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ABSTRACT The probability density of crest amplitude and duration that exceeds a given level is used in
many theoretical and practical problems in engineering that are subjected to fluctuating loads such as wind
and wave loads. The presently available joint distributions of amplitude and period are limited to excursion
through a mean-level or to describe the asymptotic behavior of high level excursions. This paper extends the
knowledge by presenting a theoretical derivation of probability of wave exceedance amplitude and duration
for a stationary narrow-band Gaussian process. A density function is suggested that has the salient feature to
depend only on the three lowest spectral momentsm0,m1, and m2 and desired level of exceedance,H . It does
not require any condition on the autocorrelation function. This paper shows how increase inH , increases the
correlation between excursion periods and amplitude. This paper also shows that how the accuracy of the
proposed joint distribution relates to spectral width parameter, ν, and that accuracy increases for higher
levels of H , especially for a spectrum describing a physical phenomenon such as a sea state spectrum.
It was demonstrated that the marginal distribution of amplitude is Rayleigh distributed, as expected, and
that the marginal distribution of excursion duration works for asymptotic and non-asymptotic levels. Results
demonstrate that the established distribution fits well with ideal narrow-band Gaussian processes as well as
the sea states at three European sites —in the Atlantic Ocean and the North Sea. The suggested model is
found to be a good replacement for the existing empirical distributions.

INDEX TERMS Stationary process, Gaussian narrow-band process, joint distribution, excursion duration,
crest amplitude, level crossing.

I. INTRODUCTION
The probability distribution function (PDF) of amplitude
and duration of exceeding a certain level of a stochastic
process, ζ (t), is essential for many theoretical and practi-
cal problems. These range from mechanical stress analysis,
change detection problems, fading phenomena in wireless
communication and many applications in marine, offshore
and coastal engineering. In offshore and coastal engineering,
it includes both short-term and long-term statistics. Short-
term applicability includes slamming loads, deck-impact
events, short-term probability distribution of impact duration,

bottom-slam forces, over-topping waters for wave break-
ers and wave energy convertors [1]. Long-term applica-
tion includes operation, installation and survival of offshore
renewable energy and platforms in general [2], [3].

Investigating of the distribution of amplitude (maxima) and
period dates back to the the pioneer works of Rice [4], [5].
He scrutinized the statistical properties of a random function
—noise in an electrical circuit—and established a closed-
form expression, i.e., the Rice formula, of the average cross-
ing rate under favorable conditions. By using the average
crossing rate, he derived the distribution of maxima for a
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Gaussian process. His fundamental results were summarized
in [2] and [6]. Wave period can be defined as the time
between two successive local maxima or successive up-
crossing through the mean level. Opting the latter definition,
various approximations of wave period density functions
have been proposed, for example, Rice [4], [5, Sec. 3.4] and
Longuet-Higgins [7]–[9].

The probability density of excursion (exceedance)
duration, time between an level-up-crossing followed by a
level-down-crossing, were also derived by Rice [5]. The
proposed approach is, however, rather complicated for non-
zero levels and can only be estimated by means of demand-
ing numerical integration. Non-diagonal covariance matrix
between stochastic function and its derivative hinders a
simple analytical derivation of the density of excursion
duration. Many researchers, therefore, tried to address this
issue by approximating the integration. By partitioning an
n-dimensional normal space to subspaces, Wu-Zhou and
Ming-Shun [10] proposed a semi-analytic method to
reduce the computational efforts. Empirical paramet-
ric models for the duration statistics of the signifi-
cant wave height were established by Graham [11], and
Kuwashima and Hogben [12].
Analytical expressions for the mean value and variance of
excursion duration can be found in [13] and [14], where
Mathiesen [14] used the mean value expression to validate a
empirical parametric model. A number of researchers have
treated this problem by assuming an asymptotically large
level of excursion [15]–[21]. Using orthogonal series, Gram-
Charlier, Edgeworth or Laguerre series, is another approach
to approximate the PDF of exceedance and non-exceedance
duration [3].

The joint distribution of wave period and amplitude is a
more challenging problem in the most general case. However,
for a stochastic process with a narrow-band spectrum some
simplifications can be made; Wooding [22] was the first to
derive the joint distribution of wave amplitude and period
for a narrow-band spectrum using the density of the wave
envelope and its time derivative. Cavanie et al. [23] proposed
a closed-form expression for the joint distribution assuming
a narrow-band Gaussian random process based on spectral
moments up to 4th order (m0,m1,m2,m4). By extracting the
mean frequency of the spectrum, Longuet-Higgins [24], [25]
ended up with a diagonal covariance matrix between slow-
varying envelope, high-frequency component and their time
derivatives, and derived a simpler closed-form expression for
the joint distribution of wave period and amplitude based on
spectral moments (m0,m1,m2). Using the joint distribution
established by Longuet-Higgins, EM. Antao and CG. Soares
proposed the joint distribution of wave steepness in narrow-
band sea states [26]. However, these closed-form formulas
cannot provide a description of the joint density of amplitude
and excursion duration nor density of excursion duration for
a level that differs from the mean level.

