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Abstract

We consider the control and state estimation of a class of 2 × 2 semilinear hyperbolic systems with actuation and sensing
collocated at one boundary. Our approach exploits the dynamics on the characteristic lines of the hyperbolic system. The
control method using full-state feedback can be used for both stabilization of an equilibrium and tracking at an arbitrary
point in the domain. The control objective is achieved globally in minimum time. A Lyapunov function is constructed to prove
exponential convergence in the spatial supremum norm. For linear systems, the control input can be written explicitly as the
inner product of kernels with the state, and turns out to be equivalent to the control input obtained from previously known
backstepping methods. The observer achieves exact state estimation also in minimum time and, combined with the state-
feedback controller, solves the output feedback control problem. The performance is demonstrated in a numerical example.
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1 Introduction

Many relevant systems are described by 2× 2 hyper-
bolic systems, such as open water channels [15,7,9], heat
exchangers [28], gas flow in pipelines [14], road traffic [3],
and oil wells [1]. In this paper, we are concerned with
the semilinear case. That is, the system involves source
terms depending nonlinearly on the state, and a nonlin-
earity at the uncontrolled boundary, but the propagation
speeds are assumed to be state-independent. In particu-
lar, we are motivated by disturbance rejection in oil well
drilling [1]. The oil well is modeled as a hydraulic trans-
mission line with nonlinear friction, and disturbances
enter both at the boundary and within the domain, in-
teracting nonlinearly with the state [25,26]. Therefore,
the purpose of this paper is to present a constructive
controller and observer design method for a very general
class of semilinear hyperbolic systems for which there
have been no constructive methods for global minimum-
time feedback control yet.
One approach to the stabilization of hyperbolic systems
is to design dissipative boundary conditions under which
the system is stable. First developed for conservation
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laws, i.e. systems without source terms, stability is es-
tablished either using the explicit evolution of the Rie-
mann invariants [13,7], via a Lyapunov function [5], or
by a frequency domain approach [20]. Stabilization of
hyperbolic systems with source terms was considered
by [9,21,8]. While their approach achieves closed-loop
asymptotic stability, it does not achieve finite-time con-
vergence.
Exact controllability of linear hyperbolic PDEs is well
established, see [22] for an overview. For semilinear sys-
tems, controllability of a 1-d semilinear wave equation
with coefficients that are constant in space was proven in
[29]. More recently, [12] showed the exact controllability
of semilinear hyperbolic systems with spatially varying
coefficients in multiple dimensions. For quasilinear sys-
tems, only local controllability results exist, see [19] and
references therein. In [18], the minimum time for exact
one-sided boundary controllability is given. In these pa-
pers, the existence of a control input driving the state
from the initial condition to a desired state within a given
time, which needs to be larger than some minimally re-
quired time, is proven using non-constructive methods.
Numerical algorithms to compute the actuation based
on the discretized problem exist, see [10] for an overview.
However, they can fail if the discretization is refined,
and require computationally expensive iterations, limit-
ing their real-time applicability. Moreover, these papers
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discuss only the existence of an open-loop control signal
over a fixed interval for given initial and terminal states.
They do not consider state feedback, or stability of the
controlled system. Still, these results indicate that exact
control is feasible for this class of systems.
For some special cases, exact control laws have been
found. In [4], a simple feedforward controller was devel-
oped to exactly cancel boundary disturbances in linear
conservation laws. In [15], an exact controller was de-
signed for a particular nonlinear conservation law. The
state was assumed to be in a subcritical range and the
control designed to be sufficiently slow in order to avoid
shocks.
Over the last years, backstepping has been established
as a constructive method for the exact control of linear
hyperbolic PDEs. First developed for parabolic PDEs
[23], backstepping has been used for the exact control
of first-order [17] and second-order [27] hyperbolic sys-
tems. In [6] local H2-stability of a quasilinear system
was shown using a backstepping controller designed for
the linearized system. Exploiting results from [27], the
disturbance rejection problem in the linear case was
solved in [1]. More recently, the backstepping approach
has been generalized to general heterodirectional sys-
tems [16]. However, exact control of hyperbolic PDEs by
backstepping is (still) limited to linear systems.
The paper is organized as follows. In Section 2, we give
preliminaries that are used in the remainder of the paper.
The precise problem statement is given in Section 2.1.
In Section 3, we design an state-feedback controller.
The control method is used to drive the system to an
equilibrium in Section 3.1, and a Lyapunov function to
prove global exponential stability in the spatial supre-
mum norm is constructed in Section 3.2. The same con-
trol approach is used for tracking, as well as rejecting
predictable disturbances in Section 3.3. In Section 4, we
design an observer using boundary measurements col-
located with the actuation. We combine the controller
with the observer to solve the output feedback control
problem in Section 5. In Section 6, the controller perfor-
mance is demonstrated in a numerical example, before
concluding remarks are given in Section 7. We include
technical proofs in the appendix.

2 Preliminaries

2.1 Problem statement

We consider the semilinear 2× 2 hyperbolic system

ut(x, t) = −εu(x)ux(x, t) + Fu((u, v)(x, t), x, t), (1)

vt(x, t) = εv(x)vx(x, t) + Fv((u, v)(x, t), x, t), (2)

u(0, t) = f(v(0, t), t), (3)

v(1, t) = U(t), (4)

u(x, 0) = u0(x), (5)

v(x, 0) = v0(x), (6)

for x ∈ [0, 1] and t ≥ 0. The subscripts t and x de-
note partial derivatives with respect to time and space,
respectively. U(t) is the control input. The notation

(u, v)(x, t) in Fu and Fv represents the state, (u, v), eval-
uated at (x, t), although we sometimes omit the (x, t)
part for brevity. We assume there exist positive bounds
ε1 and ε2 such that ε1 ≤ εu(x) ≤ ε2 and ε1 ≤ εv(x) ≤ ε2
for all x ∈ [0, 1], and that Fu, Fv and f are uniformly
Lipschitz continuous in the state, i.e. there exist positive
constants Lu, Lv, Lf such that

|Fu((u1, v1), x, t)− Fu((u2, v2), x, t)|
≤ Lu(|u1 − u2|+ |v1 − v2|), (7)

|Fv((u1, v1), x, t)− Fv((u2, v2), x, t)|
≤ Lv(|u1 − u2|+ |v1 − v2|), (8)

|f(v1, t)− f(v2, t)| ≤ Lf |v1 − v2|, (9)

for all (u1, v1), (u2, v2), x, t. Note that this Lipschitz
condition excludes finite-time blow up, hence ensuring
global existence of a solution. We also assume that Fu
and Fv are measurable in x and t along every one-
dimensional curve in [0, 1] × [0,∞), and that εu and εv
are measurable in x.
The functions Fu, Fv and f are allowed to be time-
varying. Within the scope of this paper, we assume that
at every time, Fu, Fv and f are exactly known du into
the past and dv into the future (see Equation (21) for
definitions of du and dv).
We let X [0, 1] denote the state space of bounded func-
tions on [0, 1], i.e.,

X [0, 1] = {f : [0, 1]→ R : |f(x)| <∞∀x ∈ [0, 1]} (10)

and we use ‖ · ‖∞ to denote the spatial supremum norm,
i.e. ‖f‖∞ = supx∈[0,1] |f(x)| for f ∈ X [0, 1]. The initial

conditions u0 and v0 are assumed to be in X [0, 1]. If the
input U(t) is discontinuous in time, classical solutions of
(1)-(6) cannot be expected. Therefore, throughout this
paper we mean by solution of (1)-(6) functions satisfying
the integral equations that are obtained by integrating
(1)-(6) along its characteristic lines, as it is done in detail
in Appendix A. The solutions u and v are absolutely
continuous 1 along the characteristic lines of (1) and (2),
respectively, but in general not continuous in different
directions. Therefore, all differential equations in this
paper are assumed to hold almost everywhere.
We consider two separate control problems:
(1) Drive the system to the origin (u, v) ≡ (0, 0) (Sec-

tion 3.1) from an arbitrary state in minimum time
under the additional assumptions

Fu((0, 0), x, t) = 0 for all x ∈ [0, 1], t ≥ 0, (11)

Fv((0, 0), x, t) = 0 for all x ∈ [0, 1], t ≥ 0, (12)

f(0, t) = 0 for all t ≥ 0, (13)

and that f has a Lipschitz continuous inverse in the
first argument, i.e. there exists a function f−1 and

1 A function f is absolutely continuous if there exists a
locally Lebesgue-integrable function g such that f(x) =∫ x
0
g(ξ)dξ.
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constant Lf−1 > 0 such that

v0 = f−1(u0, t) ⇔ u0 = f(v0, t), (14)

|f−1(u1, t)− f−1(u2, t)| ≤ Lf−1 |u1 − u2|, (15)

for all t ≥ 0 and all u1, u2 ∈ R. Moreover, the origin
shall be an exponentially stable equilibrium of the
closed-loop system.

