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Abstract

Entropy production minimization procedures presented in literature show that, un-

der different assumptions, the optimal solution might be characterized by different

thermodynamic quantities being constant. These constant quantities might be the lo-

cal entropy production, the thermodynamic driving forces, the thermodynamic speed,

or the thermodynamic length. After presenting the assumptions made in the different

derivations, we use the results as design principles to reduce entropy production in

a membrane unit for CO2 separation from natural gas, and we compare them to the

numerically determined optimum.

For a continuous process, we consider the equipartition of forces (EoF), the equipar-

tition of entropy production (EoEP), and the equal thermodynamic speed (ETS) re-

sults. When we can independently control all driving forces, the numerical optimum

and EoEP coincide. Even though EoF and ETS differ from the optimum, they approx-

imate it well. When the transport coefficients are constant, EoF follows from EoEP.

If the optimization was carried out with fixed number of relaxations instead of fixed
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length of the membrane unit, the thermodynamic speed would then be constant in the

optimal case. When the thermodynamic driving forces cannot be controlled indepen-

dently, neither of the equipartition results characterizes the optimal solution. However,

EoEP and ETS approximate it well. Since EoEP and ETS give good approximations

of (or coincide with) the numerical optimum independently of the type of control, they

can be used as design principles to reduce entropy production in membrane systems.

However, using an equipartition result as a design principle will generally not give one

and only one solution, and some equipartitioned designs may be far from the optimum.

For a discrete process, we considered the EoEP and the equal thermodynamic length

(ETL) results. In this case, EoEP gives the best approximation of the optimum. Since

the process is not an equilibration process, ETL does not coincide with the optimum,

but it still approximate it well.

1 Introduction

The worldwide increasing concerns about energy savings make thermodynamic optimization

a relevant topic. The purpose of thermodynamic optimization is to minimize the losses of

useful work in a process. Such losses were first related to the production of entropy by the

Gouy-Stodola theorem,
1

which was then generalized by the work of Hoffmann et al
2

and

Badescu.
3

Many studies on entropy production minimization have been carried out over the years,

and great efforts have been put into finding out what features characterize the most energy

efficient processes.

Different results of entropy minimization procedures have been presented in the literature.

Often, the features that characterize the results have been claimed to be general and proposed

to be used as design principles. However, when the results depend on the assumptions that

are made on the process or on the optimization, their translation to general design principles

may not be straightforward. This paper will address under what conditions such results
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correspond to the optimum and under which others they differ. We will also evaluate their

performances as design principles for minimization of entropy production in a membrane

system.

The use of equipartition of entropy production (EoEP) as design principle was first pro-

posed by Tondeur and Kvaalen,
4

who observed that the best configuration for a process

operation is the one where the local entropy production is uniformly distributed. This result

was derived under conditions for which constant entropy production coincided with constant

driving forces and fluxes. Equipartition of entropy production had already been observed by

others in systems such as heat engines.
5

Inspired by Tondeur and Kvaalen, Sauar et al.
6

proposed equipartition of forces (EoF)

as design principle. They stated that two process streams exchanging fluxes need to have

uniform driving forces over the transfer surface in order to minimize the entropy produc-

tion. The theoretical principle was derived from irreversible thermodynamics and Cauchy-

Lagrange optimization procedures. Even though the transport coefficients were allowed to

vary as functions of the state variables, the transport path between the streams were con-

sidered to be independent. This last condition implies that the conservation equations that

govern the process streams are not taken into account in the optimization procedure. Later,

Bedeaux et al.
7

clarified that the freedom to change the process plays a fundamental role in

the results of the optimization procedure, and that EoF applies only if the transport paths

are independent and all kind of possible variations of the process streams are considered,

even the unfeasible ones. They recognized that the iso-force solution could probably not be

realizable in practice.

However, EoF has been applied to different constrained systems, such as heat exchang-

ers,
8,9

distillation columns,
10–12

and chemical reactors.
13–15

Despite the fact that EoF does

not strictly apply to the considered systems, the entropy production was strongly reduced

by using EoF as a design criterion. This has been interpreted as a sign that the entropy

production space has a rather flat minimum.
12,16
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In practice, systems are subject to governing equations that need to be taken into ac-

count. Johannessen et al.
16

gave the general solution of the entropy production minimization

problem for a system obeying conservation equations. In the specific case, the systems was

described by one control variable and, thus, one governing equation. The result was applied

to a heat exchanger where the energy conservation equation described one of the sides. The

only considered assumptions were those of linear flux-force relations and of transport coef-

ficients dependent on the state variable only (i.e. the transport coefficient is not a direct

function of the system coordinates). Thanks to these assumptions, the Lagrangian of the

optimal problem was autonomous, and thus constant in space. Calculus of variations or

optimal control theory can then be used to prove that the local entropy production needs

to be constant in order for the total entropy production to be minimum. They also showed

that EoEP implies EoF, when the system lacks memory of prehistory (i.e. the transport

coefficients and the proportionality factor matrix of the optimal control theory formulation

are constant
17

). When this condition does not apply, EoEP does not correspond to EoF.

The large number of optimization studies on heat exchangers
8,9,18–20

is due not only to

the fact that heat exchangers have a very wide range of applications, but also that they are

relatively simple systems that can be used to illustrate fundamental concepts. However, the

fact that only heat transport takes place in such systems makes the thermodynamic driving

force controllable by control of one of the streams’ temperature only. For long, this fact may

have hidden the implicit assumption that the control on the system needs to be sufficient to

independently control all driving forces. Without this assumption, none of the equipartition

results holds.
17

Nevertheless, EoEP as a design principle to minimize entropy production

has been applied to systems were this condition did not hold, such as diabatic distillation.
21

Even though the result does not strictly apply in this case, it was found to give a good

approximation of the mathematical optimum.

