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Abstract— We solve the problem of controlling a class of one-
dimensional semilinear 2× 2 hyperbolic systems to the origin
in minimum time using actuation at both boundaries of the
domain. The control method can also be used to solve a class
of tracking problems. For the special case of time-invariant
linear systems, the state-feedback control law can be written
explicitly as the inner product of kernels with the state. We
further design an observer to estimate the distributed state from
measurements at both boundaries, also in minimum time. The
state-feedback controller and observer are combined to solve
the output-feedback control problem. A numerical example is
given to demonstrate the controller performance.

I. INTRODUCTION

The control of one-dimensional hyperbolic partial differen-
tial equations(PDEs) has received significant attention since
they model many relevant systems, such as water channels
[1], [2], [3], gas pipelines [4], road traffic [5], and oil
wells [6]. One approach of stabilizing such systems is to
design dissipative boundary conditions, see e.g. [2], [3]. An
alternative approach is to design the control input to drive
the system to a desired state, as it is done in e.g. [1], [6].
There exist several results on the exact controllability of one-
dimensional hyperbolic systems, see e.g. [7] for linear sys-
tems, [8] for a class of semilinear systems, and [9], [10] for
local results for quasilinear systems. However, these papers
discuss only the existence of open-loop control signals driv-
ing the state to the origin. Constructive methods for feedback
control and state estimation have been developed recently in
the form of backstepping for linear systems, see e.g. [11]
and subsequent papers, and in [12] for semilinear systems.
These papers consider actuation and sensing at one boundary
of the domain. However, if actuation and measurements are
available at both boundaries of the domain, the minimum
times to control the system and to estimate the state are
shorter [10]. This motivated the developed of explicit state-
feedback laws based on backstepping transformations in [13]
and [14]. However, these results are only for linear systems
and under the somewhat restrictive assumption of constant
and in the latter case equal transport speeds. They also do
not consider the estimation problem. Another motivation for
using actuation at both boundaries is that two objectives
can be tracked simultaneously. Moreover, redundancy can
be exploited to design e.g. fault-tolerant designs.
In this paper, we develop a state-feedback law to stabilize
the origin of a semilinear hyperbolic system in minimum
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time using actuation at both boundaries. The controller
design method can also be used to solve a class of tracking
problems. Moreover, we solve the problem of estimating
the state of a semilinear system from measurements at both
boundaries in minimum time.
The paper is organized as follows. The class of systems
is described in Section II. In Section III, a state-feedback
controller is designed to solve the tracking (Section III-C)
and stabilization (Section III-D) problems. For linear sys-
tems, an explicit state-feedback (i.e. the product of (infinite-
dimensional) gains with the state) is derived in Section IV.
An observer is designed in Section V which, combined with
the state-feedback controller, is used to solve the output-
feedback control problem in Section VI. Finally, the con-
troller performance is demonstrated in a numerical example
in Section VII.

II. SYSTEM DESCRIPTION

We consider systems of the form

ut(x, t) =−εu(x)ux(x, t)+Fu((u,v)(x, t),x, t), (1)
vt(x, t) = εv(x)vx(x, t)+Fv((u,v)(x, t),x, t), (2)
u(0, t) =U1(t), v(1, t) =U2(t), (3)
u(x,0) = u0(x), v(x,0) = v0(x), (4)

where x∈ [0,1] and t ≥ 0, the subscripts t and x denote partial
derivatives with respect to t and x, respectively, and U1(t)
and U2(t) are control inputs. The notation (u,v)(x, t) in Fu
and Fv is used to denote the state, (u,v) evaluated at (x, t).
We consider the state space of bounded functions on [0,1],
X = { f : [0,1]→ R : | f (x)| < ∞ ∀x ∈ [0,1]}, and denote
the spatial supremum norm by ‖ f‖ = maxx∈[0,1] | f (x)| for
f ∈X . The initial conditions u0, v0 are assumed to lie in
X . We also use the notation X[a,b] to denote the space of
bounded functions on the interval [a,b].
We make the following assumptions on the system coeffi-
cients: There exist uniform bounds ε1 > 0, ε2 > 0 such that
ε1 < εu(x),εv(x)< ε2 for all x∈ [0,1]. Moreover, there exists
a Lipschitz constant L such that

|Fu((u1,v1),x, t)−Fu((u2,v2),x, t)| ≤ L(|u1−u2|+ |v1− v2|),
(5)

|Fv((u1,v1),x, t)−Fv((u2,v2),x, t)| ≤ L(|u1−u2|+ |v1− v2|),
(6)

for all (u1,v1), (u2,v2), x, t. The Lipschitz condition prevents
finite-time blowup of the state. Thus, global existence of a
solution of (1)-(4) can be guaranteed. We allow the nonlin-
earities to be time-varying, but need to assume that at every



Fig. 1. Characteristic lines of u (“upwards”) and v (“downwards”), as well
as the characteristic lines su and sv used in controller design.

time Fu and Fv (as functions of (u,v)) are exactly known
φv(x̄) into the future (see the next section for definitions of
φv and x̄). For estimation, Fu and Fv must also be known
φ̂v(x̂) into the past. Moreover, εu and εv must be measureable
in x (that is, discontinuous εu and εv are possible), and Fu
and Fv must be measureable in x and t. For the stabilization
problem, we also need to assume that

Fu((0,0),x, t) = 0, Fv((0,0),x, t) = 0. (7)

for all x ∈ [0,1] and t ≥ 0. Note that (7) implies that
the origin is an equilibrium. A system can be controlled
to any equilibrium by applying a state transformation to
align the to-be stabilized equilibrium with the origin. For
tracking, we do not need (7). Moreover, we consider the
problem of estimating the distributed state from the boundary
measurements