(2) Tracking at x̄ ∈ [0, 1] (Section 3.3) without assum-
ing (11)-(13). The tracking objective is to achieve

v(x̄, t) = g(u(x̄, t), t) (16)

in minimum time, where g is merely a function of t if
x̄ = 0. Moreover, the states should remain bounded
in X [0, 1]. In this general form, Fu, Fv and f can
include disturbance terms for which exact measure-
ments (which need to be stored du into the past)
and short term predictions (dv into the future) are
available.

Moreover, we consider the problem of estimating the
infinite-dimensional state from the measurement y(t) =
u(1, t) (Section 4) and solve the output feedback prob-
lems corresponding to objectives 1 and 2 above (Section
5).

2.2 Characteristic lines

The method of characteristics is a popular tool for
the analysis of hyperbolic systems. Since the propaga-
tion speeds εu and εv are state-independent, the charac-
teristic lines are known a priori. They are illustrated in
Figure 1. We parameterize the characteristic lines over

Fig. 1. Characteristic lines of u (“upwards”) and v (“down-
wards”).

space, x, and the time t at which they are at x = 1. The
characteristic lines for v are given by

τv(x, t) = t+

∫ 1

x

1

εv(ξ)
dξ, (17)

sv(x, t) = (x, τv(x, t)). (18)

That is, the characteristic line originating from location
x = 1 at time t is at location x at time τv(x, t). Analo-

gously for u, we define

τu(x, t) = t−
∫ 1

x

1

εu(ξ)
dξ, (19)

su(x, t) = (x, τu(x, t)) (20)

We also define the delay times

du =

∫ 1

0

1

εu(ξ)
dξ, dv =

∫ 1

0

1

εv(ξ)
dξ. (21)

2.3 Dynamics on the characteristic line sv
The control inputU(t) propagates from x = 1 to x = 0

with finite speed εv along the characteristic line sv(·, t),
which is depicted as the wider line in Figure 1. Due to the
finite propagation speed, the actuation cannot affect the
state in the whole domain immediately. Loosely speak-
ing, the control input U(t) affects only the states “after”
sv(·, t) (including v but excluding u on sv). That is, U(t)
affects the state v(x, ·) at some location x ∈ [0, 1] only at
the future time τv(x, t). All states “before” sv(·, t) (in-
cluding u but excluding v on sv) are entirely determined
by the state at time t, i.e. they cannot be affected by
U(t). Therefore, we base our analysis on the dynamics
on sv.
Definition 1 We define the state on sv as

ũ(x, t) = u(x, τv(x, t)), (22)

ṽ(x, t) = v(x, τv(x, t)). (23)

Theorem 2 For every t, there exists a continuous op-
erator Φt : X [0, 1] × X [0, 1) → X (0, 1], independent of
U(t), such that

ũ(·, t) = Φt(u(·, t), v(·, t)). (24)

If (11)-(13) hold, there exists a constant cΦ such that

‖ũ(·, t)‖∞ ≤ cΦ‖(u(·, t), v(·, t))‖∞. (25)

Moreover, ũ and ṽ satisfy the PDE-ODE system

ũt(x, t) = − εu(x)εv(x)

εu(x) + εv(x)
ũx(x, t)

+
εv(x)

εu(x) + εv(x)
Fu((ũ, ṽ)(x, t), x, τv(x, t)), (26)

ṽx(x, t) = − 1

εv(x)
Fv((ũ, ṽ)(x, t), x, τv(x, t)), (27)

ũ(0, t) = f(ṽ(0, t), τv(0, t)), (28)

ṽ(1, t) = U(t). (29)

ũ(·, 0) = Φ0(u0, v0), (30)

Proof. For the existence of Φt and cΦ, see Appendix A.
For the second statement, we use d

dt and d
dx to denote
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the total derivative with respect to t and x, while t and

x are partial derivatives w.r.t. time and space. We get

ũt(x, t) =
d

dt
u(x, τv(x, t))

= ut(x, τv(x, t))
dτv(x, t)

dt
= ut(x, τv(x, t)), (31)

ũx(x, t) =
d

dx
u(x, τv(x, t))

= ux(x, τv(x, t)) + ut(x, τv(x, t))
dτv(x, t)

dx

= ux(x, τv(x, t))−
1

εv(x)
ut(x, τv(x, t))

= − 1

εv(x)
ut(x, τv(x, t))−

1

εu(x)
[ut(x, τv(x, t))

−Fu((u, v)(x, τv(x, t)), x, τv(x, t))]

= −εu + εv
εuεv

ut(x, τv) +
1

εu
Fu((ũ, ṽ)(x, t), x, τv). (32)

Substituting ut(x, τv(x, t)) in the latter equation by (31)
yields (26). For ṽ, we get

ṽx(x, t) =
d

dx
v(x, τv(x, t))

= vx(x, τv(x, t))−
1

εv(x)
vt(x, τv(x, t))

= − 1

εv(x)
vt(x, τv(x, t)) +

1

εv(x)
[vt(x, τv(x, t))

−Fv((u, v)(x, τv(x, t)), x, τv(x, t))]

= − 1

εv(x)
Fv((ũ, ṽ)(x, t), x, τv(x, t)). (33)

Note that (31)-(33) must be interpreted in the ap-
propriate weak sense as mentioned in Section 2.1.
The initial and boundary conditions follow from
ũ(·, 0) = Φ0(u(·, 0), v(·, 0)), ũ(0, t) = u(0, τv(0, t)),
ṽ(0, t) = v(0, τv(0, t)), and ṽ(1, t) = v(1, t). �

2.4 Dynamics with virtual input

The control actuation U(t) is located at x = 1. How-
ever, we see that in (26), information propagates from
the inflow boundary condition (28) at x = 0 to x = 1.
The tracking objective (16) is also located at some x̄ ∈
[0, 1], where in general x̄ 6= 1. Therefore, the idea is to
control the system via a ’virtual control input’ U∗(t) lo-
cated at x̄ ∈ [0, 1]. Exploiting the fact that (27) is a
simple ODE in space, we then construct U(t) such that
ṽ(x̄, t) becomes U∗(t). That is, the boundary condition
(29) can be replaced by ṽ(x̄, t) = U∗(t), as stated by the
following theorem.
Theorem 3 For x̄ ∈ [0, 1] and t ≥ 0, φ ∈ X [0, 1] and
ϕ0 ∈ R, consider the ODE

ϕx(x) = − 1

εv(x)
Fv((φ, ϕ)(x), x, τv(x, t)) (34)

on the interval x ∈ [0, 1] with initial conditionϕ(x̄) = ϕ0,
and denote ϕ1 = ϕ(1). Consider the continuous mapping

Ψt
x̄ : X [0, 1]× R→ R : (φ, ϕ0) 7→ ϕ1. (35)

The system consisting of (26)-(30) in closed loop with
U(t) = Ψt

x̄(ũ(·, t), U∗(t)) satisfies

ūt(x, t) = − εu(x)εv(x)

εu(x) + εv(x)
ūx(x, t)

+
εv(x)

εu(x) + εv(x)
Fu((ū, v̄)(x, t), x, τv(x, t)), (36)

v̄x(x, t) = − 1

εv(x)
Fv((ū, v̄)(x, t), x, τv(x, t)), (37)

ū(0, t) = f(v̄(0, t), τv(0, t)), (38)

v̄(x̄, t) = U∗(t). (39)

ū(x, 0) = Φ0(u0, v0), (40)

Proof. By the Carathéodory theorem, and due to the
Lipschitz condition on Fv, the ODE (34) has a unique
solution for every given initial condition, even for discon-
tinuous right-hand sides [11]. Therefore, if two solutions
ϕ and ϕ̄ both satisfy (34), then

ϕ̄(x̄) = ϕ(x̄)⇔ ϕ̄(1) = ϕ(1). (41)

Since (34) is a copy of (27) for φ = ũ(·, t), this is equiv-
alent to

U(t) = Ψt
x̄(ũ(·, t), U∗(t))⇔ ṽ(x̄, t) = U∗(t). (42)

The rest is mere change of notation. Continuity of Ψt
x̄

holds since the solution of (34) is Lipschitz continuous
in ϕ0 and φ. �

Lemma 4 The closed loop solution of (1) -(6) with
U(t) = Ψt

x̄ (Φt(u(·, t), v(·, t), U∗(t))) satisfies

u(x, t) = ū

(
x, t−

∫ 1

x

1

εv(ξ)
dξ

)
, (43)

v(x, t) = v̄

(
x, t−

∫ 1

x

1

εv(ξ)
dξ

)
(44)

for all x ∈ [0, 1] and t ≥
∫ 1

x
1

εv(ξ)dξ, where ū and v̄ are

governed by (36)-(40).

