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Thesis Structure

The figure on the succeeding page is meant to provide an illustrative overview of the forthcom-

ing sections. Chapter 1 begins with a general introduction presenting the area of interest. This

introduction is subsequently funneled down into three research objectives. Chapter 2, 3, and 4

presents the foundation for this thesis‘s estimation and mathematical work, and delineation of

key concepts that has been introduced in Chapter 1. Moreover, it provides necessary elabora-

tions on DVL and how DVL is utilized in Method 1 and Method 2. Chapter 5 and 6 sets up the

footing for the forthcoming proof of concept and analysis by addressing the velocity model to

Extended Kalman Filter and moreover elaborating on real time testing and the scenario devel-

opment. Chapter 7, 8, and 9 is to be viewed as the analysis chapters, whereas Chapter 10 finally

gathers the obtained knowledge and discuss upon the stated objectives of the thesis.
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The approach behind this thesis is by definition quantitative and simulation based as its out-

put is built upon the processing of data in quantitative form obtained as real measurements. The
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obtained dataset has been provided by Kongsberg Maritime and consists of actual mission out-

put gathered from sensory measurements. The results has been calculated by utilizing NavLab,

which is a flexible and generic aided inertial navigation software developed as a research tool by

the Navigation Group at FFI1 and Kongsberg Maritime.

1Norwegian Defence Research Establishment
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Abstract

Background: Underwater navigation is an important aid for many industries, including oil and

gas exploration, marine and subsea operations. These industries are highly dependent on a

detailed map of the seabed, which can be supplied by AUVs, in order to conduct underwater

operations safely and reliably. One commonly used velocity sensor on AUVs are called Doppler

Velocity Log (DVL). Such sensors utilize the Doppler shift in sonic pulses to calculate vehicle

velocities for system navigation. The main focus in this thesis has been on examining the quality

of a tightly integrated DVL (referred to as Method 1) aided INS and to compare the quality of this

method with an cartesian DVL (referred to as Method 2). Testing the performance of the two

methods on real sensor data.

Method: Analyses and simulations were carried out by the use of the generic aided iner-

tial navigation software developed by Kongsberg Maritime, NavLab. NavLab is implemented

in Matlab, and is used for performing navigation calculations for navigational purposes. Par-

ticular attention was given to the velocity measurements from the DVL device, as the velocity

measurements bounds the velocity error of the navigation system.

Findings: The proposed implementation of the tightly integrated DVL was proven to be a

feasible method, as the Extended Kalman filter (EKF) was able to estimate velocities in trans-

ducer beams with an approximate mean errors of 0.02%. However, the EKF was not tuned for

Method 1, meaning that the internal Kalman filter dynamics for Method 1 presented in this

thesis are not sufficiently accounted for, and lead to that the navigational error did not decrease

when using Method 1, relative to Method 2. This leads to a lack of a firm conclusion between the

two methods. However, the work presented in this thesis forms a solid foundation for further

research within the field of velocity and position estimation for AUVs in Kongsberg Maritime

and the important issue of Extended Kalman filter tuning in Method 1 has been illuminated.
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Sammendrag

Bakgrunn Navigasjon under vann er et viktig verktøy for mange industrier, inkluderer olje og

gass-leting, marin virksomhet og subsea virksomhet. Disse industriene er avhengige av detal-

jerte kart av havbunnen, levert av AUV-er (Autonom Undervanns Fartøy), for å kunne drive virk-

somhet under vann på en trygg og pålitelig måte. En av de vanligste sensorene som brukes på

AUV-er er såkalte Doppler Hastighets Logger (DVL). Slike sensorer tar i bruk Doppler-effekten

i lydbølger for å kalkulerer hastigheten til fartøy, som brukes til systemnavigasjon. Kongsberg

Maritime er interessert i å videreutvikle DVL integreringen på HAIN1000. Hovedfokuset i denne

oppgaven derfor å undersøke kvaliteten til en tett integrert DVL (referert til som Metode 1) som

blir bistått av en INS, samt sammenligne denne metoden med en kartesisk DVL (referert til som

Metode 2). Testingen av ytelsen til de to metodene ble gjort med ekte sensor data.

Metode Analysene og simuleringene ble gjort i navigasjonsprogrammet, NavLab, som er

utviklet av Kongsberg Maritime og FFI. NavLab er videre implementert i Matlab og brukes for

å kjøre navigasjonskalkulasjoner for navigering. Det har vært ekstra fokus på hastighetsmålin-

gene til DVL-enheten. Dette er fordi hastighetsmålingene avgrenser hastighetsfeilene i navi-

gasjonssystemet.

Resultater Den foreslåtte implementeringen av tett integrert DVL har vist seg å være en

gjennomførbar metode siden Extened Kalman filter (EKF) estimerte hastigheter til transduser

stråler med en omtrentlig middelverdi av feilverdier på 0.2%. EFK-en var derimot ikke innstilt

til Metode 1. Dette betyr at den interne dynamikken i Kalman filter-et for Metode 1 ikke er nok

tilrettelagt for, og fører derfor til at navigasjonsfeilene ikke minker når man tar i bruk Metode 1

sammenlignet med Metode 2. Dette fører til en mangel på en håndfast sammenligning mel-

lom de to metodene. Arbeidet som er presentert i denne oppgaven skaper derimot et solid

fundament for videre forskning på hastighets- og posisjonsestimering for AVU-er i Kongsberg

Maritime. Den viktige mangelen med filter-innstilling av Metode 1 har også blitt belyst.
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Problem Formulation

The Doppler Velocity Log is crucial for accurate position estimates for underwater vehicles. A

DVL integration method that effectively counters error growth is a vital tool to fully utilize the

DVL measurements. The assignment will investigate whether a tightly integrated DVL is able to

handle errors in a better manner than the currently used cartesian method, by testing on real

data.
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Abbreviations

Abbreviation Explanation

ADCP Acoustic Doppler Current Profiles

AUV Autonomous Underwater Vehicle

CKF Continious Kalman Filter

DGPS Differential Global Positioning System

EKF Extended Kalman Filter

ESKF Error State Kalman Filter

GNSS Global Navigation Satelite System

HiPAP High Precision Acoustic Positioning

IMU Inertial Measurement Unit

INS Integrated Navigational System

ISA Inertial Sensor Assembly

KF Kalman Filter

LKF Linearized Kalman Filter

RTS Rauch-Tung-Striebel Algorithm

TOF Time Of Flight

UKF Unscented Kalman Filter

USBL Ultra Short Base Line

UTP Underwater Transponder Positioning
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Chapter 1

Introduction

The field of underwater navigation has in the past century been an important aid for many in-

dustries, including oil and gas exploration, marine-, subsea-, and military operations. These

industries are highly dependent on a detailed map of the seabed in order to conduct underwa-

ter operations safely and reliably. Global Navigaton Satellite System (GNSS) signals are unable to

reach submerged vehicles, therefore the navigational system cannot simply rely on GNSS signals

to estimate position. However, there are methods that allow for accurate navigation underwa-

ter. Data gathered for seabed mapping is only relative to the AUV, meaning the data needs to be

put into a larger frame of reference. It is therefore important that the position of the AUV is ac-

curately estimated, such that the seabed map is accurate. A Doppler Velocity Log aided Inertial

Navigation System (DVL Aided INS) contributes with navigation underwater, but it is important

that the errors in the system estimates are low to ensure accurate estimations. Much work has

been undertaken in investigating error contributions of DVL Aided INS. Jalving et al. (2004) has

proven the effect of lawn-mower patterns to reduce error growth contributed by unobservable

scale factors along straight trajectories. Jalving et al. (2004) has also investigated the importance

of sound speed accuracy as the velocity scale factor is proportional to the speed of sound at the

transducer head.

Hegrenæs and Berglund (2009) has reported the effectiveness, environmental estimation,

and robustness of DVL Water Track aided INS, proving the capability of navigation in the mid-

water zone where the seabed is out of range for Bottom Track. Accurate estimation of the sea

current was also proven, increasing the accuracy of methods that rely on accurate sea current

estimation, such as lever arm compensation.

Willumsen and Hegrenaes (2009) has demonstrated the value of data in underwater navi-

gation, yielding improvement in quality and robustness of estimates. The smoothed value is in

a practical sense the closest we can get to the true value, which is a valuable parameter when

assessing navigational data.

2
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An Integrated Navigational System (INS) coupled with a velocity sensor, a pressure sensor for

depth measurement, various position sensors1, and a compass for orientation update, are used

to compute position, depth, orientation, and velocity. One commonly used velocity sensor used

on Autonomous Underwater Vehicle (AUV) are called Doppler Velocity Log (DVL). To further

build on the error analysis groundwork already laid down, I will examine the performance of a

tightly integrated DVL INS, tested on real measurement data. The presented result verify that a

tightly integrated method for DVL integration is feasible, performing very similar to the currently

used implementation. The aim of this thesis aim to explore if a tight integration structure of the

DVL will perform better than the current implementation method.

The objectives of this thesis are summarized as follows

1. Examine the feasibility of a tightly integrated DVL approach.

2. Compare the performance of the current DVL implementation with the tightly integrated

implementation.

3. Evaluate if a tightly integration requires further testing

The velocity measurements bounds the velocity error of the navigation system, which in turn

leads to only linear increase in position standard deviation. As opposed to inhibiting bounded

acceleration error, leading to linear error in velocity and quadratic increase in positional error.

If position was only derived for acceleration, the error in position would be squared, and a lot

more difficult to compensate for. This is the reason why it is interesting to further explore the

implementation of DVL aided INS. The more accurate the DVL measurements can be incorpo-

rated in the Kalman filter, the better the navigation system will perform.

