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Abstract

One of the main challenges in providing consistent and accurate predictions of rainfall-induced

landslides is the large uncertainty involved in the assessment. This thesis demonstrates the potenti-

al of an alternative approach in reducing uncertainties associated with rainfall-induced landslides

by learning from observations of slope performances. The process is formalized by adopting the

probabilistic Bayesian updating framework.

The performance of the implemented prediction models and the Bayesian updating framework

is evaluated in a case study considering the landslide events that occurred in 2011 in the Kvam

area of central Norway. Two types of landslide prediction models for slope stability under rainfall

infiltration are implemented: simple analytical models and advanced sequentially coupled nu-

merical models. Consistent trends between the models in terms of updated posterior probability

density functions are observed.

The main contribution of this thesis is the implementation and demonstration of the updating

framework in the described models. The results show that uncertainty in geotechnical and hydro-

logical parameters controlling the occurrence of rainfall-induced landslides can be successfully

reduced when the observation information in the updating process is constraining the outcome

spaces of the random sample realizations. The parameters for which confidence intervals were

reduced the most in the Kvam study were: soil thickness, groundwater table level, cohesion and

friction angle. This indicates that these parameters are critical in the definitions of slope factors of

safety in the implemented models. The effects of Bayesian updating on safety assessment of futu-

re rainfall-induced landslides is evaluated by simulating rainfall events of different return periods.

The estimated probabilities of rainfall-induced landslide occurrence indicate that the strength of

the updating information, in terms of constraining the random realization outcome spaces, and

variation in rainfall return periods affects the estimated probabilities.
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Sammendrag

En av hovedutfordringene ved kartlegging av flomskredfarer er de store usikkerhetene in-

volvert i vurderingene. I denne masteroppgaven demonstreres en alternativ metode for å redusere

usikkerhetene knyttet til flomskredskartlegging kalt Bayesisk oppdatering. Hovedprinsippet er å

oppdatere sannsynlighetsfordelingene til de usikre geotekniske og hydrologiske parameterne med

observasjoner av skredutsatte skråninger.

To typer modeller for å forutsi flomskredfare er implementert i arbeidet med denne oppga-

ven: enkle analytiske modeller og avanserte numeriske modeller. I oppgaven er en skredhendelse

fra 2011 i områdene rundt Kvam, Gudbrandsdalen, brukt som bakgrunn for å evaluere de im-

plementerte skred-modellene og oppdaterings-rammeverket. Resultatene, presentert i form av de

oppdaterte annsynlighetsfordelingene til de usikre parameterne, indikerer konsekvente trender

mellom de enkle og de avanserte modellene.

Resultatene viser at usikkerheten i geotekniske og hydrologiske parametere knyttet til utløsning

av regnutløste flomskred kan reduseres ved hjelp av Bayesisk oppdatering når observasjonen som

introduseres i modellen er definert slik at den begrenser utfallsrommet til de stokastisk modellerte

parameterne. I Kvam-studien var skråningstykkelse, grunnvannstand, kohesjon og friksjonsvinkel

de mest kritiske variablene i stabilitetsberegningene. Konfidensintervallene til disse parameterne

ble redusert mest.

Effektene av Bayesisk oppdatering i sikkerhetsvurdering av fremtidige regnutløste flomskred

ble vurdert ved å simulere nedbørshendelser med varierende intensitet og returperioder. Resulta-

tene tilsier at styrken på oppdateringsinformasjonen; hvor begrensende den er på utfallsrommene,

og variasjon i nedbørsperioder påvirker de estimerte sannsynlighetene for regnutløste flomskred.
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Chapter 1

Introduction

1.1 Motivation

Flooding and landslides are, next to storms, the most damage causing and deadly natural hazards

in Norway (St.meld.15 (2012)). Landslides often occur simultaneously with extreme precipitation

and snow melting (Sandersen et al. (1996)), and researchers generally agree that raised frequency

of geohazards can be expected in the future in Norway as a consequence of climate change (NGI

(2013), NGU (2009), Jaedicke (2009)). Norwegian authorities have a significant focus on climate

change and safety preparedness for climate change-related problems like geohazards and land-

slides. This is evident trough the report from the Ministry of Petroleum and Energy ”How to live

with the dangers - flood and landslides” (St. Meld. 15 (2012)), and the report ”Climate change

adaptation in Norway” (St. Meld. 33 (2013)) from the Ministry of the Environment. Many pub-

lic and privately funded projects have also been initiated in Norway concerning these topics, for

instance GeoExtreme (duration 2005–2008), InfraRisk (2010-2013) and the ongoing Klima2050.

One of the main challenges in providing consistent and accurate predictions of the occurrence

of rainfall-induced landslides, on both local and regional scales, is the large uncertainty involved

in the analysis (Melchiorre and Frattini (2012), Zhang et al. (2011)). This includes uncertainties

in geotechnical, hydrological and climate model paramaters due to lack of knowlegde (e.g., insuf-

ficient geotechnical investigations) and due to the inherent natural variability of the conditions in

the field. The inability of models to correctly describe the complex physical behaviour of rainwa-

ter infiltration and landslide triggering mechanisms further adds to the uncertainty in predictions.

Collecting information on the uncertain parameters is often a challenging task when the assess-

ment areas are remote, heterogeneous and spanning tens of kilometers. Currently, there is a lack

of reliable and cost efficient ways of obtaining information on the uncertainties controlling the

occurrence rainfall-induced landslides (Depina (2017)).

1



2 CHAPTER 1. INTRODUCTION

Problem formulation

This thesis will focus on implementation of a method for handling uncertainties and reducing un-

certainties in rainfall-induced landslide predictions based on information of observed slope per-

formance. This will be formalized by adopting the Bayesian updating framework. The problem

formulation is as follows: How does information of slope performance affect the uncertainties

involved in rainfall-induced landslide prediction?

Literature survey

The main findings in the literature survey of this thesis can be divided into three parts.

First, numerous conceptual and physically based analytical and numerical models have been

proposed to investigate slope stability under rainfall conditions. The comprehensive review on ex-

isting research on rainfall-induced landslides by Zhang et al. (2011) presents methods commonly

applied in analyses. A crucial part of analyses is to solve the complex problem of infiltration of

rainwater into the slope (Zhang et al. (2016), Fredlund (2012)). Solutions of second-order partial

differential equations for water flow in saturated and unsaturated soil (e.g. Richards (1931)) are

considered robust (Zhang et al. (2016)). Iversons simplified analytical solution (2000) has gained

popularity because of its easy application and low computational demands. Numerical methods,

on the other hand, are computationally demanding but can consider complex geometries and het-

erogeneity, and incorporate advanced models of unsaturated soil behaviour (e.g. Van Genuchten

(1980)) (Plaxis (2016b)). In evaluation of slope stability, the extended Mohr-Coulomb failure

criterion (Fredlund et al. (1978)) is usually adapted in both analytical limit equilibrium methods

(Rahardjo and Leong (2007), Cho and Lee (2002)) and numerical studies (Plaxis (2016a)).

Second, in recent years, several probabilistic approaches to the problem of rainfall induced

landslides has been examined in order to systematically and quantitatively account for the large

amount of uncertainty involved. The book Rainfall-Induced Soil Slope Failure by Zhang et al.

(2016) provides a good overview of rainfall-induced landslides from a probabilistic perspective,

including many interesting case studies. Melchiorre and Frattini (2012) used a Monte Carlo

approach (e.g. Baecher and Christian (2003)) to model probability of rainfall-induced shallow

landslides under changing climate conditions in Otta, Central Norway. They found that accurate

quantification of changes in stability conditions was not feasible, since the uncertainty in slope
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hydrological and in slope stability conditions was higher than in climatic change. Mitigation of

uncertainties in probabilistic analyses can increase the robustness of landslide predictions (De-

pina (2017)). The Bayesian updating framework is advantageous because it provides an explicit

and consistent approach to model uncertainties and update them with observations (Straub and

Papaioannou (2015)). The framework has been successfully applied in back-calculation of land-

slide controlling parameters (Ering and Babu (2016), Zhang et al. (2010), Luo et al. (2017)).

Third, Chapter 3 in this thesis is a result of a literature survey on the Kvam area and the 2011

landslide event. In lack of available geotechnical field measurements, the site characterization is

based on various sources of literature. This provides the background for the selection of uncertain

geotechnical, hydrological and climate parameters in the case study.

What remains to be done?

Bayesian updating is a relatively new method in reliability engineering (Straub and Papaioannou

(2015)). Few studies have examined the potential of using information of slope performance to

learn about and reduce uncertainties in landslide prediction models (Depina (2017)). A key moti-

vation for using observations of slope performance in the Bayesian updating framework originates

from the low cost that is required to gather such information in comparison to more conventional

methods for collecting data on uncertain geotechnical parameters.

1.2 Objectives

The investigation of the Bayesian updating method will be done trough a case study based on

a landslide event in Kvam, Gudbrandsdalen, Norway in 2011, which is a case study site in the

ongoing Klima2050 project. The main objectives are:

1. Establish tools for predicting rainfall-induced landslides.

2. Implement a probabilistic model to describe the uncertainties associated with the assess-

ment of rainfall induced landslides.

3. Implement Bayesian updating to mitigate involved uncertainties.
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4. Evaluate the effect of Bayesian updating on predicted slope factors of safety and on uncer-

tain parameters of the prediction models.

5. Evaluate the effect of Bayesian updating on rainfall-induced landslide occurrence probabil-

ities under climate change.

1.3 Limitations

The implementation of the Bayesian updating will be limited to updating prior model parameter

distributions with the information of slope survival before and after the Kvam 2011 rainfall event.

The thesis will rely heavily on the analytical models. Due to time constraints and the high

computational demands of doing probabilistic analyses with the numerical tools, only a limited

number of numerical simulations are run. The effects of climate change on rainfall-induced land-

slide predictions are only evaluated for the analytical model.

1.4 Methods

The approach for objective 1 is to select two types of prediction models for rainfall-induced

landslides: analytical and numerical models. The chosen analytical models will be calculated

with a code in Phyton. The numerical rainfall infiltration and slope stability models will be

implemented in Plaxis 2D, and a sequential coupling of these is done with a Phyton code.

Objectives 2 and 3 will be carried out by formulating reliability models with Bayesian updat-

ing in Phyton code, using direct Monte Carlo and Subset simulation techniques. The selection of

model parameters and the definition of the updating information will be based on the literature

study for the Kvam area. Comparison of prior and posterior distributions and mean and 95%

confidence estimates of factors of safety and parameter values will be done to evaluate the effects

of updating on uncertainties. Data processing will be done in Python.

The approach for Objective 5 is to perform a simple probabilistic analysis of slope stability

under infiltration of rainfall with different intensities and return periods, corresponding to present

and future climate scenarios.
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1.5 Thesis outline

The remaining part of the thesis is structured in four chapters. Chapter 2 presents the implemented

analytical and numerical rainfall models for rainfall infiltration and slope stability prediction. A

basic overview of groundwater flow and slope stability theory is given as well. Chapter 3 provides

the basic elements of the implemented probabilistic methods, including the Bayesian updating

framework. In Chapter 4 the Kvam case study is presented, with specification of the model

uncertainties, the updating process and the updating information. Results of the case study are

presented with discussions at the end of the chapter. A summary with key findings as well as

recommendations for further work is given in Chapter 5.
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Chapter 2

Prediction tools

2.1 Rainfall-induced landslide characteristics

As an introduction to the descriptions of the implemented prediction tools and the theory behind

these models, a brief characterization of rainfall-induced landslides is given.

A general characterization of landslide types observed in association with rainfall and flood-

ing is given by Norwegian Water Resources and Energy Directorate (NVE) (2013): The slides

triggered by rainfall and flooding are typically no more than 2 meters deep with high length to

depth ratios, and can thus be characterized as shallow. Sliding surfaces are typically located

within the soil cover and/or bedrock interface. Inland in Norway, rainfall-induced sliding most

often occurs on valley sides in till deposits of fluvial, glacial and glacio-fluvial types. Observed

slope angles commonly range between 20 and 45 ◦.

2.1.1 Mechanisms of rainfall-induced landslides

It is generally recognized that rainfall-induced landslides are caused by changes in pore water

pressures and seepage forces (Collins and Znidarcic (2004)). Two main triggering scenarios

that apply to heavy rainfall associated landsliding activity are mainly discussed (NVE (2013),

Jaedicke et al. (2008)). One scenario is heavy surface erosion by short-term intense rainfall and

flooding. In this case, erosion of deposits often happen along creeks or old derbis transport zones

(NVE (2013)). The second scenario, which this thesis aims attention at, is initiation as a shallow

landslide due to changes in pore water pressures. In this case the landslide masses may quickly

develop into large derbis-flows due to high water contents and continued erosion along the failure

path, but the initiating mechanism is different (NVE (2013)).

Collins and Znidarcic (2004) analyzed two distinct failure mechanisms of shallow rainfall-

induced landslides due to pore pressure changes. In the first mechanism, typical for coarse grained

soil, increased positive pressures due to saturation of the soil is observed in a low area on the slope

7
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or along the soil/bedrock interface. The decrease in effective stresses here result in failure and

movement along the sliding surface. The stress path can be described as a constant shear stress

path (Anderson and Sitar (1995)). In the second mechanism, typically observed in more fine

grained soil, sliding is initiated in unsaturated soil. Slope failure is then due mainly to loss of

shear strength when soil suctions are decreased or dissipated during rainfall infiltration (Fredlund

(2012)). Ering and Babu (2016) argued that in hillsides consisting of various grain sizes, like till

deposits, the two mechanisms cannot separately attribute to slope failure. Rather, combinations

of mechanisms may cause failure.

Analyses of rainfall-induced landslides are commonly divided into two stages (Cascini et al.

(2010)): The first stage, initiation, can be defined as the formation of a continuous failure surface.

The second, post-failure stages, can be characterized by generation of large plastic strains and

acceleration of the failed soil mass. These two stages are often analyzed separately due to signif-

icant differences in the behavior of the soil masses in the two stages. The focus of this thesis is

the first stage; slope failure and triggering mechanisms.

2.1.2 Factors controlling rainfall-induced landslides

Rainfall-induced landslides are complex in nature. The review of existing research on infiltration

and slope stability analysis under rainfall infiltration by Zhang et al. (2011) provides a concise

summary of studies on factors controlling occurrence of failure. Generally, soil shear strength

properties, slope angles, soil thickness and the groundwater conditions (e.g. pore pressure and

suction distribution) determines the initial stability situation before rainfall (Rahardjo and Leong

(2007)). The actual failure conditions are much determined by rainfall characteristics and the

response to rainfall, governed by soil hydraulic properties (Zhang et al. (2011)).

The groundwater conditions and flow patterns in till slopes can vary significantly with time.

During dry periods, up slope groundwater tables (GW-tables) in till are usually low, and water

movement is mainly vertically downward during rainfall or even occasionally reversed by evap-

oration and transpiration (Lars Lundin (1990a)). During wet periods however, which is usually

the initial condition of rainfall-induced slope failure in springtime (Jaedicke et al. (2008), Wal-

berg and Devoli (2014), NVE (2013), Edvardsen (2013)), the soil may be saturated throughout

the whole profile due to heavy snow melting combined with rainfall. Under these conditions,
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especially in sandy and sandy-silty till, slope-parallel water flow may occur, even above the wa-

ter table (Lars Lundin (1990a)). During long and/or intense rainfalls, the till deposits up slope

can become fully saturated or the infiltration capacity can be exceeded. This can again result in

locally large runoff and erosion rates (Walberg and Devoli (2014)).

