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Abstract—The average value model of the Modular Multilevel
Converter (MMC) is in general non-linear with time periodic
variables. Recent developments demonstrated how the MMC
model can be transformed into a a Steady-State Time Invariant
(SSTI) representation allowing for linearization of the model.
While previous modeling efforts for small-signal eigenvalue
analysis considered mainly the classical Circulating Current
Suppressing Controller (CCSC), this paper presents an approach
for representing a complete energy-based control system in a
set of Synchronously Rotating Frames (SRFs). This is obtained
by separating the state variables according the their frequency
components and applying corresponding Park transformations.
The resulting model is based on existing controllers implemented
in the stationary abc frame, and enables small-signal stability
studies of MMCs with such control systems. Simulations results
comparing an EMT type MMC model with the complete SSTI
system validate the proposed approach.

Index Terms—HVDC Transmission, Modular Multilevel Con-
verter, State-Space Modelling, Energy control, Park transforma-
tions.

I. INTRODUCTION

The Modular Multilevel Converter (MMC) has emerged as
the most suitable Voltage Source Converter (VSC) topology
for HVDC transmission systems [1]. Modelling and controlling
the MMC can be considered in general as more challenging
compared to two- or three-level VSCs. In particular, MMCs
are characterized by additional internal dynamics, related to
the internal circulating currents as well as the voltages of the
internal distributed capacitors in each arm [2]. Furthermore,
multiple frequency components inherently appear in the internal
state variables of the MMC [3]. This complicates the procedure
of obtaining state-space models with a Steady-State Time-
Invariant (SSTI) representation, according to the modelling
approaches commonly applied for two-level VSCs [4].

Recently, modeling approaches for obtaining SSTI state-
space representation of MMCs in eigenvalue-based small-signal
stability analysis of HVDC systems have been proposed in [5],
[6]. However, the models in [5] and [6] considered only the
case of a classical Circulating Current Suppressing Controller
(CCSC) from [7]. With such classical CCSC, it was shown
in [8] that the lack of control of the output DC current may

cause undesired oscillations and even stability issues. For this
reason, more advanced controllers should be considered.

The results in [8] indicate that controllers with explicit
control of the internally stored energy of the MMC can
be beneficial for avoiding poorly damped dynamics. Such
control strategies usually rely on per-phase control loops in the
stationary frame, as in [9]. Thus, the control strategies cannot
be directly expressed by a SSTI state-space representation. In
this paper, a methodology is proposed for transforming MMC
control loops implemented in the stationary (abc) frame into a
set of rotating (dqz) reference frames. The presented procedure
and the resulting representation of the energy-based control
system can be combined with the MMC model from [8] to
obtain an SSTI representation and a linearized small-signal
model of an MMC-based HVDC converter station. The validity
of such an SSTI model is confirmed by comparison to the
results from a detailed time-domain simulation model of the
MMC model with the assumed control system implemented in
the stationary frame.

II. MODULAR MULTILEVEL CONVERTER

A. Arm Averaged Model (AAM) in abc frame

The topology of a three-phase MMC is recalled in Fig. 1.
Each phase, j = a, b, c of the converter consists of a leg, having
an upper and a lower arm with N submodules (SMs) connected
in series. Assuming that all the SMs capacitors voltages in
an arm are maintained in a close range, each arm can be
represented by an equivalent model, corresponding to the Arm
Averaged Model (AAM) shown in Fig. 1 for the lower arm of
phase c. Each arm includes an inductance Larm, an equivalent
resistance Rarm and a capacitor Carm [10].

For deriving the current dynamics of the AAM, the modula-
tion indexes m∆

j and mΣ
j as well as modulated voltages v∆mj

and vΣmj are introduced as follows [9]:

m∆
j

def= mU
j −mL

j , mΣ
j

def= mU
j +mL

j (1)

v∆mj
def= (−vUmj + vLmj)/2, vΣmj

def= (vUmj + vLmj)/2 (2)

The MMC currents can be expressed as in (3).
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Fig. 1. MMC topology and Arm Averaged Model (AAM).

i∆j
def= iUj − iLj , iΣj

def= (iUj + iLj )/2 (3)

where i∆j corresponds to the AC grid current, and iΣj is the
common-mode current flowing through the upper and lower
arm. The DC-side current idc is given by the sum of the three
currents iΣj .

