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Density gradient theory for �uids has played a key role in the study of interfacial phenomena for a
century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon,
represented by the cut and shifted Lennard-Jones �uid. The starting point has traditionally been a
Helmholtz energy functional using mass densities as arguments. By using rather the internal energy
as starting point and including the entropy density as an additional argument, following thereby the
phenomenological approach from classical thermodynamics, the extended theory suggests that the
con�gurational part of the temperature has di�erent contributions from the parallel and perpendic-
ular directions at the interface, even at equilibrium. We �nd a similar anisotropy by examining the
con�gurational temperature in molecular dynamics simulations and obtain a qualitative agreement
between theory and simulations. The extended theory shows that the temperature anisotropy origi-
nates in nonlocal entropic contributions, which are currently missing from the classical theory. The
nonlocal entropic contributions discussed in this work are likely to play a role in the description
of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they in�uence the
temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of
the Lennard Jones �uid, we �nd that the maximum in the temperature anisotropy coincides precisely
with the maximum in the thermal resistivity relative to the equimolar surface, where the integral
of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at
equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.

I. INTRODUCTION

In the narrow interfacial region, properties change dra-
matically in only a few nanometers. Interfacial properties
are crucial for a wide variety of phenomena, ranging from
DNA replication [1] to volcano eruptions [2] and weather
forecasts [3]. The time-average local structure of inter-
faces can be described by classical density functional the-
ory for �uids, which has played a key role in the study
of interfacial phenomena for more than a century [4, 5].
The �rst approximation to classical density functional
theory is called Density Gradient Theory or Square Gra-
dient Theory (SGT). Such theories have provided insight
into how the surface tension of �uids depends on temper-
ature, curvature and composition [6�8]. They have also
been used to study nonequilibrium properties of inter-
faces such as the temperature- and curvature-dependence
of the interface transfer coe�cients [9�12].
There is still a disagreement between the theoretical

predictions from classical density functional theory and
experimental values for the surface tension. This discrep-
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ancy has been attributed to temperature dependent in-
�uence parameters [13] or to capillary waves [14]. In this
work we will show, by an extension of SGT, how the clas-
sical expression for the surface tension is missing terms
originating in nonlocal entropic contributions. These
contributions could in�uence both the temperature- and
curvature dependence of the surface tension and may ac-
count for part of the discrepancy between experiments
and theory.

The extended theory presented in this work suggests
that the con�gurational part of the temperature has
anisotropic contributions across the interface, even un-
der equilibrium conditions. Even though temperature is
a familiar concept to most, it is debated in the litera-
ture [15�27]. Frequent discussions debate whether the
temperature of a nucleating cluster is higher or lower
than the temperature of the surrounding vapor [25�27],
or if the temperature of an imploding bubble can become
su�ciently high to trigger thermonuclear fusion [21�23].
Further progress on these topics requires the tempera-
ture to be properly understood in highly heterogeneous
systems such as at interfaces. We test our extension of
SGT by performing molecular dynamics (MD) simula-
tions, and �nd a temperature anisotropy which agrees
qualitatively with the theoretical predictions.
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The results from our simulations also indicate a sur-
prising link between the anisotropy in the con�gurational
temperature in equilibrium simulations and the Kapitza
resistance which quanti�es the interfacial resistance to
heat transfer under nonequilibrium conditions [28�33].
For solid-solid and solid-liquid interfaces, the Kapitza re-
sistance has been described theoretically in terms of the
acoustic and di�use mismatch models [34]. For the vapor-
liquid interface however, the Kapitza resistance remains
poorly understood, despite its importance in evapora-
tion and condensation [35]. For instance, according to
kinetic gas theory [35], the Kapitza resistance gives a
temperature-jump that is located in the so-called �Knud-
sen layer�. Kinetic gas theory correctly predicts that the
temperature-jump is at the vapor-side of the interface,
however, the predicted magnitudes are far from the val-
ues found in experiments or simulations, even for simple
�uids [20, 36]. Moreover, while nonequilibrium molecu-
lar dynamics simulations show that the layer containing
the temperature-jump decreases in size with decreasing
temperature, kinetic gas theory predicts the opposite be-
havior [35, 37].
Obtaining the Kapitza resistance with SGT requires

today a semi-empirical �t of the local thermal resis-
tivity function by utilizing results from nonequilibrium
molecular dynamics simulations [11, 37]. In this work,
we connect the temperature-jump at nonequilibrium
to equilibrium-properties of the interface. This sheds new
light on the origin of the Kapitza resistance of the vapor-
liquid interface and may reveal a route for further devel-
opment of density functional theory for �uids to make
the theory predictive, not only for the surface tension,
but also for the transport properties of the interface such
as the Kapitza resistance.
The paper will be structured as following. In Sec. II,

we revisit the fundamentals of density gradient theory
and elaborate why the classical theory is missing nonlo-
cal entropic contributions. It will also be explained why
these are expected to result in anisotropic contributions
to the con�gurational temperature across interfaces. We
give in Sec. III the technical details about our MD sim-
ulations. In Sec. IV we present the results, where we
show that the nonlocal entropic contributions that are
currently missing from the classical theory play a role in
the description of both equilibrium and nonequilibrium
interfacial properties. We shall demonstrate how a closer
investigation of the con�gurational temperature can be
used to elucidate a part of the interfacial structure which
has hitherto remained hidden. Eventually, concluding
remarks are given in Sec. V.

II. THEORY

In this section, we shall revisit the fundamentals of
Square Gradient Theory (SGT). We expect the general
arguments particularized for SGT to apply also to more
sophisticated variants of density functional theory. SGT

is capable of reproducing results from MD simulations
to a good accuracy for many �uids. In fact, for the
particular �uid we consider in this work (argon/Lennard
Jones �uid), the SGT approximation gives results which
rival those from more sophisticated formulations (see
for instance Refs. 5 and 38). Rather than using the
Helmholtz energy as starting point like in the classical
theory [39, 40], we shall in Sec. II A use the internal en-
ergy as starting point and introduce the entropy density
as additional variable. In Sec. II B, we elaborate why the
extended theory suggests that the con�gurational part
of the temperature has anisotropic contributions across
the interface. Moreover, we show how the validity of
the theory can be evaluated by analyzing the kinetic and
con�gurational temperatures in molecular dynamics sim-
ulations.