Significant spatial variation of initial groundwater situations and rainfall responses is also

typical within basins and even single slopes (Lars Lundin (1990a), Lars Lundin (1990b)). The

shape of the basin and slope is a major determinant of water flow patterns, as slides usually form

in old landslide scars, ravines, along creeks and rivers or in convex basins with enough water

inflow (NVE (2013), Heyerdahl (2016), (Lars Lundin (1990a)). Moreover, human intervention in

the basin can alter the flow patterns (NVE (2013)). Roads and railroads can drain and redistribute

surface water flow. Tree-felled areas can also be vulnerable to landsliding activity because of

reduced evapotranspiration and increased water storage capacity in macropores replacing rotten

roots (Lars Lundin (1990a)).

2.2 Rainfall-infiltration models

2.2.1 Basic theory of water flow in soil

In the following, some key concepts of saturated and unsaturated water flow are summarized to

provide a background for the rainfall infiltration analyses done in this thesis. The theory presented

is adapted from the book Unsaturated Soil Mechanics in Engineering Practice by Fredlund (2012)

unless other references are given.

The driving potential for water flow is hydraulic head, a measure of the energy level of the

water in a given point. An expression for the total hydraulic head h at a depth z relative to some

reference is:

h = z +
uw
ρwg

+
v2

2g
(2.1)

Here, uw, ρw, g, and v is the pore water pressure, the water density, the gravitational accel-

eration constant and the velocity of the water, respectively. z is known as the gravitational head

(vertical coordinate with positive direction upward), uw
ρwg

is the pressure head hp and v2

2g is the
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velocity head. Velocity head is usually negligible because of the low flow velocities in soil.

A difference in potential over a length in space, will cause water to flow. This is described by

Darcy’s law 1856:

q = −k∂h
∂l

= −ki. (2.2)

where q is the water flow rate, i is the gradient of hydraulic head, and k is the coefficient of

permeability of the soil, given in units of length/time. The negative sign is used because water

flows from a higher to lower potential, meaning that a negative head change will happen over a

positive ∂l. When the flow rate in a soil is equal to the permeability, the hydraulic gradient i =

−q/k = −1. This corresponds to a steady-state flow, and the hydraulic head and the coefficient

of permeability are constant. A situation where there is no flow in the soil, i = 0, is called

hydrostatic. When considering problems of rainfall infiltration into soil, it is often of interest to

analyze how suction and pore pressures change time-dependently during infiltration. One is then

looking at a transient situation, often a transitional state between an initial and end steady state

situations. In a transient flow analysis, the hydraulic head and the coefficient of permeability are

not constant.

In unsaturated soils, both water and air are classified as fluids that can flow. In this thesis,

pore-air pressures is assumed to remain atmospheric, ua, and taken as the zero pressure reference

level. The matric suction, ua − uw, in the soil will be equal to −uw.

2.2.2 Unsaturated soil characteristics

The response of unsaturated soil to water infiltration depends on the unsaturated hydraulic proper-

ties of the soil. Permeability, the proportionality factor of Darcy’s law, controls how easily water

can flow through the pores of the soil. Saturated permeability, ksat, is the permeability of the

soil when all pores are filled with water. The value of permeability of a soil depends on porosity,

distribution of pores and fractures as well as homogeneity and isotropy (Lars Lundin (1990b)).

These are properties controlled mainly by grain-size distribution, structural properties, particle

spatial distribution and orientation and degree of soil compaction (Haldorsen and Krüger (1990)).

In unsaturated soils, k varies mainly with changes in the stress state of the soil and the degree

of saturation, S. The number of fluid-connected pores and channels available for the flow of water
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in a soil decrease with decreasing water content, and consequently the permeability is lowered.

The reduction of k with decreasing S is rapid and usually occurs over several orders of magnitude.

This rapid decrease can be explained by the desaturation process, in which the biggest pores dries

first. As the soil dries, water is forced to move trough smaller and smaller pores, resulting in

increasing turtuosity of flow and significantly decreasing flow rates.

Relationships relating permeability, saturation and hydraulic head are needed in order to cor-

rectly describe unsaturated soil responses to rainfall infiltration. The relationship relating S to

matric suction or hydraulic head is commonly described by a Soil Water Characteristic Curve

(SWCC). A complementary permeability function can describe how the coefficient permeability,

or relative permeability krel = k/ksat, varies with suction. These relationships can be directly

determined in the field or by using laboratory methods. However, since measurement of these re-

lationships is challenging and often time consuming, many empirical models have been proposed.

One popular model is the one proposed by Van Genuchten (1980): a SWCC equation with

three input parameters: saturated water content, θsat, and two curve fitting parameters. The three-

parameter equation is formulated (Van Genuchten (1980)):

S = Sr + (1− Sr)
[
1 +

(
ga
ua − uw
ρwg

)gn]gc
. (2.3)

The complimentary permeability of the Van Genuchten model is defined:

k = ksatS
gl
e

[
1−

(
1− S

( 1
gc

)
e

)gc]2
. (2.4)

Here, ga, gn, gc = 1−gn
gn

and gl are fitting parameters. g is gravitational acceleration. Se and Sr

is effective and residual degree of saturation, related trough the equation (Brooks (1964)):

Se =
S − Sr
1− Sr

(2.5)

The curve fitting parameters can be determined based on information about the soil type.

Characteristic values of the Van Genuchten model parameters for a range of soil types from Plaxis

(Plaxis (2016a)) are presented below in the Table in Figure 2.1. As discussed by Vogel et al.

(2000), the selection of curve fitting parameters can significantly affect the results of numerical

simulations of transient flow, including the numerical stability and rate of convergence.
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Figure 2.1: Characteristic values of Van Genuchten model parameters for various soil types (Plaxis
(2016a)). Θr = nSr and Θs = nS=1 are the residual and saturated volumetric water contents, re-
spectively, with n = porosity.

Figure 2.2: Coarse grain soil and fine grain soil unsaturated characteristic curves: (a) SWCC and (b)
suction-permeability curve (Credit: Collins and Znidarcic (2004)).

Typical SWCC’s and permeability-suction curves for a fine and a coarse grained soil are

shown above in Figure 2.2 (Collins and Znidarcic (2004)). The curves describe several important

characteristics of unsaturated soil. As discussed above, permeability reduces rapidly with desat-

uration and increased suction. Furthermore, Figure 2.2 (a) shows that above the water table, soils

will not be fully unsaturated, but have considerable moisture contents. By examination of the

volumetric water content reduction rates with pore pressure, it can be deduced that the transition

from a unsaturated to saturated state under rainfall infiltration will be more gradual for a fine

grained soil. With more pores initially filled with water in the unsaturated state, there are more
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pore channels available for water flow and thus resistance to flow is minimized. Still, the satura-

tion process will go slower in this soil due to the low values of hydraulic conductivity visible in

Figure 2.2 (b).

2.2.3 Governing equation of flow in saturated and unsaturated soil

A partial differential equation for transient and steady-state groundwater (GW) flow in unsatu-

rated soils is presented in this section. A two-dimensional formulation is in focus due the common

use of two-dimensional infiltration models for analysis of rainfall-induced landslides. According

to mass conservation for water flow, total water outflow from a given volume is equal to the total

change in mass concentration of water in the volume. Based on mass conservation and Equation

(2.2), transient two-dimensional water flow in homogeneous, isotropic saturated-unsaturated soil

can be modelled by the following equation (Richards (1931)):

∂

∂x

[
k(hp)

∂h

∂x

]
+

∂

∂y

[
k(hp)

∂h

∂y

]
= −∂Θ(hp)

∂t
(2.6)

where hp = is pressure head, and Θ = ρwnS is volumetric water content, with parameters n and

S being the porosity and degree of saturation of the soil, respectively. For steady state conditions,

the volumetric water content in the soil is constant with time, and the right side of (2.6) will be

equal to 0.

Equation (2.6) is formulated uncoupled. That is, it is derived considering continuity of the

water phase only. In order to analyze time dependent mechanical behaviour in partially saturated

soils properly, mixed partial differential equations of soil displacement and pore pressure, must be

solved simultaneously (Galavi (2010)) In this thesis, uncoupled formulations are chosen due to the

focus on minimizing the numerical complexities and computational demands. More information

on the implementation of coupled hydro-mechanical approaches in the finite element program

Plaxis can be found in Galavi (2010).

Calculation of developing pore pressure and saturation profiles developing under rainfall in-

filtration and groundwater seepage with Richard’s Equation, (2.6), is complicated because of the

high non-linearity and complexity involved. (2.6) can be evaluated numerically, or analytically for

given assumptions and approximations (Zhang et al. (2011)). In this thesis, two methods for ana-

lyzing time-dependent pore pressure development under rainfall-infiltration are implemented and
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(a) (b)

Figure 2.3: (a) Definition of the vertical coordinate Z = x sin θ + z cos θ used to calculate elevation head
or depth at an arbitrary location (x, y). Slope angle was denoted α in Iversons formulation (b) Illustration of
Iversons model with rainwater infiltrating down the slope. The GW-table depth Hw = dZ (Figures: Iverson
(2000)).

compared: an analytical model and a numerical model. The two infiltration models are explained

in the following sections.

2.2.4 Analytical infiltration model

Many analytical and quasi-analytical solutions to governing equations of unsaturated flow have

been developed (Zhang et al. (2011)). The number and types of input parameters, complexities

considered and assumptions made vary a lot between the methods. The many assumptions and

simplifications limits the methods abilities to correctly describe all aspects of unsaturated flow in

some situations (Zhang et al. (2011)). Nevertheless, analytical models are usually implemented

in rainfall triggered landslide susceptibility analysis. As these analyses are often done at a re-

gional scale and/or consider statistical distributions of input parameters, analytical methods are

practical. The analytical infiltration model implemented in this thesis is a solution of Richard’s

equation presented by Iverson in 2000. Its low number of input parameters required and low com-

putational demands, makes it a popular solution for the infiltration problem in rainfall triggered

landslide analysis (Melchiorre and Frattini (2012), Zhang et al. (2011)). For instance, one of the

most commonly used tools for transient rainfall infiltration and grid-based regional slope-stability

analysis, USGS’s program TRIGRS, is also based on Iverson’s solutions (USGS (2008)). In the
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following paragraphs, the Iverson model is explained briefly.

Iverson (2000) presented an approximation of the governing equation (Equation (2.6)) that

can describe groundwater pressures developing in slopes in response to rainfall over varying time

periods. Starting out, a coordinate system is defined as shown in figure 2.3 (a). This means, that

whenever the Iverson model is in focus, Z has a positive direction downward. Iversons model

decomposes the time dependent pressure head distribution in a slope into two components. The

first being the long term component, hp,0, produced by a long-term infiltration rate and/or seepage

pattern, and the second being the short term response to rainfall hp,1(t):

hp(t) = hp,0 + hp,1(t). (2.7)

Iversons model is valid for different initial conditions; (1) a steady state pressure head distri-

bution determined by a normalized steady state water table recharge rate, (2) hydrostatic or (3)

slope-parallel steady state seepage (Iverson (2000)). In lack of available field measurements of

groundwater levels, the initial conditions can be determined based on the topography and long

term measurement rates, as shown in Melchiorre and Frattini (2012). In this thesis, the third ini-

tial situation (Ref. (2.11a)), is assumed for simplicity. Based on previously mentioned discussion

of GW-flow in Lars Lundin (1990a), the assumption is reasonable.

The second short-term component of the pressure head response is is evaluated based on the

reduced form of the Richards equation. Focusing on wet initial conditions and thereupon assum-

ing kZ ≈ ksat, the model does not consider unsaturated behaviour described by SWCC’s and

unsaturated permeability functions. With this assumption and further approximations, Equation

(2.6) is reduced to the following diffusive form (Iverson (2000)):

∂hp,1
∂t

= D0 cos2 θ
∂2hp,1
∂Z2

(2.8)

(refer to Iverson (2000) for details). Here, θ is slope angle, hp,1 is the time-dependent pressure

head and D0 is the maximum hydraulic diffusivity, a parameter determining the transmission of

pressure head in the soil profile. It is defined as a function of ksat and the rate of change in

volumetric water content with pressure head. Solving (2.8) for appropriate initial and boundary

conditions, the following set of equations can be used for calculation of ground water pressure at
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all depths Z and times t (Iverson (2000)):

hp
Z

(Z, t ≤ T ) = (1− Hw

Z
) cos2 θ +

Iz
kz

[R(t∗)] (2.9a)

hp
Z

(Z, t > T ) = (1− Hw

Z
) cos2 θ +

Iz
kz

[R(t∗)−R(t∗ − T ∗)] (2.9b)

in which T is the duration of precipitation, t∗ = t
Z2/D and T∗ = T

Z2/D are the normalized

time and normalized precipitation duration, respectively, D is a measure of effective hydraulic

diffusivity equal to 4D0 cos2 θ1 and R is the response function

R(t∗) =
√
t∗/πe(−1/t∗) − erfc(1/

√
t∗). (2.10)

The solutions (2.9a) and (2.9b) obey the following initial and boundary conditions:

hp(Z, 0) = (Z −Hw) cos2 θ (2.11a)

∂hp
∂Z

(∞, t) = cos2 θ (2.11b)

∂hp
∂Z

(0, t) =

−Iz/kz + cos2 θ t ≤ T,

cos2 θ t > T,

(2.11c)

(2.11b) and (2.11c) implies that Darcy’s law governs water entry at the ground surface, but at

great depths, transient vertical seepage decays to zero and steady state pressures persist (Iverson

(2000)). This is illustrated in Figure 2.3 (b).

Iz = ksat defines the maximum rainfall infiltration intensity in the model. The rainfall in

excess of ksat is assumed to run off the slope. In reality, ponding of water and build-up of

positive pore pressures at the surface is possible (Fredlund (2012)).

Because of the constant flux boundary condition at the surface and lack of gravity drainage

term in the linear diffusion model, Iverson’s solution can provide physically unrealistic high pres-

sures to develop at shallow depths. To avoid this, an ad-hoc solution implemented by Iverson

(2000) was to limit the predicted pressures to a steady state condition hp = (Z − Hw) cos2 θ.
1From here on, D0 will be referred to as diffusivity, since this is the input parameter in the model
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Figure 2.4: Performance of the implemented analytical infiltration model with paramters k = ksat =
1 · 10−6m/s and D0 = 1 · 10−4: development of the predicted pore pressures with time

However, Tsai and Yang (2006) showed that even with this correction, unrealistically high pres-

sure heads can be estimated with Iverson’s solution, due mainly to the overestimation of infil-

tration rate. They modified the ground surface boundary conditions and applied a finite-element

method together with an iterative procedure to solve the problem.

Some other possible analytical solutions that were evaluated for implementation in this thesis

should also be mentioned, just for information. (Conte and Troncone (2012)) presented an new

alternative to Iverson’s solution, also considering initially ”wet” slopes. For drier initial condi-

tions, (Zhan et al. (2013)) presented a solution for infiltration in the unsaturated zone, taking the

SWCC and permeability function into account. Another simple model is also presented in an

alternative framework to TRIGRS (Montrasio (2000),Schilirò et al. (2016)).

It is of interest to examine the performance of Iversons model for Kvam case study relevant

conditions. This can illustrate some of the consequences of the assumptions the model is built

on. Figure 2.4 shows calculated pore pressure profiles for a 3 m high slope with θ = 25◦ and

GW-table depthHw = 1.5 m. A constant rainfall intensity q = Iz = 60 mm/day = 6.9 ·10−7 m/s

is applied and studied for a 24 hours. The soil properties are defined as the mean values presented

later in section 4.3 Case study parameter estimates on page 57. For the hydraulic properties, the

following values are selected: k = ksat = 1 · 10−6m/s and D0 = 1 · 10−4 m/s.
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Figure 2.5: Graphs of the peaking behavior of Iversons pressure head response function for a range of
normalized rainfall durations. Graphs of the time to peak t∗peak and magnitude of the peak response Rpeak

were constructed by evaluating R(t∗) −R(t∗ − T ∗) for a range of T ∗ (Credit: Iverson (2000).