1. Examine the feasibility of a tightly integrated DVL approach.

2. Compare the performance of the current DVL implementation with the tightly integrated

implementation.

3. Evaluate if a tightly integration requires further testing

1Differential Global Positioning System (DGPS), High Precision Acoustic Positioniung (HiPAP), Ultra Short Base
Line (USBL)



Chapter 2

Theory: Concepts and Representation

Some of the basic terminology mentioned in chapter 1 when dealing with estimation, statistics,

and filtering will be presented in the following chapter. The navigational tool Navlab and its

applicability will be introduced. This is followed by an introductory explanation of the post-

processing schemed called smoothing.

2.1 Inertial Navigation System

An Inertial Navigation System (INS) according to Vik (2014) consists of an Inertial Measure-

ment Unit (IMU) software that computes position, velocity, and attitude from the measure-

ments. The IMU incorporates an Inertial Sensor Assembly (ISA), hardware to interface with

the ISA, and software performing down-sampling, temperature- and vibration calibration. The

ISA typically consists of three gyros and three accelerometers positioned in an orthogonal man-

ner. This allows for the acceleration and angular velocity to be measured in three dimensions.

Figure 2.1: The HUGIN Autonomous Underwa-
ter Vehicle onboard H.U. Sverdrup II. Picture
credited to Hegrenæs and Berglund (2009)

INS systems are categorized into two

classes: gimbal and strapdown. The sys-

tem type used on HUGIN, depicted in fig-

ure 2.1, an Autonomous Underwater Vehi-

cle (AUV) produced by Kongsberg Martitume,

falls within the strapdown group. A strap-

down system is rigedly attached to the AUV.

These solutions maintain attitude by calculat-

ing rotation matrices. This solution has less

drift compared to a strapdown system, be-

cause the gimbal platform is exposed to more

dynamic benign movements, allowing for sensors with less dynamic range to be used. This also

4
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means that high order instrument errors are less important than when using a strapdown so-

lution Vik (2014). While the strapdown solution requires more computational power than the

gimbal system, its not a large problem as the cost of computational power is decreasing rapidly

Vik (2014). Relative to the gimbal system, the required computational power is greater in strap-

down systems, but this is not a problem since the cost of computation is so low in today’s world.

The advantages comes at the price: the gimbal system is heavier, takes up more space, is more

expensive, and is generally not suited for use on AUVs. The system employed on HUGIN is

therefore a strapdown solution.

Raw data readings compiled from sensor measurement requires specific data handling rou-

tines in order to filter out the desired values. According to Gade (1997), the readings area func-

tion of true value, bias, and scale-factor error as well as other external factors, such as hysteresis

and temperature. Depending on the precision requirement, the measurement function can be

estimated with a straight line or a more complex polynomial, as described in figure 2.2. If a

straight line is used, the parameter describing said line must be found. If a linear function is

used, the parameter describing this line must be found. Assume the scalar variable a is to be

measured. This can be parameterized as described in equation 2.1.

ã = a +δa (2.1)

where ã is the measured variable and δa represents the error differentiating the measured vari-

able to the true variable. The error, δa is expressed as

δa =∆ascale f actor x︸ ︷︷ ︸
scale factor error

+∆abi as +ξa︸ ︷︷ ︸
bi as

(2.2)
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Figure 2.2: The relationship between the true and the measured value. The dashed line is the
line approximation while the continuous line is the real relationship. The figure is adapted from
Gade (1997).

Gade (1997) states that inertial sensors have a scale factor error that approximately so con-

stant with respect to time. The bias is comprised of a slow varying bias plus white noise.

2.2 General Estimation

Generally, measurements contain a significant amount of noise, introducing uncertainties to

the state measurements. Supplementing the measurement with a mathematical model of the

dynamics, it is possible to estimate the state given the model is sufficiently accurate. A model

that provides an estimate of an internal state is called a state observer. Both physical processes

and mathematical models in this thesis will be presented on state space form; as a set of first

order differential equations (see Chen (2013) for more information regarding state space for-

mulations). The nomenclature of a state space equation can be seen in the equation set 2.3.

ẋ = Fx+Bu+γ (2.3a)

y = Hx+ξ (2.3b)

Equation 2.3a is the state equation which describes the dynamics of the states. F is the state

matrix, representing the relationship of the states (x). b is the input matrix, representing the

input (u) relative to the states and γ is the process noise. Equation 2.3b is the output equation
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which describes the measurements. H represents the measurement matrix and describes the

relationship between state and measurement and ξ is the measurement noise.

The system is linear if none of the terms in equations 2.3 contains non-linear terms. This

property allows for many methods that rely on linearity to be utilized, such as the Kalman filter

McGee Leonard and Schmidt Stanley (1985).

A representation of a state observer is seen in figure 2.3. The purpose is to eliminate the

difference between yk and ŷk , which causes the values xk and x̂k to converge.

Figure 2.3: Convergence of y and ŷ causes convergence of x and x̂. The line from the Physical
process is dashed, as this variable technically does not exist.

The system representation in equation 2.3 is required to be observable in order to use a KF as

a state estimator. Observability according to Chen (2013) studies the possibility of estimating the

states from the output. Another description cited in (Brown and Hwang, 2012) is that a system is

said to be observable if for any unknown initial state x(0), there exists a finite t1 > 0 such that the

knowledge of the input u and the output y over [0, t1] suffices to determine uniquely the initial

state x(0). Otherwise, the equation is said to be unobservable . In other words, if the system

is observable, all system states can be either directly or indirectly measured. If the system in

equation 2.3 is to be computed, it must first be discretized in time: the system changes values at

predefined time steps. Discretization is necessary because computers only operate in discrete

time steps. The time step throughout this thesis will be denoted with the subscript [k].
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2.2.1 Estimator Bias

The bias of an estimator is the difference between the true value of the estimated parameter and

the expected value of the estimator. An estimator is unbiased if:

E(Estimate of X) = E(X )

where the expected value of the estimate of a random variable X, is exactly equal to the expected

value of the true value of X. In ideal cases, the estimator is unbiased. However realistic esti-

mators will inhibit some bias. When an estimator is known to be biased, it is often possible to

estimate and correct the bias through the use of a KF.

2.2.2 The Kalman Filter

The Kalman filter (KF) is an algorithm that computes parameters of interest from indirect and

uncertain observations. The KFs inventor was the Hungarian-born American Rudolf Emil KálmánKalman

(1960). The work was based on Norbert Wieners work on minimizing the mean-square error

(Brown and Hwang, 2012). Kalman considered the noisy measurement to be a discrete sequence

in time as opposed to a continuous-time signal. The term filter describes the process where the

algorithm separates noise from useful information in signals

Introduction to Kalman Filtering

The Kalman filter (KF) is an optimal recursive data processing algorithmBrown and Hwang (2012).

The algorithm uses information from the previous step to aid in obtaining information in the

current step. A KF is used when it is necessary to estimate a system state when the state can

only be indirectly measured It can also be used to combine multiple measurements from dif-

ferent sensors which are subjected to noise in order to improve accuracy. A Kalman filter has

different functionality based on the objective. Functionalities include: estimate a system state

when it cannot measure it directly or estimate a system state by combining measurements from

different sensor subjected to noise. Common appliances for Kalman filtering are navigation,

guidance, object tracking, signal-processing, computer vision, and control-theory. One of the

first appliances of KF was on the Apollo project, where is was used for course estimation (McGee

Leonard and Schmidt Stanley, 1985). There are some requirements for a KF to function correctly,

concretized in the following list.

1. That both the process- and measurement noise is white and Gaussian.

2. The system is linear.

3. The initial state is Gaussian.
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4. The system is observable.

2.2.3 Discrete Kalman filter

The implementation of discrete Kalman filtering is described in the following section. In order

to implement a KF on a computer, which has discrete measurement in time, a discrete Kalman

filter (DKF) can be implemented. The DKF computes discrete estimates in a series of iterative

time steps. The system is concretized in the following mathematical discrete state-space model:

xk+1 =φk xk +uk +Ωkγk (2.4a)

yk = Hk xk +ξk (2.4b)

Where xk is the process state vector at time tk . Φk is a square matrix relating xk to xk+1. ∆k

is the input matrix. uk is the input vector. γk is the process noise vector. yk is the measurement

at time tk . Hx is the matrix containing the ideal connection between measurement and state

vector at time tk , and ξk is the measurement noise.

The covariance matrices Qd and Rd relating the process noise w and measurement noise v

are described in

E [γkγ
T
j ] =

Qd ,k if j = k

0 if j 6= k
(2.5a)

E [ξkξ
T
j ] =

Rd ,k if j = k

0 if j 6= k
(2.5b)

E [γkξ
T
j ] = 0 for all k and j (2.5c)

As equation set 2.5 shows, the process and measurement noise are both white and uncorrelated.

A recursive algorithm (DKF) which combines the measurements and the system dynamics such

that the optimal state estimate can be calculated. Optimal state estimate is defined in Gade

(1997) as the state estimate which is closest to the expected value and has the lowest possible

variance.

Assuming there exists an initial estimate x̄k of the process at time tk , and that this estimate

is based upon all prior knowledge of the process leading up to tk , x̄k is denoted at the a priori

state estimate. This is associated with the error covariance matrix P̄k . The a priori estimates are

manipulated such that the optimal estimates, the a posteriori estimates x̂k and P̂k are produced.