A. Introducing the entropy density as a variable in

the thermodynamic description of interfaces

In homogeneous systems, classical thermodynamics
states that the internal energy density of a �uid is a func-
tion of the mass densities and the entropy density [41].
On the contrary, density functional theory for �uids has
been based on functional derivatives with respect to only
mass densities for the last century, following van der
Waal's pioneering work on the topic [4, 39, 42�44]. The
main justi�cation for using the Helmholtz energy as start-
ing point is that the temperature and mass densities are
then canonical variables [41]. Since the temperature is
constant in space at equilibrium, only the mass densities
are relevant variables.
In this work, we follow the phenomenological approach

from classical thermodynamics and use rather the inter-
nal energy as starting point. By properly Legendre trans-
forming the internal energy functional, we will demon-
strate that the Legendre transform of the internal energy
to the Helmholtz energy does not remove the entropic
contributions with a nonlocal dependence. Therefore,
part of the information about the structure of the inter-
face, which in Sec. IV will be elucidated with MD sim-
ulations, will be lost if the Helmholtz energy is used as
starting point.

1. A thermodynamic framework decomposed into kinetic
and con�gurational variables

The Hamiltonian of a classical �uid with N particles
can be written as:

H (Γ) = K (p1, . . . , p3N ) + V (q1, . . . , q3N ) , (1)

where Γ = (p1, . . . , p3N , q1, . . . , q3N ) is the phase-space
vector with boldface symbols referring to vector quanti-
ties, qi and pi are the generalized coordinates and mo-
menta, K is the kinetic energy and V is the potential
energy of the �uid. In the following, we shall decompose
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some of the thermodynamic variables into their kinetic
and con�gurational contributions. A contribution is de-
�ned to be kinetic if it depends only on the generalized
momenta and con�gurational if it depends only on the
generalized coordinates. In the canonical ensemble, sta-
tistical mechanics gives that the internal energy density
of a uniform �uid (subscript 0) can be written as [45, 46]:

u0 =−
(

ln
(
Z0(k)

)
βV

)
+ T

s(k)︷ ︸︸ ︷(
∂

∂T

(
ln
(
Z0(k)

)
βV

))
︸ ︷︷ ︸

u0(k)

+

−
(

ln
(
Z0(c)

)
βV

)
+ T

s(c)︷ ︸︸ ︷(
∂

∂T

(
ln
(
Z0(c)

)
βV

))
︸ ︷︷ ︸

u0(c)

,

(2)

where subscripts �k� and �c� refer to the kinetic and con-
�gurational contributions, Z is the partition function in
the canonical ensemble, T is the temperature, s is the
entropy density and V the total volume. Furthermore:

β =
1

kBT
, (3)

Z0(k) =
1

h3NN !

∫
e−βK dp1 ... dp3N , (4)

Z0(c) =

∫
e−βV dq1 ... dq3N , (5)

where kB is Boltzmann's constant and h is Planck's con-
stant. Here, it has been used that Z is the product be-
tween the kinetic and con�gurational partition functions,
Z0(k) and Z0(c). Equation 2 shows that in the canon-
ical ensemble, it is possible to decompose the internal
energy density u0 = u0(k) + u0(c) and the entropy den-
sity s = sk + sc into their kinetic and con�gurational
contributions, where u0

(
ρ, s(k), s(c)

)
, u0(k)

(
ρ, s(k)

)
and

u0(c)

(
ρ, s(c)

)
for a single-component �uid, with ρ being

the mass density.

2. Extended square gradient theory

Cahn and Hilliard explained why the local argument of
the energy functional of a heterogeneous system to a �rst
approximation should contain terms with density gradi-
ents squared [47]. Following Rowlinson and Widom [4],
we include also the entropy density, s, as a variable in
the internal energy functional of SGT:

U [sk(r), sc(r), ρ(r)] =

∫
V

dr usgt(r) =∫
V

dr
(
u0(k) (sk(r), ρ(r)) + u0(c) (sc(r), ρ(r)) +

κρs∇ρ(r) · ∇sc(r) + 0.5κρ |∇ρ(r)|2 + 0.5κs |∇sc(r)|2
)
,

(6)

where r the position vector. We shall hereby refer to this
formalism as extended SGT. The in�uence parameters κρ,
κρs, κs can in principle depend also on the densities (s
and ρ), but we have in this work kept them constant as
a �rst approximation.
The gradient terms represent nonlocal contributions to

the energy functional. We have in Eq. 6 decomposed the
internal energy density and the entropy density into their
kinetic and con�gurational parts, in accordance with the
discussion in Sec. IIA 1. In a homogeneous system, this
decomposition is unnecessary. The argument for decom-
position these variables in a heterogeneous system is that
the kinetic part of the Hamiltonian, K is strictly lo-
cal because it only involves particle momenta. There-
fore, only the con�gurational part of the entropy den-
sity should give nonlocal gradient contributions in the
extended SGT framework.
In the canonical ensemble, i.e. at �xed temperature, T ,

volume V and number of particles N , equilibrium is char-
acterized by a constrained minimum in the Helmholtz
energy, which results from Legendre transforming the in-
ternal energy [41]. This corresponds to:

δA = δU − Tδ
∫
V

drs(r)− λδ
∫
V

drρ(r) = 0, (7)

where the last term on the right-hand-side takes into ac-
count the �xed total number of particles and λ is a La-
grange multiplier. The necessary conditions for a mini-
mum are given by the Euler-Lagrange equations:

T = Tsgt(k) =
∂u0(k)(r)

∂sk(r)
, (8)

T = Tsgt(c) =
∂u0(c)(r)

∂sc(r)
− κs∇2sc(r)− κρs∇2ρ(r), (9)

µ = µsgt =
∂u0(r)

∂ρ(r)
− κρs∇2sc(r)− κρ∇2ρ(r), (10)

where we have added the subscripts �k� and �c� to the
temperatures in Eq. 8 and 9 since they are based only on
the kinetic and the con�gurational part of the Hamilto-
nian respectively. Furthermore, we identify the Lagrange
multiplier to be the chemical potential, λ = µ. The
present framework di�ers from the traditional approach
mainly by using the internal energy as starting point
rather than the Helmholtz energy [39, 41]. It is evident
from Eq. 7 that the Legendre transform −Tδ

∫
V
drs(r)

keeps the nonlocal entropic contributions of the func-
tional unchanged, just like the term −µδ

∫
V
drρ(r) con-

serves the nonlocal dependence with respect to ρ in the
classical theory. We de�ne the scalar pressure as:

psgt(r) =− usgt(r) + sk(r)Tsgt(k)

+ sc(r)Tsgt(c) + ρ(r)µsgt.
(11)

At equilibrium, the momentum balance gives:

∇psgt(r) +∇ · σ(r) = 0, (12)
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where σ is the tension tensor. We further determine
σ by following a similar procedure as Yang et al. [48]:
Equation 8 was multiplied with ∇sk, Eq. 9 with ∇sc,
Eq. 10 with ∇ρ and the sum was taken. By using Eq. 11
and tensor algebra, the gradient ∇psgt can be separated
out and the tension tensor can be determined by use of
Eq. 12:

σ(r) =κρ∇ρ(r)∇ρ(r)+

2κρs∇ρ(r)∇sc(r) + κs∇sc(r)∇sc(r).
(13)

The expression in Eq. 13 reproduces the tension tensor
from classical SGT with κρs = 0 and κs = 0. For the
planar interface, we can now evaluate the pressure tensor,
where the parallel and perpendicular components of the
pressure tensor are:

p‖(z) = psgt(z), (14)

p⊥(z) = psgt(z) + σzz(z), (15)

and the surface tension is:

γ =

∫ ∞
−∞

dz
[
p⊥(z)− p‖(z)

]
=

∫ ∞
−∞

dz [σzz(z)] , (16)

where z is the direction perpendicular to the interface.
The terms in Eq. 13 with gradients of the con�gurational
entropy density represent new contributions to the sur-
face tension that are missing from the classical theory.
They are of a di�erent origin and have a di�erent behav-
ior than the �rst term on the right-hand side of Eq. 13
used in classical SGT.

B. A theoretical justi�cation for a temperature

with anisotropic spatial contributions in

heterogeneous systems

We shall next particularize to the planar interface,
where (x, y ∈‖) are the directions parallel and (z ∈⊥)
is the direction perpendicular to the interface. In this
system, properties such as the densities and the parallel
component of the pressure tensor vary only in the direc-
tion perpendicular to the interface, i.e. in the z-direction.
At every position z, we assume that the scalar temper-
ature, T (z) can be decomposed into independent contri-
butions, ξx, ξy, ξz, from the x, y, z-directions respectively,
where:

T (z) = ξx(z) + ξy(z) + ξz(z). (17)

A closer inspection of the contributions, ξx(z), ξy(z),
ξz(z) from theory and simulations can be used as a route
to evaluate the in�uence of nonlocal entropic contribu-
tions on interfacial properties. We discuss the predictions
from the extended SGT in Sec. II B 1 and how these pre-
dictions can be tested with MD simulations in Sec. II B 2.

1. Spatial contributions to the temperature in square
gradient theory

A key assumption in SGT is that the terms and prop-
erties that depend only on local variables behave like
in a homogeneous �uid (subscript 0) and can thus be
represented by an equation of state. It is clear that
ξx = ξy = ξz in the bulk of a homogeneous �uid at equi-
librium. By using this same assumption, we �nd that
the �rst term on the right-hand sides of Eqs. 8-9 receives
the same contribution from all directions since it is local.
The gradient terms on the other hand, contribute only
along the direction of the gradient, i.e. perpendicular to
the interface. This means that for Tsgt(k), the extended
SGT formulation presented in Sec. II A suggests that:

ξsgt(k),‖(z) = ξsgt(k),⊥(z) =
1

3

∂u0(k)(z)

∂sk(z)
, (18)

i.e. that there is no anisotropy in the contributions to
the kinetic part of the temperature. For Tsgt(c) on the
other hand, the extended SGT formalism suggests that:

ξsgt(c),‖(z) =
1

3

∂u0(c)(z)

∂sc(z)
, (19)

ξsgt(c),⊥(z) =
1

3

∂u0(c)(z)

∂sc(z)

−κs
∂2sc(z)

∂z2
− κρs

∂2ρ(z)

∂z2
,

(20)

where the extra terms in Eq. 20 are consequences of in-
cluding the entropy density as a variable in the thermo-
dynamic description (see Eq. 9).

2. Spatial contributions to the temperature in molecular
simulations

Molecular dynamics simulations give the possibility to
independently evaluate the contributions in Eq. 17 from
information about the particle momenta as well as the
particle interaction forces. Jepps et al. proved that the
following relation [49]:

1

kBT
=

〈∇Γ ·B (Γ)〉
〈∇ΓH (Γ) ·B (Γ)〉 (21)

could be used to generate microscopic expressions for
the temperature by using an arbitrary vector �eld, B.
Here, 〈.〉 represents the time average in MD simula-
tions and we de�ne the phase space derivative: ∇Γ ≡(
γp

∂
∂p1

, . . . γp
∂

∂p3N
, γq

∂
∂q1

, . . . γq
∂

∂q3N

)
. Following Morriss

and Rondoni [15], we have multiplied the components of
∇Γ, operating on the generalized momenta and coordi-
nates, with γp and γq respectively to make it dimension-
less. The information contained in the Hamiltonian of the
�uid (Eq. 1) consists of a kinetic part (K ) and a con�g-
urational part (V ). Using B(Γ) = ∇ΓK in Eq. 21, we
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obtain the standard kinetic temperature:

Tmd(k)(z) =

ξmd(k),‖︷ ︸︸ ︷〈∑
i∈Ωz

p2
i,x

mi

〉
+

ξmd(k),‖︷ ︸︸ ︷〈∑
i∈Ωz

p2
i,y

mi

〉
+

ξmd(k),⊥︷ ︸︸ ︷〈∑
i∈Ωz

p2
i,z

mi

〉
kBNf (Ωz)

,

(22)
which represents the most common way of obtaining the
temperature in equilibrium and nonequilibrium MD sim-
ulations. If we use the remaining part of the Hamiltonian
as generating vector �eld in Eq. 21, i.e. B(Γ) = ∇ΓV ,
we obtain the con�gurational temperature:

Tmd(c)(z) =

ξmd(c),‖︷ ︸︸ ︷〈∑
i∈Ωz

F 2
i,x

〉
+

ξmd(c),‖︷ ︸︸ ︷〈∑
i∈Ωz

F 2
i,y

〉
+

ξmd(c),⊥︷ ︸︸ ︷〈∑
i∈Ωz

F 2
i,z

〉

kB

〈
− ∑
i∈Ωz

∇i · Fi
〉 .

