later on. To address this, I have documented the research process through
various documents in what may be regarded as an informal case study protocol
(Section 3.4). This could potentially have been reused by another researcher and
hopefully arrive at the same results. This is recommended as a tactic to improve
reliability by Yin (2014). Part of the case study protocol was the interview guides,
which are attached in Appendix A.1.

Chapter 3 Method

Results

In this chapter, the results from the analysis of the collected data about the case are
presented. The data was obtained through interviews, the background material sub-
mitted from representatives from the project, and observations made in the premises
where the project took place. The results have been presented in a more focused form
based on the analysis, and categorized in a manner that was considered relevant for
subsequent discussion.

The chapter is divided into two main sections; "Overview of the Project" and "The
Use and Tailoring of Agile Methods and Practices". The first main section provides
a case description that will be relevant for a general understanding of the project
context. The last main section first presents the findings on the approach to agile
method tailoring and then the findings related to the agile method and underlying
agile practices.

4.1 Overview of the Project

The studied project was an IT project that took place in Norway, and was ongoing
when this research was conducted. The customer was an organization with public
transport as a core business, and maintained different digital sales -and communication
channels towards their end users. These channels consisted of various digital solutions
used by end users, such as web pages and apps which could be used to buy tickets,
find information, and so on. The combination of digital channels were referred
to as omnichannel, which is a term and approach used in business for managing
multiple channels. Two important digital channels were the "Web channel" and "App
channel", which involved development, management and operations of associated
digital solutions. The customer had invested much resources in management and
further development of the solutions in these two important channels. The focus of
this study was therefore directed at the work that took place within these.

Table 4.1 shows a list of the most prominent stakeholders in the project. The most
important stakeholders for this study are the suppliers Alpha and Beta, the customer
(client), and end users.

57

58

Stakeholder Description

Customer The client of the suppliers. Organization with public transport
as a core business

Supplier Alpha External main supplier in the project. Responsibility for de-
velopment, as well as management and operations in all the
digital channels on behalf of the customer

Supplier Beta External subcontractor in the project. Responsibility coincid-
ing with the main supplier, but main focus on development
activities

End user The travelers who use the public transport services. Buys

tickets and interacts with the transport organization through
different digital solutions

Other stakeholders | Other stakeholders such as the transportation organization’s
own IT department, and other providers which the transport
organization purchased or used digital services from

Table 4.1.: Overview of key stakeholders in the project

Having responsibility for all the digital channels meant that the suppliers worked with
a wide range of tasks. Project tasks included everything from managing old legacy
systems, rewriting existing systems to newer technologies that were easier to manage,
to innovation and development of new solutions in more or less unknown areas. This
entailed that the suppliers had to deal with very frequent changes and new tasks
in multiple channels. Historically, the digital channels and associated solutions and
systems had been developed and managed separately by a number of other suppliers
before this project took place. However, the transport organization had recently gotten
a more customer-oriented and competitive focus, and wanted to be more flexible in
what products and services they offered to the travelers in the future. These were
important reasons for now wanting more unified management of the different digital
channels under one project, and also why an agile approach was selected. Three of
the developers that were interviewed had worked in one of the earlier projects that
took place in the customer’s channels, and had valuable perspectives on the difference
between then and the way they worked in the current project.

What was previously separate management of the digital channels, had resulted in
poor cohesion between existing IT systems, and what could be described as solutions
that were unnecessarily hard to manage for technical and design reasons. At the
time, the systems were also operated separately from development in the customer
IT department and at some later point outsourced for operation abroad. In this
studied project, the suppliers had in cooperation with the customer made a number

Chapter 4 Results

of improvement measures. Much time had been spent improving existing systems to
make them easier to manage and further develop in the future. This eventually led to
the introduction of DevOps, where the developers from suppliers Alpha and Beta now
handled both development and operation tasks. These were regarded as important
measures for being able to handle changes and delivering new solutions more quickly
and efficiently.

The suppliers Alpha and Beta were hired to assist the transport organization under a
four-year framework agreement. When the interviews were conducted, the project
had lasted for one and a half years. Characteristic of the contract was also that it
was a per-hour contract and not a fixed-price contract, which was regarded to have
many benefits. Due to the responsibility for all the digital channels, many tasks were
conducted in parallel at any given time within or across channels. In this sense, it can
be argued that the case could be defined as a program consisting of several ongoing
projects, but in practice it was referred to and managed as one large project.

At the time of the interviews, the project consisted of a total of 14 people from the
suppliers, including three business developers from the customer who interacted daily
with the supplier teams. Over time, the project had grown in size in terms of the
number of people involved, and the plan was to continue scaling up in the future due to
a need for more work capacity. The suppliers were located in the customer’s premises,
which enabled active customer involvement in the project. When the interviews were
conducted, the suppliers were organized into three main teams working within and
to some extent across the various channels. The teams were however frequently
reorganized to handle the constant flow of new tasks and responsibilities, and some
individuals worked across teams to make better use of available resources. Although
the suppliers were organized into separate teams, an important principle in the project
was that they first and foremost considered themselves as one whole team with
shared responsibility. The informants stressed this idea, which seemed to have many
collaboration and resource utilization benefits in practice.

It was apparent that an informal and largely dynamic organizational structure had
grown in the project. Formally in the agreement, the project organization was hier-
archically divided into different roles with different responsibilities, which appeared
slightly different than the roles shown in Table 4.2. For example, the project manager
was formally listed as a program manager, one was a technical project manager, one
was responsible for the designers, and one responsible for the advisors. Underneath
there were developers, designers and advisors. However, the project manager stressed
that this was not the way they worked in practice. The organizational structure of

4.1 Overview of the Project

59

the project was described to have become relatively flat and rather dynamic. Little
emphasis were put on the different roles and responsibilities, other than those de-
scribed in Table 4.2. For that reason, the project manager argued that a good graphical
representation of the organizational structure was difficult to reproduce. For example,
there were informal team leads that emerged depending on what they were working
on at any given time. Individuals would often take on such informal roles for a period
of time in one team, while they did not inhabit the same lead role in another team.
The dynamic and informal distribution of roles not only involved leadership roles but
also other roles. For example, a designer who had much previous experience working
with agile and lean took on what could be described as an informal facilitator role. In
Table 4.2, an overview of the various roles in the project at the time of the interviews
is presented.

Role Main responsibilities and tasks

Business responsible | Responsible for the project on the customer side

Project manager Project management, organization and facilitation of the teams,
project method and method tailoring, customer advisor and han-
dling external relations, organizational and cultural development
in collaboration with the customer, focusing on continuous opti-
mization of development and operations

Interaction designers | Typical interaction design activities, such as defining the behavior
of the solutions in which the end user interact. Worked closely with
the designers

Designers Worked mostly with graphical design tasks, defining how solutions
should look visually. Worked closely with the interaction designers

Developers Development activities and other tasks associated with the manage-
ment and operation of the IT systems. Some developers had special
skills and worked more on certain areas than others

Business developers | Internals from the customer who worked with the supplier teams
on a daily basis. Responsibilities included giving input on how tasks
should be prioritized, give feedback to the teams on completed
tasks, and participate in testing and verification. Some business
developers were referred to as "product owners" within the various
channels

Advisors Representatives from the supplier Alpha who worked with business
management consulting activities on behalf of the customer. The ad-
visors did not work with the same technical tasks as the developers
and designers, however they were considered part of the team

Table 4.2.: Overall role distribution in the project

Figure 4.1 gives an impression on how the project was organized on an overall level
in relation to the customer’s business at the time when the interviews were conducted.

60 Chapter 4 Results

Although formally separate from the customer organization, the project were largely
embedded as part of the customer’s daily business activities. The omnichannel forum
took place as a weekly meeting, which consisted of key people from supplier Alpha
and the customer. This could be regarded as a steering committee that made higher
level decisions for the digital channels.

Business
(customer)

ﬂ [

Omnichannel
(steering committee)

ﬂ [

Functional teams (3)
(development and operations)

Figure 4.1.: Overall project organization

The project could in several dimensions be considered successful up to the current
point. All the informants gave the impression that the agile approach worked very
well, and had only improved since the start of the project. Two informants who had
much experience with agile projects in the past even stated it to be the best project
they had ever worked.

4.2 The Use and Tailoring of Agile Methods and
Practices

In the following sections, the main results of the study is presented. The first section
focuses on the results on the approach to agile method tailoring in the project. After
this, a section is dedicated to results on agile practices that were deemed significant
for enabling a high level of agility and continuous software delivery in the project.
This includes how and why these were used as well as how tailoring took place for
practices.

4.2 The Use and Tailoring of Agile Methods and Practices

61

62

4.2.1 Approach to Agile Method Tailoring

The following results contains the key findings related to the agile method tailoring ap-
proach. It should be noted that the results across each section are largely coherent and
somewhat overlapping, but that the headings indicates the core findings within each
section. Within the sections there are also some information about the agile method
and other important details which is not only related to the tailoring approach.

Flexibility in the Combination of Agile Practices

The project method was composed of several agile practices. Several of these are found
in similar formats in various agile methods. The fact that the method was combined
this way made it distinctive to the project, and not directly classifiable as a specific
agile method. In an attempt to classify the method in the project, the informants were
asked about which agile method it was most related to. The consensus seemed to
be that it was closest to Kanban, but it was stressed that they they did not strictly
confine themselves to nor define it as a particular method. Some different answers
were nevertheless given to this question depending on who was asked. A developer
believed that the method could be described as using a Kanban approach, but also
believed that DevOps was descriptive of the method. However, others believed that
DevOps was an important part of it, but not necessarily that it was descriptive of the
overall method. This might have been because DevOps was very related to important
software development and operation practices, but not as much for design work or
other key project activities. The development model in the project could best be
described as flow-based, where tasks to be done were visualized and managed in
Trello! boards, which is a web-based tool for creating digital Kanban boards. The
method thus had few similarities with Scrum, which uses an iterative and time-based
(i.e. sprint-based) development model. Scrum also contains many roles, artifacts and
activities that were not used in the project. It was apparent that some practices found
in Extreme Programming (XP) were used in the project. An interesting observation
was that, despite the method having similarities with methods such as Kanban and XP
these did not seem to represent a boundary or framework for the tailored method.
The fact that the method was agile was the most important: "We do not talk about
[which method we use]... We only use the common notion that we are agile" (project
manager). Overall, it was clear that the suppliers were not bounded by specific agile
methods and was very flexible in that manner. An interaction designer suggested it
may be difficult to name the method as a result.

Thttps://trello.com/

Chapter 4 Results

Tailoring Based on Past Experiences

It was apparent that the method was generally only classified as agile, and that they
used various agile practices according to their needs. This can be illustrated in the
following statement: "...I perceive that you want a description of the method we have.

While in my reality, I have a toolbox which I use as needed" (interaction designer).

Several used the term "toolbox" to describe this approach. In practice, this meant
method tailoring was done by adding, changing, and removing practices throughout
the course of the project. It appeared that this was mainly experience-based: "What
do we really need?... When you have worked in many different projects, you inspect
what you did well there. What you need depends on the project. So, you are completely
dependent on adopting agile methods that way; a toolbox where you can use what you
need" (developer). Several statements indicated that the tailored method was based
on experience, and that they deliberately did not choose one or more known agile
methods to stick to by default. A developer who had worked with more specific agile
methods in the past did not experience the lack of a clear method framework as
something negative in this project: "I have not really experienced that there is anything
negative in not standing by a specific method" (developer). As was mentioned, the
general consensus was that the method and way of working in the project worked
very well at the time of the interviews.

Focus on Minimum Overhead and Formalities

The project manager thought a good description was that they worked according to
agile principles: "I like to think we are working according to agile principles, I think that
is a good description. And then this also includes reducing scope, and making sure we get
rid of the technical barriers that prevent us from working in an agile manner. When you
resolve these challenges, it somewhat comes into place by itself" (project manager). This
brings us to one important principle they worked towards, which was to maintain
"as little overhead as possible in everything they do" (project manager). This idea also
applied to the method. They wanted a method that included only the necessary, and
which they experienced to give value to the project. In this context, several informants
pointed out that the method consisted of few formal mechanisms and rules, which was
deliberate so that they could be more adaptive and make adjustments to the way they
worked as needed. The project manager thought this was an important factor in the
project: "What I think works well is that we constantly make changes depending on what
we are working on. I think we are quite adaptable" (project manager). It was however
considered necessary for the project manager to give the teams some guidelines, and
especially since the number of people involved in the project increased. However, to

4.2 The Use and Tailoring of Agile Methods and Practices

63

64

strike a balance was still important: "... that is the key. To constantly look for a balance
between how little of this overhead’ we can do without, and what we need to introduce
to maintain control. We must always make sure we are on that limit, and that we do not
introduce mechanisms that are unclear and unnecessary" (Project Manager).

An interesting observation from the analysis was that the informants emphasized that
there were few "rules" in the method, which also reflected what the project manager
said about reducing overhead. A Scrum approach had been used in a previous
development project in one of the digital channels, where three of the interviewed
developers had worked. A developer said that "in [the method of a previous project]
compared to now we have very few rules, few definitions" (developer). Similar statements
also appeared in interviews with other informants. Two developers indicated that
little regulation and formalities also meant that they could spend more time on actual
product development, and that the speed of development had increased considerably
over the previous project. Although formal regulations and definitions in the method
were few, the teams did adhere to a number of practices to guide development and
design in the project. The practices that were arguably most predominant in the
overall method and used by all of the teams, including both developers and designers,
were:

Kanban boards

Daily stand-up meetings (per team)

* Common stand-up meetings (weekly stand-up common for all teams)

Self-organizing and cross-functional teams

These and other practices will be presented in Section 4.2.2. Through observations
and analysis of the project it was apparent that the teams were largely flexible in
how they used practices. Stricter regulation seemed to instead be found in the more
technical development practices, and not so much in management practices or the
overall method. An interaction designer referred to these as "micropractices": "... [the
way we work] is less square, but it is very regulated. But the regulations are in how to
check-in code, how to write things, how to build things... and not so strictly in how we
work in the room or talk to each other. So it is more for 'micropractices’... there’s a lot of
regulation, but not so many rituals and such" (interaction designer).

