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Abstract

Robots and in-process inspection systems equipped with machine vision solutions are used for increased flexibility and quality in automated man-

ufacturing. Although vision systems have found wide industrial use, there are still problems regarding optimization of vision system robustness

and capabilities. This paper presents a comprehensive case study of vision system functions, techniques and capabilities in an automotive 1-tiers

supplier. Based on the study, the paper further describes a method for systematic improvement of industrial vision systems on a continuous basis.

This is proposed to be done by establishing a data store and data analysis system, based on training machine learning models in an off-line mode

using the historical data, as well as on on-line stream processing.
c© 2017 The Authors. Published by Elsevier B.V.
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1. Introduction

The contemporary factories are constantly becoming more

automated. Technologies like robotics and machine vision have

already become an integral part of many production systems,

but there is still room for a lot of improvements in their ca-

pabilities. New emerging technologies are being discussed in

context of manufacturing automation under the umbrellas of

cyber-physical production systems and several strategic initia-

tives, like Industrie 4.0 and Industrial Internet. Clearly, man-

ufacturing is becoming a highly knowledge-intensive industry,

where the required knowledge is diverse.

According to the outlook report on the future of European

assembly automation [1], the potential of exploiting modern in-

formation technology is not fully realized, particularly in sys-

tem development, which needs to adopt more holistic method-

ologies. Rapid deployability and effective adaptability are con-

sidered the main targets when developing new assembly sys-

tems. In addition, the importance of vision-based feeding and

other flexible feeding approaches is stressed, together with links

between feeding and joining.

Automatic assembly greatly benefits from application of

sensor technology, mainly because of inherent uncertainty in

products and production systems, which can be tackled by sen-

sory feedback. Industrial sensory/measurement systems based

on machine vision have gained popularity in the industrial con-

text due to their inherent characteristics: the ability for contact-

less measurement, reconfigurability, and relatively low cost

(comparing to tactile data acquisition methods).

Theres is a rich body of research within the fields of imag-

ing, image processing, and computer vision. A particularly no-

table role of the above fields is within robotics. However, the

complexity of some of the solutions, the lack of commercially

available tools, and the lack of in-house competence result in

slow adoption of the state-of-the-art research ideas. In addi-

tion, many challenges exist in the area of industrial vision, most

notably high sensitivity of machine vision algorithms to exte-

rior conditions and difficulty in accommodating industrial parts

variability. Machine learning in this case appears as a promis-

ing alternative to hand-crafted programs with fixed thresholds,

due to better accuracy of functions for recognition of complex

patterns learned from data.

In most cases, solutions based on machine learning greatly

benefit from big amounts of data used for training, testing, and

validation. In the automated manufacturing context, it is often

the case that data acquired on-line does not get stored for fu-

ture processing. However, with a reduced cost of data storage

hardware and easier access to elastic computational resources,
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it becomes more feasible to store and process intermediate on-

line data. In the case of vision systems, it is of interest to keep

a temporal database of images acquired during continuous sys-

tem operation.

This paper is aimed at analyzing the current status of the pro-

duction system and machine vision capabilities/requirements at

a highly-automated plant in Norway, producing air brake cou-

plings in high volume. Because of the high-speed and high-

volume requirements, the considered production systems are

limited in applicability of classical 6-axis robotic manipulators

for assembly. Instead, the company employs dedicated transfer

machines, optimized for performance.

A focus on a specific product family is made, with the as-

sociated quality requirements and currently operating assembly

system configuration. Based on the study of the current state of

production systems and the associated machine vision solutions

at the plant, a number of solutions are proposed in a direction

towards establishing a system for continuous improvement of

the vision systems’ capabilities. Despite the company-specific

nature of this paper, the resulting analysis and proposed solu-

tions can be generalized and used in similar cases.

This paper is organized as follows. Section 2 overviews

the fields of automated assembly, machine vision, and machine

learning. Section 3 presents the applied method. Section 4 de-

scribes the case company, the case product, and vision systems

capabilities in the considered production facility. Section 4.3

proposes a technical solution for future development.

