
Flexible Image Acquisition Service for Distributed Robotic Systems

Oleksandr Semeniuta1 and Petter Falkman2, Member, IEEE

Abstract— The widespread use vision systems in robotics
introduces a number of challenges related to management of
image acquisition and image processing tasks, as well as their
coupling to the robot control function. With the proliferation of
more distributed setups and flexible robotic architectures, the
workflow of image acquisition needs to support a wider variety
of communication styles and application scenarios. This paper
presents FxIS, a flexible image acquisition service targeting
distributed robotic systems with event-based communication.
The principal idea a FxIS is in composition of a number of
execution threads with a set of concurrent data structures,
supporting acquisition from multiple cameras that is closely
synchronized in time, both between the cameras and with the
request timestamp.

I. INTRODUCTION

Vision systems are pervasively used in the context of
robotics and automation. They are of different levels of
sophistication, including cameras connected to external com-
puters, smart cameras performing processing locally, systems
based on FPGA, systems including additional hardware such
as light sources and sensors, and so on. When it comes
to vision software, it ranges from off-the-shelf tools with
graphical user interface to highly-customized solutions based
on software development kits supplied with the cameras of
choice.

A machine vision system is functionally comprised of such
processes as imaging (with the optical system and an image
sensor), acquisition (realizing the triggering and stream-
ing function), and image processing, combined with high-
level decision making. Naturally, computer vision researchers
largely focus on development of processing algorithms (once
an image is available). However, in distributed environments,
inherent in robotic systems, it is important to consider
the dynamic nature of image capture, communication, and
acquisition. This is even more important in context of the
emerging paradigm of cloud robotics and automation, which
is inherently based on network-based capabilities.

There exist several camera communication standards, such
as Camera Link, CoaXPress, IEEE1394, USB 3 Vision,
and GigE Vision. The latter, based on the widely-used
Gigabit Ethernet networking standard, provides a number of
advantages, such as the ability to design distributed network
topologies (as opposed to point-to-point), scalability in terms
of adding more cameras into the systems, ability to work on

*This work was supported by the Norwegian Research Council
1Oleksandr Semeniuta is with Department of Manufacturing and Civil

Engineering, NTNU Norwegian University of Science and Technology,
Gjøvik, Norway oleksandr.semeniuta@ntnu.no

2Petter Falkman is with Department of Electrical Engineer-
ing, Chalmers University of Technology, Göteborg, Sweden
petter.falkman@chalmers.se

standard hardware and software, and bandwidth suitable for
real time video streaming [1].

When dealing with a GigE Vision camera driver, one
distinguishes between image capture and image acquisition.
The former constitutes obtaining images inside the camera,
while the latter – transforming the corresponding images to
the computer’s memory. Industrial cameras can be subdi-
vided into two classes: asynchronous reset cameras, which
perform capture only when synchronized with an external
event, and free-running cameras, which continuously capture
images at a constant rate. The latter are more commonly
used, and have two acquisition modes that can be realized.
Depending on the design of the image acquisition module,
the caller may issue a trigger event and process the acquired
image sequentially (the synchronous mode), or perform
triggering and processing concurrently (the asynchronous
mode) [2]. The latter case is more effective, since it allows to
process each individual image the camera is able to capture,
and involves several threads of execution.

Regardless whether synchronous or asynchronous acqui-
sition mode is used, the traditional approach is to perform
all the necessary processing in-place, right after the image
is obtained. In such a way, no additional image transport is
necessary, and one is able to realize a real-time processing
system. At the same time, the resulting solution is inherently
monolithic, and it becomes harder to integrate numerous net-
worked components, including other cameras and different
kinds of sensors. Another extreme use case is associated with
off-the-shelf vision software, where far less control is given
to the system developer.

To deal with the increased complexity of distributed sys-
tems, various solutions based on service-oriented thinking
has been realized. Service-oriented computing is important
theme of research and development in information systems
and software engineering when it comes to realization of
distributed systems. Though there exist several technically
and semantically different service-oriented architectures and
paradigms (such as SOAP, REST, publish/subscribe, mi-
croservices), they share the common principle of decom-
position of computational units and provision of services
on demand. In the field of industrial automation, SOA
manifested itself in such forms as OPC-UA, DPWS, the
Tweeting Factory [3], and services and topics in the Robot
Operating System (ROS).