Y1(t) = v(0, t), Y2(t) = u(1, t). (8)

III. STATE-FEEDBACK CONTROL

A. Preliminaries

Our analysis is based on the method of characteristics.
Since the propagation speeds εu and εv are state independent,
the characteristic lines are known a priori. We denote the
characteristic lines along which U1(t) and U2(t) propagate by
su(·, t) and sv(·, t), respectively. They are depicted in Figure
1. We make the following definition

φu(x) =
∫ x

0

1
εu(ξ )

dξ , φv(x) =
∫ 1

x

1
εv(ξ )

dξ . (9)

Since εu and εv are positive, φu and φv are well defined,
strictly monotonically increasing and decreasing, respec-
tively, and invertible. The characteristic lines can be written
as

su(x, t) = (x, t +φu(x)), sv(x, t) = (x, t +φv(x)). (10)

We denote the location at which su(·, t) and sv(·, t) intersect
by x̄. At x̄,

t +φu(x̄) = t +φv(x̄). (11)

Since the left-hand side of (11) is strictly monotonically
increasing in x̄ and the right-hand side of (11) is strictly

monotonically decreasing in x̄, (11) has a unique solution x̄
for given εu and εv. Finally, we define the delays

du = φu(1), dv = φv(0), d = max{du,dv}, t̄ = φv(x̄). (12)

Due to the finite propagation speed, the actuation does not
affect the state in the whole domain immediately. Therefore,
it is only possible to control the state in the interior of the
domain some time into the future. More precisely, the input
U1(t) at time t affects the state at some location x ∈ [0,1]
only at the future time t +φu(x). All states “before” su(·, t)
are independent of U1(t). Analogously, U2(t) affects the state
only at the future time t + φv(x). Therefore, we base our
analysis on the dynamics on the characteristic lines su and
sv.

Definition 1: We define the states on su(x, t) and on
sv(x, t) as

ū1(x, t) = u(x, t +φu(x)), v̄1(x, t) = v(x, t +φu(x)), (13)

ū2(x, t) = u(x, t +φv(x)), v̄2(x, t) = v(x, t +φv(x)). (14)
Note that u(x, t) = ū1(x, t− φu(x)) = ū2(x, t− φv(x) and the
same for v.

Theorem 2: For every t, there exists a continuous,
bounded operator Φt : X[0,1]×X[0,1] → X[0,x̄]×X[x̄,1], in-
dependent of U1(t) and U2(t), such that(

v̄1([0, x̄], t), ū2([x̄,1], t)
)
= Φ

t (u([0,1], t),v([0,1], t)) . (15)

Moreover, (ū1, v̄1, ū2, v̄2) satisfies the PDE-ODE systems

ū1
x(x, t) =

1
εu(x)

Fu((ū1, v̄1)(x, t),x, t +φu(x)), (16)

v̄1
t (x, t) =

εu(x)εv(x)
εu(x)+ εv(x)

v̄1
x +

εu(x)
εu(x)+ εv(x)

×Fv((ū1, v̄1)(x, t),x, t +φu(x)), (17)

ū2
t (x, t) =−

εu(x)εv(x)
εu(x)+ εv(x)

ū2
x +

εv(x)
εu(x)+ εv(x)

×Fu((ū2, v̄2)(x, t),x, t +φv(x)), (18)

v̄2
x(x, t) =−

1
εv(x)

Fv((ū2, v̄2)(x, t),x, t +φv(x)), (19)

ū1(0, t) =U1(t), v̄2(1, t) =U2(t), (20)

v̄1(x̄, t) = v̄2(x̄, t), ū2(x̄, t) = ū1(x̄, t), (21)

v̄1(x,0) = v̄1
0(x), ū2(x,0) = ū2

0(x) (22)

where
(
v̄1

0, ū
2
0
)
= Φ0 (u0,v0).

Proof: We only sketch the proof of existence and
continuity of Φt . A detailed proof for a similar case can be
found in [12]. See also Figure 2. First, for any small δ > 0
existence of a solution of (1)-(2) with the input arguments
of Φt as initial condition in the domain

T δ =
{
(x,θ) : x ∈ [δ ,1−δ ],θ ∈ [t, t +φ

δ (x)]
}
, (23)

where φ δ (x) = min{φv(x)− φv(1− δ ), φu(x)− φu(δ )}, is
proven by transforming the PDEs into integral equations
by the method of characteristics, and applying a successive
approximation argument. The integration paths are sketched
in Figure 2. Note that the solution in this domain is in-
dependent of U1(t) and U2(t) because the points (0, t) and



Fig. 2. Left: Illustration of the domain T δ (green), the characteristic lines
along which the PDEs are integrated, and of the continuity argument used
in the proof of Theorem 2. Right: Illustration of the characteristic lines used
in observer design and the domain To (yellow, see also Theorem 10.

(1, t) lie outside T δ for all δ > 0. Moreover, the solution
is Lipchitz continuous in the input arguments of Φt . Then,
v̄1 on su and ū2 on sv, i.e. the output of Φt , is obtained by
uniform continuity of v̄1 and ū2 along their characteristic
lines. One can derive appropriate parametrizations of the
characteristic lines, denoted ξu(x,τ,s) and ξv(x,τ,s), such
that v1(ξv(x,θ ,s),s) and u2(ξu(x,θ ,s),s) satisfy ODEs in s
and

v̄1(x, t) = v(x, t +φu(x)) = lim
s→t+φu(x)

v(ξu(x, t +φu(x),s),s),

(24)

ū2(x, t) = u(x, t +φv(x)) = lim
s→t+φv(x)

u(ξu(x, t +φv(x),s),s).