The AC grid current dynamics are expressed as:

Lac
eq

di∆j
dt

= v∆mj − vGj −Rac
eqi

∆
j (4)

where Rac
eq

def= (Rarm + 2Rf )/2 and Lac
eq

def= (Larm + 2Lf )/2.
The common-mode arm currents dynamics are given by:

Larm

diΣj
dt

=
vdc
2

− vΣmj −RarmiΣj (5)

Finally, the arm capacitors dynamics are given by:

2Carm

dvΣCj

dt
= m∆

j

i∆j
2

+mΣ
j i

Σ
j (6)

2Carm

dv∆Cj

dt
= mΣ

j

i∆j
2

+m∆
j i

Σ
j (7)

where v∆Cj
def= (vUCj − vLCj)/2 and vΣCj

def= (vUCj + vLCj)/2.
In steady state, the fundamental frequency of the “∆”

variables is the grid frequency ω, while the “Σ” variables
contain a component at −2ω and a DC-component [6]. Thus,
the variables can be classified as:

• “∆” Variables oscillating at ω: i∆j , v∆mj , m∆
j , v∆Cj .

• “Σ” Variables oscillating at −2ω: iΣj , vΣmj , mΣ
j , vΣCj .

The energy sum WΣ
j is calculated as follows:

WΣ
j =

1

2
Carm

((
vΣCj

)2
+
(
v∆Cj

)2)
(8)

The energy sum WΣ
j is oscillating mainly at −2ω, and its

average value is noted as W
Σ

j . The energy difference is
calculated as:

W∆
j =

1

2
Carm

(
2vΣCjv

∆
Cj

)
(9)

The energy difference W∆
j is oscillating mainly at ω, and its

average value is noted as W
∆

j .

B. Energy-based controller in mixed reference frames

In this section, the assumed MMC control strategy based on
the explicit management of the internal energy is presented.
For the proper operation of the MMC, the high-level controller
must fulfill, in steady state, the specifications illustrated in
Fig. 2:

1) Match AC and DC power flows - Fig. 2(a): Pac ≈ Pdc.
2) Horizontal balancing - Fig. 2(b): The average stored

energy of each phase-leg W
Σ

j should be controlled.
3) Vertical balancing - Fig. 2(c): The energy difference

between the upper and lower arm capacitors W
∆

j should
be controlled.
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Fig. 2. Control specifications: graphical description

An overview of the structure for a typical Energy based
control strategy which verifies the aforementioned specifications
is shown in Fig. 3 [9]. In this figure, bold symbols denote
vectors. For the AC-side the classical MMC control strategy
is based on two cascaded loops. The outer loops controls the
active power Pac and reactive power Qac. The inner loops
control the AC currents in dq frame. The currents i∆d and i∆q
are controlled to their references by PI controllers.
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Fig. 3. General scheme Energy based control

For controlling the energy sum W
Σ

j for each phase, three
independent PI controllers are implemented. The average value
W

Σ

j is obtained with a second-order notch filter tuned at 2ω
[11]. Setting the same energy reference for each phase (i.e.
W

Σ∗
a = W

Σ∗
b = W

Σ∗
c ), the specification from Fig. 2(b) is

assured. These controllers generate the DC component of the
common-mode current references iΣ∗

j,dc for the corresponding
phase. The detail of the controller structure is shown in Fig. 4.
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The energy difference controller is depicted in Fig. 5, where
V G is the RMS value of the AC grid voltage, R is defined in
(10) and K is defined in (11) . This controller guarantees the
specification 3 (i.e. vertical balancing). The control details can
be found in [12].
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Fig. 5. Energy difference controller

R =
√
2

cos (ωt) 0 0
0 cos

(
ωt− 2π

3

)
0

0 0 cos
(
ωt− 2π

3

)
 . (10)

K =

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1

 (11)

The three common-mode currents (for each phase j) are
corrected to their references via PI controllers as well [11].
Finally, the modulation signals mU

j and mL
j are obtained

according to:

mU
j =

−v∆∗
mj − vΣ∗

mj

vdc
+

1

2
, mL

j =
v∆∗
mj − vΣ∗

mj

vdc
+

1

2
(12)