To the best knowledge of the authors, there is no closed-
form expression for the joint distribution of excursion period

and amplitude yet. Hence, the objective of this paper is to
fill this gap and establish a closed-form expression for the
joint distribution of exceedance duration and amplitude above
a certain level and parameterize this with low-order spectral
moments. We assume a Gaussian narrow-band process with
continuous first derivative. The paper will also show how the
the empirical excursion distribution model can be replaced
by the marginal distribution for excursion duration that fol-
lows from the joint distribution. The paper will validate the
suggested closed-form joint distribution with simulated ideal
narrow-band and sea states data and investigate the accuracy
of the model when the bandwidth of the underlying narrow-
band process changes towards a broader bandwidth stochastic
process and for different levels.

The remainder of this paper is organized as follows.
Section II presents a derivation of the joint distribution
of excursion duration and amplitude and determines the
marginal distribution of amplitudes and excursion duration.
Section III validates the model using the simulation results
from ideal-narrowband spectra and sea states data. The
Kolmogorov-Smirnov test (K-S test) is used as a goodness-of-
fit (GoF) test to provide a quantitative measure of the accu-
racy of the suggested joint distribution. Finally, Section IV
concludes and highlights the main findings of the paper.

II. STATEMENT OF THEORETICAL RESULTS
A. ASSUMPTIONS
A Gaussian random process ζ (t)—any function indexed by
time representing for example the wave elevation at a specific
point in space—has been commonly been represented by the
Fourier series Eq. (1), [24], [25], [27], [28].

ζ (t) =
∞∑
n=1

ancos (ωnt + εn) (1)

Where an and εn are statistically independent random vari-
ables. The amplitude an is Rayleigh distributed, and the phase
εn is uniformly distributed over [0, 2π ). For a narrow-band
process, ωn is densely distributed over (0,∞). A narrow-
band assumption helps to break down ζ (t) into a carrier high
frequency wave with the mean frequency ω, and a slowly
varying envelope function Eq. (2), [24], [25].

ζ (t) = Rel
{
ρeiφeiω̄t

}
, (2)

where ρeiφ is the complex-value envelope function of time t
and total phase φ Eq. (3),

ρeiφ =
∞∑
n=1

an exp {i [(ωn − ω̄)+ εn]} . (3)

The mean frequency ω̄ is defined as:

ω̄ =
m1

m0
, (4)

where mn stands for the nth central moment of the spectral
density S(ω) of ζ (t):

mn =
∫
∞

0
wnS(ω)dω. (5)
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FIGURE 1. Relation between exceedance duration τh —for given level
h—crest amplitude ρ, crest period τc and wave period τ .

Similarly the nth non-central moment of the spectral den-
sity S(ω) is defined as:

µn =

∫
∞

0
(w− w̄)nS(ω)dω, (6)

and spectral width parameter ν is defined as

ν2 =
µ2

ω̄2m0
. (7)

Longuet-Higgins [24], [25] derived the closed-form joint
distribution for a narrow-band (ν2 ≤ 0.36) Gaussian process
which has a continuous first derivative, Eq. (8).

p (Ac,T )=
2

ν π1/2 L(ν)
A2c
T 2 exp

{
−A2c

[
1+(1−1/T )2 ν−2

]}
(8)

Where Ac and T represent the normalized crest amplitude
and period, respectively. The crest amplitude, ρ, is normal-
ized by

√
2 m0 and wave period, τ , time between two suc-

cessive zero-up-crossing, is normalize by the mean period τ̄ ,
Eq. (9), Fig. 1.

Ac =
ρ

(2m0)
1
2

, T =
τ

τ̄
, τ̄ =

2πm0

m1
. (9)

L(ν) is a function of spectral width parameter ν and defined
as

L(ν) =
2[

1+
(
1+ ν2

)−1/2] . (10)

B. DERIVATION OF THE JOINT DISTRIBUTION OF
EXCURSION DURATION AND AMPLITUDE
Starting fromLonguet-Higgins joint distribution of amplitude
and period, Eq. (8), and assuming that zero-up-up cross-
ing period T is twice the zero-up-down crossing period Tc,
we end up with the joint distribution of the crest period and
amplitude, Eq. (11).

p (Ac,Tc) =
1

ν
√
π
L(ν)

A2c
T 2
c

×exp
{
−A2c

[
1+ (1− 1/2Tc)2 ν−2

]}
(11)

For a narrow-band process where there is only one maxima
between two successive zero-up-down crossing a sine-shape
function can be used to approximate the relation between
the crest amplitude (greater than a given threshold), the crest
period and the excursion duration, Fig. 1.