Because of lack of precise understanding of timing charac-
teristic of a vision system, as well as its interaction with other
concurrent processes, the system efficiency can be far from
optimal. A related downside can be caused by application
of simplified APIs that waste time by performing a series of

initialization and closing operations on each call.
The envisioned solution is a streaming service, easily

integrable into a distributed robotic system based on a
service-oriented architecture and a standard communication
middleware. The internal dynamics of the service is well-
understood and robust enough to deal with request from
other networked components. External systems are able to
request individual images, multi-view tuples of images (in
case of multi-camera systems), or sequences of images
(consecutive or interval-based). Image request can be done
both synchronously, using a request-response protocol, and
asynchronously, using message queues in a publish-subscribe
manner.

This paper presents FxIS1 (for flexible image service), an
image acquisition framework, intended for use as a part of
distributed robotic system with service-oriented architecture.
FxIS supports robust acquisition from several connected
cameras and ensures synchronized response by providing
images most closely associated with the time instant of the
request.

The paper is organized as follows. The technical context of
FxIS development is described in section II. The principles
of image capture and acquisition, along with the traditional
approaches of utilizing these capabilities are presented in
section III, followed by the justifications for the approach
manifested by FxIS. Formulation of the FxIS architecture
and functional principles are presented in section IV. A set of
concurrent data structures, providing the important function
of data sharing, communication and synchronization between
multiple threads of an FxIS application are described in
details in section V. Analysis of time measurements during
an FxIS operation experiment are presented in section VI.
Description of the future functionality of the framework is
outlined in section VII.

II. TECHNICAL CONTEXT

In the pilot implementation of FxIS, two identical Allied
Vision GigE Vision cameras (Prosilica GC1350) were used
for testing. Therefore, the lower-level primitives for control-
ling cameras are based on the Allied Vision’s Vimba SDK
[4], with x86-64 Linux as the primary platform.

Vimba SDK provides a C++ object-oriented application
programming interface. The recent C++ standards (C++11,
C++14, C++17), have introduced numerous modern pro-
gramming abstractions while preserving efficient mapping
to machine instructions. FxIS is developed in C++14,
which allows having an effective coupling with image
processing libraries and making use of modern C++ lan-
guage features. In particular, FxIS is heavily based on
the unified concurrency support (<chrono>, <mutex>,
<condition variable>, <future>), high precision
time measurement (<chrono>), as well as the randomiza-
tion capabilities (<random>).

OpenCV [5] has become the open standard in image
processing and computer vision. It includes a large number

1The FxIS implementation is available under the 3-clause BSD license at
https://github.com/semeniuta/FxIS

of tested open source algorithm implementations, as well as
an object-oriented image/matrix data structure, Mat. FxIS
uses OpenCV for the core image processing functionality,
and, instead of dealing with raw image bytes, Mat objects
are internally handled.

III. IMAGE ACQUISITION PROCESS

A camera is constrained its maximal framerate r, measured
in frames per second (fps). The same performance can be
expressed with the inversely proportional inter-arrival time
τia = r−1. For example, Prosilica GC1350 cameras, used in
this work, offer r = 20 fps, which result in τia = 50 ms.

Once the image is acquired, it is laid-down contigu-
ously (row-by-row) in the computer memory as an array of
unsigned chars. An image sensor having the dimension
of w× h and c color channels (for monochrome and Bayer
images, c = 1), produces the array of size hwc. Data from
this array can either be processed in-place or copied for later
processing as follows:

memcpy(
out_image_ptr,
image_ptr,
h * w * c

);

If the duration of image processing τp is shorter than inter-
arrival time (τp ≤ τia), one processing thread is sufficient,
and the acquisition mode is equivalent to the synchronous
approach. Otherwise, one requires several processing threads.
In general, for n≥ 1, n threads are required if the processing
time lies in the following range:

(n−1)τia < τp ≤ nτia

The GigE Vision standard is based on UDP, hence al-
lowing for higher speed of image transmission as compared
to TCP. On top of it, two application-specific protocols
are defined, GigE Vision Control Protocol (GVCP) and
GigE Vision Streaming Protocol (GVSP). These protocols
increase transmission reliability as compared to the raw
UDP. Additional research has been done in improvement
of packet loss during UDP-based communication in GigE
Vision systems [6].

