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4  Results

»-NWO1 | Fit energy [eV] | Lifetime, decay 1 [ps] | Lifetime, decay 2 [ps]
1.462 — 1.475 720 198
1.483 — 1.505 194 633
1.505 — 1.517 546 184
1.459 — 1.518 648 193

Table 4.10: Carrier lifetimes for 1»-NWO01, from data plotted in figures 4.26d
("decay 17; red curves, "decay 2”; blue curves). Obtained from curve fitting the
signal to exponential decay functions.

The four fits all show similar results. Two decay functions are needed, both
starting at similar intensities. One of the signals decays fast, at ~ 190ps, while

the other decays slower, at ~ 550 — 720ps.
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4.4 Time-resolved photoluminescence
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Figure 4.26: TRPL signal decay plots for ¥»-NWO01, taken by curve fitting the
signal in figure to exponential functions. See table for numerical results.
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5 Discussion

The NWs studied in this work are all SC GaAs/AlGaAs core-shell NWs grown
by the MBE VLS method. The growth process yields long, pure segments of
ZB GaAs. During the growth termination process the Ga catalyst droplet was
consumed. This step can give WZ segments and many ZB-WZ stacking faults,
affecting optical properties. The GaAs core was then covered in a AlGaAs shell
and a GaAs cap grown over that. See section for information on the growth
process, and section for specific growth parameters used.

Temperature-, laser excitation power-, polarization dependent- as well as time-
resolved PL measurements have been done on the three main samples of SC
GaAs/AlGaAs core-shell NWs, and one reference sample. The main difference
between the three samples was the V/III ratio that was used during growth (Tab.
, and this will be the focus of the discussion.

The hypothesis is that a higher V/III ratio is beneficial for the purity of the
NWs, thus improving the optical properties. Since the growth is catalyzed by
a Ga droplet, more As is needed to make the GaAs material stoichiometric. A
higher V/III ratio is expected to yield fewer Ga antisite defects in the core region.
Ga antisite defects in the NW can affect the energy of emission and/or introduce
non-radiative transitions, which are detrimental to emitting devices.

The results are presented in section [4] In this section, the results from each
sample will first be analyzed separately, before a synthesis and comparison at the
end. References will be made to the appendices where necessary in order to enforce

conclusions.

5.1 Sample ¢

Sample ¢ was represented by 0-NW14, while results from other NWs can be found
in the appendix. This sample had the lowest V/III ratio of the three, 17.4. If the
hypothesis is correct, these NWs should show the weakest emission from the core
region, and is least likely to have free exciton transitions.

From figure [4.1] it is evident that this sample shows little to no emission at the
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5 Discussion

7B GaAs free exciton energy, of 1.515eV, the main peak emitting at 1.477eV for
10uW LP . At very high laser power (LP > 30uWV), some emission can be seen at
this energy, this might also be due to broadening of the peak at higher excitation.
The temperature dependence of the emission energy, seen in figure [4.8] also shows
that the NW emits at energies far below that of pure ZB. This is likely to be
predominantly type-II recombination, meaning the sample has a high number of
ZB-WZ stacking faults and/or other defects.

Comparison of the emission intensity at 14K and 290K (Fig. [4.12a), showed a
relatively small decrease in intensity as compared to the other samples (Tab. .
Since the sample is likely to have many defects, emission at low temperature might
be suppressed, whereas emission at room temperature is not. This can contribute

to the low ratio.

The polarization data, found in figure and table show neither parallel
nor perpendicular polarization dependence, a sign of defect-related peaks. It is also
noticed from figure that the emission has very little polarization dependence.
This is also seen for other NWs from sample §, in Appendix [B] If emission comes
from the defect-rich tip of the NW, the dielectric effect can be weaker than in
the core regions. In the core, the length is much larger than the diameter, causing
strong parallel polarization from dielectric mismatch. For short emitting regions in
the tip, however, this might not be the case, causing less polarization dependence

for this sample.

The TRPL measurements give several peaks were emitting over a wide range of
energies (Fig. . At lower energy, 1.474 —1.496eV, two lifetimes are observed,
at 300ps and 881ps. At energy 1.497 — 1.530eV/, one lifetime of 560ps is observed.
Free excitons from SC NWs have life times of 1ns or more [51]. The emission
measured here, is likely defect related, since no excitonic peaks are seen (Fig. |4.1]).
Defect related transition lifetimes are often longer than those of free excitons,
whereas these are shorter. This data therefore means that there is strong non-
radiative recombination in the samples, most likely due to poor quality of the core

material.

All the data indicates that sample ¢ contains many defects and has little to no
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5.2 Sample ¥

emission from the core of the NWs. Since no excitonic transitions are observed,

the sample shows poor promise for optoelectronic applications.