The total phase, 1phase, pertinent to excursion time is
presented in Eq. (12), approximating the phase φ using a
sine-shape function. Eq. (15) presents the relation between
normalized excursion duration TH , crest period Tc and crest
amplitude Ac.{

ρ sin(φ) = h
ρ sin(π − φ) = h

}
⇒ π − 2φ = 1phase⇒ π − 2φ =

π

τc
τh (12)

τh =

(
1−

2
π
arcsin

(
h
ρ

))
τc Normalizing
−−−−−−−−→

(13)

τh

τ̄
=

1−
2
π
arcsin

 h
√
2m0
ρ
√
2m0

 τc

τ̄
⇒ (14)

TH =
(
1−

2
π
arcsin

(
H
Ac

))
Tc. (15)

Introducing an auxiliary variable such as y, we now convert
Ac,Tc domain to y,TH domain Eqs. (16) to (18)

p (Ac,Tc) change of variables
−−−−−−−−−−−→

×

 y = Ac := g1(Ac,Tc)

TH =
(
1− 2

π
arcsin

(
H
Ac

))
Tc := g2(Ac,Tc)

 (16)

⇒

 Ac = g−11 (TH , y = Ac)

Tc =
TH(

1− 2
π
arcsin

(
H
Ac

)) = g−12 (TH ,Ac)

 (17)

p(Ac,TH )

= pAc,Tc
(
g−11 , g−12

)
× |J |

=
1

ν
√
π
L(ν)

A2c
T 2
H

(
1−

2
π
arcsin

(
H
Ac

))

· exp

−A2c
1+

1−
(
1− 2

π
arcsin

(
H
Ac

))
2TH

2

ν−2


 .
(18)

In order to obtain a simpler form of Eq. (18) over the
desired domain, H

Ac
∈ [0, 1] interval, we approximate as

follows(
1−

2
π
arcsin

(
H
Ac

))
'

√
1−

H
Ac
; for

H
Ac
∈ [0, 1]

(19)

Fig. 2 depicts this approximation. It is seen that the Tay-
lor expansion (even up to 5th order) cannot capture the(
1− 2

π
arcsin

(
H
Ac

))
function when H

Ac
goes toward one.
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FIGURE 2.
(

1− 2
π arcsin

(
H
Ac

))
(solid line), and its Taylor expansion up

to 5th order (dash-dot line), and
√

1− H
Ac

(dashed line).

√
1− H

Ac
function, however, seems to be a better and simpler

approximation for all the desired range. The ensuing simpler
form is also helpful to handle the integrations in order to
derive marginal distributions. We, therefore, end up with the
following form for the joint distribution of crest amplitude
and excursion duration for a given threshold levelH , Eq. (20).

p(Ac,TH ) = K (H , ν)
1

ν
√
π
L(ν)

A2c
T 2
H

√
1−

H
Ac

· exp

−A2c
1+

1−
√
1− H

Ac

2TH

2

ν−2




(20)

Where L(ν) is the same as Eq. (10). We also need
to add a normalization factor, say K (H , ν), to guarantee
that

∫ ∫
(Ac,TH ) dAcdTH is unity. Where K (H , ν) clearly

depends on H and ν values and will be addresed in
Section II-C and Appendix. IV-B. The joint distribution
p(Ac,TH ) for ν = 0.5 and for different normalized threshold
H = [0, 0.5, 1, 2] are depicted in Fig. 3. Each contour repre-
sents a quantile level enclosing P% of the probability density
function while P takes the values 10, 30, 50, 70, 90, 95 and
99 from the center contour outwards. The established joint
density function works both for zero and non-zero level H ,
and for H = 0, it produce the similar result as was presented
by Longuet-Higgins [25]. As H increases, we end up with
a narrower distribution especially with respect to excursion
duration, Figs. 3b to 3d. It should be noted that the result
for narrower spectrum (smaller ν values) are similar. It is
evident, as previously also shown in other literature [23]–[25]
for H = 0, the smaller the ν values are, the narrower the
excursion duration are for the same threshold level H .