Finite-time thermodynamics was developed in the early seventies as a response to the

world oil crisis.
22

The goal of the theory was to find bounds for thermodynamic processes
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subject to time constraints, more realistic than the limit given by the reversible process. At

first, the focus of the finite time analysis was directed to heat engines.
23–25

A fundamen-

tal concept was introduced to define a new bound for real processes, the thermodynamic

length.
26

This was defined on the basis of the equilibrium thermodynamic metric proposed

by Weinhold.
27

Salamon and Berry
28

found that the square of the thermodynamic length

is related to the lower bound of a process dissipation, when the process is endoreversible

and it is a quasi-static step process. The definition of endoreversible process was given by

Rubin
24

as a process where the process streams undergo reversible transformations only,

while all irreversibilities take place at the boundary with the ambient. A quasi-static step

process is a process where the system is brought from a given initial state to a given final

state along a series of equilibration steps. Under these assumptions, minimum dissipation

gives equal thermodynamic length (ETL) between consecutive steps. Moreover, if the total

time allocated to the process is much larger than the relaxation time of the system, the same

number of relaxation times should be allocated to each equilibration step, in order to get the

process optimum. Thus, the concept of thermodynamic speed was introduced, defined as

the derivative of the thermodynamic length with respect to the number of relaxations.
29

For

sufficiently long times, the thermodynamic speed is constant in a endoreversible quasi-static

step system where the entropy production is minimum.
28

The translation of this result to a continuous process is not straightforward and it has

been causing some confusions in the past. Indeed, if one sees the continuous case as a step

process with an infinite number of steps, by maintaining the above assumption of quasi-static

equilibration steps, the reversible limit is found. This case is of no interest in this context,

and the assumption of a quasi-static step process needs to be dropped. The results of equal

thermodynamic speed (ETS) are thus not valid in continuous systems.

Using calculus of variations, Spirkl and Ries
20

showed that in a process where all forces

can be controlled independently there is a quantity which is constant when the entropy

production is minimum and the forces are differentiable once. With linear flux-force relations,
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this constant quantity reduces to the local entropy production.
20

The speed that is constant

in this case is the one measured by the metric given by the inverse of the matrix of Onsager

coefficients.
30,31

Diosi et al.
32

clarified that constant thermodynamic speed, as measured with

the Weinhold’s metric, results from the entropy production minimization procedure when

the optimization is carried out at a fixed number of relaxations instead of at a fixed time.

Continuous systems have often been approximated by quasi-static step processes with a

finite number of steps, and the control strategy that yields minimum entropy production has

been approximated by ETL between the steps.
33,34

The results obtained by imposing ETL

have also been compared with the ones of the EoF method in a distillation column, as well

as with the mathematical optimum.
12,35

The concept of ETS has been used to implement

simulated annealing schedules.
36–38

The main purpose of this work is to use some of the entropy production minimization

results that have been presented in literature as design principles for minimization of entropy

production, and to compare them to the numerical optimum. The goal is to establish under

which circumstances they correspond to the numerical minimum, and, when they do not

correspond, to establish their performances. A second purpose is to compare the results

obtained with different equipartition principles. We shall use a membrane unit for separation

of CO2 from natural gas as an illustrative case. Such a system is quite simple, but, contrary

to the heat exchanger example, it still allows to bring forward the importance of the number

of controls on the process. Minimum entropy production in such system has already been

studied in Ref.,
39

where the transport coefficient were assumed to be constant. Such an

assumption is not made in the present work.

In Section 2, we present the two systems that are used to compare the procedures,

while, in Section 3, we present a theoretical analysis on the equipartition results presented

in literature. The solution procedure and the different cases which are investigated are

illustrated in Section 4. After presenting the results in Section 5, we draw conclusions in

Section 6.
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Figure 1: A schematic representation of the continuous separation system. The feed stream
flows in the z-direction parallel to the membrane, which separate the feed and permeate
streams. The component molar fluxes, JCO2

and JCH4
, cross the membrane perpendicularly

to it (x-direction). The permeate stream, F
p
, flows in opposite direction with respect to the

feed, F
f
.

Figure 2: A schematic representation of the discrete separation system, with 3 stages. The
natural gas to be treated is successively fed to the sequence of N � 3 membrane units. The
pressure on the permeate side might differ from one stage to another.

2 System

We reported in Section 1 that the entropy production minimization results found in the liter-

ature are different for continuous and discrete systems. Therefore, we consider a continuous

and a discrete membrane system for CO2 separation from natural gas. In the first case, the

system and the pressure profile on the permeate side are continuous, while in the second

instance, they are staged. In both cases, the natural gas is assumed to be an ideal gas, and

CO2 and methane are the only components considered in the natural gas.

2.1 Continuous membrane separation process

Figure 1 shows a schematic representation of the continuous system, which has been accu-

rately described in Ref.
39

The feed stream flows from left to right, while the permeate flows

parallel to the feed, but in opposite direction (counter-current fashion). Because of the differ-

ence in the component partial pressures between the two sides, fluxes of the two components
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are established from feed to permeate. Since driving forces and transport coefficients are

different, the two components permeate at different rates. Therefore, continuous gradients

of the thermodynamic variables are present on both sides of the membranes (z-direction).