Proof. This follows directly from Definition 1, the def-
inition of τv (see (17)) and Theorems 2 and 3. �

From now on, we perform the analysis on the closed loop
system (36)-(40) and use (43)-(44) to make conclusions
on the original system.
Remark 5 Our proof of existence of Φt is constructive.
Hence, Φt can be implemented by following Appendix A.
That is, at time t, the PDE system (1)-(3) is solved in the
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domain
{

(x, θ) : x ∈ [0, 1− δ), θ ∈
[
t, t+

∫ 1−δ
x

1
εv(ξ)dξ

]}
for infinitesimally small δ > 0. This can be done ei-
ther via successive approximations as in Section A.2 or,
more efficiently, by discretizing the PDEs in space and
integrating in time. Then, ū(·, t) is obtained by taking
the limit as in Section A.3.
The operator Ψt is implemented by solving the Cauchy
problem (34) with ϕ(x̄) = U∗(t).
Remark 6 As a practical alternative to continuously
evaluating Φt, one could evaluate Φt only after a certain
time passed or the state changed more than some margin,
and update the predicted state ū via (36)-(39) in between
these evaluations of Φt. However, this would introduce
an additional error, and analyzing this strategy is beyond
the scope of this paper.

2.5 Dynamics on the characteristic line su
For estimation, we assume that the measurement

y(t) = u(1, t) is available. The measurement at time t
evolved along the characteristic line su(·, t), which was
defined in Equation (20) and is depicted in Figure 1.
Due to the finite propagation speed, information from
within the domain cannot be sensed at the boundary
x = 1 immediately. Loosely speaking, the state at some
location x and time θ > τu(x, t) has no influence on y(t).
Only the past state on su(·, t) can be sensed via y(t).
Therefore, we base the observer design on the dynamics
on su.
Definition 7 We define the state on su as

ǔ(x, t) = u(x, τu(x, t)), (45)

v̌(x, t) = v(x, τu(x, t)) (46)

for x ∈ [0, 1] and t ≥
∫ 1

x
1

εu(ξ)dξ.

Theorem 8 ǔ and v̌ satisfy the PDE-ODE system

ǔx(x, t) =
1

εu(x)
Fu((ǔ, v̌)(x, t), x, τu(x, t)), (47)

v̌t(x, t) =
εu(x)εv(x)

εu(x) + εv(x)
v̌x(x, t)

+
εu(x)

εu(x) + εv(x)
Fv((ǔ, v̌)(x, t), x, τu(x, t)), (48)

ǔ(0, t) = f(v̌(0, t), t), (49)

v̌(1, t) = U(t) (50)

v̌(x,−τu(x, 0)) = v0(x), (51)

for x ∈ [0, 1] and t ≥
∫ 1

x
1

εu(ξ)dξ. Moreover, for every t,

there exists a continuous operator Λt : X [0, 1]×X [0, 1)→
X [0, 1]×X [0, 1), independent of U(t), such that

(u(·, t), v(·, t)) = Λt(ǔ(·, t), v̌(·, t)). (52)

Proof.

ǔx(x, t) =
d

dx
u(x, τu(x, t))

= ux(x, τu(x, t)) + ut(x, τu(x, t))
dτu(x, t)

dx

= ux(x, τu(x, t)) +
1

εu(x)
ut(x, τu(x, t))

=
1

εu(x)
ut(x, τu(x, t))− 1

εu(x)
[ut(x, τu(x, t))

−Fu((u, v)(x, τu(x, t)), x, τu(x, t))]

=
1

εu(x)
Fu((ǔ, v̌)(x, t), x, τu(x, t)). (53)

For v̌, we get

v̌t(x, t) =
d

dt
v(x, τu(x, t))

= vt(x, τu(x, t))
dτu(x, t)

dt
= vt(x, τu(x, t)), (54)

v̌x(x, t) =
d

dx
v(x, τu(x, t))

= vx(x, τu(x, t)) + vt(x, τu(x, t))
dτu(x, t)

dx

= vx(x, τu(x, t)) +
1

εu(x)
vt(x, τu(x, t))

=
1

εu(x)
vt(x, τu(x, t)) +

1

εv(x)
[vt(x, τu(x, t))

−Fv((u, v)(x, τu(x, t)), x, τu(x, t))]

=
εu + εv
εuεv

vt(x, τu)− 1

εv
Fv((ǔ, v̌)(x, t), x, τu). (55)

Substituting vt(x, τu(x, t)) in the latter equation by (54)
yields (48). The initial and boundary conditions follow
directly from the definitions of ǔ, v̌ and τu.
Regarding existence of Λt, the same methods as in Ap-
pendix A (i.e. transforming the differential equation in
integral equations and applying a successive approxima-
tion argument) can be used to show that the PDE system
(1)-(3) with “initial condition” u(x, τu(x, t)) = ǔ(x, t)
and v(x, τu(x, t)) = v̌(x, t) has a unique solution (u, v)
in the domain S = {(x, θ) : x ∈ [0, 1], θ ∈ [τu(x, t), t]}.
This set includes (u(·, t), v(·, t)), which is the output of
Λt. �

Remark 9 The operator Λt can be implemented
by solving the PDE system (1)-(3) in the domain
{(x, θ) : x ∈ [0, 1), θ ∈ [τu(x, t), t]}.

3 State feedback control

3.1 Stabilization

In this section, we design a control law such that the
states converge to the origin in minimum time, and that
the origin becomes an exponentially stable equilibrium
of the closed-loop system, under the additional assump-
tions (11)-(13). Loosely speaking, the idea is to ’set’ the
inflow boundary condition at x = 0 to zero, and this
zero ’propagates’ towards x = 1.
Theorem 10 If U(t) = Ψt

0(ũ(·, t), 0), i.e. x̄ = 0 and
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U∗(t) = 0, the solution of (36)-(40) satisfies

ū(x, t) = v̄(x, t) = 0 for all (x, t) ∈ A (56)

where A = {(x, t) : x ∈ [0, 1], t ≥
∫ x

0
1

εv(ξ) + 1
εu(ξ)dξ}.

Proof. We transform the PDEs into integral equations,
as it is done in more detail for a similar system in Ap-
pendix A.1. Defining

φ̄(x) =

∫ x

0

εu(ξ) + εv(ξ)

εu(ξ)εv(ξ)
dξ, (57)

ξ̄(x, t, s) = φ̄−1(φ̄(x)− t+ s), (58)

s̄0(x, t) = t− φ̄(x), (59)

we integrate (36)-(40) along its characteristic lines to
obtain, for (x, t) ∈ A,

ū(x, t) = ū(0, s̄0(x, t)) +

∫ t

s̄0

εv
εu + εv

Fu ((ū, v̄)(
ξ̄(x, t, s), s

)
, ξ̄(x, t, s), τv

(
ξ̄(x, t, s), s

))
ds, (60)

v̄(x, t) = v̄(0, t)−
∫ x

0

1

εv(ξ)
Fv((ū, v̄)(ξ, t), ξ, τv(ξ, t))dξ.

(61)

Since x̄ = 0 and U∗(t) = 0, (39) gives that v̄(0, t) = 0
and, due to (13), ū(0, t) = 0 for all t ≥ 0. For all (x, t) ∈
A, we have s̄0(x, t) ≥ 0, hence ū(0, s̄0(x, t)) = 0. For
(x, t) ∈ A, we also have that (ξ̄(x, t, s), s) ∈ A for all s ∈
[s̄0(x, t), t], and (ξ, t) ∈ A for all ξ ∈ [0, x]. Inserting (56)
into (60)-(61), we see that, using (11)-(12), the right-
hand sides become zero. That is, (56) solves (60)-(61).
Using the same methods as in Appendix A.2, it is also
possible to show that the solution of (60)-(61) is unique.
Therefore, we can reverse the statement to say that the
solution of (60)-(61) satisfies (56), and the same holds
for the solution of the original PDE system (36)-(40). �

Combining Theorem 10 and Lemma 4, we conclude
the following:
Theorem 11 The system consisting of (1)-(6) in closed
loop with U(t) = Ψt

0(Φt(u(·, t), v(·, t)), 0) satisfies

u(x, t) = v(x, t) = 0 (62)

for all x ∈ [0, 1] and t ≥ du + dv (see (21) for definitions
of du and dv).