Chapter 4 Results

Continuous and Informal Tailoring

Product development and innovation took place continuously within and across the
channels. It was evident that the teams were driven by a goal of creating as much
value for customers and end users as possible. The findings suggest that tailoring was
required to maintain good productivity when dealing with many different tasks of
different character and size. In this context, the project manager and an interaction
designer stated that it was important not to get stuck in old habits, but rather to focus
on continuous evaluation and improvement also in methodological aspects. Thus, a
notable finding was that method tailoring was a continuous and conscious activity in
the project. However, it appeared it was mostly done in an informal manner based on
emerging challenges or needs, and not as a formal and structured process or activity.
A designer put forward that "the method evolves when things do not work" (designer).
From the analysis of the interviews it seemed evident that the teams had a mentality
for open dialogue and will to improve in the project environment. It could seem that
this decreased the need for other formal measures like retrospective meetings: "It is
easier to just talk about it at once and fix it, during stand-ups and ongoing... If there
is something that slow us down, we try to fix it at once. But of course, this require an
environment where this works. If the environment was not suitable, then it would likely
require us to have a retrospect meeting occasionally" (developer). Such a culture in the
project environment was something the project manager figured was important to
promote: "...wherever possible, I would rather promote open dialogue and build on the
cultural aspects so that people actually dare to bring up things along the way; no, we
should not do that, we have to do it like this™ (project manager).

Purposeful Tailoring with Frequent Feedback from Teams

The informal form of method tailoring took place through discussions between teams
and management, either within meetings or in the open landscape office. Implementa-
tion of major improvement measures and tailoring of the overall method was described
as being first and foremost the project manager’s responsibility, but was often based
on suggestions that came from others in the teams: "It is the project manager that
[tailoring] depends on the most... But the wishes or the changes do not come just from
him. Suggestions are often done by us, and then he implements it" (developer). Several
informants pointed out that there were some particularly committed and experienced
individuals in the project who were more actively involved in discussions regarding
the method and which adjustments should be made. The project manager argued the

same: "...those who are committed and who cares about it are usually those who are
involved in those discussions" (project manager). The informants told that the overall

4.2 The Use and Tailoring of Agile Methods and Practices

65

66

competence and commitment of the people involved in the project was very high, and
that many had much previous experience with working in agile environments. On
occasion, suggestions had been made by individuals to the project manager based
on their own experience and knowledge which resulted in changes in the method
which other informants experienced as improvements. An experienced interaction
designer were among those who were engaged in method improvement discussions
on a regular basis: "It is not like everything we do is cyclical and we work on the same
things over and over... A lot of what we do here therefore involves continuously tailoring
how we are organized and what we do, to the tasks we are doing. There is a lot of
meta-talk between me and the project manager to reflect around how we are doing
things, and what challenges we have with good or bad habits" (interaction designer).
For the project manager, an important responsibility was to continuously evaluate
and optimize the agile approach in the project by reducing overhead. The project
manager emphasized that an important and related task was then to develop the right
organizational culture and create the right prerequisites for an agile environment in
collaboration with the customer.

Ad hoc Tailoring on the Team Level

While the project manager implemented the more major changes to the overall
method, there existed much freedom and flexibility in how the teams worked. The
teams were relatively free to choose how they used some of the agile practices.
For example, the teams made many individual adjustments of their use of Kanban
boards. Thus, ongoing ad hoc tailoring was done on the team level without the
project manager being directly involved. As mentioned, it was however important
that some guidelines were given which the teams followed. This was necessary to

!

ensure some overall governance: "...there is a high degree of freedom in how to do
things in different teams, but it is important that we have some similarities" (project
manager). For example, although there were some flexibility in using Kanban boards,
some directions were given by the project manager on how the boards should be set
up. As was mentioned, all teams and all team members committed to the use of the
four predominant practices Kanban boards, daily stand-ups, common stand-ups, an
self-organizing and cross-functional teams. Thus there were important similarities in
the method across teams. More on the use and tailoring of practices is presented in

the following section.

Chapter 4 Results

4.2.2 Agile Practices and Tailoring of Practices

From the data collection and analysis it was found that the method was composed
of a variety of agile practices. In the following section, I will focus on the prominent
practices used as part of the agile method. Practices may here be regarded as activities,
principles, techniques, tools, and the like, that the teams actively and systematically
used when executing their work.

A form containing a list of practices was used as a basis for revealing what practices
were used in the project. The survey was done during the interviews, and was based
on the list of agile practices from a reliable agile and lean usage survey (Rodriguez,
Markkula, etal.,, 2012). The same list of practices was presented in the theory
chapter (Section 2.2.4). The form used during the interviews is found in Appendix
A.2. A selection of informants participated in the survey during the interviews and
explained their choices. Not all informants participated in this as the purpose was not
quantitative data collection, but to get an initial overview of practices as a starting
point for further qualitative data collection. More in-depth questions regarding how
the practices were used and tailored was asked during the interviews. It should
be noted that the list of practices included in the survey is not a complete list of
existing agile practices. Therefore, qualitative data collection was necessary to identify
whether other prominent agile practices were also used in the project.

A notable finding was that many of the agile practices from the survey were used in the
project. 11 out of 16 practices were extensively used in the project according to the
informants, while 5 of them were used very little or not used. Although many of the
practices from the survey were used, these were often part of a more comprehensive
practice and not necessarily recognized by the same name in the project. An overview
of the practices in the survey and the corresponding practices in the project are
presented in Table 4.3. This also includes some of the additional and related practices
that were prominent, but not covered by the survey.

Practice in survey Practice in project

Prioritized work list ~ There was extensive use of Kanban boards in the project.
Contained backlogs where tasks were prioritized and other
columns to visualize status on individual tasks. Primary tool
for visualizing and managing work in the project

4.2 The Use and Tailoring of Agile Methods and Practices

67

Practice in survey

Practice in project

Daily stand-up
meetings

Each team had separate stand-up meetings every day before
lunch. However, weekly stand-ups common for all teams
were also conducted (i.e. common stand-ups)

Active customer
participation

The supplier teams were located in the customer’s premises.
Business developers from customer were involved daily in the
development. Customer representatives and other stakehold-
ers were also involved on a daily and weekly basis through a
number of other meetings and arenas

Frequent and
incremental delivery
of working software

Changes and new software features were deployed several
times a day to production and testing environments in an
incremental fashion. Thus, continuous and incremental deliv-
ery of working software is arguably more descriptive for this
project

Automated builds

The teams had developed and configured a system that al-
lowed for automated building of code into working and de-
ployable software. This was part of the DevOps and Con-
tinuous Deployment practice in the project, which made it
possible to deliver changes and new features quickly to pro-
duction

Continuous
integration

This is a given, since it is a prerequisite of the Continuous
Deployment practice in the project (see Automated Builds).
Code integration processes were automated and performed
more or less continuously by the developers

Refactoring

There was a continuous focus on improving existing applica-
tions in the project to make them better and easier to manage
and operate. This meant that the developers spent much time
rewriting and improving code, but also system architecture,
underlying services etc.

Collective code
ownership

An important principle was that although the suppliers op-
erated as multiple teams working on different tasks, they
viewed themselves as one whole team with common goals
and responsibilities. Shared responsibility also applied to
development, where developers had a shared responsibility
for maintaining and developing the software systems

Chapter 4 Results

Practice in survey Practice in project

Self-organizing teams The teams in the project were largely self-organizing. De-
velopers and designers made many decisions on their own.
They were also to a large extent cross-functional. Each team
was organized so that they possessed the necessary skills to
execute their tasks

Unit testing The developers did quite a bit of unit testing. Although unit
testing specifically seemed to not be done as extensively as
some of the other practices. Testing in general was an ongoing
activity in various test environments which the developers
could set up quickly and on demand

Pair programming The developers frequently worked together in pairs on the
same code. This was also observed during my visits to the
premises. However, this was not done all the time, and
programming was primarily done individually

Table 4.3.: Overview of identified agile practices from survey and additional practices (Survey
in Appendix A.2, based on Rodriguez, Markkula, etal. (2012))

It is apparent from Table 4.3 that the list of practices in the original survey were
not the only practices used in the project. For example, the teams used weekly
common stand-up meetings in addition to daily stand-up meetings. Several of the
practices were also part of a more comprehensive practice involving other practices.
For example, priority work list was only part of the use of Kanban boards. The teams
were not only self-organizing, but also largely cross-functional. Some practices also
overlapped, such as active customer participation which involved a number of arenas
such as daily stand-up meetings.

An interesting finding from the analysis and observations was that practices were
also tailored to the project context. The needs of the teams continued to change
throughout the project based on changes in tasks and situation. This sometimes
resulted in adding, changing, and removal of practices.

In the following sections, the results on the most prominent practices in the project

from Table 4.3 and the analysis of the qualitative data is presented. The following
headings were chosen to be appropriate: Kanban Practices, Self-Organizing and Cross-

4.2 The Use and Tailoring of Agile Methods and Practices

69

70

Functional Teams, Stand-up Meetings, Active Customer Participation, Continuous and
Incremental Delivery of Working Software, DevOps Practices, and Other Practices.

Kanban Practices

The perhaps most fully adopted agile method in the project was Kanban. This involved
extensive use of the web-based tool Trello?, which can be used to create digital
Kanban-like boards. The boards were mainly used to visualize work and manage the
flow of individual tasks through different phases, limit work-in-progress (WIP), and
measure flow using a cumulative flow diagram (CFD). Despite being clearly inspired
by Kanban, they did not formally confine themselves to Kanban’s rules: "... we have
not implemented it as a Kanban project, because it is not. Like, deliberately. Because
when adopting Kanban as a method, you have three rules you commit to" (developer).
The Kanban boards were portrayed as the centerpiece of the agile method: "It is very
central. In a way, everything revolves around [the Kanban boards]. It is where you
get all status, all flow, and what all the planning is centered around. The tasks to be
done and when to do them" (developer). All the teams in the project used Kanban
boards on a daily basis. All the tasks in the project were placed in boards to give
everyone a visual overview of work and status: "I believe everyone is comfortable that
it is the way one can visualize what people are working on and the status of tasks, and
when it should be finished" (developer). The suppliers had also involved the customer
in the use of the digital Kanban boards. Thus the business developers could add,
modify, and follow progress on tasks. Some business developers were referred to as
the product owners, responsible for backlogs in their respective channels. However,
both business developers and the teams added, modified, prioritized, and verified
tasks in the boards.

The teams created multiple boards for different solutions and purposes. For example,
in the Web channel they had one board for management and operations tasks and
another board for a new solution they were working on. The division into multiple
boards also applied to the other channels. For very large tasks, they were broken down
into many smaller tasks and assigned a respective board. An important principle was to
break down tasks into as small work packages as possible. This was important in order
to reduce the scope of what was being worked on at any given time. Breaking down
work into small and manageable tasks made development less resource demanding in
general, and tasks could be completed, tested and delivered faster. According to the
project manager, the breakdown of tasks led to a normalization of task sizes into small
and somewhat larger tasks in practice. This again led to a stable burnrate in number

2https://trello.com/

Chapter 4 Results

of tasks completed, which they considered to be accurate enough to base estimates on.
However, the teams did not do estimation of individual tasks, but informally reported
rough estimations on when they expected overall solutions to be finished. This was
perceived to save time and increase productivity in general, and was possible due to a
high level of trust between the teams and the customer.

A board contained several columns where short descriptions of tasks were placed
in the form of digital "cards". The project manager gave the teams some guidelines
for how the boards should be set up so that data could be exported from the boards
for measuring flow and progress. Beyond these guidelines, the boards could contain
various columns and be configured in different ways. Progress was measured in
the number of tasks flowing through the different columns and visualized using
a cumulative flow diagram (Figure 4.2). This was a useful way for the project
manager to keep track of the overall flow in development, and whether there existed
any bottlenecks in the development process that required further investigation or
measures. The following columns were typically found in the boards:

* Backlog: Contained the tasks to be done. Tasks were identified and placed here
by the customer, but also by the supplier teams. The teams typically broke down
the tasks into smaller and more manageable tasks.

* Ongoing: When a task was assigned to someone and started, it was typically
moved to the "Ongoing"-column. The teams had decided on limits for how many
tasks that should be ongoing at once, thus limiting work-in-progress (WIP). For
example, one board had a limit of five simultaneous tasks.

» Test: Completed tasks were typically placed in a "test"-column. This implied
that the task had been implemented in terms of code and/or design, and were
ready to be tested.

* Ready for release: Tasks were moved to "ready for release" after testing. Most
tasks awaited verification by the business developers before they were deployed.
However, many tasks were also deployed without direct verification from busi-
ness developers if the developers were confident that the tasks were ready.

* Done: When tasks were verified, or considered by developers to be ready, they
were typically deployed to production and placed in a column for completed
tasks.

An interesting finding was that the teams frequently made adjustments to the Kanban
boards. The boards had been through several iterations on how they were used and
configured. An interaction designer was one who pointed this out: "Trello has been

4.2 The Use and Tailoring of Agile Methods and Practices

71

72

800 B SUM of Backlog
M SUM of Ongoing
SUM of Test
M SUM of Ready for release
M SUM of Done

600

400

200

0
01.11.2016 01.01.2017 01.03.2017 01.05.2017 01.07.2017 01.09.2017

Figure 4.2.: Cumulative flow diagram from the project

through many iterations in how we use it. With regular reflection about what we should
do... There is a lot of discussion about how many and what columns we should have,
and what should be on the cards" (interaction designer). For example, a board for
management of existing solutions could look quite different than a board for a new
solution and with regular changes. New solutions with dedicated boards typically
had a "MVP"-column (minimum viable product), in addition to a "backlog" column,
where high priority tasks were placed. For new solutions the goal was to prioritize
and complete the most important tasks in order to have a working MVP deployed
to production as quickly as possible. The idea was that a 70% finished solution was
worth more in production where they could further iterate and get feedback from
stakeholders, rather than attempting to create a 100% solution in a test environment.
The project manager pointed out that adjustments of the boards were an ongoing
activity: "... the nature of the tasks we are working on right now are large in scope, or
difficult and unmanageable, which you never really completely finish... this always starts
a discussion whether we have the right configuration in our boards. And then we have
made many adjustments. Some adjustments exist for a while and then we go back to a
previous configuration. But, of course, there are those who are committed and care about
these things who are involved in these discussions" (project manager). The nature of the
tasks had a major impact on how the boards were set up. Changes in circumstances
in the project also led to adjustments of the boards. For example, if a product owner
(i.e. business developer) in a channel was unavailable and unable to verify completed

Chapter 4 Results

tasks or answer questions, one team had set up a separate "parking" column for the
tasks that were unclear. The teams generally challenged the tasks that were added to
the boards if they were in doubt about the value or usefulness of the feature: "...if we
think this gives little value for the user, we move it to the "parking" column. Normally,
we [the team and business developer] will discuss these things during stand-ups. But
we found that if they are unavailable and cannot participate, then we have to put it
somewhere in the meantime" (developer). As one informant mentioned, this seemed
to contribute positively to the overall flow and overview of tasks in the board. The
fact that the Kanban boards were digital made it easy to reconfigure the boards to
changing needs. Figure 4.3 illustrates a typical Kanban board layout from the project,
and how teams could configure the boards by adding additional columns in between
the baseline columns for improved task flow.