2.2 Discrete membrane separation process

Figure 2 shows a schematic representation of a discrete system with 3 stages. Each of the

stages works as a continuous membrane system. After going through the first membrane

stage, the feed gas is fed to the second stage, and so on. The permeate total pressure is

constant inside each stage, but it varies between different stages. The permeate gas is fed

to the membrane stages in a counter-current fashion with respect to the feed gas (from the

stage at the far right to that to the far left). No full equilibration is reached between the

two sides of the membrane.

3 Theoretical analysis

3.1 Entropy production and flux-force relations

The objective function of the thermodynamic optimization problem is the total entropy

production of the system, Σirr. According to nonequilibrium thermodynamics,
40

the local

entropy production of a homogeneous phase can be written as the product sum of all fluxes,

Ji, and their conjugate forces, Xi. Fluxes and forces of interest in our system are related to

mass transport of the two components across the membrane. The entropy production of a

cross section of the system, σ, is:

σ � W=
i

JiXi � W �JCO2
XCO2

� JCH4
XCH4

� (1)
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where W is the width of the membrane (in the y-direction). Here, i � rCO2, CH4x. Fluxes

and forces can be related through a flux-force relation:

Ji � LiXi � �Li∆
µi

T
(2)

where Li is the component mass transport coefficient, µi is the chemical potential, and T is

the temperature. We use the symbol ∆ to indicate the difference between the permeate and

the feed side. Since we consider the gas to be ideal, Eq. 2 can be rewritten as:

Ji � �RLi ln
p
p
x
p
i

pfx
f
i

(3)

where R is the universal gas constant, p is the total pressure, and xi is the component

molar fraction. The superscripts p and f are used to indicate that a variable belongs to the

permeate or feed side respectively. Introducing the flux-force relations given by Eq. 2 into

Eq. 1, we obtain the local entropy production as a function of the driving forces only:

σ � W �LCO2
X

2
CO2

� LCH4
X

2
CH4

�
� W �LCO2

��∆
µCO2

T
	2

� LCH4
��∆

µCH4

T
	2
 (4)

In a continuous system, the total entropy production is the integral of the local entropy

production over the total length of the membrane unit:

Σirr � E
L

0

σdz (5)

� W E
L

0

LCO2
��∆

µCO2

T
	2

� LCH4
��∆

µCH4

T
	2

dz

� Σirr,CO2
� Σirr,CH4

where Σirr,CO2
and Σirr,CH4

are the contributions to entropy production given by the transport

of CO2 and methane respectively.
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Using optimal control theory, Johannessen and Kjelstrup
17

showed in a general way that,

when the thermodynamic driving forces can be controlled independently and the flux-force

relations are linear, the minimum in Eq. 5 is obtained when the argument of the integral

and, thus, the local entropy production are constant. Calculus of variations
16,29

as well as

other optimization tools
41

can also be used to prove this result. For a membrane unit, the

EoEP has been analytically derived using optimal control theory in Ref.
39

In that work,

EoF resulted from EoEP, since the transport coefficients and the proportionality coefficient

matrix were constant.

When the driving forces cannot be controlled independently, the mathematical tools do

not give information on the nature of the optimal solutions.

If the process takes place in discrete stages (Fig. 2), the entropy production of the whole

system is given by the sum of the entropy produced in each of the N subsystems:

Σ
dis
irr �

N

=
n�1

Σirr,n �

N

=
n�1

E
L
stage

0

σdz (6)

where L
stage

is the length of each membrane stage.

3.2 Thermodynamic length, speed, and entropy production

In finite-time thermodynamics, the dissipation of a process has been linked to its thermody-

namic geometry. In particular, the thermodynamic distance, which is the distance between

two thermodynamic states, is closely related to the system dissipation.

Weinhold
27

defined an equilibrium thermodynamic metric in terms of the extensive state

variables and of the extensive entropy of the system , S
f
. In the present case, the extensive

variables are the component fluxes on the feed side, F
f
i , and the matrix is defined as:

gik � �
∂

2
S
f

∂F
f
i ∂F

f
k

(7)
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The intensive variables of the system can be expressed by:
27

Y
f
i �

∂S
f

∂F
f
i

� �
µ
f
i

T f
(8)

The thermodynamic length element, dl, is a function of the above thermodynamic metric

and of the state variables according to:
29

dl
2
� =

i,k

gikdF
f
i dF

f
k � �=

i

dY
f
i dF

f
i (9)

� =
i

d�µf
i

T f
� dF f

i

With this formulation, the entropy production due to transfer of dF
f
i from feed to permeate

can be formulated as:
28

dSu � �=
i

∆YidF
f
i (10)

where ∆ indicates the difference between the permeate and the feed side. By substituting

Eq. 8 into ∆Yi, and comparing it to the thermodynamic driving forces in Eq. 2, we find that

∆Yi � Xi. Even though the terms dY
f
i (in Eq. 9) and ∆Yi (in Eq. 10) look similar, they are

different in nature, since they represent the infinitesimal change in the feed stream and the

difference between the state of the permeate and the feed side respectively.