(25)

Moreover, for every s < t + φu(x) (with s sufficiently close
to t + φu(x)) there exists a δ > 0 such that (ξu(x, t +
φu(x),s),s) ∈ T δ . Thus, the right-hand side of (24) exists,
is Lipschitz continuous in the input arguments of Φt . Since
the limit is attained uniformly, the same holds for v̄1(x, t).
Applying the same arguments to (25) finishes the first part
of the proof.
For the second statement, we use d

dt and d
dx to denote the

total derivative with respect to t and x, respectively, while t
and x are partial derivatives w.r.t. time and space. We have

ū1
x(x, t) =

d
dx

u(x, t +φu(x))

=ux(x, t +φu(x))+ut(x, t +φu(x))φ ′u(x)

=− 1
εu(x)

[ut(x, t +φu(x))

−Fu((u,v)(x, t +φu(x)),x, t +φu(x))]

+
1

εu(x)
ut(x, t +φu(x))

=
1

εu(x)
Fu((ū1, v̄1)(x, t),x, t +φu(x)).

(26)

For v̄1,

v̄1
t (x, t) =

d
dt

v(x, t +φu(x)) = vt(x, t +φu(x)), (27)

v̄1
x(x, t) =

d
dx

v(x, t +φu(x))

=vx(x, t +φu(x))+ vt(x, t +φu(x))φ ′u(x)

=vx(x, t +φu(x))+
1

εu(x)
vt(x, t +φu(x))

=
1

εv(x)
[vt(x, t +φu(x))

−Fv((u,v)(x, t +φu(x)),x, t +φu(x))]

+
1

εu(x)
vt(x, t +φu(x))

=
εu(x)+ εv(x)

εu(x)εv(x)
vt(x, t +φu(x))

− 1
εv(x)

Fv((ū1, v̄1)(x, t),x, t +φu(x)).

(28)

Replacing vt(x, t+φu(x)) in the latter equation by (27) yields
(17). Repeating the same steps for (ū2, v̄2) gives (18)-(19).
The boundary, coupling, and initial conditions (20)-(22) fol-
low directly from the definitions of φu and φv, and Definition
1.

Remark 3: The operator Φt can be implemented by solv-
ing (1)-(2) with the input arguments of Φt as initial condition
in the domain T δ for small δ > 0, and getting v̄1 and ū2 by
continuity as in (24)-(25). Since Φt will be used in the control
law this requires the online solution of a PDE system which
makes evaluating the control law computationally expensive.

B. Dynamics with virtual actuation

The central idea of our controller design method is to
virtually move the control inputs U1 and U2 to a desired
location inside the domain. The first step is to design loca-
tions x∗1 ∈ [0, x̄] and x∗2 ∈ [x̄,1], as well as virtual actuations
U∗1 (t) and U∗2 (t). Exploiting the fact that (16) and (19) are
ODEs in space without dynamics in time, U1(t) can be
constructed such that ū1(x∗1, t) becomes U∗1 (t), and U2(t) such
that v̄2(x∗2, t) becomes U∗2 (t). This is made precise in the
following theorem.

Theorem 4: For given t ≥ 0, x∗1 ∈ [0, x̄] and x∗2 ∈ [x̄,1],
consider the operator Ψ1

t,x∗1
: X[0,x̄]×R→ R, mapping φ ∈

X[0,x̄] and U∗1 (t) to ϕ(0), where ϕ is the solution of the
Cauchy problem

ϕx =
1

εu(x)
Fu((ϕ,φ)(x),x, t +φu(x)), x ∈ [0,x∗1],

ϕ(x∗1) =U∗1 (t),
(29)

and the operator Ψ2
t,x∗2

: X[x̄,1]×R→ R, mapping φ ∈X[x̄,1]

and U∗2 (t) to ϕ(1), where ϕ is the solution of the Cauchy
problem

ϕx =−
1

εv(x)
Fv((φ ,ϕ)(x),x, t +φv(x)), x ∈ [x∗2,1],

ϕ(x∗2) =U∗2 (t).
(30)

The system consisting of (16)-(22) in closed loop
with U1(t) = Ψ1

t,x∗1
(v̄1[0, x̄],U∗1 (t)) and U2(t) =



Ψ2
t,x∗2

(ū2[x̄, t],U∗2 (t)) satisfies

ū1
x(x, t) =

1
εu(x)

Fu((ū1, v̄1)(x, t),x, t +φu(x)), (31)

v̄1
t (x, t) =

εu(x)εv(x)
εu(x)+ εv(x)

v̄1
x +

εu(x)
εu(x)+ εv(x)

×Fv((ū1, v̄1)(x, t),x, t +φu(x)), (32)

ū2
t (x, t) =−

εu(x)εv(x)
εu(x)+ εv(x)

ū2
x +

εv(x)
εu(x)+ εv(x)

×Fu((ū2, v̄2)(x, t),x, t +φv(x)), (33)

v̄2
x(x, t) =−

1
εv(x)

Fv((ū2, v̄2)(x, t),x, t +φv(x)), (34)

ū1(x∗1, t) =U∗1 (t), v̄2(x∗2, t) =U∗2 (t), (35)

v̄1(x̄, t) = v̄2(x̄, t), ū2(x̄, t) = ū1(x̄, t), (36)

v̄1(·,0) = v1
0, ū2(·,0) = u2

0. (37)
Proof: The Carathéodory theorem and the Lipschitz

condition (5) ensure that the ODE (29) has a unique solu-
tion for any given initial condition [15]. Therefore, if two
solutions ϕ and ϕ̄ both satisfy (29), then

ϕ(x̄) = ϕ̄(x∗1)⇔ ϕ(0) = ϕ̄(0). (38)

Since (29) is a copy of (16) for φ = v̄1(·, t), this is equivalent
to

ū1(0, t) = Ψ
1
t,x∗1

(v̄1,U∗1 (t))⇔ ū1(x∗1, t) =U∗1 (t). (39)

The same arguments can be utilized to show that

v̄2(1, t) = Ψ
2
t,x∗2

(ū2,U∗2 (t))⇔ v̄2(x∗2, t) =U∗2 (t). (40)

Thus, (20) using the given feedback law is equivalent to (35).
The other equations remain unchanged.