Iverson’s solutions do not take unsaturated behaviour models as those described in Section

2.2.2 into account, so the results in Figure 2.4 cannot be explained based on that theory. The

pore pressures that develop instead depend on D0 and the ratio Iz/kz , in addition to the rainfall

duration. In Iverson (2000), behaviour of the the response function is illustrated for a range of

T ∗ values. Figure 2.5 shows that for low T ∗ values, the time to peak response, Rpeak, given

by t∗peak, is nearly constant and t∗peak > T ∗. Rpeak is also small for these values. This implies

that if D0 becomes too small in relation to t and T , rainfall infiltration has little effect on pore

pressures in the slope. The unbounded growth of Rpeak with T ∗ in Figure 2.5 also demonstrates

how unrealistically high pressures would develop at the surface without the steady state correction

(Iverson (2000)). For the chosen input values, T ∗ ≈ 3, and influence of the rainfall on the pore

pressures distribution can be observed (Ref. 2.4).

The initial situation at t = 0 h in Figure 2.4 is defined according to (2.11a). After infiltration

starts, the negative suction reduces at the slope surface. After t = 9 h, the steady state condition

is imposed at the surface. As more rainwater continues to infiltrate, steady state conditions are

implied further down the soil profile. At the end of the rainfall, t = 24 h, pore pressures have

increased by about 10 kPa above the GW-table, and slightly less below this level. It can also be

observed here that the response function does not consider the GW-table level Hw when applying

the steady state condition.
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Figure 2.6: Illustration of Plaxis model geometry and boundary conditions

2.2.5 Numerical infiltration model

One way of overcoming some of the limitations of analytical solutions to governing flow equa-

tions, is to use numerical methods. The finite element program Plaxis 2D supports numerical

evaluation of both coupled and uncoupled governing equations (Plaxis (2016c)). As discussed

above, an uncoupled numerical flow and stability analysis in Plaxis is selected for this study.

Analyses based on formulations of steady state and transient two-dimensional flow are performed,

incorporating the Van Genuthcen model of unsaturated soil characteristics.

Figure 2.6 illustrates the geometry and boundary conditions of the implemented numerical

model. The division of the slope into three sections is a measure made to prevent numerical

instabilities, discussed in section 2.3.3. Increased mesh refinement is applied in middle section

where results are studied. The bottom boundary, Γ1, defining the bedrock interface, is assumed

impervious. It is defined as a closed boundary, meaning zero flow normal to the boundary. To

the Γ3 boundaries, seepage boundary conditions are applied. Over these boundaries, water can
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flow in or out freely below and at the GW-level. An external total head given by the hydrostatic

conditions is assigned at, and below, this level, and it may vary time-dependently. For the portions

of the boundaries above the GW-line with unsaturated conditions, the boundaries are closed, and

remains closed throughout the time-dependent parts of the analysis. Due to this, is important that

the model-slope has a long lenght-to-height ratio. If pore pressures and other time-dependent GW-

characteristics are measured in the middle of the slope, this prevents the prescribed closed parts

of the end boundaries to affect the behaviour. The top boundary setting, Γ4, changes between the

stages of the analysis. (Plaxis (2016c)).

The rainfall infiltration analysis in this thesis is divided into two stages:

1. Steady state flow analysis, accounting for the long-term infiltration rates in the slope.

2. Transient flow analysis, determining the short-term raifall infiltration response.

In the first stage, the steady state pore pressures are determined based on the hydraulic condi-

tions. Initial values of hydraulic head, permeabilities, degrees of saturation and suction levels in

the unsaturated zone above the GW-level are determined by the unsaturated characteristics given

by the Van Genuchten model. Simple hydrostatic suction profiles are considered. Evaporation is

assumend negible preceeding the rainfall, which is reasonable under cloudy conditions. Influence

of antecedent rainfall is neglected for the sake of simplicity. Below the GW-table, the soil is fully

saturated, and pore pressures are determined by GW-table level. For this stage of the analysis, a

seepage condition is assigned to the soil surface boundary Γ1.

The second stage of the analysis is a time-dependent flow calculation. Here, pore pressures

and GW-levels are again determined based on saturated and unsaturated hydraulic conditions.

A rainfall is applied by assigning an infiltration boundary condition to the soil surface Γ1. The

rainfall can be modelled either as a constant inflow rate or a time-dependent inflow function. If

the rate exceeds the soils capacity, ponding takes place at a default depht hmax = 0.1. This

happens either if the soil is fully saturated or the infiltration rate exceeds ksat.
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(a) (b)

Figure 2.7: Graphs of the implemented Van Genucthen model: (a) coefficient of relative degree of saturation,
(b) coefficient of relative permeability. Values on the y-axis defines pressure head levels.

In the following, an example of the numerical model performance is presented. The slope

geometry in this example is specified with H = 3.0m, Hw = 1.5 m and θ = 30◦. The inputs of

the Van-Genuchten model are specified to ksat = 5 · 10−6 m/s and a grain size distribution with:

19% particles < 2µm, 41% between 2µm and 50µm, and 40% between 50µm and 2 mm. The

resulting Van-Genuchten graphs are shown in Figure 2.7. In the transient stage, a constant rainfall

intensity of Iz =60 mm/day = 6.9 · 10−7 m/s is applied and studied for 24 hours.

The resulting development of the pore pressure with depth and time can be studied in Figure

2.8 on the next page. The pore pressure profiles are plotted with time intervals of 3 h over the

vertical height of the soil. At t = 0 h, a hydrostatic situation is observed, corresponding to the

input hydraulic properties. Above the prescribed GW-table depth of Hw = 1.5, lies a capillary

zone of about 0.2 m, where degree of saturation ranges from 100% to 90%.

After t = 0 h, as the transient analysis with rainfall infiltration starts, the suction in the upper

part of the unsaturated zone decreases (Ref. Figure 2.8). Since Iz < ksat, suction decreases

with t, but is not eliminated before the analysis termination at t = 24 h. Suction can only be

eliminated fully if the rainfall intensity is greater than or equal to the saturated permeability, or

if the duration is long enough to fully saturate the slope (Fredlund (2012)). Iz ≈ 0.14 · ksat, so

steady state (i = Iz/k = 1) infiltration happens at the pressure level corresponding to krel = 0.14

in Figure 2.7 (a). In the steady state infiltration zone, the pore pressure −uw remains unchanged

with time. The slope of the pressure profile is directly related to the slope of the hydraulic gradient
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Figure 2.8: Pore pressure profiles under rainfall infiltration calculated with the numerical model, at time
intervals of 3 hours.

at that point (Fredlund (2012)). The gradients near surface are the greatest in the beginning of

infiltration, when krel is lowest. The GW-table starts to rise around t = 18 h when enough

infiltrating rainwater reaches the capillary zone. At t = 24 h, the pore pressure increase relative

t = 0 is 5.87 kPa beneath the raised GW-level.

Figure 2.9 shows the degree of saturation, from left: after the steady state (t =0 h), mid

transient groundwater analysis (t =12 h) and after the transient groundwater analysis (t =24 h).

The profile in focus is the middle section of the slope (Ref. Figure 2.6), and the blue line

defines the GW-table. Here, it can be observed that at t = 0 h, the degree of saturation in the

unsaturated zone interpreted from the SWCC function ranges between 60% and 100%. During

infiltration, the upper part of the zone saturates during steady state infiltration, as shown in the

middle figure. The last profile to the right shows that, with an initial Hw of 1.5 m, the 24 hour

long 60 mm/day rainfall nearly saturates the profile. 100% saturation situation and ponding on

the surface is not reached during this simulation.

In Figure 2.10 three profiles of relative permeability are shown, calculated at t =0 h, t =12

h and t =24 h. The profiles illustrate that initial permeability of the soil is significantly reduced

in the unsaturated zone, as determined by the Van Genuchten permeability function in Figure
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Figure 2.9: Degree of saturation, from left: after the steady state (t=0 h), mid transient groundwater analysis
(t=12 h) and after the transient groundwater analysis (t=24 h).

Figure 2.10: Relative permeability,from left: after the steady state (t=0h), mid transient groundwater anal-
ysis (t=12h) and after the transient groundwater analysis (t=24h).

2.7 (a). As discussed previously, during steady state infiltration, the relative permeability will be

krel = Iz/ksat = 0.14. This is illustrated in the upper parts of the middle (t =12 h) and right

(t =24h) profiles in Figure 2.10. On the scale to the right, middle light blue colours correspond

to krel values around 0.1 to 0.2.

Lastly, Figure 2.11 on the next page shows the directions of calculated groundwater seepage

pattern in the unsaturated part of the soil at t = 12 h. In the bottom left corner, the GW-table

with slope parallel flow in the saturated zone below is apparent. Some slope parallel flow is also

observed above the GW-table in the capillary zone, consistent with field observations described in
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Figure 2.11: Directions of infiltrating rainwater and GW flow at t = 12 h in the transient groundwater
analysis

literature (Lars Lundin (1990a)). The top right part of the figure shows infiltration of rainwater in

the unsaturated zone. Equations 2.1 and 2.2 can be used to explain the directions of the flow: water

flows from a higher to lower potential. Near the surface, steady state infiltration has developed, as

discussed above. In the steady state infiltration zone the pressure does not change with soil depth

Z, so the direction of the flow in straight downward towards lower depths. The flow is elevation

driven. Ahead of the infiltration front in the unsaturated zone, the pressure is lower (Ref. Figure

2.8). Here, the hydraulic gradient, i = Iz/k, increases as the water infiltrates down in parts of the

soil with lower permeability (Ref. Figure 2.10), and the direction of flow changes.

The results discussed above show that the numerical model is able to model many important

and complex features of unsaturated groundwater flow theory. It is thus well suited for detailed

studies of rainfall-induced landslides, for instance when the time to failure during a rainfall event

is of interest. In the probabilistic study of rainfall induced landslides in this thesis, the implemen-

tation of this numerical model is included in order to examine how the results obtained potentially

differ from results obtained with a simpler analytical model.
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2.3 Slope stability models

In the slope stability evaluation part of the rainfall-induced landslide analysis, two different meth-

ods for calculating factors of safety are implemented. In the analytical analysis, a limit equi-

librium equation is used, and in the numerical analysis, a finite element model and numerical

stability analysis is implemented in Plaxis 2D. Both methods are based on the Mohr-Coulomb

failure criterion. The following section briefly presents the Mohr-Coulomb failure criterion for

saturated and unsaturated soil. Subsequent, the analytical and numerical stability models are

explained.

2.3.1 The Mohr-Coulomb model

The Mohr-Coulomb model is a well known linear-elastic perfectly plastic approximation of soil

behaviour (e.g. Plaxis (2016c)). The Mohr-Coulomb failure criterion can describe the shear

strength of a saturated soil:

τff = c′ + (σf − uw)f tanφ′ (2.12)

where τ is shear stress on the failure plan at failure. c′ is effective cohesion, which is the shear

strength intercept when the effective normal stress, (σf−uw), on the failure plane is equal to zero.

uw is pore-water pressure at failure and lastly, φ′ is effective internal friction angle, characterizing

the increase in shear strenght due to an increase in net normal stress. The subscript f indicates

the failure stress condition at the failure plane.

The Mohr-Coloumb criterion was extended to embrace unsaturated soils by Fredlund et al.

(1978). The shear strength equation for unsaturated soils can be written as follows:

τff = c′ + (σf − ua)f tanφ′ + (ua − uw)f tanφb (2.13)

where c′ is effective cohesion, intercept of the extended failure envelope on the shear stress axis,

where net normal stress and suction at failure are equal to zero. ua is pore-air pressure, (ua−uw)f

is matric suction on the failure plane at failure. φb is an angle characterizing the increase in shear

strength due to an increase in matric suction. It can be expressed in terms of Bishops matric
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Figure 2.12: Illustration of the extended Mohr Coulomb failure criterion from Fredlund (2012)

suction coefficient χ: tanφb = χ tanφ′(Fredlund (2012)). χ is a soil parameter related to the

degree of saturation, part of the oldest and most-often-referred to effective stress relationship for

unsaturated soils proposed by Bishop et al. (1960)):

σ′ = σ − ua + χ(ua − uw) (2.14)

and it is often given by: χ = Seff = (S−Sres1−Sres )(ua − uw) (Plaxis (2016b)).

The transition between (2.13) and (2.12) goes smoothly as uw approaches ua as the soil

approaches saturation and ua − uw becomes zero. Figure 2.12 illustrates the extended failure

envelope and how it increases with increasing matric suction in unsaturated soil.

2.3.2 Analytical stability model

Stability of rainfall-induced landslides slopes can be evaluated with an one dimensional limit

equilibrium infinite slope model. Recall Figure 2.3 (b) illustrating the defined slope geometry

in Iversons model. In the infinite slope model, all forces not resolvable on planes parallel to the

slope surface are neglected. The shallow failure surface is assumed slope parallel, and the sliding
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soil block infinitely long and wide, so that stresses on two planes perpendicular to the slope are

collinear, equal in magnitude, opposite in direction and can therefore be ignored. Milledge et al.

(2012) argues that these assumptions are reasonable for landslides with L/H ratios of 25, but

too conservative for smaller L/H ratios. This corresponds well to reported ratios in rainfall-

induced slope failures observed in Norway (NVE (2013)). Thus, use of the infinite slope models

in analysis of rainfall induced slope stability can be justified, and is often preferred for simplicity

(Zhang et al. (2011)).

Failure in the infinite slope model is described by an equation that balances the slope parallel

component of gravity driven stress against the resisting Mohr-Coulomb friction stress. Based on

the extented Mohr-Coulomb failure criterion (Fredlund et al. (1978)), the factor of safety for the

slip surface at depth Z in a unsaturated uniform soil slope, can be calculated by Cho and Lee

(2002):

Fs =
c′ + (ua − uw) tanφb + (σ − ua) tanφ′

γsZ sin θ cos θ
(2.15)

Here, the numerator is equal to 2.13, the unsaturated strength of the soil. σ−ua is the net normal

stress on the slip surface, and γs = γw
1+e (Gs + eS) is the total unit weight of the soil at the given

depth, were S, e and Gs is the saturation, the void ratio and the specific gravity, respectively.

By simplifying; σ − ua = γsZ cos2 θ, ua − uw = −hpγw and φb = φ′, Iverson (2000) and

Cho and Lee (2002) presented a safety factor equation for different pore water pressure profiles,

here in the time dependent formulation implemented in this thesis:

Fs(Z, t) =
c′

γsZ sin θ cos θ
+

tanφ′

tan θ
− hp(t)γw tanφ′

γsZ tan θ
(2.16)

With this equation, factors of saftey at all dephts Z and times t during rainfall infiltration can be

found, using the pressure head conditions predicted with Equations (2.9a) to (2.11c). The depth Z

that first yields Fs = 1 determines the landsliding depht. This equation avoids specification of a

GW-table depht, the position of which is irrelevant mechanically if the pressure head distribution

is known. This is, of course, with the exemption of the subtle influence on γs = γw
1+e (Gs + eS).