C. THE MARGINAL DISTRIBUTION OF p(Ac ) FOR Ac > H
In order to derive the density of wave crest amplitude Ac,
we need to integrate p(Ac,TH ) with respect to TH over 0 <

FIGURE 3. Contour lines of the joint density of normalized excursion
duration (TH ) and normalized crest amplitude (Ac ) for Gaussian process
for ν = 0.5 and for different normalized level H = [0, 0.5, 1, 2], where
contours represent quantile levels which enclose P% of the PDF and P
takes [10, 30, 50, 70, 90, 95, 99] values from center contour outwards.

TH <∞,

p(Ac) =
∫
∞

0
p(Ac,TH )dTH

= K (H , ν)
1

ν
√
π
L(ν)

A2c
1

√
1−

H
Ac

exp
(
−A2c

)

·

∫
∞

0

1

T 2
H

exp


(
Ac
ν

)2
1− 0.5

√
1− H

Ac

TH

2 dTH .

(21)

The integral part can be written as∫
∞

0

1

T 2
H

exp

{
−a2

(
1−

b
TH

)2
}
dTH , (22)

where a is Ac
ν

and b is 0.5
√
1− H

Ac
. By applying β =

a (1− b/TH ), we end up with the same results as Longuet-
Higgins [25], Eq. (23), where he only considered the case
where H was zero.

Ac exp(−A2c)L (ν)
2
√
π

∫ Ac
ν

−∞

exp
(
−β2

)
dβ

= Ac exp(−A2c)L (ν)
[
1+ erf(

Ac
ν
)
]

(23)

VOLUME 6, 2018 15239



M. Ghane et al.: On the Joint Distribution of Excursion Duration and Amplitude

FIGURE 4. The value of L(ν)
2

[
1+ erf( Ac

ν )
]

for different values of
ν = [0.1,0.2,0.3,0.4,0.5].

The only difference, as the general form —H is not nec-
essarily zero—is that for Ac < H , p(Ac) is zero; accordingly
the distribution of crest amplitude p(Ac) isK (H , ν) 2Ac exp(−A2c)

L(ν)
2

[
1+ erf(

Ac
ν
)
]

for Ac > H

0 for Ac < H
(24)

Setting Ac = r/
√
2, 2 Ac exp(−A2c) becomes r exp(− r2

2 )
which is, as we expected, the Rayleigh distribution. We need
also to consider a normalization factor, K (H , ν), to take into
account the effect of L(ν)

2

[
1+ erf(Ac

ν
)
]
coefficient. Fig. 4

evaluates L(ν)
2

[
1+ erf(Ac

ν
)
]
for different values of ν and Ac.

It is seen that for small ν and large Ac values,
L(ν)
2

[
1+ erf(Ac

ν
)
]
is close to unity. For this especial case,

by assuming L(ν)
2

[
1+ erf(Ac

ν
)
]
= 1, Longuet-Higgins

showed that normalization factor, K (H , ν), is equal to
exp(H2), [25]. Accordingly, Fig. 5 shows the density function
of crest amplitude Ac which is almost Rayleigh distributed,

yet it must be corrected by a factor of L(ν)
2

[
1+ erf(Ac

ν
)
]
.

It is seen that p(Ac) goes towards a Rayleigh distribution by
increasing Ac and by decreasing ν values, narrower spectrum.
It should be noted that dash-line is referred to Rayleigh distri-
bution shape—the Rayleigh distribution—since its integral is
not unity. It is scaled with exp(H2) for comparison.
The general form of the normalization factor, K (H , ν) in

Eq. (24) is derived in the Appendix. IV-B, and is presented in
Eq. (25).

K (H , ν)

=
1+
√
ν2 + 1

1+ exp
(
−H2

)√
ν2 + 1

(
1+erf

(H
ν

))
−erf

(
H
√
ν2+1
ν

) ,
(25)

FIGURE 5. The density of crest amplitude, Ac , larger than threshold H , for
ν = [0.1,0.2,0.3,0.4,0.5] and Rayleigh distribution shape.

FIGURE 6. The density of the excursion duration, TH , for ν = 0.5 and for
different threshold H = [0,0.5,1,2].

D. THE MARGINAL DISTRIBUTION OF p(TH )
The density distribution of TH , is obtained by integrating
p(Ac,TH ) with respect to Ac over H < Ac < ∞. The desity
of TH forH = 0, which is the crest period Tc, was derived by
Longuet-Higgins [25]. However, for the general case H > 0,
the analytic closed-form solution is possible to obtain but too
long and too complicated; hence, the numerical integration is
adopted here, Fig. 6.
Fig. 6. is the numerical projection of Fig. 3 with respect to

TH dimension. It is seen that, increasing normalized threshold
H results in a narrower density of TH . Smaller ν values,
similarly, result in narrower density of TH .
As it was shown in [25] the mean value of the TH distribu-

tion is theoretically infinite for H = 0, since for asymptotic
value of Tc the density p(Tc) behaves like T−2c function;
therefore, an alternative estimate of the mean period was
adopted for normalization. We use the same approach and
extend it for the general case i.e. H ≥ 0.