At this point, the measurement yk is used to improve the a priori estimate. A function of the

noisy measurement and the a priori estimate, together with the blending factor Kk , yields the

a posteriori estimate. The factor Kk is called the Kalman gain. The Kalman gain minimizes the

mean-square estimation error.
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Figure 2.4: Standard deviation will always decrease at updates but actual error might increase on
certain measurements, depending on if the measurements is wrong. The figure is an illustrative
intepretation made by the author.

The gain is a relative weight matrix that determines how much weight will be placed on

the measurements versus the current model estimations. The gain will vary depending on how

recently the system received a measurement. Immediately after a measurement is received, the

filter weighs the model estimate less, as the measured value is available, see figure 2.4. A special

case is if the process noise is negligible. The result will then be a model estimate that does not

change over time.

2.2.4 The Discrete Kalman Filter Algorithm

The DKF algorithm is explained in detail in the following steps. The procedure is based on the

approach for the DKF algorithm in Brown and Hwang (2012). Step 0 : Set initial parameters

at time k = 0. The initial values of the states x̄0 are gathered, and the initial error covariance

matrix is computed by the equation

P̄0 = E [(x(0)− x̂0)(x(0)− x̂0)T ] (2.6)

It is seldom the case that state measurements are available at initialization in real-time appli-

cations. A solution is to either estimate these offline, or to set them initially high to account for

errors. This initial step is only done once during run time.

Step 1 : Compute Kalman gain. The Kalman gain in obtained through

Kk = P̄k HT
k (Hk P̄k HT

k +Rd ,k )−1 (2.7)

Step 2 : Update state estimate with measurement yk . Using the available measurement,

compute the a posteriori estimate. This value is then outputted by the filter, as the optimal

estimate of xk.

x̂k = x̄k +Kk (yk −Hk x̄k ) (2.8)
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Step 3 : Compute error covariance matrix for updated estimate.

Pk = (I−Kk Hk )P̄k (2.9)

A more robust version of the error covariance update equation is the Joseph form Gade (1997).

The Joseph form increases the numerical stability of the covariance matrix, increasing the ro-

bustness of the matrix. However positive definitness is not guaranteed. The form was intro-

duced in (Gade, 1997) to help against rounding errors in the computations. The Joseph form is

described as follows:

P̂k = [I−Kk Hk ]P̄k [I−Kk Hk ]T +Kk Rd ,k KT
k (2.10)

Step 4 : Project ahead Update the a priori estimates for the next iteration of the filter.

x̄k+1 =Φk x̂k (2.11a)

P̄k+1 =Φk P̄kΦ
T
k +Ωk Qd ,kΩ

T
k (2.11b)

The algorithm for the Discrete Kalman filter is seen in figure 2.5.

Figure 2.5: The iterative process of a Discrete Kalman filter. Adapted from Brown and Hwang
(2012)
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2.3 Nonlinear Filtering

Process dynamics are rarely linear, which means that the regular Kalman filter cannot be used

as a state observer. As noted in section 2.2.2, one of the requirements for a Kalman filter to be

implementable is that the system is linear. One solution may be by linearizing the system - lin-

earization is the process of approximating a nonlinear equation by use of linear equations under

certain conditions1 Chen (2013). The two most prominent filters to handle nonlinear situations

are the Linearized Kalman filter and the Extended Kalman filter. Brown and Hwang (2012) de-

scribes the LKF and EKF as the following: the LKF linearizes about some nominal trajectory in

state space that does not depend on the measurement, whilst the EKF linearize about a trajec-

tory which is continuously updated with the state estimates coming from the measurements.

2.3.1 Extended Kalman Filter

Extended Kalman filter can be described by assuming a nonlinear system that is defined by

equation 2.12.

ẋ = f(x(t ),u(t ), t )+γ(t ) (2.12a)

y(t ) = h(x(t ), t )+ξ(t ) (2.12b)

The process noise and measurement noise are, in accordance with the assumptions in section

2.2.2, assumed Gaussian distributed, i.e. zero mean, with Q or R variance.

γ(t ) ∼N (0,Q(t ))

ξ(t ) ∼N (0,R(t ))

The linearization is of the form

∆x∗ = F(x∗,u(t ), t )∆x(t )+γ(t ) (2.14a)

∆y∗ = H(x∗, t )∆x(t )+ξ(t ) (2.14b)

where F and H are Jacobian matrices and x∗ is an approximate trajectory.

1Continuous and analytic
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Figure 2.6: The trajectory is updated at each time step. The figure credited to Brown and Hwang
(2012).

Figure 2.6 shows how a updated trajectory is computed based on the current system states

at each time step.

2.4 Coordinate Frames

Figure 2.7 depict the four coordinate systems mentioned in this theses.

Figure 2.7: The x and y components of the L-system are perpendicular, as they represent North
and East direction. The blue line at the top represents the water surface, while the black line at
the bottom represents the bottom of the sea. The figure is an illustrative interpretation made by
the author.
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Table 2.1 contains basic information regarding the different coordinate frames shown in fig-

ure 2.7.

Name Corresponds to Definition

E ECEF (Earth-

Centered-Earth-

Fixed)

Origin is placed in the geomet-

ric center of the Earth. The yz-

plane coincides with the equatio-

rial plane. z-axis points towards

True north.

L (Local) NED (North-

East-Down)

z-axis directed downward, normal

on the model of the Earth used. x-

and y-axis directed towards north

and each, respectfully. Origin is

placed such that the vessels ref-

erence point have zero x- and y-

value, and such that the surface

of the Earth model have zero z-

coordinate.

B ABC(Body-fixed) Coordinate system with origin in

the vessels reference point. x-axis

directed forward, y-axis directed

towards starboard (to the right),

and the x-axis is directed down-

wards.

D ABC(Body-fixed) Similar to B, but with origin in the

DVLs reference point.

Table 2.1: Overview of the coordinate system used. The figure and explanations are credited to
Gade (1997)

2.5 Filter Consistency

It is important to control if the estimates generated by the filter are in agreement with the mea-

surements. Incorrect estimates can be generated due to a number of reasons, including sudden

and significant changes in the measurements or for instance rapid changes in the vehicle atti-

tude. Whatever the reason, it is crucial to have a check in place to validate the estimates. The

basis for such a check can be to monitor that the expected measurements estimates follow the

trend of the actual measurements.
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2.5.1 Filter Consistency Check for Method 1

An adaptation of the NIS method is to list a histogram of the normalized squared innovation,

and fit a Gaussian distribution to this histogram. This distribution will yield a standard deviation

σ̂ and mean µ̂based on the normalized innovation histogram. The ideal values for the estimated

standard deviation and mean value for an ideally functioning Kalman filter are

σ̂= 1

µ̂= 0
(2.15)

Figure 2.8 shows a sample histogram with a fitted estimated Gaussian (red line), and a Gaussian

with the parameters in equation 2.15.

Figure 2.8: Example histogram of innovation squared normal distribution

The estimated Gaussian curve is found using the MATLAB function histfit Attaway (2013).

The number of bins are equal to the square root the amount of innovation observations from

the Kalman filter. The data inserted into the histogram function is categorized as a row vector

containing the product of the square root of the NIS multiplied with the sign of the correspond-

ing innovation. In other words, this can be expressed by the use of Matlab syntax, as

histfit(
p

NIS¯ sign(I ))

The NIS (see appendix A.6 for information regarding this parameter) vector containing the

normalized innovation squared and I is a vector containing the innovations, i.e. difference

between predicted and measured parameter. ¯ is element wise multiplication.

2.5.2 Filter Consistency Check for Method 2

The method described above only functions for scalar quantities. Therefore, the test must be

modified to encompass innovations of dimension 3×1. This can be done by dividing element
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j in the innovation vector I by the square root of the diagonal element [ j , j ] of the covariance

matrix.

histfit(
I ( j )√
C ( j , j )

) (2.16)

where C is the innovation covariance matrix.

C = H · P̂ · (H)T +W (2.17)

P̂ is from equation 2.10, H is the measurement matrix, and W is the process noise. This method

does not account for elements of the diagonal of C .

2.6 Navigation Laboritory (NavLab)

NavLab serves as the platform upon which the experiments will take place. One of Navlab’s core

strengths is that the software can perform simulations, enabling testing and development of

navigation data Gade (2005). Navlab also is able to post-process recorded data, such that the

performance can be measured from real-life data. NavLab enable the user to choose to deac-

tivate sensors (disabling measurements) before run-time, so that scenarios with faulty sensors

can be explored. This functionality will be taken advantage of when comparing the two DVL

integration methods in chapters 8 and 9.

2.7 Smoothing of Estimates

The method of smoothing estimates is defined by Willumsen and Hegrenaes (2009) as the math-

ematical equations that provide optimal estimates based on the entire measurement set. Esti-

mates calculated in real-time (see 2.11a) are computed based on the measurements up until the

current time step. Smoothed estimates are computed based on measurements from the past,

and measurement from the future. It is therefore unavailable in real-time, and is only used in

post-processing. However Hain Subsea provides semi-real-time smoothed estimates, meaning

that smoothed estimates are available at a specified time lag.

The approach for computing smoothed estimates used in Willumsen and Hegrenaes (2009)

is the RTS method (Rauch-Tung-Striebel Algorithm). The method can be described by doing a

second Kalman filter sweep backwards in time. The last estimated parameter in real-time and

the first computed smoothed estimate are equal, as they are computed under the same basis.

Add figure of smoothed estimates and add arrows.



Chapter 3

System Description

The aim of this chapter is to describe the current, and the proposed Doppler Velocity Log im-

plementation to the navigation system.

