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Abstract: Several control techniques are available for the automotive systems and their design is often
based on the available measurements of different parameters and the integration of the hard input and
performance constraints. The objective of the present study is to revisit the closed loop dynamics of an
auto-steering system to offer an evaluation of the impact of the curvature of the road. From a theoretical
point of view, robust positive invariance theory is presented in order to perform the analysis of the effects
that a bounded parameter-varying additive disturbance has on a linear parameter-varying controller used
to ensure stability of a model predictive control strategy.

Keywords: Automotive control, Predictive control, LPV control, Bounded additive disturbances, Robust
Positive Invariance.

1. INTRODUCTION

The automotive industry is increasingly pushing towards the
autonomous driving concept, considered the future of this busi-
ness. In this kind of driving, the human plays the role of a
passive passenger while the vehicle is completely in charge of
the driving task. It can be seen nowadays that several companies
are developing prototypes that are capable of autonomously
driving the vehicle without human intervention. Nevertheless,
there is a long way to go between the proof-of-concept and the
actual spreading of the technology to the general public.

There are several reasons that can justify this time gap, like the
current price of the technology, which is not affordable for most
of the vehicle consumers. Then, the drivers learning curve in
view of a responsible use and acceptation of such technologies.
A natural evolution process is needed at the vehicle industry,
where car manufacturers consider that the development of the
Advanced Driving Assistance Systems (ADAS) will allow the
technology to become mature and progressively lead to Au-
tonomous Driving vehicles. The term ADAS covers the tech-
nological systems that, briefly speaking, aim to assist the driver
or take over control of the driving task in certain situations, like
parking lots, highways or protected roads, offering an improved
safety and comfort experience. Nevertheless, as driving condi-
tions are never the same, it becomes a critical feature to come
up with robust control strategies that will always keep a correct
performance and at the same time ensure system security by
constraints handling (Sename et al., 2013), (Ni et al., 2016).
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In the present paper, one type of Auto-steering system is stud-
ied, the Lane Centering Assistance (LCA) System, which is
introduced together with the dynamical model in Section 2. Af-
ter that, the design of a pre-stabilizing parameter-varying linear
controller when the speed of the vehicle changes is presented
together with a Model Predictive Control (MPC) strategy to
enhance the constraint handling capacities. Thereafter, the ob-
jective is to analyze the effect that the curvature of the road,
modeled as an additive disturbance that depends on the speed
of the vehicle, has on the designed controller and how this
uncertainty decreases the domain of attraction of the Linear
Parameter Varying (LPV) control and the size of the terminal
set for the MPC. In order to perform this analysis, Section 3
introduces the Robust Positive Invariance (RPI) theory tools
and different strategies that can be considered when modeling
the parameter-varying disturbance. Then, the obtained RPI sets
are analyzed and a redesign phase is finally presented in Section
4 together with a simulation example.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1 Auto-steering System model

The LCA system’s main purpose is to stabilize the lateral
dynamics of the vehicle to follow the center line of the lane
by acting on the steering wheel of the vehicle. When modeling
the lateral dynamics of a vehicle, it is common in the literature
to adopt the well known bicycle model (Rajamani, 2006), as it
exhibits a good trade-off between complexity and performance.
In the present paper, small slip angles are contemplated, so that
the lateral forces are working on their linear region (Pacejka,
2005). Moreover, the interaction between the longitudinal and
the lateral forces is not considered, assuming a decoupled



Fig. 1. Bicycle model referenced to the center line

architecture both in the modeling and the control. Finally, the
tracking objective of the designed controller will be to stabilize
the described lateral dynamics with respect to the center of the
road. In this way, the following change of coordinates has been
considered, ψ̇rel = ψ̇− ψ̇road = ψ̇− vxρ, ẏCoG = ẏ− vxψrel.
The resulting dynamical model is depicted in the following:

ẋ(t) = A(vx(t))x(t) +Bu(t)

y(t) = Cx(t)
(1)
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Where x(t) is the state vector [ψ̇, ψrel, ẏCoG, yCoG]T ∈ Rn. u
is the control input ∈ Rp which represents the steering wheel
angle δc and y ∈ Rm holds by the vector of system outputs,
that will be [ψ̇, ψrel, yCoG]T . Finally, he term depending on
the curvature of the road −vxρ, is considered in the additive
disturbances matrix (See Section 3). Complete measurements
of the states are considered in the present study.