III. NON-LINEAR TIME-INVARIANT MODEL USING Σ-∆
REPRESENTATION

This section recalls the time-invariant model of the MMC
with voltage-based formulation as proposed in [6] and derived
from (4), (5), (6) and (7). To achieve a time-invariant model,
it is necessary to refer the MMC variables to their correspon-
ding SRFs. For generic variables xΣ and x∆, time-invariant
equivalents are obtained with the Park transformation defined
in (13) as:

ω ⇒ x∆
dqz

def=
[
x∆
d x∆

q x∆
z

]>
= Pω

[
x∆
a x∆

b x∆
c

]>
−2ω ⇒ xΣ

dqz
def=

[
xΣ
d xΣ

q xΣ
z

]>
= P−2ω

[
xΣ
a xΣ

b xΣ
c

]>

Pnω = 2
3

 cos(nωt) cos(nωt− 2π
3 ) cos(nωt− 4π

3 )
sin(nωt) sin(nωt− 2π

3 ) sin(nωt− 4π
3 )

1
2

1
2

1
2

 (13)

Although the “Σ-∆” components are classified according to
their dominant oscillation frequency, the Σ and ∆ quantities are

not fully decoupled. This results in time-periodic variables in
the equations after applying the above transformations. For the
Σ variables, time-periodic terms at 6ω are neglected without
compromising the accuracy of the model [6]. Furthermore, the
zero sequences of the vectors in “∆” present time-periodic
terms at 3ω. This component was modeled in [6] by means
of an auxiliary virtual variable, 90° shifted from the real one,
and by using a Park transformation at +3ω to achieve time
invariant signals.

3ω+ ⇒ x∆
Z

def=

[
x∆
Zd

x∆
Zq

]>
= P3ω

[
x∆
z x∆90°

z

]>
Using the above definitions, the MMC dynamics in their

“Σ-∆” representation can be rewritten in a time-invariant form.
An overview of the model structure corresponding to the MMC
and DC bus equations is shown in Fig. 6 (See [8]).
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Fig. 6. MMC model with Steady-State Time-Invariant Solution

A. Energy sum calculation in dqz frame

Taking into account (8), the three-phase energy sum
WΣ

abc = [WΣ
a , WΣ

b , WΣ
c ]> is calculated as:

WΣ
abc =

1

2
CarmP −1

−2ωv
Σ
Cdqz⊗P −1

−2ωv
Σ
Cdqz... (14)

....+
1

2
CarmP −1

ω v∆
Cdqz⊗P −1

ω v∆
Cdqz

where
vΣ
Cdqz = [vΣCd, v

Σ
Cq, v

Σ
Cz]

>; (15)

v∆
Cdqz =

[
v∆Cd, v

∆
Cq, v

∆
Cz

]>
(16a)

v∆Cz =
(
v∆CZd

cos(3ωt) + v∆CZq
sin(3ωt)

)
(16b)

It is worth noticing that the operator “⊗” corresponds to an
element-wise multiplication of vectors (e.g. [ ab ]⊗[

c
d ] = [ acbd ]).

Multiplying (14) by P−2ω and neglecting the 6th harmonic
component (19) is obtained (at the bottom of the following
page).

B. Energy difference calculation in dqz frame

Taking into account (9), the three-phase energy difference
vector W∆

abc = [W∆
a W∆

b W∆
c ]> is calculated as:

W∆
abc = Carm

(
P −1

−2ωv
Σ
Cdqz⊗P −1

ω v∆
Cdqz

)
(20)
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Multiplying (20) by Pω , the expression of W∆
dqz is obtained

as in (21).

W∆
dqz = CarmPω

(
P −1

−2ωv
Σ
Cdqz⊗P −1

ω v∆
Cdqz

)
(21)

The results for the dq components from (21) are time-
invariant after neglecting the 6th harmonic component. However,
the zero-sequence is pulsating at 3ω, as shown in (22). The
same technique as for the zero-sequence component of v∆Cz

may be applied as explained in [6], i.e. creating a virtual system
from (22): W∆

Zd
and W∆

Zq
.

W∆
z = Carm

(
v∆Cdv

Σ
Cd + v∆Cqv

Σ
Cq + 2v∆CZd

vΣCz

)
cos(3ωt) + ...

(22)

...+ Carm

(
v∆Cqv

Σ
Cd − v∆Cdv

Σ
Cq + 2v∆CZq

vΣCz

)
sin(3ωt)

The complete expression of W∆
dqZ is given in (23) (at the

bottom of this page).

