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Abstract— In this paper, we apply recent results on the output
feedback control of 2× 2 semilinear systems to the problem
of rejecting heave-induced pressure oscillations in offshore
drilling. The well is modeled as a transmission line with nonlin-
ear friction, with both actuation and measurement restricted to
one boundary. The heave motion is represented by disturbance
terms entering both inside the domain and at the uncontrolled
boundary. We construct an output feedback controller to track
a reference pressure at one location in the well. The controller
performance is demonstrated in simulations.

I. INTRODUCTION

Several interesting problems in the drilling industry in-
volve the control of distributed parameter systems [1].
During drilling, a well is filled with a fluid called mud.
In order to avoid undesired outflow of the mud into the
surrounding formation, influx of formation fluids into the
well, or even collapse of the well, it is essential to keep
the mud pressure within predefined margins. In managed
pressure drilling (MPD), the top of the well is sealed such
that the pressure and mud flow at the top of the well can
be controlled via a choke and a backpressure pump [2].
However, vertical movement of the drill string causes surge
and swab pressures that can violate the pressure margins
[3]. In particular, we are concerned with the case that the
drill string motion is caused by heave. Heave is the wave-
induced vertical motion of a floating offshore rig. While
so-called heave compensators decouple the drill string from
the rig’s motion during drilling, every approximately 30 m
the drill string needs to be rigidly attached to the heaving
rig in order to extend the drill string by a new segment.
In this paper, we consider the problem of rejecting heave-
induced pressure oscillations using the topside choke for
actuation and measurements that are available on the rig.
This problem has been considered in several papers, using a
range of control methods for finite dimensional systems [4],
[5], [6]. More relevant to the present study is [7], in which
results from [8] were exploited to develop a backstepping
controller to track a reference pressure at the bottom of the
well. The heave motion is modeled as harmonic oscillations
affecting the boundary, and the controller achieves exact
tracking of the reference pressure if disturbance predictions
are correct. In [9], this approach was generalized to reject
disturbances at an arbitrary point in the domain, and the
result was applied to the heave problem in [10]. In [11], a
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model where the disturbance also enters inside the domain
was considered. In these papers, the well is modeled by
linear 2×2 hyperbolic partial differential equations (PDEs).
However, a linear model cannot be expected to be accurate
in many cases, because commonly used rheology models of
drilling muds, such as the Herschel Bulkley model [12], are
highly nonlinear at low shear rates. In [13], we demonstrated
that nonlinear friction in such muds has a significant effect on
heave-induced pressure oscillations. There, we also presented
a parameter fitting procedure to obtain explicit friction terms
for Herschel Bulkley fluids. Introducing the nonlinear friction
terms into the well model, the model becomes semilinear.
Recently, we developed an output-feedback controller for this
class of systems [14]. In the present paper, we demonstrate
how this control method is applied to reject disturbances in
the semilinear well model.
The remainder of the paper is organized as follows. The
governing equations and the problem statement are given
in Section II. In Section III, we present recent results on
controller and observer design for 2× 2 semilinear hyper-
bolic systems. The practical application of these methods
is presented in Section IV. In Section V, the controller
performance is demonstrated in several simulations, before
concluding remarks are given in Section VI.

II. MODELING

We assume that the drill string is rigid, which is a rea-
sonable assumption during heave in approximately vertical
wells up to 5000 m depth. A well is basically a long, thin
fluid-filled conduit. In [15], [16], a variety of transmission
line models for such cases are presented. In this paper, we
use the following model for the pressure and flow rate in the
well, which was also used in [7], [10], [11] except for the
different friction term:

pt(z, t) =−
β

A
qz(z, t) (1)

qt(z, t) =−
A
ρ

pz(z, t)−
1
ρ

F(q(z, t),vd(t))−Ag (2)

q(0, t) =−Advd(t) (3)