2. Preliminaries

2.1. Automated assembly

Assembly constitute a vital part of modern manufacturing

systems, and is concerned with producing compound products

from individual parts and sub-assemblies. Because many as-

sembly processes require high level of dexterity, they are of-

ten performed manually. However, because of requirements in

higher quality, speed and repeatability, automated assembly is

being introduced in manufacturing companies.

The main operations in assembly processes are parts mat-

ing, parts joining, parts handling, parts recognition (position

and orientation of randomly-fed parts), and inspection [2].

Material handling has a special role in automated assembly.

Typical material handling processes are handling of pieceparts

into the system, handling of palettes, fixtures and tools, removal

of the completed products from the system, accommodation of

operations external to the assembly cell, and transportation of

partially finished products to and from rework [3,4].

Feeding has always been a challenging process within auto-

matic assembly. Though a widely-accepted industrial practice

is to apply dedicated feeding solutions with a built-in mecha-

nism for correct part positioning, an important research direc-

tion is towards flexible feeding approaches, including vision-

based feeding. In relation to this, an attention is placed on the

link between feeding and joining, as well as interfaces for mod-

ular system architectures [1]. Another approach to designing

feeding systems (and also applicable to sorting, assembly and

inspection) is algorithmic automation, focusing on using for-

mal models of part behavior and computational geometry al-

gorithms for rigorous specification, analysis, and synthesis of

automated systems [5].

Assembly planning constitutes a high-level set of activi-

ties intended for mapping formalized assembly instruction to

robot operations. These activities include CAD modeling of

parts, tolerance modeling, workcell planning, sequence plan-

ning, mating pose determination and others [6]. When the re-

sults of assembly planning are mapped onto robot operational

level, uncertainty becomes an inevitable part of the process, and

sensory feedback serves the primary role of tackling it. Typi-

cally used types of sensors in assembly are force, torque, and

tactile sensors, sensorized compliant devices, vision systems,

optical sensors, mechanical probes, positional sensors, as well

as sensors for measuring temperature, pressure, acoustic emis-

sions, and acceleration [2].

2.2. Machine vision

2.2.1. Principles of industrial vision systems
Machine vision constitute an engineering field applying im-

age processing and computer vision solutions for the industrial

needs, particularly for automatic inspection and robot guidance.

In a general vision system, a camera acquires an image,

which is then enhanced to simplify the later processing steps.

After that, certain parts of the image are segmented, and the ob-

tained parts are further used to detect the desired features. Such

process is also referred to as feature reduction: a vision algo-

rithm reduces the original features, i.e. large array of image in-

tensities (or several arrays for color and multi-spectral images)

to a small vector of the application-specific features.

The common characteristic of industrial vision systems is

the actuation function that impacts the controlled process. In

addition, vision measurement in the industrial context is typi-

cally performed under controlled conditions with the appropri-

ate lighting and low noise [7].

The application domains of machine vision include the fol-

lowing [7]:

• Defect detection: determining product defects, differenti-

ating between different types of defects, including accept-

able and unacceptable;

• Guidance and alignment: providing a robot control pro-

gram with visual estimate of an object pose or geometric

displacement;

• Measurement: deriving metric estimates of geometric fea-

tures of a physical object;

• Assembly verification: determining the correctness of an

assembly process.

On-line vision system, which constitute a part of the produc-

tion process, provide the necessary information (e.g. pass/fail

classification or robot movement coordinates) at the cycle time

of the process. Conversely, off-line vision systems are used for

recording information and further analysis [8].

Typically computer vision applications utilize images from

sensors that capture visible light (some applications benefit

from IR and UV imaging). Though many modern computer

vision algorithms aim at analysis of arbitrary scenes (e.g. out-

doors), in the industrial settings one typically establishes highly

controlled lighting environment, and appropriately choses suit-

able light sources.
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Physically, lighting solutions for machine vision can be real-

ized with incandescent lamps, gas vapor discharge lamps, and

LEDs. Irrespective from the physical principles of illumina-

tion, one distinguishes between the following illumination tech-

niques [8,9]:

• Back lighting: leads to high-contrast images with dark sil-

houettes against bright background;

• Diffuse lighting (full bright field): ensures even multidi-

rectional light, eliminating the effect specular reflection;

• Directional lighting (partial bright field): enhances topo-

graphic details on a surface;

• Dark field lighting: enhances small surface imperfections

because of light incident at low angles.