Equation 10 can be further elaborated by introducing the conservation equations into it

(Eq. 22 in Appendix 6):

dSu � �<i ∆YidF
f
i � �=

i

Xi

dF
f
i

dz
dz

� W <iXiJidz � σdz (11)

Comparing Eqs. 1 and 11, we find that σ � dSu©dz, and that, as expected, the two formu-

lations are equivalent.
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We now define the quantities:

ε �

dSu©dz�dl©dz�2
(12)

dξ �

dz
ε (13)

Ξ � E
L

0

dξ (14)

where, ε is a characteristic length. For sufficiently long processes, ε corresponds to the

relaxation length (or time, if time is the system coordinate). This is the only nonequilibrium

parameter used in the finite-time formulation. Here, ξ is the number of relaxations which is

a dimensionless quantity.
29

The total entropy production is given by the integration of dSu over the total membrane

length, L,:
29

Σirr � E
L

0

dSu � E
L

0

ε � dl
dz

2

dz � E
Ξ

0

� dl
dξ

2

dξ � E
Ξ

0

v
2
THdξ (15)

where vTH � dl©dξ is the thermodynamic speed. Reference
29

shows how calculus of variation

can be used to prove that Eq. 15 is minimum when the argument of the integral and, thus,

σ are constant. Even though it is not specified in Ref.,
29

in their derivation of EoEP,

they assume to be able to independently control all driving forces. Moreover, the flux-force

relations need to have a linear form, so that the entropy production can be written as:
29

dSu �=
i

f �Ni� �dNi

dz

2

dz (16)

where f �Ni� is a function of the state variables only.

If the optimization procedure is done ahead of the membrane unit design, the length of

the membrane unit, L, can be a parameter of the optimization problem. In the particular

case that L is free to vary, while the number of relaxations Ξ is fixed, it has been found that

the entropy production is minimum when the argument of the integral in the last equality
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of Eq. 15 is constant. Under this conditions, the thermodynamic speed is constant.
32

The thermodynamic speed can be further elaborated to get:

vTH �

dl

dξ

�

XCO2
JCO2

�XCH4
JCH4×

R

F fx
f
CO2

x
f
CH4

�JCO2
x
f
CH4

� JCH4
x
f
CO2

�2
(17)

The derivation of the last equality is presented in Appendix 6.

In a process that proceeds by discrete stages, when the steps are sufficiently short to

consider the metric gik constant in every step, Eq. 9 can be integrated to obtain the thermo-

dynamic length of the stage n:
29

ln �

Ø
=
i,k

gik∆nF
f
i ∆nF

f
k (18)

where ∆nF
f
i is the difference in the state variable F

f
i between outlet and inlet of the stage

n. The total thermodynamic length of the process will then be:

l �
N

=
n�1

ln (19)

If the metric gik can be considered constant in every step of the process, the total entropy

production is minimum when the steps are spaced such that the thermodynamic distance

between them is the same.
42

When the metric gik cannot be considered constant, the thermodynamic length of a step

is found by integrating Eq. 29 over the length of the step, L
stage

.
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4 Calculation details

In order to establish a reference, the entropy production of a membrane system with constant

permeate pressure is calculated. In this case, the state variables’ profiles are found by

integrating the component conservation equations presented in Appendix 6 (Eq. 22). Since

the permeate feed at the outlet of the membrane is needed to calculate the permeate flows

at any position (Eq. 23), the problem is solved by using the Matlab “bvp4c” solver, which is

a collocation method that allows the integration of ordinary differential equations, where a

set of constant parameters is unknown. Here, F
f,out

is set as the unknown parameter.

The entropy production and the thermodynamic profiles for the controlled cases are found

through a numerical minimization procedure. We used the Matlab optimization function

“fmincon”, which is a nonlinear programming solver that allows us to find the minimum

of an objective function subject to equality and inequality constraints. The total entropy

production described by Eq. 5 (or, equivalently, by Eq. 15) is set as the objective function

of the optimization problem.

The equality constraints are given by inlet feed and permeate flows, by the governing

equations (Eqs. 22), and by a constraint on the separation duty of the membrane unit:

x
f,out
CO2

� 0.02 (20)

When later in this section we impose the entropy production minimization results on the

system, a further constraint is needed (See Sec. 4.2).

Some inequality constraints are also imposed to prevent the numerical solver to choose

unfeasible solutions for the problem. Since we want the component fluxes across the mem-

brane to be directed from the feed to the permeate side, the N
f
i should not be larger than

the ones at an earlier position along the membrane. Moreover, the permeate pressure needs

to be positive.

Since the numerical solver does not guarantee that the minimum that is found is a global
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Table 1: Operating conditions for the reference membrane process.
43

In the reference process,
the pressure on both sides are constant along the z-direction. The same constant temperature
is considered at the two sides of the membrane. A sweep gas with the same composition as
the natural gas to be treated is used on the permeate side.

Value Units

T 308 K

p
f

50�10
5

Pa

p
p

1�10
5

Pa

F
f,in

0.098 mol�s
�1

F
p,in

0.002 mol�s
�1

x
f,in
CO2

0.3 -

x
p,in
CO2

0.3 -
W 1 m
L 57.6 m

minimum, we repeat the numerical calculations several times, with different random initial

profiles for the state and control variables. When the results converge to the same solution,

we assume that the global minimum is found.

4.1 Relevant data

Calculations are performed at a typical set of operating conditions for purification of natural

gas. Table 1 reports the main relevant data used in calculations. In the reference case, the

total pressure is constant on both sides of the membrane, since we neglect the pressure drop

due to viscous flow. However, a large pressure drop is present between the two sides of the

membrane unit. Since there are no heat sources and the gas is considered to be ideal, the

temperature results to be constant across the system.
44

In order to meet pipeline specifica-

tions,
43

the total length of the membrane unit (L) is chosen so that the CO2 content of the

treated natural gas is 2% at the exit of the reference membrane process. The permeabil-

ity data in Ref.
45

are used to derive the variable transport coefficients. The coefficients Li

(Eq. 2) are functions of the feed composition.
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4.2 Investigated cases

In order to establish the conditions for validity of the entropy production minimization results

that are derived in literature, and to evaluate their performances as entropy production

minimization designs, we compare the entropy production obtained in different cases:

Reference case (Ref): In the reference case, the total pressure on the permeate side is

constant.