IV. SSTI-SRF REPRESENTATION OF STATIONARY FRAME
ENERGY-BASED CONTROLLERS

For obtaining the full representation of the system in SRF
frame, it is still needed to reformulate the part in stationary
frame of the control structure of Fig. 3. This is achieved by
referring each part of the controllers to their corresponding
SRFs:

• Common-mode current controllers at −2ω.
• Energy sum controllers and averaging filters at −2ω.
• Energy difference controllers and averaging filters at ω.

A. Example of transformation from abc to dqz

In order to illustrate the methodology, the following subsecti-
ons explains the reformulation of a generic set of three-phase
PI controllers in the abc frame, and a second-order notch
filter used to extract the average value of the per-phase energy
components.

1) Generic PI controller: As an example, let us consider
the generic three-phase PI controller in abc frame from Fig. 7.
It is controlling the variables Xabc = [Xa Xb Xc]

> to
their references X∗

abc = [X∗
a X∗

b X∗
c ]

>. The outputs of the
controllers are Yabc = [Ya Yb Yc]

>, and the states of the
integral parts are ξabc = [ξa ξb ξc]

>. It is considered that the
variables Xabc are pulsating at an angular frequency nω.

The reformulation of the generic PI from Fig. 7 to the SRF
frame at nω is performed in two steps. First, the integral part
of the controller is obtained and second, the controllers output.

X∗
a +

−
X∗
b
X∗
c

Xa
XbXc

Kp

1
Tis

+
ξc

Ya
Yb
Yc

Fig. 7. Generic three-phase PI independent controllers in abc frame

The differential equation of the integral part is:

Ti
dξabc
dt

= X∗
abc −Xabc (24)

This equation can be related to the dqz components at nω as,

Ti

dP −1
nωξ

nω
dqz

dt
= P −1

nωX
nω∗
dqz − P −1

nωX
nω
dqz (25)

where

ξnω
dqz = Pnωξabc;X

nω
dqz = PnωXabc;X

nω∗
dqz = PnωX

∗
abc (26)

Expanding (25) and multiplying by Pnω results in (27).

Ti

dξnω
dqz

dt
= Xnω∗

dqz −Xnω
dqz − Ti Pnω

dP −1
nω

dt︸ ︷︷ ︸
Jnω

ξnω
dqz (27)

where the coupling matrix Jnω is given by:

Jnω
def=

 0 nω 0
−nω 0 0
0 0 0

 (28)

The output of the controller in abc frame is expressed as,

Yabc = ξabc +Kp (X
∗
abc −Xabc) . (29)

With the definitions given in (26), (29) may be written as,

Yabc = P −1
nωξ

nω
dqz +Kp

(
P −1

nωX
nω∗
dqz − P −1

nωX
nω
dqz

)
(30)

Multiplying (30) by Pnω yields,

WΣ
dqz =

WΣ
d

WΣ
q

WΣ
z

 =
1

2
Carm


(
v∆Cd

)2 − (
v∆Cq

)2
+ 2v∆CZd

v∆Cd + 2v∆CZq
v∆Cq + 4vΣCdv

Σ
Cz

2v∆Cqv
∆
CZd

− 2v∆Cdv
∆
CZq

− 2v∆Cdv
∆
Cq + 4vΣCqv

Σ
Cz(

v∆Cd

)2
+
(
v∆Cq

)2
+
(
v∆CZd

)2
+

(
v∆CZq

)2

+
(
vΣCd

)2
+
(
vΣCq

)2
+ 2

(
vΣCz

)2
 (19)

W∆
dqZ =


W∆

d

W∆
q

W∆
Zd

W∆
Zq

 = Carm


v∆Cdv

Σ
Cd + 2v∆Cdv

Σ
Cz − v∆Cqv

Σ
Cq + v∆CZd

vΣCd − v∆CZq
vΣCq

2v∆Cqv
Σ
Cz − v∆Cqv

Σ
Cd − v∆Cdv

Σ
Cq + v∆CZd

vΣCq + v∆CZq
vΣCd

v∆Cdv
Σ
Cd + v∆Cqv

Σ
Cq + 2v∆CZd

vΣCz

v∆Cqv
Σ
Cd − v∆Cdv

Σ
Cq + 2v∆CZq

vΣCz

 (23)
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Y nω
dqz = ξnω

dqz +Kp

(
Xnω∗

dqz −Xnω
dqz

)
(31)

The complete PI structure in dqz frame at nω is determined
by (27) and (31). These results are expressed in block-diagram
form in Fig. 8.
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+
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+

+

−

+

−

+

+
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1
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Fig. 8. Generic three-phase PI controllers from Fig. 7 in dqz frame

The model from Fig. 8 is the result of applying the Park
transformation to the three-phase PI controllers from Fig. 7. It
can be noted that the cross-couplings in the model represents
the phase-shift resulting from the application of PI controllers
for tracking sinusoidal signals, and should not be confused
with decoupling terms in a dq current controller.