(23)
The terms in the numerators of Eqs. 22-23 represent in-
dependent contributions from each spatial direction, Nf
is the kinetic degrees of freedom, pi,j the momentum of
particle i in the j-direction, mi the particle mass and
Fi = −∇V is the force acting on the particle. Further,
i ∈ Ωz means that the sum only includes atoms within a
volume element, Ωz around a position z.
In previous work, it has been found that Eqs. 22 and

23 are equally applicable for obtaining the local temper-
ature, T (z), in steady-state MD simulations, even under
nonequilibrium conditions [50, 51], given that the discon-
tinuity in the derivatives of the interaction potential is
handled properly, by using a su�ciently long truncation-
distance or tail-corrections [52]. Similar to Eq. 8 from the
extended SGT, the temperature in Eq. 22 is based only
on the kinetic part of the Hamiltonian. Equivalently, the
temperatures in Eqs. 9 and 23 are both based only on
the con�gurational part of the Hamiltonian. This sug-
gests that by evaluating the contributions ξmd,‖(z) and
ξmd,⊥(z) in MD simulations, one can assess whether the
theoretical predictions from the extended SGT presented
in Eqs. 8-9 and in Eqs. 18-20 make any sense, and pos-
sibly also reveal the presence of nonlocal entropic contri-
butions, since the di�erence between the spatial temper-
ature contributions across an interface can be explained
on the basis of non-local entropic contributions.

III. SIMULATION DETAILS

The vapor-liquid interface of argon as described by the
cut and shifted Lennard Jones (LJ) �uid will be used as
example in this work. This is because of its relative sim-
plicity and since argon (the LJ-�uid) is a popular �uid
in simulations and experiments. All simulations in this
work were performed with the LAMMPS software pack-
age [53]. Argon was modelled with the truncated and

shifted Lennard-Jones (LJ) potential with a well depth of
ε/kB = 119.8 K, a molecular diameter of d = 0.3405 nm
and a truncation distance of 4d [54]. For completeness,
we shall also list the scaled temperature used in the simu-
lations, T ∗ = kBT/ε, where superscript ∗ refers to scaled
variables. The truncation distance was set according to
the recommendations in Ref. [50] and we calculated the
con�gurational temperature as prescribed in the same
reference. All simulations were performed with periodic
boundaries and we used the Velocity Verlet integrator
with a step size of 0.002 in reduced time units. Liquid-
vapor simulations were set up by initiating the argon par-
ticles on a regular fcc lattice with a number density equal
to 0.8. The simulation cell was then expanded in the z-
direction to give a rectangular simulation box with the
particles in the center, surrounded by vacuum. This sys-
tem was equilibrated for 2×107 time steps with a thermo-
stat (Langevin or Nose-Hoover). This allowed particles
to evaporate, resulting in a liquid-vapor system with a
uniform temperature and steady density pro�le. The re-
sulting system was used as a starting point for further
investigations.

A. Equilibrium NVE simulations

For the equilibrium simulations with constant total en-
ergy and volume, we used 106 particles (unless otherwise
speci�ed) in a rectangular simulation volume with dimen-
sions {Lx, Ly, Lz}={106d, 106d, 213d}, where the liquid
phase was located in the middle with vapor phases on
each side. When larger cross sectional areas were con-
sidered, Lx and Ly were increased by equal amounts
while Lz was keep unchanged. After equilibration as de-
scribed above, we simulated the system for 106 time steps
and calculated a local temperature in bins along the z-
direction of the simulation volume as described in details
in Ref. 50. The pressure tensor across the interface, was
calculated as described in Ref. 55.

B. Nonequilibrium molecular dynamics

For the nonequilibrium simulations, we used a vari-
ant of the boundary-driven nonequilibrium MD method
developed by Ikeshoji and Hafskjold [56]. A liquid slab
was placed in the middle of a rectangular simulation vol-
ume. We used 105 particles and the simulation-volume
had dimensions {Lx, Ly, Lz} = {40d, 40d, 200d}. The
temperature gradient was imposed in the z-direction by
thermostatting the region |z/Lz| < 0.05 to a low tem-
perature T ∗c , and the regions 0.45 < |z/Lz| < 0.5 to a
high temperature T ∗h = T ∗c + 0.5 (in reduced units) with
the Langevin thermostat. At steady state (i.e., with zero
mass �ux), the heat �ux, Jq was constant and could be
obtained from the kinetic energy absorbed or desorbed
in the thermostats. The local thermal resistivity was de-
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�ned by the following equation:

Jq = −λ(z)
∂T (z)

∂z
= − 1

rk(z)

∂T (z)

∂z
, (24)

where λ is the local thermal conductivity and rk is the lo-
cal thermal resistivity to heat transfer. We calculated the
local thermal resistivity by using Eq. 24, and the value

of Jq and
∂T (z)
∂z from the NEMD simulations. Moreover,

the boundaries of the interfacial region as well as the sur-
face temperature were calculated as described in previous
work [57, 58].

IV. RESULTS

A. Anisotropy in the spatial contributions to the

con�gurational temperature

1. Extended square gradient theory

To study the di�erent contributions to the tempera-
ture in Eq. 17 with extended SGT, we solved the cou-
pled di�erential equations de�ning the extended SGT
framework (Eqs. 8-10) to a relative accuracy of 10−7.
Here, the cubic Peng-Robinson equation of state was
used to describe the thermodynamic properties of the
homogeneous �uid of argon (the terms with subscript 0
in Eqs. 8-10) [59]. Di�erent choices of in�uence param-
eters were evaluated, where all the choices reproduced
the surface-tension of argon at 102 K [60]. In addi-
tion, by requiring the extended SGT to reproduce the
maximum magnitude of ξ⊥(z) from MD simulations, i.e.
ξmd(c),⊥(zT ) = ξsgt(c),⊥(zT ), resulted in the coe�cients

κρ = 5.97 · 10−15 Jm5/kmol2, κs = 3.5 · 10−24 K2m5/J
and a cross in�uence parameter equal to zero. We
also explored the possibility of having a nonzero cross-
coe�cient, κρs. Using a nonzero cross-coe�cient accord-
ing to the geometric mean: κρs =

√
κρκs, resulted in

contributions to the con�gurational temperature with a
wavelet-like behavior, but with the opposite amplitudes
compared to the MD-simulations. We found that the rea-
son for this was that the gradients of the mass densities
and the gradient of the con�gurational entropy density
have the opposite sign across vapor-liquid interfaces. For
SGT to give predictions which qualitatively agree with
results from the MD simulations, κρs should be close to
zero.
For the con�gurational temperature, the contributions

from the directions parallel and perpendicular to the in-
terface were found to di�er, both in theory and simu-
lations. We have plotted Eqs. 19-20 from the extended
SGT-model as functions of position across the interface
in Fig. 1-left. The theory predicts that the perpendic-
ular contribution to the temperature, ξ(c),⊥(z), has a
wavelet-like behavior with a positive maximum at the
vapor-side of the equimolar surface. The parallel contri-
bution, ξ(c),‖(z), exhibits the opposite behavior with a

maximum at the liquid-side. Changing the magnitude of
the in�uence parameter κs, changed the amplitude of the
wavelets, but kept their qualitative behavior unchanged.