Research related to systems based on the GigE Vision stan-
dard largely tackles the problem of minimizing τp. Hence, it
typically concerns development of FPGA-based smart cam-
eras and other FPGA-based hardware solutions. Examples
include a custom-designed smart camera with GigE Vision
interface and FPGA-based processing [7], a multi-camera
FPGA- and GigE Vision-based image processing system [8],
and a custom FPGA-based solution for acquiring images
from GigE Vision interface (by bypassing the machine’s
CPUs) and direct writing to RAM [9].

This paper, conversely, focuses on implementation of im-
age acquisition function on a general-purpose machine, with
the ability to spread-out the processing function over a num-
ber of networked nodes. Several related systems focusing on

video streaming function has been reported in the literature.
Examples are a multi-camera system for fall detection [10], a
machine learning-enhanced system for video streaming with
selective resolution coding based on attention regions [11],
and a real-time database and hardware/software platform for
coupling real-time image processing and cognitive process-
ing in a self-driving car [12].

IV. SYSTEM DESCRIPTION

A. Typical application scenario

An example of use case of FxIS is shown on Figure 1.
It constitutes a distributed system composed of such com-
putational units an FxIS-based image acquisition service, a
robot control node, and an image processing node. Physical
distribution of these components and communication modali-
ties may differ depending on the application. More complex
systems can be comprised of larger number of device and
image processing nodes.

In the given example, the robot announces a request for
timely image processing results, which is first handled by the
acquisition service returning a pair of images most closely
associated with the robot request. The resulting stereo pair
is further processed by the image processing component,
which communicates the results back to the robot. The
communication is done via publish/subscribe connections.

The idea FxIS is to allow external systems, such as the
robot control node, to request individual images, multi-
view tuples of images (in case of multi-camera systems),
or sequences of images (consecutive or interval-based).

Robot
control	node

PUB1 SUB1

PUB2

SUB2

FxIS
acquistion
service

Image	
processing	

node

Fig. 1. Event-driven communication in a robotic cell

B. System architecture

The principle structure of an FxIS application is shown
on Figure 2. The highest-level component is a Service. It
is responsible for handling requests to the imaging system
from various clients and holding the control over the image
acquisition process. Per each camera connection, there exists
a Streaming object, running in a separate thread, and an
ImageStream concurrent data structure. As it will be fur-
ther explained in Section V, an ImageStream can be safely
accessed by multiple threads, and provides the functional-
ity of image storage and search-based retrieval. While the
camera driver writes (W) to the camera’s ImageStream,
the Service component may request (R) images from the
stream with the current timestamp t∗.

Streaming1 Streaming2

Vimba	driver

Frame
observer

Frame
observer

Service

𝑡∗
Image
and	metadata

R R
WW

ImageStream1 ImageStream2

Fig. 2. FxIS application components

The programming model in Vimba C++ driver is based
on the observer design pattern. A concrete frame observer
class, enclosed in an instance of Streaming, is asso-
ciated with the given camera, and the driver invokes the
FrameReceived method once a new frame is acquired.
In the free-running mode it happens every τia.

The dynamic workflow of an FxIS application is shown
on Figure 3. When started, a Service spawns a number
of threads (each per one camera interface) based on the
corresponding Streaming objects. When instantiated, the
latter establish connections with the respective cameras. In
case of using Vimba driver, this includes allocation of frames,
starting capture on the camera, and queuing frames for
acquisition [13]. When a new thread is spawned based on
the operator() method of the Streaming object, the
acquisition process is started.

When the work time of an FxIS service is finished (e.g.
because of the user’s request), all the threads are signaled
for completion via instances of the BlockingWait and
EventObject concurrent data structures {bwi,eoi} (see
section V).

The concurrent access in ImageStream is se-
cured by the internal mutex-based implementation. When

bw1

bw2

Initialization Image	requests R

R

W

W

Service

Streaming1

Streaming2

Cam.	driver	(2)

Cam.	driver	(1)

eo2

eo1

ImageStream1

ImageStream2

Shutdown

Fig. 3. Threads and concurrent data structures’ interaction in an FxIS
application

ImageStream::getImage is invoked, the thread blocks
and wait until the next frame arrives from the camera
driver. This ensures that, if (t(next image)−t∗)< τia/2, the next
image will not be missed. After the thread is unblocked, the
nearest timestamp search is performed, and a copy of the
corresponding Mat image is returned to the caller.

