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Summary

This thesis is motivated by cost reduction in subsea inspection, maintenance, and
repair operations, which requires autonomy and automatic functionality in order
to save time and money. Autonomy and automatic functions means taking some
aspects of the intervention out of the hands of the human operator, and letting the
underwater vehicle make some decisions and perform some actions independently.
A prerequisite for the underwater vehicle making a decision and performing an
action independently is reliable information about the current state of the vehicle,
i.e. its position and attitude. This thesis focuses on reliable and high performance
estimation of position and attitude of an underwater vehicle using measurements
from inertial measurement units and hydroacoustic sensor networks. The high
performance is ensured by using linearized Kalman filters, an industry standard for
that purpose. The reliability is ensured by mathematical proofs of the guaranteed
convergence of the estimates to the true value regardless of how erroneous the
initial estimate is.

The main part of this thesis presents four estimation concepts, for some of which
multiple estimators are developed.

The first is an attitude estimator based on inertial measurement unit and magne-
tometer measurements. This estimation problem has attracted significant attention
in last 50 years, and a multitude of solutions has been proposed. The estimator de-
veloped in this thesis is the first Kalman filter based solution with a minimal state
error representation and proven global exponential stability. The proposed estima-
tor is compared with existing solutions both in simulations and using experimental
data.

The second is position estimation based on inertial measurement unit, hydroacous-
tic long baseline, and pressure sensor measurements. Hydroacoustic range mea-
surements are found by multiplying the travel time of a signal with the wave speed,
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i.e. speed of sound in water. Since the wave speed vary with the water conditions
and therefore is not accurately known, the proposed estimators estimate it as well.

The third estimation concept is position estimation based on measurements from
an inertial measurement unit, a pressure sensor, and a hydroacoustic sensor net-
work called inverted short baseline. The inverted short baseline network consist
of multiple hydroacoustic sensors on the vehicle, and it is shown that only one
hydroacoustic transponder is then needed on the sea floor. This lowers the re-
quirement for external infrastructure, which in turn lowers deployment and main-
tenance costs. Several estimators are developed and analyzed, and a comparison
study using both simulated and experimental data is conducted.

The fourth estimation concept uses the inverted short baseline network described
above for both position and attitude estimation. The motivating scenario is that the
magnetometer measurements become corrupted by the magnetic fields produced
e.g. by the vehicle’s motors or a subsea facility. It is shown that the inverted short
baseline network along with two transponders on the sea floor can replace the need
for magnetometer measurements, thereby providing redundancy.

All of the solutions to the above estimation concepts attain global exponential
stability through a mathematical stability analysis and are based on the linearized
Kalman filter ensuring high performance.
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Notations

t Time

0n×m An Rn×m matrix of zeroes

In An Rn×n matrix of zeroes with ones on the diagonal

ln An Rn×1 vector of ones

{a, b, c} A set containing exactly the elements a, b, and c

(1, n) A set containing all whole numbers from 1 to n, i.e. {1, ..., n}

{b} body-fixed coordinate frame

{e} earth-centered inertial (ECI) coordinate frame

{n} north-east-down (NED) coordinate frame

Rn
b Rotation matrix representing the rotation from {b} to {n}

Φn
b Euler angles representing the rotation from {b} to {n}

qnb Unit quaternion representing the rotation from {b} to {n}

pabc Position of point c relative to point b decomposed in coordinate frame {a}

vabc Velocity of point c relative to point b decomposed in coordinate frame {a}

aabc Acceleration of point c relative to point b decomposed in coordinate frame
{a}

Q Process noise covariance matrix

R Measurement noise covariance matrix

xxi
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Chapter 1

Introduction

This thesis considers aided inertial navigation (AIN) of underwater vehicles. Meth-
ods for estimating the position, velocity, and attitude (PVA) of underwater vehi-
cles using hydroacoustic sensor networks and onboard sensors are developed. It
includes the development and implementation of a hydroacoustic system and a
range of estimators. A special emphasis is placed on the mathematical analysis of
the estimators, which is also the main contribution of this thesis work.

1.1 Motivation
This work is part of the project Next Generation Inspection, Maintenance, and Re-
pair (NextGenIMR) (grant no. 234108) with the goal of planning and developing
autonomous and automatic functions and systems for subsea oil and gas facilities
in order to make inspection, maintenance, and repair (IMR) operations cheaper,
safer, and faster.

Current IMR operations on subsea facilities require the deployment of a support
vessel to the site, submerging a remotely operated vehicle (ROV) to the facility,
and manual control of the ROV and manipulator arm by a small team of operators.
This process is time-consuming and expensive in itself. Schjølberg and Utne [1]
reported a daily cost of a support vessel at 100 000–300 000 USD, depending on
the vessel size. Furthermore, the cost increases dramatically if the cause or means
of intervention halts production. In Schjølberg et al. [2], it was uncovered that a
large volume of the IMR operations can be partly or fully automated, as they are
simple and involve little physical intervention. These tasks include, but are not

3
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limited to:

• Cleaning

• Inspection

• Turning valves

• Hot-stab

These functions can be performed by autonomous underwater vehicles (AUVs)
and semi-autonomous ROVs and require only low-risk intervention. Therefore,
they are realistically applicable to existing facilities in a short time-frame. Also,
the implementation and use of AUVs and ROVs for these functions serve as a
stepping stone for more complex intervention tasks in the future.

1.2 The Guidance, Navigation, and Control System
If underwater vehicles (UVs) are to operate autonomously or perform automatic
functions, then a guidance, navigation, and control (GNC) system is required. The
GNC system, a simplified view of which is given in Figure 1.1, is what takes
the higher-level plans and measurements of the UV’s state and produces control
actions to carry out the plans. Below, each of the GNC subsystems is explained.

Navigation: The navigation system is responsible for estimating the vehi-
cle’s state from the available measurements. The state often consists of PVA,
along with relevant systematic sensory and environmental disturbances. The
systematic disturbances may be e.g. biases, scale factors, or misalignments
on inertial and magnetic sensors, water current velocity, or the wave speed,
i.e. the propagation speed of sound in water. It is emphasized that naviga-
tion in the control engineering sense has nothing to do with steering of the
vehicle, which is the common understanding of the word.

Guidance: With the knowledge of where the vehicle is and where it is sup-
posed to go, it is the guidance system’s task to continuously produce the de-
sired translational and rotational motions that would lead the vehicle there
in an optimal way. The optimality may be with respect to fuel consumption,
time, safety etc. This desired behavior is then used as a reference for the
control system.
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State estimate

Figure 1.1: The GNC system.

Control: The control system converts the desired translational and rotational
motions into desired forces and angular momentums. From this, the internal
control allocation calculates motor thrusts that, when exerted by the motors,
produce the desired behavior.

The GNC system described above works under certain assumptions. Firstly, the
state must be observable from the measurements, meaning that the measurements
must describe the state in a sufficiently rich way such that the state can be esti-
mated. Secondly, the guidance and control systems often require a dynamic model
of the vehicle, i.e. a model that predicts the behavior of the vehicle given an input.
This model must be sufficiently accurate, or else the vehicle will not follow the de-
sired trajectory. Lastly, the guidance system requires input from higher level path
planning. The path planning can range from simple way-points provided by a hu-
man operator to a fully autonomous decision process involving safety assessments
and path refinements.

We understand that the navigation system is the foundation for almost all automatic
and autonomous functions conducted by a vehicle, and consequently, its perfor-
mance is vital to the performance of the GNC system as a whole. The navigation
system consists of one or a series of estimators. The performance of an estimator
is often assessed by two qualities: its stability properties and how it is influenced
by sensor noise. The navigation system is additionally assessed by its robustness,
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i.e. its ability to handle sensor malfunctions like corrupted measurements and mea-
surement drop-outs. For this, sensor redundancy and outlier rejection are needed.
This thesis primarily concentrates on the development and performance of estima-
tors, and not on the broader topic of robustness in the navigation system.

1.3 Aided Inertial Navigation
An estimator can either be developed in continuous or discrete time. For simplicity
of analysis, the estimators in this thesis are developed in continuous time. All
implementations, however, must be in discrete time, so the estimators’ continuous
time update equation must be discretized before implementation on a computer, a
thorough account of which is given in Bryne et al. [3].

A discrete estimator commonly involves two steps: a prediction step and a cor-
rection step. In the prediction step, the state estimate is propagated in time by
integrating the vehicle’s kinematic model by using measurements from inertial
sensors like the accelerometer and angular rate sensor (ARS).1 Due to noisy and
biased measurements, the prediction step causes the state estimate to drift away
from the true state over time. Therefore, a correction step is needed, in which
absolute measurements of the state eliminate this drifting error. Estimation based
purely on the prediction step is known as inertial navigation or dead reckoning.
When aided by the correction step, the estimation is known as aided inertial navi-
gation.

The estimation of a vehicle’s state often consists of a rotational motion estimator,
estimating the vehicle’s attitude, and a translational motion estimator, estimating
the vehicle’s position and velocity. These may depend on each other’s estimates,
and collaborate in either a cascade or feedback structure, seen in Figure 1.2.

1.3.1 Observers and Filters

Estimators can be categorized in two groups: filters, which take the stochastic
nature of model and measurement errors into account and estimate the state’s co-
variance, and observers, which do not. Observers only holds the state estimate.
Filters are divided into two groups, i.e. direct and indirect filters. Simply put,
direct filters estimate the desired state while indirect filters estimate the error be-
tween the true and estimated state. The estimated error is then used to correct a
state estimate. Understandably, they are also called full state and error state filters,

1Alternatively, the vehicle’s dynamic model can be integrated using the input to the thrusters.
This would require an accurate model of the vehicle’s response to thruster inputs.
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(a) Cascade structure
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(b) Feedback structure

Figure 1.2: The cascade and feedback estimator structures where z denotes the rotational
state and x denotes the translational state.

respectively. As discussed by Roumeliotis, Sukhatme, and Bekey [4], there are
several advantages of using indirect filtering over direct filtering when it comes to
computational complexity and robustness. In this thesis, however, direct filters are
mostly used.

Consider the linear system

ẋ(t) = Ax(t) +Bu(t) +G�x(t) (1.1a)

y(t) = Cx(t) + �y(t), (1.1b)

where

• x(t), ẋ(t): state vector and its time derivative, respectively

• u(t): input vector

• y(t): measurement vector

• A: system matrix

• B: input matrix

• G: system noise matrix

• C: measurement matrix

• �x(t), �y(t): unbiased and white system and measurement noises, respec-
tively
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• Q = E(�x(t)�x(t)�): system covariance matrix

• R = E(�y(t)�y(t)�): measurement covariance matrix.

All vectors are assumed to be column vectors, of which the superscript � denotes
the transpose. Here, (1.1a) is called the dynamic model and (1.1b) is called the
measurement model of system (1.1).

An example of a filter and an observer is given by the Kalman filter (KF) and
Luenberger observer, respectively. In both, the correction of the state estimate is
proportional to the measurement error ỹ(t) � y(t)− ŷ(t), where ŷ(t) � Cx̂(t) is
the estimated measurement. The Luenberger observer is given by

˙̂xlo(t) = Ax̂lo(t) +Bu(t) +Kloỹ(t) (1.2)

and the KF is given by

˙̂xkf (t) = Ax̂kf (t) +Bu(t) +Kkf (t)ỹ(t) (1.3a)

Kkf (t) = P (t)C�R−1 (1.3b)

Ṗ (t) = AP (t) + P (t)A� +GQG� − P (t)C�R−1CP (t), (1.3c)

where P (t) is an estimate of the state covariance, and an initial estimate P (t0) =
P0 must be given to the KF. Klo and Kkf (t) are called the gain matrices and
represent the difference between these two estimators. Klo is a tuning parameter,
whereas Kkf is found by (1.3b). However, tuning is required when setting the
Q, R, and P0 matrices. Both estimators require initial state estimates x̂lo(t0) and
x̂kf (t0). Kalman and Bucy [5] proved that the estimate x̂kf (t) is the minimum
variance linear unbiased estimate, meaning it is the optimal unbiased estimate
w.r.t. variance of the estimation error for a linear system with white noise charac-
teristics and a completely known model. Consequently, the Luenberger observer
is not an optimal estimator in the general case.

1.3.2 Stability Analysis

Let x(t) and x̂(t) be a general state and an estimate of it, respectively. Furthermore,
the dynamics and measurements of x(t) are given by the possibly nonlinear and
time-varying functions f and h, respectively, i.e.

ẋ(t) = f(x(t), u(t), t) (1.4a)

y(t) = h(x(t), t). (1.4b)
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In order to estimate this system, an estimator is defined

˙̂x(t) � f̂(x̂(t), u(t), t). (1.5)

Define the estimation error x̃(t) � x(t) − x̂(t). Now, the error dynamics can be
found as

˙̃x(t) = f̃(x̃(t), t) = f(x(t), t)− f̂(x̂(t), t). (1.6)

The goal of estimation is to find f̂(x̂(t), t) that makes �x̃(t)�2 → 0 as t → ∞,
which is equivalent to x̂(t) → x(t) as t → ∞. Here �x̃(t)�k = (x̃1(t)

k +
· · · + x̃N (t)k)1/k is the norm operator, x̃(t) = [x̃1(t), . . . , x̃N (t)]�, and N =
dim(x). Stability analysis is the mathematical analysis of the behavior of x̃(t) as
time passes. We say that the equilibrium point x̃ = 0 of system (1.6) is stable if
for any initial estimation error �x̃(0)�2 < δ, the estimation error will be bounded
�x̃(t)�2 < � for all time t, [6].

Stability is clearly not enough, as it does not guarantee convergence of the state
estimate, i.e. x̂ → x. Therefore, we investigate the following stability properties
from Khalil [6]:

• Rate of convergence: With which speed can it be guaranteed that x̃ → 0? If
it merely can be guaranteed that �x̃(t)�2 → 0 as t → ∞ for all �x̃(t0)�2 <
c, the equilibrium point x̃ = 0 of (1.6) is said to be asymptotically stable.
A stronger rate of convergence is when �x̃(t)�2 can be bounded from above
by an exponentially decaying function, i.e.

�x̃(t)�2 ≤ k�x̃(t0)�2e−λ(t−t0) for all �x̃(t0)�2 < c, (1.7)

where k, λ, and c are positive constants. Then, the equilibrium point is
exponentially stable.

• Region of attraction: For which initial error �x̃(t0)�2 can convergence of
�x̃(t)�2 → 0 be guaranteed? If convergence only can be guaranteed for
initial errors �x̃(t0)�2 < c, where c is a positive constant, the region of
attraction is said to be local. However, for systems where convergence is
guaranteed for any initial error �x̃(t0)�2, the region of attraction is global.

• Uniformity: For a time-varying system, the equilibrium point x̃ = 0 is uni-
formly stable if it is stable independently of t0. In order to have uniform
asymptotic and exponential stability, there are additional requirements, for
which it is referred to Definition 4.4 in Khalil [6].



10 Introduction

From this, eight different stability properties can be constructed. The naming con-
vention used in this thesis is U/ · +L/G + A/E + S, e.g. global exponential
stability (GES) or uniform global exponential stability (UGES).

Example 1.3.1 (Estimation of a linear system). Consider the 1D problem of es-
timating the position of a cart on a straight rail. A ranging device installed both
on the cart and the rail provides a distance measurement between them. Assume
the rail-mounted device can determine on which side of it the cart is, which allows
it to find a position measurement of the cart, denoted y(t). Also, the acceleration
along the rail is measured and used as input u(t). Let x1 be the position and x2
be the velocity of the cart relative the ranging device on the rail. This scenario is
depicted in Figure 1.3. The system can be written as

ẋ1(t) = x2(t)

ẋ2(t) = u(t) + �x

y(t) = x1(t) + �y,

where �x and �y are unbiased, white noises with variance σ2
x and σ2

y , respectively.
The system can be written in compact form (1.1) with x = [x1, x2]

� and

A =

�
0 1
0 0

�
, B =

�
0
1

�
, G =

�
0
1

�
, C =

�
1 0

�
,

for which we use the Luenberger observer (1.2) and KF (1.3). The respective error
dynamics in the noise-less case become

˙̃xlo = (A−KloC)x̃lo (1.8)
˙̃xkf = (A−Kkf (t)C)x̃kf . (1.9)

The stability analysis of the KF error dynamics follows by employing a well-known
result: Since the observability and controllability matrices

O =

�
C
CA

�
=

�
1 0
0 1

�
, C =

�
G GA

�
=

�
0 1
1 0

�

have full rank, the system (A,C) is observable and (A,G) is controllable, which
Kalman [7] proved to yield GES of the equilibrium point x̃kf = 0 of (1.9).

The design choice Klo = [2, 1]� yields

D � A−KloC =

�
−2 1
−1 0

�
,
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x1

x2

Figure 1.3: Example 1 scenario with a cart on a rail and range devices in red.

which has only negative eigenvalues, λ1 = −1 and λ2 = −1, i.e. it is Hurwitz.
Theorem 4.1 of Khalil [6] proves that for any Hurwitz matrix D and positive defi-
nite matrix Q, there exist a positive definite matrix P such that PD+D�P = −Q.
Now, we can define the positive definite Lyapunov function V (t) = x̃lo(t)

�Px̃lo(t)
and find its derivative

V̇ (t) = x̃lo(t)
�PDx̃lo(t) + x̃lo(t)

�D�Px̃lo(t)

= x̃lo(t)
�(PD +D�P )x̃lo(t) = −x̃lo(t)

�Qx̃lo(t).

Let pmin, pmax > 0 denote the smallest and largest eigenvalues of P, respectively,
and qmin > 0 the smallest eigenvalue of Q. Now, we have the properties

pmin�x̃lo(t)�22 ≤ V (t) ≤ pmax�x̃lo(t)�22 (1.10a)

V̇ (t) ≤ −qmin�x̃lo(t)�22 < 0 ∀ x̃lo �= 0. (1.10b)

From (1.10b), we see that V (t), and consequently x̃lo(t), can only decrease un-
til x̃lo = 0, regardless of the initial estimation error. This is global asymptotic
stability (GAS). Furthermore, since we can find

�x̃lo(t)�22 ≤
1

pmin
V (t),

dV (t)

dt
≤ − qmin

pmin
V (t) ⇒ dV (t)

V (t)
≤ − qmin

pmin
dt

V (t) ≤ V (t0)e
− qmin

pmin
(t−t0) ⇒ �x̃lo(t)�22 ≤ �x̃lo(t0)�22e

− qmin
pmin

(t−t0),

which we from (1.7) see that clearly qualifies as GES.

For nonlinear systems on the general form (1.4), developing estimators with strong
stability properties and high performance is generally harder. The workhorse for
estimation of nonlinear systems is the extended Kalman filter (EKF), which can
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Figure 1.4: The general EKF and XKF structures. x̄ denotes the auxiliary estimator’s
estimate.

be applied to all differentiable systems. In the EKF, a linear approximation of the
nonlinear system is achieved by linearizing it about the EKF’s estimate. Then, a
KF is applied to the linearized system. This makes the EKF a versatile estimator,
which has found many applications in a wide range of fields. However, the EKF
does not come with global stability properties in the general case, which makes
it sensitive to large initial errors and corrupted measurements. The lack of global
stability is due to the feedback of the EKF’s estimate to the linearization; an in-
correct estimate leads to an erroneous linearized model, which in turn might make
the correction step increase the estimation error rather than decrease it. A recent
development in nonlinear estimation is the exogeonus Kalman filter (XKF) by Jo-
hansen and Fossen [8]. The XKF is similar to the EKF, but relies on an auxiliary
estimator to provide the linearization point. This difference is illustrated in Figure
1.4. Given that the linearized model is observable and controllable, and the co-
variance matrices P0, Q, and R are chosen positive definite, the XKF inherits the
stability of the auxiliary estimator. This is an important result, because it enables
simple design of high performance estimators with strong stability results.

Contrary to the linear KF, the linearized KF of the XKF and EKF cannot guarantee
optimality w.r.t. variance of the estimation error since the linearization introduces
an error. However, when the estimate has converged, the linear model is assumed
to be a good approximation of the nonlinear one and the performance said to be
near-optimal. Therefore, the EKF is assumed to be a near-optimal estimator of a
nonlinear system. Since the XKF relies on a suboptimal linearization point, one
could expect it to perform worse than the EKF. From experience, however, this has
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Figure 1.5: Example 2 scenario with two rail-mounted range deviced.

been seen to not hold true, i.e. they yield similar performances, even for an XKF
with a considerably worse linearization point.

Example 1.3.2 (Estimation of a nonlinear system). Consider Example 1.3.1. In-
stead of a position measurement y(t) = x1(t)+ �y(t), two (non-directional) range
measurements are available

yi(t) = hi(x(t), t) � �x1(t)− pi(t)�2 + �y,i(t), i ∈ {1, 2},

where pi is the position of ranging device i on the rail and �y,i(t) is an unbiased
white noise with variance σ2

y,i. This set-up is illustrated in Figure 1.5.

Denote by x̂ekf and x̂xkf the EKF and XKF estimates, respectively, and let x̌ =
[x̌1, x̌2]

� denote the linearization point. Linearization is now done by the Taylor
expansion of h = [h1, h2]

�

h(x(t), t) = h(x̌(t), t) +H(x̌(t), t)(x(t)− x̌(t)) + ϕ(x1(t)− x̌1(t), t), (1.11)

where ϕ is the sum of higher order terms and represents the linearization error.
Furthermore, ϕ(0, t) = 0, and H is the linearized measurement matrix

H(x̌(t), t) =
dh(x(t), t)

dx

����
x=x̌

=

�
x̌1−p1

�x̌1−p1�2 0
x̌1−p2

�x̌1−p2�2 0

�
.

An EKF is implemented by inserting C = H(x̂ekf (t), t), ŷ(t) = h(x̂ekf (t), t), and

R = Rekf =

�
σ2
y,1 0

0 σ2
y,2

�
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into (1.3). Assuming the linearized system (A,H(x̂ekf (t), t)) is observable, the
equilibrium point x− x̂ekf = 0 is locally exponentially stable (LES), see Theorem
4.13 of Khalil [6].

For the XKF, an auxiliary estimator is required. By calculating

Y (t) � y1(t)
2 − y2(t)

2 − p21 + p22 =− 2(p1 − p2)x1(t) + 2(x1(t)− p1)�y,1(t)

− 2(x1(t)− p2)�y,2(t),

we have achieved a linear model. We denote by x̄xkf (t) the auxiliary estimator’s
state, and implement the KF (1.3) using C = C̄xkf � [−2(p1 − p2), 0], ỹ =
Y −C̄x̄xkf , and measurement variance R̄xkf (t) = 4(x1−p1)

2σ2
1+4(x1−p2)

2σ2
2 .

The stability of the auxiliary estimator is proven to be GES by the KF proof in
Example 1.3.1 with the added assumption p1 �= p2.

Finally, we develop the XKF by inserting the exogenous state x̄xkf (t) into the
measurement model (1.11) and defining the estimated measurement

ŷxkf (t) � h(x̄xkf (t), t) +H(x̄xkf (t), t)(x̂xkf (t)− x̄xkf (t)).

Now, the XKF can be implemented by inserting C = H(x̄xkf (t), t), ŷ(t) =
ŷxkf (x̄xkf (t)), and R = Rxkf = Rekf into (1.3).

Finding the measurement error

ỹxkf � y − ŷxkf = H(x̄xkf (t), t)(x(t)− x̂xkf (t))− ϕ(x(t)− x̄xkf (t), t),

where x̃xkf � x− x̂xkf , yields the error dynamics

˙̃xxkf = (A−Kxkf (t)H(x̄xkf (t), t))x̃xkf −Kxkf (t)ϕ(x(t)− x̄xkf (t), t).
(1.12)

The intuition behind the proof is that since �x − x̄xkf�2 → 0 as t → ∞, the lin-
earization error ϕ disappears. Then, we are left with the error dynamics ˙̃xxkf =
(A−Kxkf (t)H(x̄xkf (t), t))x̃xkf . As in the linear case in Example 1.3.1, observ-
ability of (A,H(x̄xkf (t), t)) is required. Assuming observability, the equilibrium
point x̃xkf = 0 of the error dynamics (1.12) inherits the stability properties of the
auxiliary estimator. The formal proof of this is given in Johansen and Fossen [8].

The estimators are used in a simulation, the results of which can be seen in Figure
1.6. Here, 100 simulations with the trajectory in Figure 1.6(a), but with differ-
ent randomly generated noise, were made, and the mean absolute error (MAE) is
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Figure 1.6: Trajectory and estimates in one of the 100 simulations in 1.6(a). MAE over
all 100 simulations in 1.6(b).

Table 1.1: The averaged MAE values for the 100 simulations.

Estimator Aux. XKF EKF
MAE [m] 6.5280 0.2114 0.2067

shown in Figure 1.6(b). The estimators were implemented in discrete time. In the
simulations, the following values were used:

x(0) = x̄xkf (0) = x̂xkf (0) = x̂ekf (0) = [0, 0]�

P̄xkf = P̂xkf = P̂ekf =

�
1 0
0 1

�

p1 = 2m, p2 = −2m, σx = 0.05
m

s2
, σy,1 = σy,2 = 1m.