3.2 Lyapunov stability

We construct a Lyapunov function to prove exponen-
tial stability in the spatial supremum norm. First, we
establish an inequality to bound v̄ by ū.
Lemma 12 For k > 0 and L = 1

ε1
Lv, where ε1 is the

lower bound on the transport speeds and Lv is the Lips-
chitz constant in (8), we have

‖e−kxv̄(x, t)‖∞ ≤
(
eL − 1

)
‖e−kxū(x, t)‖∞. (63)

Proof. Exploiting (11)-(12) and (8), we have

d

dx
|e−kxv̄(x, t)| ≤ −k|e−kxv̄(x, t)|+ |e−kxv̄x(x, t)|

≤ e−kx|Fv((ū, v̄)(x, t), x, τv(x, t))| (64)

≤ Le−kx (|v̄(x, t)|+ |ū(x, t)|)

where for every t, the derivative v̄x as given in (37) is
well defined for almost all x. Applying a Gronwall-type
inequality 2 , we obtain the bound

|e−kxv̄(x, t)| ≤
∫ x

0

eL(x−ξ)L|e−kξū(ξ, t)|dξ. (65)

Consequently,

‖e−kxv̄(x, t)‖∞ ≤
∫ 1

0

eL(1−ξ)L‖e−kxū(x, t)‖∞dξ

=
(
eL − 1

)
‖e−kxū(x, t)‖∞. �

(66)

Next, we note that (36) is an advection equation with
zero ’inflow’ at x = 0. However, the coupling term Fu
means that ū can grow while propagating from x = 0
to x = 1. We compensate this effect by weighting the
spatial supremum with a term decreasing in x. More
precisely, we seek a Lyapunov function of the form

V (ū(·, t)) = sup
x∈[0,1]

∣∣e−kxū(x, t)
∣∣ , (67)

where the weighting coefficient k is to be designed.
Therefore, we analyze the dynamics of w(x, t) =
e−kxū(x, t).
In order to bound the derivative of V , we first establish
a bound on the derivative of w along its characteristic
lines.
Lemma 13 For ε = εuεv

εu+εv
,L∗ = supx∈[0,1]

εv(x)
εu(x)+εv(x)Lu,

c = L∗eL and fixed x ∈ [0, 1], w(x, t) = e−kxū(x) satis-
fies the differential inequality

d

ds
w
(
ξ̄(x, t, s), s

)∣∣
s=t
≤ −ε(x)kw(x, t) + c‖w(·, t)‖∞,

(68)
where ξ̄ was defined in (58), for almost all t ≥ 0.

Proof. At s = t we have

d

ds
w
(
ξ̄(x, t, s), s

)
= wt(x, t) + wx(x, t)

1

φ̄′(x)

= wt(x, t) + ε(x)wx(x, t).

(69)

2 i.e. bounding |e−kxv̄(x, t)| by the solution of the differ-
ential equation d

dx
|e−kxv̄(x, t)| = Le−kx (|v̄(x, t)|+ |ū(x, t)|)

with |v̄(0, t)| = 0, which can be solved analytically. Sets of
measure zero where d

dx
|e−kxv̄(x, t)| is not well defined do not

affect this bound.
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Differentiating w(x, t) with respect to t and x, and ab-
breviating F = εv

εu+εv
Fu, gives

wt(x, t) = e−kxūt(x, t), (70)

εwx(x, t) = −εke−kxū(x, t) + e−kxεūx(x, t)

= −εke−kxū+ e−kx(−ūt + F ((ū, v̄), x, τv)). (71)

Inserting (70) and (71) into (69) yields at s = t

d

ds
w
(
ξ̄(x, t, s), s

)
= −ε(x)kw(x, t)

+e−kxF ((ū, v̄)(x, t), x, τv(x, t)).
(72)

The measurability assumptions on Fu implies that for
fixed x, the right-hand side of (72) is well-defined for
almost all t. Next, we bound the F -term. Exploiting the
Lipschitz condition on F , (63) and the definition of w,
we obtain

|e−kxF ((ū, v̄)(x, t), x, τv(x, t))|
≤ e−kxL∗(|ū(x, t)|+ |v̄(x, t)|)
= L∗(|e−kxū(x, t)|+ |e−kxv̄(x, t)|)
≤ L∗

(
‖e−kxū(·, t)‖∞ + ‖e−kxv̄(·, t)‖∞

)
≤ L∗

(
1 +

(
eL − 1

))
‖e−kxū(·, t)‖∞

≤ L∗eL‖w̄(·, t)‖∞. �

(73)

For ε > 0 and w(·, t) ∈ X [0, 1] given, we define the set

Dε = {x ∈ [0, 1] : |w(x, t)| > (1− ε)‖w(·, t)‖∞}. (74)

Lemma 14 If Dε 6= {1} for all ε > 0, then V̇ =
d
dtV (ū(·, t)) exists for almost all t ≥ 0 and satisfies

V̇ ≤ −c̄(k)V for c̄(k) = 0.5 ε1k − c and k > 2c
ε1

.

Proof. We fix ε = 0.5. For x∗ ∈ Dε, we assume without
loss of generality that w(x∗, t) > 0, otherwise we multi-
ply by (−1). Hence, by Lemma 13,

d

ds
w
(
ξ̄(x∗, t, s), s

)∣∣
s=t
≤ −εkw(x∗, t) + c‖w(·, t)‖∞

≤ (−εk(1− ε) + c)‖w(·, t)‖∞ = −c̄(k)‖w(·, t)‖∞
(75)

for almost all t ≥ 0. Next, we bound the derivative of V
by analyzing how the supremum of |w| changes along its
characteristic lines. For given t and s, we define the set

Ξs,t = {x ∈ [0, 1] : ξ̄(x, t, s) ∈ [0, 1]}. (76)

Note that Ξs,t is non empty for s ∈ [t, t+φ̄(1)]. Moreover,
for s ∈ [t, t+ φ̄(1)],

[0, 1] =
{
ξ̄(x, t, s) : x ∈ Ξs,t

}
∪
{
ξ̄(0, θ, s) : θ ∈ [t, s]

}
,

(77)

i.e. every point in [0, 1] lies on a characteristic line of w
going through either (x, t) for some x ∈ [0, 1], or (0, θ) for
some θ ∈ [t, s]. For all (x, t),w

(
ξ̄(x, t, s), s

)
is continuous

in s. Since w(0, θ) = 0 for all θ, there exists a δ > 0 such
that

|w(ξ̄(0, θ, s), s)| ≤ 0.5 sup
x∈[0,1]

|w(x, s)| (78)

for all s ∈ [t, t + δ] and all θ ∈ [t, s]. Due to (77), this
implies

sup
x∈[0,1]

|w(x, s)| = sup
x∈Ξs,t

|w(ξ̄(x, t, s), s)|. (79)

At time t, we have

sup
x∈Dε

|w(ξ̄(x, t, t), t)| = sup
x∈Dε

|w(x, t)| = ‖w(·, s)‖∞.

(80)
Again due to continuity of w

(
ξ̄(x, t, s), s

)
in s, we can

decrease δ further if necessary such that

sup
x∈Dε∩Ξs,t

|w(ξ̄(x, t, s), s)| = ‖w(·, s)‖∞ (81)

for all s ∈ [t, t + δ]. The set Dε ∩ Ξs,t is non empty for
small enough δ due to the assumption Dε 6= {1}. Thus,
we can bound the derivative of V by

V̇ = lim
∆t→0

1

∆t

(
sup
x∈[0,1]

|w(x, t+ ∆t)| − sup
x∈[0,1]

|w(x, t)|

)
(82)

= lim
∆t→0

1

∆t

(
sup

x∈Dε∩Ξt+∆t,t

|w(ξ̄(x, t, t+ ∆t), t+ ∆t)|

− sup
x∈Dε

|w(x, t)|
)

≤ lim
∆t→0

1

∆t
sup

x∈Dε∩Ξt+∆t,t

(
|w(ξ̄(x, t, t+ ∆t), t+ ∆t)|

− |w(x, t)|)

= sup
x∈Dε∩Ξt+∆t,t

lim
∆t→0

1

∆t

(
|w(ξ̄(x, t, t+ ∆t), t+ ∆t)|

−|w(x, t)|) ≤ −c̄(k)V, (83)

where the limit is taken over ∆t ∈ [0, δ], and we applied
(75) in the very last step. �

Lemma 15 If Dε = {1} for some ε > 0, then V (ū(·, t))
is discontinuous in t and decreases by a jump.

Proof. If Dε = {1} for some ε > 0, |w| has a unique
maximum at x = 1 and there exists a ε̄ such that
|w(x, t)| < |w(1, t)|− ε̄ for all x 6= 1. We have ξ̄(1, t, s) 6∈
[0, 1] for all s > t. Note that for every x1, t and s, there
exists a x2 such that x1 = ξ̄(x2, t, s). Hence, by conti-
nuity in s, |w(x1, s)| = |w(ξ̄(x2, t, s), s)| < |w(1, t)| − ε̄
for all x 6= 1 and s ∈ [t, t+ δ̄] for some δ̄ > 0. �
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We are now in position to formulate the main theorem
on exponential stability using the composition V ◦Φt as
a Lyapunov function.
Theorem 16 For every γ > 0 there exists aM > 0 such
that for all t ≥ 0 and all initial conditions in X [0, 1]

‖(u(·, t), v(·, t))‖∞ ≤Me−γt‖(u(·, 0), v(·, 0))‖∞. (84)

Proof. We first establish exponential decay for V . Let
{t1, t2, . . .} denote the times at which there exists an
ε > 0 such that Dε = {1} and t0 = 0, and abbreviate
V (t) = V (ū(·, t)). We establish the bound

V (t) ≤ V (0)e−c̄(k)t (85)

for all t = ti and all t ∈ (ti, ti+1), i = 0, 1, . . ., by induc-
tion. For i = 0, clearly V (t0) = V (0). Assume (85) holds
for t = ti. For t ∈ (ti, ti+1),