A conservative solution is to specify S = 1 for all (Z, t).
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Figure 2.13: Performance of the implemented analytical stability model

Figure 2.13 shows values of Fs(Z, t) calculated for the pore pressure development in Figure

2.8. Recall that calculation is done for a 3m high slope with θ = 25 degrees and GW-table depth

Hw = 1.5 m. The soil properties are defined as the mean values presented later in Table 4.1

(Section 4.3).

2.3.3 Numerical stability model

A numerical slope stability model is implemented in Plaxis 2D, using a Mohr-Coulomb drained

material model for the soil. The linear elastic perfectly plastic model uses a simple constant

description of stiffness, with no consideration of stress-dependency of the stiffness modules. Due

to this, computations tend to be relatively fast, making the Mohr-Coulomb model an efficient

choice (Plaxis (2016a)). The disadvantage is that the model can underestimate soil strength, but

for the purposes of the probabilistic study of this thesis, this limitation is acceptable. Unsaturated

behaviour and suction is taken into account using Bishops stress (1960) in the extended Mohr-

Coulomb failure criterion (Fredlund et al. (1978)).

The stability model shares geometry and mesh democratization with the Plaxis 2D rainfall

infiltration model, as presented in Figure 2.6. The maximum slope thicknesses used in the study
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are around H =2 m, so the slope length is chosen as L/ cos θ = 50 cos θ m, giving a minimum

value ≈ 47 m for θ = 20◦. This assures that the ratios of slope thickness to slope lengths are

H/L ∼ 1/20, about the same range that was suggested by Griffiths (2010). As shown in Figure

2.6, the numerical model slope is divided into three main sections, the central section spanning

a horizontal distance of 0.7L, and outer sections spanning horizontal distances of 0.15L. The

boundary conditions are specified such that displacements on the bedrock interface boundary Γ1

are fixed in all directions. Displacements on the slope beginning and end boundaries Γ3 are fixed

in the horizontal direction, while no restriction of movement is set on the slope surface Γ2.

In the stability model, slightly higher strength is assigned to the outer sections soils to force

slope failure to occur in the central section with the actual soil strength. This is a solution imple-

mented to avoid numerical instabilities from occurring at the model boundaries and to minimize

effects of the end fixities on estimated slope stability. Furthermore, increased mesh refinement is

applied in middle section where results are studied.

Stability of the slope in the numerical analysis is expressed in terms of a global safety factor

Fs. The Fs value is obtained in a Safety calculation phase specified below, with an algorithm

where the shear strength parameters tanφ′ and c′ are successively reduced until slope failure

occurs. The factor of safety is given by:

Fs =
available strength
strength at failure

=
tanφinput

tanφreduced,f
=

c′input
c′reduced,f

=
Tensile strengthinput

Tensile strengthreduced,f
(2.17)

where the strength parameters with the subscript ’input’ refer to properties entered in the material

specification in Plaxis, and the subscript reduced, f refer to the reduced value at time of model

failure.
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The following calculation phases are used to evaluate slope stability in the numerical model:

1. Initial phase: A generation of initial effective stresses, pore pressures and steady state pa-

rameters based on slope geometry, soil parameters including K0, the coefficient of earth

pressure at rest, for total stresses and hydraulic parameters. Equilibrium of soil elements is

not guaranteed.

2. Equilibrium phase: Elastoplastic drained analysis to ensure equilibrium, using pore pres-

sure distributions hp from the numerical steady state infiltration analysis.

3. Safety calculation phase: Fs is calculated in this phase with initial stresses and effective

stresses obtained in the previous phase.

Insight in the performance of the numerical stability model is provided in Figure 2.14. Results

are show for a post-rainfall safety calculation, with pore pressures calculated at t = 24 h in

the transient numerical analysis shown earlier in Figure 2.8. The slope geometry and rainfall

parameters are as specified earlier in the section on the numerical infiltration model. The plastic

soil strength parameters are defined as the input mean values in the probabilistic parameter model

of the case study, given in 4.1. Since the failure stage is the focus of the analysis, the soil plasticity

parameters c′ and φ′ are governing of the behaviour, not the elastic stiffness parameters. Figure

2.14 (a) presents total deformations of a failed soil mass. The large deformations up slope reveals

the initiation location of the slide. In Figure 2.14 (b) deviatoric strains after failure are shown.

This provides insight in the position of the slip surface. It can be observed that failure is limited

within the centre of the model and follows the bedrock interface. This implies that the increase

in pore pressures at bedrock level was more critical for stability than the dissipation of suction at

slope surface in this simulation.
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(a)

(b)

Figure 2.14: Performance of the implemented numerical stability model: (a) Total deformations after a
stability analysis in Plaxis, (b) Incremental deviatoric strain after a stability analysis in Plaxis.
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Chapter 3

Probabilistic model

3.1 Introduction

One of the main reasons for implementing probabilistic analysis for rainfall-induced landslides is

the significant uncertainty associated with the problem. As in geotechnical engineering in general,

most of the uncertainty reflects lack of knowledge or understanding of subsurface conditions. As

a natural material formed through erosion and geological processes over millions of years, the

ground is a highly variable and site specific engineering material. Its properties (e.g., strength

parameters) are not uniform in space nor time. Likewise, environmental conditions (e.g., rainfall

patterns) are also highly subject to spatial and temporal variability. This uncertianty is epistemic,

as the subsurface conditions could, in principle, be observed. (Baecher and Christian (2003)).

The lack of information and knowledge about the geotechnical and environmental parameters

driving the occurrence of rainfall-induced landslides results in uncertainties that often hinder

advanced geotechnical prediction models in providing accurate predictions of landslide hazards

(Zhang et al. (2011), Melchiorre and Frattini (2012)). The problem is further increased by the

situation that the scope of a hazard assessment of rainfall-induced landslides often spans tens

of kilometers. Additionally, systematic type of uncertainties arise with measurement and model

errors. Model uncertainty reflects the inability of a model to precisely represent a system’s true

physical behaviour (Baecher and Christian (2003)). As discussed in Section 2.2, unsaturated

flow is complex problem, and the models commonly implemented build on many assumptions,

simplifications and mathematical approximations (Zhang et al. (2011), Iverson (2000)).

Currently, there is a lack of cost-efficient and reliable methods and technologies to gather in-

formation about the uncertain geotechnical and environmental parameters (Depina (2017)). For

this reason there is a need to develop innovative and cost-efficient methods to reduce the un-

certainties in geotechnical and environmental conditions. Development of methods that will re-

duce uncertainties in the geotechnical and environmental parameters has a significant potential to

33
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improve the capacity of the geotechical models to accurately predict the occurrence of rainfall-

induced landslides. This will consequently help decision makers to better protect infrastructure,

property and life thereatened by rainfall-induced landslides.

To contribute to this goal, this thesis aims to reduce uncertainties in geotechnical parameters

controlling the occurrence of rainfall-induced landslides with the implementation of Bayesian

updating. Bayesian updating is a probabilistic framework that provides a basis to integrate site

specific observations with the existing (prior) knowledge on the uncertain parameters (Straub and

Papaioannou (2015)). Updated uncertainties are referred as posterior knowledge. The framework

addresses variability of the model soil properties and accounts rationally for various uncertain-

ties (i.e., statistical uncertainty and measurement errors) that arise during prediction of rainfall-

induced landslides.

The application of Bayesian updating for the problem of updating and reducing uncertainties

in rainfall-induced landslides is advantageous because it provides a consistent and robust frame-

work to integrate various uncertainties and observations into an updating process. The frame-

work has been successfully applied in back-calculation of landslide controlling parameters by,

among others: Ering and Babu (2016), Zhang et al. (2010) and Luo et al. (2017). Observations

of slope performance represent an important source of additional information that can be used to

update and reduce uncertainties. A key motivation for using observations of slope performance

in Bayesian updating originates from the low cost that will be required to gather such informa-

tion in comparison to more conventional methods for collecting data on uncertain geotechnical

parameters.
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3.2 Probability theory

3.2.1 Random variables

A few relevant concepts used in statistics are presented in the following. The theory and equations

are adapted from the book Reliability and Statistics in Geotechnical Engineering by Baecher and

Christian (2003) unless other references are given.

When soil parameters are modeled as random variables, this does not mean that site charac-

teristics in reality are assumed to be caused by chance. On the contrary, as stated above, the spatial

distribution of soil structure and material properties is very much fixed and could, in principle, be

observed. Rather, for the sake of modelling, they are treated as random.

Statistical methods are based on probability theory. The mathematical theory of probability

deals with experiments and their outcomes. The set of all possible outcomes of an experiment is

called the sample space, Ω. Individual outcomes are called sample points, and possible values of

a random variable can be single sample points or a set containing many points.

Random variables can have discrete or continuous sample spaces. Discrete variables typically

represents counts while continuous variables represents measurements. Most random variables

dealt with in geotechnical engineering, like soil parameters, will have continuous ranges since

infinite values can be measured.

3.2.2 Probability density functions

Parameters that are handled as random variables can assume numerical values given by their

probability distributions. For continuous variables, this function is called a Probability Density

Function (PDF). In this case, probability is dealt with as a density and found by integrating the

probability mass over a finite region of the sample space:

P (x1 ≤ X ≤ x2) =

∫ x2

x1

fX [x]dx (3.1)

Here, fX [x]dx is the probability that X is in an infinitesimal range around x of width dx. For

continuous variables, the probability that the value of X is exactly some given value x0, P (X =

x0), is zero.
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The integral of the PDF over the sample space is

∫
Ω

fX [x]dx =

∫ +∞

−∞
fX [x]dx = 1 (3.2)

Distribution parameters

Different measures of central tendency and variability can be used to describe distributions. The

most common ones are: mean µ, standard deviation σ1 and coefficient of variation, CoV . The

mean is a measure of the central tendency of a distribution. For a set of n data x = [x1...xn], the

estimate of the mean is:

µ̄ =
1

n

n∑
i=1

xi (3.3)

Standard deviation is a measure of dispersion, with the following estimate:

σ̄ =

√∑n
i (xi − x̄)2

n
, (3.4)

and CoV expresses relative dispersion, with the estimate defined as

CoV =
σ̄

|µ̄|
. (3.5)

where µ̄ 6= 0.

Probability distributions

The five distributions used in this analysis are as follows:

1. Normal distribution

The Normal distribution is a good approximation for how many geotechnical variables are dis-

tributed. It describes variables with symmetrically and exponentially distributed outcomes around

some mean value, µ. For a variable X , the PDF is defined as

fx(x | µ, σ) =
1

σ
√

2π
e−

1
2 ( x−µσ )2 . (3.6)

1In this chapter, σ is always the symbol for standard deviation, not normal stress.
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2. Lognormal distribution

The lognormal distribution is commonly used for modeling positive variables and variables that

vary over several orders of magnitude. If X is lognormally distributed, then Y = ln(X) is

normally distributed. The PDF is defined as:

fx(x | µY , σY ) =
1

XσY
√

2π
e
− 1

2 (
ln(x)−µY

σY
)2
, (3.7)

where µY and σY are the parameters of the underlying normally distributed Y .

3. Uniform distribution

This is a continuous distribution defined between a minimum and maximum value, where all

outcomes have equal probability. The PDF is simply given by:

fx(x) =
1

b− a
, a(min) ≤ X ≤ b(max). (3.8)

where a and b are the minimum and maximum value, respectively.

4. Multivariate normal

The multivariate normal distribution is a generalization of the one-dimensional normal distribu-

tion (3.6) to higher dimensions (e.g. Baecher and Christian (2003)).

Functions of random variables

A function Y = g(X) can be formulated where X = [X1, X2, ... , Xn]T ∈ IRn is a vector of

random variables (e.g., n random soil properties) associated with the joint PDF, X ∼ f(x). x is a

realization of X in the corresponding outcome space ΩX . Y = [Y1, Y2, ... , Ym]T ∈ IRm is then

the vector of random response (e.g., displacements at m locations in the model).

Uncertainty quantification in cases where Y is a non-linear combination of multiple variables

is often difficult to perform. Problems of this kind is therefore commonly solved with approximate

methods or sampling methods.
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3.3 Bayesian updating framework

3.3.1 Basic principles

The Bayesian framework provides methods for revising uncertainties in engineering systems

based on information of the system performance.

The Bayesian updating method starts with a prior probability or probability distribution of one

or multiple random variables. This is the a priori hypothesis. Updated a posteriori probabilities

or distributions of probability accounting for new information can then be calculated with Bayes’s

rule (e.g. (Straub and Papaioannou (2015)):

P (hypothesis|observation) =
P (observation|hypothesis)P (hypothesis)

P (observation)
(3.9a)

Posterior ∝ likelihood× prior (3.9b)

P (observation|hypothesis) is the likelihood function. This is the basis for revising the proba-

bility of the hypothesis. The denominator in (3.9a) serves to normalize the total posterior proba-

bility to 1, so Bayes’s rule is often expressed like (3.9b) in the context of Bayesian updating, as a

statement of the proportionality of the two distributions of the hypothesis.

In reliability engineering, Bayesian analysis can be used to update an estimate of failure given

new information (Straub and Papaioannou (2015)). In the following, a simple method for this is

presented, based on the approach in Straub and Papaioannou (2015).

Consider a slope stability model where some parameters of the model are uncertain. These

parameters are modeled as m random variables X = [X1, ..., Xm]T, characterized by their joint

continuous PDF f(x). A failure event, F , can be defined by a domain ΩF = {g(x) < 0} in the

outcome space of X. g(x) is the performance function, typically defined in terms of the factor of

safety g = Fs − 1. The probability of failure is evaluated by P (F ) = P (g(X) < 0). This can

be illustrated in Figure 3.1. Here, a failure event ΩF = {g(x) < 0} in the outcome space of the

joint continuous PDF fX(x) of two random variables x1 and x2 is shown. Probability of failure

is equal to the probability of all outcomes in the failure domain.
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Figure 3.1: Illustration of the performance function (Credit: Ivan Depina)

Also, assume that an observation of slope stability is available, considered event ε with Ωε.

Updated failure probability given ε can be calculated with the following equation, an alternative

way to formulate Bayes’s rule (Straub and Papaioannou (2015)):

P (F |ε) =
P (F ∩ ε)
P (ε)

(3.10)

where (F ∩ε) is the intersection of sets F and ε, meaning a set that contains all F that also contains

ε.

Bayes’s rule can also be applied to update probability densities. Still considering a slope

stability model with m random variables X, the updated a posteriori probability distribution of

the parameters can be found by reformulating (3.9a) (Straub and Papaioannou (2015)):

f(x|ε) =
P (ε|x)f(x)

+∞∫
−∞

P (ε|x)f(x)dx
= c · L(x) · f(x) (3.11)
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Here, P (hypothesis|observation) = P (x|ε) = f(x|ε)dx, P (hypothesis) = f(x)dx and L(x) ∝

P (ε|X = x) is the likelihood function, proportional to the probability of observing a given value

of model parameters. P (observation) = P (ε) is computed by the integral in the denominator,

and ensures that the posterior distribution is proper, that is, integrates to one.

One of the central elements in the Bayesian Framework is formulation of the likelihood func-

tion. In the context of engineering reliability updating, observations of new information typically

corresponds to outcomes of the models. The observation domain Ωε can be defined trough a limit

state function h(X), representing the observation in terms of the stability model Fs. (Straub and

Papaioannou (2015)).

The new information can be of either the inequality type, if written as h(x) ≤ 0, or the

equality type, if written as h(x) = 0. If all new observations are of the first type, computation

of (3.11) and (3.10) is straightforward using sampling methods (ref. Section 3.3.2). However, if

the new information is of the second type, it cannot be implemented as easily. When dealing with

continuous distributions, the probability of something taking on a specific value will be zero. This

problem can be solved by transforming the equality information into the inequality type (Straub

and Papaioannou (2015)).