The measurement rate of the acceleration was 100Hz and the range was 1Hz.

This example displays an important quality of the XKF. Even with a poor lin-
earization point from the auxiliary estimator, the performance is close to identical,
as seen from Figure 1.6(b) and the MAE values in Table 1.1.

1.4 Sensor Technology
A commonly used sensor for inertial navigation is the inertial measurement unit
(IMU), consisting of an ARS and an accelerometer measuring the angular rate and
specific force. The specific force is the acceleration relative to free-fall, meaning
that when the vehicle lies still, the accelerometer measures the gravitational accel-
eration upwards, i.e. away from Earth’s center. Since specific force is measured in
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the vehicle’s body-fixed frame, while the position and velocity estimates are often
expressed in a global frame, the rotation from the body-fixed frame to the global
frame is needed. This rotation is called the attitude of the vehicle. A Doppler
velocity log (DVL) can also be used for inertial navigation. It measures the veloc-
ity of the vehicle relative to Earth expressed in the body-fixed frame. Again, the
attitude is required for position estimation in the global frame. These examples
clearly show the need for an attitude estimate in position estimation and explain
why the cascaded structure in Figure 1.2(a) is often used.

The ARS provides the angular rate measurements needed for the prediction step of
attitude estimation. It is often assumed to be biased, which introduces the estima-
tion of an ARS bias as well. For the correction step in attitude estimation, reference
vectors that are known or measured both in the global and in the body-fixed frame
are used. The specific force is a commonly used measurement for low-acceleration
vehicles on or near Earth, as it measures the gravitational acceleration in the body-
fixed frame which also is known in the global frame. Similarly, the magnetometer
measures Earth’s magnetic field in the body-fixed frame, which is known in the
global frame. Understandably, IMUs play a significant role in almost any naviga-
tion system. They exist in a wide range of qualities and prices, meaning they are
applicable for both low-cost and high performance systems. The ARS technology
ranges from the high-end and expensive ring laser gyroscope (RLG) and fiber optic
gyroscope (FOG) to low-cost and low-performance micro-electromechanical sys-
tem (MEMS) technology [9]. The MEMS technology also includes accelerometers
and magnetometers.

For underwater position estimation, absolute measurements of the vehicle’s po-
sition are required. A pressure sensor is a simple sensor that, if calibrated well,
reliably and precisely measures the depth of the vehicle. This is not enough, how-
ever, as it does not provide information about its horizontal position. For this, hy-
droacoustic sensor networks have found widespread use. The first hydroacoustic
sensor network was the long baseline (LBL), consisting of hydroacoustic trans-
ducers on the vehicle, often called transceivers, and multiple on the sea bed, of-
ten called transponders. The measurement retrieval strategy is typically that the
transceiver sends a signal to the transponders, to which the transponders reply. De-
tecting the time-of-arrival (TOA) of the responses, the ranges between transceiver
and transponders are found. Assuming the geometry of the baselines, i.e. the rel-
ative position of transponders, are appropriate, 3 range measurements are enough
to estimate the position of the vehicle. This set-up is in principle the same for all
hydroacoustic networks: One or more transducers in the vehicle’s surroundings



1.5. Background on Estimation 17

provide range measurements to one or more transducers on the vehicle.

What differentiates the hydroacoustic sensor networks is the length of the base-
lines. Since the LBL transponders are mounted on the sea bed, only practical and
geographical considerations limit the baseline lengths. Longer baselines generally
yield higher estimation accuracy, but it is not the only factor. As important is the
relative positions of the transponders, where increasing diversity yields higher es-
timation accuracy. This means e.g. that when placing a third transponder on the
sea bed, it is better that the three transponders form an equilateral triangle than a
line.

Geometrically similar to the LBL is the GPS intelligent buoy (GIB), where buoys
positioned by the global positioning system (GPS) carry the transponders. In the
short baseline (SBL) network, a small array of transducers are often mounted un-
der a surface vessel, typically from which the UV is employed. Examples of other
SBL set-ups also exist [10]. Here, the baselines are limited by the size of the sur-
face vessel. Reducing the baseline lengths further, we find the ultrashort baseline
(USBL) network, where the array of transducers are compactly fitted inside an
apparatus. As with the SBL, the USBL apparatus is often mounted under a sur-
face vessel in order to measure the UV’s position relative the surface vessel. Here,
time-difference-of-arrival (TDOA) must be detected with high precision in order to
get usable range and bearing measurements. The above configurations rely on an
external array of transducers, and consequently, significant external infrastructure.
A network that only requires one transponder in the vehicle’s surroundings is the
inverted ultrashort baseline (iUSBL), where the USBL apparatus is mounted on the
UV. Similarly, the inverted short baseline (iSBL) proposed by Stovner, Johansen,
and Schjølberg [11] is a network that only requires one transponder. However, in-
stead of confining the array to an apparatus as in the iUSBL, the array in iSBL is
confined to the size of the UV. This is similar to the SBL, hence the name. For a
review of hydroacoustic sensor networks, it is referred to Vickery [12].

1.5 Background on Estimation
The KF was first published by Kalman [7] for the discrete-time systems, and ex-
tended to continuous-time systems the year later by Kalman and Bucy [5]. The
EKF appeared already in Smith, Schmidt, and McGee [13] for position and veloc-
ity estimation of a spacecraft with nonlinear dynamics. In 1966, the Schmidt-
Kalman filter (SKF) for estimation of a nonlinear system with constant biases
without state augmentation was presented by Schmidt [14]. Another early devel-
opment of the KF was the square-root formulation, in which the square root of the
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covariance matrix is updated. This was developed in order to lower the precision
requirement in the covariance matrix updates, which in turn reduced the computa-
tional load on the computers and made it more robust w.r.t. e.g. round-off errors
and models with highly accurate measurements [15]. Gustafsson [16] notes that
the square-root formulation is also useful when there are large scale differences
between the states.

The unscented Kalman filter (UKF), as presented by Julier, Uhlmann, and Durrant-
Whyte [17], is a nonlinear filtering method without the need for linearization and
the computation of the Riccati equation. Instead, an unscented transformation is
used, in which carefully selected sigma points are propagated through the nonlin-
ear system in order to estimate the mean and covariance of the state and measure-
ments. The unscented transformation can then be used in the KF. Another non-
linear filtering method is the particle filter (PF), which contrary to the UKF uses a
large number of points called particles. The particles are essentially guesses of the
state, and each is associated with a probability that also is updated. The probabil-
ities of all particles constitute an estimate of the state’s posterior distribution. The
quality of estimation is determined by the number of particles, the need of which
grows rapidly with the dimension of the problem. Thus, the PF is best suited for
low-dimensional problems. [16]

Lastly, a special case of the XKF called the three-stage filter (3SF) has been used
for position estimation by Johansen and Fossen [18] and Johansen, Fossen, and
Goodwin [19]. The linearization point of the 3SF is provided by a linear KF,
which employs a linear model achieved by an algebraic transformation (AT) of the
nonlinear measurement model.

Attitude Estimation

For the reasons described above, estimation of a rigid body’s attitude is an es-
sential part of most navigation systems, whether it is in marine, terrestrial, aerial,
or extraterrestrial applications. Solutions typically involve comparing nonparallel
vector measurements in the rigid body’s body-fixed frame to the corresponding
known reference vectors in the global frame. Examples of this can be found in
satellites, which often navigate by tracking known stars, and in marine, terrestrial,
and aerial applications, in which body-fixed measurements of Earth’s gravitational
and magnetic fields are commonly used. The principle behind attitude estimation
from vector measurements is the relationship

ri = Ri
br

b, (1.13)
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where a unit reference vector r is known in two frames: a global and often as-
sumed inertial frame denoted {i} and a body-fixed frame denoted {b}. The two
vectors only differ by the rotation between the two frames, here parametrized by
the rotation matrix Ri

b. With at least two nonparallel and noise-free vector pairs
(ri1, r

b
1) and (ri2, r

b
2), the attitude can be determined.

Closely related to the development of attitude estimators has been the research
and discussions on different attitude representations. Estimating a 3 × 3 rotation
matrix, which is maybe the most straight-forward attitude representation, means
estimating nine variables for three degrees-of-freedom (DOFs) which increase the
computational complexity. Also, the necessary re-orthogonalization of the rotation
matrix after corruption by round-off errors and other numerical effects is computa-
tionally expensive. The limited computational power on board early satellites did
not permit this, and other representations had to be used. The Euler angles, con-
sisting of three rotation variables roll, pitch, and yaw, are the most intuitive of the
attitude representations, as they describe any rotation as three subsequent rotations
about three standard axes. However, the kinematic equations and the construction
of the rotation matrix from Euler angles use trigonometric functions, which are
computationally expensive operations. Furthermore, the Euler angle representa-
tion contains a singularity, which is the case for all three-variable representations
of a rotation [20]. Using the common Euler angle definition used in e.g. Robin-
son [21] and Fossen [22], the singularity appears in the kinematic equations at
90◦ pitch angle. The lowest dimension singularity-free attitude representation is
the four-variable quaternion. The quaternion has desirable qualities for describing
rotations: it has no singularities, is has linear kinematics, and is computationally
efficient. However, due to the over-parametrization of the three rotations, the ele-
ments of the quaternion are not independent; they are related by the unit norm of
the quaternion. Without imposing the unit norm constraint, the quaternion is not
observable, which may not yield an invertible covariance matrix in a KF imple-
mentation. In many attitude estimators, the quaternion is therefore used to hold
the attitude estimate, while three-variable representations are used to represent the
attitude error. These may e.g. be the Gibbs vector or the modified Rodrigues pa-
rameter (MRP), both of which can be defined using the quaternion. Furthermore,
they are both minimal representations, i.e. they use three variables for three rota-
tions, but are not singularity free. Their singularities, however, can be argued to
be less restricting than that of the Euler angles since they appear at 180 and 360
degrees, respectively. For more on attitude representations, it is referred to Shuster
[23] and Markley [24]
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An early attitude determination scheme was the point-to-point determination of
the attitude by Black [25], which later was named the tri-axial attitude determi-
nation (TRIAD) algorithm [26]. TRIAD finds the rotation matrix explicitly from
minimum two nonparallel vector pairs. The main weakness of the TRIAD algo-
rithm is its sensitivity to noise. Bar-Itzhack and Harman [27] improves on this
by calculating a weighted average of several different TRIAD solutions, but the
achieved estimate is still not optimal in the sense of minimum variance. Wahba
[28] posed the problem of finding the rotation matrix Rb

i that minimizes the cost
function J =

�N
j=1 �rbj − Rb

ir
i
j�22 for N measurements. Davenport’s q-method

was the first useful analytical solution to Wahba’s problem. However, it requires
eigenvalue decomposition, which limited the frequency with which attitude esti-
mates could be computed on the 1979 MAGSAT spacecraft [26]. This called for
the quaternion estimator (QUEST) algorithm that since has been the most used
solution to Wahba’s problem. Although QUEST also has an analytical solution,
numerical optimization is often preferred over the analytical approach for reasons
of speed, accuracy, and reliability [26]. Numerous analytical and numerical solu-
tions have been found for Wahba’s famous problem, for which we refer to Shuster
and Oh [29] and Markley and Mortari [30].

Early examples where the KF is used for attitude estimation are Paulson, Jackson,
and Brown [31], Kau, P. Kumar, and Granley [32], and Farrell [33], where the
Euler angle representation is used. Toda, Heiss, and Schlee [34] presented the
first KF implementation using the quaternion that is known to the author. The
quaternion representation appeared later in Lefferts, Markley, and Shuster [35] and
Bar-Itzhack and Oshman [36], in which the multiplicative extended Kalman filter
(MEKF) and additive extended Kalman filter (AEKF) were presented, though not
with these names. The principal difference between the two is the way in which
the attitude error, and thus also the correction, is formulated. In the MEKF, the
error between the quaternion estimate and the quaternion representing the true
attitude is described by a quaternion multiplication, which preserves its unit norm
constraint. In the additive formulation, the error is represented as a subtraction.
This violates the unit norm constraint, though with the correct accommodations,
the two formulations have been shown to be identical. Shuster [37] clarifies this
efficiently:

This writer senses the feeling among some workers that the additive
and multiplicative implementations of the Kalman filter update ex-
press different but equally valid and not necessarily equivalent Kalman
filter approaches. This is not true, the two approaches are exactly
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equivalent and should yield the same result within round-off error,
as was demonstrated by Ferraresi [21]2. The differences between
the “additive” and “multiplicative” approaches is really only one of
frame as pointed out a decade ago in reference [2]3. Nonetheless, the
terminology “additive” and “multiplicative” have become ingrained,
for which this writer bears some responsibility.

The real problem of the additive formulation is in the case of unconstrained es-
timation of the quaternion. The same work by Shuster is quoted to conclude this
matter:

There does not, however, seem to be any benefit to unconstrained
quaternion estimation, since it is more burdensome than constrained
quaternion estimation, and, when one has finished, one must still
do the work of restoring the constraint, which, by itself, is at least
as difficult as constrained quaternion estimation. The unconstrained
AEKF is faster than the constrained AEKF only if one accepts the
unconstrained quaternion estimate as a substitute for the constrained
quaternion estimate. The lack of constraint for the quaternion also
brings with it special ills including the occasional failure of the esti-
mation process. To this writer it seems that unconstrained quaternion
estimation brings only extra burdens and no benefits.

In this thesis work, the terms additive and multiplicative are used about the formu-
lations of the quaternion error and in naming the AEKF and MEKF.

Further work on the AEKF was presented in Zanetti and Bishop [40] and Zanetti
et al. [41], in which the quaternion constraint is imposed. Bonnabel, Martin, and
Salaun [42] presented the invariant extended Kalman filter (IEKF), which exploits
the symmetry of the attitude estimation problem. This supposedly leads in practice
to a larger region of attraction. The geometric extended Kalman filter (GEKF)
of Andrle and Crassidis [43] rectifies the frame inconsistency in the ARS bias
correction of traditional attitude KFs. They note that the true and estimated ARS
biases are described in the true and estimated body-fixed frames, respectively.

Nonlinear observers (NLOs) have in recent years received increasing attention for
the attitude estimation problem. They often come with global or semi-global sta-

2Ferraresi [38]
3Shuster [39]
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bility properties, which generally lacks for the EKF-based methods. Salcudean
[44] presented an angular velocity observer with global convergence properties.
Thienel and Sanner [45] proposed a nonlinear observer with GES estimation of
attitude and bias, provided constant reference vectors, under a persistency of exita-
tion (PE) requirement. Later, this requirement has been lifted by Mahony, Hamel,
and Pflimlin [46] and Batista, Silvestre, and Oliveira [47–49]. Observers for time-
varying reference vectors with semi-global stability results were developed by Hua
[50] and Grip et al. [51], and Grip et al. [52] improved this to global stability.
Batista, Silvestre, and Oliveira [48, 49] presented an attitude observer using a sin-
gle time-varying and persistently non-constant reference vector.

The assumption that the vehicle is weakly accelerated is commonly used in attitude
estimation, which allows the gravity vector to be used as a reference vector for the
accelerometer measurement. Hua [50] and Martin and Salaün [53] developed a
velocity and attitude observer based on global navigation satellite system (GNSS)
velocity measurements that implicitly estimated the acceleration of the vehicle,
thereby lifting this assumption. This idea was developed further in Johansen and
Fossen [18] and Grip et al. [52, 54] where an acceleration estimate from a position,
velocity, and acceleration observer was used to aid an attitude observer.

In Batista, Silvestre, and Oliveira [55] and Jørgensen and Schjølberg [56], acoustic
sensor networks provide measurements for attitude estimation. Here, the principle
is to use the relative inertial position of two transponders or body-fixed position
of two transceivers as reference vectors, and find the corresponding body-fixed or
inertial counterparts, respectively, from the acoustic sensor network.

Position Estimation

The electromagnetic GNSS signals attenuate rapidly in water, and can therefore not
be used in underwater applications. However, the problem of position estimation
using GNSS and hydroacoustic measurements are mathematically similar, so the
field of GNSS-based position estimation is of great interest.

In GNSS applications, the range measurements are often modeled as pseudo-
ranges, i.e. range measurements corrupted by a bias. The bias is additive and
stems from a time offset between the transmitter and receiver clocks that is com-
mon for all pseudo-range measurements. An AT of the pseudo-range measurement
equations for explicit calculation of the position and clock bias was presented in
Bancroft [57] and Chaffee and Abel [58]. The explicit calculation is a noise-
sensitive process, and integration of inertial and pseudo-range measurements is
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adviced. KF-based solutions can be found in e.g. Grewal, Weill, and Andrews
[59] and Farrell [60]. Vik and Fossen [61] presented a GES NLO that integrates
an inertial navigation system (INS) and GNSS measurements assuming that the
attitude is known. Grip et al. [52, 54] presented GES NLOs integrating INS and
position measurements calculated from the GNSS measurements, which Johansen
and Fossen [62] extended by using pseudo-range measurements directly. The lat-
ter was achieved by linearizing the nonlinear pseudo-range measurements, which
came at the cost of only local stability.

A similar AT as that of Bancroft [57] and Chaffee and Abel [58] can be used
to gain a linear time-varying (LTV) measurement model from the pseudo-range
measurement equations with an additive bias. The LTV measurement model can
in turn be implemented in a LTV KF that can easily be shown to be GES. The
AT and KF are the two first stages of the 3SF of Johansen, Fossen, and Goodwin
[19], and the third stage is the linearized KF using the estimate from the LTV KF
as a linearization point. Instead of an LTV KF in the second stage, Johansen and
Fossen [18] develops a GES NLO. This is computationally more efficient, as the
NLO is less burdensome than a KF.

Hydroacoustic sensor networks are typically based on a reply-respond strategy, for
which clock bias becomes irrelevant. However, the wave speed, i.e. the speed of
sound in the surrounding water, is not exactly known and varies with temperature
and salinity. This may be modeled as pseudo-ranges with a multiplicative bias that
is common for all measurements. This model was used by Batista [63], where
the nonlinear estimation problem was solved by state augmentation. This yields
a linear estimation problem which was shown to have GES error dynamics, but
comes at the cost of higher state dimension which inceases the computational load.

Alternatively, the wave speed can be calibrated separately, either offline, implic-
itly assuming that the water conditions do not vary, or online with temperature
and salinity measurements as inputs to a wave speed model. Underwater position
estimation with global stability results using bias-free range measurements was
achieved by Batista, Silvestre, and Oliveira [64] for multiple transponders on the
sea bed, and for a single transponder in Batista, Silvestre, and Oliveira [64]. Mor-
gado et al. [65] achieved the same with a USBL network and a single transponder.
All of these works applied state augmentation to deal with the nonlinearities.

An interesting method for using hydroacoustic measurements for attitude estima-
tion was presented by Batista, Silvestre, and Oliveira [55]. There, a USBL set
up provided body-fixed measurements of several transponders on the sea-bed with
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known north-east-down (NED) position. This allowed for the use of a new ref-
erence vector pair for attitude estimation, i.e. the known and measured relative
position of two transponders in the NED and body-fixed coordinate frames, re-
spectively.

1.6 Research Questions
Here, the research questions that this thesis attempts to answer are stated.

Research Question 1: Can the XKF method be applied to attitude estimation to
yield a filter with similar performance as the MEKF, but with global stability?

Research Question 2: Can the XKF method be applied to position and wave speed
estimation using an LBL network in order to improve performance w.r.t. stability
and transient behavior, while maintaining the high accuracy of, the EKF?

Research Question 3: Can the iSBL network reduce the required installed infras-
tructure to one transponder while yielding adequate estimation accuracy? Fur-
thermore, can the XKF method be applied to this problem to give global stability
of the solution?

Research Question 4: Can the iSBL network with two transponders replace the
generally unreliable magnetic field measurements? Furthermore, can the XKF
method be applied to this problem to give global stability of the solution?

Overarching Research Question: What are the theoretical and practical limita-
tions of the XKF and which implications do these have for AIN of underwater
vehicles? Under which circumstances should other methods be preferred?

1.7 Publications
The PhD work amounting to this thesis has resulted in two journal and four con-
ference papers, which are listed below:

Journal papers:

[66] B. N. Stovner et al. “Attitude Estimation by Multiplicative eXogenous
Kalman Filter”. In: Automatica Provisionally Accepted (2018)

[67] B. N. Stovner, T. A. Johansen, and I. Schjølberg. “Globally Exponentially
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Stable Filters for Underwater Position Estimation Using A Single Hydroa-
coustic Transponder”. In: Ocean Engineering Accepted (2018)

Conference papers:

[68] Bård B Stovner et al. “Three-stage Filter for Position and Velocity Estima-
tion from Long Baseline Measurements with Unknown Wave Speed”. In:
Proc. of the American Contr. Conf. 2016, pp. 4532–4538

[11] B. B. Stovner, T. A. Johansen, and I. Schjølberg. “Globally Exponentially
Stable Aided Inertial Navigation with Hydroacoustic Measurements from
One Transponder”. In: Proc. of the American Contr. Conf. 37.1 (2017),
pp. 1219–1226

[69] B. B. Stovner and T. A Johansen. “Hydroacoustically Aided Inertial Nav-
igation for Joint Position and Attitude Estimation in Absence of Magnetic
Field Measurements”. In: Proc. of the American Contr. Conf. 37.1 (2017),
pp. 1211–1218

Conference paper not included in this thesis:

[70] E. K. Jørgensen, B. B. Stovner, and I. Schjølberg. “Experimental valida-
tion of three-stage position filter based on long baseline measurements with
unknown wave speed”. In: Proc. of Conference on Control Technology and
Applications. IEEE, Aug. 2017, pp. 680–686

1.8 Outline and Contribution
This thesis is divided into three parts. Part I describes why these research problems
are important and gives the relevant background information for understanding
the methods and tools used and developed in this thesis. Specifically, Chapter 2
explains the notation and models of kinematics and measurements used throughout
this thesis, while Chapter 3 describes the laboratory set-up used to experimentally
verify and test the developed estimators.

In Part II, the work constituting the contribution of this thesis is given. Part II has
been organized such that the chapters 4–7 attempt to answer research questions
1–4 of Section 1.6, respectively.
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In Chapter 4, the multiplicative exogenous Kalman filter (MXKF) is developed
and shown to be GES. Furthermore, it is shown through a simulations study and
in experiments that it has identical steady-state performance as and better transient
performance than the MEKF, the industry standard. This is an important results
and a significant contribution, as it is the first of its kind: a GES KF-based filter
with a minimal error state representation and with the high performance of the
MEKF. This chapter is fully based on the work of Stovner et al. [66].

Chapter 5 considers the AIN of a UV with an LBL network and depth measure-
ments when the wave speed is unknown. This requires the development of an AT
similar to that of Bancroft [57] and Chaffee and Abel [58], but adapted to a multi-
plicative bias term. Furthermore, a 3SF is developed, based on this AT, and shown
to be GES. This is the contribution from Stovner et al. [68]. Due to the low verti-
cal disparity between transponders in most LBL networks, noise has a detrimental
effect on the AT described above. This is improved in a novel AT presented here,
which removes the vertical component with the aid of a depth measurement. It is
shown that a calculated state estimate from the novel AT is accurate enough to be
used as a linearization point in a linearized KF, which constitutes the second stage
of the novel 3SF. A further improvement can be gained by employing a third stage
KF, which uses a linearized model about the second stage estimate. A simulation
study shows that the novel 3SF is a significant improvement from that of Stovner
et al. [68]. Furthermore, it is shown that the the second stage KF in the novel 3SF
performs almost as well as the third stage KF, meaning the latter can be excluded
to save computational cost.

Chapter 6 considers the AIN of a UV with an iSBL network and depth measure-
ments. Here, the wave speed is assumed to be known accurately. Multiple 3SFs
are developed, using states decomposed in the NED and body-fixed coordinate
frames. The filters are given in Stovner, Johansen, and Schjølberg [11, 67], and
are developed here and shown to be GES. A simulation study shows that the AT
developed in the latter is a significant improvement over that of the former. Fur-
thermore, NED formulation is shown to be better that the body-fixed one. Also,
the best second stage filter is shown to yield nearly as good performance as the
best third-stage filter. This is an important result, as the third stage filter can be
excluded to lower computational complexity.

When used for attitude estimation, it is assumed that the magnetometer measures
Earth’s magnetic field decomposed in the body-fixed coordinate frame. How-
ever, disturbances induced by e.g. the vehicle’s motors or a subsea facility may
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cause large disturbances that make the magnetometer measurements unsuitable
for attitude estimation. Chapter 7 replaces magnetometer measurements in atti-
tude estimation with an iSBL network with two or more transponders on the sea
floor. Specifically, the calculated and estimated positions of the vehicle relative to
the transponders decomposed in the body-fixed frame are used. From these, the
transponder baselines, which are known in the NED frame, can be found in the
body-fixed frame, constituting a vector pair suitable for attitude estimation. A 3SF
is developed and shown to be GES, which through the three steps incrementally
improves attitude and body-fixed position estimates.

In chapters 5–7, the proven GES of the filters and EKF-like performance achieved
of the best ones are the main contributions. The best performing filters of Chapter
5 and 7 are previously unpublished.