V (t) = V (ti) +

∫ t

ti

V̇ (s)ds

≤ V (ti) +

∫ t

ti

−c̄(k)V (s)ds = V (ti)e
−c̄(k)(t−ti)

≤ V (0)e−c̄(k)tie−c̄(k)(t−ti) = V (0)e−c̄(k)t, (86)

where we applied Lemma 14 and used the fact that sets of
measure zero do not affect the integral. Then, at t = ti+1

we can apply Lemma 15 to conclude that

V (ti+1) ≤ lim
t↗ti+1

V (t) ≤ lim
t↗ti+1

V (0)e−c̄(k)t

= V (0)e−c̄(k)ti+1 .
(87)

By the definition of V (see (67)),

‖ū(·, t)‖∞ ≤ ekV (t) ≤ ekV (0)e−c̄(k)t

≤ ek‖ū(·, 0)‖∞e−c̄(k)t
(88)

for all t. Finally, (25) and (B.13) imply

‖(u(·, t), v(·, t))‖∞ ≤ cΦ−1‖ū(·, t)‖∞
≤ cΦ−1eke−c̄(k)t‖ū(·, 0)‖∞ (89)

≤ cΦcΦ−1eke−c̄(k)t‖(u(·, 0), v(·, 0))‖∞. �

3.3 Tracking

The tracking problem at x̄ ∈ [0, 1] is solved by simply
setting U∗(t) as desired by the tracking objective (16)
using the prediction ū(x̄, t) obtained by evaluating Φt,
i.e.,

ū(·, t) = Φt(u(·, t), v(·, t)), (90)

U∗(t) = g(ū(x̄, t), τv(x̄, t)). (91)

For tracking, we do not require the additional assump-
tions (11)-(13). In this generality, Fu, Fv and f can in-
clude the effect of disturbances for which, at time t, ex-
act predictions are available in the interval [t, τv(x̄, t)].
The effect of such disturbances is considered, implicitly,
when evaluating Φt and Ψt.
Theorem 17 The system (1)-(6) in closed loop with
U(t) = Ψt

x̄(Φt(u(·, t), v(·, t)), U∗(t)), with U∗(t) as in
(90)-(91), satisfies the tracking objective (16) for all t ≥
τv(x̄, 0). Moreover, the trajectories of the closed-loop sys-
tem remain bounded if there exist positive constants cu
and cv such that, for all x ∈ [0, 1] and t ≥ 0,

|Fu((0, 0), x, t)| ≤ cu, |Fv((0, 0), x, t)| ≤ cv, (92)

and the following additional conditions are satisfied. In
case of tracking at x̄ = 0, there exist positive c0u and c0v
such that for all t ≥ 0

U∗(t) ≤ c0v, f(U∗(t), t) ≤ c0u. (93)

In case of tracking at x̄ 6= 0, there exist positive Lg and
cg such that for all ū ∈ R and t ≥ 0

|g(ū, t)| ≤ Lg|ū|+ cg, (94)

and L̂ = eLx̄(Lg + 1) − 1 satisfies Lf L̂ < 1, where L =
1
ε1
Lv.

Proof. The design of U∗(t) ensures that the closed loop
system (36)-(40) satisfies the control objective for all
t ≥ 0. Thus, the first claim follows from Lemma 4.
To prove boundedness, we proceed as in Section 3.2.
First, we consider the case x̄ = 0. For k ≥ 0, we have

d

dx
|e−kxv̄(x, t)| ≤ e−kx

ε1
(Lv(|v̄(x, t)|+ |ū(x, t)|) + cv)

(95)
for fixed t and almost all x, and |v̄(0, t)| ≤ c0v. Like in
(65), a variant of the Gronwall inequality gives

|e−kxv̄(x, t)| ≤ eLxc0v +

∫ x

0

eL(x−ξ)ε−1
1(

Lv|e−kξū(ξ, t)|+ cv
)
dξ,

(96)

where L = ε−1
1 Lv. Consequently,

‖e−kxv̄(x, t)‖∞ ≤ eLc0v

+
eL − 1

ε1L

(
Lv‖e−kxū(x, t)‖∞ + cv

)
.

(97)
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As in the proof of Lemma 13, Equation (73), we can
bound the term e−kxF by

|e−kxF ((ū, v̄)(x, t), x, τv(x, t))|
≤ ε∗

(
Lu
(
‖e−kxū(·, t)‖∞ + ‖e−kxv̄(·, t)‖∞

)
+ cu

)
≤ ε∗LueL‖e−kxū(·, t)‖∞ + d

(98)

where we abbreviated ε∗ = supx∈[0,1]
εv(x)

εu(x)+εv(x) and

d = ε∗
(
Lu

(
eLc0v +

eL − 1

ε1L
cv

)
+ cu

)
. (99)

Thus, w(x, t) = e−kxū(x, t) satisfies at s = t

d

ds
w
(
ξ̄(x∗, t, s), s

)
≤ −ε(x)kw(x, t) + c‖w(·, t)‖∞ + d

(100)
for every fixed x∗ and almost all t, where ε and c are
as in Lemma 13. Moreover, |w(0, t)| ≤ c0u. We can then
choose x∗ ∈ Dε for ε < 0.5, and assume without loss of
generality that w(x∗, t) > 0, so that w satisfies

d

ds
w
(
ξ̄(x∗, t, s), s

)∣∣
s=t
≤ −c̄(k)‖w(·, t)‖∞ + d, (101)

where c̄(k) becomes positive for k large enough. In or-
der to ensure that (81) holds, i.e. the maximum is not
attained at x = 0, we further assume that ‖w(·, t)‖∞ >
2c0u. Thus, we conclude as in Section 3.2 that V decreases
exponentially if ‖w(·, t)‖∞ > 2 min

{
d/c(k), c0u

}
.

Second, if x̄ 6= 0, the assumptions on the data imply

|e−kx̄U∗(t)| ≤ e−kx̄ (Lg|ū(x̄, t)|+ cg)

≤ Lg|e−kx̄ū(x̄, t)|+ cg ≤ Lg‖w(·, t)‖∞ + cg.
(102)

Similarly to above, the Gronwall inequality can be ap-
plied to derive an inequality of the same structure as
(98) but with different constants, and conclude a differ-
ential inequality like (101). For x̄ 6= 0, there is no a priori
bound on |v̄(0, t)| like (93), i.e. we need to additionally
design a condition to ensure that ‖w(·, t)‖∞ does not
increase via the boundary condition at x = 0. By the
Gronwall inequality,

|e−kxv̄(x, t)| ≤ e−L(x−x̄)|e−kx̄U∗(t)|

+

∫ x

x̄

e−L(x−ξ)ε−1
1

(
Lv|e−kξū(ξ, t)|+ cv

)
dξ

(103)

for x < x̄, thus

|v̄(0, t)| ≤eLx̄|e−kx̄U∗(t)|

+
eLx̄ − 1

ε1L
(Lv‖w(·, t)‖∞ + cv) .

(104)

Inserting (102) into (104) gives

|v̄(0, t)| ≤ L̂‖w(·, t)‖∞ + d̂, (105)

where d̂ = eLx̄cg + eLx̄−1
ε1L

cv. Finally,

|w(0, t)| =|ū(0, t)| = |f(v̄(0, t), t)| ≤ Lf |v̄(0, t)|+ df

≤ Lf L̂‖w(·, t)‖∞ + Lf d̂+ df . (106)

Since we assume Lf L̂ < 1, ‖w(·, t)‖∞ >
Lf d̂+df

1−Lf L̂
implies

|w(0, t)| < ‖w(·, t)‖∞, i.e. (81) holds for some ε > 0. �

Example 18 In [1], a linear system with boundary con-
dition

u(0, t) = qv(0, t) + d(t) (107)

was considered, where q 6= 0 and d is a disturbance term.
Predictability of d was assumed, implicitly, via the linear
model

d(t) = CX(t), Ẋ(t) = AX(t). (108)

The tracking objective was

u(0, t) = rv(0, t) (109)

for r 6= q. Thus, g can be constructed by insert-
ing (107) into (109) and solving for v(0, t), yielding
g(∗, t) = 1

r−qd(t). Hence, setting

U∗(t) =
1

r − q
d(t+ dv) (110)

solves the disturbance rejection problem from [1] for all
t ≥ dv if an exact prediction of d in [t, t+dv] is available.
Disturbance rejection at x̄ ∈ (0, 1) for the same linear
system was considered in [2]. The tracking objective was
g(u(x̄, t), t) = 1

ru(x̄, t) for r 6= 0, which is achieved for

all t ≥ τv(x̄, 0) by U∗(t) = 1
r ū(x̄, t).

In [24], disturbances entering also inside the domain were
considered, again for a linear model. The source terms
were written as

Fu((u, v)(x, t), x, t) = c1(x)v(x, t) + d1(x, t), (111)

Fv((u, v)(x, t), x, t) = c2(x)v(x, t) + d2(x, t). (112)

In our approach, the effect of the in-domain disturbances
d1 and d2 is handled, implicitly, in the Φt and Ψt opera-
tors, and U∗(t) can be constructed as above.