There are generally two characteristics of imaged objects

that put requirements on which illumination technique is more

useful, namely surface shape and surface reflectivity [9]. Ob-

jects with highly reflective and curved surface, such as metal-

lic automotive parts, are generally better to image with diffuse

lighting.

2.2.2. Machine vision challenges
The use of vision systems is a non-trivial field, associated

with a number of challenges. There exist numerous factors that

influence the accuracy of vision algorithms, including the mea-

sured object characteristics (size, shape, color, texture), cam-

era characteristics (camera resolution, quality of lenses), envi-

ronment characteristics (pose, illumination) [2,7]. Vision al-

gorithms for industrial applications are typically very sensitive

to the environment and the appearance of the observed objects.

The measured part characteristics, such as color and reflectivity,

may vary from one part to another. Lighting conditions are also

difficult to maintain consistent [10]. Therefore, vision systems

need to be robust enough to tackle this variability.

When camera measurements need to be expressed in real-

world coordinates (e.g. for robot guidance or high-accuracy

measurement), the quality of system calibration is of a vital im-

portance. In multi-sensor and multi-device environments (e.g.

comprising cameras, lasers, and robots), it is a challenge to in-

tegrate data from multiple sources under the same coordinate

system [10]. Camera calibration, stereo calibration, and pose

estimation provide the necessary parameters and rigid transfor-

mations making possible to operate in real-world space.

An important factor, specifically in industrial applications

of vision systems, is the processing time [7,10]. Because the

visual data has typically high-resolution, it requires efficient al-

gorithms, often in combination with specialized hardware, to be

processed.

Flexibility in manufacturing should be supported by the flex-

ibility of vision systems [7]. The abovementioned issues of part

appearance variability and difficulty in establishing a consistent

imaging environment naturally present a challenge to a greater

flexibility.

2.3. Machine learning

Machine learning (ML) is a field that studies computer algo-

rithms for automatic learning (”to do something better in the fu-

ture”) from observation data (”based on what was experienced

in the past”). That is, an ML application is associated with a

particular task that has to be improved by learning rather than

by implementation of am imperative procedure [11,12].

ML is typically considered a sub-area of artificial intelli-

gence (AI), though it is highly related to statistics, optimization,

computer vision, and other disciplines. There exist distinct sci-

entific approaches to ML such as statistical learning theory and

computational learning theory.

A large group of ML techniques, dubbed supervised learn-

ing, is focused on learning an unknown function fp : X → Y
from a set of training samples {xi, yi}, where xi ∈ X, yi ∈ Y , and

yi = fp(xi). Hence, the known data samples are used to esti-

mate the unknown function, which can be used for regression

(Y ⊆ R
d) or classification (Y = {0, 1} or Y = {0, 1, 2, . . . , k − 1},

where k is the number of classes).

Function fp(·) typically constitutes a complex model with a

large number of parameters. For many problems the learned

fp(·) would surpass possible imperative implementations, while

for many, it would be not possible at all to hand-craft equivalent

procedures.

Supervised ML algorithms include linear regression, logis-

tic regression, artificial neural networks (ANN), support vec-

tor machines (SVM), decision trees, adaptive neuro-fuzzy in-

ference system (ANFIS), and others.

Unsupervised learning algorithms are aimed at finding reg-

ularities in unlabeled data, i.e. in a set {xi, i = 1, ...,m}, without

dependent variables {yi}. Thus, supervised learning algorithms

are used for clustering, dimensionality reduction, anomaly de-

tection, and often are applied for preprocessing the original data

before training some of the supervised learning algorithms.