C. Tracking

Theorem 4 can directly be used to solve a tracking problem
of the form

u1(x1
t , t) = g1(v1(x1

t , t), t), v2(x2
t , t) = g2(u2(x2

t , t), t), (41)

where x1
t ∈ [0, x̄], x2

t ∈ [x̄,1], and g1 g2 : R2→ R. We do not
need to assume (7). Hence, Fu and Fv can include disturbance
terms for which exact short-term predictions (t̄ into the
future) are available.

Theorem 5: The system (1)-(4) in closed loop with(
v̄1([0, x̄], t), ū2([x̄,1], t)

)
= Φ

t (u([0,1], t),v([0,1], t))

U∗1 (t) = g1 (v̄1(x1
t , t), t +φu(x1

t )
)

U∗2 (t) = g2 (ū2(x2
t , t), t +φv(x2

t )
)

U1(t) = Ψ
1
t,x1

t

(
v̄1([0, x̄], t),U∗1 (t)

)
U2(t) = Ψ

2
t,x2

t

(
ū2([x̄,1], t),U∗2 (t)

)
(42)

satisfies (41) for all t ≥ t̄, where t̄ was defined in (12).
Proof: The feedback law (42) ensures that (ū1, v̄1) and

(ū2, v̄2) satisfy the tracking objective for all t ≥ 0. Hence,
Definition 1 implies that (u,v) satisfies (41) for all t ≥ t̄,
where we also exploited that φu(x1

t ) ≤ t̄ since x1
t ≤ x̄ and

φv(x2
t )≤ t̄ since x2

t ≥ x̄.

D. Stabilization

In order to stabilize the origin, we choose x∗1 = x∗2 = x̄
and U∗1 (t) = U∗2 (t) = 0. This way, the actuation drives the
state to zero at x = x̄, and this zero ’propagates’ towards the
boundaries of the domain by the closed-loop dynamics.

Theorem 6: The system (1)-(4) in closed loop with(
v̄1([0, x̄], t), ū2([x̄,1], t)

)
= Φ

t (u([0,1], t),v([0,1], t))

U1(t) = Ψ
1
t,x̄
(
v̄1([0, x̄], t),0

)
U2(t) = Ψ

2
t,x̄
(
ū2([x̄,1], t),0

) (43)

satisfies u(·, t) = v(·, t) = 0 for all t ≥ d, where d was defined
in (12).

Proof: Choosing x∗1 = x∗2 = x̄ and U∗1 (t) = U∗2 (t) = 0
ensures that ū1(x̄, t) = v̄2(x̄, t) = 0 and, by (36), v̄1(x̄, t) =
ū2(x̄, t) = 0. We first prove that the solution of (31)-(37)
satisfies

u1(x, t) = v1(x, t) = 0 for all (x, t) ∈A 1, (44)

u2(x, t) = v2(x, t) = 0 for all (x, t) ∈A 2, (45)

where

A 1 =

{
(x, t) : x ∈ [0, x̄], t ≥

∫ x̄

x

1
εu(ξ )

+
1

εv(ξ )
dξ

}
, (46)

A 2 =

{
(x, t) : x ∈ [x̄,1], t ≥

∫ x

x̄

1
εu(ξ )

+
1

εv(ξ )
dξ

}
. (47)

For this purpose, we transform the PDEs into integral equa-
tions. We define

φ1(x) =
∫ x̄

x

εu(ξ )+ εv(ξ )

εu(ξ )εv(ξ )
dξ (48)

ξ
1(x, t,s) = φ

−1
1 (φ1(x)+ s− t) , (49)

s0
1(x, t) = t−φ1(x). (50)

and integrate (31)-(32) along its characteristic lines to obtain,
for (x, t) ∈A 1,

ū1(x, t) = ū1(x̄, t)+
∫ x

x̄

1
εu(ξ )

Fu((ū1, v̄1)(ξ , t),

ξ , t +φu(ξ ))dξ , (51)

v̄1(x, t) = v̄1(x̄,s0
1)+

∫ t

s0
1

εu

εu + εv
Fv((ū1, v̄1)(ξ 1(x, t,s),s),

ξ
1(x, t,s),s),s+φu(ξ

1(x, t,s),s)))ds. (52)

(x, t)∈A 1 ensures that s0
1 ≥ 0, hence v̄1(x̄,s0

1) = 0. ū1(x̄, t) =
follows from (36). For (x, t) ∈ A 1, we also have that(
ξ 1(x, t,s),s

)
∈ A 1 for all s ∈ [s0

1, t], and that (ξ , t) ∈ A 1

for all ξ ∈ [x, x̄]. Therefore, inserting (44) into (51)-(52) and
exploiting (7), the right-hand sides become zero. That is, (44)
solves (51)-(52). Since the solution is unique (which can be
shown by exploiting the Lipschitz assumption on Fu and Fv),
we can reverse the statement, i.e. the solution of (51)-(52)
must satisfy (44), and thus the original PDEs.
Performing the same steps for (ū2, v̄2) gives (45).
By definitions (46) and (12), (x, t) ∈ A1 if and only if
x ∈ [0, x̄] and

t ≥ (φu(x̄)−φu(x))+(φv(x)−φv(x̄)) = φv(x)−φu(x), (53)



where (11) was used in the last equation. (53) is equivalent
to t−φu(x)≥ φv(x). Hence, if x ∈ [0, x̄] and t ≥ d, then t ≥
d ≥ φv(0) ≥ φv(x), i.e. (x, t − φu(x)) ∈ A1. Thus, u(x, t) =
ū1(x, t−φu(x)) = 0 by (44), and the same for v. By the same
steps, x ∈ [x̄,1] and t ≥ d implies u(x, t) = ū2(x, t−φv(x)) =
0. Summarizing, t ≥ d implies u(x, t) = v(x, t) = 0 for all
x ∈ [0,1], which finishes the proof.