Numerical optimum (NumOpt): The partial or total pressures on the permeate side are

continuously controlled so that the total entropy production of the process is minimum

and the equality constraints given earlier in Section 4 are satisfied.

Equipartition of entropy production (EoEP): The total entropy production is mini-

mized with the additional constraint that the local entropy production needs to be

constant. The constant value of the local entropy production is a parameter of the

optimization procedure.

Equipartition of forces (EoF): The total entropy production is minimized with the addi-

tional constraint that the thermodynamic driving forces need to be constant. When we

can control the permeate partial pressures, it is possible to make both driving forces

constant. When we can control only the permeate total pressure, we can force just

one driving force to be constant. Therefore, we will impose separately constant driv-

ing force to CO2 transport (EoFCO2
) or constant driving force to methane transport

(EoFCH4
).

Equal thermodynamic speed (ETS): The total entropy production is minimized with

the additional constraint that the thermodynamic speed needs to be constant.

In all the cases mentioned above (with exception for the reference case), we assume that

we are able to control the permeate partial or total permeate pressure at any position.

When we can control both component partial pressures, the driving forces can be controlled
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Table 2: Total entropy production of the continuous membrane unit for the reference case
(Ref), and in the cases where 2 variables are controlled (NumOpt, EoEP, EoF, and ETS).
The percentage in parenthesis represents the fraction of the possible entropy production
reduction which is obtained, calculated according to Eq. 21.

J�K
�1
�s
�1

Ref NumOpt EoEP EoF ETS

Σirr 0.958 0.483 0.483 (100%) 0.520 (92.2%) 0.500 (96.2%)
Σirr,CO2

0.602 0.483 0.483 0.520 0.497

Σirr,CH4
0.356 1.6 � 10

�4
1.6 � 10

�4
3.2 � 10

�5
0.003

independently. On the other hand, the control of the total pressure only does not allow us

to have such freedom of control.

Since some of the equipartition results presented in literature are derived for discrete

processes, we also consider a staged membrane unit, where the total permeate pressure is

controlled in every stage. In the discrete case, we compare the following cases:

Numerical optimum (NumOpt): We find the permeate total pressures that needs to

be assigned to every stage in order to minimize the total entropy production, while

satisfying the equality constraints given above.

Equipartition of entropy production (EoEP): We minimize the total entropy produc-

tion with the additional constraint that the total entropy production of the stage is

the same for all stages.

Equal thermodynamic length (ETL): We minimize the total entropy production with

the additional constraint that the thermodynamic length of every stage is the same for

all stages.

Equal thermodynamic length from Eq. 18 (ETL approx): We minimize the total en-

tropy production with the additional constraint that the thermodynamic length of every

stage calculated according to Eq. 18 is the same for all stages.

17



5 Results and discussion

5.1 Continuous process

In this section, we present and compare the results obtained by applying the equipartition

results to the continuous reference process. First, we compare the results obtained when we

can control all driving forces independently. We then analyze the case in which the control

on the system is not sufficient to drive the forces independently.

5.1.1 Independent control of all driving forces

In order to control all driving forces, we need to have control on a number of variables that

is equal or larger than the number of independent state variables.
17

The assumption of being

able to independently control all driving forces is needed to derive all the equipartition results

analyzed in Section 3. For a membrane unit, the control of the permeate partial pressures

represents a possible way to achieve this kind of control. Other choices are possible. However,

as long as the choice of control variables enables us to control the driving forces independently,

the results are not influenced by this choice.

When we control the permeate partial pressures, we implicitly control the permeate

composition at every position. Thus, the component mass balances on the permeate side

which are given by Eq. 23 are not obeyed.

Table 2 presents the total entropy production in the investigated cases, as well as the

contributions to it given by transport of the different components. In the optimal numer-

ical case (NumOpt), the total entropy production is reduced by 49.6% with respect to the

reference case (Ref). The entropy production due to methane transport is not exactly zero

in the optimal case, however, it is several orders of magnitude smaller than the one due to

CO2 transport. The reduction of Σirr,CH4
gives the largest contribution to the total entropy

production reduction.

The percentage in parenthesis represents the fraction of the possible entropy production
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Figure 3: Thermodynamic driving force to CO2 transport (dashed lines) and methane trans-
port (solid lines) of the continuous membrane unit for the reference case (thick lines), and
for the cases where 2 variables are controlled (� for NumOpt, b for EoEP, u for EoF, and
� for ETS). The �, b and u symbols coincide. The transport coefficients are constant.

reduction which is obtained when the equipartition results are used as design principles.

Such fraction is calculated as:

% �

Σ
Ref
irr � Σirr

ΣRef
irr � Σ

NumOpt
irr

� 100 (21)

where Σirr is the entropy production in the considered case, and Σ
Ref
irr is the entropy produc-

tion in the reference case. Here, we use Σ
NumOpt
irr to indicate the entropy production of the

NumOpt considered in this section. Table 2 shows that the entropy production obtained with

EoEP equals that of the optimal case (by the numerical accuracy of the calculations, 10
�6

).