3.1 Types of Integration Implementations

The various degrees of integration schemes can be organized into four main categories, ac-

cording to Vik (2014). These includes uncoupled-, loose-, tight-, and deep integration. From

uncoupled- to deep integration the performance and robustness against noise will increase, at

the expense of increased complexity, possible lack of redundancy, and reduced flexibility Vik

(2014). The increasingly complex integration architectures are dependent on how much mathe-

matical manipulation the measurements endure before being inputted to the Kalman filter. The

four aforementioned architectures are well explained in Vik (2014) but in the context of above

surface navigation (where GPS signals are readily available). Therefore, not everything listen in

Vik (2014) is applicable to underwater navigation. The INS structure that most closely resem-

bles the goal structure of this thesis is tight integration. A tightly coupled system utilizes raw

accelerometer and gyroscopic data as input to the filter. The raw data is not computed into

estimates of position, velocity, and attitude to avoid error growth.

3.2 Method 1 - Proposed DVL Implementation

The solution proposed in this thesis is based around using the raw beam velocities as measure-

ment input to the filter. This solution type resembles a tightly integrated system, as illustrated

in figure 3.1. The gray blocks are sensors which does not impact the study in any meaningful

way.

17
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Figure 3.1: The HUGIN integrated INS structure for Method 1. The figure is inspired by a figure
in Jalving et al. (2004).

For each prediction step will the Kalman filter run four update steps. The time difference

between each measurement in a group i.e four beam measurements per step update is approx-

imately zero, as each DVL transducer produces measurements independently.

3.3 Method 2 - Current DVL Implementation

The current DVL implementations translate the beam velocity into three orthogonal velocities

(x,y,z) before inputted to the Kalman filter.

Figure 3.2: The HUGIN integrated INS structure for Method 2. The figure is inspired by a figure
in Jalving et al. (2004).



Chapter 4

Doppler Velocity Log aided Inertial

Navigational System

This chapter will explain how a Doppler Velocity Logger functions, how the DVL beam configu-

ration is developed, and the reasoning behind the need for DVL calibration.

4.1 Doppler Velocity log

A Doppler velocity log (DVL) is a sensor used to measure the relative velocity of an underwa-

ter vehicle. Combined in real time current estimation, pressure readings, DVL water-track and

DVL bottom-track are integrated in the nagivatin system to provide velocity aiding for the INS

Hegrenæs and Berglund (2009). DVLs can be considered as a subgroup of Acoustic Doppler Cur-

rent Profiles (ADCP), which measures the relative velocities at various points in the water flow

Rudolph and Wilson (2012).

4.1.1 DVL configuration

The measurement principle used in a DVL is the Doppler effect, i.e the shift in frequency when

moving towards or away from a relative target. The DVL data referenced in this thesis is collected

by a Nortek DVL 500 NORTEK (2018). The four transducer beams are configured in a Janus

configuration, such that the two beams in the heading direction are at an angle 45o degrees

away from the x-axis. The other two beams are mirrored, creating a symmetrical orientation. All

beams are approximately 25o degrees away from the z-axis. See figure 4.2 for a more descriptive

illustration of the configuration.

19
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4.2 INS Aiding Sensors

DVL is not the only aiding sensor in a inertial navigation system. The Hugin 1000 Kongsberg

Maritime (2017) utilizes a pressure sensor for depth measurements and an optional compass for

attitude measurements. The compass is optional because some Hugin vessels use gyrocompass-

ing instead of a compass. The navigation system must receive occasional updates based on the

position accuracy requirements (Jalving et al., 2004). The preferred method of position updating

is GPS surface fixing, a method where the AUV surfaces at regular intervals to receive position

updates from GPS satellites. Depending on terrain restriction and mission parameters such as

stealth and efficiency, the AUV might be confined to remain under water. For submerged posi-

tion updates, the Hugin 1000 has some options. Underwater transponder positioning (UTP) uti-

lizes transponders at the seabed to calculate position (Hegrenæs et al., 2009). The submersible

can also utilize the bathymetric terrain if it is close to the seabed and the area has already been

mapped. When operating in acoustic vicinity of a surface vessel e.g mothership, buey, or sup-

port ship, DGPS-USBL can be used to find position. A transceiver is mounted under the launch

ship as well as a transponder mounted on the AUV. The distance between the vehicles can be

found based on the time of flight (TOF). This can further be paired with the phase comparison

of the arriving signal which enables for bearing to be deduced (Vickery, 1998).

4.3 DVL Measurement Equations

As the DVL uses multiple transducer beams with different attitude, trigonometry is used to cal-

culate the velocity in all three directions. Readings from one beam is required per direction.

This means that a DVL with four beams is overdetermined. Four components are used to cal-

culate velocity in three directions. One pair of beams obtains one horizontal- and one vertical

component, while the second pair obtains a perpendicular horizontal component and a second

vertical component Indstruments (1996).

This yields the estimates of two horizontal velocities and two vertical velocities. As the

beams samples measurements in different directions, the current velocity vector must be ap-

proximately equal in the horizontal plane to be able to apply trigonometry to find velocity. Ac-

cording to (Indstruments, 1996), horizontal homogeneity is often a reasonable assumption to

consider. However, it is important the navigation system is informed when homogeneity is ab-

sent. Figure 4.1 portraits a horizontal view of two horizontal velocity cases: the left figure where

horizontal velocity is present, and the right figure where one transducer beam has a noticeably

different horizontal velocity. According to Indstruments (1996), situation 4.1b will on average

have a larger error velocity than the situation illustrated in Figure 4.1a.
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(a) All four beams have equal horizontal velocity. (b) One beam has a different horizontal velocity.

Figure 4.1: Figure credited to Indstruments (1996)

The error velocity is the difference between the two horizontal velocities. The parameter

allows the system to evaluate whether the assumption concerning horizontal homogeneity is

reasonable or not. This functionality provides integrity, as it allows the system to know when the

velocity measurements are untrustworthy. In real life application, the error velocity will during

ideal conditions fluctuate around zero, as the water will never be fully homogeneous.

Due to aforementioned reasons, the work in this thesis is thus made based on the assump-

tion of horizontal homogenity is thus made by assuming that horizontal homogenity is present

at all times.

The Scalar Unit Vector

Figure 4.2 is a display of a three dimensional vector being deconstructed along the x-,y-, and

z-axis.
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(a) The angle αi displaying the beams’ ori-
entation with respect to the heading axis (x-
axis) in a bottom-up perspective.

(b) The angle representing the beams’ orienta-
tion with respect to the z-axis, is referred to as
θi , where i is the beam labels.

Figure 4.2: DVL transducer beam configuration.

Using trigonometry, it is possible to create unit vectors along the transducer axis. Based on

figure 4.2, the unit vector for beam i is:

ui =


cos(αi )si n(θi )

si n(αi )si n(θi )

cos(θi )

 (4.1)

The values initially set for the DVL configuration are listed in table 4.1.

Beam i αi θi

Beam 1 45° 25°
Beam 2 315° 25°
Beam 3 225° 25°
Beam 4 135° 25°

Table 4.1: α and θ angles used in NAVLAB.

The values for i in 4.1 are stated in table 4.1. Note that the unit vector could just as easily been

expressed as a matrix, by transposing ui and stacking the the row vector on top of each other,

as expressed in equation 4.2. However, this approach is not implemented for the calculations

performed in MATLAB. The scalar variant described in Equation (4.1?) is easier to manipulate

compared to the matrix expression in equation 4.2, and is thus the preferred approach in this

work.
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U =


cos(α1)si n(θ1) si n(α1)si n(θ1) cos(θ1)

cos(α2)si n(θ2) si n(α2)si n(θ2) cos(θ2)

cos(α3)si n(θ3) si n(α3)si n(θ3) cos(θ3)

cos(α4)si n(θ4) si n(α4)si n(θ4) cos(θ4)

 (4.2)

Expression 4.2 is not used for calculations in MATLAB, because the scalar variant is viewed by

the author to be easier to manipulate.



Chapter 5

The Velocity Model to the Extended Error

State Kalman Filter

The velocity input the Extended Error State Kalman Filter (EKF), is a sum of the measured and

the estimated velocity. The Kalman filter states are therefore error parameters, and the resulting

Kalman filter is called an Error State Kalman filter.

It is necessary to have at least two versions of the same parameter, obtained independently of

each other, in order to produce the error states. The input to the EKF are therefore the difference

between the parameters, e.g. v̂L
EB − v̂L

EB ,DV L .

5.1 DVL Velocity Expression

The estimated velocity of the body (B) relative to earth (E) in the L-system (L) is the sum of the

measured velocity of the body and the velocity of the DVL (D) in relationship with the body.

v̂L
EB ,i = (uB

i )T R̂L
B (ṽB

EB +vB
BD )+b (5.1)

The velocity vB
BD is approximately equal to zero as the DVL in rigidly attached to the AUV.

Practically no motion exists between the two coordinate frames.

v̂L
EB ,i = (uB

i )T R̂L
B ṽB

EB +b (5.2)

5.2 The Discrete Measurement Matrix Hk

The objective of the following section is to identify the discrete measurement matrix Hk used in

the ESKF. During operation the AUV will only receive measurements at discrete time steps. The

measurement equation is therefore defined defined in a discrete manner, as in equation 5.3

24
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yk = Hk xk +ξk (5.3)

where yk is the measurement, xk is the states, and ξk is the process noise. To find the discrete

measurement matrix Hk the input expression to the filter will be stated and linearized. The

result will be an expression for δyk The general error velocity measurement equation is equal to

the measured velocity (ỹ) minus the estimated velocity (ỹ), expressed as

δy = ỹ− ŷ (5.4)

The nonlinear states of the KF are

hi (x) = (uB
i )T RB

L vL
EB +b (5.5)

and the perturbed nonlinear states are

hi (x+δx) = (uB
i )T [(RB

L +δRB
L )(vL

EB +δvL
EB )+ (b +δb)] (5.6)

The linearized expression take the form as shown in equation 5.7, where ξDV L is the mea-

surement noise.