Depending on the application, one could aim at building ML

models for prediction or for inference. In the former case, it is

of interest to predict an unknown value y∗ ∈ Y given an obser-

vation x∗ ∈ X. Conversely, in the latter case one aims at build-

ing an interpretable model that describes the nature of mapping

X → Y [13].

ML is often used for analysis of image data, due to better ac-

curacy of functions for recognition of complex patterns learned

from data, as compared to hand-crafted procedures [12]. In the

context of automated visual inspection, applications of ML in-

clude, but not limited to SVMs, principal component analysis,

decision trees, random forests, adaptive boosting, ANNs, and

neuro-fuzzy approach [14–19].

Many ML implementations greatly benefit from large data

quantities and powerful computational infrastructure. Software

frameworks as Apache Hadoop and Apache Spark provide ca-

pabilities of efficient machine learning from Big Data using

batch processing with map-reduce technique. In some situa-

tions the data is not already stored, but arrives online. To apply

machine learning in this case, stream processing engines, such

as Apache Storm, are employed.

3. Method

The purpose of the case study described in this paper is to

gain an insight into the production systems of the Kongsberg

Automotive AS (further referred as KA) plant in Raufoss, with

particular focus on the applied machine vision systems and the

required vision capabilities.

The study was conducted during the Autumn period of 2015,

as a part of the Norwegian innovation project MultiMat, focus-
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ing on development of technical solutions for manufacturing of

novel multi-material products.

During a meeting with KA employees of various levels of

involvement in the company, a discussion was made regard-

ing the desired properties of vision systems at the KA facili-

ties and the areas of interest where a more thorough research

should be conducted. The meetings were combined with shop

floor visits and analysis of the machines’ functionality. Apart

from general plant-wide considerations, an in-depth study of

the KArtridgeTM product family and the corresponding assem-

bly machine was done. To get a deeper insight, the available

internal documentation was studied.

Though the presented case study is company-specific, the

resulting analysis and proposed solutions may be applicable

to the companies with similar specifics, such as handling of

small and/or highly reflective parts, part appearance irregulari-

ties, high-speed dedicated machines, and high quality require-

ments.

4. Case study

4.1. The company and the products

Kongsberg Automotive AS is a global manufacturing com-

pany producing components and subsystems for the automotive

industry. The study described in this paper concerns the pro-

duction facilities of the KA plant in Raufoss, Norway, that sup-

plies products for vehicular fluid transfer, marketed as Raufoss

ABCTM. Raufoss ABCTM is a product system having a function

of coupling air brake tubes and targeting the commercial vehi-

cle market (buses and trucks). It includes couplings themselves,

building blocks, release tools, and rotation stops.

KArtridgeTM is a product family of composite couplings

with a metallic star washer and clamp ring, and a series of rub-

ber O-ring seals. A coupling from the KArtridgeTM family is

depicted on fig. 1. It consists of a housing, the inner parts (cone

element, environment seal, clamp ring, seal tube, and support

sleeve), and the outer parts (main port seal, locking ring, star

washer, and environmental port seal).

A star washer plays a critical role in the KArtridgeTM as-

sembly by securing the grip function between a coupling and

its housing. It is important that it is assembled in the correct

orientation, so that the teeth will create resistance against the

housing after assembly. In addition, the washer need to be of

the required geometry. The geometric requirements include the

Fig. 1. A KArtridgeTM coupling.

Fig. 2. View of a star washer from the top, highlighting the outer diameter.

Fig. 3. View of a star washer from the side, highlighting examples of degraded

edge sharpness and the area of interest for a tooth geometry measurement.

outer diameter, geometry of each tooth, bending angle of each

tooth, and edge sharpness of each tooth. As shown in fig. 2,

the outer diameter of a component is well-imaged from the top-

down perspective. However, other characteristics require more

intricate setup. Methods for analysis of top-down images of

star washers were previously described in [17] and applied to

the problem of ML-based classification of star washer orienta-

tion when lying on the surface of a feeder.