where z∈ [0, l] is the position measured from the bottom, t ≥
0 is time, l is the length of the well, p(z, t) is pressure, q(z, t)
the volumetric flow rate, the subscripts z and t denote partial
derivatives with respect to space and time, respectively, vd(t)
is the drill string velocity, A the cross sectional area of the
annulus, Ad is the area displaced by the drill string, β is
the bulk modulus, ρ the density, and g the gravitational
acceleration. F is a nonlinear function representing friction,



and is constructed as described in [13] for a given mud
rheology and well geometry. The parameters A, β , ρ , and
F can vary with z, but since it would change nothing but
notation we omit this dependence for the sake of readability.
The control objective is to control the pressure at z̄ ∈ [0, l]
to a given setpoint psp, i.e.

p(z̄, t) = psp. (4)

The topside boundary condition can be controlled via the
choke and the backpressure pump, and is left as the control
input. Moreover, we assume that both the topside pressure
and flow rate, p(l, t) and q(l, t), can be measured.

A. Heave
The controller that we use in this paper requires short

term predictions of vd . This will be made precise in Section
III-A. The time pressure waves take to propagate from the
choke to z̄, i.e. the delay between topside actuation and its
effect at the location of the control objective, is in the same
range as the wave period. This makes the prediction of the
disturbance critical for the controller performance. To obtain
short term predictions of the disturbance, we model the heave
as harmonic oscillations, i.e.

Ẋ(t) = ĀX(t), (5)
vd(t) = C̄X(t), (6)

where

Ā = diag
([

0 ω1
−ω1 0

]
, . . .

[
0 ωn
−ωn 0

])
, (7)

C̄ = [0 1 . . . 0 1] (8)

for n distinct frequencies ω1, . . . ,ωn. We assume that vd
equals the rig’s vertical velocity, and assume that measure-
ments y(t) of the rig velocity are available. In practice,
y could for instance be estimated using an accelerometer
combined with an observer. Thus, X(t) can be estimated from
y(t) using the observer

˙̂X(t) = ĀX̂(t)+L(y(t)− ŷ(t)) , (9)

ŷ(t) = C̄X̂(t), (10)

where the observer gain L is chosen such that Ā− LC̄ is
Hurwitz.

B. State Transformation
Hyperbolic PDEs simplify to ODEs along their character-

istic lines, making the method of characteristic a powerful
and popular tool for the analysis of hyperbolic systems.
Therefore, we transform the system into diagonal form, and
also rescale the domain into the unit interval [0,1]. The
transformation

u(x, t) =
1
2

(
q(lx, t)+

A√
βρ

(p(lx, t)− psp +ρg(lx− z̄))

)
,

(11)

v(x, t) =
1
2

(
q(lx, t)− A√

βρ
(p(lx, t)− psp +ρg(lx− z̄))

)
,

(12)

maps (1)-(3) into

ut(x, t) =−εu(x)ux(x, t)+Fu(u(x, t),v(x, t),vd(t)), (13)
vt(x, t) = εv(x)vx(x, t)+Fv(u(x, t),v(x, t),vd(t)), (14)
u(0, t) =−v(0, t)+d(t), (15)
v(1, t) =U(t), (16)

Y (t) = u(1, t), (17)

where x ∈ [0,1] and

εu(x) = εv(x) =
1
l

√
β

ρ
, d(t) =−Advd(t), (18)

Fu(u,v,vd) = Fv(u,v,vd) =−
1

2ρ
F(u+ v,vd). (19)

The control objective becomes

u(x̄, t) = v(x̄, t) (20)

for x̄ = z̄/l. U is the actuation. In terms of the original
physical system, we have

U(t) =
1
2

(
q(l, t)− A√

βρ
(p(l, t)− psp +ρg(l− z̄))

)
.