Part III discusses the overarching research question in Section 1.6 about the lim-
itations and utility of the XKF method in underwater state estimation. Also, it
discusses future work that should be undertaken in the further development of the
proposed methods.





Chapter 2

Modeling

In this chapter, necessary notation and models of kinematics and sensors are de-
scribed.

2.1 Coordinate Frames
In this section, the coordinate frames used in this thesis are explained.

A vector, e.g. a position p, is described using the following mathematical notation:

pabc =



pabc,x
pabc,y
pabc,z


 . (2.1)

This translates to the position of point c relative to point b decomposed in the
coordinate frame a. The coordinate frame {a} is defined by the placement of its
origin, oa, and by its axes �ax, �ay, and �az . This is shown in Figure 2.1. If b or c in
the above notation were coordinate frames, it would simply mean the position of
ob or oc, respectively.

• ECI: the earth-centered inertial (ECI) coordinate frame {e} lies at the center
of the earth and does not rotate with it. It is shown in Figure 2.2.

• NED: the NED coordinate frame {n} is locally tangential to the earth’s sur-
face with its �nx, �ny, and �nz axes pointing north, east, and down, respectively.
Its orientation therefore depends on where on earth its origin on is located.
This is depicted in Figure 2.2.

29
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Figure 2.1: Coordinate frame {a} defined by the axes �ax, �ay , and �az . The position of
the point c relative to point c decomposed in the coordinate frame a is given by the vector
pabc = [pabc,x, p

a
bc,y, p

a
bc,z]

�.

• BODY: the body-fixed coordinate frame {b} has axes that move with the
vehicle. Its�bx, �by, and�bz axes point forwards, to the right, and downwards,
respectively. Its origin may be placed wherever it is suitable in the body of
the vehicle. This is depicted in Figure 2.3.

2.2 Attitude Representations and Kinematics
The attitude of a rigid body is the imaginary rotation needed to align the axes of a
reference frame to the axes of the rigid body’s body-fixed frame. The attitude of a
rigid body can be represented in a number of ways, the relevant of which will be
presented here.

In the following, we let the NED coordinate frame be the reference frame.

2.2.1 Rotation Matrix

The attitude may be represented by the rotation matrix Rn
b , which is a nine-parameter

representation. A vector known in one frame can be found in the other by

yn = Rn
b y

b

yb = Rn
b
�yn.

The kinematics of the rotation matrix is given by

Ṙn
b = Rn

b S(ω
b
nb),
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Figure 2.2: The ECI and NED coordinate frame. The locally tangential plane can be seen
to intersect earth’s surface at the origin of the NED frame on.

where ωb
nb is the angular velocity and S(ω) is the skew-symmetric matrix

S(ω) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 .

2.2.2 Euler Angles

There are many ways in which the Euler angles may be defined. Adopting the def-
inition from Robinson [21] and Fossen [22], the Euler angles represent the attitude
as the three subsequent rotations about the z-, y’-, and x”- axes called yaw, pitch,
and roll, respectively, where y’ is the resulting axis after the rotation about the
z-axis and x” is the resulting axis after the rotations about the z- and the y’-axes.

The Euler angles representing the rotation from the body-fixed to NED coordinate
system is given by

Φn
b =



φ
θ
ψ


 ,
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Figure 2.3: The body-fixed coordinate system.

where φ, θ, and ψ are the roll, pitch, and yaw angles, respectively. The rotation
matrix is contructed from the Euler angles by

Rn
b = R(Φn

b ) =




cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sψcφsθ
−sθ cθsφ cθcφ


 ,

where s· = sin(·), c· = cos(·), and t· = tan(·).
The kinematics of the Euler angles are given by

Φ̇n
b = T (Φn

b )ω
b
nb

T (Φn
b ) =



1 sψtθ cψtθ
0 cψ −sψ
0 sψ/cθ sψ/cθ


 .

We see that the singularity of this Euler angle representation is at θ = π/2 + nπ
for all integers n.
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2.2.3 Unit Quaternions

The attitude represented by the unit quaternion qnb is composed by a scalar rotation
η about an imaginary axis ε = [εx, εy, εz]

� as

qnb =

�
η
ε

�
. (2.2)

It is a unit quaternion, meaning �qnb �2 = 1.

The rotation matrix can be constructed from the quaternion by

Rn
b = R(qnb ) = I3 + 2ηS(ε) + 2S2(ε) = Ξ(qnb )

�Ψ(qnb ), (2.3)

where

Ξ(qnb ) =

�
−ε�

ηI3 − S(ε)

�
, Ψ(qnb ) =

�
−ε�

ηI3 + S(ε)

�
. (2.4)

From (2.3), we see that the quaternions qnb = [1, 0, 0, 0]� and qnb = [−1, 0, 0, 0]�

both represent zero rotations. This reveals a the quaternion ambiguity: any rotation
has two quaternion representations of opposite sign, i.e. R(q) ≡ R(−q).

Let qn
b̂
� [η̂, ε̂]� be an estimate of qnb . Now, the multiplicative error can be found

by

δq =

�
δη
δε

�
� qb̂b = (qn

b̂
)−1 ⊗ qnb , (2.5)

where (qnb )
−1 = [η,−ε]�/�qnb �2 is the quaternion inverse and ⊗ denotes the

Hamilton product

q1 ⊗ q2 =

�
η1
ε1

�
⊗
�
η2
ε2

�
=

�
η1η2 − ε�1 ε2

η1ε2 + η2ε1 − S(ε1)ε2

�
= q1η2 +Ψ(q1)ε2. (2.6)

The Hamilton product conserves the norm constraint on the unit quaternion. Al-
ternatively, the error between qn

b̂
and qnb can be expressed by the additive error

q̃ � qnb − qn
b̂
. (2.7)

The kinematics of the unit quaternion is

q̇nb =
1

2
Ξ(qnb )ω

b
nb =

1

2
Ω(ωb

nb)q
n
b , (2.8)

where

Ω(ωb
nb) =

�
0 −ωb

nb
�

ωb
nb −S(ωb

nb)

�
.
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2.2.4 Modified Rodrigues Parameter

The MRP is a three-variable representation of the attitude. Here, it is introduced
as a means of mapping the four parameters of the quaternion down to three pa-
rameters. However, it can be used independently of quaternions as an attitude
representation.

From the quaternion qnb , we find the MRP as

unb =
ε

1 + η
(2.9)

which clearly contains a singularity at η = −1, i.e. a 360◦ rotation. A vehicle
aligned with NED that starts rotating in e.g. yaw will trigger the MRP singularity
when it has completed a full round. Since qnb and −qnb represents the same rotation,
there must exist two MRPs representing the same rotation as well. The alternative
MRP for unb is called its shadow set and can be found by

unb,ss =
−ε

1− η

(1 + η)2

(1 + η)2
= − unb

1−η2

(1+η)2

= − unb
unb

�unb
.

Therefore, the MRP singularity can be avoided by switching between shadow-set
representations.

The rotation matrix can be found from the MRP by

Rn
b = R(unb ) = I3 −

4(1− unb
�unb )S(u

n
b ) + S(unb )

2

(1 + unb
�unb )

2
. (2.10)

The dynamics of the MRP is

u̇nb =
1

2

�
1

2

�
1− unb

�unb
�
I3 + S(unb ) + unb u

n
b
�
�
ωb
nb. (2.11)

For more on the MRP, the reader is referred to Markley and Crassidis [26], Cras-
sidis and Markley [71], and Karlgaard and Schaub [72].
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2.3 Position Representations and Kinematics

2.3.1 North-East-Down Formulation

The position, velocity, and acceleration of a vehicle relative NED decomposed in
NED are denoted pnnb, v

n
nb, and annb, and are linked by

ṗnnb = vnnb (2.12a)

v̇nnb = annb. (2.12b)

2.3.2 Body-Fixed Formulation

The position of a vehicle relative a transponder decomposed in the body-fixed
coordinate frame is denoted pbtb. From

ṗbtb =
d
dt
Rn

b
�(−pnnt + pnnb) = −S(ωb

nb)R
n
b
�(−pnnt + pnnb) +Rn

b
�vnnb

= −S(ωb
nb)p

b
tb + vbnb,

we see that vbnb is a reasonable choice for the body-fixed velocity state. Similarly,
it can be shown that

v̇bnb = −S(ωb
nb)v

b
nb + abnb.

The body-fixed kinematics is summarized as

ṗbtb = −S(ωb
nb)p

b
tb + vbnb (2.13)

v̇bnb = −S(ωb
nb)v

b
nb + abnb. (2.14)

This representation of a position arises naturally in the iSBL measurement equa-
tions since its baselines are known in the body-fixed coordinate frame.

2.4 Sensor Models

2.4.1 Inertial Measurement Unit and Magnetometer

An IMU consists of a three-axial accelerometer and an ARS. Additionally, many
IMUs are equipped with a magnetometer, though it is not an inertial sensor.

Accelerometers measure the acceleration of a vehicle relative to free-fall. This
means that when an accelerometer lies still relative to the ground, it measures the
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acceleration of gravity pointing upwards, i.e. in the negative nz-direction. This is
called the specific force, and its measurement is modeled by

f b
nb,m = abnb −Rn

b
�gn + �acc, (2.15)

where abnb is the true acceleration of the vehicle and �acc is an unbiased white noise
with standard deviation σacc, i.e. �acc ∼ N (0,σ2

acc). Note that this assumes that
the body-fixed frame coincides with the IMU.

The ARS measurement is modeled by

ωb
nb,m = ωb

nb + bbars + �ars, (2.16)

where �ars ∼ N (0,σ2
ars) and bbars is assumed to be a slowly varying bias term

modeled by a Wiener process [see e.g. 22, p.306]

ḃbars = �b,

where �b ∼ N (0,σ2
b ).

The magnetometer measurement is modeled by

mb
m = Rn

b
�mn + �mag, (2.17)

where mn is Earth’s magnetic field decomposed in the NED coordinate frame and
�mag ∼ N (0,σ2

mag).

2.4.2 Hydroacoustic Measurements

The acoustic measurements come in this thesis from two different hydroacoustic
sensor networks: LBL and iSBL.

Long Baseline

In the LBL set-up, the vehicle carries one transceiver that measures the TOA from
several transponders mounted in the vehicle’s surroundings, seen in Figure 2.4.
The LBL measurements are modeled by

yi = α� − pnnti + pnnb +Rn
b p

b
bc�2 + �y,i, (2.18)

where pnnti is the position of transponder ti relative NED, pbbc is the position of
the tranceiver c on the vehicle, and �y,i ∼ N (0,σ2

y,i). α is a wave speed error
factor that allows us to estimate the wave speed, i.e. the speed of sound in the
surrounding water.
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�zb

�xn
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�zn

c
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ti−1

ti+2

�pbc
�pnti

�ptib

yi

Figure 2.4: The configuration of one transceiver (red) and N LBL transponders (black)
on the sea floor.

Inverted Short Baseline

In the iSBL set-up, the vehicle carries one transmitting transducer, called a sender,
and M receiving transducers, called receivers. The M th receiver is mounted near
the sender, so we assume their positions coincide. In the vehicle’s surroundings
there are one or more transponders, denoted t or ti respectively, that receive a
signal from the sender and subsequently respond. Now, receiver cM measures the
TOA of the transponders’ responses, while receivers cj , j = 1, ...,M − 1 measure
the TDOA between cj and cM . The range measurement is modeled by

yiM = �pnnb − pnnti +Rn
b p

b
bcM

�2 + �y,iM (2.19a)

= �pbtib + pbbcM �2 + �y,iM (2.19b)

and the M − 1 range difference measurements are modeled by

∂yij = �pnnb − pnnti +Rn
b p

b
bcM

�2 − �pnnb − pnnti +Rn
b p

b
bcM

�2 + �∂,ij (2.20a)

= �pbtib + pbbcj�2 − �pbtib + pbbcm�2 + �∂,ij . (2.20b)

Notice that the iSBL measurements are not modeled with the wave speed error
factor α. This assumes that the wave speed is known. The iSBL sensor network
can be seen in Figure 2.5
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Figure 2.5: The configuration of M iSBL receivers (red), an iSBL sender (blue), and N
transponders (black).

2.4.3 Pressure as Depth Measurement

Accurately calibrated pressure measurements can provide accurate measurements
of the vehicle’s position along the �nz-axis. This is modeled as

dm = pnnb,z + �d, (2.21)

where �d ∼ (0,σ2
d).



Chapter 3

Experimental Set-Up

3.1 Laboratory Facilities
The experiments in this thesis are conducted in Marine Cybernetics Laboratory
(MCLab), a 40 meters long, 6.5 meters wide, and 1.5 meters deep water tank
at Norwegian University of Science and Technology (NTNU). The water tank is
equipped with 6 Qualisys Oqus Underwater cameras. The camera system measures
the positions of reflective markers placed on a vehicle. These are used to calculate
the true position and attitude of the vehicle.

3.2 Hydroacoustics
In this section, the hydroacoustic range measurement system is described. The
hardware available in this thesis was bought from Water Linked AS. It consists
of specialized computer hardware allowing the transmission and reception of dis-
cretized signals through transmitting and receiving hydroacoustic transducers.

All transducers, i.e. the ones on the vehicle and the ones on the pool floor, are
connected to the same specialized computer with 4 channels for receiving and
4 for transmitting. Receivers and transmitters begin recording and transmitting
simultaneously. Therefore, we know that the transmitted signal is present in each
recording, and that the time at which it is detected is the TOA. This means that the
experimental set-up is simpler than the set-up modeled in the simulations in this
thesis. This was due to limitations on the available hardware.

Below, a simplified overview of the measurement retrieval strategy is given.

39
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1. Start transmitting Nt and receiving Nr samples simultaneously

2. In the recording, detect the TOA of the transmitted signal

3. Calculate range measurement from the TOA

When a signal is transmitted, the signal must be recognized on the receiver and the
TOA detected. This requires design of a signal that is easily detectable, which is
discussed in Section 3.2.1. Further, signal processing must be developed to detect
the transmitted signal on the receiver side. This is discussed in Section 3.2.2.

3.2.1 Signal Design

The most important quality of the signal is that the transmitted sequence of sam-
ples must be easily detectable in the recorded sequence of samples. The detection
is done by correlating the transmitted sequence with the recorded sequence, which
means that the correlation properties of the designed sequence are of key impor-
tance. Preferrably, the signal should have zero auto-correlation when the lag is
nonzero. The lag is the number of samples that one of the sequences is shifted rel-
ative to the other, where zero lag means the sequences overlap perfectly. A class
of sequences that hold this property in theory is Zadoff-Chu-sequences, given by

x(n) = exp

�
−πiun(n+ 1)

NZC

�
, n ∈ (1, NZC), (3.1)

where i =
√
−1, n is the sample index, u is the root of the sequence, and NZC is

the prime length of the sequence. [73]

The transducers work best at frequencies between 50-250 kHz. Therefore, the
Zadoff-Chu sequences must be designed within a desired frequency interval. This
is also important when multiple transmitters are to send simultaneously. Then, the
transmitted sequences are differentiable on the receiving end if they are separated
in the frequency domain. Through trial and error, the choice of

u

NCZ
= 6.56 · 10−6(fhigh − flow)N

in (3.1) was found to yield an appropriate Zadoff-Chu sequence within the fre-
quency domain (flow, fhigh) of desired length N . This sequence is additionally
band-pass filtered in the given interval. The above does not produce a sequence of
length N , but a non-zero sequence of approximately N samples with tails of ap-
proximately zero values before and after it. From this, the N samples of valuable
information in the middle can be extracted.
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3.2.2 Signal Processing

Here, the signal processing algorithm is first stated, before its steps are explained
in the following.

Given the transmitted sequence t and the received sequence r containing t, the
signal processing can be summarized in the following steps:

1. Correlate t and r to produce the correlation sequence c1

2. Auto-correlate t to produce the correlation sequence at

3. Correlate c1 and at to produce c2

4. Find the first significant peak in c2.

Denote the correlation of t and r by c1. Ideally, c1 would be zero where the trans-
mitted and received sequences did not overlap perfectly, and a clear peak when
they did. Then, it would be trivial to find the lag at which the peak occurs, from
which the TOA could be calculated. However, due to noise, multipath, and an im-
perfect sequence t, there are multiple peaks in c1 and it can be hard to distinguish
the peak representing the direct path from the other peaks.

The sequence t is imperfect because it does not have zero auto-correlation when
the lag is non-zero, as seen in Figure 3.1. This is likely due to the way in which it is
created. The sequence c1 is expected to contain peaks before the direct path peak
in a similar manner as in Figure 3.1. This information can be used constructively,
namely by correlating the interval between the red lines in Figure 3.1, a sequence
we denote at, with c1. This means that we search for the first appearing pattern
of peaks in c1 that resemble the expected pattern at. The resulting sequence from
the correlation of c1 and at is denoted c2. The difference between c1 and c2 can be
seen in Figure 3.2 and 3.3.

The direct path peak is distinguishable from the multipath peaks because it always
appears first. This is due to the direct path being shorter than the multipaths. In
Figure 3.2, the multipath peaks is seen to be far greater than the direct path peak.
This makes selecting the direct path peak from c1 particularly difficult. For in-
stance, it is not obvious that the peak marked in red in Figure 3.3(a) is the direct
path peak and not the preceding or the succeeding peak, and the example displayed
in Figure 3.2 and 3.3 is far from the hardest to analyze. In c2, distinguishing the
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Figure 3.1: The auto-correlation of t about zero lag in blue. The sequence between the
red lines are denoted at and used for the second correlation.
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(b) The correlation sequence c2.

Figure 3.2: The correlation sequences c1 and c2 between 0 and 10 meters. The red line
marks the direct path peak at 4.309m.
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(b) The correlation sequence c2.

Figure 3.3: A closer look at the same correlation sequences as in Figure 3.2 about the
direct path peak.

direct path peak from the multipath peaks have become much simpler as the pre-
ceding peaks in c1 have vanished, and the first significant peak represents the direct
path.

The algorithm searching for the first significant peak is not covered here, as it is an
ad hoc algorithm that does not provide much insight.

3.2.3 Range Filtering

In Figure 3.4, the 16 ranges measured from the 4 transmitters to the 4 receivers are
shown along with the true ranges calculated from the position and attitude output
by the Oqus camera system. We see that there are some outlier range measure-
ments. These are filtered out by a simple outlier rejection algorithm. It rejects
the current range measurement if the difference between the current range and the
last accepted range is larger than some limit. This limit is proportional to the time
difference between the current range and the last accepted range. The slope of this
limit is a tuning variable, and should be set to the maximum plausible speed of the
vehicle.



44 Experimental Set-Up

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Range [m]

05

1
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
05

1
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
0246

1
0

0
2
0

0
3

0
0

4
0
0

5
0

0
0246

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Range [m]

05

1
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
05

1
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
0246

1
0

0
2
0

0
3

0
0

4
0
0

5
0

0
0246

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Range [m]

05

1
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
05

1
0

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
05

1
0

1
0

0
2
0

0
3

0
0

4
0
0

5
0

0
0246

T
im

e
 [

s
]

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Range [m]

05

1
0

T
im

e
 [

s
]

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
05

1
0

T
im

e
 [

s
]

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
0246

T
im

e
 [

s
]

1
0

0
2
0

0
3

0
0

4
0
0

5
0

0
0246

Fi
gu

re
3.

4:
T

he
ra

ng
es

ca
lc

ul
at

ed
fr

om
th

e
ca

m
er

a
sy

st
em

in
re

d
an

d
th

e
ra

ng
es

fo
un

d
fr

om
th

e
hy

dr
oa

co
us

tic
s

in
bl

ue
.



Part II

Research Contributions

45





Chapter 4

The Multiplicative eXogenous
Kalman Filter for Attitude Estimation

This chapter is based on the work of Stovner et al. [66], in which a novel GES
KF-based attitude and ARS bias estimator is developed. Furthermore, it is shown
to yield similar performance in both simulations and experiments as the MEKF.
This is a significant contribution as it provides an estimator with global stability
properties and the high estimation accuracy of one of the industry standard so-
lutions, the MEKF. Using the GES NLO of Grip et al. [52] and building on the
results of Johansen and Fossen [74], the filter is developed and its global stability
is proven. Beyond the theoretically guaranteed robustness and transient perfor-
mance, the MXKF is compared in simulations and experimentally with the NLO
and an MEKF.

4.1 Preliminaries
The true state and NLO and linearized KF state estimates z, z̄, and ẑ, respectively,
are defined as

z �
�
qnb

�

bbars

�
, z̄ �

�
qn
b̄

b̄b̄ars

�
, ẑ �

�
qn
b̂

b̂b̂ars

�
, (4.1)

where b̄b̄ars and b̂b̂ars are the NLO’s and linearized KF’s ARS bias estimates decom-
posed in their respective frames, and qnb

� resolves the quaternion ambiguity by the
following definition.
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Definition 4.1.1. Define qnb
� as the one of qnb and −qnb that is closest to qn

b̄
, i.e.

qnb
� �

�
qnb , if qn

b̄
�qnb ≥ 0

−qnb , if qn
b̄
�qnb < 0

. (4.2)

Furthermore, the true quaternion and its NLO and linearized KF estimates are
composed of

qnb
� =

�
η
ε

�
, qnb̄ =

�
η̄
ε̄

�
, qn

b̂
=

�
η̂
ε̂

�
, (4.3)

respectively.

Definition 4.1.1 requires that the multiplicative and additive errors (2.5) and (2.7),
respectively, are redefined:

δq =

�
δη
δε

�
� (qn

b̂
)−1 ⊗ qnb

� (4.4)

q̃ � qnb
� − qn

b̂
. (4.5)

The measurements are modeled by

ybi = R(qnb )
�yni + �y,i, (4.6)

where �y,i ∼ N (0,σ2
y,i). Furthermore, as mentioned in Section 1.5, two nonpar-

allel vector measurements are needed for attitude determination. This is stated by
the following assumption:

Assumption 4.1.1. At least two reference vectors yn1 and yn2 are nonparallel, i.e.,
there exists a positive constant γ such that |yn1 × yn2 | ≥ γ > 0.

4.2 Nonlinear Observer
Figure 4.1 shows the role of the NLO in the structure of the MXKF. Any NLO
estimating the attitude and ARS bias with strong convergence properties can be
used. Here, the attitude observer from Grip et al. [52] is used, which with a rotation
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ẑ

Figure 4.1: The structure of the MXKF.

matrix attitude estimate R̄n
b̄

is given by

˙̄Rn
b̄ =R̄n

b̄ S(ω
b
nb,m − b̄b̄) + σKPJ(R̄

n
b̄ , t) (4.7a)

˙̄bb̄ =Proj(b̄b̄,−kIvex(P(R̄n
b̄
�
s KPJ(R̄

n
b̄ , t)))) (4.7b)

J(Rn
b , t) =

3�

j=1

(wn
j −Rn

bw
b
j)w

b
j
� (4.7c)

wι
1 =

yι1
�yι1�2

, wι
2 =

S(yι1)y
ι
2

�S(yι1)yι2�2
, wι

3 =
S(yι1)

2yι2
�S(yι1)2yι2�2

,

where ι ∈ (n, b), KP is a symmetric positive-definite gain matrix, kI is a strictly
positive scalar gain, σ ≥ 1 is a stability tuning factor, R̄n

b̄ s
is the matrix R̄n

b̄
with

all its elements saturated between ±1, Proj is a projection function that ensures
�b̄b̄� ≤ M̄ for M̄ > M where M is an a priori known upper bound on the ARS
bias, i.e. �bb� < M , P(X) = 0.5(X + X�) for any square matrix X , and
vex(S(x)) = x. Note that R̄n

b̄
is not always on SO(3), but it converges to SO(3).

When R̄n
b̄

is projected onto SO(3), the result is denoted Rn
b̄

.

Denote by Σ̄ the dynamics of the estimation error R(qnb )− R̄n
b̄

and bb − b̄b̄. Let qn
b̄

be extracted from Rn
b̄

in such a way that it forms a continuous signal, and does not
jump between the two representation qn

b̄
and −qn

b̄
.

Proposition 4.2.1. The origin R(qnb )− R̄n
b̄
= 03 and bb − b̄b̄ = 0 of Σ̄ is GES.

Proof. The proof is given in Grip et al. [52].

4.3 Linearized Kalman Filter
In this section, the linearized KF part of the MXKF is derived. The derivation is
conducted in the following steps:
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Local Lin-
earization

State
Update

Mapping
R7 → R6

Covariance
Update

Kalman
Gain

z̄ Hz(t), Fz(t)

z̄, hz(z̄), fz(z̄)

ẑ

M(z̄, ẑ)

Hx(t, ẑ), Fx(t, ẑ)

Gx(t, ẑ)

P̂

K(t)

yn1 , ..., y
n
M , yb1, ..., y

b
M ,ωb

nb,m

Figure 4.2: A closer look at the linearized KF part of the MXKF. The reset operation
(4.20) is excluded for presentation purposes.