2) Second order notch filter: The filters used for the energies
WΣ

abc and W∆
abc are second order notch filters tuned at their

corresponding frequencies. As an example, let us consider the
three phase signals Uabc = [UaUbUc]

> and the filtered values
Y abc = [Y aY bY c]

>. The second order transfer function of
the notch filter for the phase j is:

Y j

Uj
=

s2 + ω2
n

s2 + 2ζωns+ ω2
n

(32)

where ωn is the natural frequency and ζ is the damping
coefficient. Equation (32) may be written as a second order
differential function as:

d2Y j

dt2
+ 2ζωn

dY j

dt
+ ω2

nY j =
d2Uj

dt2
+ ω2

nUj (33)

Choosing the following state variables:

F1j
def= Y j − Uj (34a)

F2j
def=

dY j

dt
− dUj

dt
+ 2ζωnF1j + 2ζωnUj (34b)

The output of the notch filter can be obtained directly from
(34a). Derivating the states from (34) and generalizing for a
three-phase system it is obtained:

dF1abc

dt
= F2abc − 2ζωnF1abc − 2ζωnUabc (35a)

dF2abc

dt
= −ω2

nF1abc (35b)

Y abc = F1abc +Uabc (35c)

where F1abc = [F1aF1bF1c]
> and F2abc = [F2aF2bF2c]

>.
Equation (35) can be transformed into the SRF as:

dF1dqz

dt = F2dqz − 2ζωnF1dqz − 2ζωnUdqz − JnωF1dqz (36a)
dF2dqz

dt
= −ω2

nF1dqz − JnωF2dqz (36b)

Y dqz = F1dqz +Udqz (36c)

where F1dqz = [F1dF1qF1z]
>, F2dqz = [F2dF2qF2z]

>,
Udqz = [UdUqUz]

> and Y dqz = [Y dY qY z]
>. Equation (36)

summarizes the three-phase notch filter in dqz frame.

B. Energy sum controller reformulation

The PI controller and the notch filter expressed in dqz frame
are obtained with the methodology explained in section IV-A
with n = −2 applied to the controller and the filter from Fig. 4.

1) Averaging filter: The energy sum WΣ
abc is filtered to

obtain W
Σ

abc before sending the signals to the PI controller in
abc frame (Fig. 4) with a notch filter. Considering (36) and:

WΣ
abc = P −1

−2ωW
Σ
dqz; W

Σ

abc = P −1
−2ωW

Σ

dqz (37)

the notch filter of WΣ
dqz is expressed as in (38) with ωn = 2ω.

dFΣ
1dqz

dt = FΣ
2dqz − 4ζωFΣ

1dqz − 4ζωWΣ
dqz − J−2ωFΣ

1dqz (38a)

dFΣ
2dqz

dt
= −4ω2FΣ

1dqz − J−2ωF
Σ
2dqz (38b)

W
Σ

dqz = FΣ
1dqz +WΣ

dqz (38c)

2) PI controller: The PI controller expressed in dqz frame
is obtained with the methodology explained in IV-A1 with
nω = −2ω applied to the controller from Fig. 4. The result is
shown in (39). The controller output is expressed in (40).

TWΣ

i

dξW
Σ

dqz

dt
= W

Σ∗
dqz −W

Σ

dqz − TWΣ

i J−2ωξ
WΣ

dqz (39)

iΣ∗
dqz,dc =

 0
0

P∗
ac

3vdc

−
(
ξWΣ

dqz +KWΣ

p

(
W

Σ∗
dqz−W

Σ
dqz

))
vdc

(40)

The reference values for W
Σ∗
dq are set to zero while the zero-

sequence component W
Σ∗
z is set proportional to the desired

total energy stored in the MMC.