Additional custom columns Additional custom columns
for a more optimal flow for a more optimal flow
Backlog Ongoing Test Ready for Done
release
Task flow >

Figure 4.3.: Sample configurable Kanban board layout from the project

Self-Organizing and Cross-Functional Teams

During the interviews and observations, participants stressed that although they were
three operative teams at the time, a principle of being one whole team was important.
Statements suggested that this was important to prevent the teams from getting rooted
in the channels, and enable utilization of resources across areas. A developer argued it
was important "to have people in the team as a whole who can work in many areas, where
they are needed the most. This creates more flexibility" (developer). The project manager

4.2 The Use and Tailoring of Agile Methods and Practices

73

74

argued that the organization of teams could best be described as "...one team of internal
dynamic groups" (project manager). In practice, the teams could be reorganized as
needed to utilize resources and create self-organizing teams: "We are divided into
different teams, which are not constrained boundaries on our part. We want as little
overhead as possible, so it it very dynamic. We establish a team that works on something
for a period, and then break it down again. We try to achieve what you elsewhere define
as fully independent autonomous teams" (project manager). The teams were also to
some extent cross-functional and consisting of the skills needed to execute their work
independently. However, the teams seemed to neither be fully self-organizing nor
fully cross-functional at the time of the interviews. Creating more self-organizing and
cross-functional teams was an ongoing and important improvement process according
to informants.

One of the informants described the teams as semi-autonomous teams. At the time
of the interviews, the teams managed most of their daily work and followed up on
tasks on their own. A developer argued that the consequence of this was that the
teams had "much freedom, but also great responsibility" (developer). In order for the
teams to become more self-organizing, several argued it was necessary for the teams
to obtain more decision-making authority. The project manager argued that this was
necessary to improve in the future: "[if tasks are decided at a high-level] and arrive at
team level, the [tasks] are regarded a ’feature’ and you lose understanding of why. At
the same time, you lose the feeling of ownership that is necessary in order for the team
to actually innovate and improve the solutions continuously. So for our part, it is very
important to move that responsibility down to the teams" (Project Manager). This was
an ongoing process in close collaboration with the customer. The informants argued
that the teams were more self-organizing and cross-functional than before, but that
more improvement work remained. The project manager stated that this involved

n

a large amount of organizational and cultural development: "...we have come to a
point where we can say we have more functional teams, but it is an ongoing process right
now. There is a lot of organizational and cultural development involved in this" (project

manager).

Another notable finding was that the teams had evolved from being organized mostly
based on roles, to becoming more cross-functional and operate more across areas.
Earlier in the project, all interaction designers and graphic designers were organized
into one team separate from the developers. At the time, the design team worked
across the digital channels, while developers worked as teams in separate channels.
A designer argued this to be nonproductive. Design decisions had to be made by
everyone in the design team, which consequently led to time-consuming discussions

Chapter 4 Results

to reach consensus. This led to a splitting of the design team and merging with
the development teams. Thus, the teams became more cross-functional and both
design and development decisions could be made separately within each team for
the solutions they were responsible for. The designer experienced that, as a result,
decisions were made much faster, which in turn led to more agility: "Now we manage
the channels separately. In order to be a little more agile, really. Now I have an area of
responsibility where I can make decisions which makes the process faster. Instead of having
to address all issues in plenary and reach consensus all the time" (designer). Figure 4.4
illustrates the overall development towards more self-organizing and cross-functional
functional teams based on the analysis of the collected data.

Channel Channel

Developer team Cross-functional and

S self-organizing teams

H & Cross-channel
=] resource utilization
T — through dynamic
% Channel Channel teams and a whole

team perspective

Cross-functional and

Developer team self-organizing teams

Team development over time

Figure 4.4.: The over time development towards more self-organizing and cross-functional
teams

The teams occupied people with much previous experience working in agile environ-
ments. Informants perceived the competence level of both design and development
personnel to be above average in the project. The informants argued that the respon-
sibility and trust they were given by management and the customer led to a sense of
ownership of the work and that people were very committed. These were pointed out
as important factors for autonomy in the teams. For example, the project manager said
that he did not "...need to follow up on each individual because they are so self-driven
and skillful. T have experienced projects with a different competence mix... And then I
have had to introduce more defined mechanisms and arrangements for far smaller teams
than this in order to utilize capacity" (project manager).

Stand-up Meetings

All the teams participated in both daily and weekly stand-up meetings. The two
arenas were used for different purposes, and were conducted in somewhat different

4.2 The Use and Tailoring of Agile Methods and Practices

75

76

formats. In addition to data gathered through interviews, these arenas were observed
during my time with the case. In total, two daily stand-up meetings and two common
stand-up meetings were observed.

Daily stand-up meetings were considered a very important arena for coordination
within the teams. A notable observation was that collocation in the customer’s
premises enabled business developers to participate in the daily stand-up meetings.
Several informants pointed out that daily stand-ups were very important for adequate
customer involvement. This was particularly because the business developers and
other customer representatives were located in another part of the premises. This
separation made scheduled meetings still a requirement, despite a short distance to
the customer representatives: "...we end up being a bit separated. And, as a result, we
resort to stand-ups and other meeting activities with the customer" (developer). The
meetings were held for each team in small rooms and the meeting took place while
standing. This was done deliberately to keep the meetings short. One observation I
made was that the daily stand-up meetings were very centered around the Kanban
boards. During the meetings, the team discussed the various tasks and their status,
assigned people to tasks and whether they should be moved to other columns. They
also made quick changes in both the board configuration and in tasks for multiple
boards. The tasks that were unclear could be addressed with the team and business
developer: "We mostly focus on the boards and discuss the tasks we need feedback on, or
need to have explained a little more" (developer). Daily stand-ups had been through
several adaptations: "...having stand-up is really useful. But how much stand-up should
we have? You can not have stand-up meetings for everyone all the time, and thus we
have tried different approaches" (interaction designer). An interesting remark was
that stand-ups were also referred to by informants as an arena where discussions

'

on potential improvement measures for the method took place: "...changes [to the
method] are also proposed both during stand-up as well as ad hoc afterwards" (project
manager). The daily stand-ups were supposed to be timeboxed to 15 minutes and
facilitated by a representative from each team. However, the meetings seemed to be
in held in a relatively open format. Discussions about many topics and issues, such as
the ones described above, could therefore be brought up. This, and the fact that the
customer was involved, was perceived to often make the daily stand-ups longer than

intended.

Once a week, the suppliers held what they called a common stand-up meeting. This
meeting involved all persons from the suppliers including advisors, thus it was quite
crowded. The customer was however not present. The purpose of this meeting was
to synchronize as a whole team. I learned that the common stand-ups had been

Chapter 4 Results

introduced later on in the project based on an emerging need to be able to stay more
synchronized and coordinated. This was in multiple cases mentioned as a case of
method tailoring, in which the teams had assessed which practices were useful and
what they needed: "... we do [practice assessments] all the time; ’does this give any
value, do we really need it?” The common stand-up is something that was introduced
later, because people wanted a more complete picture" (developer). Another developer
described the introduction of common stand-ups as a way to stay more focused on the
principle of being one whole delivery team with common responsibilities: "We started
off with only normal stand-ups... but then we recognized a need to become one whole
delivery team, across apps and advisory and so on. And as a result, the common stand-up
was introduced. We have an idea and a wish that everyone can deliver on everything.
And that is why we use common stand-ups, so we can share knowledge and insight"
(developer). Common stand-up meetings were formally implemented by the project
manager. The project manager commented that in the near future when they planned
to scale up with more people and teams, they would likely need to change the format
of the meeting to make it more manageable. He further stated that such assessments
of potential method tailoring was something that he continuously considered.

Figure 4.5 summarizes stand-up meetings as having many important functions in the
project. More on the role of stand-up meetings for customer involvement is presented
in the next section.

Stand-up Meetings

Coordination Discuss issues

and improvement
measures

within and across
teams

Daily
customer
involvement

Figure 4.5.: Important functions of stand-up meetings in the project

4.2 The Use and Tailoring of Agile Methods and Practices

77

78

Active Customer Participation

The customer was involved on a daily basis in the project through several arenas,
including daily stand-up meetings. Several informants argued that collocation was
essential since the project involved continuous development and innovation of all of
the customer’s digital channels and corresponding products and services. Thus, the
project was to a large extent driven by a constant stream of changing requirements
and new tasks. The high rate of change and high degree of innovation in the project
made it very important to work closely with the customer in order to receive frequent
feedback and adhere to the customer’s goals: "...we always want feedback on what we
are doing, and whether we are working in the right direction" (developer). A developer
argued that "there is nothing that beats oral dialogue... So we are completely dependent
on staying here and work closely with the customer to understand the customer and
know what they actually need and what their goals are" (developer). However, the
distance between the teams and the customer representatives created a barrier to
continuous oral dialogue with the customer. This could have been improved by having
the business developers sit closer and work as a part of the teams: "... [the business
developers should] sit together with us, optimally. So they know what is happening all
the time, and prioritize tasks together with us to ensure that we always work on the
most important tasks" (developer). During my observations, the business developers
occasionally came along and discussed tasks and gave directions to team members
also outside of meetings.

To ensure adequate customer involvement and compensate for distance, multiple
arenas had been introduced. An interaction designer described that: "...we have a
need to stay updated on what is happening. And the first thing we [the development
teams] do is to sit together. One challenge is that even though the customers sit down the
hallway, they are still far away. It would have helped if they were five meters away. But
that is why we introduce other measures, such as stand-ups, to make sure they are in
sync with the development teams" (interaction designer). Many coordination arenas
were identified during the interviews, and the customer was involved in many of
these. Without going into particular detail, among arenas that involved the customer
were:

* Daily stand-up meetings
* Omnichannel forum (weekly steering committee meeting)

* Ad hoc meetings

Chapter 4 Results

 Online chat using Slack®

Several informants stated that they experienced a very high level of trust between the
customer and the teams in general, which they believed to have emerged partly due
to the team’s ability to deliver good and consistent results. The informants believed
that the trust in turn lowered the need for formalization in the involvement of the
customer and in the method in general. This in turn seemed to contribute positively
to agility and productivity according to some statements of the informants.

Continuous and Incremental Delivery of Working Software

Frequent and incremental delivery of working software is a fundamental principle for
agile software development in general. In this project, working software was delivered
in a continuous and incremental fashion, and thus more frequent than in many agile
contexts. Note that this is not a single independent practice such as stand-ups, but a
fundamental practice which depended on the overall combination of agile practices in
the project. This section presents some general findings regarding what continuous
software delivery entailed in the project.

Most tasks were identified, developed, tested and deployed to production consec-
utively, which in practice meant that changes and new functionality were quickly
available to end users as well as to customer representatives. As previously mentioned,
new solutions entailed development of a working MVP (minimum viable product)
before it was deployed to production where iterations continued in terms of small
increments. Everything that was deployed to production was not necessarily made
available to all end users right away, but to segments of users or only for internals
for them to test the solutions. A developer exemplified this for a new solution they
worked on in the Web channel: "...we implement the [solution] incrementally and
deploy it to production along the way, but we do not activate the services and so on.
They will not to be visible to most users, but we develop it and deploy it all the way
to production" (developer). Over time, the deployment rate had increased in the
project until the point where working software was deployed several times a day to
the different solutions and systems in the digital channels: "...we [deploy] continuously,
multiple times a day, every day" (project manager). One of the advantages of delivering
continuously to production was that feedback from both the customer and end users
could also be obtained continuously through metrics in the systems, through customer
service, daily customer involvement, and so on. This created opportunities for the
teams to handle changes and make improvements to the systems on a continuous

Shttps://slack.com/

4.2 The Use and Tailoring of Agile Methods and Practices

79

80

basis, and deliver these quickly back into production: "It is all about getting the first
version released into production as fast as possible, because that is more important than
delivering a full-fledged product. Then you can get feedback quickly on whether you have
made the right choices. And if not, we can make corrections much more quickly than
before... You no longer receive surprises like you did in the old days when everything was
delivered and you thought you were done" (developer).

A couple of technical agile practices were essential to enable quick delivery of soft-
ware features into production. This included automation of code integration, builds,
and deployment through the practices Continuous Integration (CI) and Continuous
Deployment. These could be understood to be part of the DevOps practices in the
project, which is further presented in the following section.

DevOps Practices

One developer described the method in the project as "agile with DevOps". We know
from research (Section 2.2.3) that there is seemingly still no agreed upon definition
of DevOps to date. In this project they seemed to regard DevOps as a set of practices
and an important part of their agile method. It was also regarded a prerequisite for
continuous software delivery. Thus, very much in line with views on DevOps in current
research.

Some time after project start, a deal was made with the customer that the teams would
take over the responsibility of what was previously external operation of all systems.
DevOps practices were introduced as the supplier teams gradually moved existing
solutions to a cloud-based platform. The chosen cloud service was Amazon Web
Services (AWS), where they used a Platform as a Service (PaaS)* solution. The choice
of PaaS removed the need for the teams to manage the underlying infrastructure like
hardware and operating systems. As a result, the developers could handle deployment
and operation tasks on their own as a sideline activity, while still devoting most
of their time and resources on applications development. There were no longer a
distinction between developers and operations personnel, hence DevOps: "There is
no operations personnel, no one occupy that role... It is DevOps" (project manager). An
important opportunity made with DevOps, and the associated merger of development
and operation, was that the developers could introduce a Continuous Deployment
practice by automating the processes all the way from development to execution.
This ultimately made software delivery faster from a technical standpoint. Identified
DevOps practices in the project were the integration of development and operations,

“https://aws.amazon.com/types-of-cloud-computing/

Chapter 4 Results

automation, monitoring, and measurements. Moreover, an interesting remark was
that the development and operations process on an overall level seemed to be largely
similar to the DevOps approach illustrated in Figure 2.5 in the theory chapter (Section
2.2.3).

It was argued that DevOps and related practices led to many other advantages,
such as enabling the developers to better handle application problems. The project
manager introduced the principle "you build it, you run it" in this context: "...we
put much emphasis on the idea ’you build it, you run it’, which we believe is a very
important principle. We are much better rigged at handling application problems than
operations personnel that do not know the application at all" (project manager). A
developer believed that DevOps and Continuous Deployment made it possible to
utilize the benefits of having very frequent feedback available through active customer

involvement.