δy = h(x)−h(x+δx)+ξDV L (5.7)

By inserting the expressions from equation 5.5 and 5.6 into equation 5.7, it is possible to obtain a

new representation of the system. This is expressed in equation 5.8 - 5.10 for each system state.

δyi = ((uB
i )T RB

L vL
EB +b)− ((uB

i )T (RB
L +δRB

L )(vL
EB +δvL

EB )+ (b +δb))+ξDV L (5.8)

δyi = ((uB
i )T RB

L vL
EB +b)− ((uB

i )T (RB
L vL

EB +RB
LδvL

EB +δRB
L vL

EB +δRB
LδvL

EB )+b +δb)+ξDV L (5.9)

δyi =−((uB
i )T (RB

LδvL
EB +δRB

L vL
EB )−δb +ξDV L (5.10)

(Gade, 1997) demonstrated that the expression given in equation 5.11 is valid. The parameter

eB
BL is a vector describing the difference in orientation between the B- and L-system, expressed

in the B system. The skewness between the B- and L-system is denoted as δRB
L . The skewness

can be interpreted as the error in orientation between the two systems.

δRB
L = S(eB

BL)RB
L = RB

L S(eL
BL) (5.11)

Applying equation 5.11 to 5.12 yields a new expression containing the error of the estimated

orientation between system B and L, R̂B
L .

δyi =−((uB
i )T (RB

LδvL
EB +RB

L S(eL
BL)vL

EB )−δb +ξDV L (5.12)
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Linear theory states that a simple linear system u×v can be expressed as −v×u. The same linear

operation is performed on S(eB
BL) and vL

EB to extract the error on vector form, see equation 5.13.

δyi =−(uB
i )T (RB

LδvL
EB −RB

L S(vL
EB )eL

BL)−δb +ξDV L (5.13)

Similarly, eL
BL can be expressed as −eL

LB . Inserting −eL
LB into equation 5.13 results in a new

expression for the measurement equation for each transducer beam, see equation 5.14.

δyi =−(uB
i )T (RB

LδvL
EB +RB

L S(vL
EB )eL

LB )−δb +ξDV L (5.14)

Factoring out the system states from equation 5.14 results in a state-space representation

shown in equation 5.3. Equation 5.15 yields the discrete measurements for each beam where

the matrix Hk denotes the relationship between the system states. The measurement matrix,

Hk , is then implemented in the Kalman filter. The subscript k is added to denote time step.

δyk,i =
[
−(uB

i ,k )T RB
L,k S(vL

EB ,k ) −(uB
i ,k )T RB

L,k −1
]

︸ ︷︷ ︸
Hk


eL

LB ,k

δvL
EB ,k

δbk


︸ ︷︷ ︸

xk

+ξDV L,k (5.15)

5.3 Verification of Hk

A verification of the measurement matrix Hk is done in B.1. The test verified the matrix for use.

5.4 DVL Error Model

As described in the Introduction chapter of this thesis, the DVL sensor used to gather data in

this work is a Nortek 500 DVL (NORTEK, 2018), which has a documented accuracy of 0.2% of

speed. This high accuracy comes at the compliment of such a high frequency. Jalving et al.

(2004) stated that the DVL accuracy is dependent on frequency, where higher frequency yield a

better accuracy at the cost of a decreased DVL range.

According to (Gade, 1997), the error of v̂L
EB was found to be approximately white, wDV L .

(Gade, 1997) states that velocity noise along and across the trajectory can be assumed uncorre-

lated as they are calculated independently of each other. The velocity noise in the z-direction

will in practice be correlated with noise in x- and y- direction. (Gade, 1997) does not emphasize

the modeling of this error, as it only contribute with vertical position error with small pitch-

angles. Large pitch angles are only explicitly used during accent and decent of the vehicle/sen-

sor, i.e. when requirement for position accuracy is relatively low.
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The measurement noise for the DVL is assumed Gaussian distributed:

ξDV L = N (0,WDV L,kδk j ) (5.16)

where the measurement noise is set equal

WDV L,k =
[
σ2

wDV L,k

]
(5.17)

The measurement noise is unchanged σ2
wDV L,i ,k

= 0.008 m/s.

5.5 Erroneous Velocity Sources

The velocity updates inside the Kalman filter has to account for wrongful contributions to the

velocity, for instance angular velocity of the AUV contributed in a small way to the velocity mea-

sured in the DVL. A method called lever arm compensation is required to mend this problem.

5.5.1 Lever Arm Compensation

As the DVL is a certain distance away from the IMU, the DVL will have an angular velocity about

the IMU. The angular velocity yields a tangential velocity at the DVL that must be accounted for

in the filter. Figure 5.1 is showing the resulting tangential velocity in question. The expression

Figure 5.1: The velocity measured by the DVL is subjected to the angular velocity ω of the AUV.
p I MU ,DV L denotes the distance from the center of the IMU to center of the DVL

for the tangential velocity is summarized in equation 5.18, where v̂EB is the estimated velocity.

vEB ,tr ue = ṽEB −ωcurrent velocity ·pBD (5.18)

Equation A.5 shows that a velocity vector in coordinate system B , translated to coordinate
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system A is equal to the velocity vector in B transformed into A, plus the angular velocity times

the distance, rotated into the A system.

In the context regarding velocity between the DVL and IMU, equation A.5 becomes

vB
BD,i = (uB

i )T vB
BD + (uB

i )T S(ωB
LB )pB

BD (5.19)

The angular velocity of the body, with reference to the L-system ωLB is a sum of the angular

velocity of

• the body system, relative to inertial space

• the earth system, relative to inertial space

• the L-system, relative to the earth system

This is summarized in equation 5.20.

ωLB ,i =ωI B −ωI E −ωEL (5.20)

ωLB is the angular velocity deg
s the body (AUV) has relative to the L-system, ωI B is the angular

velocity measured by the gyros on-board the AUV,ωI E is the rotational velocity of the Earth, and

ωEL is a function of the AUV position and velocity. Generally, the angular velocity of the AUV is

significantly larger compared to both the rotation velocity of both the rotational velocity of the

Earth and the angular velocity the L-system has in reference to Earth, combined. Therefore, it

can be assumed that

ωLB ≈ωI B (5.21)

Equation 5.19 can thus be expressed on the form

vL
BD = (uB

i )T S(ωB
I B )pB

BD (5.22)

The angular velocity is estimated by measuring the change in angles measured by gyros on-

board, and multiplying with the data rate of the IMU. The IMU system used has a data rate of

100 Hz.

5.5.2 DVL Position Accuracy

The horizontal drift in position is according to Jalving et al. (2004) determined by the error in

the estimated north and east velocity. The main contributors of this error are the error in body-

fixed velocity and the error in heading. The error in vEB ,x and vEB ,y are determined by the low-

frequency error in the DVL. When position measurements are not available, the scale factor
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error is not observable when traveling along straight trajectories. This is demonstrated chapter

8 and chapter 9.

According to Jalving et al. (2004), the INS will almost momentarily gain a higher velocity un-

certainty compared to the DVI accuracy in situations without position aiding, regardless of the

initial accuracy of the INS. This in turn favors the DVL NORTEK 500 described in chapter 4, em-

pathizing velocity accuracy of 0.2% of traveled distance. By considering for instance a velocity

of 2 m
s along on axis, the along track error drift cumulates to 0.2% of the traveled distance, corre-

sponding to 14.4 m/hour. It is suggested in Jalving et al. (2004) that the problem of unobservable

scale factor can be partially mended by either performing a lawn-mower pattern in which all the

turns in this pattern will allow the scale factor error to be observable, or by rotating 360’ at reg-

ular intervals.(all the turns in such a pattern will allow the scale factor error to be observable)

or by rotating 360o at regular intervals. The latter method require accurate DVL time stamping:

the requirement set by Jalving et al. (2004) is that the error produced by incorrect time stamps

stemming from vehicle acceleration and angular acceleration should be less than the scale fac-

tor error. It is therefore of interest to examine how the position accuracy behaves in periods

when turning and straight lines.

5.5.3 DVL Configuration Misalignment

The angle values in table 4.1 do not accounted for misalignments in the AUV, used to collect the

data. If the DVL configuration in table 4.1 are implemented, the result will most likely be incor-

rect, as the angles have not been calibrated. The calibration is performed by running recorded

navigation data with a DVl through a calibration process to calculate alignment and other fixed

parameters of the DVL-IMU combination. A calibration was done at Kongsberg Maritime, with

the result of

DV Lcor r ecti on =


r ol lcor r ecti on

pi tchcor r ect i on

y awcor r ect i on

=


−0.2033°

−0.0341°

−0.5414°

 (5.23)

These Euler angles are then calculated into a rotation matrix, and used to rotate the values dis-

played in table 4.1, as seen in equation 5.24. A rotation matrix ROl d
New is designed based on the

values in 5.23.

uB ,cor r ected = ROl d
New ∗uB (5.24)



Chapter 6

Real-Time Testing and Scenario

Development

This chapter explains how the testing scenarios are set up and which period of the mission is of

special interest.