2. Molecular dynamics simulations

We performed standard MD simulations with constant
total volume and number of particles as described in
Sec. III and computed the spatial contributions to the
con�gurational temperature de�ned in Eq. 23. In Fig. 1-
right, they are plotted as functions of position across the
interface. The �gure displays a qualitative agreement
between the theory (Fig. 1-left) and the analogous pro-
�les from the MD simulations (Fig. 1-right). Both the-
ory and simulations give the same wavelet-like behavior,
where the perpendicular contribution has a maximum at
the vapor-side and a minimum at the liquid-side of the
equimolar surface (vertical dash-dot line). In Fig. 2, we
show that by using the same constant in�uence parame-
ters as in Fig. 1, there is still a qualitative agreement at
other temperatures as well, ranging from the triple point
of argon to close to the critical point. In particular, both
simulations and theory give that the extent of tempera-
ture anisotropy increases with decreasing temperature.
For the kinetic temperature, the spatial contributions

across the interface from the MD simulations (Eq. 22)
have been plotted in Fig. 3. Here, the perpendicular and
parallel contributions are the same. This is in agreement
with the theory presented in Sec. II; in particular, the
results from the MD simulations support the assumption
in Eq. 6 that only the con�gurational part of the entropy
density gives nonlocal contributions to the internal en-
ergy functional. We interpret the di�erent behavior of
the spatial contributions to the kinetic and con�gura-
tional temperatures as a re�ection of the fact that they
represent complementary parts of the information con-
tained in the actual temperature of the system, where
the temperature as de�ned in classical thermodynamics
is based on the total entropy and the total internal en-

ergy.

3. Di�erences between theory and simulations and
�nite-size e�ects

Figure 1 displays a qualitative agreement between the-
ory and simulations, but there are some di�erences. Most
notably, the magnitude of the temperature anisotropy
from the MD simulations is much more pronounced at
the vapor-side. This suggests that the extended SGT
theory derived in Sec. II has potential for improvement.
To obtain predictions similar to the MD simulations, it
is necessary to implement a more sophisticated version
of extended square gradient theory, where the in�uence
parameters, κρ and κs, are functions of the densities.
It is well known that interfacial properties from molec-

ular simulations depend strongly on both truncation dis-
tance and system size [61�63]. Mecke and Winkelmann
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FIG. 1. (Top) A zoom-in at the interfacial region, showing the spatial contributions to the con�gurational temperatures
perpendicular (ξ⊥) and parallel (ξ‖) to the vapor-liquid interface of argon/LJ-�uid at equilibrium (T = 102 K, T ∗ = 0.85). The
left �gure plots Eqs. 19-20 using results from extended SGT and the right �gure plots the terms in Eq. 23 using results from
MD with ξ‖=(ξx+ξy)/2. The vertical dash-dot line shows the position of the equimolar surface and the horizontal solid line,
the system temperature. The vertical solid line shows the position of maximum temperature anisotropy, zT . Vapor is located
at z < −2 and liquid at z > 2. (Bottom) Simulation snapshot illustrating the di�erent regions (vapor, interface and liquid
bulk) and directions in space.

showed that a su�ciently long truncation distance and
tail corrections were necessary to obtain the surface ten-
sion of the full LJ-potential to a high accuracy [61]. The
surface width displays a particularly strong dependence
on system size [64]. For the system size considered in our
MD simulations however, Malfreyt shown that the size
dependence can be neglected [63]. We showed in pre-
vious work how tail corrections are also needed for the
con�gurational temperature at low truncation distances
[52], but such corrections can safely be neglected for the
truncation distance used in this work (4d). In the follow-
ing, we shall demonstrate that �nite-size e�ects in�uence
also the parallel and perpendicular contributions to the
con�gurational temperature.

According to classical thermodynamics, the tempera-
ture at equilibrium should be constant in space, T (z) =
T . This is in agreement with the theory derived in Sec. II.
In the MD simulations, we �nd that the con�gurational
temperature is constant and equal to the equilibrium
temperature except in a narrow region at the vapor-side
of the equimolar surface, where Tmd(c) exhibits a small
positive deviation from T as shown in Fig. 1. The max-
imum amplitude of this deviation is located at zT and

is similar in size to the temperature-�uctuations in the
vapor-phase. The deviation was also found in previous
work [51]. We �nd that the deviation decreases monoton-
ically with system-size, and is likely to be a consequence
of the methodology used to calculate Tmd(c) in the MD-
simulations (see Sec. III), which su�ers from the small
number of particles in the bin, Nbin at the vapor-side
of the equimolar surface. In agreement with previous
work [51, 52], we �nd that the �uctuations in the con�g-
urational temperature are larger than the �uctuations in
the kinetic temperature.

We carried-out an in-depth analysis of the di�erence
between Tmd(c) and T , i.e. the accuracy of which Tmd(c)

can be obtained by using the methodology described in
Sec. III. By performing NV E-simulations as described
in Sec. IIIA with varying cross-section area (LxLy) and
thus varying number of particles in each bin Nbin, we
found that the magnitude of Tmd(c)(z

T ) − T decreased
monotonically with increasing number of particles in
the bin and that the spatial contributions depended on
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FIG. 2. The spatial contributions to the con�gurational temperatures perpendicular, ξ⊥ (blue solid lines) and parallel, ξ‖ (red
dashed lines) to the vapor-liquid interface of argon at equilibrium at di�erent temperatures. The �gures to the left (a, c, e) show
results from extended SGT and the �gures to the right (b, d, f) show results from MD at T=84 K, T ∗=0.7 (a, b), T=108 K,
T ∗=0.9 (c, d) and T=120 K, T ∗=1 (e, f). The vertical dash-dot lines show the position of the equimolar surface.

system-size according to the following power laws:

ξ(c),⊥(z)= ξ∞(c),⊥(z) + k⊥(z)N−nbin (25)

ξ(c),‖(z)= ξ∞(c),‖(z) + k‖(z)N
−n
bin (26)

T(c)(z)= T∞(c)(z) +
(
2k‖(z) + k⊥(z)

)
N−nbin (27)

where k⊥(z) and k‖(z) were spatially dependent parame-
ters and n was a positive constant. We found that a single

value for n was su�cient to account for all of the con-
tributions in Eqs. 25-27. An unconstrained optimization
routine was used to identify the parameters at zT that
minimized the least square distance between the MD re-
sults and the predictions from Eqs. 25-27. The resulting
parameters are presented in the legends of Fig. 4.