As it can be deducted from Fig. 7, for a random process like
ζ (t) and given a thresholdH , expected value of the excursion
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FIGURE 7. Schematic for expected value of excursion duration.

period E[TH ], as an alternative approach, is presented in
Eq. (26), [13], [14], [29].

E [TH ] =
[Pr(ζ (t) ≥ H )]T

N+(T ,H )
(26)

Where [Pr(ζ (t) ≥ H )]T represents all time ζ (t) spends
above the threshold, and N+(T ,H ) represents number of
positive-level H crossing during T time span, Fig. 7. For a
Gaussian process, accordingly, we have

Pr (ζ (t) ≥ H) =
1
2

[
1− erf

(
H
√
2m0

)]
, (27)

and based on the Rice formula for a Gaussian process [4]
and [5] we have

N+ (T ,H)
T

=
1
2π

√
m2

m0
exp

(
−H2

2m0

)
. (28)

Therefore,

E [TH ] =
[
1− erf

(
H
√
2m0

)]
π

√
m0

m2
exp

(
H2

2m0

)
.

(29)

Replacing H = 0 in Eq. (29), we end up with half the
same value as derived by Longuet-Higgins [25], the 0.5 coef-
ficient is because he assumed a period as time between two
successive zero-up crossing and we consider the crest period
which is half the period. Hence, we modify the p(TH ) using
the following correction coefficient for the TH

E [TH ]

TH
(30)

where TH is obtained from marginal distribution, p(TH ),
Eq. (20). The proposed modification helps to provide a
more accurate estimation of the distribution of excursion
duration.

III. COMPARISON WITH IDEAL NARROW-BAND
GAUSSIAN PROCESS AND REAL SEA STATES
To provide a simulation-based validation for the proposed
joint distribution of excursion duration and crest amplitude,
three approaches are adopted. First, ideal narrow-band spec-
trum is constructed, for ν = [0.1, 0.2, 0.3, 0.4, .5] —ν = 0.6

is excluded for reasoning see Appendix. IV-A. Then, time
series realization are generate with more than 1e+6 sample
point in time domain for different levels. Obtained excur-
sion duration and crest amplitudes from simulation are, then,
compared with theoretical results established in the paper.
Second, real sea states are used to compare the efficiency
of the proposed formula for spectra describing physical
phenomenon. Finally, Kolmogorov-Simirnov (K-S) test as a
goodness of fit (GoF) test is chosen to provide a quantitative
metrics to scrutinize statistical sensitivity in different regions
of the proposed PDFs.

Fig. 8 depicts the stepwise simulation for a narrow-band
Gaussian process. Part (a) shows an ideal spectral density
for ν = 0.3 and w̄ = 0.6; a small portion of the related
time-domain realization is depicted in part (b). Black dots
in part (c) represents the normalized crest amplitudes for
Ac > 0.5 and related normalized excursion duration that
are obtained form time-domain realization. Green contours
show their Kernel density estimation (KDE) for the joint dis-
tribution of excursion duration and crest amplitude. The KDE
provides a non-parametric piecewise approximation of the
joint distribution to compare with the established PDF. Each
contour represents a quantile level enclosing P% of the PDF
while P takes the 10, 30, 50, 70, 90, 95 and 99 values from
the center contour outwards. Part(d) is like part (c), while
contours are obtained from the proposed analytic expression
in this paper Eq. (20). It is seen that the KDE and established
formula are matched pretty well. Parts (e) shows the PDF of
the normalized crest amplitude (solid line), Eq. (24), while
dashed-line represents the scaled Rayleigh distribution for
a better comparison. Part (f) shows the cumulative distri-
bution function (CDF) of both empirical data and analytic
approach; CDF gives a better appreciation of accumulation
of error between numerical simulation and proposed analytic
formula. Part (g) shows themarginal distribution of the excur-
sion duration, p(TH ), accommodating the correction factor,
Eq. (30). Similarly,CDF(TH ) is shown in (h). Simulation data
and proposed closed-form formula for the p(Ac,TH ) and its
marginal distributions, i.e, p(TH ) and p(Ac) agree well with
each other, Fig. 8.