C. Energy-difference controller reformulation

1) Averaging filter: The energy sum W∆
abc is filtered

to obtain W
∆

abc before sending the signals to the PI
controller in abc frame with a notch filter (Fig. 5).
Considering the vectors W∆

abc and W
∆

abc, where the
zero-sequence components are expressed as a function
of their respectives Zd and Zq components: W∆

abc =

P −1
ω

[
W∆

d W∆
q W∆

Zd
cos(3ωt) +W∆

Zq
sin(3ωt)

]>
and
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W
∆

abc = P −1
ω

[
W

∆

d W
∆

q W
∆

Zd
cos(3ωt) +W

∆

Zq
sin(3ωt)

]>
;

the notch filter of W∆
dqZ in dqZ frame is expressed as:

dF∆
1dqZ

dt = F∆
2dqZ − JGF∆

1dqZ − 2ζω
(
W∆

dqZ + F∆
1dqZ

)
(41a)

dF∆
2dqZ

dt
= −ω2F∆

1dqZ − JGF∆
2dqZ (41b)

W
∆

dqZ = W∆
dqZ + F∆

1dqZ (41c)

where,

JG
def=

[
Cω 02×2

02×2 3Cω

]
; Cω

def=

[
0 ω
−ω 0

]
(42)

2) PI controller: The PI controller from Fig. 5 is referred
to the dqZ axes. The same procedure as before is used on the
zero-sequence component, where the state of the integral part
is now:

ξW
∆

dqZ =
[
ξW

∆

d ξW
∆

q ξW
∆

Zd
ξW

∆

Zq

]>
(43)

The result of the integral part is given in (44).

TW∆

i

dξW
∆

dqZ

dt
= W

∆∗
dqZ −W

∆

dqZ − TW∆

i JGξW
∆

dqZ (44)

The output of the PI controller is obtained applying the Park
transformation at ω and 3ω to the control law from Fig. 5,
which yields:

IΣ∗
dqZ,ac = − 1

V G

(
ξW∆
dqZ +KW∆

p

(
W

∆∗
dqZ −W

∆

dqZ

))
(45)

For multiplying the output of the energy-difference controller
by the matrix R and K defined in (10) and (11) respectively,
it is necessary to obtain the three-phase vector IΣ∗

abc,ac as a
function of the components dqZ, which is obtained as:

IΣ∗
abc,ac = P −1

ω

 IΣ∗
d,ac

IΣ∗
q,ac

IΣ∗
Zd,ac cos(3ωt) + IΣ∗

Zq,ac sin(3ωt)

 (46)

Note that the inverse Park transformation in Fig. (46) has a
frequency of ω and not 2ω as the other “Σ” variables. The
reason is that the frequency of the “ac” component of the
current iΣ reference used for balancing the W∆ is ω.

Finally, for obtaining the common-mode currents reference
in dqz frame, the Park transformation at 2ω is applied to the
controllers output from Fig. 5. The results are shown in (47)
where the 6th harmonic has been neglected.

P−2ωi
Σ∗′

abc,ac = P−2ω
(
KRIΣ∗

abc,ac

)
(47a)

iΣ∗′

dqz,ac =
3

2
√
2

IΣ∗
d,ac + IΣ∗

Zd,ac

IΣ∗
q,ac + IΣ∗

Zq,ac

0

 (47b)

D. Complete control structure

The complete control structure represented in dqz coor-
dinates shown in Fig. 9. The grid current controller for
i∆dq and modulation indexes calculations m∆

dq and mΣ
dqz is

performed in the same way as in [8]. The common-mode current
controllers for iΣdqz is obtained from Fig. 8 with n = −2ω.
The current and energy control loops are tuned for a response
time of 5ms and 50ms respectively.

iΣ∗
dq vΣ∗

mdq

m∆
dq

mΣ
dqz

Common-mode
current

controllers

i∆∗
dP ∗

ac

i∆∗
qQ∗

ac

vGd

2
3

2
3
vGd

v∆∗
mdq

i∆dq

iΣdq

WΣ
dq W

Σ

dq

iΣ∗
dq,dc

Notch Filter

W∆
dqZ

W∆
dqZ W

∆

dqZ

W
Σ∗
dq =0

W
∆∗
dqZ=0 iΣ∗′

dq,ac

+

+

÷

÷
Grid current
controllers

vdc

WΣ
z

WΣ
z

W
Σ

z

Energy
W

Σ∗
z

Common-mode
current

controller

iΣ∗
z,dc

(
iΣ∗′

z,ac = 0
)

iΣz

calculations

Modulation
indexes

vΣ∗
mz vΣ∗

mdq

decoupled zero-sequence

Notch Filter

WΣ
dq

WΣ
z

controller

controller
WΣ

dq

Energy

controller
W∆

dqZ

Energy

iΣz

iΣdq

(41)

(36)

Notch Filter

(36)

(39) – (40)

(44) – (47)

(39) – (40)

Fig. 9. Complete structure Energy based control in SRFs — Mathematical
equivalence of Fig. 3.