(21)
In practice, the actuation U(t) cannot be implemented di-
rectly but must be realized by controlling the opening of the
choke. Briefly speaking, closing the choke decreases q(l, t)
and increases p(l, t), hence decreases U(t). Analogously,
opening the choke increases U(t). In the remainder of this
paper, we assume that a sufficiently fast choke controller
is implemented such that U(t) as given by (21) tracks the
desired actuation, and treat U(t) as the actuation. Y (t) is the
measurements, which in terms of physical quantities equals

Y (t) =
1
2

(
q(l, t)+

A√
βρ

(p(l, t)− psp +ρg(l− z̄))

)
. (22)

III. EXACT CONTROL AND STATE ESTIMATION
The transformed system (13)-(17) has the structure of

the general 2×2 semilinear hyperbolic system in [14]. The
controller and observer design method from [14], which we
apply to the heave model in this paper, exploits the system
dynamics on the characteristic lines. For this purpose, it
is necessary to define the characteristic lines sv(·, t) along
which the actuation U(t) evolves, and the characteristic lines
su(·, t) along which the measurement Y (t) evolves. They are
given by

φv(x) =
∫ 1

x

1
εv(ξ )

dξ , φu(x) =
∫ 1

x

1
εu(ξ )

dξ , (23)

τv(x, t) = t +φv(x), τu(x, t) = t−φu(x), (24)
sv(x, t) = (x,τv(x, t)) su(x, t) = (x,τu(x, t)). (25)

su and sv are also depicted as the wider lines in Figure 1. As
opposed to the quasilinear case, the characteristic lines are
known a priori in semilinear systems. Moreover, we define
the states on sv and su as

ũ(x, t) = u(x,τv(x, t)), ṽ(x, t) = v(x,τv(x, t)), (26)
ǔ(x, t) = u(x,τu(x, t)), v̌(x, t) = v(x,τu(x, t)). (27)



Fig. 1. Characteristic lines of u (“upwards”) and v (“downwards”).

A. State Feedback Controller

The control input U(t) propagates from x = 1 to x = 0
with finite speed εv along the characteristic line sv(·, t).
Roughly speaking, the control input U(t) affects only the
state v(x,τv(x, t)) = ṽ(x, t) for x ∈ [0,1] before reaching the
boundary x = 0. The states v(x,θ) for x ∈ [0,1] and θ <
τv(x, t), and u(x,θ) for x∈ (0,1] and θ ≤ τv(x, t), are entirely
determined by the state at time t, (u(·, t),v(·, t)), and the
disturbance term vd up to time τv(x, t). This was made precise
in [14], where it was shown that for every t, there exists a
continuous operator Φt , independent of U(t), such that

ũ(·, t) = Φ
t(u(·, t),v(·, t)). (28)

Remark 1: When evaluated at time t, the operator Φt

involves values of Fu and Fv, and thus of vd , in the time
interval [t,τv(0, t)]. While this is fine from a mathematical
perspective, it means that Φt is non causal. The practical
implementation of Φt will be discussed in Section IV.

Since v(x̄,θ) for θ ∈ [t,τv(x̄, t)] is entirely determined
by the state at time t, we can use U(t) only to control
v(x̄,τv(x̄, t), i.e. v at x̄ φv(x̄) into the future. We denote
the desired v(x̄,τv(x̄, t)) by U∗(t), and design U(t) such
that v(x̄,τv(x̄, t)) tracks U∗(t). Assuming that at time t, the
disturbance vd is known up to time τv(x̄, t), it is possible
to determine U∗(t) by evaluating the objective (20) at time
τv(x̄, t) using the prediction ũ(·, t) of u, i.e.

U∗(t) = u(x̄,τv(x̄, t)) = ũ(x̄, t). (29)

If x̄ ∈ (0,1], ũ(x̄, t) is given by Φt(u(·, t),v(·, t)). If x̄ = 0,
ũ(0, t) is determined by (15), i.e.