The matrices A(vx(t)) ∈ Rn×n, B ∈ Rn×p depend on several
vehicle parameters: Cf and Cr denote the cornering stiffness
of the front and rear wheels respectively. The distances from
the front and rear axis to the center of gravity are lf and lr,
m stands for the vehicle mass and Iz for the yaw moment of
inertia. All these parameters are considered known and fixed,
so they do not introduce any uncertainty to the model.

Finally, the inverse of the longitudinal speed, γ = 1/vx(t)
appears linearly in the state matrix (2), playing the role of
a varying parameter. In practice, it is measured and bounded
vx(t) ∈ V , which means that its value is known and its
limits are defined by the LCA activation range specifications,
[vmin, vmax]. In the following, a discrete-time formulation is
used. For doing so, the forward Euler discretization method
based on a truncated Taylor series expansion with Ts = 0.01[s]
has been applied to the system state-space continuous-time
representation displayed in (1), (2).

On top of this formulation, we augment the system state vec-
tor x̄Tk = [xTk uTk−1]T in order to include the control input
integrator ∆uk = uk − uk−1, also known as velocity form
(Pannocchia and Rawlings, 2001). This reformulation allows to
design a controller that avoids sudden changes in the steering
wheel angle. Moreover, in order to have a offset-free tracking
of the center of the lane, the integral of the error of the corre-

sponding system state
∫
yCoGdt is included in the formulation.

The augmented system matrices are then defined by Ā(γk), B̄
and C̄ = [C, 0]

T , with ∆uk being the control input.

Ā(γk) =

[
In +A(γk)Ts BTs

0 1

]
B̄ =

[
BTs

1

]
(3)

Parametric uncertainty representation The uncertainty intro-
duced by varying parameter γ can be expressed in several ways
(Kothare et al., 1996), (Bemporad and Morari, 1999). In this
application, the parameter is measured and available at any k, so
it is possible to express the parameter-varying system dynamics
within a polytopic uncertainty representation (Bokor and Balas,
2005): this means that any operating system dynamics at a
given speed value within the working range Ā(1/vk) = Ā(γk),
will be expressed as an affine combination of the two extreme
system realizations at the speed limits. Therefore, the system
dynamics will be described by the parameter varying model

x̄k+1 = Ā(γk)x̄k + B̄∆uk

yk = C̄x̄k.
(4)

Where the Ā(γk), B̄ matrices are described by (2), (3), and
Ā(γk) is computed as a convex combination of the Āi matrices.

Ā(γk) =

nv∑
i=1

λiĀi(γi),with
nv∑
i=1

λi = 1, λi ≥ 0, nv = 2 (5)

2.2 Constrained Linear Parameter-Varying controller design

This section presents the control design for the LCA system
based on ellipsoidal invariant sets, where the uncertainty pro-
duced by the variation on the longitudinal speed is considered
explicitly as a varying parameter γk on the formulation. In
the following, the computation of an ellipsoidal contractive
invariant set with a linear controller based on a parameter-
dependent stabilizing gain ∆uk = K(γk)x̄k for the constrained
system is presented. This LPV controller will ensure asymptotic
stability for all the states inside the domain of attraction of the
controller for all the range of speed and in the absence of ad-
ditive disturbances. Furthermore, in the presence of (bounded)
additive disturbances, it will ensure that the states remain in a
neighborhood of the origin.

The use of Linear Matrix Inequalities (LMIs) for controller
design is of global nature (Boyd et al., 1994). For the sake
of completeness, we recall here the description of the design
of the LPV controller based on the LPV representation of
the system within the polytopic uncertainty (Kothare et al.,
1996). Additional constraints are added to ensure that the
input and states do not saturate inside the computed ellipsoid,
E(P1) = {x ∈ Rn : xTP−1

1 x ≤ 1}, and the maximization in
certain directions in order to enlarge the controller’s domain of
attraction in the states that are of higher interest.