5.2 Sample ¢

Sample 1, represented by »-NWO01, had a V/III ratio of 23.8, the middle value of
the samples. It is therefore expected to have somewhat better optical properties
than sample 0.

The PL emission from 1-NWO01 can be seen in figure [£.2] The peak is not
as broad as 0-NW14, but the main emission at 1.481eV is still far below that of
pure ZB GaAs. The temperature dependence (Fig. is an indication of type-II
transitions, and a high number of defects. The data presented in table [4.4] and
figure [4.12D] showing the decrease in emission intensity at 14K and 290K, also
show similar results as d, where defects may contribute to the low value.

The PRPL measurements, however, show close to parallel polarized emission
for peaks emitting at 1.486eV and 1.501eV. This is seen in figure and table
[4.17] Since this is far below the free exciton energy, this is most likely also defect
related emission, that coincidentally is parallel polarized.

The time-resolved experiments show at least three peaks emitting at different
energies (Fig 4.23)). For the low energy peak, emitting at 1.462 — 1.475eV, the
lifetimes are 198ps and 720ps. The medium peak, 1.483 — 1.505eV" has lifetimes
194ps and 633ps. The high energy peak, 1.505 — 1.517eV, has lifetimes 193ps and
648ps. It is clear that the faster decay is approximately the same for the three
peaks. The higher lifetime, however, decreases as energy increases. As for sample
0, the measurements on this sample indicates defect related emission. The lifetimes
measured are below that expected from defect transitions, meaning non-radiative
transitions and impurities in the core.

It should be noted that of the fourteen NWs analyzed in this sample, one
NW did show what could be excitonic emission. This was ¢-NW12, and data
from this NW is presented in Appendix [A] The PL spectra in figure shows
emission close to the 1.515eV energy, and the temperature dependence of this
peak is relatively close to that of bulk ZB (Fig. Because this NW was not
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representative for sample v, it was not presented in this report.

The data shows that sample ¢ has similar properties as sample §, with one
exception out of fourteen NWs. For the thirteen remaining NWs; no excitonic
emission and indications of many defects and non-radiative transitions, means the

sample has unsuitable optical properties.

5.3 Sample ¢

0-NW16 was used to represent NWs from sample . The sample had a V/III ratio
of 30.1, higher than the other samples. It is therefore expected to be the sample of
highest purity and likelihood of showing ~ 1.515eV emission from the core region.

0-NW16 emitted from three peaks at low temperature, one at 1.500eV and one
at 1.517eV (5uW LP), as seen in figure[4.3] Another peak is resolvable at 1.470eV/
for 1uW LP. Since the low energy 1.470eV emission does not grow in intensity
for higher excitation power, the number of states emitting at this energy becomes
saturated. These states likely come from type-II transitions and/or other defects.
The emission near the free exciton emission energy of 1.515el means it can be
possible to detect free excitons in this NW.

The high energy peak was curve fitted to Gaussians for increasing laser power,
and fitted to a near-linear function (Fig. [4.4). This fit shows a near linear de-
pendence of emission intensity on laser power, in accordance with free exciton
emission. The FWHM was found to be 16.3meV for this peak at 5 LP (Tab.
, an acceptable value for an excitonic peak.

The temperature dependence for the 1.500eV and 1.517eV peak is plotted
in figure [4.10, The high energy emission follows close to that of the ZB GaAs
reference curves, further indicating free exciton emission at low temperature. At
temperatures 250K — 293K, however, the energy is slightly larger, meaning that
emission is then band-to-band.

Figure and table [4.4]show the decrease in emission intensity between 16 K
and 293K, which is three orders of magnitude. This ratio has to be improved, in
order to optimize the material quality for device applications.

The polarization dependence in figure clearly shows two transitions of
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similar energy, as observed for other experiments on 0-NW16. The polarization
dependence found from figure [4.19] is presented in table [£.7] The lower energy
peak emits close to parallel polarization, 7.5°, and the higher energy peak emits
at —10° polarization, also close to parallel. The lower peak cannot be free exciton
emission, since it emits at too low energy, but the higher peak is likely to be
excitonic emission. See table for more polarization data from ~ 1.515eV
peaks of o-NWs.

Sample o shows the best promise of the three samples analyzed. All measure-
ments indicate free exciton transitions, meaning this sample is the first to show

emission that can be attributed to pure ZB GaAs from the core region of the NWs.

5.4 Sample «

Sample o was meant to be a reference sample in this work, since it was previously
shown to emit close to the free exciton level. a-NW09 was used to represent NWs
from this sample, which had a V/III ratio of 20.0, and a growth rate of 0.3M L/s,
while the other samples had 0.7ML/s.