This result is in agreement with the theoretical analysis conducted in Section 3. Indeed, the

conditions for derivation of EoEP are satisfied (i.e. independent control of the driving forces,

linear flux-force relations, and σ not explicitly dependent on the spatial coordinate z).
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Figure 4: Thermodynamic driving force to CO2 transport (dashed lines) and methane trans-
port (solid lines) of the continuous membrane unit for the reference case (thick lines), and
in the cases where 2 variables are controlled (� for NumOpt, b for EoEP, u for EoF, and
� for ETS). The � and b symbols coincide. The transport coefficients are functions of the
state variables.

On the other hand, EoF does not coincide with the optimum. Equipartition of forces

characterizes the optimal solution under two different sets of assumptions. In the first case,

any variation in the state variables needs to be allowed, even the unfeasible ones. By obeying

the conservation equations on the feed side, we do not satisfy this condition. In the second

case, EoF follows from EoEP if the transport coefficients and the proportionality factor

matrix of the optimal control theory formulation are constant.
17

In the present case, the

proportionality factor matrix is constant. However, the transport coefficients are functions

of the feed composition, and thus the conditions are not satisfied. We can verify this last

case by running the same calculations with constant transport coefficients. Figure 3 shows

that, when the transport coefficients are constant, the thermodynamic driving force profiles

of NumOpt (� simbols), EoEP (b symbols) and EoF (u symbols) coincide at the numerical
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Figure 5: Local entropy production of the continuous membrane unit for the reference case
(thick solid line), and in the cases where 2 variables are controlled (� for NumOpt, b for
EoEP, u for EoF, and � for ETS). The � and b symbols coincide. The c symbols represent
a case where σ is constant but Σirr is not minimized.

accuracy of the calculations (10
�6

). The same results were found in Ref.,
39

where constant

transport coefficients were used. However, EoF gives a good approximation of the minimum

even when it does not correspond to it, as it allows for 92.2% of the maximum entropy

production reduction (Table 2).

Equal thermodynamic speed (� symbols) does not coincide with the optimum. Indeed,

ETS coincides with the optimal solution only when the optimization is carried out at fixed

number of relaxation, Ξ, instead of fixed length of the membrane unit, and under the same

conditions necessary to obtain EoEP (i.e. independent control of the driving forces, linear

flux-force relations, and σ not explicitly dependent on the spatial coordinate z). Since the

membrane length is fixed, these conditions are not satisfied. Nonetheless, ETS approxi-

mates the minimum very well, as it allows for 96.2% of the maximum entropy production

reduction (Table 2).
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Figure 4 depicts the thermodynamic driving forces to transport of CO2 (dashed lines)

and methane (solid lines), for transport coefficients that are functions of the state variables.

In this case only NumOpt (� symbols) and EoEP (b symbols) coincide. The driving force

profiles are quite different in the different cases. However, the deviations in total entropy

production of EoF and ETS with respect to NumOpt and EoEP are quite small (Table 2).

Thus, it seems that, also for membrane systems, the entropy production minimum in the

thermodynamic space is quite flat and, therefore, relatively large perturbations from the

optimal profiles result in small differences in the total entropy production.
12,16

When the permeate partial pressures are controlled, the entropy production is mostly due

to the transport of CO2 (Table 2). Figure 4 shows that, in the first part of the membrane, all

equipartition methods make the CO2 driving force smaller than in the reference case, while,

in the second part, they make it larger. Thus, to some extent, all equipartition principles

move in the same direction. However, EoF (u symbols) does not reduce enough the driving

force in the first part of the membrane, while it enlarges it too little in the second part (cf.

with the optimal case, � symbols). In contrast, ETS (� symbols) has opposite behavior.

The optimal driving forces are always between those of EoF and those of ETS.

The total entropy production is the integral of the local entropy production over the

membrane unit. In Fig. 5, we can see that the σ obtained by imposing EoF (u symbols)

deviates from the optimal one (� symbols) in a positive manner in the first half of the

membrane, while it has a negative deviation in the second half. Overall, the two deviations

cancel each other for the largest part, resulting in a small total entropy production difference

from the optimal case. For the case where ETS is imposed (� symbols), the deviations from

the optimal local entropy production are opposite to those obtained with EoF. However, also

in this case the two deviations mostly cancel each other.

An optimization procedure is still necessary to obtain the EoEP, EoF and ETS results

that we have presented in this section. Indeed, in the present case, different partial pressure

profiles can give constant local entropy production (or constant driving forces, or constant
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Table 3: Total entropy production of the continuous membrane unit for the reference case
(Ref), and in the cases where 1 variable is controlled (NumOpt, EoEP, EoFCO2

, EoFCH4
,

and ETS). The percentage in parenthesis represents the fraction of the possible entropy
production reduction which is obtained, calculated according to Eq. 21.

J�K
�1
�s
�1

Ref NumOpt EoEP EoFCO2
EoFCH4

ETS

Σirr 0.958 0.838 0.841(97.2%) 0.868(75.3%) 0.919(32.6%) 0.844(95.3%)
Σirr,CO2

0.602 0.478 0.484 0.514 0.565 0.478
Σirr,CH4

0.356 0.360 0.357 0.354 0.354 0.366

thermodynamic speed), without being the optimal ones. As an example, the c symbols

in Fig. 5 show a case where the local entropy production is constant, but where the total

entropy production is not minimum. In the example, the total entropy production is even

larger than that of the reference case (Σirr = 1.22 J�K
�1
�s
�1

). However, even if the op-

timization procedure is still needed, the optimization problem reduces in complexity since

the optimization is carried out with only one scalar to be determined (the equipartitioned

quantity), instead of the unknown profiles of the two control variables.