The controller design builds up from the guaranteed decrease
of the Lyapunov function, i.e.

x̄Tk P
−1
1 x̄k − x̄Tk+1P

−1
1 x̄k+1 ≥ αx̄Tk P−1

1 x̄k. (6)

where α ≥ 0. In this way, performance is ensured in terms
of exponential decay of the Lyapunov function by the right
hand side in (6). Now, substituting the system dynamics and
considering all the vertices i = 1...nv ,

(1− α)P−1
1 − (Āi + B̄Ki)

TP−1
1 (Āi + B̄Ki) > 0. (7)



By using the Schur complement, and after pre- and post-
multiplication with the symetric and full rank matrix, blkdiag(P1)
we obtain the condition for E(P1) to be contractive.[

(1− α)P1 P1(Āi +BKi)
T

(Āi +BKi)P1 P1

]
� 0. (8)

The set of state constraints X̄ = {x̄ ∈ Rn : Hxx̄ ≤ bx}
is symmetric and approximated by an ellipsoid for all states
i = 1...n, (Hix/bix)x̄ ≤ 1 ⇔ Fix ≤ 1. This kind of
constraints can be captured by the following LMI for each state[

1 FixP1

P1Fi
T
x P1

]
� 0. (9)

In the case of input constraints, we define symmetric constraints
again, −∆ulb = ∆uub = ∆ub. Then, we have one input
constraint of the form −∆uib ≤ Kix̄ ≤ ∆uib, in LMI form:[

∆u2
max KiP1

P1K
T
i P1

]
� 0. (10)

After this step, we perform a linearizing change of variables, by
defining Yi = KiP1. On top of this formulation, it may be of
interest to impose the inclusion of certain reference directions
defined by zi inside the computed ellipsoid. This allows to
increase the domain of attraction of the designed controller in
certain directions. This means that the largest invariant ellipsoid
will include the point θzi, where θ is a scaling factor on the
point direction. This kind of requirement is translated into an
ellipsoidal containment constraint, θzTi P

−1
1 θzi < 1, that can

be converted into a LMI form using the Schur complement:[
1 θzTi
θzi P1

]
� 0. (11)

In the current studied application, the states x2 and x4 are of
special interest, and inclusion constraints have been added for
these directions. Finally, the last parameter that needs to be
tuned is the contraction factor of the system, (1 − α). This pa-
rameter increases the speed of convergence of the closed-loop
dynamics, while decreasing the size of the obtained ellipsoid.

The objective of this controller design is to have the largest pos-
sible domain of attraction, that is, the largest positive ellipsoid
that fulfills the defined invariance properties and constraints.
An ellipsoid’s volume is directly related to the maximization
of its determinant max det(P1). This problem is translated
into a concave problem by the use of the logarithm function
max logdet(P1) and afterwards into a convex problem by us-
ing a minimization objective. Hence, the following LMI prob-
lem will be used to compute the maximum volume invariant
ellipsoid that is maximized on directions of interest, defined
by the reference directions θzi. The problem formulation is
summarized as follows

min
P1,Yi,θ

{−θ − σlogdet(P1)} (12)

subject to • Invariance condition (8)
• Constraints satisfaction (9), (10).
• Point inclusion (11)

Here σ is a weighting factor included in the optimization to
obtain an ellipsoid whose shape will be a trade-off between
the enhanced directions and the classical maximum volume
objective. Once this problem is solved (Herceg et al., 2013),
(Lofberg, 2004), we obtain a common contractive invariant
ellipsoid E(P1) and a linear parameter-varying stabilizing gain
K(γ), providing in this way a parameter-dependent control law

∆uk =

nv∑
i=1

λiKi(γk)x̄k,with
nv∑
i=1

λi = 1, λi ≥ 0 (13)