Other Practices

There was also extensive use of the practices pair programming, refactoring, and
collective code ownership in the project. These practices are often associated with
the agile method Extreme Programming (XP). The purpose of these are typically to
improve code quality, as was described in the XP literature in Section 2.2.2. Pair
programming was used when the developers found it useful and convenient, but not
consistently at all times as recommended in XP. Moreover, the informants did not
specifically refer to XP as a starting point for adopting these practices. It could seem
that they were used on the basis of past experiences.

The teams had to some extent used retrospectives earlier, which is also found in Scrum
(Section 2.2.2), but stopped using it over time. Whether they should continue using it
or not was an ongoing discussion. As mentioned, the teams seemed to have an open
dialogue and a mentality in which they solved problems in other available arenas.
The project manager stated: "Retrospectives is still a discussion sometimes... I really
believe that retrospectives may be important. At the same time, I see a challenge using
retrospectives for the entire team because we are so many. What we do now is that
we have a very open dialogue in the stand-ups. So that is primarily where we bring
up these things. And additionally, I spend much time walking around and talking to
people" (project manager). The project manager commented that he did consider
implementing other approaches to retrospectives in the future, perhaps for each
self-organizing team.

4.2 The Use and Tailoring of Agile Methods and Practices

81

Overall, these findings again confirms that practices were both tailored and that
practices from other agile methods than Kanban and DevOps were used.

82 Chapter 4 Results

Discussion

This chapter will focus on discussing the results against the problem statement with
focus on the underlying research questions. This is done by interpreting and contextu-
alizing the results by using the scientific knowledge base provided in Chapter 2. The
last two respective sections of this chapter includes evaluations of the implications
and the limitations of the research.

5.1 Problem Statement

The problem description in Section 1.2 presented the following problem statement to
be addressed in this study:

How can agile methods be tailored with aim towards continuous software
delivery in projects?

Two more specific research questions were decided based on the problem statement
to be further investigated in detail. The two following sections will present these, and
discuss the results with regard to each of the research questions respectively.

5.1.1 Characteristics of the Agile Method Tailoring
Approach

The first research question was given as follows:

RQ1: What characterizes an agile method tailoring approach in a modern
software development context?

With RQ1, I wanted to identify prominent characteristics of how method tailoring
was performed in a modern software development project context. As a reminder,
a modern project context here refers to a context in line with recent trends in agile
software development where software delivery is done continuously, as in the case in
this study, rather than on the typical two to four week basis. The following discussion

83

84

will focus mostly on results on the tailoring approach found in Section 4.2.1, but the
other results on agile practices are also included in the discussion when appropriate.
The theory on method tailoring (Section 2.3) will be particularly relevant for this
discussion.

In the results we learned that the suppliers had avoided confining to a pre-selected
method framework when tailoring their agile method. Agile method tailoring was
in this regard done by combining agile practices from various agile methods such
as Kanban practices on one end, to stand-alone practices that may not have directly
originated from an agile method such as common stand-ups on the other. Previous
research on method tailoring in more traditional agile contexts presents cases where
one or two methods were chosen as an initial framework for tailoring agile methods,
such as combining practices from Scrum and Extreme Programming (XP) specifically
(e.g., Conboy and Fitzgerald, 2010; Fitzgerald, Hartnett, etal., 2006). In this context
this was not the case, which had the apparent benefit that they were much less re-
stricted in which practices to use. Thus, this provided much flexibility and adaptability
for the suppliers to combine and tailor agile practices throughout the project as they
needed.

Furthermore, it is interesting to compare the results with method tailoring approaches
in the literature that was supplied in the theory chapter (Section 2.3.2). Based on
the fact that no specific method was pre-selected in the project, the method tailoring
approach had very little in common with contingency factor approaches proposed
in literature. Contingency factor approaches require much experience with many
methods and proposes that one is selected that best suits the given project context
based on contextual factors (Iivari, 1989). A contingency factor approach is therefore
more about selection of a complete method from a portfolio of methods than com-
bining practices from multiple methods. Thus, a contingency factor approach would
likely work poorly in this agile context. This further supports previous statements
that contingency factor approaches often wrongly assume that there exist some prede-
fined method that can support all the needs of the development context (Fitzgerald,
Hartnett, etal., 2006; Kumar and Welke, 1992). Another notable difference from a
contingency factor approach was that tailoring was not done by strictly considering a
set of contextual factors such as team size, team distribution, or contract type (Kalus
and Kuhrmann, 2013). Tailoring did consider aspects such as distance between the
teams and the customer, for example by the introduction of daily stand-up meetings
to ensure adequate customer involvement. However, this was done more in discretion
and based on experience from past projects, and experiences made on challenges
and needs throughout the course of the project. This is therefore consistent with

Chapter 5 Discussion

previous findings that teams in practice often tailor methods based on past experiences
(Fitzgerald, Hartnett, etal., 2006; Patel etal., 2004). The fact that the teams had
much previous experience and competence may have been an important factor for the
resulting tailored method to work well for the teams. Turk etal. (2002) argue that a
high level of agility largely depends on adaptive methods and experienced individuals
who know how to effectively tailor these. Based on the above discussion, we have
thus learned that a more pragmatic approach to method tailoring was used, where an
agile method was tailored based on experiences and what seemed to be most practical
and needed in the current project situation.

By further comparing the results towards theory on method engineering we see some
more similarities in characteristics. Method engineering is the second overarching ap-
proach for conducting method tailoring proposed in literature. An interesting remark
is that method engineering approaches are also the most extensively used according
to a recent comprehensive literature review (Campanelli and Parreiras, 2015). Part of
the approach to tailoring in the project was to combine agile practices into a context-
specific method that served the teams’ actual needs. This can be compared with a
method engineering approach, which also proposes that methods should be more
or less made ground-up to better match the actual needs of a specific development
situation (Conboy and Fitzgerald, 2010; Kumar and Welke, 1992). However, there
are quite a few differences from the results in this study and method engineering
approaches proposed in literature. Common for both contingency factor approaches
and method engineering is that they are based on deductive and theoretical arguments
in research (Fitzgerald, Russo, etal., 2000). Method engineering approaches in the
literature assume that methods are assembled by pre-defined and pre-tested method
fragments (Kumar and Welke, 1992). A method fragment is here a term used to refer
to some distinctive part of a method, such as a practice (i.e. activities to be performed,
tools, techniques, principles, etc.) (Aydin etal., 2004). Part of the approach to tai-
loring in the project was described by some informants as a "toolbox" that they used
as needed. We learned that this meant that agile practices were added, modified
or removed throughout the course of the project. Thus, this is somewhat similar to
method engineering in the sense that individual practices were combined into an agile
method. However, a notable difference from method engineering in theory was that
practices were not conceptualized as such distinct fragments that were pre-defined
and used thereafter. This supports previous findings that the concept of agile method
fragments may often be oversimplified in research (Fitzgerald, Hartnett, etal., 2006).
This is illustrated by the fact that practices were used and tailored to tasks and situa-
tions in the different teams. For example, practices such as pair programming was
not followed slavishly, but used on occasion when it seemed useful for developers. In

5.1 Problem Statement

85

86

general, the tailored method and its underlying practices was more nuanced and used
more organically than merely a combination of pre-defined fragments. This is also
another confirmation that tailoring was done in a more pragmatic fashion.

By further discussing the results in light of method engineering, there are a few more
identifiable differences. Method engineering is proposed as a process that should be
performed by a dedicated method engineer who uses computer-aided tools to assemble
an appropriate method for a best possible outcome (Brinkkemper, 1996; Campanelli
and Parreiras, 2015; Henderson-Sellers and Ralyte, 2010). As we learned from the
results, this was not done in the project. Method engineering is characterized as a
structured and formal approach that proposes guidelines and structured processes for
tailoring. This has been criticized for often being both resource- and time-consuming
in practice, and unwelcome in some contexts as a result (Fitzgerald, Hartnett, etal.,
2006; Fitzgerald, Russo, etal., 2000). This is arguably particularly true for agile
contexts which emphasize people and interaction over processes and tools (Fowler
and Highsmith, 2001). It is therefore not surprising that method tailoring in the
studied agile project instead was done in a more informal and unstructured manner.
There was no dedicated role for method tailoring, although the project manager
played an important role, and nor was there a defined and structured tailoring process.
Instead, tailoring seemed to take place as an informal sideline activity. An informal
form of tailoring have often been observed in practice in previous research, and
especially in smaller organizations or projects where it is not desirable to spend much
time on dedicated method tailoring processes (Pedreira etal., 2007). Overall, the
approach to method tailoring was thereby characterized as an informal and less
structured activity than what some literature suggests. This appears to be common
also in more traditional agile project contexts (e.g., Conboy and Fitzgerald, 2010;
Fitzgerald, Hartnett, etal., 2006).

Moreover, there was much flexibility in which practices each of the teams used and
how they were used. At a team level, ongoing ad hoc tailoring of practices was
done without the project manager being directly involved. The fact that teams could
make ad hoc adaptations and self-organize the use of practices can potentially have
negative effects such as management being unable to ensure conformity in the method
and that the level of compliance is different among teams (Conboy and Fitzgerald,
2010). However, an interesting finding is that the flexibility that the teams were given
seemed beneficial because they could tailor practices to the tasks at hand, which was
usually quite different from team to team. This is also emphasized in the principle of
simplicity in the agile manifesto (Fowler and Highsmith, 2001, p. 5): "Include only
what everyone needs rather than what anyone needs, to make it easier for teams to

Chapter 5 Discussion

add something that addresses their own particular needs". No findings indicated that
ad hoc tailoring on a team level led to obvious negative results in method, and there
was a general consensus among the informants that the method worked very well.
There were some challenges in the method that they worked to improve, but this
seemed to have more to do with factors such as organizational culture than issues with
the flexibility in the method. It is however possible to assume that the informal and
ad hoc tailoring on the team level worked well because the teams consisted of mostly
experienced and competent developers and designers who had much experience from
agile projects. If this had not been the case, this could have required a more structured
and formal approach to method tailoring to give good results (Pedreira etal., 2007).
Another factor that very likely also contributed to satisfactory results was that some
guidelines were put in place for the teams by the project manager to ensure some
similarity in the method and in practices to ensure some overall governance. For
example, there were committed use of Kanban boards, self-organizing and cross-
functional teams, daily stand-up meetings, and common stand-up meetings among all
teams and team members. Some directions were also given on how to use practices,
such as how to set up the the Kanban boards.

Although method tailoring was done on an informal and ad hoc basis on team level,
the results depict tailoring as a conscious, continuous, and important activity in the
project. Tailoring was necessary as a continuous improvement effort to maintain and
even increase productivity and delivery speed throughout the course of the project.
One example is that DevOps and Continuous Deployment was later introduced to
the method to improve both the speed and frequency of deliveries. An important
responsibility for the project manager was to make continuous evaluations as to
whether the method covered their needs, to make adjustments when challenges or
improvement potential was identified, and in general work towards optimizing the
method. Except for tailoring on a team level being more ad hoc, method tailoring was
therefore largely characterized as a purposeful and disciplined activity from the project
manager’s point of view. According to Conboy and Fitzgerald (2010), purposeful and
disciplined method tailoring is important for effective method tailoring. The project
manager discussed methodological aspects with committed team members and also
with the customer. In conjunction with the introduction of agile practices, such as
self-organizing teams, it was important to develop the right organizational culture
for an agile environment together with the customer. Tailoring can therefore also
be understood as a collaborative activity in this case. There seemed to be a culture
in place where people used an open dialogue and dared to speak out on issues and
improvement measures. Historically, such feedback from team members had led to
several successful adjustments in the method, such as changes in how stand-ups were

5.1 Problem Statement

87

88

practiced. Had such a culture not been in place, it was thought to require more formal
arenas like retrospectives in Scrum (Schwaber, 2004) where you specifically discuss
process related improvement measures. As have been discussed, it was important to
have the project manager carry out continuous and careful assessment and fine-tuning
of the method. This was done in collaboration with he customer and the teams to
ensure they achieved their goals and were able to deliver good results.

5.1.2 Combination of Agile Practices
The second and last research question was given as follows:

RQ2: How were practices combined into an agile method with aim towards
continuous software delivery?

As a further contribution to answering the problem statement, it was interesting to
investigate the actual tailored agile method in the project more closely. For this, I
have focused on identifying the prominent agile practices used in the project and how
these were combined and tailored to enable the teams to deliver changes and new
software features on a continuous basis. The following discussion will mainly focus
on the results on agile practices from Section 4.2.2. These will be discussed against
the theoretical basis provided throughout Chapter 2. Some of the other results may
also be used to supplement in some places.

As we learned from the results and previous discussion, agile method tailoring was
essentially done by combining agile practices from various sources into an agile
method that met the actual needs of the current project situation. This is interesting,
because this confirms the importance of method tailoring in practice and illuminates
the motivation for method tailoring research. It was apparent that a practice was
typically perceived as valuable if it covered their needs and contributed to least
possible overhead in the method while still maintaining just enough formalities
and control. Thus, it can be understood that an important aspect of tailoring with
aim towards continuous software delivery was to omit unnecessary time-consuming
practices that would have reduced delivery speed. The result of this seemed to be
a very lightweight agile method with very limited regulations. This is very much in
line with agile principles, where one ideal for agile methods is that it is minimalist
and do not prescribe unnecessary or time-consuming practices that do not add value
to the product and elongate the development process (Fowler and Highsmith, 2001;
Highsmith and Cockburn, 2001). Working according to agile principles were explicitly

Chapter 5 Discussion

stated to be important for the suppliers in their given context. There was a high
rate of change and innovation going on, which made agility particularly important.
When there are changing needs, agility must be incorporated by deliberately designing
lightweight methods that are amenable to tailoring (Henderson-Sellers and Serour,
2005). Additionally, when there are turbulent business environments like in this
case, the change tolerance of the method should be geared to the rate of change
in the specific project environment for adequate agility (Highsmith and Cockburn,
2001). These aspects seemed to have been important considerations when the agile
method was tailored in the project. The method was very minimal and lightweight,
with exceptionally few formalities and regulations. The results indicate that all the
agile practices seemed to contribute positively to agility and not hinder the teams,
which is important in agile methods (Conboy, 2009). That software was delivered
continuously show that the method was geared to the high rate of change in the
project. Also, since they did not strictly and formally confine to method frameworks
and prescribed few rules they were largely adaptive (Kniberg and Skarin, 2010). Thus,
it appeared that one important aspect of the combination of practices was to achieve
a minimal method with only the necessary practices. Had the method contained many
more time-consuming and formal practices it is possible to assume that it could have
hindered overall agility and the software delivery rate in the project. Furthermore,
we will discuss the actual prominent practices in the minimal agile method and how
these were important.