This phenomenon is due to the fact that the number of constraints on the process (i.e.

the inlet molar flows, F
f,in
i , and the separation duty given by Eq. 20) is smaller than the total

number of state and control variables. Thus, more than one system design might correspond

to each of the equipartition results. When the number of constraints and the total number

of state and control variables are the same, the solution is unique, and the optimization

procedure is not necessary. For the present case, it is possible to obtain the same number

of constraints and the total number of state and control variables by adding a constraint to

the process (for instance, we could impose the methane losses to be zero, F
f,out
CH4

� F
f,in
CH4

).

However, the additional constraint limits to some degree the possibility to reduce the entropy

production.
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Figure 6: Permeate pressure in the continuous membrane unit for the reference case (solid
thick line), and in the cases where 1 variable is controlled (� for NumOpt, b for EoEP, u
for EoFCO2

, v for EoFCH4
, and � for ETS).

5.1.2 Partial control of the driving forces

When we control the total permeate pressure only, the driving forces cannot be controlled

independently. According to the analysis in Section 3, without independent control of all

driving forces, none of the equipartition results can be analytically derived.

Other choices of the control variable are possible and, in this case, a different choice of

the control would lead to different results of the optimization process.

Table 3 presents the total entropy production in the investigated cases, as well as the

contributions to it given by transport of the different components. With the control of the

total permeate pressure only, the reduction in the total entropy production is much smaller

than the one obtained by having control of all driving forces. In the optimal numerical

case (NumOpt), the total entropy production is reduced by only 12.5% with respect to the

reference case (Ref). The overall reduction in entropy production is due to the reduction
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in Σirr,CO2
only, while Σirr,CH4

is slightly increased. Similarly, in Ref.,
46

it was found that

the reduction in entropy production in an optimally controlled steam reformer was only due

to the reduction of one of its contributions, while all the other contributions had slightly

increased.

The percentage in parenthesis represents the fraction of the possible entropy production

reduction which is obtained when the equipartition results are used as design principles. The

percentages are calculated according to Eq. 21, where we now use the entropy production of

the NumOpt considered in this section. Table 3 shows that neither of the equipartition results

(EoEP, EoFCO2
, EoFCH4

, and ETS) coincides with the optimum. Nevertheless, imposing

EoEP and ETS approximates well the optimum, by bringing the total entropy production

circa 97.2% and 95.3% towards the minimum, respectively. EoFCO2
does not perform as

well as EoEP and ETS, as it allows for only 75.3% of the reduction in entropy production

obtained in NumOpt.

Figure 6 shows how the permeate pressure is operated in the different investigated cases.

EoEP (b symbols) and ETS (� symbols) approximate quite well the optimal pressure profile

(� symbols) close to the end of the membrane unit. However, they have larger deviations

from the optimal solution in the first half of the membrane unit. The optimal pressure profile

is everywhere included between the profiles obtained by imposing EoEP and ETS.

Differently from the case analyzed in Sec. 5.1.1, the permeate pressure profiles obtained

by imposing the equipartition results are uniquely determined in this case. Indeed, the

number of constraints equals the total number of state and control variables. Therefore, the

optimization procedure is not necessary in the present case.

Since EoEP and ETS give very good approximations of the optimum (Table 3), they

can be used as design principles to reduce entropy production in CO2 separation membrane

processes.
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Figure 7: Total entropy production of the staged membrane as function of the number of
stages, N . We use � for NumOpt, b for EoEP, � for ETL, and � for ETL approx. The
thick solid line shows Σirr for the continuous NumOpt case.

5.2 Discrete process

Some of the equipartition results discussed in Section 3 have been derived for processes where

the system proceeds through a series of stages. In this section, we present and compare the

results obtained by applying the equipartition results to a discrete membrane process.

We assume that we can control the total permeate pressure at the inlet of every stage,

and we compare the results obtained for different number of stages. The total length of

the membrane unit is the same in every case (L), and the length of every stage is simply

L
stage

� L©N . Thus, the stage lengths are not parameters of the optimization problem.

Figure 7 reports the total entropy production obtained with NumOpt (� symbols), EoEP

(b symbols), ETL (� symbols), and ETL approx (� symbols), as functions of the number

of stages, N . The thick solid line shows the numerical optimal continuous results obtained in

Section 5.1.2. As it is reasonable to expect, the NumOpt approaches the continuous optimum
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as the number of stages increases.

None of the equipartition results coincides with the optimum. However, EoEP (b sym-

bols) gives the best approximation of it. As the number of stages increases, the results

obtained with EoEP approach those obtained in the EoEP continuous case (see Table 3).

Also ETL(� symbols) approximates well the solution for low numbers of stages, while its

performance is less good at higher numbers of stages. The reason why ETL does not coincide

with the minimum is that one of the conditions to obtain the ETL results is not satisfied in

the present system. Indeed, in order to derive ETL, it is necessary that the system (gas on

the feed side) equilibrates with the ambient (gas on the permeate side) in every step of the

discrete process. This condition is not satisfied in the discrete membrane unit. A comparison

with Table 3 shows that ETL does not converge to ETS when N increases.

The comparison between the results obtained with ETL (� symbols) and ETL approx

(� symbols) shows that to consider the metric gik constant in every stage is not a good

approximation when the number of stages is small. The two results converge for increasing

number of stages.

6 Conclusions

We have in this work analyzed and compared some of the different results of entropy produc-

tion minimization procedures on optimally controlled systems that have been presented in

literature. After listing the assumptions made in their derivation, we have used the results

as design principles for entropy production reduction in a membrane unit for CO2 separation

from a CO2/methane mixture, and compared them to the numerically determined optimum.