1. Define an update equation for ẑ and formulate the seventh-order additive
error dynamics

2. Derive a mapping between the seventh-order additive error (4.5) and the
sixth-order multiplicative error (4.4)

3. Insert the mapping into the additive error dynamics to achieve a multiplica-
tive error dynamics.

The internal structure of the linearized KF is shown in Figure 4.2.
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4.3.1 Additive Model

Inserting the ARS measurement model (2.16) into the quaternion kinematics (2.8)
allows us to write the full-state dynamic equation

q̇nb = fq(z, t) =
1

2
Ξ(qnb )(ω

b
nb,m − bbars − �ars) (4.8a)

=
1

2
Ω(ωb

nb,m − bbars − �ars)q
n
b

ḃb = fb(t) = �b (4.8b)

which is expressed in the compact form

ż = fz(z, t) =

�
fq(z, t)
fb(t)

�
. (4.9)

We define the process noise vector �z � [��ars, �
�
b ]

�.

The measurement equation is

ybi = hi(z, y
n
i ) = R�(qnb )y

n
i + �y,i, (4.10)

for vector measurements i = 1, ...,M , where �y,i is the noise on measurement i.
We concatenate (4.10) for all i as

yb = h(z, yn) (4.11)

yb =



yb1
...

ybM


 , yn =



yn1
...

ynM


 , �y =



�y,1

...
�y,M


 , h(z, yn) =




h1(z, y
n
1 )

...
hM (z, ynM )


 . (4.12)

Additive Estimation Error Model

The models (4.9) and (4.11) are linearized about the exogenous signal z̄

fz(z, t) =fz(z̄, t) + Fz(t)(z − z̄) +Gz(t)�z + χz(t) (4.13a)

hz(z, t) =hz(z̄, t) +Hz(t)(z − z̄) + �y + χy(t), (4.13b)

where χz(t) and χy(t) represent higher order terms of the linearizations. From
(4.8), we find that Fz(t) and Gz(t) become

Fz(t) =
dfz(z, t)

dz

����
z=z̄

=
1

2

�
Ω(ωb

nb,m − b̄b̄) −Ξ(qn
b̄
)

03 03

�

Gz(t) =
dfz(z, t)

d�z

����
z=z̄

=

�−1
2Ξ(q

n
b̄
) 04×3

03 I3

�
.
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Using equation (A.44) from Markley and Crassidis [26], we find Hz(z̄) to be

Hz(t) =



2S(yb̄1)Ξ

�(qn
b̄
) 03

...
2S(yb̄M )Ξ�(qn

b̄
) 03


 ,

where yb̄i = R�(qn
b̄
)yni . Notice that the dependency of known bounded time-

varying signals have been replaced by dependency of time in Fz(t), Gz(t), Hz(t),
χz(t), and χy(t).

We define an estimator

˙̂z �fz(z̄, t) + Fz(t)(ẑ − z̄) +M(z̄, ẑ)K(t)(y − ŷ) (4.14a)

ŷ �hz(z̄, t) +Hz(t)(ẑ − z̄), (4.14b)

where the gain matrix K(t) and mapping matrix M(z̄, ẑ) are specified later.

Define ỹ � y − ŷ. Now, subtracting (4.14) from (4.13) yields the additive estima-
tion error model

˙̃z =Fz(t)z̃ −M(z̄, ẑ)K(t)ỹ +Gz(t)�z + χz(t) (4.15a)

ỹ =Hz(t)z̃ + �y + χy(t). (4.15b)

Inserting (4.15b) into (4.15a) yields the additive error dynamics

Σ̂A : ˙̃z =(Fz(t)−M(z̄, ẑ)K(t)Hz(t)) z̃ +Gz(t)�z (4.16)

+ χz(t)−M(z̄, ẑ)K(t) (�y + χy(t)) .

4.3.2 Mapping from Additive to Multiplicative Error

Lemma 4.3.1. The additive error state z̃ can be mapped to the multiplicative error
state δx by the mapping

z̃ = M(z, ẑ)δx = (M(z̄, ẑ) + M̃(z, z̄))δx, (4.17)

where

M(z̄, ẑ) =

�
Ψ(qn

b̄
) +Ψ(qn

b̂
) 04×3

03 I3

�
(4.18)

M̃(z, z̄) =

�
Ψ(qnb

�)−Ψ(qn
b̄
) 04×3

03 03

�
. (4.19)

Moreover, the mapping approximation converges, i.e. M(z̄, ẑ) → M(z, ẑ), as the
NLO converges.
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Proof. The proof is stated in Appendix 4.A.

4.3.3 Multiplicative Model

In this section, we transform the error dynamics from R7 to R6. We begin by
defining δq̌ = [δη̌; δε̌] � (qn

b̂
)−1 ⊗ qn

b̄
and δq̄ = [δη̄; δε̄] � (qn

b̄
)−1 ⊗ qnb

�. Later, it
will be required that qn

b̂
�= −qn

b̄
, and from (2.9) we must have δη > −1. Both are

guaranteed by the following Lemma.

Lemma 4.3.2. The reset rule

ẑ ← z̄ if qn
b̂
�qnb̄ ≤ � (4.20)

guarantees both that qn
b̂
�= −qn

b̄
and δη > −1 + Δ(�) where Δ(�) > 0 for any

input � > 0.

Proof. The proof is stated in Appendix 4.B.

Lemma 4.3.3. The seventh order additive error dynamics Σ̂A in (4.16) can be
transformed by the approximate linear mapping M(z̄, ẑ) to the sixth order multi-
plicative error dynamics

Σ̂M : δẋ =(Fx(ẑ, t)−K(t)Hx(ẑ, t))δx+ χx(ẑ, t) (4.21)

+Gx(ẑ, t)�z −K(t)�y + ζ(ẑ, δx, t),

where

Fx(ẑ, t) � M †(z̄, ẑ)(Fz(t)M(z̄, ẑ)− Ṁ(z̄, ẑ)) (4.22a)

Gx(ẑ, t) � M †(z̄, ẑ)Gz(t) (4.22b)

χx(ẑ, t) � M †(z̄, ẑ)χz(t)−K(t)χy(t) (4.22c)

Hx(ẑ, t) � Hz(t)M(z̄, ẑ), (4.22d)

and (·)† denotes the Moore-Penrose pseudo-inverse operation C† = (C�C)−1C�.
Furthermore,

χx(ẑ, t) ≤ kχ||z − z̄�22 (4.23a)

ζ(ẑ, δx, t) ≤ kζ�z − z̄�22. (4.23b)

Proof. The proof is stated in Appendix 4.C.
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In the following, explicit expressions for the matrices (4.22a), (4.22b), and (4.22d)
are derived. From Markley and Crassidis [26] we have that

d
dt
Ψ(qn

b̂
) =

1

2
Ω(ωb

nb,m − b̂b̂)Ψ(qn
b̂
)

and similarly for Ψ(qn
b̄
). This is used in order to find

Fx(ẑ, t) =

�
F1(ẑ, t) F2(ẑ, t)

03 03

�

F1(ẑ, t) =
Ψ�(qn

b̄
) +Ψ�(qn

b̂
)

4(1 + δη̌)
Ω(b̂b̂ − b̄b̄)Ψ(qn

b̂
)

F2(ẑ, t) = −
Ψ�(qn

b̄
) +Ψ�(qn

b̂
)

4(1 + δη̌)
Ξ(qnb̄ ) = −1

4
D1(ẑ, t)R(qnb̄ ).

Here, Ψ�(qn
b̄
)Ξ(qn

b̄
) = R(qn

b̄
), Ξ(qn

b̄
) = Ψ(qn

b̄
)R(qn

b̄
), and Ψ�(qn

b̂
)Ψ(qn

b̄
) =

I3δη̌ − S(δε̌) have been used to find the useful identities

(Ψ�(qnb̄ ) +Ψ�(qn
b̂
))Ξ(qnb̄ ) = D(ẑ, t)R(qnb̄ )

D(ẑ, t) = (1 + δη̌)I3 − S(δε̌)

D1(ẑ, t) =
1

1 + δη̌
D(ẑ, t) = I3 − S(δǔ),

where δǔ = δε̌/(1 + δη̌). Gx(ẑ, t) and Hx(ẑ, t) are found to be

Gx(ẑ, t) =

�−1
4D1(ẑ, t)R(qn

b̄
) 04×3

03 I3

�

Hx(ẑ, t) =



2R�(qn

b̄
)S(yn1 )D

�(ẑ, t) 03
...

...
2R�(qn

b̄
)S(ynM )D�(ẑ, t) 03




and S(yb̄i ) = S(R�(qn
b̄
)yni ) = R�(qn

b̄
)S(yni )R(qn

b̄
) has been used to find Hx(ẑ, t).

K(t) introduced in (4.14a) is found by (1.3b)–(1.3c) inserted Fx(ẑ, t), Hx(ẑ, t),
Gx(ẑ, t), Q(t) = E(�z��z ), and R(t) = E(�y��y ), where P (t) is the covariance
estimate with initial value P (0) = P0.

4.4 Stability Analysis
Lemma 4.4.1. The pair (Fx(ẑ, t), Hx(ẑ, t)) is uniformly completely observable
(UCO) and (Fx(ẑ, t), Gx(ẑ, t)) is uniformly completely controllable (UCC).
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Proof. The proof is stated in Appendix 4.D

Proposition 4.4.1. Consider the estimator defined by (4.7), (4.14), and (4.20), and
assume �z = 0, �y = 0. The equilibrium points R(qnb ) − R̄n

b̄
= 03, bb − b̄b̄ = 0,

and δx = 0 of the cascaded error dynamics Σ̄–Σ̂M is GES for positive definite
symmetric matrices P0, Q, and R. Consequently, the equilibrium point z̃ = 0 is
GES.

Proof. The proof is stated in Appendix 4.E

4.5 Results and Discussion
Both the MXKF and MEKF discussed hereafter are implemented as discrete time
KFs. The discrete-time implementation of the MXKF is given in Table 4.1. c2d()

Table 4.1: Discrete implementation of the MXKF. a−k and a+k denote a priori and a poste-
riori values of a at time instance tk, respectively.

Initialisation
Determine R̄n

b̄
(0), qn

b̂
(0), b̄b̄(0), b̂b̂(0), P0

0 < � � 1

Measurement update
ẑ− ← z̄ if qn

b̂
−�qn

b̄
< �

ẑ+k = ẑ−k + M̄(tk, ẑ
−
k )Kk(yk − ŷk)

ŷk = hz(z̄k) +Hz(tk)(ẑ
−
k − z̄k))

P+
k = (I6 −KkHx,k)P

−
k (I6 −KkHx,k)

� +KkRK�
k

Kk = P−
k H�

x,k(Hx,kP
−
k H�

x,k +R)−1

Hx,k =



2R�(qn

b̄,k
)S(yn1,k)D

�(tk, ẑ
−
k ) 03

...
...

2R�(qn
b̄,k

)S(yn
M̄,k

)D�(tk, ẑ
−
k ) 03




Time update
ẑ−k+1 = ẑ+k +Δtk(fz(tk, z̄k) + Fz(tk)(ẑ

+
k − z̄k))

P−
k+1 = Φ(tk)P

+
k Φ�(tk) + Γ(tk)QΓ�(tk)

[Φ(tk),Γ(tk)] = c2d(Fx(tk, ẑ
+
k ), Gx(tk, ẑ

+
k ),Δtk)
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Table 4.2: The number of scalar addition (A.), multiplication (M.), division (D.) subtrac-
tion (S.), and square root (Sq.) operations performed in one time and measurement update
of each estimator in their respective implementations. Available normalized measurements
have been assumed here.

A.+S. M. D. Sq.
NLO 149 220 12 4
MXKF2 1998 2542 38 2
MEKF2 1736 2204 30 2
NLO+MXKF2 2147 2762 50 6

is a function that finds the discretized system matrices Φ(tk) and Γ(tk) from
the continuous system matrices Fx(tk, ẑ

+
k ) and Gx(tk, ẑ

+
k ) given the step length

Δtk = tk+1 − tk.

The small angle approximation commonly used in the development of the MEKF
is not used for the MXKF. Instead, the XKF method ensures that all linearization
errors vanish as the NLO converges, yielding a global stability result. However,
this also increases the computational burden of the algorithm, as Fx, Gx, and Hx

become more complex to compute and an NLO is needed. Table 4.2 shows an in-
crease of approximately 25% in computational complexity when using the MXKF
linearized about the estimate from an NLO relative to the MEKF.

The linearization point provided by the NLO is used directly in the MXKF design.
Thus, the uncertainty of a noisy linearization point is neglected. If the noise on the
NLO estimate is large, it might be beneficial to account for the added uncertainty
of the noisy linearization point by scaling of Q and R or adding appropriate noise
terms in the model. This is an interesting topic in the design of XKFs generally,
but outside the scope of this thesis.

In the following comparison study, four estimators are included: an aggressively
tuned NLO (denoted NLO), a conservatively tuned NLO, an MXKF, and a stan-
dard MEKF using the MRP formulation. The aggressively tuned NLO serves as
a linearization point with fast convergence and the conservatively tuned NLO is
included to provide a fair comparison of steady-state performance.

Euler angle errors are used to calculate MAE values and display attitude error
trajectories. These have been found by extracting the Euler angles from (qn

b̌
)−1 ⊗

qnb , where qn
b̌

is a placeholder for the NLO, MXKF, and MEKF estimates.
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The simulated scenario is a rotating vehicle with no translative motion. Accelerom-
eter and magnetometer measurements, f b

nb,m and mb
m respectively, form vector

pairs with the NED counterparts

−gn =




0
0

−9.818


 , mn =



0.3197

0
0.6926


 ,

respectively. We define

yn1 � −gn

�gn�2
, yb1 �

f b
nb,m

�f b
nb,m�2

, yn2 � mn

�mn�2
, yb2 �

mb
m

�mb
m�2

which are related by yb1 = R�(qnb )y
n
1 + �1 and yb2 = R�(qnb )y

n
2 + �2. The noise

�1 = [�1x, �1y, �1z]
� and �2 = [�2x, �2y, �2z]

� consist of white noise terms �1w ∼
N (0,σ2

1) and �2w ∼ N (0,σ2
2) for w ∈ {x, y, z}.

100 different 600 seconds long scenarios have been simulated. The same attitude
trajectory was used in all simulations, which was generated by

ωb
nb(t) =



−0.1 cos(0.15t)
0.1 sin(0.10t)
−0.1 cos(0.05t)


 , qnb (0) =




1
0
0
0


 .

Furthermore,

bbars =




0.012
−0.021
0.014


 rad

s
, b̄b̄ars(0) = b̂b̂ars(0) =



0
0
0


 rad

s
,

σ1 = 2 · 10−3, σ2 = 4 · 10−3, and σω = 10−3rad/s. The NLO tuning parameters
were set to Kp = 10, kI = 0.02, and σ = 1 for the aggressively tuned one and
Kp = 1.5, kI = 0.02, and σ = 1 for the conservatively tuned one. For the MXKF
and MEKF, the true values of σ1, σ2, and σω were used in addition to σb = 10−4,
and the initial covariance matrix was P (0) = blockdiag(I3, I3 · 10−7), where
blockdiag(·) forms a block diagonal matrix of its inputs. The estimators were
given the same initial estimate of attitude and bias in each simulation, and the
initial attitude was randomly drawn from a uniform distribution between −180◦

and 180◦. Both the IMU and estimators were updated with 100Hz.
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Table 4.3: MAE values describing the steady-state performance of the estimators.

Roll (deg) Pitch (deg) Yaw (deg)
NLO 0.029 0.032 0.147
NLO 0.021 0.026 0.073
MXKF 0.007 0.007 0.021
MEKF 0.007 0.007 0.022

In Table 4.3 and 4.4, the MAE values representing the steady-state and transient
behaviors of the attitude estimators are shown, respectively. The steady-state MAE
values are calculated from the last 300 seconds of the attitude error trajectories,
whereas the transient MAE values are calculated from the first 200 seconds. In
Figure 4.3, the bias error trajectories for each estimator averaged over all scenarios
are shown.

The aggressively tuned NLO can be seen to achieve significantly improved tran-
sient performance relative to the conservatively tuned NLO without a similar de-
terioration of steady-state performance. The largest performance decrease can be
seen in yaw. This is because there is relatively little information about yaw in the
measurements as all of gn and most of mn are vertical components, and thus, noise
sensitivity increases. Still, the performance difference is small enough to not affect
the performance of the MXKF, which is apparent from the identical steady-state
MAE values of the MXKF and the MEKF. This makes the NLO of Grip et al. [52]
a suitable auxiliary estimator in the MXKF.

The improved transient performance of the aggressively tuned NLO is seen to
yield significantly better transient performance of the MXKF than of the MEKF.
Combined with the identical steady-state performance of the MXKF and MEKF,
this is an important result. It shows that the tuning of the MXKF w.r.t. transient
and steady-state performance can be decoupled; tune the NLO for fast convergence
and the linearized KF for steady-state performance.

The MXKF and MEKF inherit the near-optimality of the linearized KF, which
from Table 4.3 can be seen to yield significantly better steady-state performance
than the NLOs. Also, with the linearized KF, the reference vector measurements
are used directly and their noises are tuned for individually. The NLO, on the other
hand, calculates (4.7c) and does not offer as intuitive tuning w.r.t. measurement
noise.

The experiments were conducted in the MCLab at NTNU, which contains a wa-
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Figure 4.3: The 100 first seconds of the ARS bias estimation errors averaged over the 100
simulations.

Table 4.4: MAE values describing the transient performance of the estimators.

Roll (deg) Pitch (deg) Yaw (deg)
NLO 0.065 0.062 0.174
NLO 0.410 0.161 0.583
MXKF 0.065 0.051 0.323
MEKF 0.173 0.092 1.357

ter tank for experimental testing described in Section 3.1. The IMU used in the
experiments was an Xsens MTi-3, set up to deliver accelerometer, ARS, and mag-
netometer measurements at 25 Hz, the same rate with which the estimators were
updated. IMU calibration yielded the values of gn, mn, σ1, σ2, and σars used
in the simulations, which are also used here. The tuning of the estimators in the
experiments were identical to the tuning in the

The experimental data is primarily meant to verify that the estimators work in
practice, as seen in Figure 4.4–4.6, and not to provide a qualitative comparison of
the estimators. It is still interesting to see that the MAE values of the MXKF and
MEKF are lower than that of the NLOs, and that the MXKF does not seem to suffer
greatly from a less accurate linearization point. This confirms the conclusions
drawn from the simulations study.
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Figure 4.4: This figure shows the true and estimated attitude trajectories from Qualisys
(as "True") and NLO, MXKF, and MEKF, respectively.
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Figure 4.5: This figure shows the attitude error trajectories of the estimators, where the
Qualisys attitude trajectory was used as truth reference.
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Table 4.5: MAE values calculated from 50 seconds to the end of the experiments.

Roll (deg) Pitch (deg) Yaw (deg)
NLO 0.705 0.714 4.276
NLO 0.484 0.497 4.109
MXKF 0.311 0.407 3.023
MEKF 0.330 0.417 2.748
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Figure 4.6: The bias estimates from experimental data.

4.6 Conclusion and Future Work
In this chapter, the MXKF was developed and shown to be GES. Furthermore, it
was shown both in simulations and experimentally to have identical steady-state
performance as, and better transient performance than, the MEKF with identical
tuning. This is a significant result, as it is the first KF-based attitude and ARS
bias estimator using a minimal state representation with proven global stability
and MEKF-like performance.

This chapter aimed at answering the research question “Can the XKF method be
applied to attitude estimation to yield a filter with similar performance as the
MEKF, but with global stability?”. This chapter has positively shown that it can.

Further work should include developing an MXKF in which the resetting of the
state estimate is not needed. This may require using another state representation,
or simply a smarter proof of the MXKF developed here.





Appendix

4.A Proof of Lemma 4.3.1
In order to verify the mapping z̃ = M(z, ẑ)δx, we insert (4.4) in (4.5) twice to get
q̃ = qnb

� − qn
b̂
= qn

b̂
⊗ δq − qnb

� ⊗ (δq)−1. Further, we apply (2.6) twice to get

q̃ = qn
b̂
δη +Ψ(qn

b̂
)δε− qnb

�δη +Ψ(qnb
�)δε

(1 + δη)q̃ = (Ψ(qn
b̂
) +Ψ(qnb

�))δε

q̃ = (Ψ(qn
b̂
) +Ψ(qnb

�))δu

Noticing that q̃ = (Ψ(qn
b̂
+ qn

b̄
) + Ψ(qnb

� − qn
b̄
))δu verifies the mapping using

(4.17) and (4.19). From Proposition 4.2.1, we know that R(qnb ) − R(qn
b̄
) → 0,

which together with (4.2) means that qn
b̄
→ qnb

�. This proves that M̃(z, z̄) → 0
exponentially.

4.B Proof of Lemma 4.3.2

From δq = δq̌⊗ δq̄, we get δη = δη̄δη̌− δε̄�δε̌. From (4.2), we have that δη̄ ≥ 0,
while (4.20) ensures that δη̌ > �. Therefore, δη̄δη̌ > 0.

Using �δε̄�2 ≤ 1 and �δε̌�2 =
√
1− �2 ≤ 1−Δ(�), we show

δη ≥ −δε̄�δε̌

≥ −�δε̄�2�δε̌�2
≥ −

�
1− �2 ≥ −1 +Δ(�)

which concludes the proof.
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4.C Proof of Lemma 4.3.3
Differentiating (4.17) w.r.t. time yields

˙̃z =Ṁ(z̄, ẑ)δx+M(z̄, ẑ)δẋ+ ˙̃M(z, z̄, t)δx+ M̃(z, z̄)δẋ

δẋ =M †(z̄, ẑ)( ˙̃z − Ṁ(z̄, ẑ)δx− ˙̃M(z, z̄, t)δx− M̃(z, z̄)δẋ)

Defining M1 � M1(ẑ, t) = I3 +M †(z̄, ẑ)M̃(z, z̄) and collecting δẋ yields

δẋ =M−1
1 M †(z̄, ẑ)

�
˙̃z − Ṁ(z̄, ẑ)δx− ˙̃M(z, z̄, t)δx

�
. (4.24)

It is straight-forward to show that

det(M1) =
1 + δη + δη̄ + δη̌

2(1 + δη̌)
det

�
I3 +

S(δε+ δε̄+ δε̌))

(1 + δη + δη̄ + δη̌)

�
.

Since

• δη̌ > � > −1

• 1 + δη + δη̄ + δη̌ > �+Δ(�)

• x�(I3 +A)x = x�x > 0 ∀ x �= 0 for any skew-symmetric matrix A,

then det(M1) �= 0 which means that M1 is invertible. By the Sherman-Morrison-
Woodbury formula [75], we have that

M−1
1 = I3 −M2

M2 � M2(ẑ, t) = (I3 +M †(z̄, ẑ)M̃(z, z̄))−1M †(z̄, ẑ)M̃(z, z̄)

Now, inserting (4.22) and expanding M−1
1 in (4.24), it can be rewritten as

δẋ =(I3 −M2)
�
(Fx(ẑ, t)−K(t)Hx(ẑ, t))δx+ χx(ẑ, t)

+Gx(ẑ, t)�z −K(t)�y − ˙̃M(z, z̄, t)δx
�

δẋ =(Fx(ẑ, t)−K(t)Hx(ẑ, t))δx+ χx(ẑ, t)

+Gx(ẑ, t)�z −K(t)�y + ζ(ẑ, δx, t)
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where ζ(ẑ, δx, t) � −M2((Fx(ẑ, t)−K(t)Hx(ẑ, t))δx+χx(ẑ, t)+Gx(ẑ, t)�z −
K(t)�y)−M−1

1
˙̃M(z, z̄, t)δx. Using that Ψ�(qn

b̄
)Ψ(qn

b̂
) = I3δη̌ − S(δε̌), we find

(M�(z̄, ẑ)M(z̄, ẑ))−1 =

� 1
2(1+δη̌)I3 0

0 I3

�
(4.25)

and we see that M †(z̄, ẑ) exists whenever δη̌ = qn
b̂
�qn

b̄
�= −1, i.e., when qn

b̂
�=

−qn
b̄

, which is guaranteed by Lemma 4.3.2.

Due to the boundedness of z̄ and qn
b̂

and the smoothness of fz , hz , Gz , and M̃ ,
there exist constants kζ , kχ > 0 such that χx(ẑ, t) < kχ||z − z̄�22, ζ(ẑ, δx, t) <
kζ�z − z̄�22.

4.D Proof of Lemma 4.4.1
First, we show UCO of the pair (Fx(ẑ, t), Hx(ẑ, t)). Generally, in order to show
UCO of the time-varying pair (A(t), D(t)), we form the observability co-distribution

dO(t) =




dO0(t)
...

dON (t)


 (4.26a)

dO0(t) = D(t) (4.26b)

dOn(t) = dȮn−1(t) + dO(t)A(t), n = (1, ..., N), (4.26c)

where N is the dimension of the state space, i.e. A(t) ∈ RN×N . From Theorem
6.O12 of Chen [76], we know that (A(t), D(t)) is UCO if and only if rank(O) =
N .