Remark 7: In [12], a Lyapunov function was constructed
to prove exponential stability of the closed-loop system in the
spatial supremum norm. Since the controller design methods
are similar, we conjecture that a function of the form

V
(
v̄1([0, x̄], t), ū2([x̄,1], t)

)
= sup

x∈[0,x̄]

∣∣∣v̄1(x, t)ek(x−x̄)
∣∣∣

+ sup
x∈[x̄,1]

∣∣∣ū2(x, t)e−k(x−x̄)
∣∣∣ (54)

for sufficiently large k can serve as a Lyapunov function.
However, pursuing this idea is beyond the scope of this paper.

IV. SEMI-EXPLICIT STATE FEEDBACK LAW FOR LINEAR
SYSTEMS

In this section we consider the stabilization of the origin
for linear time-invariant systems, which we without loss of
generality assume to be written in the form

ut(x, t) =−εu(x)ux(x, t)+ cu(x)v(x, t), (55)
vt(x, t) = εv(x)vx(x, t)+ cv(x)u(x, t), (56)

where additionally piecewise differentiability of εu and εv is
required. The boundary and initial conditions are as in (3)-
(4). For this class of systems, it is possible to write the state-
feedback law “explicit” as the inner product of kernels with
the state, i.e. without evaluating the operators Φt and Ψ1,Ψ2.
There might not be an explicit expression for the kernels
(hence “semi”) but they can be precomputed numerically.
Since the system is linear, the state-feedback law must be
a linear functional of the state. Therefore, we make the
following ansatz for ū(x, t) for x ∈ [0, x̄] and v̄(x, t) for
x ∈ [x̄,1] when using the state-feedback law (43):

ū1(x, t) =
∫

φ−1
v (φu(x))

x
Kuu(x,ξ )u(ξ , t +φu(x))

+Kuv(x,ξ )v(ξ , t +φu(x))dξ , (57)

v̄2(x, t) =
∫ x

φ
−1
u (φv(x))

Kvu(x,ξ )u(ξ , t +φv(x))

+Kvv(x,ξ )v(ξ , t +φv(x))dξ , (58)

to derive a condition for the control inputs U1(t)= ū(0, t) and
U2(t) = v̄(1, t). This ansatz is motivated by the observation
that the actuation is entirely determined by the states in the
domain T δ for δ → 0. Note that the integrals in (57) and
(58) are taken over the intersection of T 0 with the lines
[0,1]×{φu(x)} and [0,1]×{φv(x)}, respectively.
In order to shorten notation, we abbreviate ζu(x) =
φ−1

v (φu(x)) and, for fixed t, τu(x) = t + φu(x). It can be
verified that ζ ′u(x) =−

εv(ζu(x))
εu(x)

. Differentiating the right-hand

side of (57) with respect to x gives

ū1
x(x, t) = [Kuu(x,ζu(x))u(ζu(x),τu(x))

+Kuv(x,ζu(x))v(ζu(x),τu(x))]ζ ′u(x)

+
∫

ζu(x)

x
Kuu

x (x,ξ )u(ξ ,τu(x))+Kuv
x (x,ξ )v(ξ ,τu(x))

+ [Kuu(x,ξ )ut(ξ ,τu(x))+Kuv(x,ξ )vt(ξ ,τu(x))]τ ′u(x)dξ

− [Kuu(x,x)u(x,τu(x))+Kuv(x,x)v(x,τu(x))]
(59)

Inserting the dynamics (55)-(56) into the integral term and
integrating by parts gives (note that x and t denote partial
derivatives of ū1 wrt space and time, respectively, not total
derivatives wrt x or t)∫

ζu(x)

x
Kuu

x (x,ξ )u(ξ ,τu(x))+Kuv
x (x,ξ )v(ξ ,τu(x))

+{Kuu(x,ξ )[−εu(ξ )ux(ξ ,τu(x))+ cu(ξ )v(ξ ,τu(x))]

+ Kuv(x,ξ )[εv(ξ )vx(ξ ,τu(x))+ cv(ξ )u(ξ ,τu(x))]}
1

εu(x)
dξ

=
∫

ζu(x)

x

{
Kuu

x (x,ξ )+
1

εu(x)

[
Kuu

ξ
(x,ξ )εu(ξ )

+Kuu(x,ξ )ε ′u(ξ )+Kuv(x,ξ )cv(ξ )
]}

u(ξ ,τu(x))

+

{
Kuv

x (x,ξ )+
1

εu(x)
[Kuu(x,ξ )cu(ξ )

−Kuv(x,ξ )ε ′v(ξ )−Kuv
ξ
(x,ξ )εv(ξ )

]}
v(ξ ,τu(x))dξ

+
−εu(ζu(x))

εu(x)
Kuu(x,ζu(x))u(ζu(x),τu(x))

+
εv(ζu(x))

εu(x)
Kuv(x,ζu(x))v(ζu(x),τu(x))

−
[
−Kuu(x,x)u(x,τu(x))+

εv(x)
εu(x)

Kuv(x,x)v(x,τu(x))
]
.