3.4 Explicit state-feedback law for linear systems

For the special case of linear systems of the form

ut = −ε1(x)ux + c1(x)v, (113)

vt = ε2(x)vx + c2(x)u, (114)

v(1, t) = U(t), (115)
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u(0, t) = qv(0, t), (116)

with the same smoothness requirements as in [27], it is
possible to make the feedback law explicit in the state,
i.e. without solving the PDEs when evaluating Φt and
Ψt. The explicit control law can be derived by the ansatz

v̄(x, t) =

∫ x

0

Ku(x, ξ)u(ξ, τv(x, t))

+Kv(x, ξ)v(ξ, τv(x, t))dξ,

(117)

with U(t) = v̄(1, t). Differentiating the right-hand side
of (117) with respect to x, inserting the dynamics (113)-
(116), integrating by parts and equating the result with
v̄x(x, t) as given in (37), it turns out that the kernels Ku

and Kv must satisfy

ε2(x)Ku
x (x, ξ)−Ku

ξ (x, ξ)ε1(ξ)

−Ku(x, ξ)ε′1(ξ)−Kv(x, ξ)c2(ξ) = 0, (118)

ε2(x)Kv
x(x, ξ) +Kv

ξ (x, ξ)ε2(ξ)

+Kv(x, ξ)ε′2(ξ)−Ku(x, ξ)c1(ξ) = 0 (119)

for all x ∈ [0, 1] and ξ ∈ [0, x], and

Ku(x, x) (ε1(x) + ε2(x)) = −c2(x), (120)

qε1(0)Ku(x, 0) = ε2(0)Kv(x, 0) (121)

for x ∈ [0, 1]. These are precisely two of the kernel PDEs
from [27] (they are denoted Kvu and Kvv in [27]). Thus,
the two control laws are equivalent.
For linear systems with disturbance terms, equivalence
of the state-feedback controller in this paper and the
backstepping-based results in [1,24] can be shown by the
same steps sketched above.

4 Observer design

We assume we can measure y(t) = u(1, t) and design
an observer to estimate the distributed state. In (48),
information propagates from x = 1 to x = 0. More-
over, both boundary values at x = 1, ǔ(1, t) = y(t)
and v̌(1, t) = U(t), are known. Therefore, we design the
observer as a copy of (47)-(51), where we replace the
boundary condition (49) by the measurement at x = 1:

ûx(x, t) =
1

εu(x)
Fu(û, v̂)(x, t), x, τu(x, t)), (122)

v̂t(x, t) =
εu(x)εv(x)

εu(x) + εv(x)
v̂x(x, t)

+
εu(x)

εu(x) + εv(x)
Fv((û, v̂)(x, t), x, τu(x, t)), (123)

û(1, t) = y(t), (124)

v̂(1, t) = U(t), (125)

v̂(x, 0) = v̂0(x), (126)

where v̂0 is some initial guess.

Theorem 19 The observer errors eu = û− ǔ and ev =
v̂ − v̌ satisfy

eu(x, t) = ev(x, t) = 0 for all (x, t) ∈ B, (127)

where B = {(x, t) : x ∈ [0, 1], t ≥
∫ 1

x
1

εu(ξ) + 1
εv(ξ)dξ}.

Proof. Subtracting (47)-(51), with (49) replaced by
ǔ(1, t) = y(t), from (122)-(126) yields

eux(x, t) = Eu(û, v̂, ǔ, v̌, x, t), (128)

evt (x, t) =
εuεv
εu + εv

evx(x, t) + Ev(û, v̂, ǔ, v̌, x, t), (129)

eu(1, t) = 0, (130)

ev(1, t) = 0, (131)

where

Eu(û, v̂,ǔ, v̌, x, t) =
1

εu(x)
(Fu((û, v̂)(x, t), x, τu(x, t))

− Fu((ǔ, v̌)(x, t), x, τu(x, t))), (132)

Ev(û, v̂,ǔ, v̌, x, t) =
εu(x)

εu(x) + εv(x)
(Fv((û, v̂)(x, t),

x, τu(x, t))− Fv((ǔ, v̌), x, τu(x, t))). (133)

This PDE-ODE system is well defined in the domain

{(x, t) : x ∈ [0, 1], t ≥
∫ 1

x
1

εu(ξ)dξ}, which contains B.

Defining

φ̂(x) =

∫ 1

x

εu(ξ) + εv(ξ)

εu(ξ)εv(ξ)
dξ, (134)

ξ̂(x, t, s) = φ̂−1(φ̂(x)− t+ s), (135)

ŝ0(x, t) = t− φ̂(x), (136)

we integrate (128)-(131) along its characteristic lines to
obtain, for (x, t) ∈ B,

eu(x, t) = ev(1, t) +

∫ x

1

Eu(û, v̂, ǔ, v̌, ξ, t)dξ, (137)

ev(x, t) = ev(1, ŝ0(x, t))

+

∫ t

ŝ0(x,t)

Ev(û, v̂, ǔ, v̌, ξ̂(x, t, s), s)ds. (138)

Next, we exploit the fact that eu(x, t) = ev(x, t) = 0,
i.e. ǔ(x, t) = û(x, t) and v̌(x, t) = v̂(x, t), implies

Eu(û, v̂, ǔ, v̌, x, t) = Ev(û, v̂, ǔ, v̌, x, t) = 0. (139)

Inserting (127) into (137)-(138), we therefore see that the
right-hand sides become zero. Thus, (127) solves (137)-
(138). Since the solution is unique, we can reverse the
statement to say that the solution of (137)-(138) satisfies
(127), and the same holds for the error system (128)-
(131). �
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Thus, we can determine the current state from the
observer state (û, v̂) by evaluating Λt:
Theorem 20 The observer (122)-(126) achieves

(u(·, t), v(·, t)) = Λt(û(·, t), v̂(·, t)) (140)

for all t ≥ du + dv

Proof. This follows directly from the definition of Λt

(Theorem 8) and Theorem 19. �

Remark 21 Making a coordinate change from x to z =
1−x, the estimation error system (128)-(131) has exactly
the same structure as (36)-(40) for x̄ = 0 and U∗(t) = 0.
Thus, we can proceed exactly as in Section 3.2 to show
that

V e(ev(·, t)) = sup
x∈[0,1]

∣∣∣e−k(1−x)ev(x, t)
∣∣∣ (141)

for sufficiently large k is a Lyapunov function for (eu, ev),
proving exponential decay of the estimation error.
Remark 22 The question arises whether the observer
is the same as the one in [27] for linear systems. They
are not the same, although both deliver exact estimates
in minimum time. The observer (122)-(126) has zero
error at x = 1, and this zero error propagates towards
x = 0. The observer in [27] feeds the potentially non-zero
error u(1, t)− û(1, t) back into the estimated state at all
x ∈ [0, 1].

5 Output feedback control

Combining Theorems 11 and 17, respectively, with
Theorem 20, we have solved the output feedback control
problem.
Theorem 23 Consider the output feedback controller
consisting of the the observer (122)-(126) and the control
law

U(t) = Ψt
x̄(Φt(Λt(v̂(·, t), v̂(·, t)), U∗(t)). (142)

Assuming (11)-(13) and using U∗(t) = 0, the closed loop
system becomes zero within 2(du + dv). Using (90)-(91)
for U∗(t), the closed loop system satisfies the tracking
objective (16) within du + 2dv.

6 Example

We illustrate the performance of the controller in an
example with

εu(x) =

{
0.2 if x < 0.5,

2− x if x ≥ 0.5,
, (143)

εv(x) = 1 + 0.5x, (144)

Fu((u, v), x, t) =
1

3− x
sin(u+ v), (145)

Fv((u, v), x, t) = sin(v − u), (146)

f(v0, t) = −v0, (147)

and initial condition u0 = v0 = 1. With these propaga-
tion speeds, the delay times are du ≈ 2.9 and dv ≈ 0.8.
First, we consider stabilization of the origin using out-
put feedback. The initial condition of the observer is set
to zero. The operators Φt, Ψt and Λt are implemented
as sketched in Remarks 5 and 9, respectively. The PDEs
are discretized in space by finite differences, and Mat-
lab’s ode45 is used for time-integration. Using 40 spa-
tial discretization elements, evaluating Φt and Λt takes
approximately 40 ms and 120 ms, respectively, on a Mac
OS X 10.10.5 with a 2.2 GHz Intel Core i7 with 16 GB
1600 MHz DDR3 memory and Matlab 2014b. In order
to illustrate the system behavior in open loop, the con-
troller is switched on only after t = 10. For t < 10,
the input is set to U(t) = 0. The resulting trajectories
of the state, and the error between the true state and
the estimated state (uest, vest) = Λ(û, v̂), are depicted
in Figure 2. The error between true and estimated state
becomes zero within du + dv ≈ 3.7, up to numerical er-
rors. Once the controller is switched on, the states also
become zero within du + dv.
Second, we consider a tracking problem using output
feedback. The tracking objective is defined by x̄ = 0
and g0(u0, v0, t) = v0 − vref (t) for vref (t) = sin(0.5 t) +
cos(0.7 t), i.e. v(0, t) shall track the reference signal vref .
The trajectory of v, as well as v(0, t), vref (t), and the
actuation U(t), are depicted in the right column of Fig-
ure 2. The tracking objective is achieved for t > 4.5, up
to numerical errors.