Now, since both Hx(ẑ, t) and Fx(ẑ, t) are continuously differentiable, dO can be
formed. It suffices to examine only

�
dO0(t)
dO1(t)

�
=

�
O1 03M×3

O2 O3

�
,

because if it has full column rank, dO must have full rank. Here, where M is the
number of reference vector measurements. Furthermore, as proven by Meyer [77],
it suffices to prove full rank of O1 and O3, for if they both have full rank, the whole



66 The Multiplicative eXogenous Kalman Filter for Attitude Estimation

block triangular matrix has full rank. They are found to be

O1 = 2(1 + δη̌)R�(qnb̄ )S1:MD�
1 (ẑ, t)

O3 = −1 + δη̌

2
R�(qnb̄ )S1:MD�

1 (ẑ, t)D1(ẑ, t)R(qnb̄ ),

where

S1:M =



S(yn1 )

...
S(ynM )


 .

Through the well known identity

rank(O) = rank(O�O)

for any matrix O, we examine the ranks of O1 and O3:

rank(O1) =rank
�
− 4(1 + δη̌)2D1(ẑ, t)S

�
1:MS1:MD�

1 (ẑ, t)
�

rank(O3) =rank
�
− (1 + δη̌)2

4
R�(qnb̄ )D

�
1 (ẑ, t)D1(ẑ, t)

S�
1:MS1:MD�

1 (ẑ, t)D1(ẑ, t)R(qnb̄ )
�
.

The determinant of D1(ẑ, t) is det(D1(ẑ, t)) = 1 + δǔ�δǔ > 0, meaning that
D1(ẑ, t) always has full rank. Under Assumption 4.1.1, S�

1:MS1:M =
�M

j=1 S
2(ynj )

also has full rank. Since the product of square full rank matrices has full rank
and δη̌ > � as guaranteed by (4.20), we know that both O1 and O3 has full
rank. Therefore, we know that observability co-distribution as full rank and thus,
(Fx(ẑ, t), Hx(ẑ, t)) is UCO.

In order to show that the time-varying pair (A(t), G(t)) is UCC, we show full rank
of the controllability co-distribution

dC(t) =
�
dC0(t) · · · dCN (t)

�
(4.27a)

dC0(t) = G(t) (4.27b)

dCn(t) = dĊn−1(t) +A(t)dCn−1(t) (4.27c)

Since Fx(ẑ, t) and Gx(ẑ, t) are continuously differentiable and rank(Gx(ẑ, t)) =
6, we have shown that (Fx(ẑ, t), Gx(ẑ, t)) is UCC.
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4.E Proof of Proposition 4.4.1
First we examine the case when no resets of the form (4.20) occur. Under Propo-
sition 4.2.1, Lemma 4.4.1, (4.23), and choosing Q, R, and P (0) to be symmetric
and positive definite, Theorem 2.1 of Johansen and Fossen [8] proves that the ori-
gin R(qnb ) − Rn

b̄
= 0, bb − b̄b̄ = 0, and δx = 0 of the cascaded error dynamics

Σ1–Σ2 is GES.

If resets occur, it is sufficient to prove that there will only be a finite number of
them, after the last of which the above result will be true.

There exists a threshold ξ1 such that when δū < ξ1, there exists a ξ2(�δū�2)
such that if �δu�2 < ξ2(�δū�2), no resets can occur. That such a threshold exists
is apparent when �δū�2 = 0 ⇒ δu = δǔ, and �δu�22 ≥ (1 − �)/(1 + �) in
order for a reset to occur. Therefore, ξ2(0) = (1 − �)/(1 + �) and ξ2(�δū�2) >
0 ∀ �δū�2 < ξ1. Let resets occur at times tk, k = 0, 1, ... where k = 0 is the
index of initialization and k > 0 are the indices of resets. By Theorem 4.14 in
[6], we have between resets for the GES error dynamics Σ1–Σ2 that c1�δx(t)�22 ≤
V (δx(t)) ≤ c2�δx(t)�22 and V̇ (δx(t), t) ≤ −c3�δx(t)�22. From the latter and
−V (δx(t))/c2 ≥ −�δx(t)�22 we find

�
dV (δx(t))

V (δx(t))
≤

�
−c3
c2

dt

V (δx(t)) ≤ V (δx(tk))e
− c3

c2
(t−tk)

�δx(t)�2 ≤ c�δx(tk)�2e−
c3
2c2

(t−tk)

where c =
�

c2/c1. Since c1 and c2 always can be chosen strictly positive and
bounded, respectively, c always exists and is bounded. In order to prove that
the number of resets is finite, we explore the claim about an infinite number of
resets. Since �δx̄�2 is exponentially decaying, there must then come a k such
that �δx̄(tk)�2 = �δx(tk)�2 ≤ ξ2(�δx̄(t)�2)/c. Since c ≥ 1, this means that
�δx(tk)�2 ≤ ξ2(�δx̄(t)�2), and clearly, the last reset has occured. The claim is
therefore false, and only a finite number of resets can occur. Consequently, δx → 0
exponentially.

Since �δu�2 = 0 ⇒ δq = [1, 0, 0, 0]� and qn
b̂
= qnb

� ⊗ (δq)−1, we know that
�δu�2 → 0 implies qn

b̂
→ qnb

�, and consequently, that �δx�2 → 0 implies �z̃�2 →
0. This concludes the proof.





Chapter 5

Position, Velocity, and Wave Speed
Estimation Using a Long Baseline
Network

This chapter is based on the work of Stovner et al. [68]. Here, a 3SF for position,
velocity, and wave speed estimation using an LBL network is developed. The AT
of the 3SF is an adaptation of the explicit formulas of Bancroft [57] and Chaffee
and Abel [58] for an additive error term to the multiplicative error factor that is the
unknown wave speed factor. This estimation problem was studied by Batista [63],
where a different solution using state augmentation to handle the nonlinearities was
used. Contrary to Stovner et al. [68], range-rate measurements are not considered
in this chapter.

The main contributions of this chapter are the transformation of the nonlinear mea-
surement equation with a multiplicative bias term to a linear measurement model
and the development of a filter with GES error dynamics. This is the work done
in Stovner et al. [68]. The low disparity between transponder positions along the
vertical axis typically present in LBL networks yield low accuracy in that dimen-
sion. Therefore, a slightly altered filter is presented in this chapter as well, where
depth measurements are used in the AT to improve accuracy. This also lowers the
numbers of transponders required from 4 to 3. The new filter is additionally shown
to perform better than that of Stovner et al. [68].

The structure of the 3SF developed in this chapter is seen in Figure 5.1. Trough
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LTV KF
(Stage 2)

Linearized
KF

(Stage 3)

χ̄

χ̂

AT
(Stage 1)

Y,C(t)

Y �, C �(t)

¯
χ

annb

y

Figure 5.1: Block diagram showing the 3SF.

Section 5.1–5.3, the three stages are derived. First, the state and relevant measure-
ment equations are defined.

The true state and its second and third stage estimates are given by

χ =



pnnb
β
vnnb


 , χ̄ =



p̄nnb
β̄
v̄nnb


 , χ̂ =



p̂nnb
β̂
v̂nnb


 , (5.1)

respectively, where β accounts for the uncertain wave speed.,

Denote the true range of the vehicle relative to transponder i by

ρi = �pnnb − pnnti�2. (5.2)

Now, the pseudo-range measurements from transponder i is modeled by

yi(t) = hy,i(χ, t) =
1√
β
(ρi + �y,i(t)) , (5.3)

where �y,i ∼ N (0,σ2
y). This is concatenated for M transponders as

y(t) = h(χ, t), (5.4)

where

y(t) =



y1(t)

...
yM (t)


 , h(χ) =



h1(χ, t)

...
hM (χ, t)


 , �y(t) =



�y,1(t)

...
�y,M (t)



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Notice that 1/
√
β has taken the place of the wave speed error factor α in (2.18).

This is done to facilitate the ATs in Section 5.1.

LBL transponders that are mounted to the sea floor have relatively little disparity
along the z-axis, making the z-component of the NED position hard to estimate.
Therefore, a depth measurement will estimate the vertical component while the
LBL measurements are used solely for estimating the horizontal position. We
denote the horizontal position by

pnnb,xy =

�
pnnb,x
pnnb,y

�
, (5.5)

where pnnb,x and pnnb,y are the north and east components, and the vertical position
pnnb,z . Furthermore, we denote the partial state vector

s2 =

�
pnnb,xy
β

�
.

In the new AT of Section 5.1.2, an estimate
¯
s2 is calculated from the LBL and

depth measurements. Along with the depth measurement dm, this constitutes a
linearization point

¯
χ about which the nonlinear measurement model is linearized.

The new second stage KF is therefore a linearized KF, only differing from the third
stage KF in the point of linearization.

The depth measurement dm is modeled by (2.21).

5.1 Stage 1: Algebraic Transformation

5.1.1 AT1

The AT described here is taken from [68] and is denoted AT1. Constructing the
measurement

βy2i = �pnnb�22 − 2pnnti
�pnnb + �pnnti�22 + 2ρi�y,i + �2y,i

and neglecting the noise terms, allows us to write

βy2i = r − 2pnnti
�pnnb + �pnnti�2, (5.6)

where r = pnnb
�pnnb. Now, a linear model can either be achieved through finding

and inputting r or through subtraction of one constructed measurement from an-
other. The latter method can be used if 5 or more transponders are available, while
the former must be used when there are 4 transponders.
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4 transponders

We define a partial state vector and a selection matrix

s1 =

�
pn

β

�
, M =

�
I3 03×1

01×3 0

�

such that r can be expressed in terms of s1 as

r = s�1 Ms1, (5.7)

We notice that (5.6) and (5.7) adds up to 5 equations for the 5 unknowns pn, β,
and r. Now, we show that r can be found explicitly. Concatenating (5.6) yields

Cpβs1 − rlN = z, (5.8)

where

Cpβ =



2pnnt1

� y21
...

...
2pnntM

� y2N


 , z =



�pnnt1�22

...
�pnntM �22


 . (5.9)

If Cpβ is invertible, we can find

s1 = r C−1
pβ lN� �� �

c

+C−1
pβ z

� �� �
w

= rc+ w. (5.10)

Inserting (5.10) into (5.7) yields the second order equation

r = (rc+ w)�M(rc+ w) = r2c�Mc+ 2rc�Mw + w�Mw

r2c�Mc+ r (2c�Mw − 1)� �� �
h

+ w�Mw = 0.

This equation has two solutions

r1, r2 =
−h±

√
h2 − 4c�Mc · w�Mw

2c�Mc
, (5.11)

where r1 denotes the correct and r2 denotes the wrong one. In order to solve this
ambiguity, one might often use circumstantial knowledge, e.g. such as that s1,
when r2 is inserted into (5.10), has a position that is below the sea floor or a β that
greatly differs from 1.
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Assuming r1 is found, the following linear measurement model has been achieved

Y = C(t)χ, (5.12)

where

Y = z + r1lN , C(t) =
�
Cpβ(t) 0N×3

�
.

Assumption 5.1.1. When N = 4, the ambiguity between r1 and r2 can be resolved
and the correct one found.

Under Assumption 5.1.1, the measurement equation (5.12) is valid.

5 or more transponders

With five or more transponders, r can be eliminated by subtracting one constructed
measurement (5.6) from another. We are now left with at least 4 linear equations
for the 4 unknowns pn and β. We choose to use the N th measurement for subtrac-
tion for presentation purposes and without loss of generality.

β(y2i − y2N ) =2pntitN
�pnnb + �pnnti�22 − �pnntN �

2
2 (5.13)

+ 2ρi�y,i + �2y,i − 2ρN �y,N − �2y,N .

Concatenating and rearranging (5.13) yields

Y � = C �χ, (5.14)

where

Y � =




�pnnt1�22 − �pnntN �22
...

�pnntN−1
�22 − �pnntN �22


 , C �(t) =




−pnt1tN y21(t)− y2M (t)
...

...
−pntN−1tN

y2N−1(t)− y2N (t)


 .

5.1.2 AT2

The AT developed here, denoted AT2, is not entirely similar to those of Section
5.1.1. Instead, the techniques of the Section 5.1.1 are used to gain an estimate of
the state, about which a linearization is done. Constructing the measurement

βy2i = �pnnb,xy�22 − 2pnnti,xy
�pnnb,xy + �pnnti,xy�22 + �pnnb,z − pnnti,z�22
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and inserting dm for pnnb,z allows us to write

Dis2 = r + zi, (5.15)

where r = �pnnb,xy�22 and

Di =
�
2pnnti,xy

� y2i
�
, zi = �pnnti,xy�22 + �pnnb,z − pnnti,z�22.

For N = 3, we concatenate (5.15) as

Ds2 = rlN + z,

where

D =



D1

...
DN


 , z =



z1
...
zN


 ,

and find

s2 = D†lNr +D†z = cr + w.

Now, we assumed that we can find the correct solution r1, which yields the solution

¯
s2 =

�
¯
pnnb,xy

¯
β

�
= cr1 + w. (5.16)

For N ≥ 4, we find

¯
s2 = D�†z�, (5.17)

where

D� =




D1 −DN
...

DN−1 −DN


 , z� =




z1 − zN
...

zN−1 − zN


 .

From either (5.16) or (5.17), we find the linearization point

¯
χ =



¯
pnnb,xy
dm

¯
β

03×1


 .
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The linearization is done by the Taylor expansion

h(χ, t) = h(
¯
χ, t) +H(

¯
χ)(χ−

¯
χ) + ϕ(χ−

¯
χ, t), (5.18)

where ϕ(χ−
¯
χ, t) contains all higher order terms of the linearization and

H(
¯
χ) =

dh(χ)
dχ

����χ=
¯
χ
=

�
Hpβ(χ̄) 0M×3

�
,

where

Hpβ(χ) =




1√
β

(pnnb−pnnt1
)�

�pnnb−pnnt1
�2 −�pnnb−pnnt1

�2
2
√
β
3

...
...

1√
β

(pnnb−pnntN
)�

�pnnb−pnntN
�2 −�pnnb−pnntN

�2
2
√
β
3



.

Note that ϕ = 0 when
¯
χ = χ.

5.2 Stage 2: Linear Time-Varying Kalman Filter
Here, second stage KFs using the linear measurement models achieved in Section
5.1 are developed.

5.2.1 LTV KF1

Inserting (2.15) into (2.12) and modeling the wave speed error factor β as a Wiener
process yields the following dynamics

ṗnnb = vnnb

β̇ = εβ(t)

v̇nnb = annb + εacc(t),

where the attitude Rn
b (t) is assumed to be a known input signal. The dynamics can

be written in compact form as

χ̇ = Aχ+Bu(t) +G�χ(t), (5.19)

where

u(t) = annb , �χ(t) =

�
�β(t)
�acc(t)

�
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A =



03×3 03×1 I3
01×3 0 01×3

03×3 03×1 03×3


 , B =



03×3

01×3

I3


 , G =



03×1 03×3

1 01×3

03×1 I3


 .

Now, an LTV KF using this dynamic model with measurement model (5.12) or
(5.14) can be employed

˙̄χ1 = Aχ̄1 +B(t)u(t) + K̄1(t)(Ỳ − C̀(t)χ̄1), (5.20)

where χ̄1 is the state estimate, Ỳ and C̀(t) are placeholders for either Y and C(t)

or Y � and C �(t), respectively. Furthermore, K̄1(t) = P̄1(t)C̀
�(t) `̄R−1 where P̄1(t)

is the covariance estimate and `̄R = {R̄, R̄�}. The covariance estimate is updated
by (1.3c) inserted A, C̀(t), G, `̄R, Q, and with initial value P̄1(0) = P̄10. Note
that K̄1(t) depends on C̀(t) and `̄R, and is therefore different for the two ATs. The
process covariance matrix Q is chosen as

Q = E(�χ(t)��χ(t)) =
�
σ2
β 01×3

01×3 σ2
accI3

�
. (5.21)

The measurement covariance matrices R̄ and R̄� for (5.12) and (5.14), respectively,
are provided in Appendix 5.A.

Define ˜̄χ1 = χ − χ̄1. Subtracting (5.20) from (5.19) yields the error dynamics in
the noise-free case

Σ̄1 :
˙̄̃χ1 = (A− K̄1(t)C̀(t))˜̄χ1. (5.22)

5.2.2 LTV KF2

Using the linearized measurement model (5.18) allows us to develop the second
stage KF

˙̄χ2 = Aχ̄2 +Bu(t) + K̄2(t)(y − h(
¯
χ)−H(

¯
χ)(χ̄2 −

¯
χ),

where χ̄2 denotes the state estimate, K̄2(t) = P̄2(t)H
�(

¯
χ)R−1 and P̄2(t) is the

covariance estimate. The covariance estimate is updated by (1.3c) inserted A,
H�(

¯
χ), G, R, and Q, and with initial value P̄χ2(0) = P̄χ20. The measurement

covariance matrix is R = INσ2
y .

Define ˜̄χ2 � χ− χ̄2. Now, the error dynamics is found to be

Σ̄2 :
˙̄̃χ2 = (A− K̄2(t)H(

¯
χ))˜̄χ2 + K̄1(t)ϕ(χ−

¯
χ, t). (5.23)
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5.3 Stage 3: Linearized Kalman Filter
The third stage linearized KF is identical to that of Section 5.2.2, except for dif-
ferent linearization points. We denote the third stage estimate χ̂, and using the
linearization point χ̄ ∈ {χ̄1, χ̄2} we find the estimator

˙̂χ = Aχ̂+B(t)u(t) + K̂(t)(y(t)− h(χ̄)−H(χ̄)(χ̂− χ̄), (5.24)

where K̂(t) = P̂ (t)H�(χ̄)R−1 and P̂ (t) is the covariance estimate. The covari-
ance estimate is updated by (1.3c) inserted A, H�(χ̄), G, R, Q, and with initial
value P̂ (0) = P̂0.

Defining χ̃ = χ− χ̂ and subtracting (5.24) from (5.19) yields the error dynamics

Σ̂ : ˙̃χ = (A− K̂(t)H(χ̄)) + K̂(t)ϕ(χ− χ̄, t). (5.25)

5.4 Stability Analysis
Assumption 5.4.1. There are N ≥ 3 non-collinear transponders.

Assumption 5.4.2. There are N ≥ 4 non-coplanar transponders.

Assumption 5.4.3. There are N ≥ 5 non-coplanar transponders.

Lemma 5.4.1. The matrix pair (A,G) is UCC, (A,H(χ̌)) is UCO under Assump-
tion 5.4.1 for χ̌ ∈ {

¯
χ, χ̄1, χ̄2}, (A,C(t)) is UCO under Assumption 5.4.2, and

(A,C �(t)) is UCO under Assumption 5.4.3.

Proof. The proof is given in Appendix 5.B.

Proposition 5.4.1. Suppose �χ = 0 and �y = 0, and Q, P̄10, P̄20, R, R̄, and R̄�

are chosen positive definite.

1. The origin ˜̄χ1 = 0 of the error dynamics Σ̄1 is GES.

2. The origin ˜̄χ2 = 0 of the error dynamics Σ̄2 is GES.

Proof. The proof is given in Appendix 5.C

Proposition 5.4.2. Suppose �χ = 0 and �y = 0 and Q, P̄10, P̄20, P̂0, R, R̄, and
R̄� are chosen positive definite.
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1. The origin ˜̄χ1 = 0 and χ̃ = 0 of the cascaded error dynamics Σ̄1–Σ̂ is GES.

2. The origin ˜̄χ2 = 0 and χ̃ = 0 of the cascaded error dynamics Σ̄2–Σ̂ is GES.

Proof. Both proofs follow directly from Johansen and Fossen [8].

5.5 Results
Here, results is shown of a simulation study with 50 simulations of 500 seconds
each with different randomly generated noise about the same trajectory. In order
to compare the filter behavior at different distances from the transponders, three
different transponder positions are used. The transponders are located at

pnnt1 =



10k
10k
0


 , pnnt2 =




10k
−10k
−5


 , pnnt3 =



−10k
10k
−5


 , pnnt4 =



−10k
−10k
0


 ,

where k = {1, 10, 100} which gives the different transponder positions. The
transceiver is located at the origin of the body-fixed coordinate frame. The stan-
dard deviation of the range measurement noise term is assumed to increase with
k, i.e., σy = 0.2m, σy = 1m, and σy = 10m are used for k = 1, k = 10, and
k = 100, respectively. The standard deviation of the acceleration noise term is
σacc = 0.01m/s2 in all three cases.

The simulated trajectory is identical for all simulations, where the vehicle descends
before following a lawn-mowing pattern, the first 300 seconds of which can be seen
in Figure 5.2. The initial state of the vehicle was

pnnb =



0
0
0


 , vnnb =



0
0
0


 ,

the true wave speed was 1500m/s, and the guessed wave speed was 1450m/s.
This yields a wave speed error factor of β = 1.0702.

The filters of Section 5.1.1 and 5.1.2 are denoted LTV KF1 and LTV KF2, respec-
tively. Similarly, the linearized filters relying on the estimates of LTV KF1 and
LTV KF2 as inputs are denoted Lin KF1 and Lin KF2. In addition to these fil-
ters, a standard EKF is used as a benchmark. All filters are tuned identically, with
σβ = 10−3, σd = 0.1, and the true values of σy and σacc. The initial covariance
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Figure 5.2: The first 300 seconds of the simulated trajectory is shown here for presen-
tation purposes. In the last 200 seconds of the simulation, the vehicle continues straight.
Furthermore, k = 10 was used.

matrix estimate of all matrices were P0 = diag(1, 1, 1, 0.01, 0.1, 0.1, 0.1). The
initial position estimate for all filters at each simulation is uniformly drawn from
the interval (−10, 10)m for each of the tree axes. The initial velocity estimate is
zero, and the initial wave speed error factor is naturally chosen as 1.

The range measurement noise models for the different k-values attempt to model
an uncertainty in the range measurements that is increasing with distance. How-
ever, it is not claimed that the chosen model is realistic for varying distances.
Therefore, the simulation study is not suited to describe a filter’s performance at
varying distances. Rather, the different filters’ performance should be compared
for the same values of k.

From Table 5.1, we can immediately conclude that using depth measurements in
the AT is beneficial from the performances of LTV KF1 and LTV KF2. The latter
consistently outperforms the former in horizontal MAE in all three scenarios. The
reason for this seems to be the large errors induced by using the range measure-
ments for estimating the vertical position estimation as well as the horizontal. The
depth measurement corrects for this in the state estimate of LTV KF1, but does
not prevent it from deteriorating the AT. This is clearly seen in Figure 5.3, where a
failure of convergence of the wave speed error factor is caused by the detrimental
effect that large noise terms has on the calculation of r1 in (5.11).

Aiding the AT with a depth measurement can also be seen to provide a position
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Table 5.1: Horizontal MAE values in meters from 50 simulations with 3 transponders
except LTV KF1 that used 4. EKF� shows the lowest MAE in the 50 simulations.

k = 1 k = 10 k = 100
Estimator XY Z XY Z XY Z
LTV KF1 0.652 0.019 3.713 0.019 12.455 0.019
LTV KF2 0.496 0.019 0.441 0.019 1.807 0.019
Lin KF1 0.305 0.019 0.456 0.019 2.965 0.019
Lin KF2 0.304 0.019 0.434 0.019 1.798 0.019

EKF 0.911 0.028 0.550 0.028 1.884 0.028
EKF� 0.359 0.024 0.453 0.024 1.518 0.024

estimate that is sufficiently accurate to use as an input to a linearized KF, which is
the LTV KF2. This is apparent from the similar performance between it and the
two third stage filters Lin KF1 and Lin KF2. The implementation of LTV KF2 as a
linearized KF instead of using a linear transformed model, makes the comparison
with LTV KF1 not straight-forward. However, it can safely be concluded that
implementing LTV KF1 as a linearized KF would not yield the same accuracy,
due to the high MAE of Lin KF1 when k = 100.

Interestingly, the high performance of LTV KF2 opens the possibility for not im-
plementing a third stage filter, thereby cutting the computational costs in half. This
would make for a filter with the same computational burden as an EKF, but with a
global stability result. Furthermore, Table 5.1 suggests that it would not come at a
great performance cost either, as it seems to outperform the EKF in every simula-
tion. This is, however, mostly due to the faster convergence of LTV KF2 than that
of the EKF. Here, the EKF has been tuned identically as the other filters, which
may be far from optimal. However, faster convergence is a significant result in
itself. This simulations study does not give evidence that the the steady state be-
havior of LTV KF2, Lin KF1, or Lin KF2 is any better than that of the EKF. This
is exemplified by the EKF’s lowest MAE value of all the 50 simulations shown in
the bottom row, where the convergence presumably was approximately as fast as
the convergence of the other ones.

5.6 Conclusion and Further Work
In this chapter, 3SFs for GES estimation of position, velocity, and the wave speed
was developed, and shown in a simulation study to yield similar performance as
an EKF. Moreover, it was shown that extending the work of Stovner et al. [68]
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Figure 5.3: Examples of the wave speed error factor estimation in one of the 50 simu-
lations with the three different transponder positions. The red line marks the true wave
speed, while the blue, green, pink, black, and cyan lines represent the LTV KF1, LTV
KF2, Lin KF1, Lin KF1, and EKF estimates, respectively.
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by aiding the AT with a depth measurement yielded a significant performance im-
provement. A result of this was that with only a minor performance cost, the third
stage filter could be excluded, thus lowering the computational burden by 50%.
This gives a filter with approximately the same computational load and estimation
accuracy as an EKF, but with the benefits of faster convergence and proven global
stability.