3.3.2 Bayesian updating using Monte Carlo sampling methods

Generally, derivation of exact solutions of (3.10) and (3.11) is not possible because this often

involves solving high dimensional integrals (Baecher and Christian (2003)). Various sampling

methods are often implemented when the models used are nonlinear, complex, or involves several

uncertain parameters. Implementation of sampling methods allows for estimation of the proba-

bility distributions of the output variables given the probability distributions of the input random

variables and updating information.

Updating probabilities and distributions with sampling methods

A simple approach for updating probabilities and distributions using a direct Monte Carlo simu-

lation (MCS) method is explained in the following. MCS are numerical processes of repeatedly

calculating a mathematical/empirical operator, where the variables within the operator are random

or contain uncertainties with prescribed probability distributions (Baecher and Christian (2003)).
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Considering again a slope stability model where some parameters of the model are uncertain.

These parameters are modeled as m random variables X = [X1, ..., Xm]T, characterized by their

joint continuous PDF f(x). A failure event, F , defined by a domain ΩF = {g(x) < 0} in the

outcome space of X. g(x) is the performance function, defined in terms of the factor of safety

g = Fs− 1. The process starts with evaluation of g(x) for nMC random realizations of X sample

sets. Probability of failure will simply be the ratio of failed samples over the total number of

samples.

New information ε, defined h(xobs < 0]), is to be introduced in the Bayesian updating process.

When re-evaluating the prior input failure probability and parameter distributions, all simulations

disagreeing with the observation are erased. Equation (3.10) for calculating the updated failure

probability reduces to:

P (F |ε) =

∑
j I[g(x) < 0] · I[h(xobs) < 0]∑

j I[h(xobs) < 0]
(3.12)

where I is the indicator function, simply taking the value 1 if the statement within the brackets is

true, and 0 otherwise.

After non-observed simulations are removed, the simplest way of estimating the updated dis-

tributions is to form histograms of the remaining parameter realizations. However, when P (F |ε)

is low, resampling techniques must be applied in order to get representable results.

Subset simulation

In this thesis, a sampling technique proposed by Au and Beck (2001) called Subset simulation is

used. A well written explanation of the approach in a geotechnical engineering context is given

in Cao (2017). The motivation for applying this sampling technique, and the basic elements of it

is explained in the following.

Subset simulation is proposed as an effective alternative to the simple direct MCS. Although

direct MCS has advantages such as easy implementation, a major disadvantage of the technique

is slow convergence rates. This is a typical issue when dealing with relatively small probabilities,

because the number of simulations necessary to ensure desired calculation resolution can be very

high. Again referring to Figure 3.1; if the failure probability is small, the ratio of samples gen-

erated in the failure domain over total number of samples will be very low. Thus, the calculated
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posterior probabilities based on these samples can be misleading. Furthermore, when sampling

parameters for advanced numerical models, such as the models presented in Sections 2.2.4 and

2.3.3, each model evaluation is computationally costly and the number of simulations should thus

be minimal.

The basic idea of subset simulation is to express a small probability as a product of larger

conditional probabilities by introducing intermediate failure events (Au and Beck (2001)). The

rare event simulation problem is converted into a sequence of reliability problems corresponding

to more frequent conditional probabilities. Consider a slope stability problem where Fs is the

critical response and the probability of Fs smaller than a given value ”fs” is of interest. let

fs = fsm < fsm−1 < ...fs2 < fs1 be an increasing sequence of m intermediate threshold

values. The probability of Pf = P (Fs,i < fs) can be written (Au and Beck (2001)):

Pf = P (F1)

m∏
i=2

P (Fi|Fi−1) (3.13)

where Fs,i is the ith intermediate event. In implementation, the fsi values are determined adap-

tively, corresponding to the specified value of a conditional probability p0. The value of p0 is

limiting state chosen to assure desired accuracy in the results. p0 = 0.1 is found to be a good

choice (Au and Beck (2001)). For instance, if one is interested in finding a small failure proba-

bility, the limit state of the iterative subset simulation sampling process is reached when 10% of

the samples are failures.

Subset simulation makes use of a specially designed Markov Chain MCS (MCMCS) tech-

nique for simulating samples according to an arbitrary probability distribution in each iteration.

MCMCS is a numerical process that provides a feasible way to conditionally generate samples

from an arbitrary PDF. A well written explanation of the of the MCMCS algorithm and Subset

Simulation process in a geotechinal context is provided in Cao (2017).

Subset simulation updating process

In the following, a brief explanation of the Bayesian Updating process of this thesis, using direct

MSC and Subset Simulation techniques, is presented. Figure 3.2 on the following page is pro-

vided as an illustration of the iterative process of subset simulation in a slope stability prediction.

First, nMC sets of randomly generated values for some given uncertain parameters are created
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Figure 3.2: Flowchart for Subset simulation of slope stability analysis (Credit: Wang et al. (2011)).

using direct MCS (Baecher and Christian (2003)). The values are generated from the parameters’

given prior probability distributions. The considered model or performance function is computed

for each set. If, for instance, a limit state function is defined: g(X) = Fs,initial(X)− 1, probability

of failure is simply P (F ) = P (g(x) < 0) = I
n

∑
j I[g(Xj) < 0], where I is the indicator

function that takes the value 1 if g(x) < 0 and zero otherwise. Referring to Figure 3.1, this means



44 CHAPTER 3. PROBABILISTIC MODEL

the ratio of samples generated from within the failure domain, over the total number of samples

generated in the outcome space. This limit state function then corresponds to an observation of

slope failure, that is used to update the prior distributions of the model input parameters X.

The procedure of Subset Simulation starts with ranking the outcomes, Fs values, of the nMC

samples. If p0nMC values are in the desired failure domain (g(x) < 0), the limit state is reached.

If not, the (1 − p0)nMC th value in the ascending list of Fs values is chosen as fsi, and hence,

the sample estimate for P (F1) = P (Fs > fs1) is always p0. In other words, there are p0nMC

samples with F1 = Fs > fs1) among the samples generated by direct MCS. Then, starting

from the p0nMC samples with F1 = Fs > fs1), MCMCS is used to simulate (1 − p0)nMC

additional conditional samples given F1 = Fs > fs1), so that there are a total of nMC samples

with F1 = Fs > fs1). Now, a ranking of values and check if limit state is reached is done again.

The iterations continue until the limit state, or a limiting number Subset Simulation iterations m,

is reached (Ref. figure 3.1). In total, the subset simulation procedures contains m + 1 steps,

including one direct MCS to generate unconditional samples and m steps of MCMCS to simulate

conditional samples. This generates a total of nMC + m(1 − p0)nMC samples (Au and Beck

(2001)).

By the completion of the process explained in these two previous sections, a description of

the prior-to-updating situation is generated, in terms of model parameter distributions and factors

of safety. If desirable, the prior probability of failure can now be calculated (Ref. figure 3.1).

The next step in the Bayesian updating procedure is sampling from the posterior parameter

distributions. In other words, generating samples corresponding to the observation information

of slope failure. The simple way of doing this is directly selecting all realized samples in the

failure domain and form the updated distributions or histograms solely based on these. However,

if the failure probability is small, the number samples may not be sufficient to give representative

distributions. For comparison of prior and posterior factors of safety and model parameter values

it is typically desirable that the prior and posterior amount of samples are the same. MCMCS and

Subset Simulation can then be applied again to simulate conditional samples of parameters based

on the realized failure samples (Au and Beck (2001)). Lastly, posterior probabilities of failure

can be calulated.



Chapter 4

Kvam Case Study

4.1 Introduction

A case study is implemented to evaluate the performance of the studied prediction models, and

the effect of the Bayesian updating framework on rainfall-induced landslide safety assessment.

The case study is based on landslide events that occurred in 2011 and 2013 in the Kvam area,

Gudbrandsdalen, Norway. Information on the geotechnical, hydrological and climate conditions

that lead to the occurrence of the landslide events in 2011 is gathered as background for the

input parameters in the probabilistic study. The lack of field measurements of geotechnical and

hydraulic parameters is an important motivation for investigating if something can be learned

about the cite conditions from doing a probabilistic Bayesian analysis. The aim of the site specific

case study is to gain additional insights in the different factors controlling the occurrence of

rainfall-induced landslides in the Kvam area, Gudbrandsdalen.

In the first following sections, descriptions of the Kvam site and 2011 landslide event are

given. Selected probabilistic models and input parameters are presented and, lastly, the case

study approach is explained.

4.2 Description of study area

Gudbrandsdalen is an area prone to landsliding and debris flows over the course of history (Wal-

berg and Devoli (2014)). Following spring snow melting and heavy rainfall on the 9.-10.06.2011,

flooding, accompanied by many large slope failures and debris flows were observed in Gud-

brandsdalen (Schiliro and Cepeda (2016)). Consequences of the flooding and landslides were

multiple road and railroad closures, and up to 200 persons had to be evacuated from their homes.

Two years later, following rainfall on the 22.-23.05.2013, landsliding activity was again observed

in the area. As in 2011, road closures and evacuation followed (Walberg and Devoli (2014)). Fig-

45
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(a)

(b)

.

Figure 4.1: Picture (a): Identified landslide paths and debris flows (red) and source areas (yellow)(Schiliro
and Cepeda (2016)). (b): Debris flow runnout around buildings in Veikledalen (Foto: A.T. Hamarsland,
NVE (2011), in Walberg and Devoli (2014)).

ure 4.1 (a), created by NGI in 2016 based on detailed analysis of high-resolution digital elevation

models (DEM’s) made from aerial orthophotos, shows the active landslide paths and source areas

in Veikledalen, Kvam (Schiliro and Cepeda (2016)). Picture 4.1 (b) shows debris flow run out

and destruction around buildings in Veikledalen.

Geography and geology

The small town of Kvam sits surrounded by steep hillsides in Gudbrandsdalen. Figure 4.2 on the

next page shows the slope angles in the area, calculated from Kartverkets 10 m terrain model.
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Figure 4.2: Slope angles of the hillsides in the Kvam area (Credit: NGI.no)

Figure 4.3: Soil and deposits of the area. The landslides in Veikledalen were triggered west of the 419 road.
Here, shades of green indicate glacial till materials. Legend from top: Thin moraine, thick moraine, melt-out
moraine, end moraine. (Credit: NGU.no)
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Figure 4.4: Grain size distribution of 3000 Norwegian till samples (Credit: Jørgensen (1977))

Large areas of the surrounding mountain plateaus and hillsides are covered by till materials de-

posited during the last ice age melt (Haldorsen and Krüger (1990)), as shown in Figure 4.3.

Historical landslide records from Gudbrandsdalen also show that over 70% of the sliding activity

in the region (i.e. all types of shallow slides, debris slides, debris flows) occurs in till deposits

(Walberg and Devoli (2014)). The composition of glacial till materials can also vary significantly,

but is generally unsorted and made up of all grain sizes from small clay particles to large blocks

(NGU (2015)). Figure 4.4 displays the range of grain sizes found in Norwegian till samples.

Although coarse-grained content may be substantial, the behaviour is generally governed by the

finer fractions (Heyerdahl (2016)). Haldorsen and Krüger (1990) provides a comprehensive de-

scription of formation of Nordic till and the factors which control its hydrological properties.

4.2.1 Geotechnical properties

Strength properties of Nordic till

In general, friction of the soil increases with increasing density and roughness of the grain surface

(division NTNU (2015)). In ordinary Nordic forested till, loose layers typically develop in the

upper one meter of the soil, because of freezing/thawing or root and fauna activities, among other

things (Lars Lundin (1990a)) In theses looser upper layers, the soil shear strength could thus be

lower (Haldorsen and Krüger (1990)).
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(a)
(b)

Figure 4.5: Variations of permeability in Nordic till: (a) 190 measurements of permeability at depths of
more than 40 cm in Swedish and Norwegian till with different methods (field and laboratory) (b) General
variation in permeability with soil depth in till. (Credit: Lars Lundin (1990b))

Although the strength is mainly governed by the dominating finer materials, local variations in

the slopes can be considerable. The presence of big blocks and roots can have significant influence

on the soil strength (Haldorsen and Krüger (1990)). Loss of shear strength due to deterioration of

tree roots after felling of hill sides is a commonly reported contributing factor to rainfall-induced

landslides (Edvardsen (2013), Heyerdahl (2016)).

Reported values of of friction angle in Norwegian till averages around 30◦ (division NTNU

(2015), Melchiorre and Frattini (2012)). Reported cohesion values are typically low, around 4

kPa (division NTNU (2015), Lacasse and Nadim (1997), Melchiorre and Frattini (2012)).

Hydraulic properties of Nordic till

A general characterization of the hydraulic properties likely to be observed in the Kvam till de-

posit can be made based on available literature. For further details, refer to the works of J. Fred-

ericia, B. Lind, L. Lundin, B. Lind and A. K. Høstmark et. al. presented in the comprehensive

report: Hydrogeological properties of Nordic Tills, Report No 25 by the Nordic Hydrological

Programme (1990).

Permeability of sandy-silty till types in Scandinavia varies within wide limits. The heteroge-

neous structure makes it difficult to obtain representative values with field and laboratory methods.
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Figure 4.5 (a) summarizes 190 measurements of hydraulic conductivity at depths of more than 40

cm in Swedish and Norwegian till with different methods (field and laboratory). The distribution

is essentially lognormal, with a mean value of 3·10−6 m/s. Here the great variety of observed

values is also visible, ranging from 5·10−9 to 2·10−4 m/s. Also of great importance is the local

spatial variation of permeability that can be found in a single slope. As mentioned, the upper soil

layers of slopes are typically looser than the deeper layers. For this reason, permeability usually

increases with depth as shown in Figure 4.5 (a) (Lundin (1982)). Furthermore, upper soil layer

permeability might be locally high because of heterogeneities like cracks and macropores, even

in fine-grained till where permeability usually is low (Lars Lundin (1990b)).

4.2.2 Environmental conditions

Present climate conditions

Neither Norwegian Meteorological Institute (MET) nor NVE have measurement stations in Kvam

(Walberg and Devoli (2014)). Therefore, the climate data presented in this section are either mea-

surements from the nearest meteorological weather station (MET), located in Sjoa 330 MAMSL

(meters above mean sea level), 8 km north of Kvam, or geographically interpolated data from

www.xgeo.no. Generally, temperatures, precipitation and snow accumulation will vary locally

because of the height differences between the valley floor and surrounding hills. Some general

trend observations can be made nevertheless.

The climate in Gudbrandsdalen is a typical cool continental climate with cold winters and

warm summers. Because of its inland location sheltered behind Jotunheimen and the mountain-

ous west coast, Kvam is a relatively dry area (Walberg and Devoli (2014)). Figure 4.6 shows the

monthly average rainfall measured at Sjoa together with data from other neighbouring stations in

Gudbrandsdalen. Figure 4.9 on page shows simulated ground saturation and precipitation inter-

polated at Kvam 300 MAMSL over a six year period with observed landslide activity. Saturation

is simulated as the percentage ratio of the daily simulated saturation compared to the maximum

simulated saturation in the period 1981-2010, using the HBV-model (www.xgeo.no). The general

trend is that the groundwater supply is highest around springtime during the snow melting period.
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Figure 4.6: Monthly average precipitation measured in the period 1961-1990 for five meterological stations
in Gudbrandsdalen. Data from eklima.no (Credit: Walberg and Devoli (2014)).

