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Abstract

Regardless of whether the chosen figure of merit is execution time, throughput, bat-
tery life for an embedded system or total cost of ownership for a datacenter, today’s
computers are fundamentally limited by their energy efficiency. Using specialized
hardware-software solutions for particular applications or domains is a well-known
approach to increase energy efficiency of computing systems. Reconfigurable logic
in the form of Field-Programmable Gate Arrays (FPGAs) is a particularly promising
substrate for hardware specialization, owing to its runtime reconfigurability, vastly
parallel compute fabric and widespread availability. However, mapping computation
to reconfigurable logic in a way which provides performance and efficiency benefits is
a significant challenge due to the vast design space. In this thesis, we study how two
particular domains can benefit from specialized architectures on reconfigurable logic.
We focus on sparse linear algebra and deep neural network inference, whose execution
is known to be particularly problematic on today’s general-purpose computers.

For sparse linear algebra, lack of spatial and temporal locality in memory accesses
pose a fundamental problem. We address this problem by taking advantage of the
flexibility of reconfigurable logic to construct specialized memory systems. We propose
a hardware-software caching scheme which uses lightweight preprocessing to extract
key access pattern information from sparse matrices to offer greatly increased random
access efficiency with minimal on-chip memory usage. Furthermore, we demonstrate
the broader applicability of the specialization for sparse linear algebra to graph analyt-
ics with an accelerator for breadth-first search that uses off-chip memory bandwidth
more efficiently compared to prior work.

For deep neural network inference, the sheer energy and hardware resource cost of
floating point computation is a fundamental limitation on energy efficiency. Exploiting
recent advances in training highly quantized neural networks (QNNs), we demonstrate
how FPGAs can be leveraged for accurate, energy-efficient and high-performance
neural network inference. We propose the FINN framework to generate customized
architectures with compute resources tailored to user-specified performance require-
ments while exploiting multiple levels of parallelism for high energy efficiency. We
also describe mathematical simplifications for making QNN inference more resource-
efficient, and show how binary matrix operators can be used as bit-serial building
blocks for higher-precision computation.
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This thesis is submitted in partial fulfilment of the requirements for the degree of
philosophiae doctor (PhD) at the Norwegian University of Science and Technology
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1. Introduction

Computers have gradually transformed human society, fueled by the extraordinary
trend of increasing compute power in smaller form-factors at a cheaper price as pre-
dicted by Moore’s Law [22]. However, this trend has stagnated and today’s computers
are now limited by their energy efficiency, i.e., computers must perform more compu-
tation for the same amount of (or less) electrical energy than what they use today if
this trend is to be sustained.

The overarching goal of this thesis is to gain insight into how this problem can be
alleviated by means of specialized hardware for particular types of applications. The
remainder of this chapter will introduce the problem and the proposed approach in
more details, then describe the structure of the rest of the thesis.

1.1. Dark Silicon and the Need for Accelerators

For over forty years, improvements in transistor size, supply voltage scaling and archi-
tecture fueled the increase in the computational power of general-purpose Central
Processing Units (CPUs), but there is evidence that this trend is not sustainable [18].
While the number of transistors per area keeps growing in newer semiconductor
technology generations, it is no longer possible to power all the transistors on the
chip without significantly increasing the power budget. In many cases, increasing the
power budget is not feasible due to limitations in cooling or battery life. Keeping the
same power budget results in areas on the chip without power, referred to as dark
silicon [11].

With Dark Silicon clouding the horizon for computing systems, computer architects
have been searching for new solutions. Taylor [27] mentions four generic classes
of solutions (referred to as “The Four Horsemen of the Dark Silicon Apocalypse”)
which could be used to attack the dark silicon problem. These can be summarized as
follows:

• The Shrinking Horseman, shrinking chip sizes to prune dark silicon areas.
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1. Introduction

Table 1.1.: Heterogeneity trends in smartphones. Compiled from [21, 35–38].

Product Year Cores

Nokia 9000 1996 24 MHz CPU
Palm Treo 650 2004 312 MHz CPU
Samsung SGH-D500 2005 100 MHz CPU + Saturn DSP
Nokia N810 2007 330 MHz CPU + 220 MHz DSP + GPU + ima-

ging accelerator
Motorola Moto X 2013 1.7 GHz dual-core CPU + GPU + imaging ac-

celerator + natural language processing core
+ contextual computing core

• The Dim Horseman, using underclocked logic or near-threshold voltage designs
to increase operating efficiency.

• The Deus Ex Machina Horseman, fundamental breakthroughs in transistor
technology which will lessen or remove the dark silicon problem.

• The Specialized Horseman, which is further elaborated below.

The last of these ideas, aptly named “The Specialized Horseman”, proposes a move
towards specialized, highly energy-efficient co-processors or accelerators. In a manner
of speaking, dark silicon is a manifestation of a lack of energy efficiency. Specialized
logic targeting particular applications or domains can offer energy efficiency that is
orders of magnitude greater than general-purpose processors on an equal or greater
level of performance [7, 14, 16, 19, 24]. This would contribute significantly to the overall
energy efficiency of the system for running applications targeted by specialized logic.

More energy-sensitive platforms such as smartphones and mobile computing devices
have already been demonstrating a trend of heterogeneous processors with increas-
ingly specialized components in the form of System on a Chip (SoC) elements, as
illustrated in Table 1.1. There is also a significant shift towards accelerators in the
computer architecture research community, which is evidenced by the number of
sessions dedicated to specialized hardware in top computer architecture conferences.
For instance, in the programme of the 2016 International Symposium on Computer
Architecture (ISCA), there were three entire sessions dedicated to neural network ac-
celerators, as well as another session for graph analytics and big data accelerators. In
light of this information, The Specialized Horseman was chosen to be the method for
improving the energy efficiency of computing systems in this thesis.
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1.2. Choice of Specialization Domains and Substrate

1.2. Choice of Specialization Domains and Substrate

The very word specialization implies that the resulting accelerators are not general-
purpose, i.e., they cannot execute arbitrary compute workloads, but only the particular
ones that they were designed for. We note that the degree of specialization is particularly
important; due to the costs involved in designing such systems, it is desirable to
make them domain-specific (suitable for a range of applications) instead of single-
application-specific. Cong et al. [8] refer to this approach as customizable domain-
specific computing, and motivate it with three observations:

1. Each user or enterprise typically has high computing demand only in one or a
few application domains (e.g., graphics for game developers, circuit simulation
for integrated circuit designers, financial analytics for investment banks), which
can be targeted with accelerators for high performance and efficiency. Other
computing needs, such as e-mail or word processing can be satisfied with
available computing technologies.

2. The gap in performance and efficiency between a domain-specific solution and
a general-purpose solution can be several orders of magnitude.

3. Designing a custom Application-Specific Integrated Circuit (ASIC) for each and
every application is prohibitively expensive, hence some customizability to
address a range of applications is needed.

Two key methodology questions in domain-specific accelerator research are what
to accelerate, and where to accelerate it in terms of the hardware substrate. These
questions are addressed in the following subsections.

1.2.1. The Domains

As specialized acceleration has limited applicability, the choice of which domain(s)
will be accelerated is significant. In this thesis, the following criteria were used to guide
the topic and level of specialization for acceleration:

• Necessity. The target domains should require acceleration. Computations that
already meet performance and efficiency requirements on existing general-
purpose computers does not necessitate specialization and acceleration to the
same extent as computation which runs too slowly or inefficiently on current
devices.

5



1. Introduction

• Impact. The acceleration of target domains should have some impact, e.g., they
should be considered to be of major importance for the progress of science or
possessing large market potential.

• Granularity. The chosen level of specialization should be able to address a range
of applications, instead of targeting just a particular implementation of a single
application.

The “13 Berkeley Dwarfs” proposed by Asanovic et al. [1] were a major source of inspir-
ation in the choice of these focus areas for this thesis. These “dwarfs” are particular
algorithmic methods that capture a widely-occurring pattern of computation and
communication believed to be of major importance for at least the next decade of
computing, which by definition fulfill two of the three criteria listed above. The focus
areas for this thesis were chosen to be Sparse Linear Algebra, which is explored in Part
B, and Deep Neural Networks, which is explored in Part C. In terms of the Berkeley
Dwarfs, these focus areas fall within the Sparse Linear Algebra and Dense Linear Al-
gebra dwarfs. The introduction sections in each part provide more insight into why
these focus areas were chosen.

1.2.2. The Hardware Substrate

A suitable hardware substrate is necessary to study and evaluate how the proposed
accelerators will perform. The chosen substrate for specialization in this thesis is
reconfigurable logic in the form of Field-Programmable Gate Arrays (FPGAs). As will
be described in more detail in Section 2.1, the behavior of any digital circuit can be
constructed in the FPGA as long as there are enough logic resources available, and
can be changed as many times as desired. FPGAs have received significant attention
as a new engine for heterogeneous computing in the last few years, as exemplified
by Intel’s 2015 acquisition of the world’s second-largest FPGA maker Altera, and their
subsequent announcements regarding Xeon+FPGA chips.

1.3. Research Questions

The overarching goal for this thesis is to gain insight into how the energy efficiency of
computer systems can be improved via specialization. Based on the choice of focus
domains and substrate discussed in Section 1.2, the goal is formulated as two research
questions:

RQ1. How can sparse linear algebra benefit from FPGA acceleration?

6



1.4. Thesis Outline

RQ2. How can deep neural network inference benefit from FPGA acceleration?

These questions permit exploration on both sides of the traditional hardware-software
boundary. That is, we do not restrict the effort to exploring FPGA hardware accelerator
architectures, but also accept changes that go across the traditional hardware-software
boundary. This may include changing the data layout, data preprocessing and math-
ematical reformulations, and may be seen as a limited form of hardware/software
codesign (Section 2.2). This allows for optimizing the computation as a whole without
being limited by the traditional rigid abstraction boundary, potentially yielding greater
acceleration and efficiency.

1.4. Thesis Outline

This is a compilation thesis organized into four parts; an introductory part followed by
two parts containing a compilation of research articles, and a final part with concluding
remarks.

This introductory part (Part A) contains an overview of the general problem, the re-
search questions pursued, and the general background necessary to understand the
research articles in the thesis. Afterwards, it presents a brief summary of the articles
included in the thesis, how they are related to general computing concepts and to
each other. The second and third parts consist of a collection of research articles on
the design of accelerators for sparse linear algebra (Part B) and deep neural networks
(Part C), respectively. As these two domains are substantially different in terms of
their computational requirements, they both start with an introduction to and some
background on their respective fields to help the reader better understand the context
of the articles. The final part of the thesis (Part D) concludes with a summary of results
from the research articles and presents several directions for future work.

7





2. Background

This chapter provides the general background necessary to understand the content of
this thesis, pertaining to FPGAs as an acceleration fabric, design of FPGA accelerators
and memory systems. Parts B and C contain their own background chapters with
further domain-specific details on sparse linear algebra and deep neural networks.

2.1. Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are chips containing arrays of Look-Up
Tables (LUTs), fixed-function blocks, signal routing and clock networks, as exemplified
in Figure 2.1. By configuring the contents of the LUTs and how they are connected
together with each other and fixed-function blocks, the behavior of any digital circuit
can be constructed in the FPGA, and this configuration can be changed as many
times as desired. These capabilities of realizability and reconfigurability are of prime
importance for the choice of FPGAs as an accelerator substrate for this thesis. In
general, a circuit implemented in reconfigurable logic will always be slower and less
efficient than a comparable, dedicated circuit in silicon. However, this efficiency gap
is smaller for applications that can make use of the fixed-function blocks, and off-
the-shelf reconfigurable chips do not carry the prohibitive price tags of mask costs or
post-production errors for ASICs.

Due to the repetitive and regular structure of their internal components, FPGAs have
benefited substantially from the improvements in semiconductor process technology,
and today’s models possess substantial on-chip memory capacity, bandwidth and
compute capabilities. They have received significant attention as a new engine for
heterogeneous computing in the last few years, and significant acceleration on key-
value stores [15], financial option pricing [10], and genome sequencing [26] have been
demonstrated on FPGAs. Besides the potential performance advantages, Hoe [13]
points out that FPGA acceleration is first and foremost about energy efficiency, owing
to their high-degree of slow-clocked parallelism and avoidance of Von Neumann
programmability overheads.

9



2. Background

Figure 2.1.: The organization of a Lattice Semiconductor iCE40 FPGA. Repro-
duced from [23].

10



2.2. Hardware/Software Codesign

2.2. Hardware/Software Codesign

Implementations of modern computer systems can be quite complex, even when
targeting a single domain or application. For instance, a modern SoC such as the Xilinx
Zynq family of chips may contain several different (heterogeneous) computing engines
as well FPGA fabric. Achieving desired functionality on such a system requires explor-
ing a vast design space that encompasses hardware architecture exploration, mapping
the functionality to available resources and assessing performance and efficiency to
remain within system constraints. This process is referred to as hardware/software
codesign [28] and as the name implies, it involves the concurrent design of hardware
and software. The key advantage obtained in this method is the ability to approach
the problem as a larger whole, potentially increasing the performance and efficiency
of the final solution by making adjustments without being limited by the traditional
abstraction layers in computer architecture.

Several research articles in this thesis use codesign-like techniques, such as partioning
an algorithm for hybrid execution between a CPU and an FPGA accelerator, performing
mathematical simplifications on neural networks at compile time, and preprocessing
data in software to extract relevant characteristics for reconfigurable hardware.

2.3. Implementing FPGA Accelerators

FPGAs are notorious for being difficult to program [3]. The entry point for most FPGA
vendor tools are Register Transfer Level (RTL) designs expressed in Verilog or VHDL,
which introduce several challenges for rapid development. As the chosen evaluation
technique for this thesis is FPGA implementation, other languages and tools were used
to overcome two of the traditional RTL design challenges:

1. Language features. In terms of languages, neither Verilog nor VHDL were origin-
ally conceived to express synthesizable RTL constructs – they were intended for
simulating hardware, which means it is possible to express programs in them
that cannot be synthesized into FPGA circuits. Furthermore, both languages
first appeared in the 1980s, and lack the powerful abstraction facilities that are
common in modern programming languages, which further decreases design
productivity. Chisel was proposed by Bachrach et al. [2] to address these prob-
lems. It is embedded into the Scala language, which has extensive capabilities
for building Domain-Specific Languages (DSLs). A Chisel program is a paramet-
rizable hardware generator that expresses which RTL primitives are instantiated
and how they are connected together, and barring syntax errors its output is
guaranteed to be synthesizable. By using different backends, it is possible to

11



2. Background

generate Verilog or a cycle-accurate C++ simulation of the design from the same
source code, which boosts productivity. Chisel was used in the implementation
of the papers contained in Part B of this thesis.

2. Abstraction level. Even with the capabilities of languages like Chisel, RTL design
is less productive and more challenging than software development. Namely, in
RTL design, the designer must carefully specify (and debug) the cycle-by-cycle
behavior of a complex circuit by cobbling together simple components, design-
ing state machines and control logic to ensure correct behavior, and adding
pipeline registers to increase the clock frequency when desired. High-Level
Synthesis (HLS) tools such as Vivado HLS [40] aim to close this gap by allowing
the designer to specify the behavior and desired performance of the circuit
at a higher level of abstraction, and synthesizing RTL from this specification.
This approach works especially well for circuits with static schedules, such as
matrix multiplications whose sizes are known at compile time. To pursue these
benefits, Vivado HLS was used for the accelerator implementations in Part C of
this thesis.

2.4. Memory System Design

How data is laid out, accessed, stored and moved between parts of the system is a
key component for any computer architecture, including accelerators. This section
provides background on several memory system design concepts that are used in the
thesis.

2.4.1. On-Chip Memory

FPGAs contain a limited amount of On-Chip Memory (OCM), sometimes referred
to as Block RAM (BRAM). Any address in any BRAM can be accessed with a single
clock cycle of latency, which can deliver multiple terabytes per second of memory
bandwidth in modern FPGAs. As with any other component on the FPGA, on-chip
memory blocks do not enforce a particular architecture upon the designer, and can
be flexibly connected to other components to shape the memory system as designed.
For instance, they can be configured as read-only memory (ROM) whose contents are
set at FPGA configuration time, as a FIFO buffer storage by adding enqueue/dequeue
logic, or as caches by adding appropriate management logic.
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2.4. Memory System Design

Figure 2.2.: The internal three-dimensional organization of DRAM, showing
banks, rows and columns. Reproduced from [20].

2.4.2. Off-Chip Memory

Any memory that is accessed via external I/O pins is off-chip memory, although in this
thesis the term is used to refer to off-chip DRAM, commonly found on FPGA boards
to provide a reasonably large-capacity memory at low cost. These DRAM chips are
interfaced by a memory controller on the FPGA which services memory requests from
the accelerator(s) by implementing the signaling standard required by DRAM. Due
to the internal organization of DRAM chips shown in Figure 2.2, the way in which
memory accesses are scheduled has a large impact on the achievable throughput
and access latency [20]. Namely, data can be read or written only as an entire DRAM
row in each bank. This makes accessing sequential positions as large bursts very
effective, since the entire DRAM row buffer can be utilized. However, performing
fine-grained random accesses involves repeatedly fetching new rows without utilizing
the entirety of the previously fetched row buffer, which increases the access latency
and decreases effective bandwidth substantially. For instance, orders-of-magnitude
worse bandwidth is reported on the RandomAccess benchmark included in the HPCC
benchmark suite [17] compared to sequential accesses. This is a key problem for sparse
linear algebra kernels with random memory access patterns, which Part B of this thesis
focuses on.

2.4.3. Decoupled Access-Execute and Latency-Insensitive Design

Decoupled access-execute architectures originally proposed by Smith [25] refers to
architectures with a dedicated access component, which is responsible for memory

13
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Figure 2.3.: Conceptual overview of a decoupled access-execute architecture.

operations such as reads and writes, and a dedicated execute component, which is
responsible for carrying out computation on accessed memory and producing results.
These two components communicate via FIFO queues, as conceptually illustrated in
Figure 2.3. Such an architecture enables clean separation and separate optimization of
these two main components, and also lets the designer easily analyze potential per-
formance issues by examining the flow rate and backpressure in the communication
queues.

Beyond decoupling memory accesses and computation, a similar principle of latency-
insensitive design [5] in the form of synchronous elastic architectures [9] can be applied
to system design at a finer-grained level. Namely, the system can be decomposed into
multiple parallel components which communicate via FIFO queues. The requirement
from each component is that it can be stalled with backpressure, i.e., when one or
more FIFOs that it wants to write to are full. As long as each component consumes
available elements from its input FIFOs as quickly as possible, the entire system will self-
schedule and naturally process data at the highest throughput permitted by the slowest
component. This design paradigm was shown to be successful for construction of FPGA
accelerators by the Stream Computations Organized for Reconfigurable Execution
(SCORE) project [6]. Both decoupled access-execute and latency-insensitive design
have served as inspiration for the accelerator architectures in this thesis.

2.5. The Roofline Model

The roofline [39] is a well-known visual performance model that provides an upper
bound on the performance of a particular computational kernel when running on
a particular computer architecture. The key property that must be known about the
computational kernel is the arithmetic intensity, which is the ratio of computation to
communication measured in compute operations per byte read from off-chip memory.
For the architecture that this computation will be run on, the peak off-chip memory
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2.5. The Roofline Model

Figure 2.4.: Example of a roofline model. Reproduced from [4].

bandwidth and the peak compute capability for the kinds of operations used in the
kernel must be known. With these numbers available, the roofline model can be con-
structed as illustrated in Figure 2.4. The model considers two principal performance
bounds, computation and communication, and considers the execution time of the
application bounded by each of these to determine which of them will be the bottle-
neck, and how much performance may be attained. In the visual model, the sloping
part of the roofline is the communication-bound region, whereas the flat part is the
compute-bound region. When a vertical line corresponding to the arithmetic intensity
of the computational kernel in question is drawn, it will intersect the roofline in one of
these regions, indicating what will be the performance bottleneck for this kernel.

Since it considers platform and kernel characteristics at a quite abstract level, the
roofline model is also useful for estimating performance for accelerators. It is used in
Part C of this thesis to help estimate the performance gains from quantization for deep
neural networks.

15





3. Research Summary

This section provides an overview of the research articles included in this thesis, how
they relate to each other and to general computing concepts. It is intended to serve as a
roadmap that helps place the articles included in the thesis into the bigger picture. After
the articles have been presented, the final part of this thesis will present a synthesis of
the contributions from individual articles into a larger whole.

3.1. Overview

As discussed in Section 1.2, this thesis explores the acceleration of two distinct domains.
It includes seven papers, four on sparse linear algebra in Part B, and three on deep
neural networks in Part C. Each paper is identified with the part name and number (B1,
B2, C1, C2. . . ) and will be referred to as such for brevity in the rest of the discussion.

Figure 3.1 presents a mind map linking computing concepts to papers in the thesis
in order to provide a visual overview of how the papers align with different themes,
and with each other. It can be observed that although the two domains are distinct,
a number of common themes such as algorithmic reformulation, reduced precision
operations and decoupled hardware architectures are recurring themes in papers in
both domains. The following sections provide brief summaries of each paper, and their
relationships to each other.

3.2. Articles on Sparse Linear Algebra

The articles in Part B discuss how sparse linear algebra, in particular the Sparse Matrix–
Vector Multiplication (SpMV) and Sparse Matrix–Sparse Vector Multiplication (SpM-
SpV) kernels, can benefit from acceleration on reconfigurable logic. The key aspect of
the investigation here is the memory system and how it can be made efficient, since
sparse kernels are known to be bottlenecked by random, indirect memory accesses. As
the sparsity structure that determines the memory accesses becomes known only at
runtime, it is challenging to devise a single architecture that works well for all sparse
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Figure 3.1.: A mind map of publications that are part of this thesis and their
relations to computing concepts.
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3.2. Articles on Sparse Linear Algebra

matrices. We use lightweight data preprocessing to adapt to the sparsity structure at
hand, taking advantage of the flexibility of reconfigurable logic. We also explore the
applicability of accelerated sparse linear algebra to graph algorithm primitives, taking
advantage of data layout changes and reduced precision representations to further
increase efficiency.

Paper B1: An Energy Efficient Column-Major Backend for FPGA SpMV
Accelerators

By Yaman Umuroglu and Magnus Jahre
In Proceedings of the 2014 IEEE 32nd International Conference on

Computer Design (ICCD)
IEEE, 2014 [31]

This work presents a design strategy for SpMV accelerators in the spirit of decoupled
access-execute, where the memory and computation are handled by two decoupled
units (backend and frontend) with matched throughput. This modular design is ad-
opted by all other articles on sparse linear algebra in this thesis. Focusing on the
sequential memory accesses by the backend component, experimental results are
presented that indicate that even the sequential memory access component can suffer
from degraded external memory bandwidth utilization due to many parallel requests.
An alternative, interleaved data layout is then presented to increase DRAM bandwidth
and power efficiency for FPGA SpMV accelerators. An SpMV accelerator backend
design that uses this layout is proposed and evaluated on a suite of sparse matrices to
characterize the performance and efficiency benefits,

Paper B2: A Vector Caching Scheme for Streaming FPGA SpMV
Accelerators

By Yaman Umuroglu and Magnus Jahre
In Proceedings of the 2015 International Symposium on Applied

Reconfigurable Computing (ARC)
Springer International Publishing, 2015 [30]

In terms of the modular SpMV design strategy presented in Paper B1, this paper
focuses on the frontend and the random memory access problem. A hardware-software
caching scheme for handling the SpMV random access component is presented. The
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essence of the technique is to increase the resource efficiency and performance of the
hardware cache by using lightweight data preprocessing in software to extract relevant
access pattern information. The software part of the scheme involves preprocessing
the sparse matrix to extract the required cache capacity for stall-free acceleration,
and adding a single bit of information for each matrix row to avoid cold misses in the
cache. In turn, the proposed hardware cache can be resized to the determined capacity
(which is typically much smaller than keeping the entire random access component
on-chip), and is able to use the extra information to avoid cold misses. The merits of the
hardware-software caching approach are validated with a range of sparse matrices.

Paper B3: Random Access Schemes for Efficient FPGA SpMV
Acceleration

By Yaman Umuroglu, Donn Morrison and Magnus Jahre
In Microprocessors and Microsystems, volume 47 part B

Elsevier, 2016 [32]

This work is an invited journal paper extension of Paper B2, offering deeper insights
into the problem, improving the caching technique and providing more results. How
prior work has handled the random memory access component in SpMV is discussed
and grouped under three alternatives (all on-chip, all off-chip, caching). The hardware-
software vector caching scheme for SpMV from Paper B2 is combined with nonblocking
caches, a classical memory system technique in out-of-order processors that is used to
extract more Memory-Level Parallelism (MLP) and increase bandwidth utilization. The
improved caching technique is validated with extensive experiments, demonstrating
how multiple outstanding requests can increase SpMV performance. The cost of pre-
processing is also factored into the overall performance, showing how the performance
gains from preprocessing outweigh the time cost of preprocessing in relatively few
iterations.

Paper B4: Hybrid Breadth-First Search on a Single-Chip FPGA-CPU
Heterogeneous Platform

By Yaman Umuroglu, Donn Morrison and Magnus Jahre
In Proceedings of the 2015 25th International Conference on Field

Programmable Logic and Applications (FPL)
IEEE, 2015 [34]

20



3.3. Articles on Deep Neural Networks

The acceleration of the Breadth-First Search (BFS) graph traversal kernel is studied on
a single-chip FPGA-CPU system. By using the matrices over semirings concept, BFS
can be viewed as SpMV or SpMSpV on the Boolean semiring. This makes it possible
to apply insights from papers B1 and B2 to offer significant acceleration on BFS. This
work also describes how a simple algorithmic reformulation can be used to make the
random access range much smaller. Namely, the distances to the root node can be
generated with an additional step instead of on-the-fly, effectively decoupling the
distance generation from the traversal, thus keeping the OCM footprint for random
accesses very small. Additionally, a computational property of BFS on small-world
graphs is exploited for hybrid execution, where some iterations of the kernel are pro-
cessed on the CPU, and the remainder on the FPGA. The resulting BFS implementation
is more efficient (over twice as efficient compared to prior work) in terms of utilizing
the external memory bandwidth.