2.3 Constrained Model Predictive control design

Model Predictive Control (MPC) design can be used to enhance
the constraints handling using a finite horizon optimization, all
by relaxing the linear structure of the feedback (13). In the fol-
lowing, a MPC strategy (Rawlings and Mayne, 2008) is studied.
At each iteration, a finite-time Optimal Control Problem (OCP)
is solved (14), which in turn is translated into a constrained
Quadratic Programming (cQP) whose objective function is for-
mulated from the minimization of the cost function (14) in order
to obtain the optimal control input rate along the prediction
horizon, subject to linear inequality constraints.

min
∆U

J(x̄k, wk,∆U) = ‖x̄N‖2P +

N−1∑
k=1

‖x̄k‖2Q + ‖∆uk‖2R

s.t. x̄k+1 = Ā(γk)x̄k + B̄∆uk

yk = C̄x̄k

x̄ ∈ X̄, ∆u ∈ ∆U

x̄N ∈ XN (14)
with Q � 0 and R � 0 being the positive definite state and
input weighting matrices along the prediction horizon and
∆U = [∆uTk ,∆u

T
k+1, . . . ,∆u

T
k+N−1]T , x̄Tk = [xTk u

T
k−1]T . In

addition to this, note that only the last measured speed is known,
so the system matrices will be updated each sample time and
considered constant along the prediction horizon.

Finally, in order to formulate this finite-time OCP, a quadratic
terminal cost P and terminal set XN are considered to ensure
system’s recursive stability. In this approach, the terminal set
XN is commonly defined by the Maximal Output Admissible
Set (Gilbert and Tan, 1991) adapted for the unconstrained LPV
closed loop system dynamics, together with a terminal cost
based on the construction of a parameter-varying Lyapunov
function (Wada et al., 2004).

3. ANALYSIS OF THE ADDITIVE DISTURBANCES

Once we have defined the system dynamics, it is necessary to
take into account that a vehicle encounters several elements that
modify its behavior with respect to the modeled one.

This section presents the details of the sources of disturbances
and then goes through the basic robust positive invariance
theory and refinement tools towards a polytopic formulation,
before ending up with the practical results for the LCA system.

The LPV designed in Section 2.2 exhibits a good convergence
characteristics in the presence of the parameter variation, but
the presence of unmodeled additive disturbances that have not
been considered on the design may drive the system state out
of its domain of attraction, where the controller performance
is lost or, at least, not guaranteed in the presence of both
constraints and parameter variation. The analysis of this aspect
will be the main objective of the current section.

3.1 System disturbances

Perturbations can originate from several sources, such as a
lateral slope on the road, difference of pressure in the tyres,



actuation perturbations or crosswind. In addition to these, an
important disturbance is the curvature of the road wk, due to its
direct influence on the steering input signal. This perturbation
affects the lateral dynamics behavior of the system, by adding
an extra term to the lateral equations of motion, which is related
to the centripetal acceleration −v2

xρ that appears when driving
in a curve. Furthermore, the resulting steering angle needs to
be the addition of the input signal needed to steer the vehicle to
the center of the road and the angle needed to follow the curve.
In this way, the closed-loop system dynamic equations (4) are
extended in order to contain the curvature of the road effects,
modeled by a bounded additive disturbance wk ∈ W

x̄k+1 =
(
Ā(γk) + B̄K(γk)

)
x̄k + Ē(v, v2)wk, (15)

with (Ā(γk) + B̄K(γk)) being the closed-loop form of the
system dynamics and denoted by ĀC(γk) in the following. The
closed loop system will ensure the nominal stability based on
the certificates offered by the parameter-depending Lyapunov
function. Moreover, Ē =

[
0,−v,−v2, 0, 0

]T ∈ Rn×p, thus we
have a parameter-varying disturbances matrix. In the following,
three modeling abstractions are presented in decreasing conser-
vativeness order.