To allow time tracking, both on writes to and reads from
an ImageStream object, timestamps, measured with the
C++ high resolution clock, are recorded. When a new image
frame is acquired and processed, two timestamps are of
interest: the moment when the frame becomes available (t f)
and the moment when all the processing is performed and the
image is stored in ImageStream (tp↓). When it comes to
image requests, executed as reads from ImageStream, the
following timestamps are recorded: the moment of the image
request tir, the moment of mutex request tmr (after waiting
for the next image to be acquired), the moment when the
mutex is acquired tma, the moment when the search for the
nearest image is done tsd , and the moment when the image
is copied to the caller’s Mat object tic.

V. CONCURRENT DATA STRUCTURES

An FxIS-based application is inherently concurrent, and
is designed as a collection of multi-threaded components
communication via concurrent lock-based data structures.
ImageStream is a concurrent data structure for storing

and retrieving recent images, acquired by the camera. Inter-
nally it is based on a fixed-sized std::vector of Mat
objects, which are stored in a circular manner: the array is
filled sequentially, and is being overwritten once the counter
reaches the maximal value. When an image stored, it is
associated with the corresponding timestamp. Let the n-sized
array for storing images be indexed from 0 through n−1. If
k is the current index, the n most recent images, from the
oldest to the newest, are indexed as follows:

{Ik, Ik+1, ..., In−1, I0, I1, ..., Ik−1} (1)

To manage the timestamps, ImageStream is coupled
with an instance of CircularTimestampVector class.
When a circular vector is queried, for example during the
search routine, the client assumes that it deals with sorted
sequence of timestamps with indices iq ∈ {0,n− 1}. In the
example shown on Figure 4, the actual indices of a circular
vector are depicted in the lower part of the figure, while the
queried indices (iq) – in the higher part.

𝑘

0 1 23 … 𝑛 − 2 𝑛 − 1

0 1 2 𝑛 − 1

Fig. 4. Indices in a circular vector

The sequence (1) is thus corresponding to the following
mapping:

iq
INDEXMAP7−−−−−−→

{
k+ iq if iq ≤ n−1− k
iq−n+ k otherwise

(2)

A CircularTimestampVector stores the timestamps
associated with each stored image, keeps track of the current
index k, provides the nearest timestamp search functionality,
and realizes INDEXMAP.

An ImageStream instance can have several threads
accessing it concurrently, where thread safety is achieved
with an associated mutex. The workflow of ImageStream
is the following: when a new image frame becomes available,
the associated method of the frame observer of the camera
is called. It created a Mat object from the available image
bytes and inserts it into the associated ImageStream.
When Service responds to an image request event, it
remembers the current timestamp t∗ and queries one or
several ImageStream objects with t∗. Because of the
mutexes, the query calls may be blocked due to writing
being done on the frame observers’ side. However, when
the mutexes are released, each ImageStream returns an
image acquired at the time point closest to t∗.

Search of the closest timestamp in ImageStream is
performed by the algorithm based on binary search (see
Algorithm 1), with the base case of two elements, hence
providing logarithmic running time.

Algorithm 1 Nearest timestamp search algorithm

1: function SEARCHNEARESTTIME(t∗, t, istart , iend)
2: if |t|= 1 then return 0
3: s ← iend− istart +1 . Input size
4: if s = 2 then
5: jstart ← INDEXMAP(istart) . Actual indices
6: jend ← INDEXMAP(iend)
7: τ1 ← |t∗− t jstart |
8: τ2 ← |t∗− t jend |
9: if τ1 ≤ τ2 then return jstart

10: return jend

11: im ← istart + s/2
12: if t∗ = tim then return INDEXMAP(im)
13: if tim < t∗ then
14: return SEARCHNEARESTTIME(t∗, t, im, iend)
15: else
16: return SEARCHNEARESTTIME(t∗, t, istart , im)