3.3. Articles on Deep Neural Networks

The articles in Part C explore how to apply reconfigurable logic to deep neural network
inference. Due to their inherent memory footprint and resource benefits over floating
point networks, we focus on Quantized Neural Networks (QNNs), quantifying and
demonstrating the performance and energy benefits of QNN inference on FPGAs
using roofline models and prototypes with adjustable throughput according to user
requirements. By applying our approach on larger networks and FPGAs, we identify
on-chip memory storage and bandwidth as the key limitations to scalability. We also
study how QNN inference can be performed efficiently on commodity CPUs using bit
serial arithmetic, provide performance measurements, and observe that FPGAs have
significant performance benefits over CPUs in this regard.

Paper C1: FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference

By Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella,
Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vissers

In Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA)

ACM, 2017 [29]

This paper explores inference with Binarized Neural Networks (BNNs), the most ex-
treme form of QNNs, on FPGAs. We quantify the potential of BNNs on FPGAs via the
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roofline model, and present the FINN framework for building BNN accelerators. FINN

composes hardware blocks implementing fully-connected, convolutional and pooling
layers according to user-specified throughput requirements. The composed architec-
ture is streaming in that it executes all layers of the network in parallel, and heterogen-
eous in that each layer’s hardware allocation reflects its computational requirements. A
mathematical simplification to absorb floating point batch normalization layers into
thresholding activations is also presented, which further lowers resource cost. At the
time of its publication, FINN was generating the lowest-latency, highest-throughput
and highest-energy-efficiency Deep Neural Network (DNN) image classification accel-
erators in literature. This performance is possible owing to a combination of massive
parallelism, low-precision computations and high arithmetic intensity.

Paper C2: Scaling Binarized Neural Networks on Reconfigurable Logic

By Nicholas J. Fraser, Yaman Umuroglu, Giulio Gambardella,
Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vissers

In Proceedings of the 8th Workshop and 6th Workshop on Parallel
Programming and Run-Time Management Techniques for

Many-core Architectures and Design Tools and Architectures for
Multicore Embedded Computing Platforms (PARMA-DITAM)

ACM, 2017 [12]

This work builds upon Paper C1 investigates how BNN performance and accuracy
scales on larger FPGAs and larger networks. We first show how binary convolutions
can be padded with -1 values to increase the accuracy in image recognition tasks, and
implement this with minor changes to the Sliding Window Unit from Paper C1. An
accelerator classifying the CIFAR-10 dataset with close to state-of-the-art accuracy
using a large BNN and 12 thousand frames per second is demonstrated, and the
obtained performance is compared to predictions from the roofline models. One of
the key findings regarding the limitations in scaling is the utilization of OCM, which is
revealed to be relatively poor due to the way in which matrix-matrix multiplications
are implemented. A matrix-multiple vectors engine is proposed as a potential solution
to the OCM utilization problem.
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Paper C3: Streamlined Deployment for Quantized Neural Networks

By Yaman Umuroglu and Magnus Jahre
In The 2017 International Workshop on Highly Efficient Neural

Networks Design (HENND), part of ESWEEK
arXiv:1709.04060 [33]

Trained QNNs still contain some floating point parameters and computation. In this
work, we extend and generalize the transformation proposed in Paper C1 to QNNs
by moving, collapsing and absorbing linear transforms into thresholding layers. This
transformation is called streamlining and simplifies the trained network at compile
time. Additionally, we explore how bit-serial processing can be used to run QNN
inference efficiently on existing CPUs. Although this work evaluates the presented
techniques on CPUs and not FPGAs, these techniques are directly applicable to FPGA
accelerators as well. Namely, the simplification by streamlining prevents floating point
computation from taking up valuable logic and DSP slice resources for FPGA accel-
erators. Additionally, the proposed bit-serial processing technique is also suitable for
applying on FPGAs, supplementing the binary matrix primitives proposed in Paper C1
with the ability to support arbitrary integer quantization at runtime. Finally, this work
establishes a CPU baseline which further highlights the benefits of FPGA acceleration
for QNNs, since the resulting CPU performance is orders of magnitude worse than the
accelerators proposed in Papers C1 and C2.

3.4. Other Articles

Several research articles that were produced during the PhD work are not included in
this thesis, either due to their extended versions being included instead, or because of
their focus falling outside the scope of the thesis.

• Yaman Umuroglu and Magnus Jahre. "Work-in-Progress: Towards Efficient
Quantized Neural Network Inference on Mobile Devices". In Proceedings of
the 2017 International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES).

• Michaela Blott, Thomas Preusser, Yaman Umuroglu, Miriam Leeser, Nicholas
Fraser, Kenneth O’Brien and Giulio Gambardella. "Scaling Neural Network Per-
formance through Customized Hardware Architecture". In Proceedings of the
2017 IEEE International Conference on Computer Design (ICCD).
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• Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella and Michaela Blott. "A
C++ Library for Rapid Exploration of Binary Neural Networks on Reconfigurable
Logic". Presented at The Second International Workshop on Heterogeneous High-
performance Reconfigurable Computing (H2RC) at Supercomputing 2016 (SC).
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1. Introduction

1.1. On Sparsity

Viewing the universe that we live in as entities and their interactions is a useful
model [9] for analyzing it. At the non-quantum scale, the myriad entities in our uni-
verse –be they physical objects or abstract concepts– are often sparsely connected: not
everything directly interacts with (or is directly related to) everything else. For instance,
the human brain contains approximately 9·107 neurons, but each neuron is connected
to only 7000 other neurons on average [26]. Similarly, Wikipedia had 2.3 million articles
but an average of about 24 links per article in 2008 [24].

Figure 1.1 illustrates the concepts of dense and sparse connections using two nine-
node graphs. Sparse structures are often represented as sparse matrices where zero
entries correspond to unconnected entity pairs, as exemplified in Figure 1.2. Sparse
matrix representations can be found in many contexts and domains, including in
neural networks [42], graph and network analysis [15], computational biology and
chemistry, electronic design automation, N-body simulations and structural mechan-
ics [22].
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Figure 1.1.: Examples of dense and sparse connections, illustrated as graphs.
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Figure 1.2.: Sparsity patterns of six example matrices from [22].

1.2. Sparse Kernels

Although any sparse structure can be represented as an equivalent dense structure
with zero-weight links and computed as such, sparse representation presents a much
smaller memory footprint and requires less computation, making it possible to scale
to larger problem instances. In many cases, the part of the computation that oper-
ates directly on sparse data is similar and can be viewed as a pattern of computa-
tion and communication –a sparse linear algebra kernel– in the spirit of the Berkeley
Dwarfs [3].

As sparse kernels arise in a variety of important domains, it is beneficial to be able to
handle them in a fast and efficient manner. However, their idiosyncratic computational
properties (discussed further in Section 2.3) align poorly with the design choices of
general-purpose computers, which leads to underutilization of hardware resources
when processing sparse linear algebra kernels on general-purpose CPUs. This makes
sparse linear algebra a good match with the criteria for choice of acceleration domains
specified in Part A Section 1.2, and justify its selection as a focus area in this thesis.
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2. Background

2.1. Sparse Matrix–Vector Multiplication

Sparse Matrix–Vector Multiplication (SpMV) is a fundamental operation in sparse
linear algebra, and an important computational kernel used in numerous areas of
science and engineering. Perhaps the most well-known usage area for the kernel is
the iterative solving of sparse linear systems that arise from the modeling of physical
phenomena, where SpMV operations dominate the execution time [70]. The SpMV
operation ~y = A ·~x consists of multiplying an m ×n sparse matrix A with NZ nonzero
elements by a dense vector ~x of size n to obtain a result vector ~y of size m. A more
specialized case of SpMV occurs when the vector ~x is also sparse, which is deemed
Sparse Matrix–Sparse Vector Multiplication (SpMSpV). In this thesis, SpMV is studied
both as a stand-alone kernel and as a pattern or building block for other algorithms
and applications.

The sparse matrix is commonly stored in a format which allows storing only the
nonzero elements of the matrix. This can be done via a variety of different storage
formats; here we only present the widely-adopted Compressed Sparse Row (CSR)
format. The CSR format, which is exemplified in Figure 2.1b, consists of three one-
dimensional arrays: a values array to store the nonzero values in row-major order, a
colind array to store the column index of each nonzero, and a rowptr array which
points to the start of each row in the values array. Many other formats also exist, which
try to take advantage of particular shapes that may exist in the sparsity pattern [40, 65].
The vectors~x and~y are stored as standard one-dimensional arrays x and y, unless they
are sparse, in which case a CSR-like representation may be used for them as well.

2.2. Breadth-First Search as Sparse Linear Algebra

The “matrices over semirings” concept [38] can be used to express graph processing
operations as sparse linear algebra operations, thereby increasing the range of ap-
plications that a sparse linear algebra accelerator can address. We now give a brief
overview of how this can be done for BFS. BFS is a key building block for exploring
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(d) The SpMSpV operation.

Figure 2.1.: Sparse matrix representations, SpMV and SpMSpV.

graphs, and is fundamental to a variety of graph metrics such as counting connected
components, calculating graph diameter and radius [18]. Consider an undirected, un-
weighted graph of the form G = (V ,E) with sets of |V | vertices (nodes) V and |E | edges
E . A BFS begins at a root node vr contained within the largest connected component
Vc and traverses each edge er j for every neighbor v j . As such, the graph is traversed
in levels, where all nodes at each level are explored before the next level is processed.
Here, we consider the variant of the kernel that produces the distance array (dist of
each visited node from the root node as the output. Large real-world networks are
generally sparse, meaning that most nodes are not neighbors. To take advantage of
this, the graph is typically stored in a sparse adjacency matrix form such as CSR as
illustrated in Figure 2.2a.

The core idea in bridging BFS and sparse linear algebra is to substitute the number
data type and the operators for multiplication and addition in linear algebra to ex-
press a variety of algorithms as matrix-vector operations. Specifically, we make use of
the matrix-times-vector operation on the Boolean semiring to perform BFS. In prac-
tice, this operation “multiplies” a binary matrix and a binary vector, with the regular
multiply and add operations substituted with the Boolean AND and OR operators, re-
spectively. To disambiguate from regular matrix-vector multiply over real numbers, we
use ~ to denote this operator. As illustrated in Figure 2.2b, each yt = A~xt operation
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(b) BFS operation on the Boolean semiring

Figure 2.2.: Two representations of the breadth-first search algorithm.

corresponds to a breadth-first step, and each result vector yt is the representation of
the visited nodes in the graph after step t . The matrix A in the operation is the adja-
cency matrix of the graph, while the initial input vector x0 is initialized to all zeroes,
except a single 1 at the location of the root node. The result vector yt is used as the
input vector xt+1 of the next step, which in turn generates more visited nodes in its
result vector until the result converges (i.e., no more nodes can be visited).

2.3. Computational Properties

Sparse linear algebra is a well-studied acceleration target on a variety of architec-
tures, including multi-core CPUs [70], General-Purpose Graphics Processing Units
(GPGPUs) [10] and FPGAs [25]. The general computational properties of sparse linear
algebra as reported by prior work can be summarized as follows:

• Low arithmetic intensity. Arithmetic intensity is a measure of how many com-
putational operations are performed for every byte read from memory. Sparse
computations have typically much lower arithmetic intensity [71] compared to
dense ones, which makes their performance dependent on memory bandwidth.
This is partially due to the way sparsity is represented (i.e., the positions of the
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connections need to be specified, in addition to values), and partially due to
sparsity itself (i.e., a read element will not be re-used many times, since it does
not have many connections).

• Sparsity-dependent, complex memory access patterns. The sparsity pattern
decides where memory accesses will take place. For structured sparsity, this will
translate into strided accesses, whereas irregular sparsity will result in seemingly
random accesses, which the memory system must cope with [68].

• Dynamic behavior. The sparsity pattern will also influence the dependencies
and amount of work available in the computation. For instance, when traversing
a small-world graph, the amount of work that can be done in parallel changes
every iteration in a sparsity-dependent manner [8]. From a parallel computing
perspective, this makes workload distribution and load balancing more difficult.

• Dependent on large, external memory. Sparse data can be very large in size
and has tended to grow even larger over time, in part due to the Big Data
trend [15]. Sparse computation therefore requires access to a large, external
memory. Combined with irregular memory accesses and low arithmetic in-
tensity, this creates a significant challenge in designing memory systems for
sparse computation, since today’s external memory devices are optimized for
sequential accesses.

• Iterative. Most applications that make use of SpMV do so in an iterative fashion,
multiplying the same sparse matrix with many different vectors. A typical ex-
ample is iterative solving of sparse linear systems, where each iteration involves
multiplying the same sparse matrix with a different vector [70]. This makes it
possible to ameliorate the cost of preprocessing the sparse matrix across mul-
tiple iterations, if each iteration becomes faster as a result of the preprocessing.
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B1. An Energy Efficient Column-Major
Backend for FPGA SpMV
Accelerators

Abstract. FPGAs are promising candidates for energy efficient accel-
eration of sparse matrix-vector multiplication (SpMV), a kernel with
important applications in scientific computing and engineering. SpMV
is characterized by matrix-dependent performance and high external
memory bandwidth demands, which makes bandwidth utilization an
important performance indicator. Existing FPGA SpMV accelerators fo-
cus on datapath optimizations instead of memory behavior, and exhibit
matrix-dependent bandwidth utilization. In this work, we propose to
decouple the SpMV computation and memory behavior, and focus on
the backend which handles the latter. We describe a scalable backend
architecture that exploits column-major traversal and interleaving to
achieve high bandwidth utilization. Our experiments show that a single
backend is able to sustain 96% of its assigned memory port bandwidth on
average, and scales well with increased bandwidth by instantiating mul-
tiple parallel units. Compared to a baseline scheme, our scheme offers
up to 1.5x higher DRAM power efficiency and up to 20% higher aggregate
bandwidth. The results indicate that our scheme improves the average
bandwidth utilization of existing FPGA SpMV accelerators by 15 to 77%.

B1.1. Introduction

With the phenomenon of dark silicon limiting the performance increase for micropro-
cessors [57], specialized accelerator architectures are becoming a popular enhance-
ment to computing systems. These accelerators can offer high energy efficiency and
performance for the computational kernels they target. Sparse matrix-vector multi-
plication (SpMV) is an important computational kernel used in numerous areas of
science and engineering. Perhaps the most well-known usage area for the kernel is
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the iterative solving of sparse linear systems that arise from the modeling of physical
phenomena, where SpMV operations dominate the execution time [70]. Despite its
prevalence, SpMV is notorious for its poor performance on microprocessors, which
can be mainly attributed to the following properties of the kernel [29]:

1. Memory-to-computation ratio: SpMV has a low ratio of floating point opera-
tions per byte since it performs O(n2) operations on O(n2) amount of data.
This property makes the kernel memory-intensive and sensitive to memory
bandwidth.

2. Irregular memory accesses: The most popular way of storing sparse matrices is
to store only the nonzero entries, which causes irregular accesses to the vector
and makes the performance sensitive to the distribution of nonzeroes of the
matrix.

Additionally, the input data size used in the aforementioned applications can be
very large and is typically stored in high-latency high-capacity external DRAM [30],
which magnifies the effects of performance sensitivity to input patterns and band-
width. These challenges have made SpMV a popular research topic, and numerous
methods for increasing performance on general-purpose microprocessors have been
proposed [66, 70].

With large memory bandwidth and latency-hiding multithreading techniques, GP-
GPUs were shown to be a viable candidate for accelerating SpMV [11]. FPGA-based
implementations are another strong candidate for efficient SpMV acceleration, as one
can create a customized architecture that aligns well with the requirements of the
kernel. Competitive floating-point performance, ample parallelism and high external
bandwidth owing to the large pin count are additional motivators for FPGA SpMV
accelerators. A number of FPGA SpMV accelerators have already been proposed [31,
34, 39, 75] and demonstrate the potential of FPGAs as an SpMV acceleration substrate.
However, many of these works focus on developing efficient floating-point accumulat-
ors and not on memory behavior. As a result, they under-utilize the available external
memory bandwidth and suffer from matrix-dependent performance.

The key observation in this work is that SpMV accelerators should be designed with
focus on the main performance bottleneck: memory bandwidth. In order to achieve
this, we decouple the computation from the memory behavior and choose column-
major matrix traversal to ensure sequential access patterns on the input data. We
analyze SpMV–DRAM interaction with regard to parallelism and data layout. Based on
our observations, we propose an architecture that is able to exhibit consistently high
bandwidth utilization and good scaling with increasing DRAM banks. Our experiments
show that the proposed scheme can consume 96% of the memory bandwidth, with
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improvements of up to 1.5x in power efficiency and 20% in bandwidth utilization
compared to the baseline.

This work makes the following contributions:

• We introduce a component-based design strategy for SpMV accelerators, with a
frontend handling the computation and a backend for the memory behavior to
enable independent optimization.

• We analyze SpMV memory behavior with the compressed sparse column layout
and show that SpMV exhibits matrix- and parallelism-dependent performance.

• We design a scalable backend architecture that utilizes an interleaved data
layout, and present its experimental evaluation to show it achieves up to 96%
in average DRAM bandwidth utilization and up to 1.95 GB/s·watt in power
efficiency.

B1.2. Background

An SpMV operation ~y = A ·~x consists of multiplying an m ×n sparse matrix A with NZ
nonzero elements by a dense vector~x of size n to obtain a result vector~y of size m. The
sparse matrix is commonly stored in a format which allows storing only the nonzero
elements of the matrix. This can be done via a variety of different storage formats; here
we only present the widely-adopted Compressed Sparse Row (CSR) format [29], and its
column-major counterpart Compressed Sparse Column (CSC). The CSR format, which
is exemplified in Figure B1.1b, consists of three one-dimensional arrays: a values array
to store the nonzero values in row-major order, a colind array to store the column
index of each nonzero, and a rowptr array which points to the start of each row in the
values array. The CSC format is the column-major equivalent of CSR and is shown in
Figure B1.1c. The vectors~x and ~y are stored as one-dimensional arrays x and y.

We define two basic data types, ValueType and IndexType, that are used in a CSC or
CSR SpMV operation. ValueType is typically a double-precision floating-point value,
representing each element of the values array of the matrix and vectors. IndexType
is for expressing element indices or counts in the storage structures, such as the
rowptr or colind arrays. A four-byte integer is sufficient for indexing matrices of up
to 232 nonzeroes. In line with previous work [29, 30], we assume sizeof(ValueType) =
ValSize = 8 and sizeof(IndexType) = IndSize = 4 throughout the rest of this paper.
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(a) Sparse matrix
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(b) CSR representation

colptr={0 2 3 5}
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rowind={0 2 1 1 2}

(c) CSC representation

Figure B1.1.: CSR and CSC representations of a sparse matrix.

B1.2.1. Memory Access Patterns

The SpMV kernel exhibits different memory access patterns on its working set. The
input matrix representation is accessed in a sequential manner, although there is
no temporal reuse for this data due to the properties of the kernel [29]. The vector
accesses are dependent on the traversal type: one vector can be accessed sequentially
and with maximum temporal locality, whereas the other vector requires indirect,
input-dependent memory accesses for every operation. This can be observed from
the pseudocode in Figures B1.2a and B1.2b. For column-major traversal, the result
vector y is accessed based on the rowind array data and x is accessed sequentially; the
converse is true for row-major access. Since these indirect access patterns are unknown
prior to runtime, they may be considered random accesses from the perspective of the
accelerator. The column-major access pattern is exemplified in Figure B1.2c, where
the sequential no-reuse values accesses, the sequential maximum-reuse x accesses
and the pattern-dependent y accesses can be observed.

The working set of a SpMV operation, which includes the matrix and both vectors, can
be very large. For FPGA SpMV accelerators, the input is assumed to be stored in external
DRAM prior to execution [30, 75] to provide cost-effective capacity and bandwidth.
However, since DRAM latencies can be large for random accesses, the vector to be
random-accessed (x for CSR and y for CSC) is typically buffered on-chip. This on-chip
buffer may be a hardware-controlled cache [30, 39] or algorithm-controlled block RAM
buffers [34, 75].
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for(i=0 to m-1)

for(j=rowptr[i] to rowptr[i+1])

y[i] += values[j] * x[colind[j]]

(a) CSR pseudocode

for(j=0 to n-1)

for(i=colptr[j] to colptr[j+1])

y[rowind[i]] += values[j] * x[j]

(b) CSC pseudocode
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(c) CSC SpMV memory access schedule for Figure B1.1a.

Figure B1.2.: SpMV pseudocode and access patterns.
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B1.2.2. DRAM Organization and Memory Controllers

DRAM accesses are critical for SpMV performance as well as a major contributor to
system energy consumption [76], which warrants a closer examination of DRAM power
and performance. Modern DRAM units have an internal three-dimensional structure
that exhibits variable access latency and power use depending on the accessed memory
locations. Each DRAM chip consists of a number of independent banks, each of which
is organized as a two-dimensional array of rows and columns. Each bank has a row
buffer, which is capable of holding a single row. Accesses to a particular memory
location in a bank require that the corresponding row is already read into the row
buffer [51], which is termed row activation.

Since row activation is costly in terms of performance and energy [44], minimizing the
number of required row activations is important for achieving high DRAM performance
and energy efficiency. The memory controller has the responsibility for mapping
memory addresses to banks, rows and columns, as well as generating control signals to
perform the requested memory accesses. Additionally, it may reorder memory requests
to exploit row buffer locality, since ad-hoc data assignment and access scheduling
can result in bank conflicts and decrease DRAM performance dramatically [51]. As an
example, the latest generation of Xilinx FPGAs include reordering memory controllers
that are claimed to reduce row activations by 16% for reads and writes to random
locations [19]. SpMV and other kernels with irregular accesses can benefit from these
capabilities.

B1.3. Decoupling SpMV Memory Behavior and
Computation

Utilizing the external memory bandwidth available in the platform is essential for
achieving high SpMV performance [39]. To analyze the memory behavior and identify
the sources of inefficiency, we adopt a perspective that decouples memory and com-
putation for SpMV accelerators. The proposed decomposition contains a backend
for handling memory behavior and a frontend for computation, as illustrated in Fig-
ure B1.3.

In this form, an SpMV accelerator may be viewed as a dataflow architecture in which
raw data is sent from the DRAM into the backend. The backend consumes and trans-
lates the raw data into a stream of work units, each of which consist of a matrix element
index i , a dense vector value x j and a matrix element value Ai j . The f r ontend con-
sumes this work unit stream by computing the matrix-vector product result vector,
yi = ∑

Ai j · x j , which may be read directly from the frontend or written back to the
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Figure B1.3.: Decoupled SpMV memory and computation.

DRAM. In addition to the flow of data, there is also control flow in the reverse direction.
The backend is responsible for issuing requests to the external memory to produce
the raw data stream. Similarly, the frontend can control the work unit stream from the
backend by a stall signal if it is not able to accept any more work units.

To obtain full utilization of this pipeline, we note that each data consumer should be
able to match the rate at which its input data is produced. In essence, the backend
should be able to consume raw data as quickly as the external memory produces
it. In turn, the frontend should be able to consume work units at the same rate the
backend is producing them. This also implies that the rate of memory requests from the
backend should be sufficient to saturate the external memory bandwidth, and that the
frontend should be stall-free. A design with mismatched rates will have low utilization
and waste area as well as energy. We can thus summarize the requirements for a high-
utilization SpMV pipeline as a bandwidth-saturating backend and a matching stall-free
frontend.

B1.4. Designing A Bandwidth-Saturating Backend

As will be discussed in Section B1.6, there has been a significant amount of research
into stall-free FPGA SpMV frontends. However, the construction of SpMV backends
has yet to be addressed in detail. In this work, we assume a stall-free SpMV frontend,
and concentrate on developing a backend which is able to sustain the required data
rate in order to keep the accelerator running at close-to-peak utilization regardless of
the matrix structure.
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Figure B1.4.: Example of a saturating design for a 14 GB/s DDR3 memory with
nine 64-bit 200 MHz backends.

B1.4.1. The Need for Backend Parallelism

As the clock frequency of FPGA user logic is low compared to CPUs and GPGPUs, FPGA-
based computational accelerators typically contain many parallel computation units to
achieve high throughput [75]. This can be interpreted as frontend parallelism in terms
of the system presented in Figure B1.3. We emphasize that backend parallelism is also
necessary not only to keep the frontends fed with data, but also to take advantage of
increasing DRAM bandwidth. If the frontend and the memory bandwidth are scaled up
without scaling the backend, the backend will become a bottleneck and the design will
have decreased energy efficiency. The problem arises due to the mismatch between the
DRAM data rate and the maximum FPGA user clock frequency. For instance, a DDR4
DRAM can perform up to 3.2 billion transfers per second, whereas FPGA user logic is
typically clocked at 200–300 MHz. As extremely wide input ports make place-and-route
operations difficult, a single SpMV backend is not suitable for consuming this much
bandwidth. Therefore, we argue that FPGA SpMV accelerators should be designed with
sufficient number of parallel backends to saturate the available bandwidth. Figure B1.4
shows an example of such a design, a theoretical FPGA SpMV accelerator connected
to a PC3-14400 DIMM supplying 14 GB/s of bandwidth. This external bandwidth
is made available to the backends through the memory ports of the FPGA memory
controller. If each backend has a width of 64 bits and is operating at 200 MHz, it is
able to consume approximately 1.6 GB/s, requiring 9 backends to consume the total
available bandwidth.

B1.4.2. Choice of Traversal Order

Although matrix element traversal order can be thought of as a property of the compu-
tation performed by the frontend, it has important consequences on SpMV memory
behavior. In terms of reading input data from the DRAM, column-major traversal
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Table B1.1.: Access streams for the CSC format. AvgColLen = NZ
n is the average

number of nonzero elements per column.

Stream Type Access Size Access Period

Matrix Value 8 bytes 1
Matrix Row Index 4 bytes 1
Matrix Column Length 4 bytes AvgColLen
Dense Vector Value 8 bytes AvgColLen

offers several advantages compared to row-major. Notably, the input dense vector x
is accessed in a sequential manner instead of irregularly, which makes it possible to
exploit DRAM row buffer locality and enables simpler memory request generation
logic. Additionally, it enables maximum reuse of dense vector elements, since a new
dense vector element is not read before the old element is multiplied by each matrix
element that requires it. Finally, if the result vector is completely buffered on-chip,
column-major traversal does not require any writes to DRAM, thereby eliminating any
bus turnaround delays.