6.1 Setup

The mission from where the data was gathered had a duration of five and a half hours long

in its entirety. But the only time period of interest is where the DVL is active, and acquiring

measurements, see figure 6.1. As the figure shows, there are no significant large periods of time

where the measurements from each beam are not continuous. There is a small period of time

right after 4000 seconds where the position measurements were interrupted, but this event in

unaffected by the results presented in this thesis, as the testing time in this thesis focuses on

starts after the event.
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Figure 6.1: The gaps are time periods where no measurement was registered.

"The DVL only recorded measurements within the time range from approximately 4300 to

15800 seconds. The time span used in further evaluations will be from 4800 to 15800 seconds.

The reason why the testing start some 500 seconds after DVL measurements are available is to

allow the system time to settle. It is assumed no previous knowledge of the sensors before start,

so the initial covariances are set high to account for the errors in the beginning.

Figure containing information regarding the beams in chapter chapter 7 and chapter 8 are

positioned so the figure mirrors the position of the actual beam. See figure 4.2 for clarification.

6.2 Plots of Position

The measured position in relationship to coordinate system M is shown in figure 6.2. Coordinate

system M is a two dimensional tangent coordinate system used for plotting the position of the

AUV. The purpose of M is to map the RT position of the AUV. The need for this coordinate system

is rooted in readability; the RT position is calculated in three dimensional coordinates (x,y,z),

so M removes the z and transposes the remaining axis to a two dimensional plane. Depth is

included to complete the positioning.

The position measurements depicted used for chapter 7 to 9 are depicted in figure 6.2.
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(a) (b)

(c)

Figure 6.2: The route the AUV will travel.

6.3 Periods of Interest and Comparison Basis

According to Willumsen and Hegrenaes (2009) and Jalving et al. (2004), the trajectory that poses

the largest challenge to estimate states, is along a straight line. It is of interest to examine how

the across- and along track error is affected. At points where the AUV changes direction it is

expected that these errors will be reduced, as the scale-factor error becomes observable during

turning Jalving et al. (2004).

The main comparison basis between the current and new DVL implementation is to analyze

how well they perform without position updates. The computations are done on real-time data,

meaning that the true value of any reading is unknown. Therefore it is of interest to examine

how well the navigation system handles periods where no position measurement is available.



Chapter 7

Proof of Concept - Tightly integrated DVL

The aim of this chapter is to demonstrate that the methods of tightly integrated DVL is feasible.

This means that the estimates are not overly erratic in behavior. The discussion on whether

the tightly integrated solution is better or worse than the current solution will not be further

discussed in chapter 7.

7.1 Velocity Measurements

The raw beam velocity measurements are displayed in figure 7.1. The obtained beam measure-

ments are displayed in figure 7.1 and highlights the behavior over time for the four beams. The

velocity in beam 3 and 4 is negative. This stems from the configuration of the DVL beam trans-

ducers seen in figure 4.2, where the beams are positioned/oriented in the opposite x-direction

of the heading, resulting in negative measurements.
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(a) Beam 1 (b) Beam 2

(c) Beam 4 (d) Beam 3

Figure 7.1: Measured and estimated real-time velocity for beams 1 to 4

From figure 7.1 a relative large difference in velolcity in the interval from 12 000 to 14 000

seconds is observed. This change in velocity is most likely caused by ascension of the AUV.

During ascension and descension, the DVL is unreliable in acquiering velocity data.

7.1.1 Error in real-time estimated velocity

The real-time velocity errors are either offset to the positive y-axis, or the negative y-axis, de-

pending on the direction of the beam measurement.
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(a) 1 (b) 2

(c) 4 (d) 3

Figure 7.2: The error between the real time estimates and measurements, and the smoothed
value of the estimate.

7.2 Estimated Autonomous Underwater Vehicle Velocities

The velocity of the AUV in the B system for Method 1 is shown in figure 7.3. The velocity in all

three directions inhibit relatively low oscillations, except at points where the AUV is turning.

7.2.1 Estimated AUV velocity, Method 1

The AUV velocity based on the tightly integrated DVL implementation is shown in figure 7.3.

The figure shows a stable x-velocity approximately equal to 2 m
s , except during ramp changes in

the z-velocity.



CHAPTER 7. PROOF OF CONCEPT - TIGHTLY INTEGRATED DVL 36

(a) Estimated velocity in x direction (b) Estimated velocity in y direction

(c) Estimated velocity in z direction

Figure 7.3: Real-time estimated AUV velocity for Method 1 with position updates.

7.2.2 Estimated AUV velocity, Method 2

Following are the velocities of the currently implemented DVL system. This plot is included

display that Method 1 yields results close to Method 2.
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(a) Estimated velocity in x direction (b) Estimated velocity in y direction

(c) Estimated velocity in z direction

Figure 7.4: Real-time estimated AUV velocity for Method 2 with position updates.

7.3 Real Time Velocity minus Smooth Velocity

The real time estimates minus the smooth estimates yields a quantity close to the true error,

as the smoothed value is the most accurate reading available. The σ bound in the real time

estimated standard deviation.

7.3.1 Real time minus smooth velocity for Method 1

The real time estimated velocity minus smooth velocity for Method 1 is shown in figure 7.5.
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(a) Beam1 (b) Beam 2

(c) Beam 4 (d) Beam 4

Figure 7.5: Real time velcoity minus smooth velocity for Method 1

7.3.2 Real time minus smooth velocity for Method 2

The real time velocity, minus the smooth velocity for Method 2 is shown in figure 7.6.
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(a) Estimated real time velocity minus smooth ve-
locity in x direction

(b) Estimated real time velocity minus smooth ve-
locity in y direction

(c) Estimated real time velocity minus smooth ve-
locity in z direction

Figure 7.6: Estimated real time velocity minus smooth velocity for Method 2 with position up-
dates.

7.4 Error in Navigational Position

Only the navigational position error in the x-direction is shown because the error is essentially

the same in the y-direction. The real time error starts initially approximately 20 meters (not

shown in figure 7.7). Figure 7.7b is a zoomed in version of the left figure, and is included so

that the ridges are properly displayed. When the ridge is directed downwards, the navigational

system has just received a measurement update, resulting in a decreasing error. With time, the

uncertainty of the estimated parameters increases, which causes the increasing error.
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(a) x-position error (b) A closer look on the ridges in figure 7.7a.

Figure 7.7: The standard deviation for the filters position estimate.

7.5 Attitude Angles

The orientation of the AUV during testing is estimated as shown in figure 7.8. The large yaw

angles are caused by the AUV changing direction in the xy-plane, while the pitch spikes are cor-

related to the change in depth.

(a) (b) y-position bias

(c) y-position bias

Figure 7.8: Real-time estimated and smoothed attitude angles. The green real time plot lies
almost exactly under the red smoothed curve and is not visible in the figure.
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7.6 Filter Consistency Test for Method 1

The filter consistency test mentioned in section 2.5 is done for Method 1, and its result is shown

in figure 7.9.

(a) Beam 1 (b) Beam 2

(c) Beam 4 (d) Beam 3

Figure 7.9: Innovation squared for all four beams.

The characteristics of the fitted Gaussian are listed in table 7.1.

Beami µ̂i σ̂i

1 -0.0072 0.5741

2 -0.0074 0.5746

3 0.000033 0.5792

4 0.0026 0.5800

Table 7.1: Means (µ̂i ) and standard deviations (σ̂i ) of the fitted Gaussian distribution (red line
in figure 7.9)

7.7 Performance of Concept

Based on the overall impression given by the results in this chapter, Method 1 is clearly a suit-

able candidate to replace Method 2. The Kalman filter does not struggle with estimating DVL
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measurements, as seen in figure 7.1. The error between measured and estimated velocity is well

within the boundary of 1σ (0.008 m
s ) throughout the mission, even when the AUV is changing

direction. Method 1 estimates the attitude angles close to identically as Method 2.

In section 7.3 the real time velocity estimate are subtracted from the smoothed estimate.

As the smoothed estimate are the closest measurement to the true value available, it can be

subtracted from the estimate to find the most feasible error. The errors in figures 7.5 are all

close to zero, except for some fluctuations. The error is relatively larger than the trend when the

AUV is changing direction. In figure 7.6, the error is noticeably larger in the two upper plots.

The lower plot, which depict the error in the downward direction is close to zero. The reason

the error in 7.6c is so small may be credited to the face that depth is not crucial to find position,

except at decent and ascent, as was mentioned in section 5.4 The characteristics of the depth

sensor are unknown to the author, so no assumptions regarding depth sensor will be taken. In

figures 7.6a and 7.6b the error is larger than in figure 7.5. At turning points the error approaches

the estimated standard deviation, meaning that the estimates became more different from the

measurements.

The navigational error is shown in figure 7.7. Along straight trajectories the navigational

error lies at approximately 1.5 meters. The navigational system receives position updates at

regular intervals, so the error does not grow beyond a certain limit, as was mentioned in section

5.5.2. When turning, the navigational error decreases with a factor of 75%, down to 1.75 meters.

This error reduction stems from the scale factor error being partially observable during turns,

also mentioned in 5.5.2.

The filter consistency check done in section 7.6 shows that the filter yields normalized squared

innovations that closely resembles Gaussian probability distribution. The mean values µi from

table 7.1 are all close to zero (as is ideal for a Gaussian). The size of the standard deviations

are relatively close to each other. Such low standard deviations are indications that the added

measurement noise ξ is too high. The measurement noise is currently set to 0.008 m
s .



Chapter 8

Method 1: Excluding Position Updates

This chapter presents the results of a real-time testing of the tightly integrated DVL implemen-

tation without position updates from 5600 seconds to 15200 seconds.

8.1 Error in Real Time Estimated Velocity

The real error in real time estimated velocity is shown in figure 8.1.