ThreadsafeQueue is a class enclosing standard C++
queue object with the associated mutex and condition vari-
able. An instance of this class blocks on invocation of pop if
the queue is empty; the data producer, calling push notifies
the blocked function when the new data is ready [14].
EventObject provides functionality for event notifica-

tion between two threads. A thread performing repeating
actions in a loop checks whether an event has occurred
(hasOccured method). If so, an alternative action is taking
place, e.g. termination of the loop. The notifying thread
calls the notify method, and supplies it with the current

timestamp. An example of usage of EventObject is
presented below:

while (true) {
// ... Primary logic of the loop
if (ready.hasOccured()) {

break;
}

}

BlockingWait is intended for waiting for an event
while keeping the current thread blocked. It has the same
underlying principle as ThreadsafeQueue, but encloses
only a boolean variable. An instance of BlockingWait
keeps the thread blocked until the notifying thread calls the
notify method. A function that relies on BlockingWait
is implemented in the following manner:

void func() {
// ... Initialization
// ... Primary logic
bw.wait();
// ... Shutdown

}

VI. EXPERIMENTAL RESULTS

To validate the correctness and study the timing properties
on an FxIS-based application, an experiment is conducted.
An FxIS application connected to two Prosilica GC1350
cameras is initialized, and the acquisition process (with
writing to two ImageStreams) is started, concurrently
running in separate threads. The main application thread then
initiates image requests at random time instants, where the
sleep interval between the instants is uniformly distributed
as follows:

Tsleep ∼ τsleep +Uni f orm[−τm f ,τm f] (3)

where τsleep is the constant sleep interval, and τm f is
the maximal time fluctuation in either positive or negative
direction that defines the stochastic process.

The details of the conducted experiment are provided in
table I.

TABLE I
PARAMETERS OF THE EXPERIMENT

Parameter Value
Basic sleep interval, τsleep 180 ms
Maximal duration fluctuation, τm f 50 ms
Size of ImageStream, n 20
Number of image requests nreq, 100

The image requests are repeated for nreq times, with
each request i ∈ {0,nreq − 1} being associated with such
measurements as request timestamp t∗(i), target timestamps
(t(i)1 , t(i)2), and receive timestamps (t(i)r1 , t

(i)
r2).

As described in Section V, when images are requested
with regards to timestamp t∗(i), FxIS performs search in
the respective ImageStreams, and chooses the image

0 20 40 60 80 100
i

−25

0

25

ε(i
)

1

0 20 40 60 80 100
i

−25

0

25

ε(i
)

2

Fig. 5. Measurements of ε1 and ε2, ms

with the closest acquisition timestamp. For the two-camera
configuration, the latter would correspond to the tuple of
target timestamps (t(i)1 , t(i)2). Difference between the request
timestamp and each of the target timestamps accounts for
the acquisition accuracies ε

(i)
j , j = 1,2:

ε
(i)
j = t∗(i)− t(i)j (4)

As shown on Figure 5, the measurements of ε
(i)
j mirror

the uniform nature of the experiment, and range between 0
and τia/2 = 25 ms.

When dealing with multiple cameras, it is of interest to
acquire a collection of images from each of these cameras
that most closely correspond to the same time instant. From
the data obtained in this experiment, for each image request i
and corresponding tuple of target times (t(i)1 , t(i)2), the absolute
difference between the latter constitutes the measure of
missynchronization ε

(i)
b :

ε
(i)
b = |t(i)1 − t(i)2 | (5)

Measurements of εb are shown on Figure 6, and one can
notice that, although in most of the cases the missynchro-
nization is rather low, two spikes occur, where the value of
εb is close to τia.

0 20 40 60 80 100
i

0

25

50

|ε(i
)

b
|

Fig. 6. Measurements of εb, ms

By further examining the acquisition timestamps for both
cameras in the neighborhood of the request time when one
of the spikes occur (Figure 7), one can see that the reason
for such behavior is that the absolute difference between the
request time t∗ and either of two subsequent candidates for
the target time (tbefore, tafter) is close to τia/2.

−80

−60

−40

−20

0

20

40

60

80

T
im

e
re

la
ti

ve
to
t∗

,
m

s

Camera 1 Camera 2

Fig. 7. Visualization of timestamps during a situation of high discrepancy
between two camera’s target times (purple)

Such situations with a spike in εb occur due to indepen-
dence of the requests to each ImageStream. To tackle
such problem and achieve more consistent behavior, FxIS
architecture should be supplemented by an additional layer
of logic responsible for comparing the candidates for target
times from all the connected cameras.

While the metrics capturing discrepancy between time
points (εb, ε1, ε2) describe the accuracy properties of the
system, it is of major importance to also assess timing
properties of system response. After the image request,
the main thread has to wait certain period until data from
each ImageStream becomes available. The main cause
of waiting is the built-in blocking until the next frame is
acquired. This can be seen in Figure 8, where the waiting
times vary uniformly between 0 and τia = 50 ms.