Predicted future climate conditions

As mentioned in the Introduction, it is well documented that temperatures as well as rainfall

intensities and frequencies have increased in Norway over the last fifty years, and that the trends

are expected to persist in the future (St.mld. 33, NGI (2013)). In St.mld. 33 ”Climate Change

in Norway” many results of future climate predictions for Norway are summarized. Calculations

show that precipitation can increase by between 5 and 30 % across the country, and projections

indicate that there will be more intense precipitation in most areas. Since Kvam is a cold and dry

inland area, the trends are not expected to be as significant here as in wet regions in Norway like

the south west coast (NGI (2013)). Still, studies show that increased snowfall and precipitation

can be expected also in Gudbrandsdalen in the future.

As part of a probabilistic rainfall-induced landslide study in Otta (located 15km north of

Kvam), daily local precipitation values for different return periods under present conditions and

future climate scenarios were found (Melchiorre and Frattini (2012)). The climate scenarios were

provided by the GeoExtreme project (NGU (2009), Jaedicke et al. (2008)), where a dynamic
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Figure 4.7: Calculated values of precipitations for different antecedent precipitation conditions and for
different return periods (Melchiorre and Frattini (2012)).
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Figure 4.8: Rainfall intensities, Iz , evaluated for present conditions and the worst future scenario presented
by (Melchiorre and Frattini (2012)).

regional climate modelling approach was used. In this approach, several global and regional

models (300km to 50km resolution) are down-scaled and bias-corrected according to historical

precipitation records from a rain gauge in Otta. Daily extreme precipitation events with return

periods longer than 5 years were found using the following semi-empirical equation, calibrated

for Norwegian data (Førland and Kristoffersen (1989)):

P (T ) = P (5)exp(λ(ln(T − 0, 5)− 1, 5)) (4.1)

where λ = 0, 3584 − 0, 0473ln(P (5)) for 25 < P (5) ≤ 200. The resulting present, and best

and worst case future scenario values of 24 hour long constant rainfall intensity, for different
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Figure 4.9: Simulated ground saturation (black line) and precipitation (green histogram) interpolated at
Kvam 300 MAMSL over a six year period with observed landslide activity(Walberg and Devoli (2014)).

antecedent precipitation conditions and return periods, can be studied in Figure 4.7.

In this Kvam case study, the present and future worst case scenario rainfall events with re-

turn periods T = 50, 100, 500 and 1000 from 4.7 are selected. Antecedent precipitation is not

modeled explicitly. Figure 4.8 shows the relationship between return period and 24 hour rainfall

intensity for these two scenarios (as calculated by Equation (4.1)).

4.2.3 Characteristics of the 2011 landslides

In Figure 4.9 the 2011 landsliding time of occurrence is marked by the middle red arrow. Figure

4.9 shows that at the time of failure, the ground saturation was considerable, but not at its peak

value that spring. The measured precipitation values prior to the event are very high. With a

measured value close to 60 mm on the 10th of June, this 24-hour precipitation alone was more

that what is average for June in total (Ref. Figure 4.6). Figure 4.10 shows hourly average rain-

fall interpolated to Kvam, calculated from available 1-h rainfall maps (www.xgeo.no) for both

the 2011 and 2013 events (Schiliro and Cepeda (2016)). In NVE’s analysis of the 2011 and

2013 landslides, it is concluded that the heavy local precipitation following snow melting was the

triggering cause of the slides and debris flows.

Characterization of the landslides in Kvam in terms of size and shape has been done based on

high resolution DEM’s and by field surveys. As part of their master thesises, Holm (2012) and
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Figure 4.10: Hourly average rainfall interpolated to Kvam, calculated from 1-h rainfall maps
(www.xgeo.no) for the 2011 (left) and 2013 (right) rainfall events (Schiliro and Cepeda (2016)).

Figure 4.11: Soil thickness model for landslides observed at Kvam: a linear relationship between soil
thickness and slope angle derived with three different types of thickness data. GPS-points by Holm (2012),
Field points by Edvardsen (2013) and DEM points by Schiliro and Cepeda (2016).

Edvardsen (2013) completed field observations of the source areas and slide paths of the Kvam

landslides. Photos of the failures, together with descriptions of slope angles, depths of failure

surfaces and soil materials are available in their reports. Based on their data and data calculated

from high-resolution DEM’s, Schiliro and Cepeda (2016) derived a linear relationship between

slope thickness and tangent of the slope angle in the Kvam landslides. Figure 4.11 shows the data

points and soil thickness model. Most of the reported failure slope angles are between 20 and 35
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degrees. Reported soil thickness values range from 0,4 to just above 2 m.

Photos of two landslides in Kvam taken during the summer in 2011 are shown in Figure 4.12

on the next page. The top left photo shows a 11 m wide and 0.70 m deep triggering zone with a

slope angle of 30 degrees. The sediments are described as loosely packed and unsorted, and soil

thickness of the slide varied between 1 and 1.5 m. The slide was triggered in a clear-felled area,

and shear strength reduction due to deterioration of tree roots is considered an important cause of

sliding (Edvardsen (2013)). The bottom photos show a typical slide triggered in a forested area

in Veikledalen, where dozens of slides were observed after the 2011 event. Here, the slide soil

thickness was measured to a shallow 40 cm and the slope angle to 40 degrees. Again unsorted till

materials, with presence of larger blocks are observed.

Based on their field surveys, Holm (2012) and Edvardsen (2013) concluded that multiple

triggering mechanisms have been possible at Kvam in 2011. Shallow sliding of saturated or near-

saturated soil masses is assumed to be a main mechanism, as is assumed for the slides shown in

4.12. As discussed in chapter 2, this is the mechanism that the implemented stability models in

this study are aiming to describe.
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Figure 4.12: Top photos: Slide triggered on a clear-felled area south of the river in Kvam. Left: Triggering
zone. Right: Same landslide seen from below. Blue arrow indicates the triggering zone and red arrow points
to exposed bedrock in the slide path. Bottom photos: Slide triggered in forested hill side of Veikledalen. Left:
Trigger zone. Right: Same slide path seen standing in the triggering zone. Photos by: Edvardsen (2013),
included with permission.
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4.3 Case study parameter estimates

This section provides an overview of the selected values for the parameters used in the prediction

models to simulate the occurrence of rainfall-induced landslides in the Kvam case study. A proba-

bilistic approach is adopted to describe the available knowledge about the model parameters. The

probabilistic approach is considered suitable for this study as it provides a basis to describe uncer-

tainties associated with these parameters. Uncertainties associated with the parameters of the case

study arise from the lack of knowledge (e.g., lack of field and laboratory investigations) and the

inherent natural variability (e.g., spatial variability of soil moisture contents and soil properties).

Table 4.1: Uncertain model parameters for the Kvam case study. Probability distributions: U = uniform,
LN = lognormal, N = normal, MN = multivariate normal, G = Gumbel. Distribution parameters: µ - mean,
σ - standard deviation, CoV - coefficient of variation, Σ - covariance. References: [1] Schiliro and Cepeda
(2016), [2] Melchiorre and Frattini (2012), [3] Lacasse and Nadim (1997), [4] Guan and Fredlund (1997),
[5] division NTNU (2015), [6] Lars Lundin (1990b), [7] Jørgensen (1977), [8] Førland and Kristoffersen
(1989), [9] Duncan and Wright (1980).

Parameter Symbol PDF Model parameters Ref.
Slope angle θ [◦] U θmin = 20.0 θmax = 36.0 [1]

Soil depth H [m] LN
µ = 2.569 · tan(θ) + 2.607
σ = 0.271

[1]

GW-table depth Hw [m] U Hw,min = 0 Hw,max = H -
Effective cohesion c′ [kPa] LN µ = 4 CoV = 0.3 [2],[3]
Friction angle φ [◦] N µ = 32 CoV = 0.1 [2]
Soil specific gravity Gs [-] N µ = 2.7 CoV = 0.054 [4],[5]
Void ratio e [-] N µ = 0.25 CoV = 0.025 [5]
Sat. permeability ksat [m/s] LN µ = 5 · 10−6 CoV = 0, 5 [2],[5],[6]
Diffusivity D0 [m2/s] LN µ = 5 · 10−4 CoV = 0.25 [2]

Grain size ratios α [-] MN
α = [αclay, αsilt, αsand]
µα = [0.2 0.35]T

Σα∗
[5],[7]

Rainfall intensity Iz [mm/day] G Equation (4.1) [2],[8]
Model error ε [-] N µ = 0.0 σ = 0.05 [9]

Σα* is the covariance matrix of the grain size ratios given by:

Σα =

 0.0019 −0.0008

−0.0008 0.0027
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Uncertainties associated with a range of geotechnical, hydrological, climate and modelling

parameters are presented in Table 4.1 and described by assigning probability distributions to the

parameters. The selection of the probability distribution parameters in Table 4.1 aims to reflect

the geotechnical, hydrological and climate properties associated with landslide events occurring

in till deposits in the Kvam area hillsides, as described in the preceding sections. As extensive

field investigation data are not available for the Kvam site, the selection of probability distribu-

tion functions and parameters cannot be validated empirically. The probability distributions are

instead chosen based on representative values reported in a number of sources, as reported in

Table 4.1. Recommendations for distribution functions are given by Lacasse and Nadim (1997).

Most of the parameters in Table 4.1 are considered mutually independent. However, a pos-

itive correlation between c and φ is assumed with the correlation coefficient of ρln c−φ = 0, 5

(Melchiorre and Frattini (2012)). Similarly, a positive correlation is assumed between ksat and

D0 with the correlation coefficient of ρln ksat−lnD0 = 0, 5, because both parameters are measures

of how easily water flows through the pores of the soil (Ref. Section 2.2.4). A linear regression is

assumed between the tangent of the slope angle and the soil thickness, as shown in Figure 4.11,

page 54.

The values of the slope angle is modelled as a uniformly distributed pseudo-random variable,

to examine the effects of Bayesian updating over the range of possible slope angles encountered in

the field. In their sensitivity study of uncertainties in rainfall-induced landslide prediction, using

Iversons infiltration model and a infinite slope stability model, Melchiorre and Frattini (2012)

found that slope angle influenced factor of safety estimates the most. It is therefore of interest to

observe interactions of this variable with the others in the model.

GW-table is also modelled as a uniformly distributed variable, in order to describe the signif-

icant spatial variation typically observed in the field (Lars Lundin (1990b), Ref. Section 2.1).
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4.4 Case study approach

The aim of this case study is to analyze the landslide events that occurred in Kvam in 2011 and

generate additional insights on the parameters controlling the occurrence of rainfall-induced land-

slides. Such learning process will be facilitated by adopting the Bayesian updating framework.

The Bayesian updating framework is implemented with two types of landslide prediction models

to investigate the effects of model complexity on the updating process: the analytical and the

numerical models, as presented in Chapter 2. The evaluation of the effects of model complexity

on the updating process is important due to relatively high computational demands commonly

associated with Bayesian updating algorithms that require numerous repeated evaluations of pre-

diction models (Ref. Chapter 3). The effects of the implementation of the analytical model on

the updating process will be examined by comparing the results with the ones obtained with the

more advanced numerical model.

In the context of the Kvam case study, Bayesian updating will be employed to update knowl-

edge on the uncertain model parameters in Table 4.1 (i.e., prior knowledge) with the observation

of slope survival of the rainfall event in 2011 at Kvam. The results of the updating is posterior

knowledge, which combines the prior information and the additional information provided by the

observation. The additional information provided by the observation often provides a basis to re-

duce uncertainties in the prior knowledge. Reducing the uncertainties provides a basis to increase

the knowledge on the uncertain parameters, identify the most influential parameters controlling

the occurrence of rainfall-induced landslides, and improve the capacity of prediction models to

provide more accurate and robust landslide predictions for future uncertain rainfall events.

The effects of model complexity on reducing the uncertainties in the model parameters and

identifying the most influential parameters controlling the occurrence of rainfall-induced land-

slides will be examined by conducting three sub-studies: (a) Bayesian updating with the ana-

lytical model and (b) Bayesian updating with the numerical model. The effects of updating on

improving the predictive capacity for future uncertain rainfall events under varying climate sce-

narios is examined in the last sub-study (c) Landslide predictions under varying future climate

scenarios. Implementation details for these sub-studies are presented in the following sections.
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(a) Bayesian updating with the analytical model

The prior knowledge is defined by the following nine random parameters that are required by

the analytical stability and infiltration models: X = [θ, c′, φ′, Gs, e, ksat, D0, H,Hw, ε]. The

probability distributions and distribution parameter values are according to Table 4.1. Note that θ

as a pseudo-random variable and ε as a model error are not being updated.

The implemented Bayesian updating algorithm is based on the Subset Simulation method

(Ref. Chapter 3), which is implemented in a Python code. The Subset Simulation method is

implemented with n = 20000 simulations per iteration. Recall the flowchart in Figure 3.2 page

43. The initial set of nMC = 20000 samples of random parameters are generated with direct

Monte Carlo method. The Subset Simulation method is implemented in the standard normal

space, with the samples converted to the input space for the purpose of model analysis. For each

set of random variable realization, x ∈ Ωx, the stability of the slope is evaluated by calculating

the slope factor of safety prior to and after the rainfall event at Kvam in 2011. The values of

Fs prior and after the rainfall are calculated across 100 points over the slope depth, Z, with the

analytical infinite slope stability model (2.16). After Fs(x, t = 0, Z) is found, the analytical

rainfall infiltration analysis described in Section 2.2.4 is evaluated for each set of random variable

realizations. A constant rainfall with the intensity of 60 mm/day is applied, corresponding to the

total T = 24 hour rainfall measured at Kvam 09-10.06.2011. The factor of safety at the end of

the infiltration analysis, Fs(x, t = T,Z), is then evaluated using the same equation (2.16). The

modelling error ε in 4.1 is added to the Fs, estimates. Lastly, the final critical value of factors of

safety, prior to and after the rainfall event are found as the minimum value across the soil depth,

Fs = min(Fs(Z)). The observation of slope survival of the rainfall event is integrated in the

following performance function:

g(x) = max(1− Fs(x, t = 0), 1− Fs(x, t = T )) (4.2)

where g(x) is the performance function. Equation (4.2) is formulated such that g(x) < 0 for a

slope that is stable before and stable after the rainfall, thus corresponding to the slope surviving

the rainfall event. Otherwise, in the case that the slope is unstable prior to the rainfall and/or after

the rainfall, the performance function takes the value g(x) ≥ 0.



4.4. CASE STUDY APPROACH 61

The conditional subsets of the iterative process in the Subset Simulation method are defined

with the conditional probability of p0 = 0.1. This means that in each iteration of the Subset Sim-

ulation algorithm 2000 samples from a given iteration with the lowest value of the performance

function are transferred to the next iteration. The iterations proceed until at least 2000 of the sam-

ples with the lowest value of the performance function satisfy the limit state condition g(x) < 0.

After the limit state is reached, sampling from the posterior parameter distributions is performed

with n = 20000 samples per iteration. These randomly realized samples then correspond to the

samples from the posterior distributions. Lastly, the posterior Fs(x, t = 0) and Fs(x, t = T )

estimates are evaluated with these posterior samples and the same analytical equation (2.16).

(b) Bayesian updating with the numerical model

In this study the Bayesian updating algorithm based on the subset simulation method (Ref. 3.3.2)

is implemented. The difference between study (a) and this one is that the prior and posterior,

initial and post-rainfall, values of Fs are evaluated using the numerical Plaxis infiltration and

stability models presented in sections 2.2.5 and 2.3.3. Pore pressure profiles developing due to

rainfall infiltration is calculated in the two flow phases described on page 28, and initial and

post-rainfall stability is evaluated with the three phases described on page 29. Modelling error is

excluded from calculation.