Figure 4 plots ξmd(c),⊥, ξmd(c),‖ and Tmd(c) as func-
tions of Nbin. The �gure shows that the resulting func-
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dash-dot lines) to the vapor-liquid interface of argon at equi-
librium at T=102 K, T ∗ = 0.85.

tions reproduce the MD results to a good accuracy. Two
important conclusions can be made on the basis of the
analysis:

• Eq. 27 �tted by an unconstrained optimization
routine to match the MD results gives that
T∞md(c)(zT ) = T , showing that the inaccuracy in

the methodology described in Sec. III vanishes in
the limit of an in�nitely large simulation volume.

• In an in�nitely large simulation volume, Eqs. 25
and 26 gives that 3ξmd(c),⊥(zT ) 6= 3ξmd(c),‖(zT ) 6=
T , thus showing that the anisotropy in the con�gu-
rational temperature is also present in an in�nitely
large simulation volume.

The coe�cients in the power laws presented in the leg-
ends of Fig. 4, reveal why Tmd(c) exhibits a positive de-
viation from T at zT . The coe�cient k⊥(z) is larger
than −2k‖(z). This means that �nite-size e�ects in the
computation methodology have a stronger in�uence on
the perpendicular contribution than the parallel contri-
butions, which causes a small positive di�erence between
Tmd(c) and T .

B. The in�uence of nonlocal entropic contributions

on the equilibrium properties of interfaces

The qualitative agreement between theory and simu-
lations displayed in Figs. 1 and 2 shows that nonlocal
entropic contributions are likely to play a role in the
thermodynamic description of interfaces. The only other
thermodynamic properties that have been documented
to be anisotropic across the planar vapor-liquid interface
at equilibrium are the components of the pressure tensor,
p⊥(z) and p‖(z). The surface tension, γ can be obtained
by integrating, p⊥(z) − p‖(z), across the interface, illus-
trated by the shaded area in Fig. 5.
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simulations with T = 102 K, T ∗ = 0.85 as a function of the
number of particles in the bin at zT (see Fig. 1 from MD
simulations (red crosses) and as predicted by Eqs. 25-27 with
parameters �tted to minimize the least square distance be-
tween the MD-results and the equations. The bin-width and
Lz were kept unchanged, and Nbin was changed by modifying
N , Lx and Ly.

Figure 5 shows that the components of the pressure
tensor behave fundamentally di�erently than ξ⊥(z) and
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ξ‖(z). For the planar interface, we �nd that the per-
pendicular component of the pressure tensor, p⊥(z) is
constant and equal to the coexistence pressure. In MD
simulations (Fig. 5-right), the di�erence, p⊥(z) − p‖(z),
has a maximum at the liquid-side of the equimolar surface
(vertical dash-dot line). On the contrary, the di�erence,
ξ(c),⊥(z) − ξ(c),‖(z), has a maximum at the vapor-side
of the equimolar surface. The corresponding quantities
as predicted by extended SGT are shown in Fig. 5-left.
Here, the di�erence, p⊥(z)− p‖(z), displays a maximum
at the vapor-side of the equimolar surface (vertical dash-
dot line).
A striking di�erence between SGT and MD-

simulations is that p⊥(z)− p‖(z) displays a negative dip
in MD-simulations (see Fig. 5-right), while it is always
positive according to SGT (see Fig. 5-left). The negative
dip as well as the shift of the maximum in p⊥(z)− p‖(z)
towards the liquid-side of the equimolar surface observed
in MD-simulations can be reproduced by using more so-
phisticated density functional theory formulations (see
for instance Fig. 6 in Ref. [65]). This elucidates the
shortcomings of SGT and suggests that by including the
entropy density as additional variable in a more sophis-
ticated density functional theory formulation, it would
also be possible to reproduce the shift of the maximum in
ξ(c),⊥(z)−ξ(c),‖(z) towards the vapor-side of the equimo-
lar surface. This represents important future work.
In Fig. 1, we chose the in�uence parameters such that

the theory reproduces the surface tension of argon at
T=102 K and so that ξsgt(c),⊥(zT ) = ξmd(c),⊥(zT ). For
this choice of in�uence parameters, nonlocal entropic con-
tributions are responsible for about 17% of the total mag-
nitude of the surface tension. This indicated that non-
local entropic contributions are of a similar magnitude
as the terms from the classical theory, although 17% is
probably a too high estimate. Even tough the extended
SGT gives a temperature anisotropy that follows the MD
simulations reasonably well at the vapor-side, the extent

of anisotropy at the liquid-side is systematically over pre-
dicted (See Fig. 2). Moreover, the �nite-size e�ects that
come from the computational methodology discussed in
Sec. IVA3 will lead to a further decrease in the magni-
tude of the nonlocal entropic contributions in comparison
to Fig. 1 (see Fig. 4). We �nd that the terms in Eq. 13
that come from nonlocal entropic contributions exhibit a
di�erent behavior than the terms from the classical the-
ory and in�uence both the predicted temperature and
curvature dependence of the surface tension. Since the
extended SGT presented in Sec. II is unable to reproduce
the pro�les from MD simulation quantitatively, an accu-
rate assessment of the magnitude of the nonlocal entropic
contributions and their in�uence on the temperature de-
pendence of the surface tension represents future work.