Since our goal is to design a bandwidth-saturating backend, we chose column-major
traversal for our design to shift the irregularity from input to output and take advant-
age of the DRAM-related benefits. We note that the concepts of backend/frontend
decomposition, the need for backend parallelism and parallelism-aware DRAM data
placement (which will be discussed in the following sections) apply to all SpMV accel-
erators in equal degree, regardless of traversal or storage format.

B1.4.3. Interleaved Column-Major Storage

We now discuss the interaction of SpMV access patterns with DRAM structure. When
column-major traversal is desired, the CSC representation of the matrix is a natural
match for the SpMV kernel. With this representation, column-major SpMV maps to
four sequential access streams due to the structure-of-arrays nature of the format, as
summarized in Table B1.1.

Each CSC backend introduces a new instance of each stream type. When multiple
backends are requesting in parallel, the memory requests are serialized in the memory
controller as there is a single control interface for the entire DRAM. Even though each
stream is sequential in itself, serializing multiple sequential streams can create an
access pattern that appears random and exhibits variable access latencies. As we show
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(a) Input data for a CSC SpMV operation
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Figure B1.5.: SpMV input data in regular and interleaved forms.

in Section B1.5, this pattern causes matrix- and parallelism-dependent bandwidth
utilization and energy efficiency, even with a reordering memory controller.

To address this issue, we propose to store the inputs as a per-backend array-of-
structures. In this interleaved representation, each backend requires only one stream
of sequential memory accesses and can be assigned to a single DRAM bank to provide
independent bandwidth. An example of this storage format is illustrated in Figure B1.5.
Since this is a simple rearrangement of the data in CSC, the interleaving can be done
on-the-fly while the data in CSC format is being transferred into the accelerator’s
DRAM memory.

We also note that different ways of interleaving are possible, which allows catering for
the parallelism requirements of the frontend. We define the consecutive number of
columns in the interleaved data as the interleave factor. For instance, a frontend that
computes two columns in parallel (intra-column parallelism) would benefit from an
interleaving factor of two, which is exemplified in Figure B1.5c.

B1.4.4. Proposed Backend Architecture

We now describe the internal architecture of our backend, whose most prevalent
property is its proactive nature: instead of waiting for the frontend to issue work unit
requests, the backend continuously pulls data from the DRAM as fast as possible,
translates it into work units and sends them to the frontend. This allows long DRAM
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burst accesses that can be continuously issued without waiting for the returned data,
and is made possible by the interleaved storage in DRAM and the stall-free frontend.

A top-level block diagram of the backend architecture is shown in Figure B1.6a. Before
the backend operation starts, it is assumed that the interleaved SpMV data is present
in the DRAM. When the backend is running, the stream generator continuously issues
maximum-length burst read commands to the memory controller, which replies with
a stream of interleaved data. This data is received by the deinterleaver, which turns the
raw data into work units and forwards them to the frontend. The control module ex-
poses registers for monitoring the busy status of the backend, configuring the number
of columns and nonzeroes in the matrix, as well as the start address of the interleaved
data. This information is used to configure how many iterations the stream generator
and the deinterleaver perform.

B1.4.5. Deinterleaving Raw Data

Since the entire SpMV input data is stored in interleaved form, the raw data arriving
into the backend may contain a mixture of dense vector data, matrix element data,
column length data and row index data. This data must be parsed and made available
to the frontend in the form of work units. The deinterleaver, which consists of a state
machine and several registers as depicted in Figure B1.6b, fulfills this responsibility.

In order to consume the entire raw data window of W bytes in a single clock cycle
and parse it into its assorted fields, we use a state machine. This state machine is
responsible for moving the current raw data into the relevant work unit registers
depending on the current state, and determining the next state depending on the
number of elements left in the column. State transitions occur only when valid raw
data from the stream generator is available. The state machine is constructed by
enumerating the possible combinations of fields that fit into the raw data window. The
complexity of the state machine thus depends on the window size, the size of each
field, and the interleave factor.

This design allows for high work unit throughput to the frontend, delivering a new
work unit every Tnz cycles inside the same column, and an additional Tcol -cycle delay
while switching columns. The calculation of these values is shown in Equations B1.1
and B1.2. Assuming new raw data is delivered every cycle, the work unit throughput
R from the backend can be computed as shown in Equation B1.3. Since NZ À n,
the throughput will approach Rmax = W

ValSize+IndSize as the average column length NZ
n

becomes larger.
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Figure B1.6.: Details of proposed backend architecture.
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Tnz =
sizeof(Ai j )+ sizeof(i )

W
= ValSize+ IndSize

W
(B1.1)

Tcol =
sizeof(x j )+ sizeof(m)

W
= ValSize+ IndSize

W
(B1.2)

R = WorkUnits

TotalCycles
= NZ

NZ ·Tnz +n ·Tcol
(B1.3)

To give an example, we assume an interleave factor of one, and a window
size W = 8 bytes. We define the regular expression AB1B2(C1C2D)A which
represents one column of interleaved data. Each symbol is four bytes; the
column length A and row index D are encoded by one symbol, while the double-
precision dense vector value B1B2 and matrix value C1C2 are encoded with
two symbols. The resulting state machine is shown in Figure B1.6c. The peak
throughput for this backend design is Rmax = 8

8+4 = 0.66 work units per cycle.

B1.5. Experimental Evaluation

B1.5.1. FPGA Implementation

To test the feasibility of the design in real hardware, we implemented our
backend in VHDL and evaluated its performance on an Avnet Spartan-6 LX16
evaluation kit. This board contains 64 MB of LPDDR external memory, which
can deliver 800 MB/s of external memory bandwidth. The block diagram of the
implemented architecture and relevant data rates are shown in Figure B1.7. A
MicroBlaze soft processor was used to initialize the matrix data in the LPDDR
and for interfacing the backened. The work unit throughput is measured via
a dummy frontend connected to the deinterleaver output. Due to the low
external memory bandwidth on this platform, a single backend with W = 8
running at 100 MHz was sufficient to saturate the bandwidth (800 MB/s =
100 MHz ·64 bits

cycle ).
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LPDDR
(64 MB)

Memory Controller
800 MB/s

16 bits
200 MHz DDR

Stream Generator

Memory Port

Deinterleaver

64 bits
100 MHz

800 MB/sread commands

Control
(MicroBlaze)

work unit
counter

backend

Figure B1.7.: Implementation on Avnet S6LX16 evaluation kit.

Table B1.2.: Logic resources and power for backend components.

Component Average Power Logic Slices Device Occupation

Deinterleaver 4.4 mW 142 6%
Stream Generator 0.6 mW 63 3%
Memory Controller 216 mW 153 7%
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Power and Area

We provide synthesis results from XST and average power estimates from
XPower in Table B1.2. The backend (including the memory controller) oc-
cupies 16% of the logic resources of this small FPGA, and consumes less than
250 mW on average, which is similar to the LPDDR power consumption. For
high-bandwidth DDR modules, the power consumption of the backend will
likely be dwarfed by the DRAM power, which can be several watts (Figure B1.9c).
Finally, we emphasize that the choice of a 100 MHz clock does not reflect the
maximum achievable frequency (which is about 200 MHz for this FPGA), but
rather the minimum frequency to saturate the external memory bandwidth.
The synthesis results indicate that the design is fast, compact and consumes
little power, all of which contribute to scaling to multiple backends.

Testing on real matrices

The implementation was tested with matrices taken from Tim Davis’ collec-
tion [22], representing several different problem types, sizes, patterns and
sparsities. For each matrix, we compute the sustained memory bandwidth by
dividing the number of bytes transferred by the elapsed time, and the sustained
work unit throughput (WUT) by dividing the number of nonzeroes in the mat-
rix by the elapsed time. We compare these metrics to their theoretical peak
values, which are 800 MB/s for the bandwidth and Rmax = 8

8+4 = 0.66 work
units per cycle for the WUT, as per Equation B1.3. The tested matrices and
corresponding results can be found in Table B1.3.

In terms of sustained DRAM bandwidth, our backend consistently displays
high utilization across all matrices, averaging at 96% of the peak. The WUT is
more dependent on the matrix structure due to the temporal reuse properties
of SpMV. Figure B1.9 displays the trends for sustained memory bandwidth and
WUT with increasing average column length. The minimum WUT is observed
for matrix 1, which is extremely sparse (a single nonzero per column). As
column length and dense vector values make up half the input data in this
case, a throughput of half the peak is expected. This may be alleviated through
alternative matrix representations, or the increased slack may be exploited
by the frontend for RAW hazard avoidance. The WUT quickly increases with
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Figure B1.8.: Backend performance with increasing column length.

increasing average column length, and matrices with more than 5 nonzeroes
per column exhibit over 80% of the peak work unit throughput.

B1.5.2. Performance with Parallel Accesses

As a single backend can nearly saturate the 800 MB/s bandwidth on our FPGA
platform, we ran simulation-based experiments with higher memory band-
width (12.8 GB/s) to evaluate the performance and energy efficiency of our
scheme with multiple backends. To illustrate the benefits of our scheme, we also
compare it against CSC without any interleaving. Since our experiments show
that DRAM power dominates the total power consumption for the backend
operation, we focus on DRAM power and performance. We use DRAMSim2
by Rosenfeld et al. [52], a cycle-accurate memory system simulator, with the
parameters listed in Table B1.4.

For our scheme, we assign backends to DRAM banks in a round-robin manner.
For the baseline implementation, we assume that CSC matrix data is laid out
as-is (sequentially) in memory, with the dense vector data placed after the
matrix, and with each backend assigned an equal number of columns. The
bank bits are moved to after the column bits to provide more bank parallelism
without explicit data-to-bank assignment, which allows a fairer comparison.
We note that the simulated memory controller reorders requests to maximize
row buffer hits, similar to the reordering memory controllers found in newer
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Table B1.4.: Simulation parameters for DRAMSim2.

Parameter Value

Memory module PC3-12800 DDR3 DIMM
Total capacity 2048 MB
Organization 1 rank, 8 banks, 64 bit width
Row buffer policy open-page
Row hit limit unlimited
Command queue 32 entries
Peak Bandwidth 12.8 GB/s
Address Map (interleaved) 3 bits bank : 14 bits row : 11 bits column
Address Map (baseline) 14 bits row : 11 bits column : 3 bits bank

FPGAs [19]. For both schemes, the DRAM command queue is always kept full
with requests, which is easy to implement in hardware for our single-stream
scheme, but may present difficulties for the four-stream matrix-dependent
baseline scheme. The results are summarized in Figure B1.9.

Aggregate Bandwidth

For up to sixteen backends, the average aggregate bandwidth of our method re-
mains close to 90% of the device peak, as illustrated in Figure B1.9a. We consist-
ently outperform the baseline, with up to 20% higher average aggregate band-
width for sixteen backends. With an in-order memory controller, the baseline
CSC scheme is likely to exhibit worse performance, whereas our scheme would
maintain its performance since it already exploits the row buffer locality in
each bank as much as possible.

Bandwidth Variability

Figure B1.9b plots the minimum observed performance from our scheme (16
backends) and the sustained bandwidth for different matrices and backend
counts for the baseline. In contrast to our scheme, which exhibits consistent
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sustained bandwidth utilization across all matrices, the baseline has consider-
able performance variation for different matrices and backend counts, espe-
cially for the larger matrices 3, 4, 6 and 8. As there is a fixed mapping of memory
addresses to DRAM banks, the matrix structure and parallel access patterns
determine the number of row activations and bank conflicts for the baseline
method. We note that the reordering capabilities of the memory controller may
lessen the impact of access patterns on the baseline performance variability.

Power Efficiency

To compare the power efficiency of our scheme to the baseline, we present the
average bandwidth per watt in Figure B1.9a. Our method offers 1.5x higher
energy efficiency compared to the baseline as long as there is a single backend
per DRAM bank. To perform a deeper analysis, we present the DRAM power
breakdown in Figure B1.9c. For our method, the infrequency of row activa-
tions is evident from the level of activate/precharge power, which is less than
0.05 W. In contrast, the baseline requires an average of 1.67 W for two backends,
with almost linear increase in the required activate/precharge power when
the number of backends double. The majority of total DRAM power for our
scheme (about 70%) is spent for burst accesses to the row buffer. With six-
teen backends, there are two backends per DRAM bank. In this case, although
the memory controller is able to avoid performance penalties by reordering,
bank conflicts increase significantly as evidenced by the steep increase in the
activate/precharge power and a drop in power efficiency.

These results suggest that our backend scheme is able to maintain high band-
width utilization and power efficiency with increased parallelism, as long as at
most two backends are assigned to a single memory bank. We also outperform
the baseline CSC scheme by up to 20% in terms of average aggregate bandwidth,
up to 1.5x in power efficiency, and offer consistent performance regardless of
the matrix structure.
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B1.6. Related Work

B1.6.1. SpMV and irregular memory behavior

The irregular, pattern-dependent memory behavior of the SpMV kernel is well
known and has been thoroughly investigated in the context of microprocessors
with hardware caches [29]. Researchers have proposed numerous of techniques
to optimize SpMV performance on microprocessors, which have been com-
piled into an auto-tuning library by Vuduc et al. [66]. In the general context
of irregular memory behavior and DRAM interaction, memory controllers
with automatic [51] or programmable [74] reordering capabilities have been
proposed. Spinean et al. [55] propose a access reordering unit which can be
used to enhance in-order memory controllers to offer performance and energy
efficiency improvements. Our work offers additional benefits on top of or al-
ternative to the reordering capabilities of memory controllers by changing the
data layout itslelf, similar to the work by Matam et al. [44] which proposes a
DRAM-aware layout for dense matrices, and offers up to 1.6x improvement in
energy efficiency.

B1.6.2. Existing FPGA SpMV accelerators

Numerous FPGA SpMV accelerators were previously proposed, but to our know-
ledge, this work is the first to propose a decoupled SpMV backend. We restrict
our review to existing work which directly interfaces DRAM and implicitly de-
scribes a backend. Table B1.5 summarizes the reported bandwidth utilization
and storage schemes in previous work. Several of these works use alternative
representations to compress matrix data. Jain-Mendon et al. [34] propose a
blocked streaming storage format (VCDB) to remove indirect memory accesses.
Kestur et al. [39] utilize the bit-level manipulation capabilities of the FPGA
to compress the matrix nonzero pattern using delta encoding. Our scheme
does not include any compression or blocking and can be further enhanced
with these techniques to offer higher work unit throughput to the frontend. In
terms of rearranging SpMV data to match DRAM structure, our work is similar
to that of Gregg et al. [30], who use column-major traversal and one DRAM
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Table B1.5.: Comparison with existing SpMV backends.

DRAM Bandw. Util. Backend

Work Average Min-Max Traversal1 Storage

Jain-Mendon et al. [34] 70% 17-94% BL VCDB
Kestur et al. [39] 14% 4-19% RM CVBV
Halstead et al. [31] 48%2 10-72% RM CSR
Gregg et al. [30] 71%2 13-74% CM SPAR
Zhang et al. [75] 76% 64-98% RM semi-interleaved
This work 91% 91-96% CM interleaved

1BL: blocked, RM: row-major, CM: column-major
2Bandwidth utilization estimated from reported performance

chip per parallel processing element, and Zhang et al. [75] who interleave row-
major values and column indices. However, the experimental results indicate
that our scheme outperforms the previous schemes in terms of average band-
width utilization and performance consistency across different matrices. In
constrast with previous work, we also provide power efficiency results from our
scheme.

B1.6.3. Stall-Free SpMV Frontends

A significant body of work targets SpMV frontend development, where the goal
is to construct a stall-free multiply-accumulate unit. A major hindrance towards
this goal is the floating point units in FPGAs; in order to achieve high clock
speeds, it is necessary to pipeline these units, which results in read-after-write
(RAW) hazards during accumulation [30]. Nevertheless, numerous designs for
single-cycle accumulation of an arbitrary number of arbitrary-sized consecut-
ive groups have been proposed and the state of the art is close to achieving this
goal. Notable works here include single- and double-strided adders [77] and
FAAC [56], which can be utilized to create a stall-free frontend for row-major
traversal. Column-major traversal and accumulation of interleaved groups has
been studied to a lesser extent. Since column-major traversal switches between
different rows, it offers a natural way of RAW hazard avoidance. Hazards may
still exist, but Gregg et al. [30] report that hazard-related stalls are few as long
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as the number of stages in the floating-point adder is fewer than 10.

B1.7. Conclusion and Future Work

In this paper we have presented a memory-centric view of the SpMV kernel and
proposed a novel SpMV FPGA backend and storage scheme. Our backend takes
into account the internal organization of DRAMs and utilizes an interleaved
SpMV representation to achieve high DRAM bandwidth and power efficiency.
The experimental results from a Spartan-6 FPGA board indicate that the pro-
posed design is compact and fast, and is able to achieve close to peak DRAM
bandwidth on its assigned memory port, regardless of the matrix structure. We
have also demonstrated that our scheme exhibits good scaling behavior and
outperforms the CSC baseline, using a cycle-accurate DRAM simulator. These
properties make our design a competitive alternative to the naive backends
found in previously-proposed SpMV accelerators. Future work will include
developing an efficient column-major frontend and evaluating a complete
FPGA SpMV accelerator design on a more powerful platform.
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B2. A Vector Caching Scheme for
Streaming FPGA SpMV Accelerators

Abstract. The sparse matrix–vector multiplication (SpMV) ker-
nel is important for many scientific computing applications. Im-
plementing SpMV in a way that best utilizes hardware resources
is challenging due to input-dependent memory access patterns.
FPGA-based accelerators that buffer the entire irregular-access
part in on-chip memory enable highly efficient SpMV implement-
ations, but are limited to smaller matrices due to on-chip memory
limits. Conversely, conventional caches can work with large matri-
ces, but cache misses can cause many stalls that decrease effi-
ciency. In this paper, we explore the intersection between these
approaches and attempt to combine the strengths of each. We pro-
pose a hard-ware-software caching scheme that exploits prepro-
cessing to enable performant and area-effective SpMV acceleration.
Our experiments with a set of large sparse matrices indicate that
our scheme can achieve nearly stall-free execution with average
1.1% stall time, with 70% less on-chip memory compared to buffer-
ing the entire vector. The preprocessing step enables our scheme
to offer up to 40% higher performance compared to a conventional
cache of same size by eliminating cold miss penalties.

B2.1. Introduction

Increased energy efficiency is a key goal for building next-generation comput-
ing systems that can scale the "utilization wall" of dark silicon [57]. A strategy
for achieving this is accelerating commonly encountered kernels in applica-
tions. Sparse Matrix – Vector Multiplication (SpMV) is a computational kernel
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widely encountered in the scientific computation domain and frequently con-
stitutes a bottleneck for such applications [70]. Analysis of web connectivity
graphs [22] can require adjacency matrices that are very large and sparse, with
a tendency to grow even bigger due to the important role they play in the Big
Data trend.

A defining characteristic of the SpMV kernel is the irregular memory access pat-
tern caused by the sparse storage formats. A critical part of the kernel depends
on memory reads to addresses that correspond to non-zero element locations
of the matrix, which are only known at runtime. The kernel is otherwise char-
acterized by little data reuse and large per-iteration data requirements [70],
which makes the performance memory-bound. Storing the kernel inputs and
outputs in high-capacity high-bandwidth DRAM is considered a cost-effective
solution [30]; however, the burst-optimized architecture of DRAM constitutes
an ever-growing "irregularity wall" in the quest for enabling efficient SpMV
implementations.

Recently, there has been increased interest in FPGA-based acceleration of com-
putational kernels. The primary benefit from FPGA accelerators is the ability
to create customized memory systems and datapaths that align well with the
requirements of each kernel, enabling stall-free execution (termed streaming
acceleration in this paper). From the perspective of the SpMV kernel, the abil-
ity to deliver high external memory bandwidth owing to high pin count and
dynamic (run-time) specialization via partial reconfiguration are attractive
properties. Several FPGA implementations for the SpMV kernel have been pro-
posed, either directly for SpMV or as part of larger algorithms like iterative
solvers [25, 27, 28], some of which present order-of-magnitude better energy
efficiency and comparable performance to CPU and GPGPU solutions thanks
to streaming acceleration. These accelerators tackle the irregular access prob-
lem by buffering the entire random-access data in on-chip memory (OCM).
Unfortunately, this buffer-all strategy is limited to SpMV operations where the
random-access data can fit in OCM, and therefore not suitable for very large
sparse matrices.

To address this problem, we propose a specialized vector caching scheme for
area-efficient SpMV accelerators that can target large matrices while still pre-
serving the streaming acceleration property. Using the canonical cold-capacity-
conflict cache miss classification, we examine how the structure of a sparse

66



B2.2. Background and Related Work

Figure B2.1.: Sparse matrix in CSC representation and SpMV pseudocode. The
random-access clause to y is highlighted.

matrix relates to each category and how misses can be avoided. By exploiting
preprocessing (which is quite common in GPGPU and CPU SpMV optimiza-
tions) to specialize for the sparsity pattern of the matrix we show that streaming
acceleration can be achieved with significantly smaller area for a set of test
matrices. Our experiments with a set of large sparse matrices indicate that our
scheme achieves the best of both worlds by increasing performance by 40%
compared to a conventional cache while at the same time using 70% less OCM
than the buffer-all strategy. The contributions of this work are four-fold. First,
we describe how the structure of a sparse matrix relates to cold, capacity and
conflict misses in a hardware cache. We show how cold misses to the result
vector can be avoided by marking row start elements in column-major traversal.
We propose two methods of differing accuracy and overhead for estimating
the required cache depth to avoid all capacity misses. Finally, we present an
enhanced cache with cold miss skip capability, and demonstrate that it can
outperform a traditional cache in performance and a buffer-all strategy in
area.

B2.2. Background and Related Work

B2.2.1. The SpMV Kernel and Sparse Matrix Storage

The SpMV kernel ~y = A ·~x consists of multiplying an m×n sparse matrix A with
NZ nonzero elements by a dense vector ~x of size n to obtain a result vector
~y of size m. The sparse matrix is commonly stored in a format which allows
storing only the nonzero elements of the matrix. Many storage formats for
sparse matrices have been proposed, some of which specialize on particular
sparsity patterns, and others suitable for generic sparse matrices. In this paper,
we will assume an FPGA SpMV accelerator that uses column-major sparse
matrix traversal (in line with [25, 30, 62]) and an appropriate storage format
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such as Compressed Sparse Column (CSC). Column-major is preferred over
row-major due to the advantages of maximum temporal locality on the dense
vector access and the natural C-slow-like interleaving of rows in floating point
multiplier pipelines, enabling simpler datapaths [25]. Additionally, as we will
show in Section B2.3.2 it allows bypassing cold misses, which can contribute
significantly to performance. Figure B2.1 illustrates a sparse matrix, its repres-
entation in the CSC format, and the pseudocode for performing column-major
SpMV. We use the variable notation to refer to CSC SpMV data such as values
and colptr. As highlighted in the figure, the result vector y is accessed depend-
ing on the rowind values, causing the random access patterns that are central
to this work.

B2.2.2. FPGA SpMV Accelerators and Result Vector Access

The datapath of a column-major SpMV accelerator is a multiply-accumulator
with feedback from a random-access memory, as illustrated in Figure B2.2a.
New partial products are summed into the corresponding element of the result
vector, which can give rise to read-after-write (RAW) hazards due to the latency
of the adder, as shown in Figure B2.2b. Addressing this requires a read operation
to y[i] to be delayed until the writes to y[i] are completed, which is typically
avoided by stalling the pipeline or reordering the elements.

With growing sparse matrix sizes and typically double-precision floating point
arithmetic, the inputs of the SpMV kernel can be very large. Combined with
the memory-bound nature of the kernel, this requires high-capacity high-
bandwidth external memory to enable competitive SpMV implementations.
Existing FPGA SpMV accelerators [25, 27, 28, 30] used DRAM as a cost-effective
option for the storing the SpMV inputs and outputs, which is also our approach
in this work. These designs typically address the random access problem by
buffering the entire random-access vector in OCM [25, 27, 28]. Random ac-
cesses to the vector are thus guaranteed to be serviced with a small, constant
latency. Unfortunately, this limits the maximum sparse matrix size that can be
processed with the accelerator. To deal with y vectors larger than the OCM size
while avoiding DRAM random access latencies, Gregg et al. [30] proposed to
store the result vector in high-capacity DRAM and used a small direct-mapped
cache. They also observed that cache misses present a significant penalty, and
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Figure B2.2.: A column-major FPGA SpMV accelerator design.

proposed reordering the matrix and processing in cache-sized chunks to re-
duce miss rate. However, this imposes significant overheads for large matrices.
In contrast, our approach does not modify the matrix structure; rather, it ex-
tracts information from the sparse matrix to reduce cache misses, which can be
combined with reordering for greater effect. Prior work such as [58] analyzed
SpMV cache behavior on microprocessors, but includes non-reusable data
such as matrix values and requires probabilistic models. FPGA accelerators can
exhibit deterministic access patterns for each sparse matrix, which our scheme
exploits for analysis and preprocessing.

To concentrate on the random access problem, we base our work on a de-
coupled SpMV accelerator architecture [62], which defines a backend interfa-
cing the main memory and pushing work units to the frontend, which handles
the computation. Our focus will be on the random-access part of the frontend.
Since we would like the accelerator to support larger result vectors that do
not fit in OCM, we add DRAM for storing the result vector, as illustrated in
Figure B2.2c.
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B2.2.3. Sparse Matrix Preprocessing

The memory behavior and performance of the SpMV kernel is dependent on
the particular sparse matrix used, necessitating a preprocessing step at runtime
for optimization. Fortunately, algorithms that make heavy use of SpMV tend
to multiply the same sparse matrix with many different vectors, which en-
ables ameliorating the cost of preprocesing across speed-ups in each SpMV
iteration. This preprocessing can take many forms [59], including permuting
rows/columns to create dense structure, decomposing into predetermined pat-
terns, mapping to parallel processing elements to minimize communication
and so on. We also adopt a preprocessing step in our scheme to enable optim-
izing for a given sparse matrix, but unlike previous work, our preprocessing
stage produces information to enable specialized cache operation instead of
changing the matrix structure.