In the considered example, the flux-force relations were linear and the local entropy produc-

tion was not an explicit function of the spatial coordinate.

For a continuous process, we considered and compared the equipartition of forces (EoF),

the equipartition of entropy production (EoEP), and the equal thermodynamic speed (ETS)
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results. When all driving forces were controlled independently, the numerical optimum and

EoEP coincided. With the further assumption of constant transport coefficients, EoF cor-

responded to EoEP and numerical optimum. ETS coincides with the optimal solution only

when the optimization is carried out at fixed number of relaxations, instead of fixed length

of the membrane unit. Even though EoF and ETS did not give the numerical optimum, they

approximated it well.

When the thermodynamic driving forces could not be controlled independently, none

of the equipartition results characterized the optimal solution. However, EoEP and ETS

approximated the optimum very well.

With or without the ability to independently control the driving forces, EoEP and ETS

gave good approximations of (or coincided with) the numerical optimum. Thus, they can be

used as design principles to reduce entropy production in CO2 separation membrane systems.

However, we showed that one should be careful, when the number of constraints imposed

on the system is smaller than the total number of state and control variables. Under these

circumstances, more than one solution might be compatible with the equipartition results,

and, thus, the optimization procedure is still needed. Nonetheless, the use of equiparti-

tion results greatly reduces the complexity of the optimization problem. When the number

of constraints equals the total number of state and control variables, the solution to the

equipartition principles is unique.

For a discrete process, we considered and compared the EoEP, the equal thermodynamic

length (ETL), and the approximated equal thermodynamic length (ETL approx) results.

We assumed to be able to control the permeate total pressure in every stage. None of the

equipartition results coincided with the numerical optimum. However, EoEP gave the best

approximation of the discrete optimum, especially for low numbers of stages. Since the

process was not an equilibration process, ETL did not coincide with the optimum, but still

approximated it well. Finally, ETL approx was not a good approximation of ETL for small

numbers of stages.
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Appendix

Thermodynamic length and speed for a membrane system

Conservation equations

On the feed side, the molar balance of component i for a cross section of the system on the

xy-plane can be written as

dF
f
i

dz
� �WJi (22)

The component flows on the permeate side can be calculated at all positions as:

F
p
i � F

p,in
i � �F f,out

i � F
f
i � (23)

The thermodynamic metric gik

Equation 7 gives an expression for the thermodynamic metric gik in terms of the second

derivatives of the extensive entropy with respect to the state variables. In this subsection,

we will derive the gik for the specific case.

In the present system, we consider the feed component molar flows, F
f
i , as independent

state variables. The first derivative of S
f

with respect of the F
f
i is given by the component

chemical potential over the temperature (Eq. 8). Thus, the second derivative with respect

to F
f
CO2

is:

gCO2CO2
� �

∂
2
S
f

∂ �F f
CO2

�2
�

∂

∂F
f
CO2

�µf
CO2

T f
�

�

∂

∂F
f
CO2

�µref
CO2

T f
�R ln

p
f
x
f
CO2

pref
�

� R
x
f
CH4

F
f
CO2

(24)

where µ
ref
CO2

is the component chemical potential in the reference state, and p
ref

is the pressure
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of the reference state. Similarly, we get:

gCH4CH4
� �

∂
2
S
f

∂ �F f
CH4

�2
�

∂

∂F
f
CH4

�µf
CH4

T f
�

�

∂

∂F
f
CH4

�µref
CH4

T f
�R ln

p
f
x
f
CH4

pref
�

� R
x
f
CO2

F
f
CH4

(25)

and:

gCO2CH4
� �

∂
2
S
f

∂F
f
CO2

F
f
CH4

�

∂

∂F
f
CO2

�µf
CH4

T f
�

�

∂

∂F
f
CO2

�µref
CH4

T f
�R ln

p
f
x
f
CH4

pref
�

� �R
1

F f
(26)

Thermodynamic length

The thermodynamic length was defined in Section 3.2 as:

dl
2
�=

i,k

gikdF
f
i dF

f
k (27)

By expanding the summation and substituting Eq. 22 and Eqs. 24-26 into Eq. 27, we get:

dl
2
� R

x
f
CH4

F
f
CO2

�dF f
CO2

�2
�R

2

F f
dF

f
CO2

dF
f
CH4

�R
x
f
CO2

F
f
CH4

�dF f
CH4

�2

� R
�xfCH4

dF
f
CO2

� x
f
CO2

dF
f
CH4

�2

F fx
f
CO2

x
f
CH4

� W
2
R
�xfCO2

J
f
CH4

� x
f
CH4

J
f
CO2

�2

F fx
f
CO2

x
f
CH4

dz
2

(28)
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Thus, the infinitesimal thermodynamic length can be written as:

dl � W

ÙÛÛÛÛÛÛÛÚR
�xfCO2

J
f
CH4

� x
f
CH4

J
f
CO2

�2

F fx
f
CO2

x
f
CH4

dz (29)

Thermodynamic speed

The thermodynamic speed was defined in Section 3.2 as:

vTH �

dl

dξ
� ε

dl

dz
(30)

Introducing Eqs. 29 and Eq. 12 into Eq. 30, we get:

vTH �

dSu©dz�dl©dz�2

dl

dz

�

σ

dl©dz
�

σ

W

Ø
R

�xf
CO2

J
f
CH4

�x
f
CH4

J
f
CO2

	2

F fx
f
CO2

x
f
CH4

(31)
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