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Abstract
General sparse matrix-matrix multiplication (SpGEMM) is
an essential building block in a number of applications. In
our work, we fully utilize GPU registers and shared memory
to implement an efficient and load balanced SpGEMM in
comparison with the existing implementations.

CCS Concepts • Computing methodologies → Paral-
lel algorithms;

1 Introduction
The motivation of this paper is to fully utilize GPU regis-
ters and shared memory to implement an efficient and load
balanced SpGEMM. This work chooses the vertical-merge
approach proposed in the paper [3] as an early baseline and
the N -to-M product-thread binding strategy [4] to achieve
the goal. In Table 1, we list the memory use, nonzero-to-
thread mapping, and computing methods of the existing
libraries and ours on GPUs. As Table 1 shows, our library
is the first to use register and shared memory to implement
SpGEMM. The other libraries are either shared memory and
global memory or register and global memory.

2 The Proposed SpGEMM Algorithms
The matrix-matrix product C = AB can be split into the
basic computation work unit, i.e., the vector-matrix product
c = aB that computes one output row, where c and a are
the corresponding rows of C and A. Different with all the
existing libraries, in this paper we devise an adaptive N -to-
M product-thread binding vertical merge method, where N
represents the number of products andM means the number
of threads, to compute the value of the output matrix, which
leads to the sorted column indices of the output c and makes
the most use of the register and shared memory resources.
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Figure 1. An example showing the proposed reg-spgemm
and N -to-M design

Based on this approach, we first propose the register-based
SpGEMM algorithm (reg-spgemm) for the short rows ofA so
that the threads within a warp are sufficient to handle the cor-
responding intermediate products. Reg-spgemm relies on the
warp shuffle instruction at the register level and the N -to-M
product-thread binding scheme. Figure 1 shows an example
of ourmethod. It can be seen that the example needs tomerge
four rows of matrix B, which is implemented by two threads
of one warp. In step 1, the intra − thread min() is the oper-
ation that gets the minimum column index of two rows of
matrix B within each thread. While the inter − thread min()
is the operation that gets the minimum column index of four
rows of matrix B across threads, which is implemented by
using the reduction of warp-level shuffle instructions. Then,
by using the inter − thread add() operation that is also im-
plemented by leveraging the warp-level shuffle instructions,
the first output element of vector c , i.e., a +w +д is obtained.
Also, with the same operations, in step 2, the second output
element of vector c , i.e., d + e + k is obtained. Actually, the
steps are in one f or loop until all four rows of matrix B are
added up and the results of one row of the output matrix C
are directly stored to global memory from registers.

When the rownumber ofmatrixB is large, the reg-spgemm
will be insufficient, because the warp size of current Nvidia
GPU is 32. Then the shared memory-based SpGEMM algo-
rithm (smem-spgemm) is implemented to handle the long
rows of A via multiple warps performing the reg-spgemm al-
gorithm. At this time, the results of Figure 1 are not stored to
global memory, but shared memory for the next merge oper-
ations. Through these operations we guarantee the effective
utilization of both registers and shared memory.
The reg-spegemm and smem-spgemm algorithm is com-

bined with our binning scheme for the rows of matrix A
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Table 1. Comparison between different SpGEMM libraries

intermediate global load nonzero-to-thread nonzero memory
space allocation balancing mapping compression use

CUSP [1] upper bound row+all sort 1-to-1 seg. sum smem + gmem
cuSPARSE precise row 1-to-1 hash smem + gmem

bhSPARSE [5] progressive row+bin/cta 1-to-1 seg. sum + hori. merge smem
RMerge [3] precise row 1-to-1 vert. merge reg. + gmem

FastSparse (ours) precise row+bin/warp N -to-M vert. merge reg. + smem
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Figure 2. Performance comparison for double data on an Nvidia K40m (Kepler).
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Figure 3. Performance comparison for double data on an Nvidia Titan X (Pascal).

which are grouped into different categories. Then the rows
in various bins adopt different parameters of reg-spgemm
and smem-spgemm algorithms. We call the library of per-
forming SpGEMM of ours as FastSparse.

3 Performance Evaluation and Conclusion
We use Nvidia K40m (Kepler) and Titan X (Pascal) GPUs for
comparing the performance of our algorithm and several
existing methods (CUSP [1], cuSPARSE, bhSPARSE [5] and
RMerge [3]) that compute C = A2 in double precision. The
CUDA versions are 7.0 and 8.0 on K40m and Titan X, respec-
tively. The selected benchmark suite includes 956 square
sparse matrices with 100k ≤ nnz ≤ 200M from the SuiteS-
parse Matrix Collection [2].

The relative speedups are shown in Figures 2 and 3. It can
be seen that the performance of our FastSparse is in general
superior to the four existing libraries. Specifically, on K40m,
our approach delivers a harmonic average speedup of 6.57x
(up to 31.56x), 2.48x (up to 38.38x), 1.97x (up to 7.90x), and
1.12x (up to 2.82x) over CUSP, cuSPARSE, bhSPARSE and
RMerge, respectively. On Titan X, the speedups are 3.75x (up
to 25.76x), 1.16x (up to 56.48x), 1.07x (up to 3.82x), and 1.78x
(up to 6.50x), respectively.
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