7 Conclusions

We have solved the boundary control and estimation
problem for a class of 2× 2 semilinear hyperbolic PDEs.
The control scheme can be used for stabilization of the
origin, as well as tracking at an arbitrary location in
the presence of predictable disturbances. Evaluation of
the controller involves solving a PDE and an ODE. For
linear system, the control input is the same as the one
obtained from previously known backstepping methods.
This equivalence bears the potential to analyze proper-
ties, such as robustness, of backstepping controllers by
the approach presented in this paper, and vice versa. We
also designed an observer using measurements collocated
with the actuation, and, combining the observer with the
the state-feedback controller, solved the output feedback
problem. The controller can be applied to several phys-
ical systems, such as transmission lines with nonlinear
friction. In order to make the evaluation of the control
input less computationally demanding, the scheme men-
tioned in Remark 6 can be investigated in future work.
Moreover, it would be interesting to see if the methods
in this paper can be extended to (n+m)× (n+m) sys-
tems, interconnected hyperbolic systems, or two-sided
boundary control.

A Existence of Φt

We prove the existence of Φt in Theorem 2. Without
loss of generality, we assume Φt is evaluated at t = 0,
otherwise we can shift time.
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Fig. 2. System state and estimation error trajectories. Left and centre: stabilization example. Right: tracking example.

In the first step, we prove the existence of a unique so-
lution of the system

ut(x, t) = −εuux(x, t) + gu(x, t) + F̃u(u, v, x, t), (A.1)

vt(x, t) = εvvx(x, t) + gv(x, t) + F̃v(u, v, x, t), (A.2)

u(0, t) = h(t) + f̃(v, t), (A.3)

u(x, 0) = u0, (A.4)

v(x, 0) = v0, (A.5)

where

F̃u(u, v, x, t) = Fu((u, v)(x, t), x, t)− Fu((0, 0), x, t),
(A.6)

F̃v(u, v, x, t) = Fv((u, v)(x, t), x, t)− Fv((0, 0), x, t),
(A.7)

gu(x, t) = Fu((0, 0), x, t), (A.8)

gv(x, t) = Fv((0, 0), x, t), (A.9)

f̃(v0, t) = f(v0, t)− f(0, t), (A.10)

h(t) = f(0, t), (A.11)

in the domain

T δ =

{
(x, t) : x ∈ [0, 1− δ], t ∈

[
0,

∫ 1−δ

x

1

εv(ξ)
dξ

]}
(A.12)

for δ > 0, see also Figure A.1. T δ is designed to cut off
the boundary condition at x = 1, which corresponds to
the input U and is not known yet when Φt is evaluated.
Therefore, the values on the inflow boundary are fully
specified, and thus the system (A.1)-(A.5) is well posed.

Moreover, the solution depends continuously on the in-
put data (u0, v0) and, if (11)-(13) hold, is sublinear in
(u0, v0). The idea of the proof follows Appendix A in
[6], but we have to consider the nonlinearity and have a
different domain. That is, we transform the PDEs into
integral equations (Section A.1) and prove convergence
of a successive approximation series (Section A.2).
Second, we show that u(x, t) for (x, t) ∈ sv = {(x, t) :

x ∈ [0, 1), t =
∫ 1

x
1

εv(ξ)dξ}, where sv 6⊆ T δ for any δ > 0,

equals the limit of u evaluated at points inside T δ for
δ → 0 (Section A.3).
Finally, u on sv is the actual output of the operator Φt

for the input (u0, v0).

Fig. A.1. Illustration of the domain T δ (green) and the char-
acteristic lines.

A.1 Transformation into integral equations

We denote the characteristic lines passing through
(x, t) along which (A.1)-(A.2) evolve by (ξu(x, t, s), s)
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and (ξv(x, t, s), s), respectively, where the argument s is
used for parameterization in time. First, we define

φu(x) =

∫ x

0

1

εu(ξ)
dξ, φv(x) =

∫ 1

x

1

εv(ξ)
dξ.

(A.13)
Since εu and εv are positive, φu and φv are well defined
and monotonically increasing, and thus invertible. Then,
ξu and ξv are given by

ξu(x, t, s) = φ−1
u (φu(x)− t+ s), (A.14)

ξv(x, t, s) = φ−1
v (φv(x)− t+ s). (A.15)

The following Lemma holds.
Lemma 24 If (x, t) ∈ T δ, then (ξu(x, t, s), s) ∈ T δ for
all s ∈ [s0

u(x, t), t], where s0
u(x, t) := max{0, t− φu(x)},

and (ξv(x, t, s), s) ∈ T δ for all s ∈ [0, t]
Next, (A.1)-(A.2) are integrated along their character-
istic lines to obtain

u(x, t) = u(ξu(x, t, s0
u(x, t)), s0

u(x, t))

+Gu(x, t) + Iu[u, v](x, t), (A.16)

v(x, t) = v(ξv(x, t, 0), 0) +Gv(x, t) + Iv[u, v](x, t),
(A.17)

where

Gu(x, t) =

t∫
s0u(x,t)

gu(ξu(x, t, s), s)ds, (A.18)

Iu[u, v](x, t) =

t∫
s0u(x,t)

F̃u(u, v, ξu(x, t, s), s)ds, (A.19)

Gv(x, t) =

∫ t

0

gv(ξv(x, t, s), s)ds, (A.20)

Iv[u, v](x, t) =

∫ t

0

F̃v(u, v, ξv(x, t, s), s)ds. (A.21)

Inserting the boundary conditions (A.3)-(A.4) into
(A.16) and (A.5) into (A.17), we get

u(x, t) = Hu(x, t) +Gu(x, t) + P (x, t)

+Q[u, v](x, t) + Iu[u, v](x, t), (A.22)

v(x, t) = Hv(x, t) +Gv(x, t) + Iv[u, v](x, t), (A.23)

where Hv(x, t) = v0(ξv(x, t, 0)), and

Hu(x, t) = u0(ξu(x, t, 0)), (A.24)

Q[u, v](x, t) = P (x, t) = 0. (A.25)

if t− φu(x) < 0, and

Hu(x, t) = h(t− φu(x)), (A.26)

P (x, t) = f(Hv(0, t− φu(x)), t− φu(x)), (A.27)

Q[u, v](x, t) = f(Iv[u, v](0, t− φu(x)), t− φu(x))
(A.28)

if t− φu(x) ≥ 0.

A.2 Solution of integral equations via successive ap-
proximation

For w = (u, v)T , define the successive approximation
sequence

w0 =

(
Hu + P +Gu

Hv +Gv

)
, Ω[w] =

(
Iu[u, v] +Q[u, v]

Iv[u, v]

)
,

(A.29)
and wn+1 = Ω[wn] + w0. The limit w(x, t) =
limn→∞ wn(x, t), if convergent, solves the integral equa-
tions (A.22)-(A.23), and thus the PDEs (A.1)-(A.5).
The idea is to prove existence of the limit via conver-
gence of the series

w = lim
n→∞

wn =

∞∑
n=0

∆wn, (A.30)

where ∆wn = wn − wn−1 and ∆w0 = w0 by definition.
Next, we establish a contraction property for Ω. We de-
note the 1-norm in R2 by ‖ · ‖1, i.e. ‖w‖1 = |w1|+ |w2|
for w = (w1, w2)T .
Lemma 25 Assume that ‖w1(x, t) − w2(x, t)‖1(x, t) ≤
cCm tm

m! for C = Lu+Lv(1+Lf ), m ≥ 0, some constant

c ≥ 0, and all (x, t) ∈ T δ. Then, for (x, t) ∈ T δ,

‖Ω[w1](x, t)−Ω[w2](x, t)‖1 ≤ cCm+1 tm+1

(m+ 1)!
. (A.31)

Proof. Denoting w1 = (u1, v1)T and w2 = (u2, v2)T ,
we have

|Iu[u1, v1](x, t)− Iu[u2, v2](x, t)|

=

∣∣∣∣∣
∫ t

s0u(x,t)

F̃u(u1, v1, ξu(x, t, s), s)ds

−
∫ t

s0u(x,t)

F̃u(u2, v2, ξu(x, t, s), s)ds

∣∣∣∣∣
≤
∫ t

s0u(x,t)

|(F̃u(u1, v1, ξu(x, t, s), s)

− F̃u(u2, v2, ξu(x, t, s), s)|ds

≤ Lu
∫ t

s0u(x,t)

‖w1(ξu(x, t, s), s)

− w2(ξu(x, t, s), s)‖1ds

≤ cLuCm
1

m!