Superposition principle To begin with, the two realizations
of the speed parameter, v and v2 are defined respectively
as ν1 and ν2, yielding Ē(ν1k

, ν2k
). Due to the linearity of

the dynamics of the parameter-varying matrix Ē(ν1, ν2), a
superposition principle can be employed in order to separate
the influence of the two uncertainty sources, Ē(ν1, ν2) =
Ē1(ν1)+Ē2(ν2), and analyze independently their impact on the
closed loop dynamics. Again, this parameter uncertainty can be
embedded in a polytopic approach, obtaining each value inside
the bounded working range of speed as a convex combination
of the two extreme values:

E(ν1k
, ν2k

) =

nv∑
i=1

βiE1i
(ν1k

) +

nv∑
i=1

ηiE2i
(ν2k

), (16)

with
∑nv

i=1 βi = 1, βi ≥ 0,
∑nv

i=1 ηi = 1, ηi ≥ 0 and the
matrix Ē defined by the addition of the matrices Ē1 and Ē2,
that are linear on the corresponding parameters, Ē(ν1k

, ν2k
) =

Ē1(ν1k
) + Ē2(ν2k

) = [0,−ν1k
, 0, 0, 0]T + [0, 0,−ν2k

, 0, 0]T .

Moreover, the dependency of the matrices Ē1 and Ē2 on the pa-
rameters ν1k

, ν2k
can be eliminated by scaling the disturbances

boundaries with the maximum values of the parameter:
x̄k+1 = ĀC(γk)x̄k + Ē(ν1k

, ν2k
)wk =

= ĀC(γk)x̄k + Ē1(ν1k
)wk + Ē2(ν2k

)wk =

= ĀC(γk)x̄k + Ē1 ν1wk︸ ︷︷ ︸
w1k

+Ē2 ν2wk︸ ︷︷ ︸
w2k

,
(17)

where Ē1 = [0,−1, 0, 0, 0]T and Ē2 = [0, 0,−1, 0, 0]T are
now parameter independent constant matrices, and the pair
of redefined disturbances are w1k

∈ W1, w2k
∈ W2, with

W1 = ν1max
W andW2 = ν2max

W .

Note however, that the superposition of the effects will only
offer a over approximation as long as the co-variance of the
sources of disturbances is lost. This feature can be treated
when a refinement of an initial robust positive invariant will be
performed in view of the characterization of the minimal robust
positive invariant set (Section 3.3).

Worst case polytopic representation In order to preserve the
existing relationship in between the parameters ν1 and ν2 it can

be taken into account that the domain of variation of ν1, ν2 is
certainly defined by the curve f(v) = v2, scaled by the constant
value ρm, which is the maximal value of the road curvature.
This curve can be represented by a polytopic embedding, ap-
proximated for example by a trapezoidal shape (Fig.2) for the
sake of simplicity of the vertex representation. This is first lim-
ited by the segment [ρmν1min , ρmν2min ], [ρmν1max , ρmν2max ].
Then, we consider a line which is parallel to the first segment
and tangent to the curve and the last two edges are defined by in-
tersection of this line and the ones tangent at the extreme vertex.
This provides a polyhedron with four vertices, nv = 4, each one
defining a Ēi such that E(ν1k

, ν2k
) =

∑nv

i=1 αiĒi(ν1k
, ν2k

)
with

∑nv

i=1 αi = 1 and αi ≥ 0. Alternatively, a containment
optimization problem can be performed (Lombardi et al., 2009)
to obtain a tight polyhedral embedding of the curve on Fig. 2.
Still, it is necessary to note that we are considering the same

Fig. 2. Polytopic approximation of the curve vρm = v2ρm

maximal value of the curvature of the road ρm for all the range
of speed, which remains an important source of conservativism,
as road conception directives (Vertet and Giausserand, 2006)
dictate from the early design stage of the infrastructure facilities
that the road curvature and the set speed are directly related.
These elements are considered in the next formulation and
integrated in the additive disturbance analysis.