This chapter aimed at answering the research question: “Can the XKF method
be applied to position and wave speed estimation using an LBL network in order
to improve performance w.r.t. stability and transient behavior, while maintaining
the high accuracy of, the EKF?”. The simulation study conducted in this chapter
suggests that it can, even at the same computational cost. This motivates further
research, which should include:

• a simulation study with more realistic noise models

• verifying the results experimentally in a pool where the wave speed can be
assumed to be homogeneous and accurately estimated/measured a priori

• verifying the results experimentally in the sea where spatially varying wave
speeds must be assumed, especially at great distances, and effects like bend-
ing are present. Also, it can be looked into whether wave speed estimation
is helpful or possibly harmful in the presence of these phenomena.



Appendix

5.A Covariance of Constructed Measurements
The algebraically transformed measurements can be described as

y2i =
1

β
(ρ2i + 2ρi�y,i + �2y,i)

y2i − y2M =
1

β
(ρ2i + 2ρi�y,i + �2y,i − ρ2M − 2ρM �y,M − �2y,M )

from which the measurement covariance matrices R̄ and R̄� can be found with
elements

Rii =4ρ2iσ
2
y + 2σ4

y

Rij =0, i �= j

R�
ii =4(ρ2i + ρ2M )σ2

y + 4σ4
y

R�
ij =4ρ2Mσ2

y + 2σ4
y , i �= j.

For the unknown value ρi, yi is used.

5.B Proof of Lemma 5.4.1
Let D(t) ∈ {C(t), C �(t), H(χ)} be a placeholder matrix, and note its general
structure D(t) = [Dy(t), Dβ(t),0], where 0 is a matrix of zeros with appropriate
dimensions. Now, we form the partial observability co-distribution (4.26)

dOp(t) =

�
dO0(t)
dO1(t)

�
=

�
Dy(t) Dβ(t) 0
� � Dy(t)

�
.

Theorem 4.2 of Meyer [77] proves that dOp(t) has full rank if [Dy(t), Dβ(t)] and
Dy(t) have full rank. This is guaranteed under Assumption 5.4.1–5.4.3, and thus,
the systems are UCO.

83
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In order to show that (A,G) is UCC, we form the partial controllability co-distribution
(4.27)

dCp =
�
dC0 dC1

�
=



03×1 03×3 03×1 I3
1 01×3 0 01×3

03×1 I3 03×1 01×3


 .

Since rank(dCp) = 7, the controllability co-distribution has full rank, which con-
cludes the proof.

5.C Proof of Proposition 5.4.1
Neglecting noise, we have that

¯
χ = χ, and consequently, that ϕ = 0. Now,

Kalman and Bucy [5] proves that the origins ˜̄χ1 = 0 and ˜̄χ2 = 0 of the error
dynamics Σ̄1 and Σ̄2 are GES, respectively.



Chapter 6

Position Estimation Using Inverted
Short Baseline Network

This chapter is based on Stovner, Johansen, and Schjølberg [11, 67] and considers
the estimation of the position and velocity of a vehicle using an iSBL hydroacous-
tic sensor network and a single transponder in the vehicle’s surroundings. The
hydroacoustic set-up can be seen in Figure 2.5 with N = 1 transponder. Two
classes of filters are developed, differing in which coordinate frame the state is
expressed, i.e. the NED or the body-fixed frame. The development of these filters,
the comparison study between them, and the analysis of their stability properties
are the main contributions of this chapter.

Figure 6.1 shows the structure of the two classes of filters developed in this chapter.
We see that both 3SFs rely on input from an attitude estimator. The estimator
(4.7) is used in this chapter, which uses ARS, accelerometer, and magnetometer
measurements to find the attitude estimate ž = (Rn

b̌
, b̌b̌ars). Extending this notation,

z̃ = (Rn
b − Rn

b̌
, bbars − b̌b̌ars) denotes the estimation error and ż = (Ṙn

b , ḃ
b
ars) the

dynamics.

The range and range-difference measurements of the iSBL network are given by
(2.19) and (2.20), respectively. In order to simplify derivations, we use the notation

ρj = �pnnb − pnnt +Rn
b p

b
bcj

�2 (6.1a)

= �pbtb + pbbcj�2. (6.1b)
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AT
(Stage 1)

LTV KF
(Stage 2)

Linearized
KF

(Stage 3)

Nonlinear
Attitude
Observer

ž
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Figure 6.1: The structure of the 3SF for the body-fixed and NED formulations, where Wx

and Wχ denote the outputs from the body-fixed and NED ATs, respectively.

This allows us to write the measurement equations

yM = hM (χ, z) ≡ hM (x) � ρM + �y,M (6.2a)

∂yj = hj(χ, z) ≡ hj(x) � ρj − ρM + �∂,j , (6.2b)

which is concatenated into

y =




∂y1
...

∂yM−1

yM


 , h =



h1
...

hM


 , �∂ =




�∂,1
...

�∂,M−1


 , �y =

�
�∂
�y,M

�
.

Inserting (2.15)–(2.16) into (2.13) yields

ṗbtb = −S(ωb
ars − bbars)p

b
tb + vbnb (6.3a)

v̇bnb = −S(ωb
ars − bbars)v

b
nb + f b

nb,m +Rn
b
�gn − �acc, (6.3b)
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which is concatenated as

ẋ = Ax(t, z)x+Bx(z)u(t) +Gx(x)�x, (6.4)

where

Ax(t, z) =

�
−S(ωb

ars − bbars) I3
0 −S(ωb

ars − bbars)

�
, Bx(z) =

�
0 0
I3 Rn

b
�

�

Gx(x) =

�
−S(pbtb) 0
−S(vbnb) −I3

�
, u(t) =

�
f b
acc

gn

�
, �x =

�
�ars
�acc

�
.

Inserting (2.15) into (2.12) yields

ṗnnb = vnnb (6.5a)

v̇nnb = Rn
b (f

b
acc − �acc) + gn, (6.5b)

which is concatenated as

χ̇ = Aχχ+Bχ(z)u(t) +Gχ�χ, (6.6)

where

Aχ =

�
0 I3
0 0

�
, Bχ(z) =

�
0 0
Rn

b I3

�

Gχ(z) =

�
0
Rn

b

�
, �χ = �acc.

6.1 Stage 1: Algebraic Transformation
In this section, the ATs of Stovner, Johansen, and Schjølberg [11, 67] are derived
in Section 6.1.1–6.1.2 and 6.1.3–6.1.4, respectively. Section 6.1.1–6.1.2 describe
ATs that require 3 receivers, while those in Section 6.1.3–6.1.4 require 4.

6.1.1 Body-Fixed Formulation 1

By constructing

(∂yj + yM )2 =(ρj − ρM + ρM + �∂,j + �y,M )2

=�pbtb�22 + 2pbbcj
�pbtb + �pbbcj�

2
2 + 2ρj(�∂,j + �y,M ) + (�∂,j + �y,M )2

y2M =(ρM + �y,M )2

=�pbtb�22 + 2pbbcM
�pbtb + �pbbcM �22 + 2ρM �y,M + �2y,M ,
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we get an equation that is quadratic in pbtb. Defining rx � �pbtb�22 and neglecting
noise, we can write the above as

Yx − lMrx = Cxpp
b
tb + �Y , (6.7)

where

Yx =




y21 − �pbbc1�22
...

y2M − �pbbcM �22


 , Cxp =



2pbbc1

�
...

2pbbcM
�




�Yx =




2ρ1(�∂,1 + �y,M ) + (�∂,1 + �y,M )2

...
2ρM−1(�∂,M−1 + �y,M ) + (�∂,M−1 + �y,M )2

2ρM �y,M + �2y,M


 .

Now, if rx can be found explicitly and inserted into (6.7), a linear measurement
model is achieved.

Assuming M ≥ 3 and rank(Cxp) = 3, we can find cx = C†
xplM and wx = C†

xpYx,
where † denotes the Moore-Penrose pseudo-inverse. Now, we find

pbtb = −rxcx + wx (6.8)

and insert it into rx = �pbtb�22:

r2x�cx�22 − rx (2c
�
xwx + 1)� �� �

hx

+�wx�22 = 0.

Two solutions can generally be found

rx1, rx2 =
hx ±

�
h2x − 4�cx�22�wx�22
2�cx�22

. (6.9)

When �cx� �= 0, the correct of which we denote rx1. If �cx� = 0, then rx1 =
�wx�22/hx. Assuming this ambiguity can be resolved when �cx� �= 0, and the cor-
rect solution can be found, we have successfully constructed a linear measurement
equation

Yx + lrx1 = Cxx+ �Y , (6.10)

where Cx =
�
Cxp 0M×3

�
.
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6.1.2 North-East-Down Formulation 1

The derivation of the AT for the NED formulation will be similar to that in Section
6.1.1. The difference is starting from (6.1a) instead of (6.1b):

(yj + yM )2 =�pnnb�22 + 2(Rn
b p

b
bcj

− pnnt)
�pnnb + �Rn

b p
b
bcj

− pnnt�22
+ 2ρj(�∂,j + �y,M ) + (�∂,j + �y,M )2

y2M =�pnnb�22 + 2(Rn
b p

b
bcj

− pnnt)
�pnnb + �Rn

b p
b
bcj

− pnnt�22
+ 2ρM �y,M + �2y,M .

Again, neglecting noise and defining rχ = pnnb
�pnnb yields

Yχ − lMrχ1 = Cχχ+ �Y , (6.11)

where

Yχ =




y21 − �Rn
b p

b
bcj

− pnnt�22
...

y2M − �Rn
b p

b
bcM

− pnnt�22


 , Cχp(z) =



2(Rn

b p
b
bc1

− pnnt)
�

...
2(Rn

b p
b
bcM

− pnnt)
�


 ,

Cχ(z) = [Cχp(z), 0M−1×3], and rχ1 is found in the same way as rx1.

6.1.3 Body-Fixed Formulation 2

We begin by computing, in the noise-free case,

ρ2j − ρ2M =(ρj − ρM )(ρj + ρM ) =

2(pbbcj − pbbcM )�pbtb + �pbbcj�
2
2 − �pbbcM �22.

Inspired by Batista, Silvestre, and Oliveira [55], we write

ρj − ρM −
�pbbcj�

2 − �pbbcM �2

ρj + ρM
= 2

(pbbcj − pbbcM )�

ρj + ρM
pbtb

and insert δyj for ρj − ρM and δyj + 2yM for ρj + ρM to obtain

Z �
x =




δy1 + νx,1
...

δyM−1 + νx,M−1


 =




Dx,1
...

Dx,M−1




� �� �
D�

xp

pbtb + �∂ , (6.12)
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where

νx,j = −
�pbbcj�

2
2 − �pbbcM �22

δyj + 2yM
, Dx,j = 2

(pbbcj − pbbcM )�

δyj + 2yM

and the noise in the denominator of νx,j and Dx,j has been neglected.

In the measurement model (6.12), the M − 1 range difference measurements are
used. In order to use the M th measurement, i.e. the range measurement between
the sender and transponder, we use (6.12) to calculate a crude estimate of pbtb about
which we linearize (6.2a):

¯
pbtb = D�†

x,pZ
�
x.

Now, we define

¯
x �

�
¯
pbtb
03×1

�

about which we Taylor expand hM (x) in (6.2a), i.e.

hM (x) = hM (
¯
x) +Hx,M (

¯
x)(x−

¯
x) + ϕ̄x,M (pbtb −

¯
pbtb),

where ϕ̄x,M (pbtb −
¯
pbtb) are higher order terms, ϕ̄x,M (0) = 0, and

Hx,M (
¯
x) =

dhM (x)

dx

����
x=

¯
x

=

�
(
¯
pbtb−pbbcM

)�

�
¯
pbtb−pbbcM

�2 01×3

�
. (6.13)

Finally, we define D�
x � [D�

x,p, 0M−1×3] and

Dx(
¯
x) �

�
D�

x

Hx,M (
¯
x)

�
, Zx �

�
Z �
x

yM − h(
¯
x) +H(

¯
x)
¯
x

�
, ϕ̄x(p) =




0
...

ϕ̄x,M (p)




in order to write the linear measurement model

Zx = Dx(
¯
x)x+ ϕ̄x(p

b
tb −

¯
pbtb) + �y. (6.14)
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6.1.4 North-East-Down Formulation 2

By the same approach as in Section 6.1.3, but starting with the NED-formulated
measurement model (6.1b), a linear measurement model is found as

Z �
χ = D�

χ,p(z)p
b
tb + �∂ (6.15)

for the M − 1 range difference measurements, where

Z �
χ =




δy1 + νχ,1(z)
...

δyM−1 + νχ,M−1(z)


 , D�

χ,p(z) =




Dχ,1(z)
...

Dχ,M−1(z)




νχ,j(z) =
2pnnt

�Rn
b (p

b
bcj

− pbbcM )− �pbbcj�
2
2 + �pbbcM �22

δyj + 2yM
(6.16a)

Dχ,j(z) =
2
�
Rn

b (p
b
bcj

− pbbcM )
��

δyj + 2yM
. (6.16b)

Again, the noise in the denominator of νχ,j and Cχ,j was neglected. A position
estimate

¯
pnnb can be found, about which the range measurement model hM (χ, z)

in (6.2a) is linearized:

¯
pnnb = D�

χ,p(ž)
†Z �

χ.

Now, define

¯
χ �

�
¯
pnnb
03×1

�

and Taylor expand

hχ,M (χ, z) =hχ,M (
¯
χ, z) +Hχ,M (

¯
χ, z)(χ−

¯
χ) + ϕ̄χ,M (pnnb −

¯
pnnb),

where

Hχ,M (
¯
χ, z) =

�
¯
pnnb−pnnt+Rn

b p
b
bcj

�
¯
pnnb−pnnt+Rn

b p
b
bcj

�2 01×3

�
, (6.17)

ϕ̄χ,M (pnnb −
¯
pnnb) is higher order terms, and ϕ̄χ,M (0) = 0. Lastly, we define

D�
χ(z) � [D�

χ,p
(z), 0M−1×3] and

Dχ(
¯
χ, z) �

�
D�
χ(z)

Hχ,M (
¯
χ, z)

�
, Yχ �

�
Z �
χ

yM

�
, ϕ̄χ(p) =




0
...

ϕ̄χ,M (p)



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in order to write the linear measurement model

Zχ = Dχ(
¯
χ, z)χ+ ϕ̄χ(pnnb −

¯
pnnb) + �y. (6.18)

6.2 Stage 2: Linear Time-Varying Kalman Filter
In this section, one KF for each of the ATs in Section 6.1 is defined. The error
dynamics of each filter is derived for the stability analysis in Section 6.4.

6.2.1 Body-Fixed Formulation 1

The LTV KF based on the linear measurement model (6.10) with estimate x̄1 is
defined as

˙̄x1 � Ax(ž, t)x̄+Bx(ž)u(t) + K̄x1(t)(Yx + lMrx1 − Cxx̄1), (6.19)

where K̄x1(t) = P̄x1(t)C
�
x R−1

Y and P̄x1(t) is the covariance estimate. The co-
variance estimate is updated by (1.3c) inserted Ax(ž, t), Cx, Gx(0), the process
covariance matrix

Qx = E(�x��x ) =
�
σ2
arsI3 03×3

03×3 σ2
accI3

�
, (6.20)

and the measurement covariance matrix

R̄Y = Cov(�Y , �Y ) = E
�
(�Y − E(�Y ))(�Y − E(�Y ))�

�
(6.21)

whose elements are given by

R̄Y,ji =

�
4ρjρi(σ

2
y + σ2

∂) + 2(σ2
∂ + σ2

y)
2, i = j and i, j ∈ (1, ...,M − 1)

4ρjρiσ
2
y + 2σ4

y , otherwise.
(6.22)

The initial covariance estimate is P̄x1(0) = P̄x10. Notice that the matrix Gx(0)
with zero input was chosen. This choice is explained in Appendix 6.A.

Define the estimation error ˜̄x1 � x − x̄1. Subtracting (6.19) from (6.4), inserting
(6.10), and neglecting noise yield the error dynamics

Σ̄x1 :
˙̄̃x1 = (Ax(ž, t)− K̄x1(t)Cx)˜̄x1 + ξ̄x1(z, ž, x, t), (6.23)

where ξ̄x1(z, ž, x, t) = (Ax(z, t)−Ax(ž, t))x+ (Bx(z)−Bx(ž))u(t).
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6.2.2 North-East-Down Formulation 1

The LTV KF based on the linear measurement model (6.11) with estimate χ̄1 is
defined as

˙̄χ1 � Aχχ̄1 +Bχ(ž)u+ K̄χ1(t)(Yχ + lMrχ1 − Cχ(ž)χ̄1), (6.24)

where K̂χ1(t) = P̄χ1(t)C
�
χ(ž)R−1

Y and P̄χ1(t) is the covariance estimate. The
covariance estimate is updated by (1.3c) inserted Aχ, Cχ(ž), Gχ(ž), RY , and the
process covariance matrix

Qχ = E(�χ��χ) = I3σ
2
acc. (6.25)

The initial value of the covariance estimate is P̄χ1(0) = P̄χ10.

The implicit assumption that rx1 and rχ1 does not contribute to the measurement
noise has been made here, and is far from true. Jørgensen, Johansen, and Schjøl-
berg [78] numerically models the noise in the r-term, which could have be done
here also to improve performance.

Define the estimation error ˜̄χ1 � χ − χ̄1. Subtracting (6.24) from (6.6), inserting
(6.11), and neglecting noise yield the error dynamics

Σ̄χ1 :
˙̄̃χ1 = (Aχ − K̄χ1(t)Cχ(ž))

˜̄χ1 + ξ̄χ1(z, ž, t), (6.26)

where

ξ̄χ1(z, ž, t) = K̄χ1(t)(Cχ(z)− Cχ(ž))χ+ (Bχ(z)−Bχ(ž))u(t).

6.2.3 Body-Fixed Formulation 2

The LTV KF based on the linear measurement model (6.14) with estimate x̄2 is
defined as

˙̄x2 = Ax(ž, t)x̄2 +Bx(ž)u(t) + K̄x2(t)(Zx −Dx(
¯
x)x̄2), (6.27)

where K̄x2(t) = P̄x2(t)D
�
x (¯

x)R−1 and P̄x2(t) is the covariance estimate. The
covariance estimate is updated by (1.3c) inserted Ax(ž, t), Dx(

¯
x), Gx(0), Qx in

(6.20), and measurement covariance matrix

R = Cov(�y, �y) = E
�
(�y − E(�y))(�y − E(�y))�

�

=

�
σ2
∂IM−1 0M−1×1

01×M−1 σ2
y

�
. (6.28)
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The initial estimate of the covariance matrix is P̄x2(0) = P̄x20.

Define the estimation error ˜̄x2 = x − x̄2. Subtracting (6.27) from (6.4), inserting
(6.14), and neglecting noise yield the error dynamics

Σ̄x2 :
˙̄̃x2 = (Ax(ž, t)− K̄x2(t)Dx)˜̄x2 + ξ̄x2(z, ž, p

b
tb,

¯
pbtb, t), (6.29)

where

ξ̄x2(z, ž, p
b
tb,

¯
pbtb, t) =(Ax(z, t)−Ax(ž, t))x+ (Bx(z)−Bx(ž))u(t)

+ K̄x2(t)ϕ̄x(p
b
tb −

¯
pbtb).

6.2.4 North-East-Down Formulation 2

The LTV KF based on the linear measurement model (6.18) with estimate χ̄2 is
defined as

˙̄χ2 � Aχχ̄2 +Bχ(ž)u+ K̄χ2(Zχ −Dχ(
¯
χ, ž)χ̄2), (6.30)

where K̄χ2(t) = P̄χ1(t)D
�
χ(¯

χ, ž)R−1 and P̄χ2(t) is the covariance estimate. The
covariance estimate is updated by (1.3c) inserted Aχ, Dχ(

¯
χ, ž), Gχ(ž), R, Qx,

and with initial value P̄χ2(0) = P̄χ20.

Define the estimation error ˜̄χ2 = χ − χ̄. Subtracting (6.30) from (6.6), inserting
(6.18), and neglecting noise yield the error dynamics

Σ̄χ2 :
˙̄̃χ2 = (Aχ − K̄χ2(t)Dχ(

¯
χ, ž))˜̄χ2 + ξ̄χ2(z, ž, t), (6.31)

where

ξ̄χ2(z, ž, p
n
nb,

¯
pnnb, t) =(Bχ(z)−Bχ(ž))u(t) + K̄χ2(t)ϕ̄χ(p

n
nb −

¯
pnnb)

+ K̄χ2(t)(Dχ(
¯
χ, z)−Dχ(

¯
χ, ž))χ.

6.3 Stage 3: Linearized Kalman Filter
In this section, KFs are developed that use models linearized about the stage 2
estimates in Section 6.2.
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6.3.1 Body-Fixed Formulation

Linearizing (6.2) about x̄i, i ∈ {1, 2} yields

h(x) = h(x̄) +Hx(x̄)˜̄xi + ϕ̂x(˜̄xi), (6.32)

where ˜̄xi � x− x̄i, ϕ̂x is higher order terms,

Hx(x) =



Hx,1(x)

...
Hx,M (x)


 ,

Hx,j(x) =

�
(pbtb−pbbcj

)�

�pbtb−pbbcj
�2 − (pbtb−pbbcM

)�

�pbtb−pbbcM
�2 01×3

�
, j = (1, ...,M − 1),

and Hx,M (x) is given by (6.13).

Denote by x̂ the state estimate, which is updated by

˙̂x �Ax(ž, t)x̂+Bx(ž)u(t) + K̂x(t)(y − ŷx) (6.33a)

ŷx �h(x̄i) +Hx(x̄i)(x̂− x̄i), (6.33b)

where K̂x(t) = P̂x(t)H
�
x (x̄i)R−1 and P̂x(t) is the covariance estimate. The

covariance estimate is updated by (1.3c) inserted Ax(ž, t), Hx(x̄i), Gx(x̄i), Qx in
(6.20), and R in (6.28) and with initial estimate P̂x(0) = P̂x0.

Define the estimation error x̃ � x − x̂. Subtracting (6.33a) from (6.4), inserting
(6.33b), and neglecting noise yield the error dynamics

Σ̂x : ˙̃x = (Ax(ž, t)− K̂x(t)Hx(x̄))x̃+ ξ̂x(x, z, x̄, ž, t), (6.34)

where

ξ̂x(x, z, x̄, ž, t) =(Ax(z, t)−Ax(ž, t))x+ (Bx(z)−Bx(ž))u(t)− K̂x(t)ϕ̂x(˜̄x).

6.3.2 North-East-Down Formulation

Linearizing (6.2) about χ̄i, i ∈ {1, 2} yields

h(χ, z) = h(χ̄i, z) +Hχ(χ̄i, z)˜̄χi + ϕ̂χ(˜̄χi),
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where ˜̄χi � χ− χ̄i, i ∈ (1, 2), ϕ̂χ is higher order terms,

Hχ,j(χ, z) =

�
(pnnb+Rn

b p
b
bcj

−pnnt)
�

�pnnb+Rn
b p

b
bcj

−pnnt�2
− (pnnb+Rn

b p
b
bcm

−pnnt)
�

�pnnb+Rn
b p

b
bcm

−pnnt�2
01×3

�

for j ∈ (1, ...,M − 1), and Hχ,M (χ, z) is given by (6.17).

Let χ̂ denote the state estimate whose update equations is defined as

˙̂χ � Aχχ̂+Bχ(ž)u+ K̂χ(t)(y − ŷχ) (6.35a)

ŷχ � h(χ̄i, ž) +H(χ̄i, ž)(χ̂− χ̄i), (6.35b)

where K̂χ(t) = P̂χ(t)H�
χ(χ̄i, ž)R−1 and P̂χ(t) is the covariance estimate. The

covariance estimate is updated by (1.3c) inserted Aχ, Hχ(χ̄i, ž), Gχ(χ̄i), Qχ,
and R with the initial value P̂χ0.

Now, define the estimation error χ̃ = χ − χ̂. Subtracting (6.35a) from (6.6),
inserting (6.35b), and neglecting noise yield the error dynamics

Σ̂χ : ˙̃χ = (Aχ − K̂χ(t)Hχ(χ̄i, ž))χ̃+ ξ̂χ(χ, χ̄i, z, ž, t), (6.36)

where

ξ̂χ(χ, χ̄i, z, ž, t) =h(χ̄i, z)− h(χ̄i, ž) + (Hx(χ̄i, z)−Hx(χ̄i, ž))˜̄χi

− K̂χ(t)ϕ̂χ(˜̄χi) + (Bχ(z)−Bχ(ž))u(t).

6.4 Stability Analysis
Assumption 6.4.1. There are at least 3 non-collinear receivers on the vehicle.

Assumption 6.4.2. There are at least 4 non-coplanar receivers on the vehicle.