(a) Beam 1 (b) Beam 2

(c) Beam 4 (d) Beam 3

Figure 8.1: Real-time estimated and smooth velocity error
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8.2 Real time Velocity minus Smooth Velocity

The real time velocity minus the smooth velocity is depicted in figure 8.2.

(a) Beam 1 (b) Beam 2

(c) Beam 4 (d) Beam 3

Figure 8.2: Real time velocity minus smooth velocity for Method 1 without position updates.

8.3 Error in navigational position

The navigational error of the navigational system is depicted in figure 8.3.
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Figure 8.3: The standard deviation for the filters position estimate. The standard deviation in x
and y are approximately the same (the difference is in the 103 range).

8.4 Filter Consistency Test

In accordance with 2.5.1, the histograms of the squared innovations are shown in figure 8.4 with

corresponding Gaussian values in table 8.1.

(a) Beam 1 (b) Beam 2

(c) Beam 4 (d) Beam 3

Figure 8.4: NIS for all velocity beams for Method 1 without position updates



CHAPTER 8. METHOD 1: EXCLUDING POSITION UPDATES 46

µ̂ σ̂

Beam 1 -0.0077 0.5740

Beam 2 -0.0076 0.5746

Beam 3 0.000473 0.5792

Beam 4 0.0027 0.5800

Table 8.1: Standard deviation and mean based off of the fitted Gaussian distribution from figure
8.4

8.5 Performance of Method 1

The difference between measured velocity and real time estimated velocity is plotted in figure

8.1. Comparing the means in 8.1 to figure 7.2, a slight decrease is registered. This suggests that

the error is on average closer to zero without position updates than without positioning aiding.

Note that the actual beam measurements do not change; only the estimates.

The real time estimated velocity minus the smoothed velocity in figure 8.2 has a different

trend than in figure 7.5. As the AUV travels along straight lines the error move away from zero.

This phenomenon is not unexpected, as position updates are disabled. The error canceling

effect when the AUV changed direction is still present, as the error moves towards zero at times

of turning. The error in Beam 1 and Beam 2 are generally negative, which means that the filter

overestimates the velocity 5.4. Similarly, Beam 3 and Beam 4 underestimates the velocity during

these time periods.

The navigational error shown in figure 8.3 increases steeply right after the position measure-

ments are disabled. The relatively small increases in navigational error is due to the canceling

effect of changing direction. At its peak the navigational error is approximately 24 meters.

The filter consistency check for Method 1 reports slight increases in the mean and standard

deviations compared to 7.1, except for the standard deviation in beam 3 and 41. The charac-

teristics of the fitted Gaussians in table 8.1 implies that the normalized square innovations are

Gaussian, but the small standard deviations suggests also that for Method 1 the measurement

noise is too high.

1To the precision of 4 decimals.



Chapter 9

Method 2: Excluding Position Updates

This chapter presents how the current DVL readings are implemented and which problems are

present. Figures from the real-time test will be included to illustrate the problems.

9.1 Error in Real Time Estimated Velocity

The real error in real time estimated velocity is shown in figure 9.1.

(a) x-velocity error (b) y-velocity error

(c) z-velocity error

Figure 9.1: Real-time estimated and smooth velocity error
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9.2 Real time Velocity minus Smooth Velocity

The real time velocity minus the smooth velocity is depicted in figure 9.2.

(a) Estimated real time velocity minus smooth ve-
locity in x direction

(b) Estimated real time velocity minus smooth ve-
locity in y direction

(c) Estimated real time velocity minus smooth ve-
locity in z direction

Figure 9.2: Estimated real time velocity minus smooth velocity for Method 1 without position
updates.

9.3 Estimated error in navigational position

The estimated navigational positioning for Method 2 without position updates is shown in figure

9.3
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Figure 9.3: The standard deviation for the filters position estimate. The difference between the
x and y position error is so small (in the 10−3 range), so only the x position error is listed.

9.4 Filter Consistency test

The squared innovation referenced in section 2.5.2 is performed on the data set.

(a) Direction x (b) Direction y

(c) Direction x

Figure 9.4
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The resulting values for the fitted Gaussians in table 9.1.

µ̂ σ̂

Innovation Stage X -0.0023 0.9697

Innovation Stage Y 0.0023 0.9783

Innovation Stage Z 0.0056 0.3509

Table 9.1: Means (µ̂) and standard deviations (σ̂) of the fitted Gaussian distribution (red line in
figure 9.4

9.5 Performance of Method 2

The real time estimated velocity error is depicted in figure 9.1. Apart from the velocity error in

the z-direction, the velocity errors are more erratic during vehicle turns than in 8.1. In addition

to the larger fluctuation, the mean real-time velocity error for Method 2 is many times smaller

than using Method 1. The smoothed estimate has a higher mean value in 9.1a and 9.1b on

account of the large error spikes.

The difference between the real time velocity and the smoothed velocity is shown in figure

9.2. The error has higher extreme points than in 8.2, but remains closer to zero during straight

trajectories.

The navigational error has the same tendencies as with 8.3, but the error increases slower

during the absent of position updates. Reaching a maximum of 15 meters before the position

updates are resumed.

The filter consistency check done in 9.4 shows that the innovations for stage Z and Stage

Y are very near Gaussian. Indicated by the standard deviation in 9.1, the measurement noise

added to the covariance is the right amount. Stage 3 has a low standard deviation.



Chapter 10

Conclusions, Discussion, and

Recommendations for Further Work

10.1 Discussion

The work presented in this thesis focuses on specific challenges related to underwater naviga-

tion by the use of AUVs and how the Doppler Velocity Log connected to the AUV vessel per-

form for different integration methods. Analyses and simulations were carried out by the use

of NavLab, which is a flexible and generic aided inertial navigation software application devel-

oped by Kongsberg Maritime. NavLab is implemented in Matlab, and is used for performing

navigation calculations for navigational purposes. The pre- and post-processing of data mea-

surements as well as analyses performed in this thesis are therefore performed by the use of

Matlab and NavLab. Particular attention was given to the velocity measurements from the DVL

device, as the velocity measurements bounds the velocity error of the navigation system, which

in turn only lead to constant increase in position standard deviation.

The method currently used in Kongsberg Maritime is an cartesian integrated DVL. This method,

referred to as Method 2, and converts the DVL measurements along x,y,z velocities prior to being

inputted to the Kalman filter. However, by inputting the raw DVL measurements to the Kalman

filter, navigation position error may increase or decrease compared to Method 2. By imple-

menting such a method, it is possible to assess whether Method 2 can be improved or should

be replaced with a new method for performing velocity estimations in a more sufficient man-

ner. Such a method is proposed in this thesis, and is referred to as tightly integrated DVL, herein

Method 1.

The investigated challenges were concretized into 3 main objectives:

1. Examine the feasibility of a tightly integrated DVL approach.

2. Compare the performance of the current DVL implementation with the tightly integrated
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implementation.

3. Evaluate if a tightly integration requires further testing

Based on the reported performance of Method 1 presented in chapter 8.5this method is still

in the development phase and requires further testing with both simulated data and real mea-

surements in order to be able to exceed the method Kongsberg is currently using in terms of

performance and accuracy.

Some of the key findings are discussed in the following section.

Measurement noise contribution to the covariance is not tuned, meaning the system deems

estimates to be more accurate than what the estimates actually are. Under operation during

position update blackouts, i.e. when the position update sensors are not receiving information,

Method 2 is far superior to Method 1. This conclusion is based on the navigational error output

from Method 2 being almost 10 meters less compared to Method 1. The Kalman filter is also suf-

ficiently tuned for Method 2, meaning that the Kalman filter dynamics are adjusted for optimal

performance and minimal navigational error output. It should be emphasized that the Kalman

filter in Method 1 is not tuned, meaning that the results presented in chapter 8 are to some ex-

tent affected by sources of errors caused by surpassing the step where the Kalman dynamics are

tuned.

The Kalman filter is tuned to operate with velocity measurements in x-, y-, and z-direction,

as is seen in the standard deviation of the innovations in table 9.1. The standard deviation in x-

and y-direction are very close to 1, i.e. filter innovations are approximately Gaussian. Therefore

it is of interest to tune the measurement noise towards a standard deviation of 1 in Method 1,

and reassess the situation.

The nonlinearities present in the process dynamics for the AUV model for the two methods

can in certain situations be of significant magnitude. For such situations, a different Kalman

implementation might be required to account for errors caused by higher order nonlinearities.

In the Extended Kalman filter (EKF), the state distribution is estimated using a Gaussian ran-

dom variable, which is then propagated analytically through the first-order linearization of the

nonlinear system. This approach can be the source of large errors in the true posteriori mean

and covariance of the transformed Gaussian random variable. Sub-optimal performance and

sometimes divergence in the filter may be the result of such errors. The Unscented Kalman Fil-

ter (UKF) approaches this issue by using a deterministic sampling approach: Here a minimal

set of chosen sample points are used to represents the state distribution, which fully capture

the true mean and covariance of the Gaussian random variable. When the variable is processed

through the true nonlinear system, the posterior mean and covariance are accurately estimated

to the third degree for any nonlinearity Wan and Rudoplh (2000). The UKF is more computa-

tionally heavy compared to the EKF, meaning that during times where the non-linearity are of a
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low order, the UKF imposes unnecessary burdens on the system, reducing the efficiency of the

computations. The nonlinearities are not of sufficient order to warrant the use of a UKF.

The result presented in chapter 7, 8, and 9 are based on recorded data from an AUV mission

test, provided by Kongsberg Maritime. Real data from an actual mission allows for ambigui-

ties into the system, such that the values of the estimated velocities, position bias, and error in

velocity actually are real values, not values from numerical simulations.