The most fully adopted agile method in the project was Kanban, although they were
not formally bounded by it as a framework. Kanban boards were used to manage
and visualize work and progress for individual tasks all the way from the backlog to
deployment. This included putting limits on work-in-progress (WIP), and monitoring
flow with a cumulative flow diagram (CFD). Thus, there were a relatively high degree
of adherence to Kanban’s three practices (Kniberg and Skarin, 2010). The use of
Kanban implied that a flow-based development model was adopted in the project
(Birkeland, 2010). Flow-based development implies that as soon as a feature is
identified, it can be developed, tested and deployed immediately rather than being
batched and completed as a larger and more comprehensive delivery. This also
requires establishing a process that not only focuses on development in isolation, but
an end-to-end concept that also takes into account other aspects such as planning,
deployment, and operation (Fitzgerald and Stol, 2014). Thus, a continuous flow
of software features can be delivered and delivery time of individual features can
be reduced. A flow-based development model with Kanban was therefore clearly
an important element of the method in the project. In contrast, an iterative and
sprint-based model like in Scrum would have been less compatible in this context. The

5.1 Problem Statement

89

90

choice to adopt Kanban rather than Scrum in project contexts where there is a need
to deliver continuously is in line with previous observations in research (Fitzgerald
and Stol, 2014). We learned from the results that the teams broke down tasks as
small as possible and represented these as individual cards in respective boards. This
resulted in a normalization in task size, which ultimately led to a relatively stable
flow of tasks being completed. Breaking down tasks into small work packages makes
it easier to limit WIP, which in turn results in faster deliveries when using Kanban
(Ahmad etal., 2013). The fact that the Kanban boards were digital and contained
many configuration options made ongoing customization of boards convenient, such
as adding and removing columns to optimize flow and overview. By setting up
multiple boards in the different teams for different solutions allowed a separation of
non-related tasks, and likely improved overall flow and visibility.

Furthermore, establishing a flow-based development model as an end-to-end process
required the teams to gain control over production environments and deployment
processes. This included an introduction of DevOps which entailed that the developers
took over responsibility for what was previously separate and externally managed
deployment and operation. The purpose of DevOps is to align the incentives of both
development and operations (Humble and Molesky, 2011), and is an important con-
cept in today’s context of pursuing continuous software delivery (Fitzgerald and Stol,
2014). In the studied project, this was achieved by merging the operations role into
the developer role, which again introduced additional tasks and responsibilities for the
developers in the project. This is consistent with earlier observations that introduction
of DevOps tend to force a rethinking and reorientation of roles in development and
operations activities (Lwakatare etal., 2016a). A prerequisite for the developers’
ability to handle both deployment and operation as part of the daily development
activities was to move existing and new systems to a cloud-based Platform as a Service
solution (PaaS). Thus, operation of their applications could be done as a sideline
activity to development in a less resource- and time-consuming manner by avoiding
cumbersome tasks such as managing operating systems and infrastructure. DevOps
gave the developers more control of their own applications and improved their ability
to handle application problems. This have been observed to be one important advan-
tage with closing the gap between development and operation, which in turn helps to
broaden developers’ skillset and knowledge (Lwakatare etal., 2016a). This control
may in turn enable single teams to alone be responsible for all aspects of development
and operations for all systems and services (Lwakatare et al., 2016a) which was largely
the case in the studied project. Perhaps most important, DevOps made it possible
to introduce Continuous Deployment as a practice by automating integration, builds
and deployment processes. Such automation is an important dimension in DevOps

Chapter 5 Discussion

to accelerate delivery of change (Lwakatare etal., 2016a). With control over and
automation of these processes, a continuous flow of tasks from end-to-end could be
achieved, which clearly had good synergy with the adopted Kanban approach.

In general, agile practices can be grouped into the three groups (Lee and Yong, 2013);
management practices like in Kanban, software process practices like continuous and
incremental delivery, and software development practices like Continuous Deployment.
Practices within all these groups were both needed and adopted in the project. As we
know from the literature, Kanban only contain management practices for managing
and visualizing work flow (Kniberg and Skarin, 2010). As a result, it was necessary
for the teams to also introduce other needed management practices such as daily
stand-up meetings for customer involvement and coordination.

A significant factor for customer involvement was that the teams were collocated with
the customer in the same premises. This enabled very active customer participation
through daily involvement of the customer in multiple arenas, including daily stand-
up meetings. With daily involvement of the customer, the teams could also ensure
that the customer was updated on what was happening in development and could
receive very frequent feedback and verification of individual completed tasks. In
general, an increased customer focus through frequent feedback from the customer
and dynamic prioritization of features are key factors in agile software development
(Highsmith and Cockburn, 2001). The high amount of customer involvement in the
project shows this, and was considered crucial for utilizing the benefits of continuous
software delivery. For example, planning was not done for longer periods and there
was very little time spent on estimation of tasks in general. Instead, planning and
prioritization of tasks was a daily activity in collaboration with business developers
and by actively using the digital Kanban boards as a tool to facilitate this. This may be
understood as a form of continuous planning which can ensure continuous alignment
between the needs of business and software development in contexts where software
is delivered continuously (Fitzgerald and Stol, 2014). Furthermore, we learned from
the results that there were some challenges regarding adequate customer involvement
in the project. Utilizing continuous software delivery seemed to benefit largely from
also having customers available at all times. There was some distance between
the teams and the customer representatives, which created a barrier for continuous
involvement. Vinekar etal. (2006) argues that agile methods depend on an on-site
customer to identify and prioritize features, provide feedback, and guide change
throughout development. Extreme Programming (XP) prescribes such an on-site
customer practice where the customer works as part of the team to do these tasks
for the team continuously (Beck, 2004). This was not done in the project, but it was

5.1 Problem Statement

91

92

argued to be a potential improvement to introduce a practice similar to the one in
XP where the business developers worked as part of the teams. Ensuring adequate
customer involvement is an important success factor in agile projects (Hoda etal.,
2011; Misra etal., 2009). To ensure adequate customer involvement, the suppliers
therefore had to introduce practices such daily stand-ups and chat to meet their
needs for daily involvement, in addition to weekly meetings with other key customer
representatives for more overall reporting of progress and planning.

Furthermore, it was important to ensure coordination both across and within the teams.
The results showed that a practice called common stand-ups was later introduced
as a weekly meeting where all of the teams including management and advisors
participated. Common stand-up meetings enabled everyone to synchronize as a whole
team to get a more complete overview and to share knowledge and insight across
the teams. This meeting to some extent resemble a Scrum of Scrums event that have
been found to be effective when there is a need for inter-team coordination in Scrum
projects with multiple teams (Dingsgyr, Moe, etal., 2017). Daily stand-up meetings
were tailored to be somewhat different than in the textbook version of Scrum. For
example, daily stand-up meetings were held in an open format and was very centered
around the Kanban boards. The customer was also involved in the daily stand-up
meetings, which is not part of the prescribed practice in Scrum. The fact that daily
stand-ups had an open format meant that discussions about various important issues
could occur, but with one side effect being that conversations were sometimes less
focused. Stand-ups were held standing and were supposed to be timeboxed for 15
minutes as prescribed in Scrum (Schwaber, 2004), but could sometimes last longer
than intended especially when the customer was involved. Some unfortunate effects
could potentially have be mitigated by management giving stricter guidelines for how
the daily stand-up should be practiced. At the same time, it can be desirable to give
the teams some flexibility to use and tailor practices to best suit their tasks, situation
and preferences (Fowler and Highsmith, 2001). Furthermore, team’s being collocated
in an open work area enabled continuous oral dialogue and ad hoc coordination and
collaboration with other teams when needed. All in all, active use of coordination
practices were largely needed to ensure continuous management of dependencies and
ensure transparency within and across teams.

One last very prominent agile practice was that the teams were largely self-organizing
(i.e. self-managing) and cross-functional. Self-managing teams offer potential advan-
tages over traditionally managed teams because they bring decision-making authority
to the level of operational problems and uncertainties and thus increase the speed and
accuracy of problem solving (Moe et al., 2009). Self-organizing teams that encourage

Chapter 5 Discussion

role interchangeability are considered to be important in agile software development
(Nerur, Mahapatra, etal., 2005). Moreover, cross-functional teams possesses the skills
necessary to carry out its tasks without external support, and is appreciated in agile
methods such as Scrum (Schwaber, 2004) and XP (Beck, 2004). We learned from the
results that the teams had become more cross-functional and self-organizing over time.
In order to increase the degree of autonomy, it was necessary to support more decision-
making authority at the team level. This involved much organizational- and cultural
development in close collaboration with the customer to move decision-making au-
thority closer to the team-level. According to Moe etal. (2009), the performance of
self-managing teams not only depends on the competence of team members to man-
age and execute their work, but also on the organizational context that management
provides. Organizational culture is a known challenge related to agile project contexts
that may affect decision-making processes and problem solving strategies (Gandomani
etal., 2013; Nerur, Mahapatra, etal., 2005). This is apparent also in the results,
and illustrates why agile method tailoring can be particularly challenging as it must
consider also aspects related to customers and stakeholders and complexities within
their organization (Conboy and Fitzgerald, 2010). Moreover, although there were
multiple operative self-organizing and cross-functional teams working with different
tasks, we learned that an important principle was to still have shared responsibility
and goals as a whole team. This likely had a more indirect impact on performance,
but contributed to overall transparency and resource utilization. One main goal of
this principle, and related practices such as common stand-up meetings, was to ensure
that people had overall insight and that people could work across areas. This is an
important factor in self-managing teams to ensure that available personnel can be
flexible and utilized across areas when there are changing environments (Moe etal.,
2009). An interesting side note is that the principle of one whole team in the project
also share similarities with the Lean principle of "seeing the whole", which was briefly
mentioned in the literature on Kanban (Section 2.2.3). Focusing on seeing the whole
when there are many teams can prevent that only parts of many software solutions are
optimized on the expense of the whole, thus increasing overall quality (Poppendieck
and Poppendieck, 2003). This was arguably important in the project, where one
important purpose was to increase overall quality of solutions through more cohesion
and unified management among these. Overall, facilitating cross-functional and
self-organizing teams enabled many important decisions to be made and completed
quickly by the teams themselves, such as verification and deployment of tasks, which
again contributed to faster deliveries.

The purpose of the overall agile method was to make short time-to-market possible
and to help meet the customer’s goals of offering better products and services and

5.1 Problem Statement

93

94

stay competitive in a challenging business environment. Throughout this study, it was
apparent that there were many factors and prerequisites for enabling this through
continuous software delivery. This study has focused on the methodological aspects
of this. However, other factors were also clearly important in this context. Some
have been briefly been touched upon, such as focusing on a close connection between
business and development (Fitzgerald and Stol, 2014) and technological factors such
as using mature technology (Dingsgyr and Lassenius, 2016). A concluding remark
is that it was the combined effects of many factors, including the tailoring of the
agile method discussed, which made it possible for the teams to deliver continuously,
promptly, and with the right priorities.

5.2 Implications of the Research

This section presents what I regard to be important contributions of this study and
their implications for practice and the research field.

One main contribution of this research is a thorough description of an agile project
from practice. The amount of empirical research on the topics that have been covered
in this thesis is currently very limited, which the literature review and requests by
researchers shows. This also means that only a limited amount of empirical research
is contributing back to practice. I therefore believe this study will be valuable to
other researchers and students, and not least to practitioners who seek information
about method tailoring and agile methods and practices. I would argue that the agile
method in the case represents an example of a state-of-the-art method, which also
seemingly worked very well and provided good results in the project. This should
arguably make this a particularly interesting case.

Implications for practice

The thorough case description and the findings included in this thesis should provide
a basis for comparison with other project contexts. Practitioners may do this to
evaluate whether a similar approach to method tailoring and agile development may
be applicable in other situations. However, one should be careful to make assumptions
when doing so. There are many situational factors that come into play when tailoring
agile methods. For example the level of experience among team members, which was
very high in this case. The focus of this study was not to thoroughly evaluate what

Chapter 5 Discussion

the prerequisites were for effective tailoring, and thus what exactly made a successful
tailoring approach and resulting agile method is somewhat uncertain.

From what I have learned throughout this work, I believe there is reason to suspect a

general lack of awareness around method tailoring in software development projects.

Some form of method tailoring most likely always happens, since project methods are
not universally applicable in their original, textbook format due to varying situational
factors. However, the literature indicates that this is often not done in a purposeful
and disciplined manner which may cause unfortunate or suboptimal results. The
findings in this study shows that method tailoring was an ongoing and important
activity which likely had very positive impact on the results in the project. Practitioners
may increase their awareness of the importance of method tailoring by reading this
thesis, and then further seek out other information to learn how this may be done.

A particularly interesting finding in the case was that the project method was not
strictly defined based on an existing method, but was customized for the project by
combining agile practices from many sources. This seemed to provide much flexibility
and adaptability and thus contribute to overall agility. In many other projects, a
method such as Scrum is selected and strictly committed to throughout the project
duration. This may even be defined in contractual agreements with customers and
stakeholders prior to project start. Some tailoring may still be done, but you are
automatically more limited. It is possible to speculate that this may potentially also be
a root cause for further lack of awareness of method tailoring because the method is
already set in stone or clearly documented. In the studied project there seemed to be
little enforcement regarding which project method to use, and the suppliers seemed
to be very aware that this ultimately enabled more flexibility to adopt practices and
adjust to whatever worked best in the current situation. More practitioners may find
a similar method tailoring approach useful. However, this will require knowledge of
more than one agile method and how these may be combined to complement each
other. This may therefore require that organizations invest in adequate training in
agile methods and practices for managers and developers. This can be costly, but may
lead to more optimized agile methods and consequently better project results. It is
worth noting that it may also require other prerequisites, such as incorporating more
flexibility in method definitions in contracts.

Furthermore, it can be argued that studying method tailoring in the given agile
software development context does not necessarily mean that the findings can not
be applied to more traditional contexts. This may for example be agile projects that
does not necessarily pursue continuous software delivery. Fundamental concepts in

5.2 Implications of the Research

95

96

the findings in this study may even be generalizable to non-agile projects or projects
that involves other types of product development. For example the idea of picking
and choosing practices from multiple project methods. However, what exactly is
generalizable is hard to say as it would highly depend on the context, and as a result I
have tried not to make many generalizations in this single-case study. More on this in
the last section of this chapter on research limitations (Section 5.3).