Lemma 6.4.1. The systems

1. (Ax(ž, t), Cx, Gx(0)) under Assumption 6.4.1

2. (Aχ, Cχ(ž), Gχ(ž)) under Assumption 6.4.1

3. (Ax(ž, t), Dx(
¯
x), Gx(0)) under Assumption 6.4.2

4. (Aχ, Dχ(
¯
χ, ž), Gχ(ž)) under Assumption 6.4.2
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5. (Ax(ž, t), Hx(x̄), Gx(0)) under Assumption 6.4.1

6. (Aχ, Hχ(χ̄, ž), Gχ(ž)) under Assumption 6.4.1

are UCO and UCC.

Proof. The proof is given in Appendix 6.B.

In the following, the inputs f b
nb,m and ωb

nb,m are assumed to be bounded.

Since Ax, Bx, Cx, Dx, h, ϕ̄x are smooth and z, ž, pbtb,
¯
pbtb, u are bounded, there

exist constants ᾱx1, ᾱx2 > 0 such that

ξ̄x1(z, ž, x, t) ≤ ᾱx1(�z̃�22) (6.37a)

ξ̄x2(z, ž, p
b
tb,

¯
pbtb, t) ≤ ᾱx2(�pbtb −

¯
pbtb�22 + �z̃�22) (6.37b)

Since Bχ, Cχ, Dχ, h, ϕ̄χ are smooth and z, ž, pnnb,
¯
pnnb, u are bounded, there

exist constants ᾱχ1, ᾱχ2 > 0 such that

ξ̄χ1(z, ž, t) ≤ ᾱχ1(�z̃�22) (6.38a)

ξ̄χ2(z, ž, p
n
nb,

¯
pnnb, t) ≤ ᾱχ2(�pnnb −

¯
pnnb�22 + �z̃�22). (6.38b)

Proposition 6.4.1. Let Σz denote the error dynamics ˙̃z. Assume Qx, Qχ, RY , R,
P̄xi0, P̄χi0, i ∈ {1, 2} are chosen positive definite, and �y = 0,�x = 0.

1. The equilibrium points z̃ = (0, 0) and ˜̄xi = 0 of the cascaded error dynam-
ics Σz–Σ̄xi for i ∈ {1, 2} is GES.

2. The equilibrium points z̃ = (0, 0) and ˜̄χi = 0 of the cascaded error dynam-
ics Σz–Σ̄χi for i ∈ {1, 2} is GES.

Proof. The proof is given in Appendix 6.C

Since Ax, Bx, h, Hx, ϕ̂x are smooth and z, ž, x, u, and x̄i, i ∈ {1, 2}, are bounded,
there exists a constant α̂x > 0 such that

ξ̂x(z, ž, x, x̄i, t) ≤ α̂x(�x− x̄i�22 + �z̃�22), i ∈ {1, 2}. (6.39)

Since Bχ, h, Hχ, ϕ̂χ are smooth and z, ž, χ, u, and χ̄i, i ∈ {1, 2}, are bounded,
there exists a constant α̂χ > 0 such that

ξ̂χ(z, ž,χ, χ̄i, t) ≤ α̂χ(�χ− χ̄i�22 + �z̃�22), i ∈ {1, 2}. (6.40)
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Proposition 6.4.2. Assume Qx, Qχ, R, P̂x0, P̂χ0, are chosen positive definite,
and �y = 0,�x = 0.

1. The origin z̃ = (0, 0), ˜̄xi = 0, and x̃ = 0 of the error dynamics cascade
Σz–Σ̄xi–Σ̂x, i ∈ {1, 2}, is GES.

2. The origin z̃ = (0, 0), ˜̄χi = 0, and χ̃ = 0 of the error dynamics cascade
Σz–Σ̄χi–Σ̂χ, i ∈ {1, 2}, is GES.

Proof. The proof is similar to that of Proposition 6.4.1.

6.5 Results
In this section, the results of simulations and experiments are shown.

A depth measurement, modeled by

yd = pnnt,z +
�
Rn

b̌,z
01×3

�

� �� �
Cb

d(ž)

x =
�
0 0 1 01×3

�
� �� �

Cn
d

χ (6.41)

where Rn
b̌,z

and pnnt,z are the third rows of Rn
b̌,z

and pnnt,z , respectively, is added to

the filters by appending yd to y, Cb
d to Cx and Hx, and Cn

d to Cχ and Hχ. It can
be shown that this relaxes Assumption 6.4.2 to minimum 3 non-collinear receivers
that construct minimally 2 non-vertical baselines.

In the implementation of the filters, some practical considerations were taken:

• −S(pbtb) and −S(vbnb) were removed from Gx(x), i.e. Gx(0) was used,
since they greatly deteriorated the estimation accuracy. This is assumed to
be caused by errors in the estimate of pbtb leading to an erroneous increase in
the covariance matrix over time, and thus, far from optimal corrections.

• For the body-fixed filters, the depth measurement variance was increased by
a factor of 100, i.e. Rd = 100σ2

d. This accounted for the impact of small
errors in Rn

b̌
, which was amplified by the distance to the transponder, as can

be seen in (6.41).

In the plots below, the following color coding is used:
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1. Red — True or camera system trajectory

2. Pink — Body-fixed stage 2 filter (6.19)

3. Blue — Body-fixed stage 2 filter (6.27)

4. Cyan — NED stage 2 filter (6.30)

5. Grey — Loosely coupled NED filter

6. Orange — Body-fixed stage 3 filter (6.33)

7. Green — NED stage 3 filter (6.35)

8. Black — EKF based on NED formulation

The loosely coupled filter 5 is a NED formulated filter with the measurement
model p̆nnb = Cχ, where C = [I3, 03×3]. The NED stage 2 filter (6.24) was
not used due to its poor performance [11].

6.5.1 Simulations

The simulations were conducted with three different transponder positions in order
to show how the estimators perform with increasing range measurements. In each
of the three simulated scenarios, 50 simulations were run with different randomly
generated noise. In the 800 seconds long scenario, the UV stood still for 400
seconds before following the trajectory shown in Figure 6.2.

The transponder was placed at pnnt = [−10,−20, 5]m, pnnt = [−100,−200, 50]m,
and pnnt = [−1000,−2000, 50]m in the three scenarios, while the M = 4 receivers
on the body were placed at

pbbc1 = [0.6, 0.3,−0.3]m, pbbc2 = [0.6,−0.3, 0.3]m

pbbc3 = [−0.6, 0.3, 0.3]m, pbbc4 = [−0.6,−0.3,−0.3]m,

where pbbc4 was also the position of the sender.

The initial state of the vehicle was given by pnnb = [0, 0, 0]m, vnnb = [0, 0, 0]m/s,
Rn

b = I3, while the ARS bias was bb = [0.012,−0.021, 0.014]rad/s. The
standard deviations of the measurement noises were σy = 1m, σ∂ = 0.01m,
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Table 6.1: MAE values of the last 400 seconds of simulation in the cases where distance
to the transponder was short (s), medium (m), and long (l).

Est. XY s [m] Z s [m] XY m [m] Z m [m] XY l [m] Z l [m]
2) 0.095 0.240 0.226 0.254 15.437 0.406
3) 0.090 0.235 0.211 0.252 1.753 0.365
4) 0.082 0.025 0.194 0.025 0.848 0.025
5) 0.070 0.025 0.234 0.025 1.571 0.025
6) 0.087 0.236 0.200 0.251 1.735 0.365
7) 0.078 0.025 0.177 0.025 0.718 0.025
8) 0.078 0.025 0.176 0.025 0.718 0.025

σd = 0.1m, σacc = 0.01m/s2, σars = 0.01rad/s, and σmag = 0.01. The refer-
ence vectors used for attitude estimation were

rn1 = − gn

�gn�2
, rb1 =

f b
nb,m

�f b
nb,m�2

, rn2 = mn =



1
0
0


 , rb2 =

mb
m

�mb
m�2

.

The frequency of iSBL, depth, and IMU measurement retrieval were 1Hz, 10Hz,
and 100Hz, respectively.

The initial position, velocity, attitude, and bias estimates were p̌nnb(0) = [0, 0, 0]m,
v̌nnb(0) = [0, 0, 0]m/s, Rn

b̌
(0) = I3, and b̌b̌(0) = [0, 0, 0]rad/s, from which the

initial state of all estimators were found. The initial value of all covariance matri-
ces were chosen as P (0) = blockdiag(I3, 0.1I3). Choices for the attitude observer
tuning parameters were kI = 0.05, σ = 1, and Kp = 1. All estimators were up-
dated with 100Hz.

The difficult geometry of this estimation problem, i.e. the short baselines between
receivers compared to the distance to transponder, makes this set-up sensitive to
noise on the acoustic measurements. This calls for conservative measurement up-
dates in the KFs. This can be seen by the slow convergence of the estimators in
Figure 6.3, which is seen to take approximately 100 seconds for all estimators even
with no initial errors apart from the ARS bias. Little of the slow convergence can
be attributed to the initial ARS bias error, since the NED and body-fixed filters con-
verge with approximately the same speeds. Rather, this is due to the convergence
of the covariance matrix.

In Table 6.1, the MAE of the horizontal (XY) and vertical (Z) positions for the
last 400 seconds of simulations of the three scenarios is shown. The increasing
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Figure 6.2: The simulated trajectory and estimates in one of the simulations.

horizontal MAE with increasing distance to transponder is evidence that the noise
sensitivity increases with distance as well. The vertical errors, however, vary less
with distance. The NED formulated filters 4, 5, 7, and 8 have constant vertical
MAEs, while the body-fixed filters 2, 3, and 6 increase somewhat. Moreover,
the vertical errors are more than 10 times higher for the body-fixed filters than
the NED filters. This is due to the noisy rotation matrix in (6.41), which has a
detrimental effect on the vertical position estimation. One can draw the conclusion
that the NED filters generally outperform the body-fixed filters both in vertical and
horizontal performance. Looking at the NED formulated filters only, we see that
the loosely coupled filter 5 performs substantially worse than the others. This is
due to the highly noise sensitive calculation of p̆nnb, and speaks for the benefit of
using a tightly coupled filter scheme. Filter 4 has somewhat higher MAE than
the linearization based filters 7 and 8. Compared to filter 7, it only has half the
computational complexity since it employs one KF instead of two, and compared
to filter 8, it has guaranteed stability. Therefore, it is argued that filter 4 yields the
best compromise between computational load, stability, and performance.

Filter 7 and 8 have similar performances, which is expected as filter 8 is just an
EKF version of filter 7.

6.5.2 Experiments

The experiment was conducted in MCLab at NTNU, described in Section 3.1.

The experimental set-up was slightly different than in the simulations, described
below:
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Figure 6.3: The transient of the NED position estimation errors in one of the simulations.
The black, green, and cyan curves are overlapping, and so are the gray and blue.
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Figure 6.4: The sensor platform with hydroacoustic transducers (on rods), Qualisys mark-
ers (reflective balls), and an underwater housing. The blue light is emitted from the OQUS
camera system in order to better detect the reflective markers.

• The IMU used in the experiments, an ADIS16485, does not contain a mag-
netometer. Therefore, measurements from 3 additional transponders was
used in order to provide yaw information to the attitude estimator. Also, for
ease of implementation, a standard MEKF was employed, using accelerom-
eter and the acoustics as reference vector measurements.

• No pressure sensor was available, so the vertical position output from the
Qualisys camera system was used instead. Onto this signal, a white noise
wd ∼ N (0, 0.052) was added.

• The acoustic system provided range measurements. From this, range differ-
ence measurements were calculated by subtraction. Simple outlier rejection
was employed to prevent corruption of the estimates. This is described in
Section 3.2.

The sensor platform was a 0.5 × 0.5 × 0.5m aluminum frame onto which an un-
derwater housing with an IMU was fastened, seen in Figure 6.4. The transceiver
positions were

pbbc1 = [0.78, 0.27, 0.26]m, pbbc2 = [0.45,−0.58,−0.28]m

pbbc3 = [−0.44,−0.23, 0.16]m, pbbc4 = [−0.44, 0.27,−0.25]m

and the transponder position pnnt = [−2.11, 1.92,−0.76]m. Acoustic measure-
ments were retrieved with 1Hz, while IMU and depth measurements were re-
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Figure 6.5: NED position estimates from experimental data.

trieved with 100Hz and 5Hz, respectively. The tuning parameter standard devia-
tions of the 3SFs and MEKF were σy = 0.2m, σ∂ = 0.1m, σacc = 0.034m/s2,
σars = 0.0021rad/s, and σΔp = 0.1m, where σΔp represents the noise of the
acoustic reference vector measurement used for the MEKF discussed above.

From Figure 6.5, we see that all filters except the loosely coupled filter 5 success-
fully tracked the true trajectory except about 300 seconds into the experiments.
This was due to range measurement dropouts which resulted in a period of dead-
reckoning. It is likely that filter 5 struggled because of small undetected outliers
that greatly affected the noise sensitive calculation of

¯
pnnb. Table 6.2 suggests that

the body-fixed stage 2 filters, i.e. filter 2 and 3, performs worse than the NED stage
2 filter, i.e. filter 4. This confirms the conclusion drawn from the simulation study.



6.5. Results 105

0 50 100 150 200 250 300 350 400 450

R
o

ll 
[d

e
g

]

-100

-50

0

50

0 50 100 150 200 250 300 350 400 450

P
it
c
h

 [
d

e
g

]

-40

-20

0

20

40

Time [s]

0 50 100 150 200 250 300 350 400 450

Y
a

w
 [

d
e

g
]

-200

-100

0

100

200

Figure 6.6: Euler angles in experiments. The red curve is the ground truth trajectory from
the camera system, and the blue dashed line is the MEKF estimate.

Table 6.2: MAE values from the experiments.

Est. XY [m] Z [m]
2) 0.3979 0.0269
3) 0.4030 0.0274
4) 0.2746 0.0232
5) 0.9384 0.0266
6) 0.2734 0.0269
7) 0.2702 0.0266
8) 0.2763 0.0266
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Figure 6.7: ARS bias in experiments.

Also, filter 4 performs equally well as the linearized filters, i.e. filter 6–8. This
was also seen in the simulation study. Here, however, the distance between vehicle
and transponder was much shorter than in the simulation study. This indicates that
neglecting the noise terms in the denominators of (6.16) is justified also for short
distances. That the performance of the body-fixed and NED linearized filters were
similar, was expected, as the distance to the transponder was small. Figure 6.6–6.7
show satisfying attitude and ARS bias estimation in the experiments.

6.6 Conclusion
In this chapter, four different GES 3SFs for inertial navigation aided by an iSBL
network was developed. Two of the filters formulated the state in the body-fixed
coordinate frame, while the two other used the NED coordinate frame. The stabil-
ity of all filters were analyzed and found to be GES. A simulation study was con-
ducted, showing the NED frame to be a better frame of reference for estimation.
The reason for this was two-fold. First, the NED formulated filters incorporated
depth measurements better than the body-fixed ones, yielding lower vertical MAE.
Secondly, the horizontal MAE was significantly smaller for the NED formulated
filters than for the body-fixed ones. This was likely due to a more noisy kinematic
model.

One of the second stage NED filters showed similar performance as the third stage
filters and the EKF, meaning EKF-like performance can be achieved with global
stability and half the computational cost of the full 3SF.

Further work should look into how the process noise matrix Gx(x) can be modeled
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more accurately for higher performance. This might give better performance of the
body-fixed filters.

This chapter aimed at answering the research questions “Can the iSBL network
reduce the required installed infrastructure to one transponder while yielding ad-
equate estimation accuracy? Furthermore, can the XKF method be applied to this
problem to give global stability of the solution?”. A solution for position estima-
tion with only one transponder has been achieved, and the XKF method has been
applied in order to achieve global stability. Therefore, the research goals have been
achieved.





Appendix

6.A Choice of Gx(0)

For the body-fixed filters, the choice for the system noise matrix

Gx(0) =

�
03×3 03×3

03×3 −I3

�
(6.42)

is made for two reasons:

1. To show controllability

2. To enhance performance

1. The controllability co-distribution (4.27) of (Ax(z), Gx(x)) is

dC =

�−S(pbtb) 03×3 S(ωb
nb,m − bbars)S(p

b
tb)− 2S(vbnb) −I3

−S(vbnb) −I3 S(ωb
nb,m − bbars)S(v

b
nb)− S(v̇bnb) S(ωb

nb,m − bbars)

�
,

the full rank of which can only be assumed. The choice (6.42), however, yields

dC =

�
03×3 03×3 03×3 −I3
03×3 −I3 03×3 S(ωb

nb,m − bbars)

�

which can be shown to have full rank by

rank(dC) = rank(dCdC�)

=

�
I3 S(ωb

nb,m − bbars)

−S(ωb
nb,m − bbars) S(ωb

nb,m − bbars)S(ω
b
nb,m − bbars)

� + I3

�

�
x�1 x�2

�
dCdC�

�
x1
x2

�
= x�1 x1 + x�3 x3 + x�2 x2 > 0 ∀x�1 x1 + x�2 x2 �= 0

where x3 = S(ωb
nb,m − bbars)

�x2.
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2. The most important reason for the choice (6.42) is the enhanced performance.
When the distance between transponder and vehicle �pbtb�2 is large, this causes
a large build-up of uncertainty in the covariance estimate Px. This increases the
effect of the measurement, which seems to have a detrimental effect on the estima-
tion performance. Therefore, the choice (6.42) is advised, along with increasing
the Qx-matrix. The latter accounts for the build-up of Px that was lost.

6.B Proof of Lemma 6.4.1
Theorem 6.O12 in Chen [76] proves that the pair (A(t), D(t)) is UCO if the ob-
servability co-distribution (4.26) formed by A(t) and D(t) has full rank. We define
the placeholder matrix D(t) ∈ {Cx, Cχ(ž), Dx(x̆), Dχ(χ̆, ž), Hx(x̄), Hχ(χ̄, ž)}
and note its general form D = [Dp(t), 0M×3] where Dp(t) ∈ RM×3. The top 2M
rows of the observability co-distributions are

dO =

�
Dp(t) 0M×3

� Dp(t)

�

where � denotes an arbitrary matrix of appropriate size. From Theorem 4.2 of
Meyer [77], it follows that if Dp(t) has full rank, then dO has full rank. The rank
of Dp(t) is full for all systems under Assumption 6.4.2, and thus, all systems are
UCO.

Theorem 6.12 in Chen [76] proves that the pair A(t), G(t) is UCC if the control-
lability co-distribution (4.27) formed by A(t) and G(t) has full rank. This was
proven for (Ax(z, t), Gx(0)) in Appendix 6.A, and the proof for (Aχ, Gχ(z)) is
similar.

6.C Proof of Proposition 6.4.1
The origin z − ž = 0 of the error dynamics Σz is GES under Proposition 4.2.1.

Notice that in the noise-free case when ž = z, we have p̆btb ≡ pbtb and p̆nnb ≡ pnnb,
and consequently, ξ̄xi = 0 and ξ̄χi = 0, i ∈ {1, 2}. In this case and under Lemma
6.4.1, the equilibrium points ˜̄xi = 0 and ˜̄χi = 0 of the error dynamics Σ̄xi and
Σ̄χi, respectively for i ∈ {1, 2}, are GES as proven by Anderson [79].

6.C.1 Cascade Proof (separated for reference)

When ž �= z, ξ̄xi and ξ̄χi are bounded by (6.37) and (6.38), respectively. Now,
the rest of the proof follows from Theorem 2.1 and Proposition 2.3 of Loria and
Panteley [80] and Proposition 4.2.1.



Chapter 7

Position and Attitude Estimation
Using Inverted Short Baseline
Network

This chapter is based on Stovner and Johansen [69], in which a 3SF for joint po-
sition and attitude estimation using an iSBL set-up with two or more transponders
is developed. It is shown that with multiple transponders, the magnetic field mea-
surements often used in attitude estimation can be replaced while GES estimation
of both position and attitude is achieved. The hydroacoustic set-up can be seen in
Figure 2.5.

The notation from Chapter 6 is slightly altered in order to accommodate several
transponders. We define the translational state vector

x �




pbt1b
...

pbtN b

vbnb


 (7.1)

where pbtib is the position of the vehicle relative to transponder ti, i ∈ (1, N).
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Similarly, we extend the notation of (6.1) to

ρij = �pnnb − pnnti +Rn
b p

b
bcj

�2 (7.2a)

= �pbtib + pbbcj�2. (7.2b)

This allows us to write the range and range difference measurement equations

yiM = hiM (x) � ρiM + �y,iM (7.3a)

∂yij = hij(x) � ρij − ρiM + �∂,ij , (7.3b)

which is concatenated for j ∈ (1,M) and i ∈ (1, N)

yi =




∂yi1
...

∂yiM−1

yiM


 , hi =



hi1

...
hiM


, �∂,i =




�∂,i1
...

�∂,iM−1


 , �y,i =

�
�∂,i
�y,iM

�

y =



y1
...
yN


 , h =



h1
...

hN


 , �y =



�y,1

...
�y,N


 .

Due to the change in the state vector, the state dynamics must be changed accord-
ingly:

ẋ = A(t, z)x+B(z)u(t) +G(x)�x, (7.4)

where

A(t, z) =




−S(ωb
ars − bbars) · · · 03×3 I3

...
. . .

...
...

03×3 · · · −S(ωb
ars − bbars) I3

03×3 · · · 03×3 −S(ωb
ars − bbars)




G(x) =




−S(pbt1b) 03
...

...
−S(pbtN b) 03
−S(vbnb) −I3


 , B(z) =

�
03N×3 03N×3

I3 Rn
b
�

�
,

and �x and u(t) are the the same as in Chapter 6.
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In this chapter, the attitude is estimated by the attitude estimator (4.7). The mag-
netic field information previously used for attitude estimation is in this chapter
replaced by the known and estimated vectors

yn2 =
pntitN

�pntitN �2
(7.5a)

yb2 =
pbtib − pbtN b

�pbtib − pbtN b�2
=

pbtitN
�pbtitN �2

, (7.5b)

respectively. Gravity provides the other attitude measurement, i.e..

yn1 =
−gn

�gn�2
, yb1 =

f b
nb,m

�f b
nb,m�2

.

The structure of the 3SF can be seen in Figure 7.1. On the left-hand side, the same
stages of position estimation as in Chapter 6 are seen. New in this chapter is the
attitude estimator present in each stage, shown on the right-hand side of Figure 7.1.
Body-fixed position estimates that facilitate the calculation of the vector (7.5b) are
available in each stage. Since the accuracy of these are expected to increase for
each stage, it is reasonable to implement an attitude estimator in each stage as well.
This way, the attitude is estimated from the best available body-fixed reference
vector estimate.

7.1 Stage 1: Algebraic Transformation

7.1.1 3 Receivers

The AT for all measurements from transponder i is identical to the AT for the
single transponder in (6.10). With the exact same derivation, we achieve the linear
measurement model

Yx,i + lMr1,i = Cxx+ �Y,i, (7.6)

which can be concatenated to

Y = Cx+ �Y , (7.7)

where

Y =



Yx,1 + lMrx1,1

...
Yx,N + lMrx1,N


 , C =



Cx
...
Cx


 , �Y =



�Y,1

...
�Y,N


 .
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¯
(·)

2 (̄·)
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Figure 7.1: In this figure, the three different stages of the body-fixed 3SF are depicted.
The stage number and the associated notation can be seen on the right-hand side.
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An estimate of pbtib to be used for attitude estimation is found as

¯
pbtib = r1,icx + wi, (7.8)

where cx = C†
xplM and wi = C†

xpYx,i, where r1,i is found by solving the ambigu-
ity (6.9).

7.1.2 ≥ 4 Receivers

Similarly as above, the AT from transponder i to 4 or more receivers on the ve-
hicle is identical to that described in Section 6.1.3. We generalize (6.14) for N
transponders

Z = D(
¯
x)x+ ϕ̄(x−

¯
x) + �y, (7.9)

where

Z =



Zx,1

...
Zx,N


 , D(

¯
x) =




D�
x,1

Hx,1M (
¯
pbt1b)

...
D�

x,N

Hx,NM (
¯
pbtN b)



, ϕ̄(x−

¯
x) =



ϕ̄x(p

b
t1b

−
¯
pbt1b)

...
ϕ̄x(p

b
tN b −

¯
pbtN b)


 .

The linearization point is
¯
x = [

¯
pbt1b

�, ...,
¯
pbtN b

�, 0, 0, 0]�, where
¯
pbtib = D�

x,1
†Z �

x,i.