B2.3. Vector Caching Scheme

To tackle the memory latency problem while accessing the result vector from
DRAM, we buffer a portion of the result vector in OCM and use a hardware-
software cooperative vector caching scheme that enables per-matrix special-
ization. This scheme will consist of a runtime preprocessing step, which will
extract the necessary information from the sparse matrix for efficient caching
including the required cache size, and vector cache hardware which will use
this information. Our goal is to shrink the OCM requirements for the vector
cache while avoiding stalls for servicing requests from main memory.

B2.3.1. Row Lifetime Analysis

To relate the vector cache usage to the matrix structure, we start by defining a
number of structural properties for sparse matrices. First, we note that each
row has a strong correspondence to a single result vector element, i.e., y[i]
contains the dot product of row i with x. The period in which y[i] is used
is solely determined by the period in which row i accesses it. This is the key
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Figure B2.3.: Example matrix Pajek/GD01_b and row lifetime analysis.

observation that we use to specialize our vector caching scheme for a given
sparse matrix.

Calculating maxAlive: For a matrix with column-major traversal, we define
the aliveness interval of a row as the column range between (and including)
the columns of its first and last nonzero elements, and will refer to the interval
length as the span. Figure B2.3a illustrates the aliveness intervals as red lines
extending between the first and last non-zeroes of each row. For a given column
j, we define a set of rows to be simultaneously alive in this column if all of their
aliveness intervals contain j. The number of alive rows for a given column is the
maximum size of such a set. Visually, this can be thought of as the number of
aliveness interval lines that intersect the vertical line of a column. For instance,
the dotted line corresponding to column 5 in Figure B2.3a intersects 8 inter-
vals, and there are 8 rows alive in column 5. Finally, we define the maximum
simultaneously alive rows of a sparse matrix, further referred to as maxAlive,
as the largest number of rows simultaneously alive in any column of the mat-
rix. Incidentally, maxAlive is equal to 8 for the matrix given in Figure B2.3a –
though the alive rows themselves may be different, no column has more than 8
alive rows in this example.

Calculating maxColSpan: Calculating maxAlive requires preprocessing the
matrix. If the accelerator design is not under very tight OCM constraints, it
may be desirable to estimate maxAlive instead of computing the exact value
in order to reduce the preprocessing time. If we define aliveness interval and
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span for columns as was done for rows, the largest column span of the mat-
rix maxColSpan provides an upper bound on maxAlive. The column 3 in Fig-
ure B2.3a has a span of 14, which is maxColSpan for this matrix.

B2.3.2. Avoiding Vector Cache Misses

We now use the canonical cold/capacity/conflict classification to break down
cache misses into three categories and explain how accesses to the result vector
relate to each category. For each category, we will describe how misses can be
related to the matrix structure and avoided where possible.

Cold Misses: Cold (compulsory) misses occur when a vector element is refer-
enced for the first time, at the start of the aliveness interval of each row. For
matrices with very few elements per row, cold misses can contribute signific-
antly to the total cache misses. Although this type of cache miss is considered
unavoidable in general-purpose caching, a special case exists for SpMV. Con-
sider the column-major SpMV operation y = Ax where the y vector is random-
accessed using the vector cache. The initial value of each y element is zero,
and is updated by adding partial sums for each nonzero in the correspond-
ing matrix row. If we can distinguish cold misses from the other miss types at
runtime, we can avoid them completely: a cold miss to a y element will return
the initial value, which is zero1. Recognizing misses as cold misses is critical
for this technique to work. We propose to accomplish this by introducing a
start-of-row bit marked during preprocessing, as described in Section B2.3.3.

Capacity Misses: Capacity misses occur due to the cache capacity being in-
sufficient to hold the SpMV result vector working set. Therefore, the only way
of avoiding capacity misses is ensuring that the vector cache is large enough
to hold the working set. Caching the entire vector (the buffer-all strategy) is
straightforward, but is not an accurate working set size estimation due to the
sparsity of the matrix. While methods exist to attempt to reduce the working
set of the SpMV operation by permuting the matrix rows and columns, they
are outside the scope of this paper. Instead, we will concentrate on how the
working set size can be estimated. This estimation can be used to reconfigure

1The more general SpMV form y = Ax +b can be easily implemented by adding the dense
vector b after y = Ax is computed.
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function PREPROCESSMAXALIVE(CSCMatrix A)
Q ← pr i or i t yQueue(),cur r ent Al i ve ← 0,max Al i ve ← 0
R ← toC SR(A)
for i ← 0..m −1 do

st ar t ← R.col i nd [R.r ow ptr [i ]];end ← R.col i nd [R.r ow ptr [i +1]−1]
mar kRowSt ar t (A, st ar t , i )
Q.i nser t (pr i o = st ar t ,el em =+1);Q.i nser t (pr i o = end ,el em =−1)

end for
while !Q.empt y() do

cur r ent Al i ve ← cur r ent Al i ve +Q.pop();max Al i ve ← max(cur r ent Al i ve,max Al i ve)
end while
return max Al i ve

end function

Algorithm B2.1: Finding maxAlive and marking row starts.

the FPGA SpMV accelerator to use less OCM, which can be reallocated for other
components. In this work, we make the assumption that a memory location
is in the working set if it will be reused at least once to reap all the caching
benefits. Thus, the cache must have a capacity of at least maxAlive to avoid all
capacity misses. This requires the computation of maxAlive during the prepro-
cessing phase. If OCM constraints are more relaxed, the maxColSpan estimation
described in Section B2.3.1 can be used instead. Figure B2.3b shows the row
lifetime analysis for the matrix in Figure B2.3a and how different estimations of
the required capacity yield different OCM savings compared to the buffer-all
strategy.

Conflict Misses: For the case of an SpMV vector cache, conflict misses arise
when two simultaneously alive vector elements map to the same cache line.
This is determined by the nonzero pattern, number of cachelines and the
chosen hash function. Assuming that the vector cache has enough capacity to
hold the working set, avoiding conflict misses is an associativity problem. Since
content-associative memories are expensive in FPGAs, direct-mapped caches
are often preferred. As described in Section B2.4.2, our experiments indicate
that conflicts are few for most matrices even with a direct-mapped cache, as
long as the cache capacity is sufficient. Techniques such as victim caching [36]
can be utilized to decrease conflict misses in direct-mapped caches, though we
do not investigate their benefit in this work.
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B2.3.3. Preprocessing

Having established how the matrix structure relates to vector cache misses, we
will now formulate the preprocessing step. We assume that the preprocessing
step will be carried out by the general-purpose core prior to copying the SpMV
data into the accelerator’s memory space.

One task that the preprocessing needs to fulfill is to establish the required cache
capacity for the sparse matrix via the methods described in Section B2.3.1.
Another important function of the preprocessing is marking the start of each
row to avoid cold misses. In this paper, we reserve the highest bit of the rowind
field in the CSC representation to mark a nonzero element as the start of a row.
Although this decreases the maximum possible matrix that can be represented,
it avoids introducing even more data into the already memory-intensive kernel,
and can still represent matrices with over 2 billion rows for a 32-bit rowind. At
the time of writing, this is 18x larger than the largest matrix in the University of
Florida collection [22].

For the case of computing maxAlive, we can formulate the problem as con-
structing an interval tree and finding the largest number of overlapping inter-
vals. Algorithm B2.1 presents an implementation which uses a priority queue
to sort the start and end of each row according to their column indices. The
values inserted are +1 and -1, respectively for row starts and ends. maxAlive is
obtained by finding the maximum sum the sorted values during the iteration.
We do not present the algorithm for finding maxColSpan, as it is simply iterating
over each column of the sparse matrix and finding the one with the greatest
span.

B2.3.4. Vector Cache Design

The final component of our vector caching scheme is the vector cache hard-
ware itself. Our design is a simple increment over a traditional direct-mapped
hardware cache to allow utilizing the start-of-row bits to avoid cold misses. A
top-level overview of the vector cache and how it connects to the rest of the
system is provided in Figure B2.4a. All interfaces use ready/valid handshaking
and connect to the rest of the system via FIFOs, which simplifies placing the
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Figure B2.4.: Design of the vector cache.

cache into a separate clock domain if desired. Row indices with marked start-
of-row bits are pushed into the cache as 32-bit-wide read requests. The cache
returns the 64-bit read data, as well as the requested index itself, through the
read response FIFOs. The datapath drains the read response FIFOs, sums the
y[i] value with the latest partial product, and writes the updated y[i] value
into the write request FIFOs of the cache.

Internally, the cache is composed of data/tag memories and a controller, depic-
ted in Figure B2.4b. Direct-mapped associativity is chosen for a more suitable
FPGA implementation as it avoids content-associative memories required for
multi-way caches. To increase performance and minimize the RAW hazard
window, the design offers single-cycle read/write hit latency, but read misses
are blocking to respect the FIFO ordering of requests. To make efficient use
of the synchronous on-chip SRAM resources in the FPGA while still allowing
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single-cycle hits, we chose to implement the data memory in BRAM while the
tag memory is implemented as look-up tables. The controller finite state ma-
chine is illustrated in Figure B2.4c. Write misses are directly transferred to the
DRAM to keep the cache controller simple. Prior to servicing a read miss, the
controller waits until there are no more writes from the datapath to guarantee
memory consistency. Regular read misses cause the cache to issue a DRAM
read request, which prevents the missing read request from proceeding until
a response is received. Avoiding cold misses is achieved by issuing a zero re-
sponse on a read miss with the start-of-row bit set, without issuing any DRAM
read requests.

B2.4. Experimental Evaluation

We present a two-part evaluation of our scheme: an analysis of OCM savings
using the minimum required capacity estimation techniques, followed by per-
formance and FPGA synthesis results of our our vector caching scheme. For
both parts of the evaluation we use a subset of the sparse matrix suite initially
used by Williams et al. [70], excluding the smaller matrices amenable to the
buffer-all strategy. The properties of each matrix is listed in Table B2.1.

B2.4.1. OCM Savings Analysis

In Section B2.3.2 we described how the minimum cache size to avoid all
capacity misses could be calculated for a given sparse matrix, either using
maxColSpan or maxAlive. The rightmost columns of Table B2.1 list these values
for each matrix. However, a vector cache also requires tag and valid bit storage
in addition to the cache daha storage, which decreases the net OCM savings
from our method. We compare the total OCM requirements of maxColSpan-
and maxAlive-sized vector caches against the buffer-all strategy. The baseline
is calculated as 64 ·m bits (one double-precision floating point value per y
element), whereas the vector cache storage requires (64+dlog2(W )e+ 1) · W
bits to also account for the tag/valid bits storage overhead, where W is the
cache size. Figure B2.5a quantifies the amount of on-chip memory required
for the two methods, compared to the baseline. For seven of the eight tested
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Figure B2.5.: Results from vector caching scheme evaluation.

matrices, significant storage savings can be achieved by using our scheme. A
vector cache of size maxAlive requires 0.3x of the baseline storage on average,
whereas sizing according to maxColSpan averaged at 0.7x of the baseline. It
should be noted that matrices 2, 4 and 6, which have a more regular structure
with elements clustered around the diagonal, already gain significant storage
benefits from the low-overhead maxColSpan estimation. On the other hand,
the irregular matrices 1 and 3 have no storage reduction benefits by using
a maxColSpan-sized cache, so maxAlive must be used. For matrix #5, even
maxAlive is only 17.6% smaller than the entire y, and therefore the savings
from vector caching is not large enough to offset the tag overhead.
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B2.4.2. Vector Cache Evaluation

We use Chisel [6] to create a parametrizable hardware description for the vector
cache, which is converted to Verilog via the Verilog backend. The generated
Verilog code is fed into XST for FPGA synthesis in order to obtain frequency and
area results for the cache, and passed through the Verilator tool to generate a
cycle-accurate SystemC model. The model is used in a in-house SpMV frontend
simulator, which is stimulated with inputs corresponding to the chosen sparse
matrix and models the behavior of the accumulator datapath and DRAM for
performance assessment. We assume a 100 MHz clock for the frontend, with
delays of 7 cycles for the accumulator datapath and 10 cycles for DRAM reads.

Area and Frequency: We report area and frequency results from synthesis for a
Xilinx Spartan-6 LX45 FPGA with -2 speed grade, chosen to demonstrate the
potential of the technique with mediocre OCM. Our results indicate that the
cold skip enhancement is with very little extra hardware cost (less than 1%
in logic LUTs for the largest tested design), hence we do not report separate
results for a baseline cache without this enhancement. Figure B2.5b shows the
percent utilization of BRAM, LUTRAM and logic resources for a range of vector
cache sizes, and the maximum frequency Fmax reported by the synthesis tool.
A vector cache of 128 KB can fit on this relatively small FPGA, which is large
enough to accommodate the maxAlive-sized working set of 5 of the 8 tested
matrices. As can be expected, the utilization of BRAM and LUTRAM increases
linearly with cache size, and the LUTRAM used for cache tags ultimately limits
scaling to larger caches. Due to the simple design, the LUT utilization for
implementing logic is rather small and occupies about 5% of the available
resources for the largest design, which leaves plenty of room for implementing
the more logic-intensive parts of the accelerator. The maximum attainable
frequency is between 106 – 133 MHz for the tested designs, which is similar
to the operating frequencies of previous SpMV accelerator designs. Further
Fmax improvements can be achieved by using a more powerful FPGA or design
optimizations.

Cache Stall Time: As our goal is to enable a stall-free cache, we evaluate the
impact of cache stalls with our scheme. Figure B2.5c depicts the percentage
of total execution time the accelerator with up to 1 MB of cache is stalled due
to cache misses. The maxAlive of each matrix is indicated with numbered
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lines in the background. For 6 of the 8 matrices, allocating at least a maxAlive-
sized cache with cold miss avoidance capability is enough to remove almost
all cache misses, also indicating there are very few conflict misses. #3 is an
exception, which suffers from conflict misses even with a large cache due to its
nonzero pattern. The web connectivity matrix 1 has a working set larger than
the maximum tested cache size, although its miss rate is already quite low. Low
miss rates with cache sizes smaller than maxAlive is also observed for matrices
8 and 7, indicating that more relaxed working set definitions could be used for
further reduction in required storage. Overall, by allocating at least maxAlive-
sized caches, the cache stall time for our scheme is only 1.1% averaged across
the test suite.

Cold Miss Avoidance: To show the gains from the cold miss avoidance tech-
nique, we plot the overall performance improvement due to removal of cold
miss stalls in Figure B2.5d. The baseline for each data point is a vector cache of
equal size without cold miss avoidance capabilities. The average performance
improvement for at least maxAlive-sized caches is 28.6%. As the cache grows
larger, fewer capacity misses are encountered and cold misses make up a larger
percentage of the total. This increases the benefit from cold miss avoidance,
until there are no cache misses left and the benefit levels off. Since larger sparse
matrices exhibit more cold misses due to large y size, the greatest benefit is
observed for the large matrices 1, 2 and 4, with up to 40% improvement. For
matrix 5, the number of capacity misses with small caches is very large and
very little benefit is observed until a cache size of 16K elements.

B2.5. Conclusion and Future Work

We have studied how matrix structure relates to cache misses, and proposed
a scheme that uses preprocessing to enhance the operation of a traditional
hardware cache for FPGA SpMV accelerators. Specifically, we have proposed
two methods to estimate required cache depth to avoid all capacity misses,
and a way of enhancing the matrix representation to avoid all cold misses. Our
experiments with a suite of large sparse matrices indicate that the scheme
can service random accesses to the result vector with no or few stalls, while
avoiding cold miss penalties that hamper traditional hardware caches. Future
work will include evaluating the vector caching scheme in a complete FPGA
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SpMV accelerator context and developing techniques for eliminating the other
sources of stalls, including RAW hazards.
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B3. Random Access Schemes for
Efficient FPGA SpMV Acceleration

Abstract. Utilizing hardware resources efficiently is vital to build-
ing the future generation of high-performance computing systems.
The sparse matrix – dense vector multiplication (SpMV) kernel,
which is notorious for its poor efficiency on conventional pro-
cessors, is a key component in many scientific computing applica-
tions and increasing SpMV efficiency can contribute significantly
to improving overall system efficiency. The major challenge in
implementing SpMV efficiently is handling the input-dependent
memory access patterns, and reconfigurable logic is a strong can-
didate for tackling this problem via memory system customization.
In this work, we consider three schemes (all off-chip, all on-chip,
caching) for servicing the irregular-access component of SpMV
and investigate their effects on accelerator efficiency. To combine
the strengths of on-chip and off-chip random accesses, we pro-
pose a hardware-software caching scheme named NCVCS that
combines software preprocessing with a nonblocking cache to
enable highly efficient SpMV accelerators with modest on-chip
memory requirements. Our results from the comparison of the
three schemes implemented as part of an FPGA SpMV acceler-
ator show that our scheme effectively combines the high efficiency
from on-chip accesses with the capability of working with large
matrices from off-chip accesses.
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B3.1. Introduction

High energy efficiency is a key challenge for building the next generation of
computing systems where exascale performance levels are desired [50]. One
strategy for achieving this goal is to build highly efficient primitives (acceler-
ators) to implement computational kernels commonly encountered across
applications. Sparse Matrix – Vector Multiplication (SpMV) is one such com-
putational kernel, which is widely encountered in the scientific computation
domain and frequently constitutes a bottleneck for such applications [70]. Be-
sides the classical use in numerics, SpMV can be used to implement a variety of
graph algorithms by customizing the add and multiply operators [15, 38, 64].

A defining characteristic of the SpMV kernel is the irregular memory access
pattern caused by the sparse storage formats. A critical part of the kernel de-
pends on accesses to memory addresses that correspond to non-zero element
locations of the matrix, which are only known at runtime. These accesses con-
stitute a large problem especially when SpMV is used for analysis of social
graphs [15], since the resulting matrices are unstructured and are growing in
size as part of the Big Data trend. The kernel is otherwise characterized by
little data reuse and large per-iteration data requirements [70], which makes
the performance memory bandwidth-bound. Storing the kernel inputs and
outputs in high-capacity high-bandwidth DRAM is considered a cost-effective
solution [30]; however, the burst-optimized architecture of DRAM contrasts
with the fine-grained SpMV random accesses. Engineers and computer archi-
tects thus face an ever-growing "irregularity wall" in the quest for enabling
efficient SpMV implementations.

Recently, there has been increased interest in FPGA-based acceleration of
computational kernels. The primary benefit from FPGA accelerators is the
ability to create customized memory systems and datapaths that align well
with the requirements of each kernel, enabling stall-free and highly efficient
execution. From the perspective of the SpMV kernel, the ability to deliver high
external memory bandwidth, embedded SRAM blocks (which we refer to as
on-chip memory (OCM)) to provide high-bandwidth random accesses and run-
time specialization via dynamic reconfiguration are attractive properties.

Several FPGA implementations for the SpMV kernel have been proposed, either
directly for SpMV or as part of larger algorithms like iterative solvers [25, 27,
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Figure B3.1.: Tradeoffs in SpMV result vector random accesses.

28], some of which present order-of-magnitude better energy efficiency and
comparable performance to CPU and GPGPU solutions. These accelerators
tackle the irregular access problem by buffering the entire random-access data
in OCM. Unfortunately, this strategy is limited to operating on smaller matrices
where the random-access data can fit in OCM. An alternative solution is per-
forming random accesses to DRAM and mitigating the high latencies with many
in-flight requests and memory-level parallelism. This approach is not limited
by FPGA OCM size, but exhibits variable efficiency depending on the matrix
structure since DRAM is not optimized for fine-grained random accesses. Fi-
nally, our previous work in [61] proposed a specialized vector caching scheme
to take advantage of SpMV-specific reuse and access patterns, which showed
promising results despite the limited evaluation in simulation and low effi-
ciency for caches under a certain size due to lack of memory-level parallelism.

In essence, these three approaches line up along a tradeoff axis as illustrated in
Figure B3.1. In this paper, we adopt a processor-like view of the SpMV reducer
hardware for each random-access approach to better understand the tradeoffs
and facilitate comparison. To combine the strengths of the on-chip-only and
off-chip-only accesses, we extend upon our previous work in [61] to build the
Nonblocking Cooperative Vector Caching Scheme (NCVCS). Afterwards, we com-
pare these approaches by implementing them as part of a fully-functional FPGA
SpMV accelerator. Our results indicate that NCVCS effectively balances the use
of off- and on-chip memory bandwidth, achieving 73% average computational
efficiency across a set of large sparse matrices while occupying half of the OCM
on a Zynq Z7020. This work makes the following new contributions:
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• A processor-like view of SpMV reducer hardware to analyze and compare
vector random access schemes.

• A simplified preprocessing algorithm for providing cold miss skip capab-
ilities with low overhead.

• A pipelined, nonblocking vector cache architecture for NCVCS that sup-
ports cold miss skip as well as exploiting memory-level parallelism.

• Three open-source SpMV accelerator implementations that make use of
different random access methods, and their evaluation with respect to
performance, efficiency and resource usage on the ZedBoard.

B3.2. Background

B3.2.1. The SpMV Kernel and Sparse Matrix Storage

The SpMV kernel ~y = A ·~x consists of multiplying an m×n sparse matrix A with
NZ nonzero elements by a dense vector~x of size n to obtain a result vector ~y of
size m. The sparse matrix is commonly stored in a format which allows stor-
ing only the nonzero elements of the matrix. Many storage formats for sparse
matrices have been proposed, some of which specialize on particular sparsity
patterns, and others suitable for generic sparse matrices. Among the most pop-
ular storage formats for generic sparse matrices are Compressed Sparse Row
(CSR) and its column-major counterpart Compressed Sparse Column (CSC).
Figure B3.2 illustrates a sparse matrix, its representation in the CSC format, and
the pseudocode for performing column-major SpMV. We use the variable

notation to refer to CSC SpMV data in memory (e.g., values, rowind, colptr,
x, y). As highlighted in the figure, the result vector y is accessed depending on
the rowind values, causing the random access patterns that are central to this
work.

In this paper, we will focus on column-major sparse matrix traversal (in line
with [25, 30, 62]) and the CSC storage format with 4-byte indices and double-
precision floating point values. Column-major traversal enables simpler SpMV
datapaths by interleaving different rows the adder pipeline (see Section B3.3)
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Figure B3.2.: A matrix, its CSC representation and SpMV pseudocode. The
clause causing random-access to y is highlighted.
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Figure B3.3.: Decoupled SpMV accelerator architecture.

and permits maximum temporal reuse of the input vector and colptr values;
each of these values gets reused L = N Z

n times.

B3.2.2. Bandwidth-Bound Performance and Efficiency

SpMV has a low computation-to-memory ratio and typically requires double-
precision floating point arithmetic when used as part of scientific computation.
As such, the inputs can be very large and are stored in external DRAM, which
makes the kernel performance bounded by DRAM bandwidth. Our previous
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work in [62] proposed the decoupled architecture illustrated in Figure B3.3
to match the computational capability with memory bandwidth and identify
sources of inefficiency. Here, the backend is provisioned with B bytes per cycle
of external memory bandwidth, and is responsible for fetching matrix and
input vector data from DRAM. The backends feeds a frontend with data, which
performs the actual computation. In order to keep a frontend supplied with
enough data to perform one multiply and one add per cycle, the accelerator
should be provisioned with B ≥ 12+ 12

L bytes per cycle. In this work, we consider
an extended SpMV frontend where some or all result vector accesses may be
serviced from DRAM to allow working with bigger matrices, with random
accesses indicated with the dashed line in Figure B3.3. If M is the ratio of
random vector accesses that go to DRAM, achieving full throughput with M > 0
requires more bandwidth, as described in Equation B3.1.

B ≥ 8 ·M +12+ 12

L
(B3.1)

However, DRAM is not optimized for fine-grained random accesses and may
not deliver the desired bandwidth, which causes the frontend to stall and
decreases efficiency. The goal of this work is to devise a random access scheme
that minimizes these stalls by minimizing M and exploiting memory-level
parallelism, thus maximizing efficiency and performance.

B3.2.3. Sparse Matrix Preprocessing

Since the random-access behavior of the SpMV kernel is dependent on the par-
ticular sparse matrix used, a preprocessing step is often introduced to optimize
performance for a particular matrix. Many different forms of preprocessing for
SpMV have been proposed to date. A common form of preprocessing is using
the Cuthill–McKee (CMK) algorithm [20] or its reverse (RCMK) to reorder the
matrix for smaller bandwidth. Oliker et al. [47] compares the effects of differ-
ent forms of matrix partitioning and reordering on parallel supercomputers.
Kourtis et al. [40] and Wilcock and Lumsdaine [69] propose using preprocessing
to compress the matrix and reduce the required memory bandwidth. Pichel et
al. [48] investigate the performance effects of reordering techniques on GPUs,
and report speedups of up to 2.6x.
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Preprocessing has a certain time cost, as the original matrix must be first read
into memory, then the preprocessing performed and the results written back.
Fortunately, algorithms that make heavy use of SpMV tend to do so iteratively,
i.e., they multiply the same sparse matrix with many different vectors, which
enables ameliorating the cost of preprocessing across speed-ups in each SpMV
iteration. Toledo et al. [59] reports the cost of preprocessing to be 1–3 times
the SpMV cost for simpler reordering techniques (CMK, RCMK), 4–15 times
for blocking, and 20–200 times the SpMV cost for a nested dissection-type re-
ordering. They estimate that the speedup from blocking pays its preprocessing
cost in approximately 75 iterations. We also adopt a preprocessing step in our
scheme to enable optimizing for a given sparse matrix, but unlike previous
work, our preprocessing stage produces extra information to enable specialized
cache operation instead of changing the matrix structure.

B3.3. Frontend Architectures and Random Access

The frontend of a column-major SpMV accelerator can be viewed as a multiply-
accumulator with feedback from a random-access memory, as illustrated in
Figure B3.4. The first part of the frontend is the multiplier, which produces
the value we refer to as incr by multiplying each matrix nonzero with its
corresponding input vector element. This does not pose a significant design
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problem as the multiplier only needs to support backpressure and can have
an arbitrary number of pipeline stages. The pair (incr, ind) is passed to the
reducer to perform y[ind] += incr. If we think of the reducer as a very simple
processor, (incr, ind) can be thought of as an "accumulate" instruction
that increments the register ind by incr. The reducer loads the current value
of old=y[ind], compute incr+old, and write y[ind]=incr+old to complete
each instruction. Note that instructions with the same ind target the same
register, which constitutes a read-after-write (RAW) hazard that prevents these
instructions from running in parallel. A scheduler prevents this by controlling
instruction dispatch, monitoring which ind values are in-flight (i.e., not yet
completed) and stalling1 incoming instructions with hazards. The scheduler
issue window determines the maximum number of in-flight values.