Implications for research

This study contributes with a new addition of research on method tailoring in the
context of agile software development projects. This study stands out from much
previous research in the sense that method tailoring was studied in a modern develop-
ment context where there was a need for continuous software delivery. Past research
have investigated method tailoring in arguably more traditional agile contexts (e.g.,
Conboy and Fitzgerald, 2010; Fitzgerald, Hartnett, etal., 2006) and in large-scale
agile projects (Rolland et al., 2016). This research provides a view on method tailoring
in another and arguably very interesting context.

Past method tailoring research has focused much on tailoring approaches. This is
natural since tailoring approaches define the actual procedure and guidelines for
how effective tailoring can be conducted. However, more research on this is still
required, which is also why it was recently called out as a possible research direction
(Campanelli and Parreiras, 2015). Throughout this study, we have learned that the
current suggestions for approaches to method tailoring in research is mostly designed
from deductive and theoretical propositions. They are often very structured and
formal, and defines processes and guidelines that have been observed to be time-
consuming in practice. As a result, these have been criticized for limited applicability
in practice and for containing several challenges (Campanelli and Parreiras, 2015;
Conboy and Fitzgerald, 2010; Fitzgerald, Russo, etal., 2000). The approach to
method tailoring identified in this study had some similarities to existing approaches,
but was also characterized to be much more informal, lightweight and less process
oriented than the two established approaches. In relation to this, the discussion also
argued that a very heavy and time-consuming process would not be very compatible
in an agile context like this. Thus, there is ground to further support the criticism
of existing approaches, and why these are not well suited in many contexts such as
modern agile projects. However, this is not very surprising because the two established
overarching approaches to tailoring predates agile software development and was
thus not designed with agile values in mind. I believe this should be acknowledged
in future research on method tailoring in agile contexts, and that more attention is

Chapter 5 Discussion

directed at designing alternative tailoring approaches better suited for agile contexts.
More on this in suggestions for future research (Section 6.2).

5.3 Research Limitations

The method chapter presented tactics that were used to improve the overall validity
and quality of this research (Section 3.10). This section will address factors that may
still have had an impact on the result, and which constitute the limitations of the
research.

Research methodology:

This research was conducted as a single-case study. This imposes limitations regarding
the generalizability of findings (Lee and Baskerville, 2003). Some generalization to
theory have been done to improve the overall validity (Yin, 2014), but the findings
and inferences that have been made are still limited to a single project context and
not a broader collection of cases. However, the single-case study provides in-depth
insight and represents an exemplar that may still hold much valuable information for
many.

Data collection methods and collected data:

I had no previous experience with carrying out case study research of this scope. As
a result, the implementation of the chosen data collection methods was a possible
limitation. I had little to no previous experience with interviews or observations with
the aim of collecting qualitative data. Case study research requires experience, and
little experience may negatively impact the data collection method implementation
and thus the collected data (Yin, 2014).

Data collection was mainly conducted in two occasions using interviews, observa-
tions and some analysis of documentation. The collected data was therefore mainly
qualitative data. By integrating additional techniques for data collection, such as a
survey for quantitative data collection, my understanding of the case and findings
could have been improved (Runeson and Host, 2008). However, due to constraints on
resources this was not prioritized. Again, it should be clarified that a survey was used
during the interviews, but that this was not intended for comprehensive quantitative
data collection, but rather to guide some of the qualitative data collection. This was
described in the presentation of the results (Section 4.2.2).

5.3 Research Limitations

97

98

Another limitation was that I did not manage to ask every informant all the same
questions, although the interviews were quite long lasting. This was due to several
factors. The interviews were semi-structured and time was spent asking questions
of interest outside of the interview guides which sometimes made scheduling the
questions challenging. Also, the informants had different roles and thus different
prerequisites for answering some of the questions, which could better have been
accounted for when preparing the interview guides. Overall, this limited the amount
of data on some concepts to draw inferences from, and may thus have impacted the
quality of some inferences.

In addition to constraints on time, there were limited available informants who
could participate in interviews. This could potentially affect data quality negatively,
since only some viewpoints was covered in the data. Having more data from more
informants would have further increased the validity of inferences from the data.
Optimally speaking, interviewing more or all members of the project, including the
customer, would improve research quality. This was, however, not possible due to
constraints on resources.

Scope of theory and discussions:

In addition to little experience with conducting research of this scope, I also only
had limited overview of the area of research. The scope and depth of the discussion,
and the completeness of the included literature and theory, may therefore have been
compromised on some levels compared to the work from experienced scholars or
researchers (Runeson and Host, 2008). However, mine as well as other researchers
impression is that there is a very limited amount of research on some of the topics
studied in this thesis. Most critical is perhaps the seemingly lack of empirical research
on method tailoring in agile software development contexts. As a result, this study is
automatically limited to the relatively scarce theoretical basis that exists on these core
topics.

Furthermore, when this work was initially started a suitable case to be studied was
not yet identified. This came into place only a short time later. Thus, all work related
to data collection and transcription of the data was done within the limited timeframe
of the study. Had I been able to start this work earlier, more effort could have been
spent on literature reviews, analysis, discussion, and writing in general.

Chapter 5 Discussion

Conclusion

This chapter presents the conclusions of the study with regard to the problem state-
ment and the underlying research questions. Proposals for future research is provided
in the end.

6.1 Problem Statement

This study has aimed at empirically investigating how agile methods can be tailored
for software development projects where there is a need to deliver software on a
continuous basis. As we learned in the introduction and the theory chapter (Section
2.1.3), agile methods have enabled companies to embrace change by delivering
working software in iterations typically every two to four weeks. However, in today’s
challenging business context, practitioner’s have increasingly started to adopt and
tailor agile approaches with the aim of software delivery up to multiple times a day
to reap the benefits of even greater agility. In the problem description (Section 1.2)
this was viewed as a trend towards continuous software delivery. This master thesis
has showcased a project which through tailoring of agile methods and practices had
taken agile software development this one next step towards continuous software
delivery. Thus, this represented a great opportunity to investigate the following
problem statement:

How can agile methods be tailored with aim towards continuous software
delivery in projects?

Exploring this towards the case have led to much new and valuable insight into agile
method tailoring in a modern software development context. For the purpose of this
research, the problem statement was narrowed down into two more specific research
questions. The following sections will conclude the findings of the study for each
research question respectively. This is done by looking back on what we have learned,
with emphasis on the discussion in the previous chapter.

99

100

RQ1: What characterizes an agile method tailoring approach in a modern soft-
ware development context?

Several prominent characteristics on how agile method tailoring was conducted in the
project was identified. These can be summarized as follows:

* Agile method tailoring was done without confining to a method framework,
but by being flexible in combining agile practices from multiple methods or
stand-alone practices that contributed to agility.

* Selection and combination of practices took place in a pragmatic fashion, by
selecting agile practices that covered their situational needs based on previous
experience and experiences made throughout the course of the project.

* Tailoring was conducted in an informal and less structured manner, and did not
involve rigid and time-consuming method tailoring processes and guidelines as
used in some organizations. Thus, the tailoring approach complied with agile
values to a much greater extent.

* Ongoing ad hoc tailoring of practices was done by each individual team. The
teams were largely self-organizing and had the authority to select and tailor their
own practices to tasks, situations and preferences. It was, however, important
that management prescribed some common practices and guidelines in the
method and practices across teams to ensure adequate overall governance.

* Agile method tailoring was an important, purposeful and continuous activity, in
which management made improvements in the method based on own assess-
ments and feedback from committed team members. Close collaboration with
the customer to facilitate for an appropriate agile environment was important in
conjunction to this.

Many of the above characteristics could be recognized also in existing research on
method tailoring in more traditional agile contexts. Perhaps the most prominent
characteristic that differed from previous findings in other case studies was the first
item; that tailoring was not confined to a specific set of method frameworks. This
seemed to contribute to a high level of adaptability, which is arguably important in
business environments with high rates of change.

Chapter 6 Conclusion

RQ2: How were practices combined into an agile method with aim towards
continuous software delivery?

The project context involved a high degree of change and innovation, which was
handled by achieving a high level of agility and a short time-to-market. In this regard,
it was important to tailor a minimal agile method by omitting practices and formalities
that were not deemed necessary or which hindered the teams from delivering software
on a continuous basis. The prominent agile practices were the following:

* Extensive use of Kanban boards for visualization and management of tasks.
This implied a flow-based development model as an end-to-end process in
which individual tasks were prioritized, developed, tested, verified and deployed
independently and continuously. This contrasts an iterative and time-based
model (e.g. sprint-based) in which tasks are completed in batches over a period
of time before it is delivered.

* Establishing an end-to-end process required introducing DevOps in which devel-
opment and operation was an integrated process. This enabled the introduction
of Continuous Deployment, which involved automation of integration and de-
ployment processes all the way to production for easy and quick delivery of
changes and new features.

* Collocation of the teams and the customer enabled daily customer involvement.
This made it possible to practice continuous planning and receive frequent
feedback and verification of individual tasks from customer representatives
within several arenas.

* Multiple arenas for collaboration and coordination within and across teams
enabled continuous management of dependencies and transparency. Among
these, an open work area and stand-up meetings were regarded particularly
useful practices.

* Productive self-organizing and cross-functional teams who had the authority
and capability to make quick decisions on tasks, and possessed the necessary
competence to execute their work. This in turn contributed to rapid delivery of
change and new software features.

In addition, other agile practices were used as needed within the teams. These
were mentioned in the results (Chapter 4). Each practice had a role in the method,
whether it was for management, process, or more technical development purposes.
The combination made it possible for the teams to deliver continuously, promptly, and
with the right priorities.

6.1 Problem Statement

101

102

To conclude, the findings of this research are consistent with existing research that
it is important to tailor agile methods to the actual needs of the project context.
The findings suggest that method tailoring should be practiced as a continuous
improvement effort to ensure adequate agility is maintained and improved and that
changing needs are met throughout the course of a project.

Chapter 6 Conclusion

6.2 Future Work

An important part of exploratory case studies is the discovery of new directions for
further research (Runeson and Host, 2008). Following are the suggestions for future
work based on what have been learned from this study.

Findings from this study showed that agile method tailoring can take place as an
informal, ad hoc and unstructured activity and still produce good results. Similar have
also been observed in other agile projects (e.g., Fitzgerald, Hartnett, etal., 2006). In
other cases, however, it has been suggested that such an approach to agile method
tailoring can also have negative impact on the results of tailoring efforts and other side
effects (e.g., Conboy and Fitzgerald, 2010). In other words, a lack of guidelines and
structure on how to effectively tailor agile methods and practices to a situation can
be a problem, in particular when there is lack of knowledge and experience (Conboy
and Fitzgerald, 2010). In the discussion it was argued that one possible success
factor for tailoring in the studied case was the fact that the teams consisted of highly
experienced and competent people, many of which had worked with similar agile
practices in the past. However, this is likely not the case in many project contexts.
In general, there are few proposed approaches to guide effective tailoring to date,
and especially not for agile methods. The most commonly used approach, method
engineering (Campanelli and Parreiras, 2015), is known for being both resource-
and time-consuming in practice, and was not initially designed with agile values in
mind. Based on these matters, it is therefore interesting for future research to further
investigate possible method tailoring approaches which take into account agile values
and which provide guidelines for effective tailoring. One starting point may be to
investigate the use of retrospectives for this, which had been used in the case, and
which is proposed as an activity for process improvement in widely used agile methods
such as Scrum (Schwaber, 2004).

The second part of this work focused on the combination of agile practices with aim
towards continuous software delivery. In conjunction to this, DevOps was highlighted
an important concept which is not yet well established in research (Lwakatare etal.,
2016a). An interesting finding in this study, although not surprising, was that a flow-
based method with Kanban had good synergy with DevOps. Some research has started
to appear that have investigated DevOps and its relationship to other agile practices
(e.g., Lwakatare et al., 2016b). Future research can further investigate this, and more
specifically how these may be tailored and used together in future agile software

6.2 Future Work

103

development projects. This study represents one such contribution of empirical
research that show how DevOps can be an important part of agile methods.

104 Chapter 6 Conclusion

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). “Agile software development
methods: Review and analysis”. In: VI'T Publications, no. 478, pp. 3-107.

Abrahamsson, P., Warsta, J., Siponen, M. T., and Ronkainen, J. (2003). “New directions
on agile methods: a comparative analysis”. In: Proceedings - International Conference on
Software Engineering 2003. leee, pp. 244-254.

Ahmad, M. O., Markkula, J., and Oivo, M. (2013). “Kanban in software development: A
systematic literature review”. In: Software Engineering and Advanced Applications (SEAA),
2013 39th EUROMICRO Conference on. IEEE, pp. 9-16.

Atlassian (2018). DevOps. [Online; accessed February 8, 2018]. URL: https://www.atlassian.

com/devops.

Aydin, M. N., Harmsen, F., Van Slooten, K., and Stegwee, R. A. (2004). “An agile information
systems development method in use”. In: Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 12, no. 2, pp. 127-138.

Banica, L., Radulescu, M., Rosca, D., and Hagiu, A. (2017). “Is DevOps another Project
Management Methodology?” In: Informatica Economica, vol. 21, no. 3, pp. 39-51.

Baskerville, R., Pries-Heje, J., and Madsen, S. (2011). “Post-agility: What follows a decade of
agility?” In: Information and Software Technology, vol. 53, no. 5, pp. 543-555.

Beck, K. (1999). “Embracing change with extreme programming”. In: Computer, vol. 32, no.
10, pp. 70-77.

Beck, K. (2004). Extreme programming explained: embrace change. 2nd ed. The XP series.
Boston: Addison-Wesley.

Birkeland, J. O. (2010). “From a Timebox Tangle to a More Flexible Flow”. In: XP 2010.
Springer, pp. 325-334.

Brinkkemper, S. (1996). “Method engineering: Engineering of information systems develop-
ment methods and tools”. In: Information and Software Technology, vol. 38, no. 4, pp. 275-
280.

Brooks, F. (1987). “No Silver Bullet: Essence and Accidents of Software Engineering”. In:
Computer, vol. 20, no. 4, pp. 10-19.

105

https://www.atlassian.com/devops
https://www.atlassian.com/devops

106

Brown, A., Forsgren, N., Humble, J., Kersten, N., and Kim, G. (2017). 2017 State of DevOps
Report. Report. URL: https://puppet.com/resources/whitepaper/state-of-devops-
report.