Figure shows the emission spectrum of a-NW09 at 10K. Two peaks are
predominant, emitting at 1.506eV" and 1.515eV at low temperature and 5uWW LP.
The high energy peak is fitted to a Gaussian and near-linear function to find the
laser power dependence, as seen in figure . The fit yields a LP? dependence,
indicating biexcitons. This might be affected by three measurement values at
LP < 1uW, where the 1.515eV peak is almost negligible. The peak has a FWHM
of 11.6meV | making it narrower than the high energy peak of o-NW16.

The temperature dependent plots in figure shows that the 1.515eV emis-
sion follows close to bulk ZB GaAs at temperatures below 250K, a further sign it
might have free exciton emission. The 1.506eV transition is slightly below for all
energies, meaning it can be affected by defects and stacking faults. The decrease
in emission intensity between 10K and 293K (Fig. and Tab. is large,
but about half of that for sample o.

The PRPL measurement on sample «, seen in figure 4.20] confirm that there

are two strong peaks emitting at similar energies. The sin? fits from figure m
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show that the peaks are almost perpendicularly polarized with respect to each
other (Tab. . The higher energy transition, emitting at 1.519¢V, is polarized
at 121.4°, which is closer to perpendicular than parallel. WZ GaAs is known
to emit perpendicularly polarized light, meaning that this transition might come
from a WZ segment in the NW. It is, however, ~ 30° degrees away from perfectly
perpendicular polarization, so this NW can have several defects as well. Table
contains data from ~ 1.515eV" peaks of other a-NWs, with similar results.
Sample « does show good optical properties, and several signs of free exciton
emission. The PRPL measurements, indicate that the excitonic emission can be

coming from a large WZ segment in the tip of the NW.

5.5 Conclusions and future outlook

The measurements done indicate that samples  and ¢ have relatively similar opti-
cal properties. The peaks are both located at around 1.48eV', and the temperature
dependence is indicating type-II transitions. The polarization-resolved measure-
ments show different properties, however, where ¢ has far from parallel polarized
emission, whereas 1) shows almost parallel polarization. Due to the emission energy
of the peaks of 1, this cannot be free exciton emission. Therefore it is believed that
the polarization of type-II emission may be depending on the specific configuration
of defects in the NW, making it highly irregular between NWs from the same (or
similar) samples. The TRPL data for these samples shows lifetimes lower than
that of free excitons. For defect-related transitions this is not expected, and can
be the result of bad AlGaAs shell properties or poor GaAs core quality. However,
shell issues are unlikely, as the thickness and composition is as commonly reported
for working NWs of this type [45] [111] [112], even with variations throughout the
shell. The lifetimes are therefore attributed to core issues, and strong non-radiative
transitions.

Sample o was the only sample that exhibited free exciton emission, a strong
indication of emission from the pure ZB region and relatively few defects and
stacking faults in the core. The PL emission energy, the temperature dependence,

the FWHM, the laser power dependence and the polarization-resolved measure-
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5.6 Sources of error

ments all support this claim. NWs from sample o show that a higher V/III ratio
is beneficial to the optical properties of the NWs. The emission intensity decreases
drastically from low- to room temperature, a property that requires improvement.
Increasing the quality of the GaAs core and improving the structure in the tip
region will be important in order to achieve this. One approach is to grow an
axial AlGaAs insert before the solidification process of the Ga droplet is initiated.
This will create a barrier between the defect-rich tip and the emitting core. Still
more configurations to growth parameters are needed before sufficient quality is
achieved for use in optoelectronic applications.

Sample «, which was used as a reference sample, also showed free exciton
emission behavior around the 1.515eV energy, as was also found in another work
[42]. The polarization-resolved measurements, which were not conduced earlier
on «, show that light emitted at this energy is close to perpendicularly polarized,
although shifted. This can mean that the emission comes from free excitons in
WZ GaAs segments, possibly located in the tip. HR-TEM should be conducted
to explore this.

In summary of the results, sample ¢ has superior properties to the other two
samples, § and . Thus, the hypothesis that a higher V/III ratio is beneficial to
the optical properties of NWs, is seemingly confirmed. Further analysis of o is
recommended, such as TRPL measurements and HR-TEM.

It should be noted, that even though « had a V/III ratio lower than that of v,
it showed far superior properties. This can mean that the growth rate of 0.3M L/ s,
used for «, is preferred to the growth rate of 0.7M L/s, used for the other samples.
It is proposed that more samples are grown at V/III ratios above that of o, 30.1,
and that and that the growth rate is decreased to 0.3M L/s for some of these
samples. Approaches to passivate the tip, such as axial AlGaAs inserts, should

also be explored.

5.6 Sources of error

Here follows a section about the sources of error that could arise from the experi-

ments done.
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The optical system is highly sensitive, it is thus necessary to optimize the
setup by adjusting mirrors and other optical components at the start of every new
experiment. This optimization can change the measured signals by more than one
order of magnitude, making a comparison of the emission intensity from different

samples futile.