ũ(0, t) =−ṽ(0, t)+d(τv(0, t)) =−U∗(t)−Advd(τv(0, t)).
(30)

Inserting (30) into (29) and solving for U∗(t) yields

U∗(t) =
1
2

d(t +φv(0)). (31)

Finally, U(t) is constructed by solving the dynamics of ṽ(·, t)
along sv(·, t) backwards in time. In [14], it was shown that
ṽ(·, t) satisfies the ODE

ṽx(x, t) =−
1

εv(x)
Fv(ũ(x, t), ṽ(x, t),vd(τv(x, t))) (32)

with ṽ(1, t) = U(t). The goal is to design U(t) such that
the solution of (32) satisfies ṽ(x̄, t) =U∗(t). Thus, U(t) can
be obtained as U(t) = ϕ(1), where ϕ is the solution of the
Cauchy problem

ϕx(x) =−
1

εv(x)
Fv(ũ(x, t),ϕ(x),vd(τv(x, t)), ϕ(x̄) =U∗(t),

(33)
in the domain x ∈ [x̄,1]. With this design, (ũ, ṽ) satisfies
ṽ(x̄, t) =U∗(t), i.e. the tracking objective (20), for all t ≥ 0.
Hence, by definition (26), (u,v) satisfies (20) for all t ≥ φv(x̄).

B. Observer

The measurement Y (t) evolved along the characteristic
line su(·, t). Loosely speaking, the state at some location x
and time θ > τu(x, t) has no influence on Y (t). Moreover,
the state at time t, (u(·, t),v(·, t)), is entirely determined by
the past state on su(·, t), (ǔ(·, t), v̌(·, t)). More precisely, it
was proven in [14] that for every t, there exists a continuous
operator Λt , independent of U(t), such that

(u(·, t),v(·, t)) = Λ
t(ǔ(·, t), v̌(·, t)). (34)

We repeat here the observer from [14]

ûx(x, t) =
1

εu(x)
Fu(û(x, t), v̂(x, t),vd(τu(x, t))), (35)

v̂t(x, t) =
εu(x)εv(x)

εu(x)+ εv(x)
v̂x(x, t) (36)

+
εu(x)

εu(x)+ εv(x)
Fv(û(x, t), v̂(x, t),vd(τu(x, t))),

v̂(x,0) = v̂0(x), (37)
û(1, t) = Y (t), (38)
v̂(1, t) =U(t), (39)

for some initial guess v̂0 ∈ L∞([0,1]). (35)-(39) is a copy
of the dynamics of (ǔ, v̌) with the boundary condition at
x= 0, which would have been ǔ(0, t) =−v̌(0, t)+d(τu(0, t)),
replaced by the measurement (38). Exchanging these is
possible because (35) is an ODE in space without any
dynamics in time. As shown in [14], the observer errors ǔ− û
and v̌− v̂ become zero within

to = φv(0)+φv(0). (40)

Thus,
(u(·, t),v(·, t)) = Λ

t(û(·, t), v̂(·, t)) (41)

for all t ≥ to.
Remark 2: When evaluated at time t, the operator Λt

involves values of Fu and Fv, and thus of vd , in the past
time interval [τu(x̄, t), t]. Thus, Λt is causal. Likewise, the
observer (35)-(39) is causal.

IV. APPLICATION TO WELL MODEL

We apply the output feedback controller consisting of
the transformation (11)-(12), the state-feedback controller
from Section III-A and the observer from Section III-B to
system (1)-(3). However, in this form the state feedback
control law is not causal because it uses future values of



the disturbance as stated in Remark 1. In order to obtain a
causal feedback law, we replace the future disturbance terms
by their prediction. Using the heave model (5)-(6) and the
estimate X̂ obtained from the observer (9)-(10), a prediction
of vd that is available at time t is given by

v̄t
d(θ) = C̄eĀ(θ−t)X̂(t) (42)

for θ ≥ t. In the following, we denote all variables that use
the prediction instead of the true future value by a bar and a
superscript t to indicate the time at which the prediction is
made, i.e. d̄t(θ) =−Ad v̄t

d(θ), and similarly F̄ t
u , F̄ t

v , and Φ̄t .
Note that the observer (35)-(39) and Λt are causal, as stated
in Remark 2.
Summarizing, evaluating the output-feedback controller at
time t consists of the the following steps