To minimize the waiting time and still ensure the ac-
curacy of data response, the future implementation of
ImageStream can be supplemented with a-priory knowl-
edge on the frame rate r of the used camera. In that case,
instead of waiting for the next image every time, it can only
be done when the elapsed time since the previous frame
arrival is greater than τia/2.

The previously discussed metrics are further summarized
in Table II. It also includes statistics ε ′b, which are computed
as follows. Let T be the set of all target times recorded in
the experiment:

T = {(t(i)1 , t(i)2) ∀i ∈ {0,nreq−1}} (6)

If one excludes from T those target times that result in
spikes of εb, set T ′ is obtained:

0 20 40 60 80 100
i

0

20

40

τ
(i

)
w

1

0 20 40 60 80 100
i

0

20

40

τ
(i

)
w

2

Fig. 8. Measurements of τw1 and τw2 , ms

T ′ = {(t(i)1 , t(i)2) ∀i ∈ {0,nreq−1} s.t. ε
(i)
b < g(T)} (7)

where g(T) is a function computing some statistic on T .
In the computation used in this paper, g(T) = mean(T). The
previous formulations allows for estimating statistics of ε ′b,
i.e. missynchronization between two cameras when no spikes
occur.

TABLE II
STATISTICS OF TIME MEASUREMENTS, MS

Metric min mean max std
εb 0.36 1.85 49.27 6.79
ε ′b 0.36 0.89 2.18 0.28
|ε1| 1.03 13.35 24.66 6.89
|ε1| 1.51 13.33 25.06 6.78
τw1 2.49 25.56 48.98 13.47
τw2 3.13 26.48 49.72 13.48

VII. CONCLUSION AND FURTHER WORK

This paper presented FxIS, a flexible image acquisition
framework, designed for use as a part of distributed robotic
systems. The core idea of the FxIS design is composition
of various functional components with a set of concur-
rent data structures: ImageStream, ThreadsafeQueue,
BlockingWait, and EventObject. Used in conjunction
with OpenCV, an FxIS application is able to keep track
of the recently acquired frames and respond with correctly
synchronized images. The presented system is easily scalable
to a greater number of connected cameras, where the nec-
essary synchronization is done on reads from the concurrent
ImageStream data structures.

The future development and evaluation of FxIS shall
be done in the following directions: (1) extension of the
frame observer with custom-defined image processing, (3)
implementation of the additional synchronization layer to
tackle possibilities for spikes in εb, (3) incorporation of

the tracking functionality over a temporal image stream,
(4) evaluation of FxIS in networked environment, and (5)
integration of other camera platforms with the presented
framework. A brief discussion of the above aspects follows
below.

An FxIS application described in this paper was not
associated with a built-in image processing routine. Each
acquired image was only stored in the ImageStream
container. In the future iterations of FxIS, an instance of
Streaming shall be extended with the ability to accept an
application-specific image processing routine, so that on each
frame arrival, the image would undergo processing locally,
before being stored in ImageStream. Such an arrangement
shall be evaluated with respect to how system performance
is affected by processing algorithms of varying complexity.

The most basic application of a Streaming with custom
processing is image enhancement or other pre-processing,
with the resulting image being stored instead of the original
one. In more complex scenarios, the incoming image can be
supplied to a vision algorithm performing, for example, seg-
mentation or feature detection/description. Because computer
vision algorithms are intrinsically computationally heavy, it
is important not to discredit the system performance. One
shall balance out the camera frame rate and the availability
of true concurrency on the machine running FxIS.

Many vision algorithms, such as tracking, make an ex-
plicit use of image stream, by aggregating a sequence of
temporal features, extracted from each subsequent image. A
distinctive characteristic of such a system is preservation
of historical data. The vision algorithm parameterization
of a Streaming object shall support different modes of
querying in respect to the stored data.

Image processing constitutes a highly computationally-
intensive task, and it is a common knowledge that one should
prefer C/C++, an even FPGA-based solutions, to implement
the particular algorithms. However, it is a common practice to
prototype computer vision solutions in Python while relying
to OpenCV bindings and Cython-based implementations
such as routines from Scikit-image [15]. In context of FxIS
it is of interest to develop a Python interface, which would
allow to get images from ImageStream as NumPy arrays
and process them as a part of the available Python workflow.