∫ t

s0u

smds ≤ cLuCm
tm+1

(m+ 1)!
.

(A.32)
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The same steps for Iv yield

|Iv[u1, v1](x, t)− Iv[u2, v2](x, t)| ≤ cLvCm
tm+1

(m+ 1)!
.

(A.33)
Similarly, for Qu if t ≥ φu(x),

|Qu[u1, v1](x, t)−Qu[u2, v2](x, t)|
= |f(Iv[u1, v1](0, t− φu(x)))

− f(Iv[u2, v2](0, t− φu(x)))|
≤ Lf |Iv[u1, v1](0, t− φu(x))

− Iv[u2, v2](0, t− φu(x)))|

≤ cLvLfCm
tm+1

(m+ 1)!
.

(A.34)

The claim follows from

‖Ω[w1](x, t)− Ω[w2](x, t)‖1
≤ |Iu[u1, v1](x, t)− Iu[u2, v2](x, t)|

+ |Qu[u1, v1](x, t)−Qu[u2, v2](x, t)|
+ |Iv[u1, v1](x, t)− Iv[u2, v2](x, t)|. �

(A.35)

The following proposition discusses convergence of the
successive approximation series. We define the constants

w̄ = sup
(x,t)∈T δ

‖w0(x, t)‖1, w̃ = w̄(1 + Cdv), (A.36)

where dv is defined in (21) and ‖ ·‖1 is the 1-norm in R2.
Proposition 26 The successive approximation series
converges to a unique, bounded limit w = limn→∞ wn.
Moreover, w depends continuously on the input data
(u0, v0) and, if (11)-(13) holds, is sublinear in (u0, v0)
in the sense that there exists a constant cΦ > 0 such that

sup
(x,t)∈T δ

‖w(x, t)‖1 ≤ cΦ‖(u0, v0)‖∞. (A.37)

Both continuity and (A.37) hold uniformly with respect
to (x, t) ∈ T δ and δ > 0.

Proof. For n = 0, we have ‖∆w0(x, t)‖1 ≤ w̄. Next, we
establish the bound

‖∆wn(x, t)‖1 ≤ w̃Cn−1 tn−1

(n− 1)!
(A.38)

for all n ≥ 1 by induction. For n = 1, we exploit Ω[0] = 0
and Lemma 25 for m = 0 to get

‖w1(x, t)‖1 = ‖Ω[w0](x, t)‖1
= ‖Ω[w0](x, t)− Ω[0](x, t)‖1 ≤ w̄Cdv.

(A.39)

Thus, ‖∆w1‖1 ≤ ‖w1‖1 + ‖w0‖1 ≤ w̄(1 + Cdv). In the
induction step for n ≥ 2, we assume the inequality holds

for ∆wn = wn − wn−1 and utilize Lemma 25 to get

‖∆wn+1(x, t)‖1 = ‖Ω[wn](x, t)

− Ω[wn−1](x, t)‖1 ≤ w̃Cn
tn

n!
.

(A.40)

We can now prove absolute convergence of the successive
approximation series,

‖w(x, t)‖1 ≤
∞∑
n=0

‖∆wn(x, t)‖1

=

∞∑
n=1

‖∆wn(x, t)‖1 + ‖∆w0(x, t)‖1

≤
∞∑
n=1

w̃Cn−1 tn−1

(n− 1)!
+ w̄

≤ w̄
(
1 + (1 + Cdv)e

Ct
)
.

(A.41)

Thus, the limit of the successive approximation series
exists and is bounded. Regarding uniqueness, consider
two solutions w and w′. The difference, w̃ = w − w′,
satisfies a system of the same structure as (A.1)-(A.5)
with gu = 0, gv = 0, h = 0 and initial condition w̃0 = 0.
Thus, the difference satisfies (A.41) with w̄ = 0, imply-
ing w̃ = 0. To prove continuity in the initial data, choose
ε > 0 and consider again two solutions w and w′ with
‖w0−w′0‖∞ < δ′. We choose δ′ = εe−Cdv . The difference
w̃ = w−w′ again satisfies a system of the same structure
as (A.1)-(A.5) with gu = 0, gv = 0, and h = 0, hence
w̄ ≤ δ′. Thus, (A.41) implies ‖w̃(x, t)‖1 ≤ ε ∀(x, t) ∈ T δ
and all δ > 0. (A.37) follows from the fact that (11)-(13)
imply gu = 0, gv = 0, and h = 0, i.e. w̄ = ‖(u0, v0)‖∞. �

A.3 u on sv
Proposition 26 states the existence of a solution (u, v)

of (A.1)-(A.5) in T δ for all δ > 0. However, we need
u on the characteristic line sv (see (18)), which is not
contained in any T δ.

Lemma 27 For all ε > 0, there exists a δ > 0 such that
for all (x, t) ∈ sv with t− ε ≥ s0

u(x, t), (ξu(x, t, t− ε), t−
ε) ∈ T δ.

Proof. From the definition of ξu (see (A.14)), we see
that ξu(x, t, t − ε) < x. The shape of T δ implies that
if (x′, t′) ∈ T δ, then (y, t′) ∈ T δ for all y ≤ x′. Thus,
choosing δ such that (x, t− ε) ∈ T δ ensures (ξu(x, t, t−
ε), t− ε) ∈ T δ.
If (x, t) ∈ sv, we have t =

∫ 1

x
1

εv(ξ)dξ. We also have that

(x, t′) ∈ T δ for all t′ ≤
∫ 1−δ
x

1
εv(ξ)dξ. Thus, the claim

follows if we establish

t− ε =

∫ 1

x

1

εv(ξ)
dξ − ε <

∫ 1−δ

x

1

εv(ξ)
dξ, (A.42)
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which is equivalent to∫ 1

1−δ

1

εv(ξ)
dξ < ε. (A.43)

This is achieved by choosing δ < ε infξ∈[0,1] εv(ξ). The

extra constraint t− ε ≥ s0
u(x, t) ensures that ξu(x, t, t−

ε) ≥ 0 and t− ε ≥ 0. �

Since u satisfies an ODE along its characteristic lines,
the function u(ξu(x, t, s), s) is uniformly continuous in
s. Thus, for (x, t) ∈ sv with x ∈ (0, 1), the limit

u(x, t) = lim
ε→0

ε≤t−s0u(x,t)

u(ξu(x, t, t− ε), t− ε) (A.44)

exists and is attained uniformly. Since both continuity
in the input data and (A.37) in Proposition 26 hold uni-
formly with respect to (x, t) ∈ T δ and δ > 0, u on sv is
also continuous in (u0, v0) and, if (11)-(13) hold, can be
bounded by cΦ‖u0, v0‖∞. For x = 1, we trivially have
u(1, 0) = u0(1, 0) and u(0, φv(0)) is determined byU∗(t).

B Inverse of Φt

We show that the Φt operator has a bounded inverse
under the assumptions of Section 3.2 by showing that
the system

ut(x, t) = −εuux(x, t) + F̃u(u, v, x, t), (B.1)

vt(x, t) = εvvx(x, t) + F̃v(u, v, x, t), (B.2)

u (x, φv(x)) = ū(x), (B.3)

v (0, φv(0)) = 0, (B.4)

v(0, t) = f−1(u(0, t), t), (B.5)

has a solution in the domain

T = {(x, t) : x ∈ [0, 1], t ∈ [0, φv(x)]} . (B.6)

The proof follows the steps in Sections A.1-A.2, but here
we integrate backwards in time along the characteristic
lines. Since we assume (11)-(13), some terms in the in-
tegral equations vanish:

u(x, t) = u(ξu(x, t, sFu (x, t)), sFu (x, t)) + Îu[u, v](x, t),
(B.7)

v(x, t) = v(0, sFv (x, t)) + Îv[u, v](x, t), (B.8)

where

Îu[u, v](x, t) =

t∫
sFu (x,t)

F̃u(u, v, ξu(x, t, s), s)ds, (B.9)

Îv[u, v](x, t) =

t∫
sFv (x,t)

F̃v(u, v, ξv(x, t, s), s)ds, (B.10)

sFv (x, t) = t− φv(x) + φv(0). (B.11)

sFu (x, t) is defined by the intersection of ξu(x, t, ·) with

Fig. B.1. Integration paths for the inverse of Φt.

sv. Denoting the intersecting point by (xFu , s
F
u ), we have

xFu = ξu(x, t, sFu (x, t)) and φv(x
F
u ) = sFu . Thus, sFu is

given implicitly by the solution of

φ−1
v (sFu ) = φ−1

u

(
φu(φ−1

v (sFu ))− t+ sFu
)
. (B.12)

Then, we can proceed as in Sections A.1-A.2, i.e. insert
the boundary conditions, define the successive approx-
imation series, and prove convergence. Since there are
no terms gu, gv, and h as in (A.1)-(A.5), there exists a
constant cΦ−1 such that for all (x, t) ∈ T , analogously
to Proposition 26,

‖(u, v)(x, t)‖ ≤ cΦ−1‖ū‖∞. (B.13)
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