4.2. Current state of production systems

Most of the assembly operations at KA are performed by

dedicated transfer machines, optimized for performance and

requirement for high volume of production. Each machine is

designed by one of the machine suppliers, and is typically com-

prised of standard modules of the respective suppliers.

KA utilizes a big number of vision systems installed at vari-

ous production stages and serving the following functions:

• Individual components inspection: imaging of a compo-

nent to verify whether no defects are present;

• Process inspection: imaging of a partly or fully assembled

product to verify whether the assembly process did not in-

troduce any structural defects;

• Object pose identification for picking: imaging of a feed-

ing surface with randomly positioned components to esti-

mate the pose of the next component to pick with a robotic

arm or a Gantry mechanism.

Some of the assembly lines include robotic manipulators and

flexible feeders. In the latter case, the parts to be picked are

randomly distributed on the feeder surface, and vision systems

in combination with robots are used to pick the parts.

Currently, the park of vision system at KA is heterogeneous,

i.e. comprises solutions from different suppliers and with dif-

ferent software components. The heterogeneity of all the used

vision systems shall be tackled by enterprise-wide standardiza-
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tion. A unified smart camera platform is seen by KA as a good

solution to the current situation.

For illumination, LED lighting of various colors is used. The

lighting units are turned on and off to coincide with camera ex-

posure. Question regarding the role of illumination in vision

systems is of a major importance for KA. A general consid-

eration is on the question of what types of lighting are better

for different materials. KA works with components made of

brass, composite (differently-colored injection-molded parts),

and rubber. Of a special difficulty is the problem of O-rings

recognition because of process-caused color irregularity: O-

rings’ surface color can be from black to gray and the appli-

cation of silicone oil induces reflections. Because there ex-

ists time-dependent variability in the appearance of the parts

(specifically those obtained from the external suppliers), KA is

interested in more effective automated inspection with applica-

tion of vision systems.

The problem of pose estimation using a mono vision system

is challenging for relatively big parts that have a large degree

of freedom in terms of orientations. In the KArtridgeTM assem-

bly, the housing and the cone element are characterized by such

geometry.

Automatic vision-based inspection of star washers is an im-

portant task for KA, as manufacturing of the new generation of

the KArtridgeTM family requires 100% inspection of the parts

incoming from the supplier. Quality of the outer side of a star

washer is of greatest importance. Therefore, a vision system

shall be able to detect features that describe the quality require-

ments highlighted in section 4.1. he challenges include (1) the

reflective surface of the parts, (2) batch-to-batch color variation,

and (3) small dimension of the parts and the teeth respectively.

4.3. Reflections upon the current state

As shown above, assembly systems at the studied plant have

a strong reliance on visual sensing. It is clear from the number

of vision system installations throughout various stages of the

production flow. The reviewed systems have different applica-

tion contexts (e.g. inspection and robot guidance), and utilize

various illumination principles.

The current configuration of vision systems does not com-

pletely unleash the potential from multi-sensor data analysis,

as images taken by various vision systems are used solely for

in-place real-time processing. To uncover the hidden historical

information and create a room for improvement of the exist-

ing vision algorithms, it is beneficial to establish a data store,

to which the vision systems would save the acquired images

along with the associated processing results. When image data

is acquired and stored for further off-line processing, it can be

coupled with temporal metadata from the existing industrial

IT systems. Then, various machine learning models could be

trained in an off-line mode. Similarly, on-line stream process-

ing pipelines could be coupled to the established image feed,

thus making it possible to perform timely decisions reactively,

as the the parameters of interest change.

Due to the safety-critical product function, i.e. ensuring the

correct braking functionality, quality of the air brake couplings

is a highly critical factor. The requirement for 100% inspection

of the incoming parts, particularly star washers, can be real-

ized by designing a dedicated inspection cell, where each part

would be measured using a complex multi-sensor system. For

instance, multi-pose imaging can be done to capture visual fea-

tures from different sides of an inspected part. Multiple illumi-

nation modes can reveal features susceptible to each particular

type of lighting. The first steps towards realization of such sys-

tem were previously published in [17]. The latter constitutes a

lab-based approach oriented at early-stage prototyping. How-

ever, when existing production systems are considered, it is im-

portant not to introduce disturbances in system operation when

introducing new improvements.