In the following subsections, we will use this processor-like view of the reducer
to view the three random-access policies proposed in prior work on FPGA
SpMV acceleration in a common frame. Our intent here is not to exhaustively
categorize how accesses could be handled, but rather illustrate how response
latency and its variability affect the frontend architecture. For instance, random
accesses could also be serviced from a large, external SRAM chip, which would
have a deterministic random-access latency that is larger compared to OCM
but less compared to DRAM.

B3.3.1. All on-chip: BufferAll

Figure B3.5 illustrates a BufferAll reducer, which uses FPGA OCM to store and
access the entire result vector during SpMV. This offers deterministic and low
latency for random reads and writes, which results in highly efficient acceler-
ator implementations. Each instruction is completed after a fixed number of
cycles, i.e read/write complete signals can be generated by matching the BRAM
read/write delays with a shift register chain and all responses return in-order,
which makes the scheduler simple. An issue window of size equal to adder
stages plus read and write latency is enough to achieve full throughput, which
results in fewer RAW hazard stalls. Keeping all y accesses on-chip (i.e., M = 0 in
Equation B3.1) frees up external memory bandwidth for reading more matrix

1Dynamically re-ordering the dispatches can give fewer stalls, though we do not investigate
their benefit in this work.
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Figure B3.5.: Architecture of a BufferAll reducer.

data and enables higher performance. Unfortunately, this is only possible if
the entire result vector y can fit within FPGA OCM, which limits the maximum
number of rows in the matrix that the accelerator can process.

Much of the prior work on FPGA SpMV acceleration [25, 27, 28, 35, 75] uses
OCM for buffering the entire random accessed component and the maximum
matrix dimension (rows in column-major, columns in row-major) becomes
limited by OCM capacity. The largest sparse matrix dimension in the evaluation
is 8127 in the work by Jain-Mendon and Sass [35], 16K in the work by Fowers et
al. [27], 17281 in the work by Zhang et al. [75] and 63838 in the work by Chow
et al. [28], whereas we consider sparse matrices of up to a million rows in our
evaluation. The work by Dorrance et al. [25] illustrates both the benefits and
drawbacks of this strategy. While they report a high average E of 92%, the matrix
height is limited by OCM (reported maximum 218K rows) and they resort to
reduced precision data types to allow larger sparse matrices.

B3.3.2. All off-chip: BufferNone

A BufferNone reducer, which services the random accesses directly from DRAM,
is depicted in Figure B3.6. Although DRAM latency is much higher compared
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to OCM, DRAM-based memory systems permit multiple outstanding requests
to mitigate latency. By using a large issue window, the accelerator can take
advantage of memory-level parallelism and achieve high throughput, but a
large issue window may result in more RAW hazards. Due to the variability
of latencies, read/write-completion must be signaled directly by the memory
system instead of delay-matched registers. Responses may also be returned out-
of-order to maximize DRAM efficiency, though some systems can handle this
internally and return in-order to allow for simpler user logic, which we assume
in this work. Overall, the BufferNone approach does not require large amounts
of OCM and the matrix size is only limited by the DRAM capacity, which is a
natural limitation for high-performance systems. The primary disadvantage is
the additional consumption of valuable external memory bandwidth (M = 1)
and performance variability due to DRAM bank conflicts and increased RAW
hazards. It should also be noted that DRAM is optimized for large bursts; fine-
grained random accesses may not achieve peak bandwidth.

To our knowledge, this strategy has been only used for row-major and mixed-
traversal SpMV accelerators. These may handle RAW hazards differently but
still use memory-level parallelism to mitigate latency. The work by Halstead
and Najjar [31] uses many in-flight requests for high-throughput DRAM ran-
dom accesses to the input vector. They report efficiency ranging from 10% to
72% depending on the particular sparse matrix used, with an average of 48%.
Townsend and Zambreno [60] also use multiple memory requests to access the
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input vector in DRAM, although they split the matrix into 16-row chunks to mix
column-major and row-major traversal and use data compression to enhance
performance. They report performance ranging from 2.1 to 13.6 GFLOPS (av-
erage 7.5 GFLOPS), which corresponds to an average efficiency of 40% for the
peak performance of 19 GFLOPS.

B3.3.3. Balanced: BufferCache

A BufferCache reducer uses a chunk of OCM to buffer a portion of the result
vector according to some caching policy, and uses DRAM to service the ele-
ments that are not in the cache. It has the potential to combine the strengths of
BufferAll and BufferNone, though a "one size fits all" caching policy is difficult
to construct due to matrix-dependent memory accesses.

Gregg et al. [30] use a simple, blocking direct-mapped cache to supply y val-
ues, backed by DRAM to enable scaling to large matrices. To avoid the major
efficiency penalties due to cache misses blocking the entire accelerator, they
proposed to split the matrix into cache-sized chunks. They report efficiency
ranging from 14% to 72% and mention that splitting can introduce overheads
due to increased matrix storage costs and more RAW hazard stalls. Nagar and
Bakos [46] include a 8192-element direct mapped cache in their accelerator,
with performance of 1.17 – 3.95 GFLOPS (corresponding to 12%–41% of the 9.6
GLOPS peak), but they do not discuss how cache misses influence perform-
ance. Finally, our previous work in [61] examined how sparse matrix structure
relates to cache misses and proposed a vector caching scheme to combine
software preprocessing with special hardware to avoid cold misses. We present
an improved version of this vector caching scheme in Section B3.4.

B3.4. The Nonblocking Cooperative Vector Caching
Scheme

It is desirable to balance and combine the strengths of the BufferAll and Buf-
ferNone approaches into a BufferCache-type scheme and enable high effi-
ciency on large sparse matrices without being constrained by FPGA OCM.
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To achieve this, we propose2 the Nonblocking Cooperative Vector Caching
Scheme (NCVCS), which uses a combination of software preprocessing and
specialized hardware to achieve a high cache hit rate with an OCM footprint
smaller than BufferAll. Specifically, the preprocessing step analyzes the matrix
structure to provide a minimal estimate of the required cache capacity and
mark the locations where cold cache misses will occur. The capacity estimation
can be used to resize (via runtime reconfiguration) the vector cache hardware,
which can make use of the cold miss markings and memory-level parallelism
to offer high random-access performance.

In the following sections, we first describe how matrix structure relates to data
reuse and cache misses, then formulate a preprocessing algorithm and describe
a nonblocking cache architecture suitable for FPGAs for realizing NCVCS in
hardware.

B3.4.1. Row Lifetime Analysis

To relate the vector cache usage to the matrix structure, we start by defining a
number of structural properties for sparse matrices. First, we note that each
row has a strong correspondence to a single result vector element, i.e., y[i]
contains the dot product of row i with x. The period in which y[i] is used
is solely determined by the period in which row i accesses it. This is the key
observation that we use to specialize NCVCS for a given sparse matrix.

Calculating maxAlive and maxColSpan

For a matrix with column-major traversal, we define the aliveness interval of
a row as the column range between (and including) the columns of its first
and last nonzero elements, and will refer to the interval length as the span.
Figure B3.7a illustrates the aliveness intervals as red lines extending between
the first and last non-zeroes of each row. For a given column j, we define a set of
rows to be simultaneously alive in this column if all of their aliveness intervals
contain j. The number of alive rows for a given column is the maximum size of

2NCVCS is an extension of our previous work in [61], and avoids the shortcomings of
high LUTRAM consumption and transpose operations in preprocessing, as well as improving
performance for small cache sizes by exploiting memory-level parallelism.
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such a set. Visually, this can be thought of as the number of aliveness interval
lines that intersect the vertical line of a column. For instance, the dotted line
corresponding to column 5 in Figure B3.7a intersects 8 intervals, and there
are 8 rows alive in column 5. Finally, we define the maximum simultaneously
alive rows of a sparse matrix, further referred to as maxAlive, as the largest
number of rows simultaneously alive in any column of the matrix. Incidentally,
maxAlive is equal to 8 for the matrix given in Figure B3.7a – though the alive
rows themselves may be different, no column has more than 8 alive rows in
this example.

Calculating maxAlive requires preprocessing the matrix. If the accelerator
design is not under very tight OCM constraints, it may be desirable to estimate
maxAlive instead of computing the exact value in order to reduce the prepro-
cessing time. If we define aliveness interval and span for columns as was done
for rows, the largest column span of the matrix maxColSpan provides an upper
bound on maxAlive. The column 3 in Figure B3.7a has a span of 14, which is
maxColSpan for this matrix.

B3.4.2. Avoiding Vector Cache Misses

We now use the canonical cold/capacity/conflict classification to break down
cache misses into three categories and explain how accesses to the result vector
relate to each category. For each category, we will describe how misses can be
related to the matrix structure and avoided where possible.

Cold Misses

Cold (compulsory) misses occur when a vector element is referenced for the
first time, at the start of the aliveness interval of each row. For matrices with
very few elements per row, cold misses can contribute significantly to the total
cache misses. Although this type of cache miss is considered unavoidable in
general-purpose caching, a special case exists for SpMV. Consider the column-
major SpMV operation y = Ax where the y vector is random-accessed using
the vector cache. The initial value of each y element is zero, and is updated by
adding partial sums for each nonzero in the corresponding matrix row. If we
can distinguish cold misses from the other miss types at runtime, we can avoid
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them completely: a cold miss to a y element will return the initial value, which
is zero3. Recognizing misses as cold misses is critical for this technique to work.
We propose to accomplish this by introducing a start-of-row bit marked during
preprocessing, as described in Section B3.4.3.

Capacity Misses

Capacity misses occur due to the cache capacity being insufficient to hold the
SpMV result vector working set. Therefore, the only way of avoiding capacity
misses is ensuring that the vector cache is large enough to hold the working set.
Caching the entire vector (the BufferAll strategy) is straightforward, but is not
an accurate working set size estimation due to the sparsity of the matrix. While
methods exist to attempt to reduce the working set of the SpMV operation by
permuting the matrix rows and columns, they are outside the scope of this pa-
per. Instead, we will concentrate on how the working set size can be estimated.
This estimation can be used to reconfigure the FPGA SpMV accelerator to use
less OCM, which can be reallocated for other components. In this work, we
make the assumption that a memory location is in the working set if it will be
reused at least once to reap all the caching benefits. Thus, the cache must have
a capacity of at least maxAlive to avoid all capacity misses. This requires the
computation of maxAlive during the preprocessing phase. If OCM constraints
are more relaxed, the maxColSpan estimation described in Section B3.4.1 can
be used instead. Figure B3.7b shows the row lifetime analysis for the matrix
in Figure B3.7a and how different estimations of the required capacity yield
different OCM savings compared to BufferAll.

Conflict Misses

Conflict misses arise when two simultaneously alive vector elements map to
the same cache line. This is determined by the nonzero pattern, number of
cachelines and the chosen hash function. Assuming that the vector cache
has enough capacity to hold the working set, avoiding conflict misses is an
associativity problem. Since content-associative memories are expensive in

3The more general SpMV form y = Ax +b can be easily implemented by adding the dense
vector b after y = Ax is computed.
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function MARKROWSTARTS(CSCMatrix A, bool reverse)
seen[0..n −1] ← 0
i sRowSt ar t [0..NZ −1] ← 0
for e ← 0..NZ −1 do

nzi nd ← (r ever se ? NZ −1−e : e)
r owi nd ← A.r owi nd [nzi nd ]
if seen[r owi nd ] == 0 then

seen[r owi nd ] ← 1
i sRowSt ar t [nzi nd ] ← 1

end if
end for
return i sRowSt ar t

end function

Algorithm B3.1: Marking row starts or ends.

function GETMAXALIVE(CSCMatrix A)
i sRowSt ar t [0..NZ −1] ← MARKROWSTARTS(A, f al se)
i sRowEnd [0..NZ −1] ← MARKROWSTARTS(A, tr ue)
max Al i ve ← 0,cur r ent Al i ve ← 0
for e ← 0..NZ −1 do

cur r ent Al i ve ← cur r ent Al i ve + i sRowSt ar t [e]− i sRowEnd [e]
max Ali ve ← MAX(max Ali ve,cur r ent Al i ve)

end for
return max Al i ve

end function

Algorithm B3.2: Finding maxAlive.

FPGAs, direct-mapped caches are often preferred. The conflicts arising from
this type of mapping can be visualized by "folding" the matrix height to be
equal to the cachelines, as shown in Figure B3.7c. Here, the conflicts from the
example matrix on a 8-line direct-mapped cache are visible as dotted lines on
cachelines 1 and 7. Our results in Section B3.6.4 suggest that conflicts are few for
most matrices even with a direct-mapped cache, as long as the cache capacity is
sufficient. Jouppi [36] describes how a small fully-associative memory called a
victim cache can significantly reduce conflict misses in a direct-mapped cache,
which could be implemented for cases with many conflict misses.

B3.4.3. Preprocessing

Having established how the matrix structure relates to vector cache misses, we
will now formulate the preprocessing step. We assume that the preprocessing
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function GETMAXCOLSPAN(CSCMatrix A)
maxColSpan ← 0,cur r entCol Span ← 0
for j ← 0..n −1 do

f i r stRow InCol ← A.r owi nd s[A.col ptr [ j ]]
l astRow InCol ← A.r owi nd s[A.col ptr [ j +1]−1]
cur r entColSpan ← l astRow InCol − f i r stRow InCol
maxColSpan ← MAX(cur r entCol Span,maxColSpan)

end for
return max Al i ve

end function

Algorithm B3.3: Finding maxColSpan.

step will be carried out by the general-purpose core prior to copying the SpMV
data into the accelerator’s memory space. Note that the original preprocessing
algorithm in [61] was formulated on the row-major matrix representation
(which requires a transpose operation) and required a priority queue. The
algorithms we present here operate directly on the column-major (CSC) and
with simple operations, which allow for low-overhead preprocessing.

One task that the preprocessing needs to fulfill is marking the start of each row
to avoid cold misses. This is accomplished by Algorithm B3.1, which generates
a boolean array with one element per matrix nonzero, indicating whether
that nonzero is the first element of a row. We reserve the highest bit of each
rowind value as a flag to indicate the start of a row. Although this decreases the
maximum possible matrix that can be represented, it avoids introducing even
more data into the already memory-intensive kernel, and can still represent
matrices with over 2 billion rows for a 32-bit rowind. At the time of writing, this
is 16x larger than the largest matrix in the University of Florida sparse matrix
collection [22].

To minimize OCM usage of the cache by the methods described in Section B3.4.1,
either maxAlive or maxColSpan needs to be computed. Algorithm B3.2 can be
used to compute maxAlive by first determining matrix elements where rows
start and end, then iterating over these arrays to find the maximum number of
rows alive. Alternatively, Algorithm B3.3 can be used to compute maxColSpan
by iterating over each column of the sparse matrix and finding the one with the
greatest span, which has less preprocessing cost but tends to overestimate the
needed capacity.
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B3.4.4. NCVCS Hardware

We now describe a nonblocking cache architecture that forms the hardware
component of NCVCS, with several improvements over the implementation of
our previous work in [61]. For the simple, blocking cache architecture presented
in [61], a cache miss will cause the reducer to stall until data is fetched from
DRAM. In case the cache capacity is insufficient to contain the working set
size, there will be many such stalls, which decreases efficiency significantly. In
this work, we address this problem with a nonblocking cache that allows other
requests to be processed while a cache miss is handled. Additionally, cache
tags were kept in combinational-read LUTRAM in [61], which made scaling
to larger cache sizes difficult due to the resource bottleneck and frequency
penalties. In this design, both result vector data and tag/valid information
is kept in synchronous-read OCM and support pipelining, which frees up
valuable LUTRAM and exhibits better scalability. Finally, we include a small
write buffer to avoid having to wait for completion of all pending DRAM writes,
which further improves upon [61]. Otherwise, we keep the design choices
from [61] for associativity (direct-mapped) and write policy (write-back), since
these allow for an FPGA-suitable implementation that conserves DRAM write
bandwidth.

Cache Reads

Figure B3.8 illustrates the read path for the nonblocking cache. Most of the
design is built to operate in a continuous data-flow manner, although a state
machine is still used to direct the flow of data in the read path when necessary.
Each read request to the cache includes the row index (with the most significant
bit used as the start-of-row flag) and an operand to the adder. The request-to-
response read path is structured as follows: first, tag and data are read from
OCM, and stored in the request–response queue together with the original
request. Each item in the request–response queue is sent along one of the three
response paths, which are the following in order of decreasing priority:

1. Cache hit: If the cached tag is equal to the request tag, the data response
and request index are directly sent to the read response.
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Figure B3.8.: Nonblocking cache read path.

2. Cold miss: If the start-of-row bit is set, this is a cold miss and a zero is
returned as read data. The cache data and tag are updated, which may
cause an eviction to DRAM.

3. Regular miss: Otherwise, this is a regular miss and a DRAM read request
is issued. Upon read response from DRAM, the cache read response is
emitted, and the cache data and tag are updated, which may cause an
eviction to DRAM.

For cache misses, all information about the miss (from the request–response
queue) is put onto the miss queue, which prevents misses from blocking the
request–response queue. This is the critical component that enables nonblock-
ing cache operation, and the size of the miss queue determines how many
outstanding misses the cache can have before blocking. Permitting a larger
number of outstanding misses lets the cache exploit more MLP, and can im-
prove performance when cache misses are frequent. When the read request
causing the miss is ready to be served (i.e., immediately for a cold miss, or when
DRAM read data returns for a regular miss) it is removed from the miss queue
and its read response emitted. Due to the out-of-order operation, the original
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operand and row index are always emitted as part of the read response along
with the returned read data.

Evictions and the Write Buffer

Since the cache uses a write-back policy to conserve DRAM bandwidth, there is
a risk for RAW hazards on the DRAM level. Specifically, if a DRAM read request
is made to a location with a pending DRAM write, an outdated (incorrect) read
response will be returned. In [61] this was avoided by waiting for all pending
writes to complete before issuing a DRAM read. This is detrimental for perform-
ance, especially for a nonblocking cache. Our design addresses this problem
by including a write buffer, which is a small (8-entry) associative memory that
keeps track of pending DRAM writes. The write buffer contents are checked
prior to issuing DRAM reads to prevent RAW hazards. Note that the current
implementation does not store the write data itself. Buffering the write data as
well would act as a victim cache, which was originally proposed by Jouppi [36]
to decrease conflict miss penalties in direct-mapped caches.

The NCVCS-reducer and Cache Writes

Figure B3.9 presents a NCVCS-reducer that uses the nonblocking vector cache
for handling random accesses. As the nonblocking property causes out-of-order
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Table B3.1.: Characteristics of the ZedBoard.

System-on-a-Chip Zynq Z7020
CPU core Dual ARM Cortex-A9, 666 MHz
CPU cache 32 KB L1D+L1I, 512 KB L2
DRAM and bandwidth 512 MB DDR3, 3.2 GB/s
FPGA logic resources 53200 slice LUTs, 220 DSP slices
FPGA OCM 560 KB (140 BRAMs)

cache responses, we use a scheduler with in-order dispatch and out-of-order
retirement. Additionally, we use the scheduler as a cache conflict guard to
simplify the cache design. Instead of comparing the entire row index of the
head instruction, the scheduler compares only the part that corresponds to
cache index bits. This prevents instructions with the same cache index (i.e.,
conflict misses) from entering the reducer; all in-flight instructions map to a
different cache index. Since the cache tag is allocated during read response
that precedes the write, all incoming cache writes are guaranteed to hit in the
cache. This makes the write path of the cache trivial, as data can be written
directly to OCM without checking tags. Out-of-order completion requires the
row index of the completed instruction to be signaled to the scheduler, which
is generated by the cache upon a write complete.

B3.5. Experimental Setup

To evaluate and compare how BufferAll, BufferNone and NCVCS perform as part
of a real FPGA SpMV accelerator, we implemented an accelerator system that
follows the architectural template in Figure B3.5.. The source code is available
from http://git.io/vsMNJ. To characterize performance on different sparse
matrices, we use the matrix suite from Williams et al. [70] which contains a
variety of large sparse matrices from different domains. The properties of each
matrix is listed in Table B3.2.

The accelerator system is deployed on the ZedBoard, whose characteristics are
shown in Table B3.1. The Zynq chip offers dual ARM Cortex-A9 cores and FPGA
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fabric, both of which can access the on-board DRAM. A single ARM core run-
ning at 666 MHz was used with bare-metal software for loading matrices from
the SD card, executing the preprocessing algorithm and controlling accelerator
execution. Most of the SpMV accelerator hardware was built in the hardware
description language Chisel [6], except a few components (large BRAMs, large
FIFOs and the double-precision floating point operators) which were generated
with Xilinx Core Generator and imported as Verilog blackboxes. Vivado 2014.4
was used for synthesis, place and route. The FPGA OCM (BRAM) is used for
the FIFOs between the backend and frontend, for storing y in BufferAll and for
storing cache data and tags in BufferCache. The double-precision floating point
operators are pipelined with 8 stages for the multiplier and 4 stages for the
adder. All accelerator variants are set to operate at 100 MHz, which corresponds
to a peak performance of 200 MFLOPS (one add and one multiply per clock
cycle). We provision the accelerator with a bandwidth of B = 16 bytes per cycle
(1.6 GB/s) from two AXI high-performance (HP) ports on the Zynq, which is
rate-matched with the peak performance for the matrix suite if M is close to
zero (see Section B3.2.2 and Equation B3.1).

We consider only a single SpMV processing element in our performance eval-
uation. The reason for this is the intricate link between parallel partitioning
of sparse matrices and random accesses. Partitioning essentially creates smal-
ler sparse matrices with new access patterns, whose performance can differ
significantly. As there are many possible partitionings for each matrix, the ex-
perimental space becomes very large and makes it hard to concentrate on
the differences between random vector access schemes themselves. Our res-
ults indicate that the matrices in the suite contain sufficient irregularity to
study different SpMV memory behavior and interactions with the vector access
schemes, even in unpartitioned form.

B3.6. Results

We now present and discuss our experimental results, which are organized into
four parts. We start with FPGA synthesis results and a best-case performance
comparison of the accelerator variants, then provide a more detailed analysis
on BufferNone and NCVCS performance in the last two subsections.
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Table B3.3.: Resources and frequency for best-case configurations.

Resource BufferAll NCVCS BufferNone

Frontend LUTs 2346 (4%) 2978 (6%) 2411 (5%)
Total BRAMs 117 (84%) 77 (55%) 3 (2%)
Total LUTs 6470 (12%) 7443 (14%) 6665 (13%)

Fmax 133 MHz 131 MHz 145 MHz

B3.6.1. FPGA Resources and Frequency

Table B3.3 compares the LUT and BRAM resource utilization for the best-
performing configurations (Section B3.6.2). All frontend variants include the
floating-point adder (1110 LUTs) and multiplier (359 LUTs, 10 DSP slices). The
logic for the scheduler and random vector access handling uses ∼1000 LUTs
for BufferAll and BufferNone and ∼1500 LUTs for NCVCS, accounting for ∼15%
of the entire accelerator. The most marked difference for the three variants is
in BRAM utilization. Note that the BRAM utilization limits the largest power-
of-two sized BufferAll y to 64K4 elements and NCVCS to 32K elements (smaller
than BufferAll due to cache tag overhead).

The maximum clock frequency for each configuration is also reported in
Table B3.3. The slightly higher Fmax for BufferNone is likely due to lower BRAM
usage compared to BufferAll and NCVCS. As the goal of our study is to max-
imize efficiency for a given amount of external memory bandwidth, we did
not perform detailed timing analysis or frequency optimizations in this work.
If this is desired, the latency-insensitive construction of our accelerator sys-
tem can accommodate deeper pipelining and retiming to increase the clock
frequency.
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Figure B3.10.: Comparison of best-case SpMV performance.

B3.6.2. Best-Case Performance

We now present a comparison of maximum SpMV accelerator performance
with different random access methods. For each access method, we empirically
determined the following parameters to maximize performance:

• NCVCS: maximum sized cache (32K elements), cold miss skip enabled,
nonblocking with 16-element issue window and miss queue.

• BufferNone: 32-element issue window.

• BufferAll: maximum sized OCM (64K elements), 8-element issue window.

• software: software SpMV on the CPU, -O2 flag.

Figure B3.10 summarizes the SpMV performance from these best-case config-
urations. Firstly, we note that BufferAll cannot be used for 8 of the 12 matrices
in the test suite as there is insufficient OCM on the FPGA for these matrices.
For the remaining 4 matrices that do fit into OCM, BufferAll achieves near-
peak (96%) computational efficiency, averaging at 193 MFLOPS. BufferNone
exhibits performance similar to software SpMV, with an average performance
of 61 MFLOPS that corresponds to 30% computational efficiency. Significant
deviations from BufferNone average performance are visible for matrices 5, 6
and 10. Finally, NCVCS outperforms or closely matches the performance of
the other methods, with 147 MFLOPS and 73% computational efficiency on

4We use N K to refer to N ·1024 y elements.
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Figure B3.11.: BufferNone performance with issue window size.
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Figure B3.12.: Percentage of RAW hazard stalls with issue window size.

average. Sections B3.6.3 and B3.6.4 provide a deeper analysis of performance
and parameters for BufferNone and NCVCS.

B3.6.3. Analysis of BufferNone

As we note in Section B3.3.2, BufferNone needs a large issue window to tol-
erate DRAM’s high access latency and enable high performance, but at the
risk of increasing RAW hazard stalls. Figure B3.11 plots the performance of
BufferNone with increasing issue window size. We can classify the matrices into
three groups according to their behavior. The first group includes matrices 6
and 10, which get no performance benefit from more memory requests. The
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second group includes matrix 5, with limited performance growth going from
issue window 8 to 16, and leveling off afterwards. The third and final group
includes all other matrices, which experience significant performance growth
with increasing window size.