7.1.3 Attitude Estimator

Now, the attitude estimator in Section 4.2 with variables
¯
Rn

¯
b ,
¯
b̄
b
ars,

¯
σ,

¯
kI , and

¯
Kp,

and reference vector (7.5) with
¯
pbtib, i ∈ (1, N) is used to produce the attitude

estimate
¯
z = (Rn

¯
b ,¯
b̄
b
ars), where Rn

¯
b is the matrix

¯
Rn

¯
b projected onto SO(3). Its

estimation error is denoted ˜
¯
z = (Rn

b −Rn

¯
b , b

b
ars −¯

b̄
b
ars) and its error dynamics is

¯
Σz : ˙̃

¯
z = ˙̃

¯
z� +

¯
ξz(p

b
t1b, ..., p

b
tN b,

¯
pbt1b, ...,

¯
pbtN b) (7.10)

where ˙̃
¯
z� is the error dynamics provided exact position estimates, i.e.,

¯
pbtib = pbtib

for i ∈ (1, N), and
¯
ξz is the error caused by inexact position estimates. Naturally,

¯
ξz = 0 when

¯
pbtib = pbtib ∀ i ∈ (1, N).
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7.2 Stage 2: Linear Time-Varying Kalman Filter

7.2.1 3 Receivers

The second stage estimator for three receivers is defined as

˙̄x1 � A(t,
¯
z)x̄1 +B(

¯
z)u(t) + K̄(t)(Y − Cx̄1) (7.11)

where K̄1(t) = P̄1(t)C
�R−1

Y and P̄1(t) is the covariance estimate. The covari-
ance estimate is updated by (1.3c) inserted A(

¯
z, t), C, G(x̄1), Q given by

Q =

�
σ2
arsI3N 03N×3

03×3N σ2
accI3

�
(7.12)

and RY given by

RY =




RY,1 · · · 0M×M
...

. . .
...

0M×M · · · RY,N


 , (7.13)

where RY,i for each i ∈ {1, N} equals (6.21). The initial covariance estimate is
P̄1(0) = P̄10.

Define the estimation error ˜̄x1 � x − x̄1. Subtracting (7.11) from (7.4), inserting
(7.7), and neglecting noise yield the error dynamics

Σ̄x1 :
˙̄̃x1 = (A(

¯
z, t)− K̄1(t)C)˜̄x1 + ξ̄1(z,

¯
z, x, t), (7.14)

where ξ̄1(z,
¯
z, x, t) = (A(z, t)−A(

¯
z, t))x+ (B(z)−B(

¯
z))u(t).

7.2.2 ≥ 4 Receivers

The second stage estimator for four or more receivers is defined as

˙̄x2 � A(t,
¯
z)x̄2 +B(

¯
z)u(t) + K̄(t)(Y −D(

¯
x)x̄2) (7.15)

where K̄2(t) = P̄2(t)D
�(

¯
x)R−1 and P̄2(t) is the covariance estimate. The co-

variance estimate is updated by (1.3c) inserted A(
¯
z, t), D(

¯
x), G(x̄2), Q

R =




R� · · · 0M×M
...

. . .
...

0M×M · · · R�


 , (7.16)
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and R� is given by (6.28). The initial covariance estimate is P̄2(0) = P̄20

Define the estimation error ˜̄x2 � x − x̄2. Subtracting (7.15) from (7.4), inserting
(7.7), and neglecting noise yield the error dynamics

Σ̄x2 :
˙̄̃x2 = (A(

¯
z, t)− K̄2(t)C)˜̄x2 + ξ̄2(z,

¯
z, x, t), (7.17)

where ξ̄2(z,
¯
z, x, t) = (A(z, t)−A(

¯
z, t))x+(B(z)−B(

¯
z))u(t)+K̄1(t)ϕ̄(x−

¯
x).

7.2.3 Attitude Estimator

The attitude estimator in Section 4.2 with variables R̄n
b̄

, b̄b̄ars, σ̄, k̄I , and K̄p, and
reference vector (7.5) with p̄btib, i ∈ (1, N) is used to produce the attitude estimate
z̄ = (Rn

b̄
, b̄b̄ars), where Rn

b̄
is the matrix R̄n

b̄
projected onto SO(3). Its estimation

error is denoted ˜̄z = (Rn
b −Rn

b̄
, bbars − b̄b̄ars) and its error dynamics is

Σ̄z :
˙̄̃z = ˙̄̃z� + ξ̄z(p

b
t1b, ..., p

b
tN b, p̄

b
t1b, ..., p̄

b
tN b) (7.18)

where ˙̄̃z� is the error dynamics provided exact position estimates, i.e., p̄btib = pbtib
for i ∈ (1, N), and ξ̄z is the error caused by inexact position estimates. Naturally,
ξ̄z = 0 when p̄btib = pbtib ∀ i ∈ (1, N). The estimates p̄btib come from either x̄1 or
x̄2.

7.3 Stage 3: Linearized Kalman Filter
The thirds stage is identical for both second stage estimators. Denote therefore x̄ ∈
{x̄1, x̄2}. Using the linearization of iSBL measurements from a single transponder
(6.32), helps us find

h(x) = h(x̄) +H(x̄)(x− x̄) + ϕ(x− x̄), (7.19)

where ϕ(x− x̄) are higher order terms, ϕ(0) = 0, and

H(x) =



H1(x) · · · 0M×3 0M×3

...
. . .

...
...

0M×3 · · · HN (x) 0M×3


 , Hi(x) =



Hi1(x)

...
HiM




Hij =

�
(pbtib

−pbbcj
)�

�pbtib−pbbcj
�2 − (pbtib

−pbbcM
)�

�pbtib−pbbcM
�2

�
, j ∈ (1,M − 1), HiM =

�
(pbtib

−pbbcM
)�

�pbtib−pbbcM
�2

�
.

Now, the third stage estimator is defined by

˙̂x =A(t, z̄)x̂+B(z̄)u(t) + K̂(t)(y − h(x̄)−H(x̄)(x̂− x̄)), (7.20)
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where K̂(t) = P̂ (t)C�R−1 and P̂ (t) is the covariance estimate. The covariance
estimate is updated by (1.3c) inserted Ax(ž, t), H(x̄), Gx(x̄), Q and R given by

R =




R1 · · · 0M×M
...

. . .
...

0M×M · · · RN


 , (7.21)

where Ri for each i ∈ (1, N) is found by (6.28). The initial covariance estimate is
P̂ (0) = P̂0.

Define the estimation error x̃ � x − x̂. Subtracting (7.20) from (7.4), inserting
(7.19), and neglecting noise yield the error dynamics

Σ̂x : ˙̃x = (A(z̄, t)− K̂(t)H(x̄))x̃+ ξ̂x(x, z, x̄, z̄, t), (7.22)

where

ξ̂x(x, z, x̄, z̄, t) =(A(z, t)−A(z̄, t))x+ (B(z)−B(z̄))u(t)− K̂(t)ϕ(˜̄x).

The attitude estimator in Section 4.2 with variables R̂n
b̂

, b̂b̂ars, σ̂, k̂I , and K̂p, and
reference vector (7.5) with p̂btib, i ∈ (1, N) is used to produce the attitude estimate

ẑ = (Rn
b̂
, b̂b̂ars), where Rn

b̂
is the matrix R̂n

b̂
projected onto SO(3). Its estimation

error is denoted z̃ = (Rn
b −Rn

b̂
, bbars − b̂b̂ars) and its error dynamics is

Σ̂z : ˙̃z = ˙̃z� + ξ̂z(p
b
t1b, ..., p

b
tN b, p̂

b
t1b, ..., p̂

b
tM b) (7.23)

where ˙̃z� is the error dynamics provided exact position estimates, i.e., p̂btib = pbtib
for i ∈ (1, N), and ξ̂z is the error caused by inexact position estimates. Naturally,
ξ̂z = 0 when p̂btib = pbtib ∀ i ∈ (1, N).

7.4 Stability Analysis
The stability analysis of the body-fixed three-stage filter is conducted as follows.
First, the stability of the estimation errors ˜

¯
z, ˜̄z, and z̃ are collectively analyzed pro-

vided exact transponder baseline estimates
¯
pbtib, p̄

b
tib

, and p̂btib, respectively. Sec-
ond, the LTV and linearized KFs are analyzed. Lastly, the stability of the entire
cascade is analyzed. This is a deterministic analysis, meaning we analyze the sta-
bility without noise. Before the analysis, we need to state two assumptions:
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Assumption 7.4.1. There are at least M ≥ 3 non-collinear transceivers on the
vehicle.

Assumption 7.4.2. There are at least M ≥ 4 non-coplanar transceivers on the
vehicle.

Assumption 7.4.3. There are at least N ≥ 2 transponders in the vehicle’s sur-
roundings, and the baseline between them is not parallel with the local gravita-
tional field.

Proposition 7.4.1. Suppose for the attitude estimators in stage 1, 2, and 3 that
Kp is symmetric and positive definite, kI > 0, and σ ≥ 1. Now, we have in the
noise-free case that the equilibrium points ˜

¯
z = 0, ˜̄z = 0, and z̃ = 0 of the error

dynamics ˙̃
¯
z�, ˙̄̃z�, and ˙̃z� are GES under Assumption 7.4.3.

Proof. The proof follows directly from Grip et al. [52].

Proposition 7.4.2. The systems (A(t,
¯
z), C,G(x̄)) and (A(t, z̄), H(x̄), G(x̄)) are

UCO and UCC under Assumption 7.4.1 and (A(t,
¯
z), D(

¯
x), G(x̄)) is UCO and

UCC under Assumption 7.4.2.

Proof. The proof is similar to that of Proposition 6.4.1 in Appendix 6.B.

Proposition 7.4.3. Suppose the same as in Proposition (7.4.1), that Assumption
7.4.3 is true, and that there is no noise. Now, we have that the equilibrium points
˜
¯
z = 0, ˜̄xk = 0, ˜̄z = 0, x̃ = 0, and z̃ = 0 of the error dynamics cascade

¯
Σz–Σ̄xk–

Σ̄z–Σ̂x–Σ̂z for k ∈ {1, 2} are GES under Assumption 7.4.1 for k = 1 and 7.4.2
for k = 2.

Proof. The proof is given in Appendix 7.A

7.5 Results
Here, we denote the ATs in Section 7.1.1 and 7.1.2 by AT1 and AT2, respectively;
the LTV KFs in Section 7.2.1 and 7.2.2 by LTV KF1 and LTV KF2, respectively;
and the linearized KF with inputs from either LTV KF1 or LTV KF2 as Lin KF. A
standard EKF based on the same model as the linearized KF is used as benchmark.
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7.5.1 Simulations

In the simulations, M = 4 receivers and N = 2 transponders are assumed:

pbbc1 =




0.5
0.5
−0.5


m, pbbc2 =




0.5
−0.5
0.5


m, pbbc3 =



−0.5
0.5
0.5


m, pbbc4 =



0.5
0.5
0.5


m,

pnnt1 =



−50
−50
0


m, pnnt1 =



50
50
0


m.

The initial conditions are

pnnb(0) =



0
0
0


 , vnnb(0) =



0
0
0


 , Rn

b (0) = I3,

the ARS bias is bbars = [0.012,−0.021, 0.014]�, and the noise standard deviations
are

σacc = 0.01
m

s2
σars = 0.01

rad

2
σmag = 0.01

σy = 1m σ∂ = 0.01m.

The initial state estimates are all found from the following values

p̌nnb =



0
0
0


 , v̌nnb =



0
0
0


 ,



φ̌

θ̌

ψ̌


 =



0◦

0◦

0◦


 , b̌b̌ars(0) =



0
0
0



�

from which the estimates of all estimators are derived. The initial covariance matri-
ces of all KFs are P̌ (0) = I9. (̌·) is a placeholder for

¯
(·), (̄·), and (̂·). Additionally,

depth measurements modeled by (6.41) was added.

The KFs are implemented in discrete time.

The attitude estimator tuning parameters are chosen as
¯
σ = σ̄ = σ̂ = 1,

¯
Kp =

diag(1, 1, 10), K̄p = K̂p = diag(1, 1, 1),
¯
kI = .01 = k̄I = 0.001. In order to

speed up convergence, the tuning parameters Kp and kI for all attitude estimators
are set to 10I3 and 0.1 for the first 60 seconds, respectively.
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Table 7.1: MAE of Euclidean distance between AT estimates and true trajectory from 50
simulations with 4 receivers.

Est. XYZ [m]
AT1 2.735
AT2 1.039

Table 7.2: Horizontal and vertical MAE values from 50 simulations with 3 receivers. The
linearized KF uses LTV KF1’s state as linearization point.

Est. XY [m] Z [m]
AT1 1.838 1.407

LTV KF1 1.769 0.049
Lin KF 0.525 0.054

EKF 0.444 0.058

In the 500 seconds of simulation, the vehicle stands still for the first 100 seconds to
let the estimators converge. Then, it descends and moves in a lawnmower pattern
for 400 seconds.

NED position errors are used to compare the estimators, and are calculated from
the mean of

p̌nnb =
2�

i=1

(−pnnti +Rn
b
�p̌btib)/2,

where the true rotation matrix Rn
b was used. In Table 7.1, the MAE values of the

two ATs over 50 simulations with 4 receivers is shown. Clearly, AT2 suffers less
from noise than AT1. The ATs’ MAE values in Table 7.1–7.3, reveal another dif-
ference between the ATs. The larger MAE of AT1 with 4 receivers (2.735m) than
with 3 receivers (

√
1.8382 + 1.4072 = 2.31m is explained by the large variance

induced by AT1’s noise sensitive calculation. In contrast, AT2’s MAEs in the two
cases are almost identical (1.039m vs.

√
0.8812 + .5532 = 1.040), evidencing the

low variance of AT2’s calculation. From this, we conclude that AT2 is preferred
over AT1 when 4 or more receivers are available. This was an expected result as
the variance of AT1, (6.22), increases quadratically with distance, while the vari-
ance of AT2, (6.28), is constant. Furthermore, when only 3 receivers are available,
solutions replacing the need for the last receiver by depth measurements should be
sought for reliability of the estimators.

In Table 7.2, the MAE values from 50 simulations with 3 receivers are seen. Here,
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Table 7.3: Horizontal and vertical MAE values from 50 simulations with 4 receivers. The
linearized KF uses LTV KF2’s state as linearization point.

Est. XY [m] Z [m]
AT2 0.881 0.553

LTV KF2 0.402 0.048
Lin KF 0.388 0.054

EKF 0.549 0.058

the iterative improvement in each step is apparent by the horizontal MAEs.

Table 7.3 shows a similar simulation but with 4 receivers. Here, no improvement
in performance is seen in the third stage linearized KF and EKF relative to LTV
KF2. This indicates that there is little benefit from adding the third stage KF when
M ≥ 4. This is due to LTV KF2 being almost identical to the linearized KF.
Furthermore, the high performance of LTV KF2 allows for a significant reduction
in computational cost by not implementing the third stage filter.

Since the there is little difference in the position estimation, one expects the atti-
tude estimates based on the transponder baseline reference vectors to be similar as
well. This is confirmed in Figure 7.2, where the yaw error in one of the simulations
is shown. Only yaw is shown since there is virtually no difference between the roll
and pitch estimates of the different estimators. This is because estimation of roll
and pitch are largely based on accelerometer measurements, which are common
for all estimators.

Interestingly, the body-fixed filters in this chapter performed well when using
Gx(x̄), and not Gx(0) as was needed in Chapter 6. The reason for this is not
exactly known, but it is speculated that using multiple transponders gives a less
erroneous build up of the covariance matrix. Alternatively, the shorter distance to
the transponder makes the difference. Since the build up in the covariance matrix
is quadratic in pbtib through the term GQG� in (1.3c), this can explain the behavior.
However, an improvement in performance was experienced also in the simulation
with a shorter distance to transponder in Chapter 6. Lastly, it cannot be ruled out
that it is caused by an implementation error, even though the code implementation
of the filters in Chapter 6 and 7 are identical, differing only in the input values.
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Figure 7.2: The yaw estimation errors in Euler angles in one of the 50 simulations. The
legend describes the baseline estimates that are used in each estimator.

7.5.2 Experiments

The experimental set-up was identical to that in Section 6.5.2 with transponders at

pnt1b =



−2.12
1.92
−0.76


m, pnt2b =




3.15
1.89
−0.11


m.

The true trajectory and estimates of pbt1b from experimental data are shown in Fig-
ure 7.3. We see that AT2 is more noisy and seems to react more to outliers, which
is expected. The similar performance of LTV KF2 and Lin KF from the simula-
tions is supported by the experimental results as well. A slower convergence of
the EKF than LTV KF2 and the linearized KF is evidenced. This may be improved
somewhat by tuning, but faster convergence is a benefit of the 3SF nonetheless.

Figure 7.4 shows the true and estimated yaw trajectories, from which only small
performance differences can be seen.
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Figure 7.3: The true trajectory in (red) and the AT (gray), LTV KF (blue), linearized KF
(black), and EKF (cyan) estimates of it.
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Figure 7.4: The true yaw trajectory (red) and its estimates based on reference vector from
AT (gray), LTV KF (blue), linearized KF (black).
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7.6 Conclusion
When a magnetometer no longer measures only Earth’s magnetic field but also
those produced by e.g. on-board motors or external infrastructure, it cannot be
relied on for attitude estimation. Therefore, another reference vector is needed
for yaw estimation. This chapter describes a method for yaw estimation using
transponder baselines that are known in NED and estimated in the body-fixed co-
ordinate frame. The transponders baselines are estimated by iSBL measurements
with 3 or more receivers. First, crude calculation of the body-fixed positions of
the vehicle relative the transponders are used to estimate a preliminary yaw esti-
mate. Then, both position and attitude estimates are incrementally improved in
two subsequent stages. The resulting 3SF for both position and attitude estimation
is proven to be GES, and its performance is analyzed in a simulation study and
using experimental data.

When 3 receivers are available, the crude calculation is highly sensitive to noise,
and all three stages are needed in order to yield good position and attitude estima-
tion. However, with 4 or more receivers, a less noise-sensitive calculation can be
used and only two of the steps are needed. For higher reliability and the possibility
for a significant computational cost reduction with 3 receivers, a solution should be
looked into where the depth measurement replaces the need for the fourth receiver.
This way, the calculation used for 4 or more receivers can be utilized, which has a
constant variance w.r.t. distance to the transponder relative to the calculation used
for 3 receivers which increases quadratically with distance.

The 3SF was shown in both cases to yield approximately the same performance as
the EKF used as benchmark. Additionally, 3SF estimated the yaw of the vehicle
with satisfying accuracy.

This chapter aimed at answering the research question “Can the iSBL network
with two transponders replace the need for the generally unreliable magnetic field
measurements? Furthermore, can the XKF method be applied to this problem to
give global stability of the solution?”. This chapter has shown that the iSBL can be
used for attitude estimation with multiple transponders and attain GES estimation
by using the XKF method.





Appendix

7.A Proof of Proposition 7.4.3

In the noise-free case, we have that the AT in Section 7.1 is exact, i.e.,
¯
pbtib =

pbtib ∀ i ∈ (1, N) and consequently
¯
ξz = 0. Therefore, Proposition 7.4.1 directly

proves that the origin ˜
¯
z = 0 of

¯
Σz is GES.

The proof of Proposition 6.4.1 in Appendix 6.C can now be used to prove that the
origin ˜

¯
z = 0 and ˜̄xk = 0 of

¯
Σz–Σ̄xk is GES for k = (1, 2).

Now, a similar argument as that of Appendix 6.C.1 proves that the origin ˜
¯
z = 0,

˜̄xk = 0, and ˜̄z = 0 of
¯
Σz–Σ̄xk–Σ̄z is GES for k = (1, 2).

A similar argument as that of Appendix 6.C.1 proves that the origin ˜
¯
z = 0, ˜̄xk = 0,

˜̄z = 0, and x̃ = 0 of
¯
Σz–Σ̄xk–Σ̄z–Σ̂x is GES for k = (1, 2).

Finally, a similar argument as that of Appendix 6.C.1 proves that the origin ˜
¯
z = 0,

˜̄xk = 0, ˜̄z = 0, x̃ = 0, z̃ = 0 of
¯
Σz–Σ̄xk–Σ̄z–Σ̂x–Σ̂z is GES for k = (1, 2). This

concludes the proof.
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Chapter 8

Conclusion and Future Work

Here, concluding remarks on the researched topics are given, along with a discus-
sion related to the overarching research question posed in Section 1.6, and also to
future research.

8.1 Conclusion
This thesis presented new theoretical results on aided inertial navigation (AIN)
of underwater vehicles. The position and attitude estimation problems were con-
sidered, and estimators with global and exponential convergence were developed.
Simulation and experimental studies showed by comparison of mean absolute error
(MAE) values that the filters developed in this thesis achieved extended Kalman
filter (EKF)-like performance, which along with the guaranteed stability consitute
significant contributions.

In Chapter 4, the multiplicative exogenous Kalman filter (MXKF) was developed.
It is to the best of the author’s knowledge the first Kalman filter (KF)-based attitude
estimator using a minimal state error representation and with proven global expo-
nential stability (GES). Both in simulations and experimentally, it was shown to
have identical steady-state performance as the multiplicative extended Kalman fil-
ter (MEKF) significantly better than the nonlinear observer about whose estimate
the models were linearized. Furthermore, the MXKF was shown to have better
transient performance than the MEKF when the nonlinear observer was tuned ag-
gressively for fast convergence.

In Chapter 5, three-stage filters (3SFs) for position and wave speed estimation us-
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ing a long baseline (LBL), depth, and inertial measurement unit (IMU) measure-
ments were developed and shown to be GES. Along with the 3SF of Stovner et al.
[68], a previously unpublished 3SF incorporating the depth measurement in the
algebraic transformation (AT) was developed, showing a significant improvement
in performance. This allowed a linearized model about an estimate calculated in
the AT to be used in the second stage filter. The second stage filter was shown in
a simulation study to yield EKF-like performance, meaning one can be saved the
computational burden of a third stage filter.

Chapter 6 studied the position estimation of an underwater vehicle using the in-
verted short baseline (iSBL) network with the requirement of only one transponder
on the sea floor. A GES attitude observer provided attitude and angular rate sensor
(ARS) bias estimates using accelerometer and magnetometer measurements. A
total of four 3SFs using either a north-east-down (NED) or body-fixed formulation
were developed. A simulation study concluded that the NED formulation yielded
more accurate estimation, due to the sensitivity to noisy attitude and ARS bias
estimates when using the body-fixed formulation. Furthermore, one of the NED
formulated filters was shown to yield similar performance in the second and third
stages, meaning computational complexity can be lowered at a small performance
cost.

The set-up studied in Chapter 7 was similar to that of Chapter 6, except it was
assumed that the magnetometer providing heading information to the attitude es-
timator was compromised. To remedy this, two transponders on the sea floor was
assumed, and it was shown how body-fixed estimates of the underwater vehicle’s
position relative to each of them could be used as reference vectors to the attitude
estimators, thus replacing the magnetometer measurements. A 3SF that incremen-
tally improved the accuracy of both attitude and position estimates was developed
and shown to be GES. The 3SF of Stovner and Johansen [69] was improved by uti-
lizing a formulation developed in Chapter 6, resulting in a previously unpublished
3SF. A simulation study showed a significant performance improvement, which
was also experimentally verified.

In Section 1.6, an overarching research question was posed: “What are the theo-
retical and practical limitations of the exogeonus Kalman filter (XKF) and which
implications do these have for AIN of underwater vehicles? Under which circum-
stances should other methods be preferred?”. The XKF is theoretically limitated
to differentiable systems of which an auxiliary state estimate is attainable. Specif-
ically, an auxiliary estimate is needed only of the states that appear nonlinearly
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in the dynamics or measurement equations. This is e.g. seen in the problems of
chapters 5–7 where an auxiliary velocity estimate was not needed since it never
appeared nonlinearly. However, non-unique or singular state representations may
cause problems, evidenced by Chapter 4. There, a work-around was found such
that GES of the MXKF could be shown, but it can not be concluded that this can
be done for all such systems. A practical limitation of this is that the auxiliary esti-
mate must be good enough, both w.r.t. stability properties and estimation accuracy.
The former is important as it is not interesting to inherit poor stability properties.
In that case, an EKF could be implemented instead and efforts saved. The latter is
important for the estimation accuracy of the XKF. It has been shown in this thesis
that the estimation accuracy of the XKF’s linearization point does not need to be
particularly good, especially seen in Example 1.3.2. However, a large error will
cause the XKF to perform considerably worse than an EKF, which was seen in
Chapter 5.

To show the relevance of the last question, one needs only look at Chapter 6, in
which a linear measurement model was achieved through algebraic manipulation
that gave performance similar to the one achieved through differentiation. Ad-
ditionally, this solution allowed for the implementation of only the second stage
KF, thus saving the computational cost of a third stage filter. Such solutions should
especially be pursued as alternatives to the 3SF, which is computationally demand-
ing. This was a special case, and hence, it cannot replace the more general applica-
bility of the XKF. Chapter 5 presented another way of reducing the computational
burden of the 3SF. There, it was shown that with an accurate enough linearization
point calculated explicitly in the first stage, a linearized KF could be implemented
directly, thus avoiding the need for two KFs.

8.2 Future Work
From the author’s point of view, there are a range of interesting practical and theo-
retical research topics that would considerably improve the work presented in this
thesis. Specific suggestions were given in each chapter, and here, more general
topics are discussed.

Practical work that should be undertaken for the position estimation problem in-
cludes further experimental verification with greater distances to transponders. In
this thesis, the pool experiments were limited by the size of the volume of the pool
visible to the Qualisys Oqus Underwater camera system. This gives a limited ex-
perimental verification of the filters, which should be extended by sea trials with
other position measurements for verification.
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This thesis has not attempted to show instabilities occuring in the implemented
EKFs. A study of the problems discussed in chapters 4–7 including circumstances
that make an EKF diverge while observing the XKF’s response could be of signif-
icant value.
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