It is intended to show the trend both with respect to
change of ν and H values. To save spaces, only a few fig-
ures are shown; more comparison is presented later on using
K-S test. Fig. 9 depicts similar results for ν = 0.5;H =
0.5 values to investigate the change of spectral width
parameter ν. For a given mean frequency, here w̄ = 0.6,
by increasing ν value we should expect a wider spectrum
which is also appreciated from time-domain realization,
i.e., occasionally havingmore than onemaxima between each
zero-up crossing and the next zero-down crossing, which
contradict our assumptions—narrow-band assumption and
using a sine shape function to approximate change of phase
for a given threshold level H . Accordingly, we should expect
a decrease in the performance of the proposed joint dis-
tribution and density of excursion duration for ν = 0.5,
Fig. 9(h).
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FIGURE 8. Time domain simulation of an ideal narrow-band Gaussian process for ν = 0.3 and normalize threshold H = 0.5; (a) depicts
the spectral density, (b) is a portion of the related time domain realization; black dots in (c) are crest amplitudes greater than H and
related excursion duration and green curves are the obtained kernel density estimation of p(Ac , TH ); (d) shows the proposed
theoretical formula for p(Ac , TH ) Eq. (20); (e:f) are the marginal distributions for crest amplitude and excursion period, respectively.

FIGURE 9. Time domain simulation of an ideal narrow-band Gaussian process for ν = 0.5 and a normalized threshold H = 0.5.
(a) Depicts the spectral density, (b) is a portion of the related time domain realization; black dots in (c) are crest amplitudes
greater than H and related excursion duration and green curves are the obtained kernel density estimation of p(Ac , TH ); (d)
shows the proposed theoretical formula for p(Ac , TH ) Eq. (20); (e:f) are the marginal distributions for crest amplitude and
excursion period, respectively.

Figs. 10 and 11 depicts the similar simulation results for
ν = 0.5;H = [1, 2]. Trend for higher H values is similar to
smaller ν values —narrower spectrum. That is, the excursion
duration decreases by increasing H values, which results
in narrower distribution of both amplitude and excursion
duration. This is appreciable from visual comparison between
Figs. 8, 10 and 11. It is seen that the proposed joint distribu-

tion and the marginal distributions for crest amplitude and
excursion duration matches well, except for ν = 0.5 and
H = 0.5, with the simulation data even for a quiet wide
spectrum, i.e., ν = 0.5.
Sea states simulations, as examples of physical phe-

nomenon comparing to ideal narrow-band spectra, are carried
out for three different European offshore sites in Atlantic
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FIGURE 10. Time domain simulation of Ideal narrow-band Gaussian process for ν = 0.5 and normalize threshold H = 1. (a)
depicts the spectral density, (b) is a portion of the related time domain realization; black dots in (c) are crest amplitudes
greater than H and related excursion duration and green curves are the obtained kernel density estimation of p(Ac , TH ); (d)
shows the proposed theoretical formula for p(Ac , TH ) Eq. (20); (e:f) are the marginal distributions for crest amplitude and
excursion period, respectively.

FIGURE 11. Time domain simulation of Ideal narrow-band Gaussian process for ν = 0.5 and normalize threshold H = 2. (a)
depicts the spectral density, (b) is a portion of the related time domain realization; black dots in (c) are crest amplitudes
greater than H and related excursion duration and green curves are the obtained kernel density estimation of p(Ac , TH ); (d)
shows the proposed theoretical formula for p(Ac , TH ) Eq. (20); (e:f) are the marginal distributions for crest amplitude and
excursion period, respectively.

ocean and North sea, [30]. The related critical conditions
obtained from 50-year record. General information and
statistics of the sites is shown in Table 1. Due to similarity,
only simulation results for site No.1 are presented in this

section, the detailed results for GoF test statistics for all three
sites and for different threshold level H are presented later in
the paper. Time realizations are generated with wave condi-
tions characterized by significant wave height HS = 8 m and
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TABLE 1. General information of three european sites.

FIGURE 12. Time domain simulation of real sea data for normalized threshold H = 0.5, Hs = 8 m and Tp = 12 s; (a) depicts the
spectral density, (b) is a portion of the related time domain realization; black dots in (c) are crest amplitudes greater than
H = 0.5 and related excursion duration; green curves are the obtained kernel density estimation of p(Ac , TH ); (d) shows the
proposed theoretical formula for p(Ac , TH ) Eq. (20); (e:f) are the marginal distributions for crest amplitude and excursion
duration, respectively.

peak period TP = 12 s (modelled by a JONSWAP spectrum),
for more than 1e + 6 points in time domain for different
threshold, Figs. 12 to 14. Poor performance of estimated
excursion duration distribution for H = 0.5 —which is more
evident in Fig. 12 part (h)—is because of the fact that narrow-
band assumption is not valid here. This is evident from time
domain realization Fig. 12 part (b), i.e., having more than one
maximum/minimum between each zero-up/down crossing
and successive zero-down/up crossing.