To understand these different behaviours, we plot the percentage of RAW haz-
ard stalls within all frontend stalls in Figure B3.12. A close correspondence
between hazard stall growth and lack of performance increase from larger issue
window can be observed. Namely, the first group has a high percentage (above
70%) of RAW stalls for even the smallest issue window, while the second group
starts out with a moderate percentage of hazard stalls that rapidly increases
with a larger issue window. The third group does not experience significant
hazard stalls even with large issue window sizes. They experience performance
growth up to a window size of 32, after which the memory port becomes sat-
urated and does not deliver more bandwidth for result vector accesses. The
expected bandwidth-bound peak performance for BufferNone is between 140
to 160 MFLOPS for the matrix suite, whereas the observed RAW hazard-free
peak performance is around 70 MFLOPS. This suggests that the DRAM ports
are unable to deliver full bandwidth. Permitting out-of-order DRAM operation
and prioritizing random vector accesses in shared memory system resources
can help increase efficiency, which is left for future work.

B3.6.4. Analysis of NCVCS

We now present results and discussion on different aspects of NCVCS, including
the performance impact of cache size and miss queue size. We also evaluate
the cost of preprocessing and show how it compares with the obtained per-
formance and OCM savings. We use a miss queue size of 16 and cold miss skip
enabled as baseline parameters for these experiments.

Impact of Cache Size

A key indicator of cache performance is cache miss rate (i.e., the ratio of ac-
cesses that do not hit in the cache), which is plotted in Figure B3.13. 9 of the
12 matrices in the suite have maxAlive values smaller than the largest cache
(32K elements) we can deploy on this FPGA, and together with cold miss skip
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Figure B3.13.: NCVCS cache miss rate with cache sizes.
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Figure B3.14.: SpMV performance with different cache sizes.

achieve zero or near-zero cache miss rate. This also implies that conflict misses
are not a problem for direct-mapped caches with at least maxAlive capacity,
confirming the results from [61]. The remaining matrices 4, 10 and 12 require
cache capacity greater than what we can deploy on this FPGA, and exhibit
higher miss rates.

Although cache hit rate is critical to overall accelerator performance, it is not the
sole determinant. Figure B3.14 illustrates the SpMV accelerator performance
across the matrix suite with different cache sizes, which reveals three groups
of behavior. Perhaps most striking are the results for matrices 5 and 6, which
have no cache misses but achieve only 50% to 70% of peak performance. This
is due to a large number of RAW hazard stalls, which limits the rate at which
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Figure B3.15.: Miss queue size against performance and miss penalty.

instructions can be sent to the reducer and decreases efficiency. Statically or dy-
namically reordering the matrix can help increase performance in these cases,
although we do not investigate their benefit in this work. The three matrices
with high cache miss rates (4, 10 and 12) display lower performance averaging
around 70 MFLOPS. Although matrices 4 and 10 have similar maxAlive values
and cache miss rates, matrix 10 benefits less from larger caches due to RAW
hazards. Finally, the remaining seven matrices have close to zero in both miss
rates and RAW hazard penalties, and achieve on average 95% computational
efficiency with a maxAlive-element cache or larger.

Impact of Nonblocking Cache

To illustrate how nonblocking helps improve performance with small caches
and high miss rates, we plot the performance of matrices 4, 11 and 12 with
a 1K-sized vector cache with varying miss queue sizes in Figure B3.15. All of
these matrices have maxAlive larger than 1K and high cache miss rates. The
performance with a miss queue size of 0 (which is a blocking cache) is 18, 51
and 15 MFLOPS for these three matrices, respectively. With a miss queue size
of 16, the performance levels rise to 65, 11 and 54 MFLOPS, which correspond
to over tripled performance for the larger matrices 4 and 12, and over doubled
performance for matrix 11. The increase in performance is directly linked to
how the miss penalty decreases with larger miss queue size, which can be
examined by dividing the number of frontend stalls (excluding RAW hazards)
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Figure B3.16.: Performance impact of cold miss skip with a 32K-cache.

by the number of cache misses. The average number of stall cycles, which is
plotted as a dashed line in Figure B3.15, decreases from 35 for a blocking cache
to 6 for a miss queue size of 16.

Impact and Cost of Cold Miss Skip

Figure B3.16 compares the performance of a 32K-element nonblocking cache
with and without the cold miss skip optimization across the matrix suite. On
average, cold miss skip improves performance by 30%, although the exact be-
nefit varies between 5% to 88%. Due to interactions5 between matrix structure
and how cold miss skip influences latency, the performance benefits cannot
be trivially linked to matrix dimensions and sparsity in a nonblocking cache.
For instance, matrices 5 and 6 have both zero non-cold cache misses, few ele-
ments per row and experience performance degradation due to RAW hazards.
However, the performance benefit from cold miss skip is quite different: while
matrix 6 performance improves by 20%, matrix 5 almost doubles its perform-
ance with 88% improvement.

It is important to remember that the cold miss skip requires marking the start
of each row via preprocessing, which has a certain cost. As discussed in Sec-
tion B3.2.3, the cost of preprocessing can be outweighed by the resulting spee-
dups across multiple SpMV iterations. To characterize the cost of preprocessing

5For instance, in a cache without cold miss skip, a nonblocking cold miss followed by hits
can mimic the benefits of cold miss skip.
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Figure B3.17.: Iterations to break-even for cold miss skip preprocessing.

for cold miss skip, we use the break-even iterations as an indicator. We define S
as the SpMV iteration count when cold miss skip peformance improvement
matches or exceeds its preprocessing cost, i.e.,:

S =
⌈

TC PU−pr epr oc

TF PG A−spmv−no−cms −TF PG A−spmv−cms

⌉
Figure B3.17 depicts the number of break-even iterations for a cache with 32K
elements, which ranges between 2 to 32 iterations (average 11) for the matrix
suite. This compares favorably to the 75 break-even iterations estimated by
Toledo [59] for matrix reordering, and can be improved further by using a more
powerful CPU or hardware for the preprocessing.

Row Lifetime Analysis and OCM Savings

In Section B3.4.2 we described how the minimum cache size to avoid all
capacity misses could be calculated for a given sparse matrix, either using
maxColSpan or maxAlive. The rightmost columns of Table B3.2 list these val-
ues for each matrix. However, a vector cache also requires tag and valid bit
storage in addition to the cache data storage, which must be taken into consid-
eration. To calculate the OCM savings with vector caching, we use the BufferAll
OCM requirements as a baseline, which is 64 ·m bits (one double-precision
floating point value per y element). For a matrix with m rows, the minimum
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Figure B3.18.: OCM requirements compared to BufferAll.

storage requirement in terms of number of bits for a vector cache of W ele-
ments, including tag and valid bits, is given by the following equation:

(64+dlog2me−dlog2W e+1) ·W

In Figure B3.18 we plot the required OCM of maxColSpan- and maxAlive-sized
caches relative to BufferAll. On average, a vector cache offers OCM savings of
76% with maxAlive elements and 41% with maxColSpan elements. This shows
that substantial OCM savings can be achieved by dimensioning the cache
based on row lifetime analysis. Matrices 1, 5, 6 and 11, which have most of
their elements clustered around the diagonal, already gain significant storage
savings with maxColSpan. The other matrices require maxAlive to shrink the
required OCM by at least half, with the exception of matrix 4. For this matrix,
even maxAlive is only 17.6% smaller than the number of rows, and the OCM
benefit from vector caching is limited.

Since preprocessing is required to dimension the vector cache, it is useful to
characterize the cost of this preprocessing. If we denote the time cost of a single
software SpMV iteration cost as T , our results indicate that the preprocessing
costs are on average 0.13T for maxColSpan and 2.6T for maxAlive. In compar-
ison, Toledo [59] estimates the cost of Cuthill-McKee matrix reordering to be
1T to 3T and nested dissection reordering to be 20T to 200T . Furthermore, the
preprocessing times will improve by using a better CPU with a more powerful
memory system or parallel preprocessing, making it worthwhile to perform
row lifetime analysis if a smaller OCM footprint is desired.
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B3.7. Conclusion and Future Work

In this paper, we considered the problem of handling random accesses to large
volumes of data to enable efficient SpMV implementations. We have proposed
a processor-like view of the SpMV reducer, and framed three approaches with
the random accesses handled strictly on-chip, strictly off-chip and balanced
across off- and on-chip to understand how each approach can achieve high
efficiency. To combine the strengths off- and on-chip random accesses, we have
proposed NCVCS, which combines software preprocessing with a customized
nonblocking cache for servicing random accesses.

To compare the BufferAll, NCVCS and BufferNone approaches, we deployed
them as part of a FPGA SpMV accelerator, and evaluate their performance and
efficiency with a suite of large sparse matrices. Our results indicate that the
three methods have similar FPGA logic resource utilization, but significant
differences in the required FPGA OCM (BRAMs) and performance. We confirm
that BufferAll enables highly efficient (96% of peak) accelerators, but the size of
the largest sparse matrix it can handle is limited by FPGA OCM. BufferNone,
which services all random accesses from DRAM, performed the worst among
the three schemes with 30% average efficiency and significant RAW hazard
penalties. Finally, NCVCS either outperforms or performs almost as well as the
other schemes for all matrices, with average 73% efficiency. A cache miss rate
close to 0% is achieved on matrices with at least maxAlive-sized caches. This
indicates that maxAlive is a good indicator of minimum required capacity and
can provide significant OCM savings. Our results also show that the prepro-
cessing necessary for cold miss skip and row lifetime analysis has reasonably
low cost, and is well worth the benefits.

As future work, we plan to investigate how well these random access schemes
work with parallelization. Our results indicate that the remaining inefficiencies
in SpMV acceleration are mostly concentrated around RAW hazard stalls and
low bandwidth for DRAM random accesses, which could also be investigated
to further improve efficiency.
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B4. Hybrid Breadth-First Search on a
Single-Chip FPGA-CPU
Heterogeneous Platform

Abstract. Large and sparse small-world graphs are ubiquitous
across many scientific domains from bioinformatics to computer
science. As these graphs grow in scale, traversal algorithms such
as breadth-first search (BFS), fundamental to many graph pro-
cessing applications and metrics, become more costly to compute.
The cause is attributed to poor temporal and spatial locality due
to the inherently irregular memory access patterns of these al-
gorithms. A large body of research has targeted accelerating and
parallelizing BFS on a variety of computing platforms, including
hybrid CPU-GPU approaches for exploiting the small-world prop-
erty. In the same spirit, we show how a single-die FPGA-CPU het-
erogeneous device can be used to leverage the varying degree of
parallelism in small-world graphs. Additionally, we demonstrate
how dense rather than sparse treatment of the BFS frontier vector
yields simpler memory access patterns for BFS, trading redundant
computation for DRAM bandwidth utilization and faster graph ex-
ploration. On a range of synthetic small-world graphs, our hybrid
approach performs 7.8x better than software-only and 2x better
than accelerator-only implementations. We achieve an average tra-
versal speed of 172 MTEPS (millions of traversed edges per second)
on the ZedBoard platform, which is more than twice as effective as
the best previously published FPGA BFS implementation in terms
of traversals per bandwidth.
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B4.1. Introduction

Graphs as data representations and algorithms that operate on graphs are
ubiquitous throughout most scientific domains. Breadth-first search (BFS) is
a key building block for exploring graphs, and is fundamental to a variety of
graph metrics such as counting connected components, calculating graph
diameter and radius [18]. Special cases of BFS such as the independent cascade
model (ICS) are used to simulate the spread of information or disease across
networks [37].

In order to meet the demand for analysis of ever-larger graphs brought by
the Big Data trend, high-performance graph processing is of vital importance.
Two key characteristics of BFS (and many other graph algorithms) are irregu-
lar memory accesses due to data-driven computations on the vertex and edge
structure of the graph [13], and low computation-to-memory ratio. Thus, BFS
performance is commonly memory bandwidth limited. These characteristics
make accelerating and parallelizing BFS a major challenge, which has motiv-
ated a large body of research on different platforms (Section B4.5).

With the increased focus in recent years on energy efficient computing systems,
heterogeneous processing with reconfigurable logic and FPGAs is gaining pop-
ularity, including in datacenters [49]. Prior work by Betkaoui et al. [13] and
Attia et al. [4] showed that reconfigurable logic for accelerating BFS on large
graphs is performance-competitive with multi-core CPUs and GPGPUs. There
are three main reasons why FPGAs are suitable for energy efficient BFS. First,
the memory architecture can be customized to effectively deal with the irregu-
lar memory access patterns. Additionally, FPGAs can be reconfigured to adapt
to changing algorithms while consuming less power than CPU and GPGPUs,
offering flexible energy efficiency. Finally, BFS performance on large graphs
is bound by accesses to high-latency external memory, which is a good fit for
achieving high performance on FPGAs via ample parallelism and relatively low
clock frequencies.

However, this suitability is dependent on the availability of parallel work in
BFS to offer high performance, which can lead to significant waste of execu-
tion resources. Large real-world graphs often have the small-world property,
where the amount of parallelism available changes significantly during BFS
(see Section B4.2.2). Our work explores how this change in parallelism can be
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exploited in the context of a single-chip FPGA-CPU heterogeneous processor
to offer high-performance BFS on large graphs. Through observations on the
Boolean matrix-vector representation for BFS, we propose an FPGA BFS ac-
celerator architecture with a stall-free datapath. We describe two architectural
variants that treat the BFS frontier as sparse or dense to show how redundant
computations can be traded for bandwidth and increase BFS performance in
hybrid execution. Our experimental results on the ZedBoard with synthetic real-
world networks indicate that this scheme can utilize up to 78% of the DRAM
bandwidth and achieve over twice as many traversals per platform bandwidth
compared to previous work.

Specifically, our work makes the following contributions:

• A fast FPGA-CPU hybrid BFS architecture with high DRAM bandwidth
utilization;

• An analysis of BFS memory request structure and bandwidth utilization
for sparse and dense BFS frontier treatment;

• A stall-free BFS datapath using FPGA on-chip RAM to buffer the node
visit status;

• A method for decoupling BFS level computation from the traversal to
keep the node visit status data small.

B4.2. Background

B4.2.1. Breadth-first search

We consider undirected, unweighted graphs of the form G = (V ,E) with sets of
|V | vertices (nodes) V and |E | edges E . A breadth-first search begins at a root
node vr contained within the largest connected component vr ∈Vc ,Vc ⊂V and
traverses each edge er j for every neighbor v j . As such, the graph is traversed
in levels, where all nodes at each level are explored before the next level is
processed. In line with previous work exploring BFS performance ([4, 13, 33]),
we consider the variant of the kernel that produces the distance array (dist in
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function BREADTHFIRSTSEARCH(graph, root)
di st [∀u ∈V ] ←−1;cur r entQ,nextQ ←∅
step ← 0;di st [r oot ] ← step
ENQUEUE(nextQ,root)
while nextQ 6=∅ do

cur r entQ ← nextQ;nextQ ←∅
step ← step +1
while cur r entQ 6=∅ do

u ← DEQUEUE(cur r entQ)
for v ∈ Ad j [u] do

if di st [v] ==−1 then
di st [v] ← step
ENQUEUE(nextQ, v)

return di st

(a) Pseudocode

0 1

3
6

4

2
5

elems = {1 3 0 4 6 3 5 6 0 
             2 6 1 5 6 2 4 1 2 3 4}

ptrs = {0 2 5 8 11 14 16 20}

(b) Graph, BFS levels and CSC

(c) BFS operation on the Boolean semiring

Figure B4.1.: Three representations of the breadth-first search algorithm.

Figure B4.1a), which is the distance (in terms of BFS steps) of each visited node
from the root node.

B4.2.2. Sparsity and the Small-World Property

A small-world graph is one in which the diameter is small, e.g., “six degrees
of separation”, and for social graphs such as Facebook has been shown to
be as low as four [7]. Small-world graphs generally exhibit scale-free degree
distributions of the form y = xa , i.e., consisting of very few high-degree central
“hubs” and very many low-degree nodes that form the periphery [17]. This
means that when BFS starts there is a high probability that the root node will
only be connected to a few neighboring nodes, and those neighbors connected
to a few, and so on. Thus, the first iterations of BFS visit a small percentage of
the graph. However, as more and more edges are traversed, the frontier size
increases dramatically (see Figure B4.2), constituting a large percentage of the
network. As the BFS frontier size is correlated with available parallelism [32],
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Figure B4.2.: A typical frontier profile for BFS on a small-world graph. Exposed
parallelism increases with the frontier size, which approaches the
total number of nodes in the graph for the intermediate levels
(here 3, 4) of the BFS algorithm.

the same figure is representative for how amenable the different steps are for
parallelization.

Large small-world networks are generally sparse (i.e., most nodes are not neigh-
bors). To take advantage of this, the graph is typically stored in sparse adjacency
matrix form such as Compressed Sparse Column (CSC)1, exemplified in Fig-
ure B4.1b.

B4.2.3. BFS in the Language of Linear Algebra

Choosing a different representation for an algorithm may expose algorithmic
characteristics that can be exploited for accelerator design. Towards this end,
we will be using the “matrices over semirings” concept [38] to express BFS as a
linear algebra operation. The core idea is to substitute the number data type
and the operators for multiplication and addition in linear algebra to express a
variety of algorithms as matrix-vector operations.

Specifically, we will make use of the matrix-times-vector operation on the
Boolean semiring to perform BFS. In practice, this operation “multiplies” a

1For an undirected graph, the Compressed Sparse Row (CSR) representation is equivalent
to CSC. Our work assumes CSC and column-major traversal.
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binary matrix and a binary vector, with the regular multiply and add opera-
tions substituted with the Boolean AND and OR operators, respectively. To
disambiguate from regular matrix-vector multiply over real numbers, we will
use ~ to denote this operator. As illustrated in Figure B4.1c, each yt = A~ xt

operation corresponds to a breadth-first step, and each result vector yt is the
representation of the visited nodes in the graph after step t . The matrix A in
the operation is the adjacency matrix of the graph, while the initial input vector
x0 is initialized to all zeroes, except a single 1 at the location of the root node.
The result vector yt is used as the input vector xt+1 of the next step, which in
turn generates more visited nodes in its result vector until the result converges
(i.e., no more nodes can be visited).

We note that the properties of the Boolean semiring can be exploited here to
perform less work: xt elements that are zeroes can be simply skipped since
AND operation with a 0-input will always return a 0. Furthermore, only a
subset of the 1-entries (those that were produced in the previous step) in
xt may actually produce new 1-entries in yt . From a BFS standpoint, these
observations correspond to only the newly-visited (frontier) nodes doing useful
work. In terms of linear algebra, we can say that the xt vector can be treated as
sparse, though dense treatment is functionally correct.

As we will show in Section B4.3.2, this representation enables us to view BFS
in a way that permits trading redundant computations for higher memory
bandwidth. Additional advantages of this approach include the potential for
easier integration with software that use linear algebra as a building block, as
well as the ability to apply memory system optimizations designed for iterative
sparse linear algebra (e.g., [61, 63]).

B4.3. Hybrid BFS on an FPGA-CPU Hybrid

Our accelerator system specifically targets in-memory small-world graphs,
where breadth-first search exhibits a characteristic profile in terms of the fron-
tier size explained in Section B4.2.2. Since the amount of parallelism available
during BFS is closely correlated with the frontier size, the opportunity for het-
erogeneous mapping onto different types of processing elements presents itself.
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A single CPU core can be used for the steps with small frontiers, while a high-
throughput accelerator can be used for the steps with large frontiers. Following
the example of [33] for a CPU-GPGPU system, we adopt the hybrid approach
for a single-chip FPGA-CPU heterogeneous processor. The primary advantage
of this platform is the low cost of switching execution modes back and forth,
effectively adapting to the amount of parallelism available in small-world BFS.
As justified by our results in Section B4.4.2, our strategy is to start the BFS kernel
on the CPU, switch to the FPGA accelerator after a few steps to rapidly explore
most of the graph, then switch back to the CPU for the last few steps.

In the following sections, we will first develop several ideas around implement-
ing BFS on the Boolean semiring, and afterwards describe the architecture of
our accelerator system.

B4.3.1. Decoupled Distance Generation

The Boolean semiring matrix-vector representation of BFS given in Section B4.2.3
is very lean in terms of storage requirements, which makes it suitable for a hard-
ware accelerator implementation. Specifically, the x and y vectors require only
one bit of storage per graph node. Since y will be random-accessed due to mat-
rix sparsity, keeping the range and volume of the data to be random-accessed
to a minimum is advantageous for performance. Unfortunately, iteratively in-
voking ~ is not sufficient2 for BFS as it only generates the node visited status
and not the dist array.

We address this shortcoming by introducing a separate distance generation
(DistGen) step after each ~ invocation. A node i has distance t if it was vis-
ited during the BFS step t , and we know that a node cannot go from being
visited to unvisited. Thus, we can conclude that the node has distance t if it
is unvisited in xt and visited in yt , or dist[i ] = t ⇐⇒ (xt [i ] == 0∧ yt [i ] == 1).
To generate the distance information, it is sufficient to examine the input and
output vectors of each BFS step, after each step is finished. This array compare
operation is decoupled from the regular BFS step and can be easily parallelized

2Although using the tropical semiring (R ∪ {∞},mi n,+) would remedy this, each vector
element in the tropical semiring is a number and loses the leanness/storage advantages of the
Boolean representation.
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function DISTGEN(dist[], level, x, y)
upd ates ← 0
for i ← 0..N −1 do

if x[i ] == 0 & y[i ] == 1 then
di st [i ] ← level
upd ates ← upd ates +1

return upd ates

function BFSASLINEARALGEBRA(A, root)
x, y ← [0,0, ..0];
di st ← [−1,−1, ..−1]
x[r oot ] ← 1
y[r oot ] ← 1
di st [r oot ] ← 0
level ← 1
conver g ed ← 0
while !conver g ed do

y ← A~ x
conver g ed ← DISTGEN(di st , level , x, y)
y ← x;
l evel ← l evel +1

return di st

Algorithm B4.1: BFS with ~ and DistGen.

or implemented in hardware (Section B4.3.3) to reduce its performance over-
head. The complete BFS algorithm expressed with ~ and DistGen is listed in
Algorithm B4.1.

B4.3.2. Trading Redundant Computation for Bandwidth

As traversal of sparse graphs involves little actual computation and is known to
be a memory-bound problem, delivering graph data with high bandwidth is
critical for accelerator performance. Therefore, a careful analysis of memory
access patterns is a critical step for designing a BFS hardware accelerator. In
our accelerator as with many other systems, the BFS inputs are stored in and
accessed from DRAM. Due to the inherent latency and three-dimensional
organization of modern DRAM chips, three features are key to achieving a
substantial portion of available DRAM bandwidth: high request rate to mitigate
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Figure B4.3.: Structure of memory requests for sparse xt .

latency, large bursts, and a sequential access pattern to maximize row buffer
hits.

In Section B4.2.3, we observed how the input vector xt could be treated as
sparse to avoid redundant work, but the linear algebra notation tells us that we
can treat xt as dense and still get a correct BFS result. In a hybrid accelerator
operating on small-world networks, this seemingly unorthodox idea of treating
the BFS input frontier as dense and performing redundant work (revisiting the
entire graph) can be actually beneficial for overall performance due to simpler
DRAM access patterns. How we treat the xt vector influences how the matrix A
data will be accessed, and in turn, with how much bandwidth.

Figure B4.3 depicts how treating xt as sparse influences the memory requests to
the matrix data. The accelerator must first obtain a node index that is a member
of the frontier by reading dist, then obtain this node’s start and end pointers,
and finally obtain the list of adjacent edges using these pointers. Visible here is
the dependency of requests on responses to previous requests; this is typical
of applications with indirect accesses, and sparse treatment of xt leads to two
levels of indirection. More concretely, the effects are three-fold. The first is
the limitation of the request rate by the response rate. Secondly, the length of
read bursts to the elems array are limited by the number of edges in the node.
Finally, even though the reads to the elems array are sequential, there may be
large gaps in between the used portions of the array due to frontier nodes being
far apart, causing parts of the DRAM row buffer to go unused. This becomes
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especially prominent with several accelerators requesting different parts of the
edges array in parallel. Although this method avoids doing redundant work,
these three effects can dramatically decrease DRAM bandwidth utilization,
especially for platforms whose memory systems cannot handle a large number
of outstanding requests.

In contrast, if we treat xt as dense and consider every node of the graph, the
access pattern of A becomes significantly simpler. In particular, we can simply
read out the entire matrix, which can be done with maximum-length burst read
operations and without having to wait for responses from previous requests.
This is a much simpler and more suitable access pattern for achieving high
DRAM bandwidth. Memory bandwidth is, of course, only half the story; the
amount of redundant work performed by treating xt as dense is nontrivial –
the smaller the frontier, the more redundant work will be performed. How-
ever, since we are building a hybrid CPU-FPGA system where the accelerator
handles the BFS steps with large frontiers, the overhead of redundant work is
less significant. In fact, as described in Section B4.4, our experiments on the
Zynq platform with scale-free graphs show that the dense xt treatment always
outperforms the sparse treatment in this hybrid approach.

B4.3.3. Processing Element Architecture

Based on the ideas from Sections B4.3.1 and B4.3.2, we now describe a hardware
architecture for BFS. To compare the effects of sparse and dense xt treatment
described in Section B4.3.2, we consider two processing element (PE) vari-
ants.

Dense x variant

The architectural overview of a dense xt processing element (PE) is illustrated
in Figure B4.4. The architecture is organized in a data-flow manner, and modu-
larized into three main components: a backend, which connects to the DRAM
via the system interconnect, a frontend for performing the ~ operator, and a
distance generator. The backend is responsible for all interaction with main
memory, which includes reading out the matrix and vector data, and writing
updates to the distance vector. The matrix and vector data are requested by the
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Figure B4.5.: Backend architecture for sparse xt variant.

backend in large bursts and made available to the frontend, which performs
the BFS step operation and updates the result vector memory. Concretely, the
frontend simply writes 1s to result memory addresses indicated by the edges
whenever the input vector is 1. The edge counts data is used to determine when
to read a new input vector element. An input vector value of 0 implies edges
from a yet-unvisited node, and this data is simply dropped without further op-
eration. The control and status interface of the accelerator is provided through
memory-mapped registers, which are not shown in the figure.
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Sparse x variant

In terms of the overall architecture, the sparse xt variant is identical to the
dense one except that it does not need the input vector FIFO (since the sparse
treatment implies all xt values are ones). However, as illustrated in Figure B4.5,
the internals of the backend are substantially different from the dense variant.
The sparse input vector (or frontier indices) is generated internally by a frontier
filter, which scans the values of the distance array and emits the indices whole
values were written in the previous BFS step. Afterwards, the start- and end-
pointers of each generated index are requested. These pointers are used to
request the edge data for the node, and also to produce the edge count data for
the frontend.