This controller resulted from the transcription of the scheme
from Fig. 3 to dqz frame. It is important to note that this
formulation highlights the decoupling of the z-sequence of the
energy sum WΣ

z (proportional to the total stored energy) and
the common-mode current iΣz (proportional to the DC current).

V. SIMULATION RESULTS

To validate the developed complete SSTI model of the
MMC with Energy based control, results from simulation of a
single converter with two different models will be shown and
discussed in the following:

1) EMT: The system from Fig. 1 implemented in EMTP-RV
with 400 SMs. The MMC is modeled with the so-called
“Model #2: Equivalent Circuit-Based Model” from [10].
The controller is implemented in abc frame (Fig. 3, [9]).

2) SSTI: Non-Linear Time-Invariant state-space model, with
the MMC dynamics represented according to Fig. 6 and
the control system represented according to Fig. 9.

Starting with an AC power transfer of 1pu, a step on Q∗
ac

of 0.1pu is applied at t = 20ms. At t = 120ms, a step on
P ∗
ac of −0.3pu is applied. Simulation results for the grid and

common-mode currents are gathered in Fig. 10 and the energy
sum and difference in Fig. 11. The error ε is calculated for each
variable y as ε(t) = |yEMT (t)− ySSTI(t)|, where yEMT (t)
is the time domain result of the EMTP-RV simulation and
ySSTI(t) is the result of the SSTI model.

The error computed for the grid currents i∆dq in Fig. 10(a)
is less than 0.3%, and the common mode currents iΣdq in
Fig. 10(b) the error is less than 1% in steady state and 2%
during transients. The currents iΣdq presents a steady-state value
different than zero, which results in a circulating current in
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Fig. 11. Time domain validation – Energy – EMT : EMTP-RV simulation,
SSTI: Non-linear time-invariant model in Simulink

 

 

 

 

εi∆q

εi∆d

i∆q - SSTIi∆d - SSTIi∆q - EMTi∆d - EMT

ε
i∆ d

q
×
1
0
−
3

Time [ms]

i∆ d
q

20 40 60 80 100 120 140 160 180 200
0

2

4
0

0.5

1

(a) Grid currents i∆dq pu

 

 

 

 

 

 

εiΣz

εiΣq

εiΣd

iΣz - SSTI

iΣz - EMT

iΣq - SSTI

iΣd - SSTI

iΣq - EMT

iΣd - EMT

ε
iΣ d

q
z
×
1
0
−
3

Time [ms]

iΣ z
iΣ d

q

20 40 60 80 100 120 140 160 180 200
0

10

20

0.2

0.3

0.4
−0.2

−0.1

0

0.1
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Fig. 10. Time domain validation – Currents – EMT : EMTP-RV simulation,
SSTI: Non-linear time-invariant model in Simulink

steady state inside the converter. There are two main reasons:
the use of Uncompensated-Modulation (UCM) [6] and the
natural coupling of the PI controllers in abc frame (Fig. 8).
Nevertheless, the same behavior is observed in both models,
validating the results. Finally, the error for iΣz is less than 0.2%.

Results from Figs. 10 and 11 proves the validity of the
proposed approach.

VI. CONCLUSIONS

This paper presented a modelling approach for obtaining
SSTI representation in a synchronous rotating frame of an
existing energy-based MMC control system implemented in
the stationary abc frame. This representation highlights the
decoupling of the total stored energy control (zero-sequence
of the energy-sum) and the direct-quadrature energies. The
resulting system was compared against a 401-level MMC
implemented in EMTP-RV, validating the obtained SSTI
representation of the MMC and the energy based controller.
The derived formulation of the energy controller may be a
starting point for developing improved energy-based control
structures for the MMC.
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