There is some drift in the system, causing the focus of the laser beam to shift
over time. This is most noticeable for measurements that take longer time, such
as the polarization measurements. This was accounted for by having some overlap
in the measurements, where the compensator angle, C' = (0° is equivalent to 90°
and C' = 10° is equivalent to 100°. These measurements were compared, to ensure
a minimal change in the signal. NWs with several emitting peaks are particularly

sensitive to drift.

All components in the polarization setup (Fig. can have an offset of up to
42°. This value is below that of the resolution of these measurements, +5°. The
polarizer used in the PRPL measurements , was set at 90° to the optical table
for all measurements. It was found that a value of 90° on the polarizer wheel, in
fact caused the polarizer to be 55° to the optical table. This error was taken into

account when analyzing the PRPL data.

The beam splitter cube (Fig , has polarization dependent transmission for
wavelengths below ~ 700nm. This affects the excitation dependent measurements,
where the polarized laser light reflected through the cube had wavelength 532nm.
The degree of polarization, as given by equation ([2.34)), was thus affected for
polarization between 0° and 90°, and the direction of polarization can shift. At
parallel and perpendicular polarization, the degree was not affected. At high
excitation and negligible diameter-to-length, parallel absorption is stronger than
perpendicular absorption by order of ~ 50, due to the dielectric effect |[113]. This
dominates over the change in polarization due to the beam splitter cube, and the
approximate orientation of the NWs can be found. The use of this type of beam
splitter was necessary, as other alternatives show lower transmission of the signal.
This would require longer exposure, increasing drift and lowering the signal-to-

noise ratio. Note that emission polarization measurements are unaffected. The

112



5.6 Sources of error

50:50 Cube Beamsplitter Transmission

50
Q)
<
c
el
()
2
£
(2] 30 S-Polarization
% e P-Polarization
S
| -
20

600 700 800 900 1000 1100 1200
Wavelength (nm)

Figure 5.1: The transmission spectrum of Thorlabs BS017 beam splitter cube, for
S-polarization and P-polarization [94].

polarized light transmitted through the cube is emitted from the sample, and has

wavelength ~ 820nm.
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Appendices

A Sample »-NW12

1-NW12 was one in fourteen NWs from sample ) that showed an emission peak

near the exciton energy, ~ 1.515eV.

10" PL plot, y-NW12, T=14K
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(a) PL emission spectrum and emission energy for ¢-NW12 at 14K . High energy peak emitting
at 1.518eV.

Temperature dependence of emission energy, y-NW12
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(b) Temperature dependence of emission energy for . Also included in the plot is data

for a ZB GaAs epilayer and a Varshni fitted curve for bulk ZB GaAs.

Figure A.1: PL spectrum and temperature dependence of »-NW12.

127



B Sample §, Polarization

B Sample 9, Polarization

Polarization dependence of NWs from sample 4.

False color polarization plot, 5-NW08, T=14K
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Figure B.1: False color polarization plots of NWs from sample §, measured at
14K.

128



C Sample o, Polarization

Polarization dependence values of ~ 1.515eV peaks obtained from sin? fits, for

sample o.

False color polarization plot, c-NW09, T=12K Integrated intensity, c-NW09, T=12K, 1.5121 eV
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(a) False color plot. (b) sin? fit of 1.512e¢V peak.

Figure C.1: False color polarization plot and sin? fit of o-NWO09, obtained at 12K .

False color polarization plot, c-NW18, T=12K Integrated intensity, c-NW18, T=12K, 1.5209 eV
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Figure C.2: False color polarization plot and sin? fit of o-NW18, obtained at 12K .
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C Sample o, Polarization

Peak energy [eV] Angle to NW [deg]
o-NW09 1.512 —21.1°
o-NW18 1.520 —16.6°

Table C.1: Polarization data for c-NW09 and 0-NW18 at 12K, resulting from
curve fitting of peaks to a sin? function. Plots|C.1b| and [C.2b| were used for curve
fitting.
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D Sample o, Polarization

Polarization dependence values of ~ 1.515eV peaks obtained from sin? fits, for

sample a.

False color polarization plot, o-NW03, T=10K
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Figure D.1: False color polarization plot and sin? fit of -NWO03, obtained at 10K .

False color polarization plot, a-NW04, T=10K
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Figure D.2: False color polarization plot and sin? fit of -NWO04, obtained at 10K .
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D Sample «, Polarization

Peak energy [eV] Angle to NW [deg]
a-NWO03 1.518 113.5°
a-NW04  1.523 119.6°

Table D.1: Polarization data for a-NW03 and a-NW04 at 10K, resulting from
curve fitting of peaks to a sin? function. Plots|D.1b|and [D.2b| were used for curve
fitting.
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