Refined polytopic representation Following up with the pre-
vious formulation, it is possible to go forward by means of
considering that the maximal value of the curvature is speed-
dependent too, that is, there exists a series of rules and conven-
tions that are taken into account when the roads are designed,
in order to ensure safety and comfort of the citizens. These
conventions set a tight relation between the speed limit at a
given road and the minimal radius for the road profile. When

Table 1. Radius-speed values for design on high-
ways (Vertet and Giausserand, 2006)

50kmh 70kmh 90kmh 110kmh 130kmh
Comfort Rmin(m) 98 242 473 808 1267
Safety Rmin(m) 66 162 318 541 848

we consider this formulation, we are indeed reducing the con-
servatism of the previous two formulations (Fig. 3).

Fig. 3. Polyopic representation from Table 1 data (comfort)



3.2 Robust invariance condition

Consider the LPV closed loop dynamics (15), with wjk ∈
Wj =

{
wTj wj ≤ 1

}
. The starting point will be the fact that

an ellipsoid EP = {x̄P−1x̄ ≤ 1} is robust positive invariant if
∀x̄ ∈ EP then ĀC(γ)x̄+ Ējwj ∈ EP ,∀wj ∈ Wj and ∀v ∈ V .
In other words, starting from any point in EP , the state of the
system will not leave the set under any admissible parameter
variation and disturbance.
Theorem 3.1. The ellipsoid EP is invariant for system (15) if
and only if there exists a positive definite matrix P ∈ Rnxn (1− τ)P 0 PĀTiC

0 τI ĒTj
ĀiCP Ēj P

 � 0, (18)

for all i = 1 . . . nv 0 < τ < 1. �

Readers are referred to (Nguyen et al., 2015), (Luca et al., 2011)
for proof of Theorem 3.1.

3.3 Refinement of the Robust Positive Invariant set

The polyhedral representation of the RPI sets give a better
approximation of the domain of attraction, but they have a
major issue: complexity is not fixed by the dimension of the
state-space, and they can become highly complex very fast.

In order to refine the obtained ellipsoid by means of the formu-
lation introduced in this section and obtain an approximation of
the RPI set, a recursive strategy is used (Olaru et al., 2010). For
this final refinement of the RPI set, we approximate the initial
ellipsoidal set EP0

by a s-vertices polyhedron Ω0. After this,
we compute the forward sequence as shown in Algorithm 1 in
order to obtain the RPI polyhedral approximation.
Remark 1. When using the decoupled strategy for the addi-
tive disturbances (Subsection 3.1.1), the refined RPI will be
obtained by applying Algorithm 1 to an initial polyhedral set
Ω0 defined by the convex hull of the obtained RPI set for each
disturbance, w1 and w2.

Ω0 = ConvHullnw
j=1Ωj0 (19)

Algorithm 1: RPI set refinement
Data: Polyhedral approximation Ω0 of computed RPI EP0

Result:
1) Compute the image set for each one of the LPV system
dynamic realizations using the AiC transformation. The set
that keeps the invariance property is the convex hull of the
resulting sets and addition by Minkowski sum of the worst
case additive disturbances.

Ωk+1 = ConvHull {AiC Ωk} ⊕ ConvHull {EiW} (20)
2) Repeat 1) until Ωk+1 = Ωk or up to Nmax iterations.
Return Refined RPI set

3.4 RPI results and analysis

In the following, the tools shown in the previous section to
construct the RPI set (18) are used to offer a certification on
the behavior of the LPV controller (13) in a curved road. It is
worth noticing that an alternative technique that can be used to
compute the RPI sets is presented in (Martı́nez, 2015) based on
the Bounded Real Lemma argument in the present work we use
the Theorem 3 from this analysis.

Remark 2. A set Ω∞ is called minimal Robust Positively In-
variant (mRPI) set if it is a RPI set in Rn contained in every
RPI set.