C. A link between the temperature anisotropy at

equilibrium and the Kapitza resistance at

nonequilibrium

We shall next discuss a possible connection between
the nonlocal entropic contributions missing from the clas-
sical theory and the transport properties of the interface
at nonequilibrium.
Fig. 1-right and Fig. 2 demonstrate that the extent of

temperature anisotropy from simulations is much more
pronounced at the vapor-side of the equimolar surface
where ξmd(c),⊥ − ξmd(c),‖ displays a maximum at zT . No
other equilibrium property has so far been documented
to display a similar preference for the vapor-phase across
the vapor-liquid interface. At nonequilibrium on the
other hand, it has for long been known that the char-
acteristic temperature-jump across the vapor-liquid in-
terface is located at the vapor-side of the equimolar
surface [10, 11, 35, 66]. By performing nonequilibrium
molecular dynamics simulations (NEMD) as explained
in Sec. III, we �nd that the thermal resistivity (the re-
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ciprocal thermal conductivity) exhibits a behavior that is
remarkably similar to the temperature anisotropy. This
is evident by comparing Fig. 1-right with Fig. 6. Since
the Kapitza resistance can be obtained by integrating the
local thermal resistivity across the interfacial region, the
shaded area in Fig. 6, the thermal resistivity represents
its local structure.
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Similar to the temperature anisotropy, the thermal
resistivity has a maximum at the vapor-side of the
equimolar surface, located at zK . We �nd that zK
obtained from nonequilibrium simulations matches al-
most perfectly with zT obtained from equilibrium sim-
ulations when plotted as a function of the surface tem-
perature [57]. Both maxima follow the red dashed line
in Fig. 7, positioned ∼1 nm into the vapor-side relative

to the equimolar surface. This links the anisotropy in
the con�gurational part of the temperature under equilib-
rium conditions to the Kapitza resistance observed under
nonequilibrium conditions.
Since nonlocal entropic contributions give a qualita-

tive explanation for the temperature anisotropy found
at equilibrium (see Fig. 1), they are also likely to play
a role in the theoretical description of the Kapitza re-
sistance of the vapor-liquid interface, a description that
is currently missing [35]. The theory that links these
properties remains to be developed. Such a theory is im-
portant because it provides the means for using SGT to
estimate not only the surface tension, but also the rates
at which heat and mass are transferred across interfaces
at nonequilibrium by taking advantage of the so-called
integral relations [9]. At present, a semi-empirical �t of
the local thermal resistivity function is required to ob-
tain the transport properties of the interface with SGT.
This was accomplished in Ref. [37] for both planar and
curved interfaces of the LJ-�uid by combining NEMD
and a semi-empirical SGT formulation. Here, the maxi-
mum of the local thermal resistivity was allocated to the
vapor-side of the equimolar surface by invoking an inverse
density dependence [11]. Rather than �tting this func-
tion, a long-term aim should be to develop a predictive
theory for the local thermal resistivity across interfaces.
Figure 7 suggests that nonlocal entropic contributions
will play a role in such a description.

V. CONCLUSION

In this work, we have revisited the fundamentals
of density gradient theory. Rather than using the
Helmholtz energy as starting point like in the classical
theory, we have used the internal energy with the en-
tropy density as additional variable. The extended the-
ory then suggests that the con�gurational temperature
has di�erent contributions from the parallel and perpen-
dicular directions at the interface and that the kinetic
temperature has equal contributions.
We evaluated these predictions by use of standard

molecular dynamics simulations at constant total energy
and volume and obtained behaviors of the spatial contri-
butions to the con�gurational and kinetic temperatures
that were in qualitative agreement with the extended the-
ory. The extended theory showed that the anisotropy
in the con�gurational temperature originates in nonlocal
entropic contributions, which are currently missing from
the classical theory. Nonlocal entropic terms enter the
expression for the tension tensor and in�uence thus the
predicted surface tension. Since the nonlocal entropic
terms behave di�erently than the classical terms, they
are likely to in�uence both the temperature- and curva-
ture dependence of the surface tension and may account
for part of the discrepancy between experiments and the-
ory.
For a particular choice of in�uence parameters that
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reproduced certain characteristics of the simulations re-
sults, it was shown that nonlocal entropic contributions
were responsible for about 17% of the total magnitude
of the surface tension. Nonlocal entropic contributions
are thus of a similar magnitude as the classical terms,
although 17% is probably a too high estimate. Further
development of the theory is necessary to reproduce the
results from MD quantitatively and to provide a reliable
evaluation of the signi�cance of nonlocal entropic terms.

The thermal resistivity gives the local structure of the
interfacial resistance to heat transfer, where the integral
gives the Kapitza resistance. Across the vapor-liquid in-
terface of the LJ-�uid, we found that the maximum in
the temperature anisotropy at equilibrium coincided pre-
cisely with the maximum in the thermal resistivity at
nonequilibrium relative to the equimolar surface, when
plotted as a function of the surface temperature. The
similarity between the temperature anisotropy and the

thermal resistivity is striking and strongly suggests that
nonlocal entropic contributions may play a role in the
theoretical description of the Kapitza resistance of the
vapor-liquid interface. However, the theory that links
these properties remains to be developed. Such a the-
ory is important because it provides the means for using
SGT to estimate not only the surface tension, but also
the rates at which heat and mass are transferred across
interfaces at nonequilibrium by taking advantage of the
so-called integral relations.

ACKNOWLEDGMENTS

The authors thank Signe Kjelstrup, Dick Bedeaux, Ti-
tus S. van Erp and David Reguera for fruitful discus-
sions and Magnus Waage for useful comments to the
manuscript. The computational resources were granted
by The Norwegian Metacenter for Computational Science
(NOTUR) project nn9229k and nn4504k.

[1] J. A. Huberman and A. D. Riggs, J. Mol. Biol. 32, 327
(1968).

[2] D. R. Baker, F. Brun, C. O'Shaughnessy, L. Mancini,
J. L. Fife, and M. Rivers, Nat. Commun. 3, 1135 (2012).

[3] M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso,
A. Lauri, V. M. Kerminen, W. Birmili, and P. H. Mc-
Murry, J. Aerosol Sci. 35, 143 (2004).

[4] J. S. Rowlinson and B. Widom,Molecular Theory of Cap-
illarity (Clarendon Press, Oxford, 1984).

[5] E. M. Blokhuis and A. E. van Giessen, J. Phys.: Condens.
Matter 25, 225003 (2013).

[6] Z. Li and J. Wu, Ind. Eng. Chem. Res. 47, 4988 (2008).
[7] B. J. Block, S. K. Das, M. Oettel, P. Virnau, and

K. Binder, J. Chem. Phys. 133, 154702 (2010).
[8] A. Tröster, M. Oettel, B. Block, P. Virnau, and

K. Binder, J. Chem. Phys. 136, 064709 (2012).
[9] S. Kjelstrup and D. Bedeaux, Non-Equilibrium Thermo-

dynamics of Heterogeneous Systems (World Scienti�c,
Singapore, 2008).

[10] Ø. Wilhelmsen, D. Bedeaux, and S. Kjelstrup, Phys.
Chem. Chem. Phys. 16, 10573 (2014).

[11] Ø. Wilhelmsen, T. T. Trinh, S. Kjelstrup, T. S. van Erp,
and D. Bedeaux, Phys. Rev. Lett. 114, 065901 (2015).