The main focus in this thesis has been on testing the performance of the two methods on real

sensor data. It is of further interest to perform simulations using simulated trajectories, velocity

changes, position updates, and acceleration changes in order to perform qualitative studies be-

tween the two methods to strengthen the evaluation basis. By performing simulations based on

simulated measurements it is possible to better assess the performance when applying Method

1 to more complex situations, such as including different trajectories and different output from

the DVL and the other sensors, such as position, depth, vehicle orientation. By using simulated

values as input for the estimated variables, the true values are known with 100% accuracy and

thus a better understanding of the errors and the sources of errors can be deduced.

10.2 Conclusions

Accurate real time velocity approximations are important to ensure restricted position drift of

underwater vehicles (UV). Inaccurate velocity measurements is a major source of errors which

causes biases in the position estimates. A tightly integrated Doppler Velocity Log (DVL) solution

was implemented and tested on real data, as an alternative to the already implemented DVL

solution. The proposed implementation was proven to be a feasible method, as the Extended

Kalman filter (EKF) was able to estimate velocities in transducer beams with an approximate

mean errors of 0.2%. The navigational error did not decrease when using Method 1, relative to

Method 2. However, the EKF was not tuned for Method 1, meaning that the internal Kalman

filter dynamics for Method 1 presented in this thesis are not sufficiently accounted for.

The EKF was not tuned for Method 1, meaning that the Kalman filter performs incorrect

weighting of the internal states in the filter, which is a source of error affecting the filter out-

put. Based on this, further testing should be done to evaluate the applicability and reliability of

Method 1.

Whether Method 1 is superior to Method 2 is inconclusive in this study. However, the impor-

tant issue of Extended Kalman filter tuning in Method 1 has been illuminated, and the tightly

integrated Doppler Velocity Log was tested on real data and successfully demonstrates velocity

estimation in transducer beams. The work presented in this thesis forms a solid foundation for

further research within the field of velocity and position estimation for AUVs in Kongsberg Mar-

itime and continuous advancements of operations in the multitude of fields that benefit from
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AUVs and DVL system navigation.

10.3 Recommendations for Further Work

As the Kalman filter dynamics for Method 1 presented in this thesis are not satisfactory ac-

counted for , further testing should be done to evaluate the applicability, reliability, and robust-

ness of Method 1. With the groundwork of this thesis in mind, the testing should include the use

of a simulator and finer tuning of the EKF. A normalized innovation squared (NIS) test should

be done to further evaluate the consistency of accurate estimates from the Kalman filter, as the

test in section 2.5.2 did not account for the values off the diagonal.
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Supplementary information

A.1 The Doppler effect

The Doppler effect is a change in the observed sound pitch that results from relative motion

Indstruments (1996). An example to illustrate this is a honking car moving towards an observer.

As the car approaches, the honk has a higher pitch, and a lower pitch when the car has passed.

As the change in pitch is proportional to the velocity of the car, it is possible to calculate the

velocity of the car. The standard equation for calculating the frequency shift is:

∆ f = f0 · v

c
(A.1)

where ∆ f is the frequency shift caused my relative motion, f0 is the frequency to the outgoing

signal, v is the relative velocity from the signal source to an observer, and c is the speed of sound.

A.2 Gyrocompassing

Gyrocompassing is a method of finding orientation about the vertical axis of the Earth. The

method is non-metalic as it uses gyros instead of the magnetic field of the Earth. Orientation is

found by measuring the direction of Earth’s axis of rotation relative to inertial space ~ωI E .

As gyrocompassing does not rely on magnetism, the method has significant advantages over

regular compasses: true (geographical) north is found as opposed to magnetic north, and the

gyroscopic measurement is not affected by local magnetic fields, such created by the iron in a

ships steel hull.

55
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A.3 Differentiating of coordinate vectors

A coordinate vector is time differentiated by time differentiating the components of the vector

u̇L = d

d t
(uL) = d

d t

[
u̇L

1

u̇L
2

]
(A.2)

The time derivative in frame L in relation to frame B is found defined by the equation

kL = RL
B kB (A.3)

when time differentiated becomes

k̇L = RL
B k̇B + ṘL

B kB (A.4)

Inserting ṘL
B = RL

B S(ωB
LB kB ) from (Egeland and Gravdahl, 2002) and replacing k with the position

vector p yield the expression

vL = RL
B (v̇B +S(ωB

LB )pB ) (A.5)

where p is a coordinate distance vector and v is a coordinate velocity vector.

A.4 Calculation of angular velocityωL
EL if necessary

(Gade, 1997) shows that for the wandering azimuth L-system (AZI) to only rotate around its x-

and y- coordinates in relation to the Earth, the vertical part of~ωEL must always be equal to zero.

If the Earth is modeled as a sphere, the angular velocity of L with respect to Earth, is

ωL
EL = 1

rEB
(uL

EB ×vL
EB ) = 1

rEB
(S(uL

EB )vL
EB ) (A.6)

In some navigation standards, namely WGS-841, the Earth is modeled as a ellipsoid. rEB is the

length of the vector spanning from the center of the Earth, to the center of the Body-system. In

other words, rEB is equal to the radius of the Earth, minus the depth of the vehicle.

rEB = 6371km − z

where z is the depth of the AUV. Recall that depth is positive downwards. See appendix A.5 for

clarification why the depth of the water is not included.

The vector uL
EB is the unit vector from the origin of the body-system, to the origin of the

1World Geodetic System
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earth-system. This vector is equivalent to the unit vector from the origin of the L-system, hence

uL
EB = uL

EL =
[

0 0 −1
]T

Figure A.1: The unit vector uL
EB together with the orientation of the L-system.

A.5 Distance from center of Earth to AUV

The actual expression for the rEB is

rEB = rE ar th +d − z (A.7)

where the values are as seen in figure A.2. However, the water depth d can be removed from the

Figure A.2

calculation of z as it is so small when compared to the radius of the Earth. Consider if the tokt

was done in Norways deepest fjord, Sognefjorden (with a depth of 1303 meters). The depth of

the AUV is set to 150 meters under the water surface,
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rEB =
6371∗103m +1303m −150m = 6372153m if d included

6371∗103m −150m = 6370850m without d
(A.8)

The difference in rEB is approximately 0.02%. Such a small error does not warrant the depth of

the water to be included when calculating rEB .

A.6 Normalized Innovation Squared (NIS) test

The Normalized Innovation Squared (NIS) test for Kalman filters are according to Houts, Sarah

E et al. (2013) based on the assumption that the normalized innovations will during normal

conditions (no sensor dropouts) have unit variance. The Kalman filter innovation is defined as

the difference between the measurement and the estimated measurement. This is defined by

the following expression.

νk = ỹk − ŷk (A.9)

The covariance Sk is equal to

Sk = Rk +Hk P̂k (H)T
k (A.10)

where Rk is the measurement covariance shown in 2.5a, Hk is the measurement vector calcu-

lated in 5.15, Pk is the predicted state covariance as seen in 2.9.

The normalized innovation is then defined for time step k as

N I Sk = νk S−1
k (νk )T (A.11)

The null-hypothesis is defined as

H0 : E [νk ] = 0 (A.12)

The null-hypothesis assumes that samples observation are produced by randomly, such that the

expected value of the innovations are zero. The null-hypothesis are tested against an alternative

hypothesis

Ha : E [νk ] 6= 0 (A.13)

The statistic test N I Sk follows an χ2 distribution with the probability relationship

P {N I Sk ≤χ2
m,1−α|H0} = 1−α (A.14)

where m is the number of measurements (degrees of freedom) α is the significance level. If
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N I Sk < χ2
m,1−α then equation A.12 is accepted. Gamse et al. (2014) concluded that if equation

A.12, then there are no significant discrepancy between a system prediction and measurement.

Subsequently, if the statement expressed in A.12 is rejected, the innovation discrepancy may be

rooted in the measurements, the model estimate, or in the system model used in the Kalman

filter.
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Verifications

B.1 The measurement matrix Hk

The measurement matrix Hk can be verified by controlling the expression

h(R̂L
B , v̂L

EB )−h(RL
B ,vL

EB ) ≈ Hδx (B.1)

The procedure for doing so is

1. Choose reasonable1 RL
B , vL

EB , δvL
EB , and eL

LB

2. Calculate v̂L
EB = vL

EB + δvL
EB

3. Calculate R̂L
B = S(eL

LB ) ·RL
B

4. Find δx = [eL
LB ;δvL

EB ]

5. Controll equation B.1

Verification with plausible parameters

Say that

RL
B =


cos45 −si n45 0

si n45 cos45 0

0 0 1



vL
EB =


10

4

2


1 eL

LB and δvL
EB should be in the 10−5r ang e
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δvL
EB = 10∗−5


5

0.5

0.15



eL
LB = 10∗−5


8.256

2

56


The estimated velocity v̂L

EB is then

v̂L
EB = vL

EB +δvL
EB =


10.00005

4.000005

2.0000015

 (B.3)

The estimated rotation matrix R̂L
B is

R̂L
B = RL

B +S(eL
LB )RL

B =


0.7067 −0.7075 2.0000∗10−5

0.7075 0.7067 −8.2560∗10−5

4.4237∗10−5 7.2521∗10−5 1

 (B.4)

δx is

δx =
[

(eL
LB )T

δvL
EB

T

]
(B.5)

Insertion of the aforementioned values into B.1 yields that both the right hand side and the

left hand side is approximately equal to 0.0024. The measurements matrix Hk is verified.
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