The size of this set provides a measurement of the uncer-
tainty that the bounded disturbances produce on the closed loop
dynamics of a system: the larger the mRPI set is, the more
the system is affected by the disturbances. Given the closed
loop dynamics of our system AC(γk) with a linear parameter-
varying stabilizing gainK(γk), the BMI problem (18) is solved
for different τ values with a criterium based on the minimiza-
tion of the trace(P−1), obtaining a family of RPI. The value
for the positive scalar τ is set so that (18) yields the smaller
RPI ellipsoid, denoted by E(P2). The final objective here is to
provide a certificate that the designed controller would keep
its performance in the presence of the bounded additive dis-
turbances. In order to do so, we can check the containment of
the mRPI set inside the domain of attraction of the controller:
if E(P2) ⊆ E(P1), the controller performance is maintained
in a set Ω = E(P1) 	 E(P2), that can be approximated by the
ellipsoid E(P ′N ). This is refined (Algorithm 1) in order to obtain
a suitable terminal set XN for the MPC strategy (Section 2.3).

Along these lines, the corresponding mRPI set has been com-
puted for the closed-loop auto-steering system, and proves to
not be included in the domain of attraction of the nominal
LPV control. This is not surprising since the tuning of the LPV
controller is done based on aggressive contractiveness objec-
tives in spite of robustness. This means that the performance of
this controller is not kept for any speed-curvature variation. In
practice, what can be done is the computation of the maximal
range of speed variation that would be admissible for a given
curvature value, naming admissible those speed limit values
that provide a mRPI set which is smaller than E(P1). In Fig.(4),
the speed ranges for which the computed E(P2) ⊆ E(P1) for
fixed curvature values are shown 1 . It can be seen that for lower
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Fig. 4. Admissible speed range in curve for the parameter-
varying controller (Section 2.2) for fixed ρ values

curvature values the controller could be suitable in part of the
speed range activation zone. However, if the curvature is higher,
this kind of control would not be able to control the lateral
dynamics of the system unless the speed was much lower than
the range activation of the LCA system. Moreover, the size
of the computed mRPI sets is relatively big compared to the
size of the controller domain of attraction E(P1) (Fig. 5), so
the resulting invariant set XN obtained from the refinement of
E(P ′N ) turns out to be relatively small.

1 Due to confidentiality reasons the numerical details on the speed range and
curvature values are omitted from the figure
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4. CONTROL REDESIGN FOR BUILT-IN ROBUSTNESS
WITH RESPECT TO ADDITIVE DISTURBANCES

The results of the robustness analysis of the designed LPV
stabilizing controller provided by the RPI theory tools (Section
3) show that such strategy would not be a proper option when
driving in a curved road, unless the driving conditions were
fixed and limited in terms of speed-curvature values. This
assumption needs to be revisited if the driving situations need
to cover a large range of speed-curvature. Regarding this,
we proceed to the reformulation of the proposed controllers,
obtaining a robust control strategy from the design stage. This
will impact the terminal cost and terminal set, that will be
provided by the maximal RPI set computed in the presence of
parameter variations and bounded additive disturbances.

4.1 LPV controller redesign

The MPC terminal cost and terminal set will be based on the
construction of a parameter-dependent Lyapunov function and
the associated RPI set. For this construction, in spite of pre-
computing a stabilizing gain for the unperturbed system, the
stabilizing gain computation is done at the same time as the
RPI set computation, obtaining in this way a robust stabilizing
gain that maximizes the RPI set, in which the input and output
constraints are fulfilled in the presence of parameter-varying
disturbances. This can be done by solving the following LMI
problem (Nguyen et al., 2015)

max
P3,Yi,θ

{θ + σtrace(P3)} (21)

subject to: • Invariance contidion (1− τ)P3 0 P3Ā
T
i + Y Ti B̄

T

0 τI ĒTj
ĀiP3 + B̄Yi Ēj P3

 � 0, (22)

for all i = 1 . . . nv , j = 1 . . . nv and K3i
= YiP

−1
3 .

• Constraints satisfaction (9), (10).
• Point inclusion (11)

The obtained parameter-varying linear state feedback gain
provides a parameter-dependent control law with ∆uk =∑nv

i=1 λiK3i
(γk)x̄k with

∑nv

i=1 λi = 1, λi ≥ 0 which
maximizes the size of the RPI set in the presence of system
constraints and disturbances with the final goal of ensuring
robust stability for the MPC strategy presented in the following,
where the terminal set is defined as the polyhedral refinement
of E(P3), X̃N = Ω(E(P3)).