A closer look at sea states spectral density, reveals that
the trend for higher level H is similar to narrower spectrum
(smaller ν values), since a smaller portion of the frequencies
covered by the spectrum have enough energy, those are closer
to peak-frequency, to cross the higher level. Consequently,
by increasing level H the proposed joint distribution and its
marginal distributions are closer to simulation results and
have a better performance, Figs. 13 and 14. This is more
evident by comparing parts (g) and (h) of Figs. 12 – 14.
It is also noticeable that by increasing H , the correlation
between crest amplitude and excursion period increases,
Fig. 14

Simulation of real sea data for normalized threshold H =
1, Hs = 8 m and Tp = 12 s. (a) depicts the spectral

density, (b) is a portion of the related time domain realization;
black dots in (c) are crest amplitudes greater than H and
related excursion duration and green curves are the obtained
kernel density estimation of p(Ac,TH ); (d) shows the pro-
posed theoretical formula for p(Ac,TH ) Eq. (20); (e:f) are
the marginal distributions for crest amplitude and excursion
period, respectively.

Besides the visual inspection of the proposed distributions
and simulated data, it is critical to provide a quantitative accu-
racy metric using Goodness-of-fit (GoF) test. There are many
GoF tests, while, empirical distribution function (EDF)-based
tests such as the Kolmogorov-Smirnov (K-S) and Anderson-
Darling (A-D) tests are often found to be more powerful than
the Chi-square test [31]–[33]. A-D test is especially useful
where it is needed to places more weight or discrimination
power at the tails of the distribution which is very useful
for heavy-tail distribution [34]; hence, K-S test is used here.
Related test statistics for different significance level α are
presented in Tables 2 and 3.

The sup|ECDF − CDF | refers to the maximum deviation
between empirical cumulative distribution function (ECDF)
and the proposed marginal distribution for excursion duration
TH as well as crest amplitude Ac. To pass the K-S test, this

15244 VOLUME 6, 2018



M. Ghane et al.: On the Joint Distribution of Excursion Duration and Amplitude

FIGURE 13. Simulation of real sea data for normalized threshold H = 1, Hs = 8 m and Tp = 12 s. (a) depicts the spectral density,
(b) is a portion of the related time domain realization; black dots in (c) are crest amplitudes greater than H and related excursion
duration and green curves are the obtained kernel density estimation of p(Ac , TH ); (d) shows the proposed theoretical formula
for p(Ac , TH ) Eq. (20); (e:f) are the marginal distributions for crest amplitude and excursion period, respectively.

FIGURE 14. Simulation of real sea data for normalized threshold H = 2, Hs = 8 m and Tp = 12 s. (a) depicts the spectral density,
(b) is a portion of the related time domain realization; black dots in (c) are crest amplitudes greater than H and related
excursion duration and green curves are the obtained kernel density estimation of p(Ac , TH ); (d) shows the proposed theoretical
formula for p(Ac , TH ) Eq. (20); (e:f) are the marginal distributions for crest amplitude and excursion period, respectively.

deviation must be smaller, for a given significance level α,
than the related critical value Dαn —n is the sample size.
For example, in Table 2 the first column for TH , the test
statistics is 0.0585 and is smaller than Dα=0.01n = 0.0607
and Dα=0.001n = 0.0726 which means the proposed formula

in this case passed the K-S test with significance level equal
to α = 0.01 and 0.001. It is seen that for ν = 0.5 and
H = 0.5, the proposed distribution function for TH faced
at the maximum 5.66% error with the confidence level of
1− α = 99% or faced 6.77% error with the confidence level
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TABLE 2. K-S test statistics for ideal narrow-band Gaussian process for different ν and H values.

TABLE 3. K-S test statistics for different sea states and H values.

of 1−α = 99.9%, and for the density function of Ac, there is
5.47% and 6.54% error for confidence level 99% and 99.9%,
respectively.