Campanelli, A. S. and Parreiras, F. S. (2015). “Agile methods tailoring — A systematic literature
review”. In: The Journal of Systems and Software, vol. 110, pp. 85-100.

Cockburn, A. (2002). Agile software development. Addison-Wesley Boston.

Cohen, D., Lindvall, M., and Costa, P. (2004). “An Introduction to Agile Methods”. In: Advances
in Computers, vol. 62, pp. 1-66.

Conboy, K. (2009). “Agility from First Principles: Reconstructing the Concept of Agility in
Information Systems Development”. In: Information Systems Research, vol. 20, no. 3, pp. 329-
354.

Conboy, K. and Fitzgerald, B. (2010). “Method and developer characteristics for effective
agile method tailoring: A study of XP expert opinion”. In: ACM Transactions on Software
Engineering and Methodology, vol. 20, no. 1, pp. 1-30.

Corona, E. and Pani, F. E. (2012). “An investigation of approaches to set up a Kanban
board, and of tools to manage it”. In: Proceedings of the 11th International Conference on
Telecommunications and Informatics (TELEINFO’12) and the 11th International Conference on
Signal Processing (SIP’12), Saint Malo, France, pp. 7-9.

Dingsgyr, T. and Lassenius, C. (2016). “Emerging themes in agile software development:

Introduction to the special section on continuous value delivery”. In: Information and
Software Technology, vol. 77, pp. 56-60.

Dingsgyr, T., Moe, N. B., Feegri, T. E., and Seim, E. A. (2017). “Exploring software development
at the very large-scale: a revelatory case study and research agenda for agile method
adaptation”. In: Empirical Software Engineering, pp. 1-31.

Dingsgyr, T., Nerur, S., Balijepally, VG., and Moe, N. (2012). “A decade of agile methodologies:
Towards explaining agile software development”. In: The Journal of Systems and Software,
vol. 85, no. 6, pp. 1213-1221.

Dyba, T. and Dingseyr, T. (2008). “Empirical studies of agile software development: A system-
atic review”. In: Information and Software Technology, vol. 50, no. 9-10, pp. 833-859.

Dyba4, T. and Dingsgyr, T. (2009). “What do we know about agile software development?” In:
IEEE software, vol. 26, no. 5, pp. 6-9.

Fitzgerald, B., Hartnett, G., and Conboy, K. (2006). “Customising agile methods to software
practices at Intel Shannon”. In: European Journal of Information Systems, vol. 15, no. 2,
pp. 200-213.

Fitzgerald, B., Russo, N., and O’Kane, T. (2000). “An empirical study of system development
method tailoring in practice”. In: ECIS 2000 Proceedings, pp. 4-11.

Bibliography

https://puppet.com/resources/whitepaper/state-of-devops-report
https://puppet.com/resources/whitepaper/state-of-devops-report

Fitzgerald, B. and Stol, KJ. (2014). “Continuous software engineering and beyond: trends and
challenges”. In: Proceedings of the 1st International Workshop on Rapid Continuous Software
Engineering. ACM, pp. 1-9.

Flyvbjerg, B. (2006). “Five misunderstandings about case-study research”. In: Qualitative
inquiry, vol. 12, no. 2, pp. 219-245.

Fowler, M. and Highsmith, J. (2001). “The agile manifesto”. In: Software Development, vol. 9,
no. 8, pp. 28-35.

Gandomani, T. J., Zulzalil, H., Ghani, A. A. A., Sultan, A. B. M., and Nafchi, M. Z. (2013).
“Obstacles in moving to agile software development methods; at a glance”. In: Journal of
Computer Science, vol. 9, no. 5, pp. 620-625.

Gregory, P., Barroca, L., Sharp, H., Deshpande, A., and Taylor, K. (2016). “The challenges
that challenge: Engaging with agile practitioners’ concerns”. In: Information and Software
Technology, vol. 77, pp. 92-104.

Harmsen, A. F., Brinkkemper, J. N., and Oei, JL. H. (1994). Situational method engineering
for information system project approaches. University of Twente, Department of Computer
Science.

Henderson-Sellers, B. and Ralyte, J. (2010). “Situational Method Engineering: State-of-the-Art
Review”. In: Journal Of Universal Computer Science, vol. 16, no. 3, pp. 424-478.

Henderson-Sellers, B. and Serour, M. (2005). “Creating a Dual-Agility Method: The Value of
Method Engineering”. In: Journal of Database Management, vol. 16, no. 4, pp. 1-23.

Highsmith, J. and Cockburn, A. (2001). “Agile software development: The business of innova-
tion”. In: Computer, vol. 34, no. 9, pp. 120-127.

Hoda, R., Noble, J., and Marshall, S. (2011). “The impact of inadequate customer collaboration
on self-organizing Agile teams”. In: Information and Software Technology, vol. 53, no. 5,
pp- 521-534.

Humble, J. and Molesky, J. (2011). “Why enterprises must adopt devops to enable continuous
delivery”. In: Cutter IT Journal, vol. 24, no. 8, pp. 3-39.

livari, J (1989). “A methodology for IS development as organizational change: A pragmatic
contingency approach”. In: Systems Development for Human Progress, North-Holland, Ams-
terdam, pp. 197-217.

Ikonen, M., Kettunen, P., Oza, N., and Abrahamsson, P. (2010). “Exploring the Sources of
Waste in Kanban Software Development Projects”. In: 36th Euromicro Conference on Software
Engineering and Advanced Applications. EUROMICRO Conference Proceedings, pp. 376-381.

Jorgensen, M. (2016). “A survey on the characteristics of projects with success in delivering
client benefits”. In: Information and Software Technology, vol. 78, pp. 83-94.

Kalus, Georg and Kuhrmann, Marco (2013). “Criteria for software process tailoring: a system-
atic review”. In: Proceedings of the 2013 International Conference on Software and System
Process. ACM, pp. 171-180.

Bibliography

107

108

Kniberg, H. and Skarin, M. (2010). Kanban and Scrum: making the most of both. USA: C4Media.

Kumar, K. and Welke, R. J. (1992). “Methodology Engineering R: a proposal for situation-
specific methodology construction”. In: Challenges and strategies for research in systems
development. John Wiley and Sons, Inc., pp. 257-269.

Lee, A. S. and Baskerville, R. L. (2003). “Generalizing Generalizability in Information Systems
Research”. In: Information Systems Research, vol. 14, no. 3, pp. 221-243.

Lee, G. and Xia, W. (2010). “Toward agile: an integrated analysis of quantitative and qualitative
field data on software development agility”. In: Mis Quarterly, vol. 34, no. 1, pp. 87-114.

Lee, S. and Yong, HS. (2013). “Agile software development framework in a small project
environment”. In: Journal of Information Processing Systems, vol. 9, no. 1, pp. 69-88.

Lindstrom, L. and Jeffries, R. (2004). “Extreme programming and agile software development
methodologies”. In: Information Systems Management, vol. 21, no. 3, pp. 41-52.

Lwakatare, L. E., Kuvaja, P., and Oivo, M. (2016a). “An Exploratory Study of DevOps Extending
the Dimensions of DevOps with Practices”. In: 11th International Conference on Software
Engineering Advances, pp. 91-99.

Lwakatare, L. E., Kuvaja, P., and Oivo, M. (2016b). “Relationship of DevOps to Agile, Lean and
Continuous Deployment: A Multivocal Literature Review Study”. In: Product-Focused Soft-
ware Process Improvement: 17th International Conference, PROFES 2016. Springer, pp. 399—
415.

Misra, S. C., Kumar, V., and Kumar, U. (2009). “Identifying some important success factors in
adopting agile software development practices”. In: The Journal of Systems and Software,
vol. 82, no. 11, pp. 1869-1890.

Moe, N. B., Dingsgyr, T., and Dyb4, T. (2009). “Overcoming barriers to self-management in
software teams”. In: IEEE software, vol. 26, no. 6, pp. 20-26.

Nerur, S. and Balijepally, VG. (2007). “Theoretical reflections on agile development method-
ologies”. In: Communications of the ACM, vol. 50, no. 3, pp. 79-83.

Nerur, S., Mahapatra, RK., and Mangalaraj, G. (2005). “Challenges of migrating to agile
methodologies”. In: Communications of the ACM, vol. 48, no. 5, pp. 72-78.

Oates, B. J. (2006). Researching information systems and computing. London: Sage Publications.

Patel, C., De Cesare, S., Iacovelli, N., and Merico, A. (2004). “A framework for method tailoring:
a case study”. In: 2nd OOPSLA Workshop on Method Engineering for Object-Oriented and
Component-Based Development, pp. 1-14.

Pedreira, O., Piattini, M., Luaces, M. R., and Brisaboa, N. R. (2007). “A Systematic Review of
Software Process Tailoring”. In: SIGSOFT Software Engineering Notes, vol. 32, no. 3, pp. 1-6.

Petersen, K., Wohlin, C., and Baca, D. (2009). “The Waterfall Model in Large-Scale Develop-
ment”. In: PROFES. Springer, pp. 386-400.

Bibliography

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit.
The Agile software development series. Boston: Addison-Wesley.

Rising, L. and Janoff, N. S. (2000). “Scrum software development process for small teams”. In:
IEEE Software, vol. 17, no. 4, pp. 26-32.

Rodriguez, P., Lwakatare, L. E., Haghighatkhah, A., etal. (2017). “Continuous deployment of
software intensive products and services: A systematic mapping study”. In: The Journal of
Systems and Software, vol. 123, pp. 263-291.

Rodriguez, P., Markkula, J., Oivo, M., and Turula, K. (2012). “Survey on Agile and Lean Usage
in Finnish Software Industry”. In: Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE, pp. 139-148.

Rolland, K. H., Mikkelsen, V., and Nass, A. (2016). “Tailoring Agile in the Large: Experience
and Reflections from a Large-Scale Agile Software Development Project”. In: International
Conference on Agile Software Development. Springer, pp. 244-251.

Royce, Winston W (1987). “Managing the development of large software systems: concepts
and techniques”. In: Proceedings of the 9th international conference on Software Engineering.
IEEE Computer Society Press, pp. 328-338.

Runeson, P. and Host, M. (2008). “Guidelines for conducting and reporting case study research
in software engineering”. In: Empirical Software Engineering, vol. 14, no. 2, pp. 131-164.

Schwaber, K. (2004). Agile project management with Scrum. Microsoft professional. Redmond,
Wash: Microsoft Press.

Scrum.org (2017). The Scrum Process. [Online; accessed November 16, 2017]. URL: https:
//s3.amazonaws . com/ scrumorg-website-prod/drupal /2016-06/ScrumFramework _
17x11.pdf.

Stavruy, S. (2014). “A critical examination of recent industrial surveys on agile method usage”.
In: Journal of Systems and Software, vol. 94, pp. 87-97.

Sutherland, J. and Schwaber, K. (2016). “The Scrum Guide”. In: [Online; accessed November
16, 2017]. URL: https://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-
Guide-US.pdf.

Turk, D., France, R., and Rumpe, B. (2002). “Limitations of Agile Software Processes”. In:
XP2002, pp. 43-46.

VersionOne (2017). The 11th Annual State of Agile Report. Report. URL: https://explore.
versionone . com/ state - of -agile/versionone - 11th - annual - state - of - agile -

report-2.

Vinekar, V., Slinkman, C. W., and Nerur, S. (2006). “Can agile and traditional systems develop-
ment approaches coexist? An ambidextrous view”. In: Information systems management, vol.
23, no. 3, pp- 31-42.

Webster, J. and Watson, R. T. (2002). “Analyzing the past to prepare for the future: Writing a
literature review”. In: MIS Quarterly, vol. 26, no. 2, pp. XIII-XXIII.

Bibliography

109

https://s3.amazonaws.com/scrumorg-website-prod/drupal/2016-06/ScrumFramework_17x11.pdf
https://s3.amazonaws.com/scrumorg-website-prod/drupal/2016-06/ScrumFramework_17x11.pdf
https://s3.amazonaws.com/scrumorg-website-prod/drupal/2016-06/ScrumFramework_17x11.pdf
https://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2

Williams, L. and Cockburn, A. (2003). “Agile software development: It’s about feedback and
change”. In: Computer, vol. 36, no. 6, pp. 39-43.

Yin, R. K. (2014). Case study research: design and methods. 5th ed. Los Angeles, Calif: SAGE.

110 Bibliography

Appendices

This chapter contain the following attachments:

1. The interview guides that were used to conduct interviews

2. The survey that was used as a starting point for investigating agile practices in
the case

3. The template for the confidentiality agreement between the student and the
case company

A.1 Appendix A: Interview Guides

Interview guide 1 and 2 for follow on the next page.

111

Intervjuguide - Runde 1
Forklaringer og fargekoder i quiden:

Bla = hjelpetekst til meg selv (baktanke / oppfelgningssparsmal / sjekkliste)
Svart = direkte spgrsmal

Kursiv = merknad - stilles til utvalgte personer

“Les:” = alternativ betydning / fremstilling av spgrsmalet

Intro:
1.

aokrowbd

Setter i gang for & bruke minst mulig av tiden deres

Introduserer meg selv

Forklarer hvordan vi gjer intervjuene (+ et par sparsmal til prosjektleder)
Kjarer pa med spgrsmal

Fa underskrift pa samarbeidsavtale osv.

Presentere meg selv (ca 2 minutt):
Mal: Gjgre meg kjent for informant, og hvorfor jeg er der.

1.

w

Rolle og bakgrunn:

a. Sivilingenigrstudent NTNU - Studie med vekt pa datateknologi og prosjektledelse
Kort info om masteroppgaven
Hvorfor dette prosjektet var interessant i denne sammenheng
Dataen benyttes som utgangspunkt for et casestudie i oppgaven, og mulig jeg setter caset
opp mot andre case

Praktisk om intervju (ca 3 minutter):

Mal: Gjare det klart for informant hvordan intervjuet skal foregd, og hva det innebeerer & delta pa
intervjuet.

5. Tar lydopptak, transkriberes, og alle navn vil anonymiseres

6.

7.

Til prosjektleder:
a. Sparre om spesielle gnsker rundt anonymitet
b. Sperre om videre intervjuer og informasjon (to runder, flere informanter,
dokumentasjon)
Spersmal og svar pa apent format:
a. Svar hvordan du vil, og ingen svar er feil. Er pa jakt etter dine personlige meninger og
erfaringer.

Introduksjon (5 minutt):
Mal: Bli kjent med informanten.

8.