1) measure Y (t) as given in (22).
2) using the current estimator state v̂(·, t), determine û(·, t)

via (35) with (38).
3) determine the current estimated state via

(uest(·, t),vest(·, t)) = Λ
t(û(·, t), v̂(·, t)). (43)

The Λt -operator is implemented by solving the PDE
system (13)-(15) in the domain {(x,θ) : x ∈ [0,1),θ ∈
[τu(x, t), t]} with ’initial condition’ v(x,τu(x, t)) =
v̂(x, t) for x ∈ [0,1).

4) using the state X̂ of the heave observer (9)-(10),
construct the heave prediction v̄t

d as stated in (42).
5) determine the predicted state ū(·, t) via

ū(·, t) = Φ̄
t(uest(·, t),vest(·, t)). (44)

The Φ̄t -operator is implemented by solving the PDE
system (13)-(15) in the domain {(x,θ) : x ∈ [0,1),θ ∈
[t,τv(x, t)]} with initial condition (uest(·, t),vest(·, t)),
using the prediction v̄t

d instead of the true vd .
6) determine Ū∗(t) as Ū∗(t) = ū(x̄, t) if x̄ ∈ (0,1], or

Ū∗(t) = 1
2 d̄t(t +φv(0)) if x̄ = 0.

7) determine U(t) by solving the Cauchy problem

ϕx(x) =−
1

εv(x)
Fv(ū(x, t),ϕ(x), v̄t

d(τv(x, t)) (45)

with initial condition ϕ(x̄) = Ū∗(t) in the domain x ∈
[x̄,1], and setting U(t) = ϕ(1).

8) apply U(t) as given in (21).
9) update v̂ according to (36) with (39), and X̂ according

to (9).

V. SIMULATIONS

We consider a 3000 m deep vertical well with 216 mm
diameter and 127 mm drill string outer diameter, hence
A = 0.0239 m2 and Ad = 0.0127 m2. The mud has density
1500 kg/m3, bulk modulus 16000 bar, and a Bingham-type
rheology with plastic viscosity 20 mPas and yield point 5 Pa.
With this rheology and well geometry, the parameter fitting
procedure from [13] returns the following friction term:

F(q,vd) =
2

∑
i=1

(
ci

0 + ci
K |vi

e f f |n
i
)

s
(
vi

e f f
)
, (46)
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Fig. 2. Heave velocity.

Fig. 3. Pressure deviation from steady state using U(t) = 0.

where vi
e f f = q/A− kivd ,

c1
0 = 2, c1

K = 2, n1 = 1, k1 = 0.8, (47)

c2
0 = 3.4, c2

K = 3, n2 = 0.95, k2 = 0.07, (48)

and
s(v) =

v√
v2 +0.01

(49)

is a smooth approximation of the sign function.
We use heave data measured on a rig as input to the
simulations. The time series of the rig velocity, as well as
the estimated velocity using the observer (9)-(10) and the
predicted velocity according to (42), v̄ t−φv(0)

d (t), with predic-
tion time φv(0)≈ 3 s, is depicted in Figure 2. The amplitude
of the corresponding heave motion is approximately 0.8 m.
While the estimation lies almost exactly on the measurement,
the stochasticity of the waves causes errors in the predicted
velocity.
The pressure for the uncontrolled case (using U(t) = 0 ∀t) is
depicted in Figure 3. U(t) = 0 corresponds approximately
to a constant choke opening. The heave causes pressure
oscillations in the magnitude of ±5 bar at the bottom of
the well. Due to friction, the pressure amplitudes decreases
significantly with the distance form the bottom.