The sequential coupling between the transient infiltration and slope stability models is exe-

cuted in a Phyton code that communicates with Plaxis. The Phyton program code establishes the

slope model geometry and defines the model variables in Plaxis according to the random realiza-

tions in the MCS. Infiltration and stability phase calculations are executed in Plaxis and results

are saved by the Phyton code.

Seven parameters of the numerical stability and infiltration models are modelled as random

variables: X = [θ, c′, φ′, Gs, e, ksat, α,H,Hw]. Slope angle is modeled as a pseudo random vari-

able with discrete outcomes θ = [20◦, 25◦, 30◦], to simplify the implementation of the numerical

model. The input probability distributions and distribution parameter values are again according

to Table 4.1. A 24 hour long rainfall is applied in transient the infiltration analysis, equal to the

interpolated hourly rainfall at Kvam 09-10.06.2011 presented in 4.10.

Otherwise, the Bayesian updating algorithm and subset simulation processes are the same in
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this study as in study (a). Recall the again the flowchart in Figure 3.2 page 43, and the subset

simulation process described in the preceding Chapter 3 with the performance function (4.2).

Since this sequentially coupled numerical infiltration and stability analysis is considerably more

computationally demanding than the analytical analysis, only n = 500 initial simulations are

evaluated per iteration. The conditional subsets of the iterative process in the Subset Simulation

method are defined with the conditional probability of p0 = 0.1. After the limit state is reached,

sampling from the posterior parameter distributions is performed with nMC = 1000 samples per

subset simulation iteration.

(c) Landslide predictions under varying climate scenarios

This third sub-study investigates the effects of Bayesian updating on improving the predictive ca-

pacity for future uncertain rainfall events under varying climate scenarios. In addition to demon-

strating how the Bayesian updating framework can be used in landslide prediction, the study aims

to investigate the effects of climate change on slope stability. A simple approach is chosen, us-

ing the analytical rainfall infiltration and stability models and prior and posterior results from the

study (a).

Recall the simple direct MCS Bayesian updating approach presented in Section 3.3.2. The

effects of updating on the estimated failure probabilities are evaluated by calculating the failure

probabilities based on the prior and posterior knowledge (Ref. (3.12). The prior knowledge is

the n = 20000 sets of direct MCS parameter realizations realized in the first part of study (a).

The posterior knowledge is the n = 20000 sets of parameter values sampled from the posterior

distributions after updating in study (a).

The uncertain future rainfall events considered in this study are modeled in terms of intensi-

ties of different return periods. The present and future worst case scenario rainfall events with

return periods T = 50, 100, 500 and 1000 from 4.7 are selected. Antecedent precipitation is not

modeled explicitly. Figure 4.8 shows the relationship between return period and 24 hour rainfall

intensity for these two scenarios (as calculated by Equation (4.1)).
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4.5 Results and discussion

The results of the Kvam case study are presented in the following sections. The presentation of the

results is organized in terms of the three sub-studies, as introduced earlier. Discussions regarding

the effect of updating on the uncertain parameters of the models and stability predictions are

given.

The sample mean values and sample 95% confidence bounds of the prior and posterior pa-

rameter are estimated with the Nadaraya-Watson non-parametric regression model. Regression

curves illustrate system responses to sets of input parameters, and non-parameteric regression is

flexible in regards to the regression curve shape (e.g. Baecher and Christian (2003)). This makes it

possible to illustrate variations in parameter sample means and confidence bounds over the range

of slope angles. Details of the Nadaraya-Watson non-parametric regression model is available in

literature, e.g. Wasserman (2006). The values of the 95% confidence bounds correspond to the

range of output values that 95% of the samples are located within.

The effects of the updating on the parameter PDF’s are examined by plotting prior and pos-

terior parameter distributions using the following function from the SciPy extension in Phy-

ton: scipy.stats.gaussian kde. This is a non-parametric way of estimating PDF’s by

smoothing histograms with automatic bandwith determination (docs.scipy.org).

In terms of computational efficiency, the analytical model proves to perform significantly bet-

ter than the numerical, as expected. The average computational time per single rainfall infiltration

and slope stability simulation in the numerical model is 5-6 minutes In contrast, evaluation and

updating of 100 samples sets takes under 5 seconds with the analytical models. In both the nu-

merical and analytical models, the probabilities of slope survival are shown to be high for the

considered parameter uncertainty ranges. Thus, multiple iterations of subset simulation is not

needed for high accuracy in results.
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4.5.1 (a) Bayesian updating with the analytical model

Results

In figure 4.13, 20000 samples of posterior slope factors of safety after Bayesian updating with the

analytical models are presented. Calculated prior and posterior mean values and 95% confidence

bounds are shown. The left figure (a) shows the results prior to the rainfall event, while the

right figure (b) shows results after rainfall infiltration. Each blue dot correspond to a calculated

posterior Fs,i for a given set of posterior parameter realizations xi.

Figures 4.14 to 4.16 in the following pages present the results of the Bayesian updating for the

uncertain parameters of the analytical slope stability and rainfall infiltration models. The param-

eter distributions are updated according to the observation of a stable slope before and after the

2011 rainfall event in Kvam. The pictures show 5000 samples of the total realized from the pos-

terior distribution, with calculated prior and posterior mean values and 95% confidence bounds.

Figures 4.16 (a) to 4.16 (f) show the updated PDF’s for 20000 samples of these given determinis-

tic slope angle values: θ = 20◦, 25◦, 30◦ and 35◦. Here, parameters that are significantly affected

by updating are shown only.
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Figure 4.13: Analytical model: Factors of safety with respect to slope angle: (a) Initial, Fs(t = 0) (b) At
the end of 2011 Kvam rainfall event, Fs(t = T ).
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Discussion

Factors of Safety

Comparison of 4.13 (a) to (b) illustrate that the analytical infiltration model is able to capture

the negative effect of rainfall infiltration on slope stability that has been observed at Kvam. The

prior and posterior Fs mean and confidence bound values decrease between t = 0 and t = T for

all slope angles. Also, not surprisingly considering that the updating information event is one of

slope survival, the posterior Fs estimates are lower than the prior.

The effect of Bayesian updating on uncertainty mitigation in factor of safety prediction is

visible in Figures 4.13 (a) and (b). After samples disagreeing with the stability observations are

removed, the confidence bounds tighten. The reduction in Fs uncertainty after rainfall infiltration

will be large for those slope angle ranges with low ratios of prior realized stable to unstable Fs

values. In the results, the 95% confidence range is reduced the most for slopes with θ just below

and around φ.

The rate of increase of the Fs mean and confidence bounds increases with the value of θ. This

observation indicates the effect of the information strength on the updating process. In terms of

the Bayesian updating framework, the constraint on the model output outcome space imposed by

the slope survival information is strongest for the most critical slopes. Likewise, the constraint

imposed by updating on the parameter sample outcome spaces Ωx is the strongest on parameter

outcomes that are the most critical for slope stability. This also implies that for the low slope

angles where few of the prior randomly realized sample sets make up unstable slopes, updating

will have less effect on the parameter distributions.

An important finding in the results is the slight positive correlation between slope steepness

and stability observed for high slope angles visible in figures 4.13 (a) and (b). On the lower θ

range, the prior and posterior mean and confidence bounds suggests that increased slope angle

has a negative effect on initial slope stability. However, around θ = 32◦ this trend ceases, and the

posterior mean values even increase. This is likely to be associated with relatively low values of

soil thickness for higher values of θ, as predicted by the prior linear model (Ref. 4.11 page 54).

Low slope thickness is stabilizing both in terms of the decrease in stress on the slip surface by

Hγs itself, and in terms of the limiting bound it puts on positive pore pressure build-up.
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Model parameters

Considering Figures 4.14 to 4.16, it can be concluded that updating based on the observation

of slope survival of the Kvam rainfall event has the most significant effect on parameters H ,

Hw, c and φ in the analytical model. The effect, in terms of reducing uncertainty, is biggest for

parameters H and Hw, at high slope angles, and for phi. This is inferred from comparison of the

prior confidence ranges with the narrowed posterior confidence ranges. It should be noted that the

differences between prior and posterior distributions for different θ values can be larger in Figure

4.16 than in Figure 4.14 because the regression analysis in the Figure 4.14 results smooths over

local variations.

Reducing uncertainties, in terms of reduced variance in probability distributions, is not the

only motivation for doing Bayesian updating. Increased knowledge on the relative importance of
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Figure 4.14: Samples from posterior parameter distributions with prior and posterior means and 95%
confidence interval bounds.
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different model variables on slope stability can be gained from comparison of prior and posterior

parameter sample distributions.

One of the main findings in the results is the increased likelihood of low slope thickness, H ,

for high slope angles in the posterior distributions. This can be observed in Figures 4.14 (c) and

4.16 (c). Figure 4.16 (c) shows particularly well how the updating effects on the slope thickness

PDF, in terms of lowered mean value estimate, is biggest for the slope with θ = 35◦.

Posterior samples of Hw, depth of the initial GW-table level, are presented in Figure 4.14 (d).

In 4.16 (d) the posterior distribution is plotted in values of GW-table height,H−Hw. Comparison

with the prior distributions reveal that samples of high GW-table levels are discarded in the high

slope angle range in the updating process. This observation indicates that the prior-to-rainfall
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Figure 4.15: Samples from posterior parameter distributions with prior and posterior means and 95%
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moisture content is an important controlling factor of slope stability in rainfall-induced landslides

on steep slopes.

The results discussed above suggest that the combination of high soil thickness and high

initial GW-tables is critical for rainfall-induced slope stability at high slope angles. This is in

good agreement with literature (Zhang et al. (2011), Rahardjo and Leong (2007), Melchiorre and

Frattini (2012)). The observed importance of H −Hw is consistent with previous evaluations of

the Kvam 2011 landslide event, which concluded that high moisture contents (due to snow melt)

in combination with rainfall was the triggering cause of the slides and debris flows (Walberg and

Devoli (2014), Edvardsen (2013)).

The low observed effect of updating on these critical parameters (H and Hw) in gentle slopes

can be attributed to the discussed low strength of the updating information on these generally

stable and rainfall-insensitive slopes.

The effects of updating on uncertainties in strength parameters c′ and φ′ are shown in Figures

4.14 (a) and (b), and in 4.16 (a) and (b). The plots suggests that slopes which are stable trough the

rainfall are more likely to be associated with high values of effective cohesion and friction angles

than the prior model slopes. The increased likelihood of higher values is generally low: the mean

value shifts are less than the input standard deviation values. In contrast to the observed effect

on parameters H and Hw, the effect of updating on c′ and φ′ is close to constant over the whole

slope angle range, implying that low values of these parameters are equally critical for all slopes.
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Figure 4.16: Prior and posterior PDF’s calculated with the analytical model.
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Another finding is that variation of the hydraulic properties within the ranges considered in

this study seems to have little influence on stability. Thus, indicating that unsaturated behaviour of

the soil does not play a critical role in the analytical landslide prediction model. This observation

is important because these variables are associated with high uncertainty and spatial variability

in the field, and they are generally difficult to measure (Lars Lundin (1990a), Fredlund (2012)).

Figures 4.15 (a) and (b), and 4.16 (e) and (f) present the effect of updating on parameters ks and

D0. The observed influence of slope survival information on sampling of these variables in 4.15

(a) and (b) is near constant and low over the full slope angle range. Furthermore, depth to GW-

table,Hw, which is a controlling parameter of the time needed to saturate the soil above GW-table,

is also seemingly unaffected after updating (with the exemption of steep slopes). Similar results

were obtained by Melchiorre and Frattini (2012) in their sensitivity study of the same analytical

rainfall-induced slope stability models. They suggested that the findings could be explained by

the upper boundary of pressure head, the beta-line correction (Iverson (2000)). They argued that

potentially extremely large variations of pressure head resulting from large variations in ksat and

D0 are hampered by this beta-line correction. However, such potentially extremely large pore

pressures are not realistic (Tsai and Yang (2006)).

As stressed in section 2.2.4, although Iversons analytical model is popular and frequently im-

plemented in rainfall-induced landslide predictions, it is insufficient in describing the true com-

plex physical behaviour of infiltration. A consequence of this is that the results of varying the

model input parameters randomly can be counter intuitive. Recall Equation (2.9a) on page 16,

for constant values of Iz and D0, an increase in ks will lower the impact of infiltration on the

developing pore pressures. This effect might be the reason for the very subtle increase in mean

ks in 4.15 (a) after updating.

Lastly, in Figures 4.15 (b) and (c), the distributions of e and Gs are left practically unchanged

after updating, which indicates that variation in these parameter within the given input ranges has

little influence on slope stability.
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4.5.2 (b) Bayesian updating with the numerical model

Results

The posterior initial and post-rainfall infiltration Fs distributions calculated with the numerical

stability and rainfall infiltration models are shown in Figure 4.17. Due to the automatic smoothing

bandwidth of the density function, it looks like some of the posterior Fs realizations have values

below 1. This is not the case. It should be mentioned that some high Fs value outliers not visible

in 4.17 were also observed. They may be explained by numerical instabilities, but this is not

investigated in detail.

The prior and posterior PDF’s of the uncertain parameters of the numerical models are shown

in Figure 4.18. The following slope angles are considered: θ = 20◦, 25◦ and 30◦. Calcula-

tion is done based on 1000 samples from the posterior distributions only, due to mentioned high

computational demands associated with the numerical models.

Discussion

Factors of Safety

Figure 4.17 shows that, similarly to the analytical model, the numerical model captures the

negative effect of the Kvam rainfall on average slope stability. The analytical and numerical

factors of safety are largely in the same range.

Model parameters
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Figure 4.17: Numerical model: Posterior factors of safety with respect to slope angle: (a) Initial, Fs(t = 0)
(b) At the end of 2011 Kvam rainfall event, Fs(t = T ).
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The results of the updating process on the parameters of the numerical model, shown in Fig-

ures 4.18 and 4.19, share many of the trends observed in the analytical results. Analogous to the

analytical results, the PDFs of parameters c′ and H are visibly influenced by updating. The trend

of increasing updating effect on parameter distributions with increasing slope angle is observed

in these results also. Also consistent with analytical results, the information of slope stability

does not seem to influence uncertainties associated with e, Gs and ksat. Due to the low number

of samples and exclusion of model uncertainty in the stability estimates, larger variation in the

plotted distributions is expected here than in the analytical results.

A difference between the numerical and analytical results is the less observed influence of

updating on GW-table height H − Hw in 4.18 (d). Comparison of the distribution shapes and

the density-range on the y-axis to the analytical equivalents in 4.16 (d) (neglecting the θ = 35◦

result), reveal that high H − Hw values are slightly less likely after updating in the numerical
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Figure 4.18: Prior and posterior PDS’s calculated with the numerical model.
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model than in the analytical. This may be due to the low number of posterior samples in the

numerical model. More simulations would have to be run to properly investigate the effect of

initial moisture content on stability in the numerical model.

The effects of updating on strength parameters c′ and φ′ are presented in 4.18 (a) and (b). For

steeper slope angles, rightward shifts of the cohesion probability densities increase. For the 30◦

slope, almost all samples with cohesion less than the input mean, µc = 4, are disregarded. The

effect of updating on steep slope angles is slightly bigger than in the analytical results. One of the

main reasons for this difference may be the exclusion of model uncertainty. Only a subtle effect

of updating can be observed in posterior φ′ samples for steep slopes in 4.18 (b).

In Figure 4.18 (c), the effects of updating on uncertainties in slope thickness are illustrated.

As in the analytical model, for high θ values, samples with the highest H values are less likely

after updating. The shift in the distributions towards low slope thickness is more significant here
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Figure 4.19: Prior and posterior PDS’s calculated with the numerical model.
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than in the analytical analysis. Again, exclusion of model uncertainty may be the main reason for

this inconstancy.