Stall-free y Writes

To keep the accelerator running without stalls, it is important that the frontend
is able to consume data as fast as the backend is producing it. The result
vector yt is random-accessed by the frontend during the ~ operation, since
the accessed node locations depend on the visited graph edges. Thus, we can
abstract the functionality of the frontend as handling a stream of writes to
random addresses. If the result vector is stored in DRAM, the write request
buffers of the interconnect and memory controller can fill up and stall the
entire accelerator. To avoid this, our solution exploits the leanness of vector
representations. Since our approach requires us to keep only a single bit per
graph node, we can effectively utilize dual-port FPGA on-chip RAM to provide
two very fast, fine-grained random accesses per cycle. Although this limits the
largest graph size we can process, the on-chip RAM capacity of modern FPGAs
is quite large and graphs with millions of nodes can still be processed in this
manner. Another option is to explore a single BFS step of a large graph across
more than one execution by partitioning the matrix along rows, which we do
not explore in this work.
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Table B4.1.: Characteristics of the ZedBoard.

CPU core Dual ARM Cortex-A9, 666 MHz
CPU cache 32 KB L1D+L1I, 512 KB L2
DRAM and bandwidth3 512 MB DDR3, ∼ 3.2 GB/s
FPGA logic resources 13300 logic slices, 53200 slice LUTs
FPGA on-chip RAM 560 KB (BRAM)

3Controller efficiency is ∼ 75% of the theoretical max of 4.2 GB/s ([72], Section 22.3.2)

Distance Generator

After each BFS step is finished, the distance generator is invoked to implement
DistGen as described in Section B4.3.1. This involves comparing the input
and result vectors and finding the nodes that went from being unvisited to
visited. The indices of these nodes is passed to the backend for actually writing
the current BFS distance to the corresponding memory locations, and also for
updating the x vector for the next BFS step for the dense variant.

B4.3.4. Accelerator System Implementation

Our accelerator system is built and deployed on the ZedBoard platform with
the Xilinx Zynq Z7020 FPGA-CPU hybrid [72], whose characteristics are shown
in Table B4.1. The accelerator components were first built in Chisel [6]. Verilog
descriptions were then generated using the Verilog backend, and imported
into Vivado as IP blocks. Vivado IP integrator (version 2014.4) was used after-
wards to build the accelerator system, including Xilinx-provided IP blocks for
the result memory block RAM (BRAM) and AXI interconnect. The 64-bit AXI
high-performance (HP) slave ports, which are capable of utilizing about 75%
(3.2 GB/s) of the DRAM bandwidth, are used to feed the accelerators with data
and write back results.
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Figure B4.6.: Rate-balanced design for the ZedBoard.

Parallelism and Rate-Balancing

As parallelism is key to achieving high performance with FPGA accelerators, we
explore the graph with parallel PEs in our system. We use row-wise partitioning
of the input matrix to ensure that the random-access range of each partition
fits within the result vector memory of one PE. The entire input vector is read
from DRAM by all PEs during a step. After the step, each PE updates a portion
of the input vector with its result (during the DistGen operation). We use the
rate-balancing ideas for FPGA sparse matrix-vector multiplication from [63] to
estimate the number of PEs required to consume the available DRAM band-
width in the platform. Every cycle, each PE backend can fetch a maximum of 8
bytes through the interconnect, and each frontend can process up to two edges
of 4 bytes each by issuing writes to dual-port result memory. Assuming Fclk ≈
100 MHz, we can obtain a rate-balanced design by attaching one PE to each of
the four AXI HP ports, as shown in Figure B4.6.

Software BFS Implementation and FPGA-CPU Switching

The software BFS variant runs on a single Cortex-A9 core inside the Zynq system
with caches enabled, and uses the bitmap optimization [2] to track node visit
status for better performance. Since the visit status bitmap corresponds to an
input vector, it makes switching between CPU and FPGA easier. Switching from
CPU to FPGA execution requires updating the PE result memories with the
node visit status. The accelerator itself can be used to do this switching by using
an identity matrix as the graph, and the visit status bitmap as the input vector.
Switching back to the CPU after FPGA execution requires a frontier queue to be
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reconstructed from the distance vector, which is also a highly data-parallel task
(i.e., search through an array to find indices with a given value). We include
a simple hardware accelerator to keep the performance overheads from the
switching to a minimum.

Method Switching in Hybrid

After each BFS step is finished, the software uses a simple model to decide
which method3 should be used for the next step. The hybrid BFS starts exe-
cution in software, and switches to FPGA execution when the predicted BFS
step time for the FPGA is shorter. We exploit the predictability of the dense
variant (see Figure B4.7) to model its execution clock cycles with the following
formula:

Tstep = TDistGen +T~ = 1

β
· nodes

#PE
+ 1

β

(
nodes+ edges

2 ·#PE

)
where β is the fraction of utilized bandwidth. The FPGA execution continues
until the frontier size drops to below θ% of all graph nodes. Afterwards, the
software BFS takes over until the search is terminated. β,θ are determined
empirically.

B4.4. Results

We now present the results from the experimental evaluation of our accelerator
system. For BFS performance testing, we use synthetically generated RMAT
graphs with the Graph500 benchmark parameters (A=0.57, B=0.19, C=0.19)
in line with previous work [4, 13]. We refer to an RMAT graph with scale S
(2S nodes) and edge factor E (E ·2S edges) as RMAT-S-E . To avoid reporting
results from trivial searches, we only consider nodes which are in the largest
connected component in the graph, whose size is O(N ) for RMAT graphs. Due
to the limited amount of BRAM available on the Zynq, we were unable to
evaluate our approach for graphs larger than scale 21 (two million nodes), but
our technique can be applied to larger graphs on bigger FPGAs (e.g., up to scale
29 on the largest UltraScale+ Virtex 7).

3As our results in Section B4.4.2 indicate that the dense variant outperforms the sparse, we
only consider software-dense hybrid BFS.
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RMAT-19-32.

B4.4.1. FPGA Resource Utilization and Clock Frequency

The area and timing results from Vivado 2014.4 for both the dense and sparse
variants are similar. For a 4 PE design, the accelerator system can run at up to
150 MHz and uses about 39% of the FPGA logic resources, and 97% of the FPGA
on-chip RAM (BRAM). 82% of the BRAM is used for result vector memory, and
about 15% for the FIFOs in the memory system and inside the PEs.

B4.4.2. Comparing Software, Sparse and Dense BFS

To motivate the hybrid BFS solution, we start by comparing the performance of
the sparse and dense accelerator variants with software BFS. We perform BFS
on RMAT-19-32 with equal number of PEs (4) and clock frequency (100 MHz)
for both accelerator variants, and plot the number of clock cycles taken for each
BFS step (including distance generation) in Figure B4.7. Our first observation
here is that there is no single best method; as expected, the fastest method
differs from step to step. The goal of the hybrid scheme would be to choose the
fastest method for each step, which can be deduced from this plot. We can see
that exploring steps 1 and 2 with the CPU, switching to the dense x accelerator
for steps 3 and 4, then switching back to the CPU for the last two steps gives
the fastest execution. The dense variant outperforming the sparse implies that
the benefits from the increase in DRAM bandwidth is larger than the cost of
redundant data fetches for the middle steps. The small-world property means
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that a large portion of the graph nodes are visited in the middle steps, which
means less redundant work for the dense variant.

To better understand why the dense variant outperforms the sparse during the
large-frontier steps, we plot the aggregate read bandwidth utilization (com-
pared to the memory link capacity of 32 bytes/cycle) for the BFS steps 3 and 4,
for both variants with increasing PE counts. The reason we vary the PE count is
to reveal the effects of increased memory pressure from more parallel requests.
For the sparse variant, we actually observe that the total utilized bandwidth
decreases by adding more PEs. The particularly low utilization in step 4 is likely
caused by the frontier being larger ( 3x) than the step 3 frontier, causing parallel
PE requests all across the edges array and leading to many DRAM bank conflicts
and row buffer misses. On the other hand, the bandwidth utilization for the
dense variant is much better than the sparse and increases almost linearly with
PE count, peaking at 78% for 4 PEs, and does not vary between the two steps.
Adding more than 4 PEs requires the AXI HP ports to be shared and decreases
bandwidth utilization and performance. Even when we account for the signi-
ficant cost of redundant data fetches in the dense variant (see annotations in
Figure B4.8), we can see that the dense variant has better bandwidth utilization
than the sparse variant.

It is important to keep in mind that the tradeoffs between these methods
will depend on the particular platform, graph and number of PEs being used.
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Figure B4.9.: BFS performance on a range of RMAT graphs.

However, the performance depicted in Figure B4.7 is representative of all our
experiments on the ZedBoard with RMAT graphs; the software solution is best
for the start and the end, and the dense variant always outperforms the sparse
variant for the middle steps. We will therefore omit results for the sparse variant
from the rest of our discussion.

B4.4.3. Hybrid BFS Performance

We now report results for software-only, dense frontier accelerator-only and
hybrid BFS approaches on a range of RMAT graphs. The hybrid BFS works as
described in Section B4.3.4. The accelerators are clocked at 150 MHz. We use
β = 0.78 from Figure B4.8 and empirically determine that θ = 5% performs
close-to-ideal switching. We measure performance in MTEPS (millions of tra-
versed edges per second), which is obtained by dividing the graph edge count
by the execution time. The results are averaged over 16 BFS operations started
from randomly chosen root nodes within the largest connected component for
each graph.
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Figure B4.9 summarizes the BFS performance for a range of RMAT graphs. The
software-only BFS has a performance of 22 MTEPS on average. Since none of
these graphs fit into the CPU cache, a large number of data cache misses (∼%25
miss rate) degrade the performance. The accelerator is 3.9x as fast on average as
the software-only BFS. Given the 4x frequency advantage of the CPU and large
amounts of redundant data fetches and work performed by the accelerator,
this speedup further supports the claim that slow-clocked but parallel FPGA
accelerators are suitable for irregular, memory-bound applications. Finally, the
hybrid method combines the “best of both worlds” and outperforms both the
accelerator-only and software-only BFS with speedups of 2x and 7.8x, respect-
ively. The performance of the accelerator is correlated with the graph edge
factor, with the hybrid BFS achieving a maximum of 255 MTEPS for edge factor
64.

B4.4.4. Hybrid Execution Time Breakdown and Scaling

Figure B4.10 provides a breakdown of the execution time for the hybrid BFS on
scale 19 graphs with different edge factors. To show how performance scales
with parallel PEs, we provide data points for 1, 2 and 4 PEs. We observe that
the execution time of FPGA DistGen and ~ operations are almost halved by
doubling the PE count. This is consistent with the bandwidth scaling in Fig-
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ure B4.8. The FPGA ↔ CPU switching overheads account for about 10% of the
execution time on average. The overhead of the DistGen operation decreases
with increasing graph edge factor, and ranges between 9%-15% of the total
execution time for 4 PEs. Since the CPU execution time does not vary with
increased PE count, we observe an “Amdahl’s Law”-like trend in performance
scaling. With 4 PEs on RMAT-19-32, the CPU execution time accounts for 30%
of the total, and would eventually become a performance bottleneck on a larger
system with more bandwidth and PEs. More performance in the CPU-explored
steps can be achieved by using a faster CPU with a better memory system.

B4.4.5. Comparison to Prior Work

As most works targeting high-performance BFS use MTEPS as a metric, compar-
ing raw traversal performance is possible but the available memory bandwidth
in the hardware platform sets a hard limit on achievable BFS performance.
Our experimental results are from a ZedBoard with much less (about 1/20th of
those in Table B4.2) DRAM bandwidth than platforms in prior work and thus
is comparatively slow. However, as indicated by our results in Sections B4.4.4
and B4.4.2, the performance of our method scales well as more bandwidth
becomes available. Low memory bandwidth is not an inherent problem with
single-chip FPGA-CPU solutions and we believe more powerful versions of
these devices, such as the Xilinx UltraScale+ Zynq and Altera Stratix 10 SoCs,
are likely to be deployed for high-performance computing and graph analysis
in the near future.

Taking into account the memory-bandwidth-bound nature of BFS on sparse
graphs, we use traversals per unit bandwidth as a metric to enable fair compar-
ison with prior work, which we obtain by dividing traversal speed in MTEPS by
external memory bandwidth in GB/s. Table B4.2 presents a comparison with
several related works on reported average BFS performance, available DRAM
bandwidth and traversals per bandwidth over RMAT graphs similar to the ones
we used. Our method is more than twice as effective in terms of traversals per
bandwidth compared to the next-best solution, which is also on an FPGA.

140



B4.5. Related work

Table B4.2.: Comparison to prior work.

Work Platform Avg. MTEPS BW (GB/s) MTEPS/BW

[13] Convey HC-2 ∼1600 80 20
[4] Convey HC-2 ∼1900 80 24.375

[33] Nehalem+Fermi ∼800 128 6.25
This work ZedBoard 172 3.2 53.7

B4.5. Related work

Fast graph traversal has been approached from a range of architectural meth-
ods from general-purpose CPU and multicore/supercomputing approaches
exposing parallelism [2, 8, 12, 16, 41, 73] to graphics processing units (GPUs) [1,
14, 43, 45], as well as hybrid CPU-GPU methods [33], to more recent methods
taking advantage of reconfigurable hardware [4, 13, 23, 67]. Many principles are
constant across architectures, for example, the performance hit associated with
irregular memory accesses similarly affects GPU systems, single and multi-CPU
systems, and FPGAs. For brevity in the following text, we focus primarily on
FPGA-based related work.

Early reconfigurable hardware approaches attempted to solve graph traversal
problems on clusters of FPGAs [5, 21], but were limited by graph size and syn-
thesis times because the reconfigurable logic was used to model the graph itself.
Recent works have implemented optimizations for BFS and other irregular ap-
plications on multi-softcore processors in FPGAs, yielding promising results [16,
54, 67]. More closely related research to ours has explored highly parallelized
processing elements (PEs) and decoupled computation-memory [4, 13]. Ob-
serving that the execution time of BFS on small-world networks is dominated
by the intermediate levels, Betkaoui et al. [13] decouple the communication
and computation elements in an FPGA to maintain throughput of irregular
memory accesses, arguing that on-chip memories in FPGAs are too small for
contemporary graphs. In the same vein, the authors of [4] present optimiza-
tions to BFS that essentially merge the first two request-response arrows in
Figure B4.3 and report increased performance due to fewer memory requests.

Parallel BFS implementations on GPUs are numerous [1, 14, 43, 45], with re-
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search typically focusing on level-synchronous [33, 45] or fixed-point [73]
methods. CPU and multiprocessor-based approaches attempt to hide memory
operation latencies with caches, but for irregular algorithms such as BFS this is
not effective. Other techniques, such as using cache-efficient data structures
are often employed [1, 41]. A notable approach by Agarwal et al. [2] makes loc-
ality optimizations on a quad-socket system in order to reduce memory traffic
and proposed a bitmap to keep track of visited nodes in a compact format (1
bit per node). This study is widely cited for the latter aspect [8, 14, 45], and in
our work we adopt this optimization as well. Beamer et al. [8] argue for redu-
cing the number of edges traversed through a direction-optimizing approach
that switches between parent-child and child-parent traversal depending on
frontier heuristics.

The CPU-GPU hybrid method of [33] is similar to our work in that a switching
approach is employed: a queue-based method is efficient when the frontier
size is small and a read-based method that sequentially reads the adjacency
list is more efficient when the frontier size is large (as is typical for small-world
graphs). Our approach differs in two main points: we can switch back to execut-
ing on the CPU owing to tight CPU-FPGA integration (which is avoided in [33]
due to high overhead) and we exploit the frontier density in the middle BFS
steps for trading redundant computations for increased bandwidth. Finally, the
authors of [53] emphasize the benefits of sequential patterns for achieving high
storage device bandwidth in graph algorithms, and propose an edge-centric
scatter-gather framework with streaming partitions. Although it also exploits
redundant work for increased bandwidth, this approach sacrifices some effi-
ciency (e.g., random accesses to nodes) to achieve general applicability for in-
and out-of-memory graphs. It is also intended for cache-based multiprocessors,
whose efficiency on BFS are limited. To the best of our knowledge, ours is the
first approach to consider redundant work-bandwidth tradeoffs in BFS for a
hybrid FPGA-CPU system, or from a hardware-near perspective in general.

B4.6. Conclusion and Future Work

In this work, we have presented a hardware-accelerated BFS architecture for
FPGA-CPU hybrid systems that can effectively take advantage of the varying
degree of parallelism in small-world graphs. Viewing BFS as a matrix-vector
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operation on the Boolean semiring, we showed how the volume of the random-
accessed data can be reduced significantly and kept in on-chip RAM for a
stall-free BFS datapath. Another revelation from the representation, the idea
of treating the input vector as dense instead of sparse, allowed us to trade
redundant computations for increased DRAM bandwidth. Our experiments on
the ZedBoard platform suggest that the hybrid system performance scales well
with increased bandwidth and outperforms previous techniques in terms of
traversals per bandwidth.

Future work will include evaluating this technique on more powerful FPGA-
CPU platforms and exploring more graph algorithms with the matrices over
semirings idea. The source code for our accelerator system can be obtained
from http://git.io/veGTL for further investigations.
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1. Introduction

1.1. Inference with Deep Neural Networks

Deep Neural Networks (DNNs) are machine learning algorithms that are able
to extract information from complex raw data by using multiple layers of linear
transformations and nonlinear functions, as illustrated in Figure 1.1. Supported
by the availability of high-performance floating point hardware in the form
of GPGPUs, huge volumes of data that can be used for training and advances
in DNN training algorithms, DNNs are now able to out-perform the average
human on certain cognitive computing tasks [47, 55]. Two distinct phases are
involved in using a DNN: training, where a large, labeled data set is used to
learn the parameters, and inference, where the learned parameters are kept
constant and are used to e.g., recognize images as part of an application. This
work focuses on the inference phase.

With the potential to enable a new generation of intelligent applications and ser-
vices, DNNs have garnered a large amount of interest from both academia and
industry in the recent years. Examples of recent successes with deep learning
and DNNs include localizing and classifying objects in images, recognizing and
synthesizing speech, playing video games, and generating textual descriptions

Figure 1.1.: A DNN for image classification (adapted from wildml.com).
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Table 1.1.: Rough energy costs for various operations in 45 nm silicon operating
at 0.9 V. Adapted from [19].

Operation Energy Cost Relative Energy Cost

8-bit integer add 0.03 pJ 1
8-bit integer multiply 0.2 pJ 10
32-bit floating point add 0.9 pJ 10
32-bit floating point multiply 3.7 pJ 100
64-bit access from 8 KB cache 20 pJ 1000
64-bit access from DRAM 1.3–3.6 nJ 100000

of images [32]. However, these impressive feats come at a high computational
cost. A modern DNN may require billions of floating point multiply-accumulate
operations performed on hundreds of megabytes of parameter data to perform
a single inference. This introduces a significant computational challenge, espe-
cially when it is desired to deploy DNNs on edge devices with highly constrained
power and energy budgets. These particular properties of DNN inference justify
its selection as one of the chosen acceleration domains according to the criteria
set in Part A Section 1.2.

1.2. Quantized Neural Networks

Combined with the fact that DNNs are highly parallelizable and the high mar-
ket potential, the computational challenges brought by inference have spurred
a great deal of interest in accelerators for efficient deep learning [51]. Efficient
deep learning is concerned with not only the cognitive performance (i.e., classi-
fication accuracy) of DNNs, but also their computational performance (i.e., how
much energy and time is required to perform inference). It is a relatively young
and interdisciplinary field of research extending into computer architecture,
machine learning, approximate computing, high-performance computing and
distributed systems.

This thesis focuses on DNNs where the network is forced to operate with a
quantized set of integer values, called Quantized Neural Networks (QNNs). This

156



1.2. Quantized Neural Networks

is a key technique for increasing the efficiency of DNN inference [51], and is
studied in more detail in Section 2.2. The primary computational advantage
of using QNNs comes from the quantized data types. No matter how efficient
the architecture, any accelerator making use of floating point computation will
be inherently restricted by the energy and area cost of floating point opera-
tions [19] and will rapidly hit the memory wall [58] due to the large number
of memory bits occupied by floating point parameters. In contrast, quantized
values require much fewer resources for computation, as well as fewer bits of
memory storage which may allow for keeping the entire working set in on-chip
memory. This provides an important computational advantage especially in
terms of energy cost, as can be observed in Table 1.1.
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2. Background

This chapter presents background concepts required to understand the re-
search articles in this part of the thesis. How the topology is chosen, and how
the parameters of the network are trained are outside the scope of this thesis.
Instead, given a trained QNN, we will focus on which computations take place
when performing inference with a feedforward DNN (without any recurrent
connections) that are typically used for visual intelligence tasks.

2.1. The Anatomy of Inference Computations

In general terms, a DNN is a universal approximator for some function y = f (x),
where x is typically some high-dimensional input (e.g., an image) and y is the
output generated by the network (e.g., the classification result of the image).
Internally, the function f consists of a series of linear and nonlinear functions
f = g (h( j (. . .))) called layers. The architecture or topology of the network de-
scribes how many such layers are present, their types, number of parameters
and connections. The parameters (or weights) of the DNN are constants at
inference time, and the inputs and outputs to each layer are referred to as
activations.

The networks this thesis focuses on use a variant of the layer structure illus-
trated in Figure 2.1, and are referred to as Convolutional Neural Networks
(CNNs). The types of computation that take place in different layer types can
be summarized as follows:

• Convolutional layers slide a small window over activations and compute
a weighted sum of elements to capture the spatial correlations typically
found in images. This operation can also be lowered to matrix-matrix
multiplication [8].
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2. Background

Figure 2.1.: Typical layer structure in a CNN. Adapted from [51].

• Fully connected layers multiply a weight matrix with the incoming activa-
tions from the previous layer.

• Activation layers apply an element-wise nonlinear function to the activ-
ations passing through them. Without nonlinearities, the entire neural
network could have been collapsed to a single linear transform, which
possesses less expressive power to model complex input-output relation-
ships.

• Normalization layers perform statistical normalization of the activations
that pass through them.

• Pooling layers downsample the activations that pass through them to
provide a degree of scale invariance and lower the computational load.

2.2. Redundancy and Quantization

Although floating point numbers are a natural choice for handling the small
updates that occur during neural network training, the resulting parameters
can contain a lot of redundant information [16]. This can be exploited in dif-
ferent ways to reduce the computational cost of inference. Competitive levels
of accuracy have been demonstrated using sparsification [34], singular value
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Figure 2.2.: A quantized neuron with binary inputs, weights and activations.

Table 2.1.: Accuracy on several image recognition benchmarks using QNNs.

Dataset Topology Float Quantized Quantization Reference
top-1 (top-5) top-1 (top-5)

MNIST MLP 99% 99% 1-bit [11]
SVHN VGG-like 98% 99% 1-bit [11]

CIFAR-10 VGG-like 93.2% 92.5% 2-bit [7]
ImageNet AlexNet 58.5% (81.5%) 52.7% (76.3%) 2-bit, 8-bit [7]
ImageNet GoogLeNet 71.4% (90.5%) 63.0% (84.9%) 2-bit, 8-bit [7]
ImageNet VGG-like 69.8% (89.3%) 64.1% (85.6%) 2-bit, 8-bit [7]

decomposition [13], changing the architecture [20] or a combination of tech-
niques [17, 23]. For example, Han et al. [17] showed that 92% of synapses in
LeNet variants can be pruned without impacting classification accuracy. Unfor-
tunately, this approach results in a sparse, irregular computation that is difficult
to parallelize and execute efficiently, as was studied in Part B of this thesis.

Another approach for exploiting redundancy in neural networks is to use quant-
ization. This reduces the parameter volume and computational cost of neural
networks, while still keeping the computation dense and regular. Empirical
results indicate that it is possible to directly quantize trained floating point
networks down to 16 or 8 bits with minimal loss of accuracy [26, 44], but
there are recent research results indicating that is possible to use far fewer
bits as well. Sung et al. [50] study the effects of extreme quantization for both
fully-connected and convolutional networks, and report that ternary-precision

161



2. Background

networks with enough connections and quantization-aware training perform
almost as well as full-precision networks. A number of recent works have
demonstrated this in practice for a number of different image recognition
benchmarks, which is summarized in Table 2.1. Research by Courbariaux et
al. [11] and Rastegari et al. [45] proposed BNNs which use 1-bit weights and ac-
tivations, as exemplified in Figure 2.2. These Binarized Neural Networks (BNNs)
can offer accuracy comparable to floating point DNNs on smaller benchmarks.
Although there is some accuracy degradation when using BNNs for more chal-
lenging benchmarks such as ImageNet, recent research on QNNs variants with
higher bitwidth show some promise for closing this accuracy gap. For instance,
Half-Wave Gaussian Quantization (HWGQ) by Zhou et al. [7] can reduce the
top- 5 accuracy drop to less than 5% using the AlexNet topology with binary
weights and two-bit activations.

2.3. Computational Properties

QNN inference mostly consists of dense matrix-matrix and matrix-vector mul-
tiplications, whose optimization and parallelization are well studied in literat-
ure [6, 25, 27, 56]. Based on prior work, the salient computational properties
for QNN inference can be summarized as follows:

1. High arithmetic intensity. The key computation in QNN inference is
matrix-matrix multiplication, which performs O(N 3) operations on O(N )
data. This high arithmetic intensity lessens the impact of the memory
wall and can enable high performance on a variety of architectures [56].

2. Low-precision computations. Data types used in QNN inference are
multiply-add operations between few-bit (typically ≤ 4-bit) integers [61].
The bitwidths may differ from layer to layer and between weights and
activations [42]. In contrast, 8-bit is the smallest natively supported pre-
cision in most typical CPU and GPGPU Instruction Set Architectures
(ISAs).

3. Multiple levels of regular-structured parallelism. We can identify five
levels of parallelism in QNN inference: bit-level, synapse-level, neuron-
level and batch-level. This makes it amenable to a high degree of paral-
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lelization, with different data reuse patterns that yield different energy
efficiency characteristics [51].