(60)
Inserting (60) into (59), rearranging, and equating the results
with ūx(x, t) =

cu(x)
εu(x)

v(x,τu(x)) (see (31)) for all u and v, Kuu

and Kuv must satisfy

εu(x)Kuu
x (x,ξ )+Kuu

ξ
(x,ξ )εu(ξ )+Kuu(x,ξ )ε ′u(ξ )

+Kuv(x,ξ )cv(ξ ) = 0, (61)
εu(x)Kuv

x (x,ξ )+Kuu(x,ξ )cu(ξ )−Kuv(x,ξ )ε ′v(ξ )

−Kuv
ξ
(x,ξ )εv(ξ ) = 0 (62)

in the domain Su = {(x,ξ ) : x ∈ [0, x̄],ξ ∈ [x,ζu(x)]}, and

−
(

1+
εv(x)
εu(x)

)
Kuv(x,x) =

cu(x)
εu(x)

, (63)

Kuu(x,ζu(x)) = 0 (64)

for x∈ [0, x̄]. Well-posedness of this linear hyperbolic system
can be proven by integrating (61)-(62) along its characteristic
lines and showing existence of a unique solution by a
successive approximation argument, similarly as it is done
in the appendix in [16]. Thereby, the fact that all points in
Su lie on a characteristic line of (61) originating in (x,ζu(x))
for some x ∈ [0, x̄] (where Kuu is determined by (64)), and
on a characteristic line of (62) originating in (x,x) for some



x ∈ [0, x̄], and that these characteristic lines lie completely in
Su, must be exploited.
With ζv(x) = φ−1

u (φv(x)), performing the same steps for (58)
gives

εv(x)Kvv
x (x,ξ )+Kvv

ξ
(x,ξ )εv(ξ )+Kvv(x,ξ )ε ′v(ξ )

−Kvu(x,ξ )cu(ξ ) = 0, (65)
εv(x)Kvu

x (x,ξ )−Kvv(x,ξ )cv(ξ )−Kvu(x,ξ )ε ′u(ξ )

−Kvu
ξ
(x,ξ )εu(ξ ) = 0 (66)

in the domain Sv = {(x,ξ ) : x ∈ [0, x̄],ξ ∈ [ζv(x),x]} and

−
(

1+
εu(x)
εv(x)

)
Kvu(x,x) =

cv(x)
εv(x)

, (67)

Kvv(x,ζv(x)) = 0 (68)

for x ∈ [0, x̄].
Remark 8: For constant transport speeds, the state-

feedback law is the same as the one in [13], which can be
verified by comparing the kernel equations.

V. ESTIMATION

For estimation, we assume that the state can be measured
at both boundaries as given in (8). Due to the finite propaga-
tion speeds, information from within the domain cannot be
sensed at the boundaries immediately. Therefore, we base
our observer design on the dynamics on the characteristic
lines along which the measurements evolve.

A. Preliminaries
The following definition will be needed

φ̂u(x) =
∫ 1

x

1
εu(ξ )

dξ , φ̂v(x) =
∫ x

0

1
εv(ξ )

dξ . (69)

We denote the location at which the characteristic lines of
Y1 and Y2 intersect by x̂, which is implicitly defined by the
unique solution of

t−φu(x̂) = t− φ̂v(x̂). (70)

The following definition and theorem will be central for
observer design.

Definition 9: We define the states on the characteristic
lines along which Y1 and Y2 evolve as

ǔ1(x, t) = u(x, t− φ̂v(x)), v̌1(x, t) = v(x, t− φ̂v(x)), (71)

ǔ2(x, t) = u(x, t− φ̂u(x)), v̌2(x, t) = v(x, t− φ̂u(x)). (72)
Theorem 10: (ǔ1, v̌1, ǔ2, v̌2) satisfies the PDE-ODE sys-

tem

ǔ1
t (x, t) =−

εu(x)εv(x)
εu(x)+ εv(x)

ǔ1
x +

εv(x)
εu(x)+ εv(x)

×Fv((ǔ1, v̌1)(x, t),x, t− φ̂v(x)), (73)

v̌1
x(x, t) =−

1
εv(x)

Fv((ǔ1, v̌1)(x, t),x, t− φ̂v(x)), (74)

ǔ2
x(x, t) =

1
εu(x)

Fu((ǔ2, v̌2)(x, t),x, t− φ̂u(x)), (75)

v̌2
t (x, t) =

εu(x)εv(x)
εu(x)+ εv(x)

v̌2
x +

εu(x)
εu(x)+ εv(x)

×Fv((ǔ2, v̌2)(x, t),x, t− φ̂u(x)), (76)

ǔ1(0, t) =U1(t), v̌2(1, t) =U2(t), (77)

v̌1(x̂, t) = v̌2(x̂, t), ǔ2(x̄, t) = ǔ1(x̄, t), (78)

ǔ1(x, φ̂v(x)) = u0(x), v̌2(x, φ̂u(x)) = v0(x). (79)

Moreover, for every t there exists a continuous, bounded
operator Λt :

(
X[0,x̂]

)2×
(
X[x̂,1]

)2 →X[0,1]×X[0,1] , inde-
pendent of U1(t) and U2(t), such that

(u([0,1], t),v([0,1], t)) = Λ
t (ǔ1([0, x̂], t), v̌1([0, x̂], t),

ǔ2([x̂,1], t), v̌2([x̂,1], t)
)
. (80)

Proof: The derivation of (73)-(76) follows by the
same steps as the derivation of (16)-(19), and the boundary,
coupling and initial conditions follow directly from the
definitions.
Existence and continuity of Λt can be proven by showing
that for given t, (1)-(2) with the input arguments of Λt

as ’initial’ condition has a unique solution in the domain
To = {(x,θ) : θ ∈ [t− φ̂u(x̂), t], x ∈ [φ̂−1

v (t−θ), φ̂−1
v (t−θ)]}

that is Lipschitz-continuous in the input arguments of Λt . See
also Figure 2. As usual, this can be done by transforming
the PDEs into integral equations and applying a successive
approximation argument.