A. Pressure Control at the Bottom of the Well

The pressure trajectory when using the output-feedback
controller to track the reference pressure psp = 460 bar at



Fig. 4. Pressure deviation from steady state using the output feedback
controller for z̄ = 0.

the bottom of the well, i.e. at z̄ = 0, is depicted in Figure 4.
The pressure oscillations at the bottom of the well are also
depicted in Figure 5. The controller succeeds in reducing the
pressure oscillations at the bottom of the well. However, there
are significant downhole pressure fluctuations at times when
the wave prediction is inaccurate, which occasionally are in
the same range as the pressure oscillations without control.
For comparison, the bottomhole pressure when using the non
causal controller that has access to exact wave predictions is
also depicted. The pressure is almost exactly on the setpoint,
with small pressure errors due to numerical inaccuracies.
This illustrates how the stochasticity of the heave induces
limitations on the achievable controller performance. Rel-
ative large pressures are required at the topside choke in
order to overcome friction along the well. The choke pressure
(Figure 6) needs to be changed accurately by several bar
within a few seconds, which might be a challenge in practice.
Moreover, the required control actuation increases in drilling
muds with higher viscosity.
In Figure 7, the relative estimation errors for the transformed
variables u and v are depicted. The corresponding estimation
error in the pressure is in the range of ±0.5 bar. These errors
are due to numerical inaccuracies in the implementation of
the observer (35)-(39) and Λt . The steep curvature of F
around zero velocities (F involves a slightly smoothed sign
function, see also (46)) makes the numerical implementation
challenging.

B. Pressure Control in the Interior

The pressure trajectory when tracking the reference pres-
sure psp = 310 bar at z̄ = 1000, i.e. 1000 m above the bottom
of the well, is depicted in Figure 8. This case is of interest,
for instance, when the area around the so-called casing
shoe is the most sensitive part of the well. The pressure
time series at z̄ and at the choke are depicted in Figures 9
and 10. The controller rejects the the pressure oscillations
accurately, and more efficiently than for z̄ = 0. This is
simply because the prediction time φv(x̄) is shorter for x̄ = 1

3
than for x̄ = 0, making the heave prediction more accurate.
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Fig. 5. Pressure at the bottom of the well using the output feedback
controller, the (non causal) controller with exact wave predictions, and U =
0.
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Fig. 6. Pressure at the topside choke.

Fig. 7. Relative estimation errors (u−uest)/‖u‖∞ and (v− vest)/‖v‖∞.



Fig. 8. Pressure deviation from steady state using the output feedback
controller for z̄ = 1000.
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Fig. 9. Pressure at z̄ = 1000.

This can also be seen in Figure 10, where the actuation
using the prediction-based and the non causal controller with
exact wave prediction are very close. Figure 8 demonstrates
another limit on the achievable controller performance: In
practice, it is usually desirable to reject pressure oscillations
in a section of the well, rather than at just one location.
However, as seen in Figure 8, even if the pressure oscillations
are rejected effectively at one location, significant pressure
oscillations occur within a few hundred meters of z̄.
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Fig. 10. Choke pressure for z̄ = 1000.

VI. CONCLUSIONS

We applied a recently developed output feedback con-
troller to reject disturbances in an oil well modeled by a
system of 2× 2 semilinear hyperbolic PDEs. The practical
implementation of the controller was discussed. Simula-
tions demonstrate that the controller can effectively reject
pressure oscillations. However, limitations on the achievable
performance exist due to errors in the heave prediction, and
because the control law can reject pressure oscillations only
at one location in the well. These limitations are inherent
to the physics of the problem if only the actuation and
measurements as in this paper are used. In future work,
the sensitivity with respect to modeling errors should be
investigated. Moreover, the controller design method should
be extended to include the drill string elasticity.

REFERENCES

[1] F. Di Meglio and U. Aarsnes, “A distributed parameter systems view
of control problems in drilling,” in 2nd IFAC Workshop on Automatic
Control in Offshore Oil and Gas Production, Florianópolis, Brazil,
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