5. Proposed solutions

The majority of vision algorithms can be configured with

predefined parameter values, e.g. various thresholds. These

parameters are fine-tuned for a particular setup, and, together

with the dedicated lighting and lens configuration, create a par-

ticularly rigid and highly-controlled system. However, as the

appearance of the imaged objects may change over time, fixed

configuration may not suffice all the time. At first, the change
itself needs to be detected, and based on that, a set of control-

lable parameter values could be adjusted. Clearly, this task can

be highly application-specific, but a common approach can still

be defined.

Vision algorithms are naturally modeled in a form of

pipelines that gradually process ”signals with almost no ab-

straction, to the highly abstract description needed for image

understanding” [20]. Not only pipelines clarify the principle of

a particular data processing algorithm, but also allow for sys-

tematic treatment of the associated parameters and their opti-

mization. To illustrate the further discussion, a data processing

pipeline P is defined as a tuple:

P = (G,Θ, T ) (1)

where G is a directed acyclic graph (DAG) comprised of n
data processing operators {Oi, i = 1, ..., n} and their data depen-

dency relations, Θ is a set of parameter vectors, each specifying

the respective operator Oi: Θ = {pi, i = 1, ...n}, and T is a set of

data tokens, where each operator Oi, (i = 2, ...n) accepts token

ti−1 and produces token ti.
In a general case, one can specify G as a DAG with arbitrary

topology. In this paper, a simplified form of serial operator se-

quence is used, with O1 being the operation processing the orig-

inal image (or a set of images in case of multi-camera system),

modeled as data token t0, as shown in Figure 4.

Let p be a vector comprised of all parameter vectors pi ∈ Θ
stacked together. It is of interest to be able to adjust p with re-

spect to some objective function C(p). The latter is computed

by running the pipeline G with the starting token t0 and opera-

tors initialized with the parameters in p. Since t0 corresponds

Fig. 4. A vision system, whose processing algorithm is modeled in a form of a

pipeline.
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to the original image data, the above procedure could be per-

formed in an on-line/streaming mode, possibly with computa-

tion over a ”temporal window” of several subsequently obtained

starting tokens.

To allow such optimization, the DAG topology can be ex-

ploited to compute gradients of the objective function ∇C(p) in

a manner similar to back-propagation and automatic differenti-

ation [21,22].

In addition to the streaming approach, the stored data, as

described in section 4.3, can be used in various off-line analysis

scenarios. For example, alternative implementations of vision

algorithms can be prototyped and tested on the stored image

data. Also, various machine learning models can be trained

using the available datasets. Similarly to on-line adjustments of

pipeline parameters (as described above), one could be able to

train models with similar purpose, but using a large dataset over

a wide temporal window. The situation with variability in the

appearance of parts can be better understood by analyzing the

historical data.

Overall, numerous data-driven applications can be realized

with operational data available on-line and off-line. The further

step should be to establish such a data store and data analy-

sis system at the production facility without major disturbances

to the in-place systems. As more data is stored, one can pro-

ceed with ad-hoc experimentations with various off-line anal-

ysis techniques and getting a better understanding of the dy-

namics of the considered processes. A more proactive on-line

approach can be implemented as a part of an upcoming recon-

figuration project. Before that, the available historical data can

be used in simulation mode for testing and commissioning of

the new solution.

6. Conclusion

This paper presented a systemic overview of the machine

vision capabilities at a Kongsberg Automotive AS plant in Nor-

way that produces air brake couplings and the associated com-

ponents. The current situation was analyzed with the challenges

highlighted. The proposed solutions were formulated, which

comprise a data store and data analysis system aimed at cap-

turing operational data, including acquired images and the cor-

responding processing results, and using them for getting an

increased understanding of the process dynamics, training ML

models, and on-line optimization of controllable parameters of

machine vision algorithms.
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