Similar results for the three aforementioned European off-
shore sites are presented in Table 3. It should be noted that the
higher the level H is the longer simulation time is required
to obtain a more accurate error band, since fewer excursion
happens by increasing H ; therefore, presented results perti-
nent to H = 2 in Tables 2 and 3 are conservative, which it is
evident from higher differences betweenDαn and test statistics
for H = 2. It is also seen that by increasing the threshold
levelH , especially for sea states, the accuracy of the proposed
distribution increase. One of the most valuable features of the
K-S two-sided test statistic is that for a significance level α,
its critical value Dαn may be used to form a confidence band
for the true unknown distribution function, [35, Ch.6]. The
upper and lower confidence band, for a significance level α,
is defined as

U (x) = CDF(x)+ Dαn if CDF(x)+ Dαn ≤ 1

U (x) = 1 if CDF(x)+ Dαn > 1

L(x) = CDF(x)− Dαn if CDF(x)+ Dαn ≥ 0

L(x) = 0 if CDF(x)− Dαn < 0 (31)

Taking into account the K-S test results, Tables 2 and 3,
and Eq. (31), the error band between simulated data and pro-
posed distributions with confidence level of 99.9% or 99% is
quite acceptable, and for the threshold levels greater or equal
than 1

√
2m0

—normalized threshold H ≥ 1—even for

a wide band spectrum the proposed formula has almost
5% error.

IV. CONCLUSION
An analytical approximate of the joint distribution of wave
amplitude and excursion duration was derived for a narrow-
band Gaussian process ζ (t) with the level H as a param-
eter. Salient features of the proposed formula included
that only information of the three lowest spectral moments
(m0,m1,m2) are needed to construct the joint distribution.
Ideal narrow-band spectra and three real sea state spectra
were used to provide a simulation-based validation. The joint
distribution of crest amplitude and excursion duration was
compared with a non-parametric piecewise density estimator,
the Kernel Density Estimation (KDE). It was shown that
the proposed joint distribution agreed well with the KDE.
The accuracy of the proposed formula was also validated
quantitatively using a Kolmogorov-Smirnov (K-S) goodness-
of-fit test; the small error bands between the proposed model
and simulation data showed the accuracy of the marginal dis-
tributions: crest excursion amplitude, p(Ac), and duration of
excursion, p(TH ). The accuracy of the marginal distributions
was shown to decrease when spectra become broad band.
Moreover, for a spectrum representing sea state, the accu-
racy was shown to increase for increasing level H , in that
only a small portion of frequencies—those are close to peak
frequency—have enough power to cross the higher H levels,
which is similar to have a narrower spectrum. The paper con-
tributes with an analytic solution for the density of excursion
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FIGURE 15. Ideal Narrow-band spectral density.

and duration of high loads, which could supplement or even
replace existing empirical approaches.

APPENDIX
A. IDEAL NARROW-BAND SPECTRUM PROPERTIES
The objective of this section is to generate an ideal NB
spectrum and examine the relation between spectral width
parameter ν, w̄ as mean frequency, and cut-in and cut-off
frequency, wa and wb respectively, Fig. 15.
Fig. 15 depicts an ideal NB spectrum, it can be easily

shown that µ0 = ωb − ωa and µ2 =
1
3 (ωb − ω̄)

3
−

1
3 (ωa − ω̄)

3, so based on Eq. (7) we have

1 =
√
3 ν ω. (32)

On the other hand ω̄ − 1 = ωa must be positive,
so
√
3ν < 1 which results in ν < 1/sqrt(3) = 0.5774;

accordingly in our simulation ν takes values equal or less than
0.5. Higher ω̄ value for a given spectral width parameter ν
results in wider spectrum. Choice of ω̄ indicates the relation
between mean sampling frequency and Nyquist frequency.
In many applications, it is viable to assume that Nyquist fre-
quency is ten times higher than the mean frequency; however,
in our simulation we assumed ω̄ = 0.6 to have a wider
range of spectrum to check the performance of the proposed
formula for quiet wide spectra.

B. DERIVATION OF K (H, ν)
Here we derive the normalization factor Eq. (25).∫
∞

H
K (H , ν) 2Ac exp

(
−A2c

) L(ν)
2

[
1+ erf

(
Ac
ν

)]
dx = 1

⇒
1

K (H , ν)
×

2
L(ν)

=

∫
∞

H
2Ac exp

(
−A2c

) [
1+ erf

(
Ac
ν

)]
dAc (33)

by expanding the integral we have

1
K (H , ν)

×
2

L(ν)

=

∫
∞

H
2Ac exp

(
−A2c

)
dAc

+

∫
∞

H
2Ac exp

(
−A2c

)
erf
(
Ac
ν

)
dAc

= exp(−H2)+
1

√
ν2 + 1

.[
1+ exp(−H2)erf

(
H
ν

)√
ν2 + 1− erf

(
H
√
ν2 + 1
ν

)]
(34)

Replacing L(ν) from Eq. (10), we end up with the follow-
ing expression for K (H , ν)

K (H , ν)

=
1+
√
ν2 + 1

1+exp(−H2)
√
ν2+1

(
1+erf

(H
ν

))
− erf

(
H+
√
ν2+1
ν

) .
(35)
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