Hva er din rolle i prosjektet?

9. Hva er dine oppgaver og ditt ansvar?
10. Hvor lenge har du jobbet i prosjektet?
11. Intern eller ekstern?

Overordnet forstaelse for prosjektet (10 minutter):
Mal: Fa god forstaelse for og oversikt over prosjektet - produktet/tienestene, organisasjon,
interessenter, mal, overordnet strategi for & oppna disse malene, osv.

Starter generelt:
11. Beskriv prosjektet for meg (s jeg har noe a starte med).
a. Mal? (formal, resultatmal; les: hensikt/hva & oppna)

Produkter og/eller tienester som leveres?
Hvem er kunden(e)?
Si litt om rammene rundt prosjektet (omfang, tids- og ressursrammer, osv)
Kontrakttype?
Prosjektsteg / faser

g. Kundekrav og leveransemodell? (skissere denne?)
12. Nar begynte prosjektet, og nar tror dere malet er nadd?

~0oaovo

Organisasjon:
14. Kan du beskrive hvordan prosjektet er organisert? (roller og hierarki, hvor mange?)
a. Prosjektleder: skissere eller sende organisasjonskart?

Oppfglgende sparsmal om ikke dekket i beskrivelser over:

15. Er dere ett eller flere team?
a. Hvis ett team: Teamet er relativt stort (14+ personer) - er det en grunn til at dere
organiserer dere som ett team, og ikke deler opp i flere mindre team?
b. Hvordan fungerer dette?
c. Kan du beskrive hvordan du og teamet jobber sammen for & oppna de malene som
er satt (illustrer gjerne pa papiret).
16. Ledelse:
a. Kan du beskrive ledelsen og lederrollene i prosjektet?
b. Hvem tar beslutninger i prosjektet, og hvilke beslutninger tas?
c. Hvordan formidles disse beslutningene til resten av teamet?
17. Kunde:
a. Hvordan er kunden involvert i prosjektet?
b. Hvem er andre viktige interessenter? (sluttbruker, osv.)
c. Kan du si litt om hvorfor dere gjar det slik? (er det viktig i forhold til metodikken dere
bruker?)
18. Arbeidsplass:
a. Sitter alle, inkludert kunde her?
b. Er det apent landskap eller hvordan sitter dere i forhold til hverandre?
c. Er dette viktig for maten dere jobber pa?

Metodetilpasning (20-25min):

Mal: fa en god oversikt over metoder og praksiser som benyttes gjennom alle faser i prosjektet. Hvilke
tilpasninger er gjort, er dette en bevisst prosess, og hvorfor de er gjort og om de fungerer bra eller
darlig.

20. Har du kompetanse eller erfaring med prosjektmetodikker fra far, eventuelt hvilke?

I de neste sparsmalene vil jeg sparre om beskrivelser rundt metodikk og praksiser i prosjektet. Det er
fortsatt fritt frem hvordan du svarer, men sett gjerne svarene i kontekst av hvordan dere jobber
metodisk i prosjektet.

21. Med egne ord: hvordan vil du beskrive programvareutviklingsmetodikken dere benytter i
prosjektet? (hvis informant er usikker: beskriv arbeidsprosessene)

For de metodikkene/praksisene som blir nevnt: *
22. Hvilke “metodikker og underliggende praksiser” benytter dere, smidige og ikke-smidige?
23. Hvordan bruker dere denne metodikken/praksisene (les: arbeidsprosess)?
24. Hvor kommer du inn i denne prosessen?
25. Hvorfor har dere valgt a bruke denne metodikken/praksisene?
a. erfaring / preferanse?
b. prosjektkontekst / prosjekttype?
C. synergier?
d. hvem tar den beslutningen? (utviklere, ledere, kunden?)
e. andre grunner?
26. Hvordan synes du det fungerer & bruke metodikken/praksisen pa denne maten?
a. Har det eller forekommer det ofte avvik i bruk av metodikk?
b. 1sa fall: hvorfor det?
c. Erdet noe ved denne metodikken/praksisen som du synes burde veert gjort
annerledes?
27. Andre metodikker og/eller praksiser, smidige eller ikke-smidige? (hvis ja, ga til *)

Videre spgrsmal om metodikk og praksiser:
28. Nar ble valgene rundt metodikken og underliggende praksiser tatt? (Tidlig, sent eller
fortlgpende)
29. Fasilitering: Har du noe inntrykk av hvordan det er for andre & forholde seg til metodikken og
underliggende praksiser i prosjektet?
a. Vanskelig for noen? er dette et problem?
b. Hvordan serger dere for a fasilitere bruk av metodikk og praksiser? (e.g. Scrum
Master)
c. Huvis ikke; hvorfor gjar dere ikke dette?
30. Min oppgave fokuserer pa dette med a bygge eller tilpasse smidig metodikk...:
a. Til hvilken grad vil du si at dere er bevisste pa dette med a velge, bygge og tilpasse
en egen prosjekt-spesifikk metodikk? (les: en bevisst prosess?)
i. Hvorfor er eventuelt dette viktig for dere?

Avslutning (5 minutter):

31. Er det tatt hgyde for fasene:
a. Funksjonalitet og kravspesifikasjon
b. Beslutning av Igsning og arkitektur
c. Oppgavefordeling og fremdriftsplan
d. Utvikling og koordinering av dette (stand-ups, kanban, mer?)
e. Overlevering til testing og testing/tuning (eventuelt pilotgruppe?)
f. Overlevering til produksjon og produksjonssetting
g. Overvakning og forvaltning
32. Kort oppsummering av viktigste funn (hvis tid)
33. Andre ting vi ikke har diskutert som kan veere relevant rundt metodikk og metodetilpasning i
prosjektet?
34. Til prosjektleder: tror du det vil veere mulig for meg a prate med flere i prosjektet i november?
35. Beskriv hvordan forskningen gar videre:
a. Ville du hatt mulighet til a stille igjen? (ikke n@dvendigvis like lenge)
b. Spegr om jeg skal sende det transkriberte materialet til deg for vurdering dersom
gnskelig (mtp. anonymitet, korrekthet osv.)
36. Noen spgrsmal?

37.

Takk for deltakelsen

Intervjuguide - Runde 2

Presentere meg (ca. 2 min)
e Siv.ing. student, NTNU - Datateknologi og prosjektledelse
e Kort om masteroppgaven
o Valg av metode og underliggendepraksiser og tilpasning av disse (mao.
endringer)
Dette prosjektet var interessant fordi...
Dataen benyttes som utgangspunkt for et casestudie i oppgaven

Praktisk om intervju (ca. 1 min)
e Tar lydopptak, transkriberes, og alle navn pa personer, bedrifter, kunde, osv
anonymiseres.
e Svar hvordan du vil, ingen svar er feil.
o Spegrsmal pa litt apent format
o Noen mer spesifikke oppfalgingssparsmal fra sist

Introduksjon (3 min)
e Hva er din rolle og dine ansvarsoppgaver i prosjektet?
e Hvor lenge har du jobbet i prosjektet?
e Hva er din erfaring med & jobbe smidig tidligere?

Metodetilpasning og kriterier (20 min):
e Jobber dere etter en navngitt prosjektmodell?
o Hovis ikke: Hvordan klarer dere da & samles om en arbeidsprosess eller
metode?
e Hvordan er prosjektmetoden kommunisert?
e Kan du da beskrive den smidige metoden dere jobber etter i dette prosjektet?
o Hvilken smidig prosjektmetode tror du dere ligger naermest?
o Hvordan kom dere frem til, og satt sammen, denne metoden?
e Kan du beskrive hvilke prosjektfaser metoden deres inneholder?
o Hvordan (metodemessig) planlegger og designer dere lgsninger, nar gar dere
da over pa utvikling, og hvilke faser felger da etter dette?

e Hvilke av disse praksisene bruker dere i de forskjellige fasene? (skjema)
Hva fungerer bra og hva fungerer ikke sa bra synes du?
Kan du papeke noen endringer (mao. tilpasninger) som har blitt gjort i de ulike
praksisene (maten dere jobber pa)? (det kan vaere endringer i praksiser, metoden,
fasene)

e Hvorfor gjgr dere (i sa fall) disse tilpasningene?

o Er det tilpasninger noe dere burde gjort mer eller mindre av?

e Har dere gjennom prosjektet innfgrt nye praksiser eller gjort stgrre endringer i
metoden, eller foregar tilpasninger pa praksisniva?

e Hvem foreslar eller innfgrer tiltakene for disse tilpasningene, og nar tas de opp?

o Hovilket niva blir tilpasningene gjort? Er det programniva, prosjektniva, eller
team niva?
Hvor ofte blir det gjort tilpasninger i maten dere jobber pa?
Hva er det som ligger til grunn for at dere kan jobbe sa smidig som dere gjor?
Kommer du pa andre praksiser som dere bruker?
o Har disse veert endret (tilpasset) underveis?

((Hvordan vil du kort beskrive deres tilnaerming til metodetilpasning?))

Hvordan vil du betrakte kompetansen omkring prosjektmetode, praksiser og
tilpasninger til prosjektdeltakerne?

o Hvordan driver dere kompetanseheving rundt metodikk?

o Hvordan driver dere kompetanseheving for kunden rundt metodikk?
Synes du ellers at dere lykkes med den metoden dere jobber etter?

Oppfolgingssparsmal (5 min):

Autonome team og roller:

o Sitter teamene na kun innad i kanalene, eller jobber teamene pa tvers av

kanaler? Og hva er forskjellen pa ordene kanal, tema og team?
o Holder dere pa & endre dette?
o Hovilke roller er det i teamene?
m arkitekt? eller er dere utviklere alle? hvor mange?
radgivere? hvem er det? hvor mange?
utviklere
designer
interaksjonsdesignere
prosjektleder
m forretningsutviklere

o Hvor mange team er dere na og hvor sitter de?
Standups - er det for hele kanaler, eller enkeltteam?
Har dere starre leveranser som dere skal levere innen en viss dato?

o Hvordan far dere da til continuous deployment for sterre leveranser (mye

avhengigheter osv)?

o Kort - hvordan foregar prosessen hvor dere bryter ned i sma oppgaver?
Har dere noen mate dere maler gevinstrealisering pa i prosjektet?

o Ja: sa det er mye fokus pa verdi?
Kunne jeg fatt et screenshot av et trello-brett, eller skrive ned navnet pa kolonnene?
Eksempel i oppgaven, men fjerne alle detaljer

Avslutning:

Andre ting vi ikke har diskutert som kan veere relevant for metode og
metodetilpasning i prosjektet?

Beskrive hvordan forskningen gar videre

Noen spgrsmal?

Takk for deltakelsen

A.2 Appendix B: Agile Practices Survey

The agile practices survey follow on the next page.

118 Appendix A Appendices

Praksiser

Veldig
lite

Litt

En del

Mye

Veldig
mye

Prioritized work list

Iteration/sprint planning

Daily stand-up meetings

Unit testing

Release planning

Active customer participation

Self-organizing teams

Frequent and incremental delivery of working
software

Automated builds

Continuous integration

Test-driven development (TDD)

Retrospectives

Burn-down charts

Pair programming

Refactoring

Collective code ownership

A.3 Appendix C: Confidentiality Agreement

The confidentiality agreement follow on the next page.

120 Appendix A Appendices

STANDARD TEMPLATE

for confidentiality agreements between a student and a company/external organization
concerning work on a master’s thesis/project assignment (academic work) in cooperation with
a company/external organization, cf. Clause 5 in the standard agreement on academic work in
cooperation with a company/external organization.

This template is by order of NTNU’s Rector 29 August 2011.

AGREEMENT
between

| Student at NTNU: | Date of birth: dd-mm-yy

| Company/external organization:

concerning confidentiality.

1. The student is to carry out work in cooperation with a company/external organization that
is part of his/her course of study at NTNU.

2. The student undertakes to maintain secrecy regarding what he/she learns about technical
equipment, procedures as well as operational and business matters that for competitive
reasons have importance for the company/external organization. It is the responsibility of the
company/external organization to make it absolutely clear what this information includes.

3. The student is obliged to maintain secrecy about this for 5 years from the date he/she
completed work at the organization, see the standard agreement for academic work in
cooperation with a company/external organization, Clause 1.

4. The confidentiality requirement does not apply to information that:

a) was in the public domain when it was received

b) was lawfully received from a third party without any agreement concerning secrecy
c) was developed by the student independently of information received

d) the parties are obliged to provide in accordance with law or regulations or by order of a
public authority.

place, date (dd-mm-yy) for company/organization

signed and stamped

NTNU 2011-08-29

	Preface
	Summary
	Sammendrag
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Description
	1.2.1 Clarifications and Definitions

	1.3 Scope
	1.4 Target Audience
	1.5 Thesis Structure

	2 Background Literature and Theory
	2.1 Agile Software Development
	2.1.1 Traditional versus Agile Software Development
	2.1.2 Agile Principles and Agility
	2.1.3 Towards Continuous Software Delivery in Agile Software Development

	2.2 Agile Methods and Practices
	2.2.1 Agile Methods Overview
	2.2.2 Iterative Methods
	2.2.3 Flow-based Methods
	2.2.4 Agile Practices

	2.3 Method Tailoring
	2.3.1 Introduction to Method Tailoring Theory
	2.3.2 Method Tailoring Approaches

	2.4 Summary

	3 Method
	3.1 Literature Review
	3.1.1 Literature Inclusion and Exclusion Strategy

	3.2 Case Study Research
	3.3 Case Selection
	3.4 Preparation for Data Collection
	3.5 Data Collection
	3.5.1 Semi-Structured Interviews
	3.5.2 Observations and Document Analysis

	3.6 Transcription of Recorded Interviews
	3.7 Coding and Data Analysis
	3.8 Reporting of Results
	3.9 Confidentiality and Anonymization
	3.10 Research validity, reliability and generalizability

	4 Results
	4.1 Overview of the Project
	4.2 The Use and Tailoring of Agile Methods and Practices
	4.2.1 Approach to Agile Method Tailoring
	4.2.2 Agile Practices and Tailoring of Practices

	5 Discussion
	5.1 Problem Statement
	5.1.1 Characteristics of the Agile Method Tailoring Approach
	5.1.2 Combination of Agile Practices

	5.2 Implications of the Research
	5.3 Research Limitations

	6 Conclusion
	6.1 Problem Statement
	6.2 Future Work

	Bibliography
	A Appendices
	A.1 Appendix A: Interview Guides
	A.2 Appendix B: Agile Practices Survey
	A.3 Appendix C: Confidentiality Agreement