Lastly, low impact of updating on parameters controlling unsaturated flow is observed in the

numerical model as in the analytical. Figures 4.19 (a) to (c) show that the differences between

prior and posterior e, Gs and ksat distributions are insignificant, considering the expected varia-

tion due to low number of samples. Recall that the Fs results in Figure 4.17 implies that rainfall

infiltration has a visible negative impact on slope stability in the numerical model. Still, the low

updating effect on hydraulic parameters suggests that the effect of rainfall infiltration on slope

stability depends little on variation of the hydraulic parameters within the ranges considered in

this study and for the considered rainfall intensity and analysis duration. These results could be

attributed to the relatively low influence of these parameters to the observation event in this study.

The updating information is defined only by factors of safety before and after the rainfall event.

Thus, the effects of the transient rainfall infiltration controlled by these parameters may not have

been captured within the observation event. One explanation could be that the process is mainly

completed before the end of rainfall. In other words, that the rainfall infiltration event is able to

saturate most of the random slope realizations regardless of the hydraulic properties. Inspection

of developing Fs values with time during infiltration of the Kvam rainfall could clarify this. If the

observation event included additional information on the time to failure or target pore pressure

levels, more pronounced effect of updating may be expected for the hydraulic parameters.

As discussed in Section 2.2, infiltration in unsaturated slopes is a complex process in nature.

The interaction between the involved variables; rainfall intensity, rainfall pattern, duration and

hydraulic properties affect the developing pore pressures in both the numerical and analytical

models. In this study, only one 24 h rainfall event is considered. Thus, the preceding discussions

apply to this event. For better understanding of the effect of the infiltration process on landslide

occurrence in the numerical and analytical models, updating with other rainfall events of varying

rainfall intensities, patters and durations could be investigated. A wider range of ksat could also

be investigated. For this study, the selected coefficient of variation in ksat (based on Melchiorre

and Frattini (2012)) corresponds to no more variation than that typically observed in the shallow

parts of till deposits. However, literature suggest that local variations in slopes can be of many

orders of magnitude (Janbu (1970), Lars Lundin (1990b)).
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The case study in this thesis alone is not sufficient to make general comments regarding the

impact of model complexity on rainfall-induced landslide predictions. The large difference in

number of realized samples between the two studies also complicates the comparison. As dis-

cussed in previous chapters, the analytical and numerical models have their advantages and dis-

advantages. The main argument for using analytical tools in Bayesian updating approaches is

the generally low computational demands. No significant inconsistency between results of the

different prediction tools is found in this study, in terms safety predictions, effects of updating or

relative importance of controlling parameters.

4.5.3 (c) Future landslide predictions with analyical model

Results

In Figure 4.20 on the next page, the probability of failure, Pf , for 24 hour rainfall-events with

different return periods are presented. The left figure 4.20 (a) shows probabilities calculated for

present rainfall conditions, while failure probabilities in (b) are calculated for predicted worst

case future conditions. The worst case scenario corresponds to an average increase of around

20% of present 24 hour rainfall amounts for all return periods (Ref. 4.8 page 52). The proba-

bilities presented with solid lines are calculated with 20000 sample sets of the initial parameter

distributions. Probabilities presented in dashed lines are calculated with 20000 sample sets of the

posterior distributions after Bayesian updating is done in the analytical model.

Discussion

In Figures 4.20 (a) and (b), not surprisingly, thePf estimates for all rainfall events are significantly

lower when updated posterior distributions are used in calculation. The reductions are results of

reduced uncertainties in the stability controlling parameters. The dashed lines in 4.20 show that

increased rainfall intensities (due to higher return period or the climate change effect) make bigger

differences in failure predictions after Bayesian updating.

The effect of increases in Iz on the estimated Pf is higher for low values of Iz . This obser-

vation can likely be associated with the effect of rainfall intensity on the slope response in the

analytical model. For low intensity rainfalls, the slope may not be fully saturated in a 24 hour

time frame in a large subset of the random realizations. As the Iz values become large, more of
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the slope realizations will become saturated and the rate of increase in Pf declines. Pf will only

continue to increase with the rise in Iz until Iz = ks for the majority of the sample set realiza-

tions. This is because Iz/ks = 1 defines the maximum infiltration rate in the analytical model

(Ref. Section 2.2.4), and thus further increases should not make much difference in estimated sta-

bility conditions in the analytical model. As stated earlier, failure mechanisms due to rainwater

and flooding erosion on the slope surfaces are not considered in the model.

Before updating, neither climate change nor increased return periods have significant effect

on estimated failure probabilities. Thus, these results show that observations of slope survival

can be utilized to increase the estimated safety of the slope and increase resolution in the slope

reliability assessment.

An important observation is that the posterior Pf estimates are low for the highest θ val-

ues. This can again be attributed to the higher effectiveness of updating information for critical

slopes. For steep slopes, the slope survival observations impose stronger constraints on the sta-

bility predictions and parameter distributions, because these slopes are generally more vulnerable

to rainfall infiltration. Consequently, the uncertainties controlling occurrence of rainfall-induced

landslides are reduced the most for these slopes. As assumed based on the effects of updating on

the different parameters in Figure 4.14, stability is influenced the most by parameters c′, H and

Hw. When uncertainty in these critical parameters is reduced the most for high θ values, these

updated slopes will be predicted more likely to survive future rainfalls. Thus, due to the effects
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Figure 4.20: Prior and posterior estimates of slope failure probability for rainfall intensities [mm/day]: (a)
Present scenario: Iz(T = 50)=59, Iz(T = 100)=68, Iz(T = 500)=93, Iz(T = 1000)=106. (b) Future
worst case scenario: Iz(T = 50)=73, Iz(T = 100)=83, Iz(T = 500)=111, Iz(T = 1000)=125.



4.5. RESULTS AND DISCUSSION 77

of higher information strength, the posterior estimates of Pf display a decreasing trend for higher

values of θ.

In b, the updated failure probabilities for the T = 50 return period rainfall under present

conditions reveal some surprising results. The calculated 24 hour long rainfall intensity applied

here is 59mm/day. The lowest dashed line represents failure probability for sample sets that are

updated with the information of surviving a 24 hour rainfall of 60mm/day. Thus, one would

expect that none of the slopes with the same sample sets would fail for a lower rainfall intensity.

However, this is not the case in 4.20 (a), as the probability of failure for this T=50 rainfall events

is higher than zero. This may be due to the modelling error, which is not reduced by updating.

It is simply added to the prior and posterior estimates at the end of the calculation process, and

failing slopes can thus be produced in the revaluation of stability.

The failure probability prediction for the T = 50 return period also illustrates how the varia-

tion in results will be high for small probabilities, due to insufficient number of failed slope sample

sets. In order to increase accuracy in posterior estimates like this efficiently, subset simulation or

similar techniques can be applied.

Lastly, the results of this climate change sub-study show that, in the implemented model, an

20% increase in five year rainfall intensity due to climate change only subtly decreases predicted

stabilities. This is inferred from comparison of Figures 4.20 (a) and (b). The effect is least

significant for the high return periods, as discussed. This analysis considered the estimated worst

case future scenario. If other scenarios had been used, the climate effect would have been even

less significant. In order to properly evaluate the effect of climate change on the analytical rainfall-

induced landslide predictions, more thorough investigations are necessary. By taking into account

variance in rainfall patters, durations and also other conditions affected by climate change like

temperatures and snow-melting, the results may be different.

The focus of this contribution is to analyze the effect of including information of slope per-

formance on the involved uncertainties and the stability predictions in the safety assessment of

rainfall-induced landslides. Uncertainty in the modelling arises mainly from epistemic uncer-

tainty on hydrological and geotechnical model parameters. It is shown that uncertainty in param-

eter value ranges is successfully reduced when the observation information event is constraining

the outcome space of the random realizations. The probability distributions of the uncertain pa-
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rameters that are critical in the definition of the updating information are shifted towards more

likely ranges. These results demonstrate that Bayesian updating can be a helpful tool in reducing

uncertainties in rainfall-induced landslide analysis. This provides a basis to develop more accu-

rate landslide prediction models calibrated on local geotechnical and hydrological conditions.

The case study also illustrates an important advantage of doing probabilistic analyses com-

pared to deterministic. In this probabilistic study, numerous combinations of parameters that are

estimated to make up stable slopes in the Kvam area are revealed. Many aspects of probabilistic

modelling that influences results has not been investigated in detail in this thesis. Christian (2004)

demonstrated that the choice of probability distribution function can influence geotechnical reli-

ability estimates a lot. Effects like this has not been investigated in this study. Furthermore, in

order to get proper quantification and understanding of the propagation of uncertainties in the

analysis, it would be necessary to carry out sensitivity analyses.



Chapter 5

Summary and Future Work

5.1 Summary and conclusions

This thesis examined the potential of implementing a Bayesian updating framework to reduce

uncertainties in predictions of rainfall-induced landslides based on observations of slope perfor-

mance. Two types of landslide prediction models for slope stability under rainfall infiltration

were implemented: simple analytical models and sequentially coupled numerical models. The

updating process was performed using direct Monte Carlo and subset simulation techniques. A

case study based on landslide events that occurred in 2011 in the Kvam area in central Norway,

was considered. The updating information and uncertain parameters of the prediction models

were selected to reflect Kvam geotechnical and environmental conditions. The results indicated

consistent trends between the analytical and numerical models in terms of updated posterior prob-

ability density functions.

The results showed that uncertainty in geotechnical and hydrological parameters controlling

the occurrence of rainfall-induced landslides can be successfully reduced when the observation

information in the updating process is constraining the outcome spaces of the random realizations.

The updating most effectively reduced uncertainties in parameters that were the most critical in

the definitions of slope performance in the prediction models. In the Kvam case study, these were:

soil thickness, initial groundwater depth, cohesion and friction angle. The posterior distributions

indicated that stable slopes were likely to be associated with higher friction angles and values

of cohesion. An increasing rate of change between prior and posterior distributions was also

observed for increasing slope angles. This result is due to the higher strength of the updating

information on slopes that are more vulnerable to rainfall infiltration. For steep slope angles,

lower values of slope thickness and initial groundwater levels were assigned higher posterior

likelihoods.

79
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The posterior distributions of the infiltration controlling parameters dry unit weight, void

ratio, saturated coefficient of permeability and diffusivity were not significantly affected by the

updating process. This result can be attributed to the definition of the slope survival observation;

it was defined only by values of the slope safety factor before and after the rainfall event. The

effects of the complex transient rainfall infiltration controlled by these parameters may not have

been captured in neither the analytical nor numerical updating models.

The effects of updating on the predictive capacity of the analytical model under variable fu-

ture rainfall intensities and return periods were evaluated. In general, the observation of a slope

surviving a rainfall event lead to the reduction of probabilities of slope failure under future rain-

fall events. The strength of updating information and variations in rainfall return periods affected

the estimated calculated occurrence probabilities. The results provide a basis to develop more

accurate landslide prediction models calibrated on local geotechnical, hydrological and climate

conditions.

5.2 Recommendations for Further Work

The Kvam case study models can be expanded to a regional model, incorporating slope angle

data available in maps (NGI.no). A topography-based steady-state approach (Montgommery and

Dietrich (1994), D’Odorico and Fagherazzi (2003), D’ Odorico et al. (2005)) can then be used to

estimate ground water conditions prior to rainfall events. Local observations of slope performance

under historical Kvam rainfall events, as those provided by Schiliro and Cepeda (2016), can be

used as updating information.

A more thorough investigation of Bayesian updating in the numerical prediction model is

needed to properly evaluate the effect of model complexity in the updating process. This could

involve running simulations for a larger range of slope angles. One could also evaluate the ef-

fects of updating on the predictive capacity of the numerical model under variable future rainfall

intensities and return periods.

Lastly, implementation of local and global sensitivity analyses would assist in more accurate

quantification of the uncertainties and understand the propagation of the uncertainties involved in

the Kvam case study.
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Haldorsen, S., Krüger, J., 1990. Till genesis and hydrogeological properties. Nordic Hydrological

Programme: Hydrogeological Properties of Nordic Tills (NHP report No 25), 3–26.

Heyerdahl, H., September 2016. Rainfall-induced landslides in quaternary soils in norway. E3S

Web of Conferences 9.

Holm, G., 2012. Case study of rainfall induced debris flows in veikledalen.

Iverson, R. M., July 2000. Landslide triggering by rain infiltration. Water Resources Research

36 (7), 1897–1910.

Jaedicke, C., 2009. Økt skredfare kan avverges. KLIMA (1), 30–31.

Jaedicke, C., Solheim, A., Kronholm, L., Kristensen, K., Høydal, A., Blikra, A., Kronholm, K.,

Stalsberg, D., Sletten, K., Melchiorre, K., Vikhamar-Schuler, K., Isaksen, I., Sorteberg, C.,

Barstad, O., Aaheim, H., Mestl, H., July 2008. Spatial and temporal variations of norwegian

geohazards in a changing climate, the geoextreme project. Natural Hazards and Earth System

Science 8 (4), 893–904.

Janbu, N., 1970. Grunnlag i geoteknikk. Tapir.

Jørgensen, P., 1977. Some properties of norwegian tills. Boreas 6 (2), 149–157.

Lacasse, S., Nadim, F., 1997. Uncertainties in characterising soil properties. Publikasjon-Norges

Geotekniske Institutt 201, 49–75.

Lars Lundin, Henrik Breuning Madsen, H. R., 1990a. Water movements in nordic till soils. Nordic

Hydrological Programme: Hydrogeological Properties of Nordic Tills (NHP report No 25),

135–146.

Lars Lundin, Henrik Breuning Madsen, H. R., 1990b. Saturated hydrylauic conductivity of nordic

tills. Nordic Hydrological Programme: Hydrogeological Properties of Nordic Tills (NHP report

No 25), 67–74.



84 BIBLIOGRAPHY

Lundin, L., 1982. Soil moisture and groundwater in till soil and the significance of soil type for

runoff. UNGI Rapport No 56, 216 pp.

Luo, X., Liu, W., Fu, M., Huang, J., February 2017. Probabilistic analysis of soil-water charac-

teristic curve with bayesian approach and its application on slope stability under rainfall via

a difference equations approach. Journal of Difference Equations and Applications 23 (1-2),

322–333.

Melchiorre, C., Frattini, P., July 2012. Modelling probability of rainfall-induced shallow land-

slides in a changing climate, otta, central norway. Climatic Change 113 (2), 413–436.

Milledge, D. G., Griffiths, D. V., Lane, S. N., Warburton, J., September 2012. Limits on the va-

lidity of infinite length assumptions for modelling shallow landslides. Earth Surface Processes

and Landforms 37 (11), 1158–1166.

Montgommery, D. R., Dietrich, W. E., April 1994. A physically based model for the topographic

control on shallow landsliding. Water Resources Research 30 (4), 1153–1171.

Montrasio, L., 2000. Stability analysis of soil slip. Proceedings of International Conference “Risk

2000”, 357–366.

NGI, 2013. Impacts of extreme weather events on infrastructure in Norway (InfraRisk) - Slut-

trapport til NFR-prosjekt 200689. No. Authors: Frauenfelder, R., Solheim, A., Isaksen, K.,

Romstad, B., Dyrrdal, A.V., Gangstø, R., Harbitz, A., Harbitz, C.B., Haugen, J.E., Hygen,

H.O., Haakenstad, H., Jaedicke, C., Jónsson, Á., Klæboe, R., Ludvigsen, J., Meyer, N.M.,
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