B. Observer design

Since (74) and (75) are simple ODEs in space without
dynamics in time, the coupling conditions (78) can be
replaced by the measurements (8). Therefore, we design the
observer as a copy of (73)-(79) with (78) replaced by the
measurements and the initial condition (79) replaced by some
initial guess (û1

0, v̂
2
0):

û1
t (x, t) =−

εu(x)εv(x)
εu(x)+ εv(x)

û1
x +

εv(x)
εu(x)+ εv(x)

×Fv((û1, v̂1)(x, t),x, t− φ̂v(x)), (81)

v̂1
x(x, t) =−

1
εv(x)

Fv((û1, v̂1)(x, t),x, t− φ̂v(x)), (82)

û2
x(x, t) =

1
εu(x)

Fu((û2, v̂2)(x, t),x, t− φ̂u(x)), (83)

v̂2
t (x, t) =

εu(x)εv(x)
εu(x)+ εv(x)

v̂2
x +

εu(x)
εu(x)+ εv(x)

×Fv((û2, v̂2)(x, t),x, t− φ̂u(x)), (84)

û1(0, t) =U1(t), v̂2(1, t) =U2(t), (85)

v̂1(0, t) = Y1(t), û2(1, t) = Y2(t), (86)

û1(x,0) = û1
0(x), v̂2(x,0) = v̂2

0(x). (87)

Theorem 11: The observer (81)-(87) yields exact state
estimates

(uest(·, t),vest(·, t)) = Λ
t ( û1([0, x̂], t), v̂1([0, x̂], t),

û2([x̂,1], t), v̂2([x̂,1], t)
)

i.e. uest(·, t) = u(·, t) and vest(·, t) = v(·, t), for all t ≥ d, where
d was defined in (12).

Proof: We form error equations by subtracting (73)-(79)
with (78) replaced by the measurements, i.e. ǔ2(1, t) =Y2(t)
and v̌1(0, t) = Y1(t), from (81)-(87). In order to shorten the



presentation, only the steps for the first subsystem in the
interval [0, x̂] are shown.

eu1
t (x, t) =−ε̂(x)eu1

x (x, t)+E1
u (û

1, v̂1, ǔ1, v̌1,x, t), (88)

ev1
x (x, t) = E1

v (û
1, v̂1, ǔ1, v̌1,x, t), (89)

eu1
t (0, t) = 0, (90)

ev1
t (0, t) = 0, (91)

where eu1 = û1− ǔ1, ev1 = v̂1− v̌1, ε̂ = εu(x)εv(x)
εu(x)+εv(x)

, and

E1
u (û

1, v̂1, ǔ1, v̌1,x, t) =
εv(x)

εu(x)+ εv(x)

(
Fv((û1, v̂1)(x, t),

x, t− φ̂v(x))−Fv((ǔ1, v̌1)(x, t),x, t− φ̂v(x))
)
, (92)

E1
v (û

1, v̂1, ǔ1, v̌1,x, t) =− 1
εv(x)

(
Fv((û1, v̂1)(x, t),x, t− φ̂v(x))

−Fv((ǔ1, v̌1)(x, t),x, t− φ̂v(x))
)
. (93)

Note that eu1 = 0 implies E1
u (û

1, v̂1, ǔ1, v̌1,x, t) = 0, and the
same for E1

v , E2
u and E2

v . This is a similar condition as (7),
which was central in the proof of Theorem 6. Therefore, by
similar steps as in the proof of Theorem 6, it can be shown
that

eu1(x, t) = ev1(x, t) = 0 for all (x, t) ∈B1 (94)

for

B1 =

{
(x, t) : x ∈ [0, x̄], t ≥

∫ x

0

1
εu(ξ )

+
1

εv(ξ )
dξ

}
. (95)

Performing the same steps for the second system yields

eu2(x, t) = ev2(x, t) = 0 for all (x, t) ∈B2 (96)

for eu2 = û2− ǔ2, ev2 = v̂2− v̌2, and

B2 =

{
(x, t) : x ∈ [x̄,1], t ≥

∫ 1

x

1
εu(ξ )

+
1

εv(ξ )
dξ

}
. (97)

Then, the claim follows from Definition 9.
Remark 12: The operator Λt can be implemented by solv-

ing (1)-(2) with the input arguments of Λt as ’initial’ con-
dition in the domain {(x,θ) : θ ∈ [t− φ̂u(x̂), t], x ∈ [φ̂−1

v (t−
θ), φ̂−1

v (t− θ)]}. Since the estimation and output feedback
control laws involve Λt this requires to solve a PDE system
online, which is computationally expensive.

VI. OUTPUT-FEEDBACK CONTROL

The output feedback control problem can be solved by
combining the controller from Section III with the Observer
from Section V.

Theorem 13: The system (1)-(4) in closed loop with the
output feedback controller consisting of the observer (81)-
(87) and the feedback law(

v̄1([0, x̄], t), ū2([x̄,1], t)
)
= Φ

t (
Λ

t (û1([0, x̂], t), v̂1([0, x̂], t),

û2([x̂,1], t), v̂2([x̂,1], t)
))

U1(t) = Ψ
1
t,x̄
(
v̄1([0, x̄], t),0

)
U2(t) = Ψ

2
t,x̄
(
ū2([x̄,1], t),0

)
(98)

with x∗1 = x∗2 = x̄ and U∗1 (t) =U∗2 (t) = 0, reaches the origin
within 2d, or, with x∗1, x∗2, U∗1 (t) and U∗2 (t) as in (42), satisfies
the tracking objective (41) for all t ≥ d + t̄.

Proof: The theorem follows directly by combining
Theorems 5 or 6, respectively, with Theorem 11.