4.2 Curvature of the road: exploit local information on the
disturbances realization

Up to this point the curvature has been considered in terms of
its bounded variation without any supplementary restrictions.

However, local information on the longitudinal direction can be
used for extrapolation. This will transform the MPC prediction
model to include the curvature of the road.

Within this framework, it is necessary to foresee the geometry
of the road trajectory. In this paper, a third order polynomial
is used c(χ) = c0 + c1χ + c2χ

2 + c3χ
3, where χ represents

the longitudinal distance with respect to the current position
of the vehicle and ci are the online measured coefficients of
the reference trajectory that approximates the lane. From this
model, it is possible to compute the curvature of the road at
any distance χk where we will be at any future time k by
means of equation (23), where (.)′ implies the derivative of the
polynomial with respect to χ.

wk =
c′′(χk)

(1 + c′(χk))(3/2)
(23)

4.3 MPC redesign

When there is a prediction model available (23) to calculate
the incoming additive disturbance along the prediction horizon
N , the effect of the additive disturbance can be incorporated
to the predictive control strategy (J.M.Maciejowski, 2002) by
including their effect on the system dynamics model (15) and
approximately cancel it by a suitable control action, commonly
known as feedforward control. The final MPC problem formu-
lation is stated in the following

min
∆U

J(x̄k,wk,∆U) = ‖x̄N‖2P3
+

N−1∑
k=1

‖x̄k‖2Q + ‖∆uk‖2R

s.t. x̄k+1 = Ā(γk)x̄k + B̄∆uk + Ē(ν1k
, ν2k

)wk

yk = C̄x̄k

x̄ ∈ X̄, ∆u ∈ ∆U

x̄N ∈ X̃N (24)
with Q, R, ∆U and x̄k defined as in Section 2.3 and wk being
the curvature of the road. Finally, the quadratic terminal cost P3

and terminal set X̃N are defined by the maximal RPI obtained
when solving (21).

4.4 Simulation

Performance of the designed MPC when driving on a curved
road with varying speed is shown via a numerical simulation.
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Fig. 7. MPC simulation:
speed profile [m/s]

In Fig. 9, the time evolution of the lateral offset of the vehicle
together with the expected offset produced by the disturbances
(measured via mRPI analysis) are shown. It can be seen that the
simulation is started from a perturbed state. In the first phase,
the control input (Fig. 10) variation reaches its limit, in order
to drive the vehicle to the center of the road. Then, the road
enters in the curve phase, together with variations on the speed
vehicle, inducing an error on the lateral position, which again
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will be progressively corrected by the steering angle. It can be
seen that the controller shows a satisfactory performance and it
is able to stabilize the dynamics of the system in the presence
of the variation of speed, curvature and the white noises.

5. CONCLUSION

LCA system dynamics modeling in the presence of speed
variation have been described by a parameter-varying model,
where the parameter is bounded and measured. In the same
way, different methods for modeling the effects of a curved
road on the system have been introduced, by means of different
parameter-varying additive disturbances models which differ
on the level of conservativeness.

In addition to this, robust positive invariance theory has been
exploited as a main tool to certify the behavior of a LPV con-
troller that does not take the impact of the additive disturbances
into account on the design stage. Nevertheless, its working area
is highly limited, and a Model Predictive Control strategy that
predicts the curvature of the road by means of a polynomial
model and anticipates to its effect is considered. Moreover,
a terminal cost and a parameter-varying stabilizing gain that
maximizes the robust terminal set in the presence of system
constraints and the modeled additive disturbances are designed
to ensure the controller recursive stability for such scenarios.

From the application point of view, the system studied in
the present work has been simplified to provide a scenario
where the attention is focused on the impact of the additive
disturbances. There are more features which could be included
in future controllers. These include actuator dynamics and the
consideration of parameter-varying input constraints.
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