[12] Ø. Wilhelmsen, T. T. Trinh, A. Lervik, V. K. Badam,
S. Kjelstrup, and D. Bedeaux, Phys. Rev. E 93, 032801
(2016).

[13] H. Lin, Y.-Y. Duan, and Q. Min, Fluid phase equilibr.
254, 75 (2007).

[14] J. Gross, J. Chem. Phys. 131, 204705 (2009).
[15] G. P. Morriss and L. Rondoni, Phys. Rev. E 59, R5

(1999).
[16] J. G. Powles, G. Rickayzen, and D. M. Heyes, Mol. Phys.

103, 1361 (2005).
[17] J. Dunkel and S. Hilbert, Nature Phys. 10, 67 (2014).
[18] J. M. G. Vilar and J. M. Rubi, J. Chem. Phys. 140,

201101 (2014).
[19] D. Frenkel and P. B. Warren, Am. J. Phys. 83, 163

(2015).

[20] V. K. Badam, V. Kumar, F. Durst, and K. Danov, Exp.
Thermal and Fluid Sci. 32, 276 (2007).

[21] W. C. Moss, D. B. Clarke, and D. A. Young, Science
276, 1398 (1997).

[22] A. Bass, S. J. Ruuth, C. Camara, B. Merriman, and
S. Putterman, Phys. Rev. Lett. 101, 234301 (2008).

[23] D. J. Flannigan and K. S. Suslick, Nature Phys. 6, 598
(2010).

[24] J. M. Simon and J. M. Rubi, J. Phys. Chem. B 115, 1422
(2011).

[25] J. C. Barrett, J. Chem. Phys. 135, 096101 (2011).
[26] J. W. P. Schmelzer, G. S. Boltachev, and A. S. Abyzov,

J. Chem. Phys. 139, 034702 (2013).
[27] M. Schweizer and L. M. C. Sagis, J. Chem. Phys. 141,

224102 (2014).
[28] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A.

Eastman, Int. J. Heat Mass Transfer 45, 855 (2002).
[29] H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair,

B. George, and T. Pradeep, Appl. Phys. Lett. 83, 2931
(2003).

[30] H. A. Patel, S. Garde, and P. Keblinski, Nano Lett. 5,
2225 (2005).

[31] Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett.
96, 186101 (2006).

[32] C. Cheng, W. Fan, J. Cao, S.-G. Ryu, J. Ji, C. P. Grig-
oropoulos, and J. Wu, ACS Nano 5, 10102 (2011).

[33] Z. Liang, K. Sasikumar, and P. Keblinski, Phys. Rev.
Lett. 113, 065901 (2014).

[34] H.-K. Lyeo, Phys. Rev. B 73, 144301 (2006).
[35] M. Bond and H. Struchtrup, Phys. Rev. E 70, 061605

(2004).
[36] J. Ge, S. Kjelstrup, D. Bedeaux, J. M. Simon, and

B. Rousseau, Phys. Rev. E 75, 061604 (2007).
[37] Ø. Wilhelmsen, T. T. Trinh, S. Kjelstrup, and D. Be-

deaux, J. Phys. Chem. C 119, 8160 (2015).
[38] J. F. Lutsko, J. Chem. Phys. 134, 164501 (2011).
[39] R. Evans, �Fundamentals of Inhomogeneous Fluids,�

(Marcel Dekker, New York, 1992) Chap. 3.



13

[40] Roth, R., J. Phys.: Condens. Matter 22, 063102 (2010).
[41] H. B. Callen, Thermodynamics and an introduction to

thermostatistics (John Wiley & Sons, New York, 1985).
[42] D. W. Oxtoby, Annu. Rev. Mater. Res. 32, 39 (2002).
[43] H. Löwen, J. Phys. Condens. Matter 14, 11897 (2002).
[44] J. Wu and Z. Li, Annu. Rev. Phys. Chem. 58, 85 (2007).
[45] K. Huang, Statistical Mechanics (John Wiley and Sons,

New York, 1963).
[46] G. H. A. Cole, An Introduction to the Statistical The-

ory of Classical Simple Dense Fluids (Pergamon Press,
Oxford, 1967).

[47] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258
(1958).

[48] A. J. M. Yang, P. D. Fleming, and J. H. Gibbs, J. Chem.
Phys. 64, 3732 (1976).

[49] O. G. Jepps, G. Ayton, and D. J. Evans, Phys. Rev. E
62, 4757 (2000).

[50] A. Lervik, Ø. Wilhelmsen, T. T. Trinh, and H. R. Nagel,
J. Chem. Phys. 143, 114106 (2015).

[51] N. Jackson, M. Rubi, and F. Bresme, Mol. simul. 42,
1214 (2016).

[52] A. Lervik, Ø. Wilhelmsen, T. T. Trinh, and E. M.
Blokhuis, J. Chem. Phys. 144, 056101 (2016).

[53] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[54] L. A. Rowley, D. Nicholson, and N. G. Parsonage, J.

Comput. Phys. 17, 401 (1975).

[55] T. Nakamura, S. Kawamoto, and W. Shinoda, Comput.
Phys. Commun. 190, 120 (2015).

[56] T. Ikeshoji and B. Hafskjold, Mol. Phys. 81, 251 (1994).
[57] J. Xu, S. Kjelstrup, D. Bedeaux, A. Røsjorde, and

L. Rekvig, J. Colloid Interface Sci. 299, 452 (2006).
[58] R. Rurali, L. Colombo, X. Cartoixà, Ø. Wilhelmsen,

T. T. Trinh, D. Bedeaux, and S. Kjelstrup, Phys. Chem.
Chem. Phys. 18, 13741 (2016).

[59] D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fun-
damen. 15, 59 (1976).

[60] E. W. Lemmon and S. G. Penoncello, Adv. Cryo. Eng.
39, 1927 (1994).

[61] M. Mecke and J. Winkelmann, J. Chem. Phys. 108, 9264
(1997).

[62] A. Trokhymchuk and J. Alejandre, J. Chem. Phys. 111,
8510 (1999).

[63] P. Malfreyt, Molecular Simulation 40, 106 (2014).
[64] C. D. Holcomb, P. Clancy, and J. A. Zollweg, Mol. Phys.

78, 437 (1993).
[65] E. Johannessen, J. Gross, and D. Bedeaux, J. Chem.

Phys. 129, 184703 (2008).
[66] J. M. Simon, D. Bedeaux, S. Kjelstrup, J. Xu, and E. Jo-

hannessen, J. Phys. Chem. B 110, 18528 (2006).