Remark 14: The output feedback law (98) requires knowl-
edge of all observer states (û1, v̂1, û2, v̂2). However, the
state-feedback laws (42) and (43) are decentralized in the
sense that U1(t) is independent of (ū2([x̄,1], t), v̄2([x̄,1], t))
and U2(t) is independent of (ū1([0, x̄], t), v̄1([0, x̄], t)). Al-
ternatively, it is possible to design two observers, one for
estimating the state from Y2(t) (this is exactly the observer
from [12]) and the other for estimating the state from Y1(t)
(which is the same as the one from [12] when making a
coordinate change from x to 1− x). Both these observers
can estimate the full state exactly, although in a larger time
(du+dv). Then, a decentralized output feedback control law,
i.e. without communication between the boundaries, can be
obtained by using the state estimate obtained from Y1(t)
to determine U1(t) and the state estimated from Y2(t) to
determine U2(t).

VII. EXAMPLE

We illustrate the performance of the controller in an
example with

εu(x) =

{
0.2 if x < 0.5,
2− x if x≥ 0.5,

, (99)

εv(x) = 0.2× (1+ x), (100)

Fu((u,v),x, t) =
1

3− x
sin(u+ v), (101)

Fv((u,v),x, t) = sin(v−u), (102)

and initial condition u0 = v0 = 1. With these propagation
speeds, the delay times are du ≈ 2.9 and dv ≈ 3.5, x̄≈ 0.37,
and x̂ ≈ 0.31. The initial condition of the observer is set to
zero. The operators Φt and Λt are implemented as sketched
in Remarks 3 and 12, and Ψ1 and Ψ2 are implemented by
solving the Cauchy problems (29) and (30), respectively.
First, we stabilize the origin using output feedback. In order
to illustrate the open loop behavior, the controller is switched
on at t = 20. For t < 20, the inputs are set to U1(t) =U2(t) =
0. The resulting state trajectories and the error between
true and estimated state (uest ,vest) = Λ(û, v̂) are depicted in
Figure 3. Due to the coupling terms Fu and Fv, the state
oscillates wildly even when setting the controlled boundary
values to zero. As predicted by theory, the observer manages
to estimate the state within d ≈ 3.5, up to numerical errors.
Once switched on, the controller drives the system to the
origin also within d.
Second, we consider a tracking example where the objectives
are u(0.2, t)−v(0.2, t) = 0 and u(0.7, t)+v(0.7, t) = 0. Using
the notation of (41), this corresponds to x1

t = 0.2, x2
t = 0.7,

g1(v, t) = v, and g2(u, t) =−u. The resulting trajectories are
also depicted in Figure 3. Again, the simulations confirms
the theoretical result of exact tracking after d + t̄ ≈ 4.8, up
to numerical errors.



Fig. 3. System trajectories and estimation errors.

VIII. CONCLUSIONS

We derived feedback control and estimation laws for the
minimum-time control and state estimation of a class of
semilinear hyperbolic systems using actuation and sensing
at both boundaries of the one-dimensional domain. The
control law works for a more general system class than
previous results, notably that it allows nonlinear coupling
terms between the counter-vecting states and non-smooth
transport speeds. The approach for controller design is to
derive the dynamics on the characteristic lines along which
the control input evolves, and solving these dynamics back-
wards in time to determine the required actuation. Likewise,
the state is estimated via reconstructing the past state on the
characteristic line along which the measurements evolve, and
is to the best of our knowledge the first constructive observer
design for such systems using sensing at both boundaries.
The present paper is a continuation of recent results using
this method [12], [17], and it would be interesting to see
which other cases this approach can be applied to, such as
general heterodirectional systems with variable numbers of
actuators and sensors at each boundary.
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no. 1, 1993, pp. 109–129.

[9] T.-T. Li and B.-P. Rao, “Exact boundary controllability for quasi-linear
hyperbolic systems,” SIAM Journal on Control and Optimization,
vol. 41, no. 6, pp. 1748–1755, 2003.

[10] T. Li and B. Rao, “Strong (weak) exact controllability and strong
(weak) exact observability for quasilinear hyperbolic systems,” Chi-
nese Annals of Mathematics, Series B, vol. 31, no. 5, pp. 723–742,
2010.

[11] R. Vazquez, M. Krstic, and J.-M. Coron, “Backstepping boundary
stabilization and state estimation of a 2× 2 linear hyperbolic system,”
in 2011 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC), 2011, pp. 4937–4942.

[12] T. Strecker and O. M. Aamo, “Output feedback boundary control of
2× 2 semilinear hyperbolic systems,” Automatica, vol. 83, pp. 290–
302, 2017.

[13] J. Auriol and F. Di Meglio, “Two-sided boundary stabilization of two
linear hyperbolic pdes in minimum time,” in Decision and Control
(CDC), 2016 IEEE 55th Conference on. IEEE, 2016, pp. 3118–3124.

[14] R. Vazquez and M. Krstic, “Bilateral boundary control of one-
dimensional first-and second-order pdes using infinite-dimensional
backstepping,” in Decision and Control (CDC), 2016 IEEE 55th
Conference on. IEEE, 2016, pp. 537–542.

[15] A. F. Filippov, Differential equations with discontinuous right-hand
side. Kluwer Academic Publishers, 1988.

[16] J.-M. Coron, R. Vazquez, M. Krstic, and G. Bastin, “Local exponential
h2 stabilization of a 2×2 quasilinear hyperbolic system using back-
stepping,” SIAM Journal on Control and Optimization, vol. 51, no. 3,
pp. 2005–2035, 2013.

[17] T. Strecker and O. M. Aamo, “Output feedback boundary control of
series interconnections of 2× 2 semilinear hyperbolic systems,” to
appear in Proc. of the 2017 IFAC World Congress, 2017.