The described implementation has been evaluated in local
environment. However, since the primary purpose of FxIS is
to be deployed as a part of a distributed system, the future
work shall include a detailed performance evaluation with
communication over the network. As a part of this work,
several communication scenarios should be considered, in
particular event-based communication over a message queue,
and communication with travel time estimation for more ac-
curate response. In context of robotic system, it is particular
interest to integrate FxIS with the Robot Operating System
(ROS). Another candidate for communication middleware is
ZeroMQ, which supports a variety of messaging patterns,
including the event-based publish/subscribe.

In relation to attachment of image processing routines to
Streaming objects and aggregating temporal data associ-

ated with the recent images in the stream, it is of interest
to develop and compare different modes of decomposition
of local and remote processing, particularly those running
continuously.

The current implementation of FxIS supports only Allied
Vision GigE Vision cameras via the Vimba driver. However,
the overall idea of the framework is to support a variety of
cameras. The next step of FxIS development is to support
the Raspberry Pi camera via the Video4Linux standard and
the raspicam library.

ACKNOWLEDGMENTS

This paper was written in association with the MultiMat
project and SFI Manufacturing, funded by the Norwegian
Research Council.

REFERENCES

[1] J. Phillips, “Choosing the right video interface for military vision
systems,” in Proceedings Volume 9481, Image Sensing Technologies:
Materials, Devices, Systems, and Applications II, N. K. Dhar and A. K.
Dutta, Eds., may 2015.

[2] C. Steger, M. Ulrich, and C. Wiedemann, Machine Vision Algorithms
and Applications, ser. Wiley-VCH Textbook. Wiley-VCH, 2007.

[3] A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson, T. Lund-
holm, and B. Lennartson, “An event-driven manufacturing information
system architecture for industry 4.0,” International Journal of Produc-
tion Research, vol. 48, no. 3, pp. 1–15, jul 2016.

[4] Allied Vision, “Vimba, the sdk for allied vision
cameras,” 2017, accessed: 2017-10-13. [Online]. Available:
https://www.alliedvision.com/en/products/software.html

[5] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with
the OpenCV Library. O’Reilly Media, 2008.

[6] K. Taouil, T. Jellad, and Z. Chtourou, “Enhanced packet loss recovery
for real time pc-based gige vision avi systems,” International Journal
of Communication Networks and Distributed Systems, vol. 14, no. 4,
p. 433, 2015.

[7] E. Norouznezhad, A. Bigdeli, A. Postula, and B. C. Lovell, “A high
resolution smart camera with gige vision extension for surveillance
applications,” 2008 2nd ACM/IEEE International Conference on Dis-
tributed Smart Cameras, ICDSC 2008, 2008.

[8] O. W. Ibraheem, A. Irwansyah, J. Hagemeyer, M. Porrmann, and
U. Rueckert, “A resource-efficient multi-camera gige vision ip core
for embedded vision processing platforms,” 2015 International Con-
ference on ReConFigurable Computing and FPGAs, ReConFig 2015,
2016.

[9] L. Ye, K. Yao, J. Hang, P. Tu, and Y. Cui, “A hardware solution for
real-time image acquisition systems based on gige camera,” Journal
of Real-Time Image Processing, vol. 12, no. 4, pp. 827–834, 2016.

[10] R. Cucchiara, A. Prati, and R. Vezzani, “A multi-camera vision system
for fall detection and alarm generation,” Expert Systems, vol. 24, no. 5,
pp. 334–345, nov 2007.

[11] Ç. Dikici and H. Işıl Bozma, “Attention-based video streaming,” Signal
Processing: Image Communication, vol. 25, no. 10, pp. 745–760, nov
2010.

[12] M. Goebl and G. Färber, “A real-time-capable hard-and software
architecture for joint image and knowledge processing in cognitive
automobiles,” Intelligent Vehicles Symposium, 2007 IEEE, pp. 734–
740, 2007.

[13] Allied Vision, “Vimba c++ manual 1.6,” Report, 2017.
[14] A. Williams, C++ Concurrency in Action: Practical Multithreading.

Manning, 2012.
[15] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,

J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image
processing in python.” PeerJ, vol. 2, p. e453, 2014.