4. Possibilities for static analysis. A trained QNN has a fixed topology, fixed
data dependencies and fixed values for weights. This makes it possible to
create customized accelerator architectures on the FPGA that are highly
optimized for the particular network.
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C1. FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference

Abstract. Research has shown that convolutional neural networks
contain significant redundancy, and high classification accuracy
can be obtained even when weights and activations are reduced
from floating point to binary values. In this paper, we present FINN,
a framework for building fast and flexible FPGA accelerators using a
flexible heterogeneous streaming architecture. By utilizing a novel
set of optimizations that enable efficient mapping of binarized
neural networks to hardware, we implement fully connected, con-
volutional and pooling layers, with per-layer compute resources
being tailored to user-provided throughput requirements. On a
ZC706 embedded FPGA platform drawing less than 25 W total
system power, we demonstrate up to 12.3 million image classi-
fications per second with 0.31 µs latency on the MNIST dataset
with 95.8% accuracy, and 21906 image classifications per second
with 283 µs latency on the CIFAR-10 and SVHN datasets with re-
spectively 80.1% and 94.9% accuracy. To the best of our knowledge,
ours are the fastest classification rates reported to date on these
benchmarks.

C1.1. Introduction

Convolutional Neural Networks (CNNs) have dramatically improved in recent
years, their performance now exceeding that of other visual recognition al-
gorithms [31], and even surpassing human accuracy on certain problems [47,
55]. They are likely to play an important role in enabling ubiquitous machine
vision and intelligence on all kinds of devices, but a significant computational
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challenge remains. Modern CNNs may contain millions of floating-point para-
meters and require billions of floating-point operations to recognize a single
image. Furthermore, these requirements tend to increase as researchers explore
deeper networks. For instance, AlexNet [31] (the winning entry for ImageNet
Large Scale Visual Recognition Competition (ILSVRC) [46] in 2012) required
244 MB of parameters and 1.4 billion floating point operations (GFLOP) per
image, while VGG-16 [48] from ILSVRC 2014 required 552 MB of parameters
and 30.8 GFLOP per image.

While the vast majority of CNNs implementations use floating point paramet-
ers, a growing body of research demonstrates this approach incorporates signi-
ficant redundancy. Recently, it has been shown [11, 29, 45, 50, 61] that neural
networks can classify accurately using one- or two-bit quantization for weights
and activations. Such a combination of low-precision arithmetic and small
memory footprint presents a unique opportunity for fast and energy-efficient
image classification using Field Programmable Gate Arrays (FPGAs). FPGAs
have much higher theoretical peak performance for binary operations com-
pared to floating point, while the small memory footprint removes the off-chip
memory bottleneck by keeping parameters on-chip, even for large networks.
Binarized Neural Networks (BNNs), proposed by Courbariaux et al. [11], are
particularly appealing since they can be implemented almost entirely with bin-
ary operations, with the potential to attain performance in the teraoperations
per second (TOPS) range on FPGAs.

In this work, we propose FINN, a framework for building scalable and fast BNN
inference accelerators on FPGAs. FINN-generated accelerators can perform
millions of classifications per second with sub-microsecond latency, thereby
making them ideal for supporting real-time embedded applications such as
augmented reality, autonomous driving and robotics. Compute resources can
be scaled to meet a given classification rate requirement. We demonstrate
FINN’s capabilities with a series of prototypes for classifying the MNIST, SVHN
and CIFAR-10 benchmark datasets. Our classification rate results surpass the
best previously published results by over 48× for MNIST, 2.2× for CIFAR-10 and
8× for SVHN. To the best of our knowledge, this is the fastest reported neural
network inference implementation on these datasets. The novel contributions
are:

• Quantification of peak performance for BNNs on
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FPGAs using a roofline model.

• A set of novel optimizations for mapping BNNs onto FPGA more effi-
ciently.

• A BNN architecture and accelerator construction tool, permitting cus-
tomization of throughput.

• A range of prototypes that demonstrate the potential of BNNs on off-the-
shelf FPGA platforms.

The rest of this paper is organized as follows: Section 2 provides background
on CNNs, BNNs, and their hardware implementations. Section 3 discusses
BNNs accuracy and peak performance on FPGAs. Section 4 describes FINN’s
architecture and optimizations. Section 5 presents the experimental evaluation,
and Section 6 concludes the paper.

C1.2. Background

This work is focused on supervised learning, in which the goal is to find a
function, g (xi ), which approximates a mapping xi → yi ∀ i , where {xi , yi } is an
input/output pair known as a training example. Furthermore, only the inference
problem is studied, the parameters, w , being assumed to have been learned
offline.

C1.2.1. Convolutional Neural Networks

A multilayer perceptron is a type of Artificial Neural Network (ANN) which has
its neurons arranged in multiple layers, with neurons taking the output of all
neurons of the previous layer as inputs. Mathematically, the output, al ,n , for
the nth neuron in the l th layer of a fully connected network is calculated as
follows:

al ,n = fact (
Sl∑

s=0
wl ,n,s al−1,s +bl ,n) , (C1.1)

where wl ,n,s is weight of the s th synapse connected to the input of the nth

neuron in the l th layer, bl ,n is a bias term, fact is the activation function, and Sl
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is the number of synapses connected to each neuron in the l th layer. Popular ac-
tivation functions include: the hyperbolic tangent function, fact (a) = t anh(a);
and the rectified linear unit (ReLU), fact (a) = max(0, a).

CNNs [33] are a variant of multilayer perceptrons, in which a layer only receives
inputs from a small receptive field of the previous layer. This approach greatly
reduces the number of parameters involved and allows local features (e.g.,
edges, corners) to be found [33]. A basic 2D convolutional layer in a neural
network is similar to a fully connected layer except that: a) each neuron receives
an image as inputs and produces an image as its output (instead of a scalar); b)
each synapse learns a small array of weights which is the size of the convolu-
tional window; and c) each pixel in the output image is created by the sum of
the convolutions between all synapse weights and the corresponding images.
The output of the l th convolutional layer, which takes as input Sl images of
dimension Rl ×Cl , the pixel, pl ,n,r,c , at location (r,c) of the nth output image is
calculated as follows:

pl ,n,r,c = fact (
Sl∑

s=0

Jl∑
j=0

Kl∑
k=0

wl ,n,s, j ,k pl−1,n,r+ j ,c+k ) , (C1.2)

where Jl ×Kl are the dimensions of the convolution window. As discussed in
Section C1.4, a 2D convolutional layer can be reduced to a matrix multiply
followed by an elementwise activation function. CNN topologies are composed
from a few common primitives: convolutional layers, pooling layers and fully
connected layers.

Pooling layers can be considered as simple downsamplers of 2D images. A basic
max pooling layer divides an image into small sub-tiles of a given window size
and then replaces each sub-tile with its largest element. An average pooling
layer is similar but uses the average function instead of max.

C1.2.2. Binary Neural Networks

Although floating point numbers are a natural choice for handling the small up-
dates that occur during neural network training, the resulting parameters can
contain a lot of redundant information [16]. One of several possible dimensions
possessing redundancy is precision [50]. An extreme case are BNNs in which
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some or all the arithmetic involved in computing the outputs are constrained to
single-bit values. We consider three aspects of binarization for neural network
layers: binary input activations, binary synapse weights and binary output ac-
tivations. If all three components are binary, we refer to this as full binarization,
and the cases with one or two components as partial binarization.

Kim and Smaragdis [29] consider full binarization with a predetermined portion
of the synapses having zero weight, and all other synapses with a weight of
one. They report 98.7% accuracy with fully-connected networks on the MNIST
dataset, and observe that only XNOR and bitcount operations are necessary
for computing with such neural networks. XNOR-Net by Rastegari et al. [45]
applies convolutional BNNs on the ImageNet dataset with topologies inspired
by AlexNet, ResNet and GoogLeNet, reporting top-1 accuracies of up to 51.2%
for full binarization and 65.5% for partial binarization. DoReFa-Net by Zhou
et al. [61] explores reduced precision during the forward pass as well as the
backward pass, and note that this opens interesting possibilities for training
neural networks on FPGAs. Their results includes configurations with partial
and full binarization on the SVHN and ImageNet datasets, including best-case
ImageNet top-1 accuracies of 43% for full and 53% for partial binarization.

Finally, the work by Courbariaux et al. [11] describes how to train fully connec-
ted and convolutional networks with full binarization and batch normalization
layers, reporting competitive accuracy on the MNIST, SVHN and CIFAR-10
datasets. Training for this work was performed using their open source imple-
mentation. We use the acronym CNN to refer to conventional or non-binarized
neural networks for brevity throughout the rest of this paper.

C1.2.3. Neural Networks in Hardware

A great deal of prior work on mapping neural networks to hardware exist both
for FPGAs and as ASICs. We refer the reader to the work by Misra and Saha [35]
for a comprehensive survey. We cover a recent and representative set of works
here, roughly dividing them into four categories based on their basic architec-
ture: 1) a single processing engine [3, 10, 41, 60], usually in the form of a systolic
array, which processes each layer sequentially; 2) a streaming architecture [2,
54], consisting of one processing engine per network layer; 3) a vector pro-
cessor [15] with instructions specific to accelerating the primitives operations
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of convolutions; and 4) a neurosynaptic processor [14], which implements
many digital neurons and their interconnecting weights.

Systolic arrays: Zhang et al. [60] describes a single processing engine style archi-
tecture, using theoretical roofline models tool to design accelerators optimized
for the execution of each layer. Ovtcharov et al. [41] implement a similar style
architecture, but achieved a 3× speedup over Zhang et al. [60]. Eyeriss by Chen
et al. [10] use 16-bit fixed point rather than floating point, and combine several
different data reuse strategies. Each 2D convolution is mapped to 1D convo-
lutions across multiple processing engines, allowing for completely regular
access patterns for each processing element. The authors report that their data
reuse provides 2.5× better energy efficiency over other methods. YodaNN by
Andri et al. [3] have a similar design as Zhang et al. [60] but explore binary
weights for fixed sized windows.

Streaming architectures: Venieris and Bouganis [54] proposed a synchronous
dataflow (SDF) model for mapping CNNs to FPGAs, which is a similar approach
to ours. The main difference is that our design is optimized for BNNs while
their design targets conventional CNNs. Their designs achieve up to 1.62×
the performance density of hand tuned designs. Alemdar et al. [2] implement
fully-connected ternary-weight neural networks with streaming and report
up to 255K frames per second on the MNIST dataset, but concentrate on the
training aspect for those networks.

Vector processors: Farabet et al. [15] describe a programmable ConvNet Pro-
cessor (CNP), which is a RISC vector processor with specific macro-instructions
for CNNs including 2D convolutions, 2D spatial pooling, dot product and an
elementwise non-linear mapping function. The authors also created a tool to
compile a high level network description into host code which is used to call
the CNP.

Neurosynaptic processors: TrueNorth [14] is a low power, parallel ASIC with 4096
neurosynaptic cores, each implementing 256 binary inputs, 256 neurons and a
256 × 256 array of synapses. An internal spiking router can connect any input
on any core to any neuron on any core, allowing many network topologies to
be implemented on fixed hardware.

The authors are not aware of any publication that demonstrates end-to-end
mapping of BNNs onto FPGAs. In comparison to prior art, the binary network
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Figure C1.1.: Roofline model for a ZU19EG.

inference engine can significantly increase classification rates, while reducing
power consumption and minimizing latency. This currently comes at the cost
of a small drop in accuracy for larger networks, however we believe a) there
are use cases that do not require the highest level of accuracy, or can be solved
with smaller networks (such as classification of playing cards or handwritten di-
gits [33]) and b) that accuracy can be improved by increasing network sizes [50],
an ongoing topic in machine learning research.

C1.3. BNN Performance and Accuracy

C1.3.1. Estimating Performance Using Rooflines

To estimate and compare BNN performance with fixed-point CNN, we use a
roofline model [57] which considers memory bandwidth, peak computational
performance and arithmetic intensity (the number of mathematical operations
performed for each byte of off-chip memory read or written). The intersection
of the roofline curve with a vertical line for a particular arithmetic intensity,
gives the theoretical peak performance point, which is either compute-bound
or memory-bound. In particular, we consider the binarized [45, 61] and 8-bit
fixed-point [49] implementations of the popular AlexNet [31], both of which
require 1.4 billion operations (GOPS) to classify one image.

Using the methodology described in [36], we develop a roofline model for
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a Xilinx Zynq UltraScale+ ZU19EG FPGA1. The resulting roofline model is
depicted in Figure C1.1. We first observe that the FPGA’s compute-bound
performance is 66 TOPS for binary operations, which is about 16× higher
compared to 8-bit and 53× higher compared to 16-bit fixed point operations.
However, reaching the compute-bound peak is only possible if the application
is not memory-bound. The compact model size of BNNs provides another
key benefit. Since the binarized AlexNet requires only 7.4 MB of parameters
(compared with 50 MB for 8-bits), the entire neural network model can be kept
in on-chip memory. The arithmetic intensities for the binarized and 8-bit fixed
point AlexNet variants are shown with vertical lines. Thus, the BNN is almost
able to reach the computational peak, while the peak performance of the fixed-
point CNN is bound by the memory bandwidth. Based on these observations,
with a design that reaches 75% of the peak, we estimate a throughput of 0.75 ·
66 TOPS
1.4 GOPS ≈ 35000 images per second.

Using the same model, it should be possible to extend the comparison to
CPUs and GPUs, but little data is available on peak binary synaptic operation
performance since BNNs are relatively new. For instance, [11] mentions 6 cycles
per 32 synapses (64 binary operations) on recent NVIDIA GPUs, which would
yield a computational peak of about 26 TOPS on a Tesla K40 with 2880 cores
running at 875 MHz, and 16666 images per second for binarized AlexNet.

C1.3.2. Accuracy–Computation Tradeoffs

A tradeoff between network size, precision and accuracy exists [50] so if one
would like to achieve a certain classification accuracy for a particular problem,
which approach leads to the most efficient solution? 1) A regular ANN with
floating point precision? 2) A larger network, but a BNN? To gain more insight
into this issue, we conducted a set of experiments on the MNIST dataset that
compare accuracy of floating point and binary precision for the same topology.
The binary networks are obtained via replacing regular layers by their binary
equivalents, as described by Courbariaux et al. [11]. We also binarize the input
images for the BNN as our experiments show that input binarization works
well for MNIST. Since the space of possible network topologies that can be

1We assume 4.8 GB/s off-chip memory bandwidth, 350 MHz clock and the following opera-
tion cost function: 2.5 LUTs for 1-bit, 40 LUTs for 8-bit, 8 LUTs and 0.5 DSPs for 16-bit.
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Table C1.1.: Accuracy results - BNN vs floating point NN.

Binary Float
Neurons/layer Err. (%) Err. (%) # Params Ops/frame

128 6.58 2.70 134,794 268,800
256 4.17 1.78 335,114 668,672
512 2.31 1.25 932,362 1,861,632
1024 1.60 1.13 2,913,290 5,820,416
2048 1.32 0.97 10,020,874 20,029,440
4096 1.17 0.91 36,818,954 73,613,312

trained is infinite, we adopted the approach in [50] to simplify the problem.
We fix the network topology to a 3 hidden layer, fully connected network while
scaling the number of neurons in each layer, and plot the resulting accuracy in
Table C1.1 along with the number of parameters and operations per frame. A
few trends are apparent for this problem and network configuration space: 1)
similar to what was found in by Sung et al. [50], as the network size increases,
the difference in accuracy between low precision networks and floating point
networks decreases; and 2) in order to achieve the same level of accuracy as
floating point networks, BNNs require 2–11× more parameters and operations.
Note that we show the accuracy for networks trained using 32-bit floating point
numbers, but it is likely that this could be reduced to 8-bit fixed point without
a significant change in accuracy [23]. Our BNN performance estimates from
Section C1.3.1 suggest a 16× speedup for BNN over 8-bit fixed point, which
is greater than the 2–11× increase in parameter and operation size. Thus, we
expect that BNNs with comparable accuracy will be faster than fixed-point
networks, even though they may require more parameters and operations.

C1.4. BNNs on Reconfigurable Logic

C1.4.1. Architecture

We adopted a heterogeneous streaming architecture as shown in Figure C1.2
for this work. We build a custom architecture for a given topology rather than
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Figure C1.2.: Heterogeneous streaming architecture and schedule.

scheduling a operations on top of a fixed architecture. Separate compute en-
gines are dedicated to each layer, which communicate via on-chip data streams.
Each engine starts to compute as soon as the previous engine starts to pro-
duce output. Additionally, owing to the compact model size of BNNs, all neural
network parameters are kept in on-chip memory. This avoids most accesses
to off-chip memory, minimizes the latency (the time to finish classifying one
image) by overlapping computation and communication, and minimizes the
initiation interval: a new image can enter the accelerator as soon as the first
compute array is finished with the previous image. The separate mapping of
layers to compute arrays also enables heterogeneity. By tailoring compute ar-
rays separately for each layer’s requirements, we can avoid the “one-size-fits-all”
inefficiencies and reap more of the benefits of reconfigurable computing. This
requires a different bitfile when the neural network topology is changed but we
consider this an acceptable cost for the performance gains obtained.

A BNN accelerator may have various constraints imposed upon it depend-
ing on the use case. User-imposed constraints include the choice of FPGA
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and platform, desired classification throughput in frames per second (FPS)
and clock frequency. Simultaneously, the BNN topology constrains how the
compute resources must be allocated to obtain an efficient heterogeneous
streaming architecture. FINN offers parameterizable building blocks and a way
of controlling the classification throughput, as described in Sections C1.4.3
and C1.4.4. To achieve portability, we chose a commercial high level synthesis
tool, Vivado High-Level Synthesis (HLS), for the implementation. The tool
enables faster development cycles via high-level abstractions, and provides
automated pipelining to meet the clock frequency target.

C1.4.2. BNN-specific Operator Optimizations

BNNs have several properties that enable a more efficient mapping to FPGAs
without affecting the network accuracy, which we describe in the following sub-
sections. We assume that the methodology described in [11] is used for training
all BNNs in this paper, where all BNN layers have the following properties
(unless otherwise stated):

• Using 1-bit values for all input activations, weights and output activa-
tions (full binarization), where an unset bit represents -1 and a set bit
represents +1.

• Batch normalization prior to the activation function.

• Using the following activation function:
Sign(x) = {+1 if x ≥ 0,−1 if x < 0}

Popcount for Accumulation

The regular and value-constrained nature of BNN computations enable com-
puting binary dot products with fewer hardware resources. Let Y be the number
of input synapses (or fan-in) for a given neuron, with the number of +1-valued
synapse inputs denoted as Y1 and -1-valued synapses as Y0. As there are only
two possible values (-1 and +1) for any synapse input, Y = Y0 +Y1. Therefore,
by counting the number of synapses for only one value, it is possible to infer
the summed response for the entire neuron.
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The practical consequence for hardware is that the summation of a binary dot
product can be implemented by a popcount operation that counts the number
of set bits instead of accumulation with signed arithmetic. Our experiments
with Vivado HLS indicate that popcount-accumulate requires approximately
half the number of LUT and FF resources to implement compared to signed-
accumulate. For instance, with a target Fclk = 200 MHz, a 128-bit popcount-
accumulate requires 376 LUTs and 29 FFs, while a 128-bit bipolar-accumulate
requires 759 LUTs and 84 FFs.

Batchnorm-activation as Threshold

All BNN layers use batch normalization [24] on convolutional or fully connected
layer outputs, then apply the sign function to determine the output activation.
We show how the same output can be computed via thresholding.

Let ak be the dot product (pre-activation) output of neuron k, and Θk =
(γk ,µk , ik ,Bk ) be the batch normalization parameters learned during training
for this neuron. The output ab

k is computed as ab
k = Sign(BatchNorm(ak ,Θk )),

with BatchNorm(ak ,Θk ) = γk · (ak −µk ) · ik +Bk . Figure C1.3 shows the dot
product input vs output activation for three example neurons. Depending
on parameter values, the plot may be shifted towards the left or right, or
be flipped horizontally, but a threshold τk for a change in the output activ-
ation is always present. Solving BatchNorm(τk ,Θk ) = 0 we can deduce that
τk =µk − (Bk /(γk · ik )).

To make the thresholds compatible with the positive-only operations in Sec-
tion C1.4.2), the computed threshold is averaged with the neuron fan-in S to
obtain τ+k = (τk +S)/2. Observing how neuron C activates with an opposite
sign threshold to neurons A and B in Figure C1.3, all neurons can be made
to activate using a greater-than threshold by flipping the signs of a neuron’s
weights if γk · ik < 0.

Using these techniques, we can compute the output activation using an un-
signed comparison and avoid computing the batch normalized value altogether
during inference. τ+k itself is fixed for a trained network and can be computed
from the batchnorm parameters at compile time. Synthesis reports from Vivado
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Figure C1.3.: Three examples of binary neuron activations with batch normal-
ization. A slight vertical offset is added for clarity.

HLS for 16-bit dot product output values indicate that regular batchnorm-and-
sign activation requires 2 DSPs, 55 FFs and 40 LUTs, whereas the threshold
activation we describe here only requires 6 LUTs.

Boolean OR for Max-pooling

The networks described in [11] perform pooling prior to activations, i.e., pooling
is performed on non-binarized numbers, which are then batch normalized
and fed into the activation function. We show that the same layer outputs
can be derived by max pooling after the activations without having to re-train
the network. Let a1, a2, . . . aY be the positive dot product outputs that will be
processed by max-pooling. In accordance with Section C1.4.2, the output would
be computed as ab = (Max(a1, a2, . . . aY ) > τ+). Due to the distributivity of Max,
the output will be tr ue if any of a1, a2, . . . aS are greater than τ+. Therefore, the
same result can be computed as ab = (a1 > τ+)∨(a2 > τ+) . . .∨(aY > τ+). As the
threshold comparisons are already computed for the activations, max-pooling
can be effectively implemented with the Boolean OR-operator. We note that
similar principles apply for min-pooling (as Boolean AND) and average-pooling
(as Boolean majority function) as well.

C1.4.3. FINN Design Flow and Hardware Library

Figure C1.4 illustrates the design flow for converting a trained BNN into an
FPGA accelerator. The user supplies a FPS target alongside a Theano-trained
BNN to the FINN synthesizer. The synthesizer first determines the folding
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Figure C1.4.: Generating an FPGA accelerator from a trained BNN.
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Figure C1.5.: Overview of the MVTU.

parameters (Section C1.4.4) to meet the FPS target and applies the optimiz-
ations from Section C1.4.2, then produces a synthesizable C++ description
of a heterogeneous streaming architecture. The architecture is composed of
building blocks from the FINN hardware library described in the following
subsections.

The Matrix–Vector–Threshold Unit

The Matrix–Vector–Threshold Unit (MVTU) forms the computational core for
our accelerator designs. The vast majority of compute operations in a BNN
can be expressed as matrix–vector operations followed by thresholding. For
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instance, the pre-activation output aN of the fully connected neural network
layer at index N is given by matrix-vector product aN = A ·ab

N−1 where A is the
synaptic weight matrix and ab

N−1 are the activations from the previous layer.
The post-activation output can then be computed by ab

N = aN > τ+N, where the
thresholds τ+N are determined as described in Section C1.4.2. Convolutions
can also be implemented as matrix–vector products, as will be described in
Section C1.4.3. As such, the MVTU implements fully-connected layers as a
standalone component, and is also used as part of the convolutional layers.

The overall organization of the MVTU is shown in Figure C1.5. Internally, the
MVTU consists of an input and output buffer, and an array of Processing Ele-
ments (PEs) each with a number of SIMD lanes. The number of PEs (P ) and
SIMD lanes (S) are configurable to control the throughput as discussed in Sec-
tion C1.4.4. The synapse weight matrix to be used is kept in On-Chip Memory
(OCM) distributed between PEs, and the input images stream through the
MVTU as each one is multiplied with the matrix. Each PE receives exactly the
same control signals and input vector data, but multiply-accumulates the input
with a different part of the matrix. In terms of the taxonomy described in [10],
this architecture is both weight stationary (since each weight remains local to
the PE) and output stationary (since each popcount computation remains local
to the PE).

Figure C1.6 shows the datapath of an MVTU PE. It computes the dot product
between the input vector and a row of the synaptic weight matrix and compares
the result to a threshold, producing a single-bit output. The dot product com-
putation itself consists of an XNOR of the vectors, after which the number of set
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bits in the result is counted (see Section C1.4.2) and added to the accumulator
register. Once the entire dot product is accumulated, it is thresholded. The
accumulator, adder and threshold memory bitwidth can be scaled down to
T = 1+ log2(Y ) for additional resource savings.

Finally, it is worth pointing out that the MVTU architectural template can also
support partial binarization for non-binarized outputs and inputs. Remov-
ing the thresolding stage provides non-binarized outputs, while using regular
multiply-add instead of XNOR-popcount can handle non-binarized inputs
These features are used in the first and last layers of networks that process
non-binary input images or do not output a one-hot classification vector.

Convolution: The Sliding Window Unit

Convolutions can be lowered to matrix-matrix multiplications [8], which is the
approach followed in this work. The weights from the convolution filters are
packed into a filter matrix, while a sliding window is moved across input images
to form an image matrix. These matrices are then multiplied to generate the
output images.

The convolutional layer consists of a Sliding Window Unit (SWU), which gener-
ates the image matrix from incoming feature maps, and a MVTU that actually
computes the matrix–matrix product using a different column vector from the
image matrix each time. In order to better cater for the SIMD parallelism of the
MVTU and minimize buffering requirements, we interleave the feature maps
such that each pixel contains all the Input Feature Map (IFM) channel data for
that position, as illustrated in Figure C1.7a. Since the dot product to compute a
Output Feature Map (OFM) pixel includes all IFMs pixels at a certain sliding
window location, those IFM pixels can be processed in any order owing to the
commutative property of addition. Note that interleaving the filter matrix has
no additional cost since it is done offline, and interleaving the input image
can be done on-the-fly in the FPGA. Storing the pixels in this fashion allows
us to implement the SWU with a single wide OCM instead of multiple narrow
OCMs, and also enables the output of the MVTU to be directly fed to the next
layer without any transposition. As illustrated in Figure C1.7b, the incoming
IFM data is simply stored at sequential addresses in a buffer, then the memory
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locations corresponding to each sliding window are read out to produce the
image matrix.

Although not required by any of the networks described in this work, the SWU
also pads the images if necessary. One interesting observation is that with the
bipolar number representation used in this work, there is no number corres-
ponding to zero. Therefore, in order to maintain a true binary datapath for
activations, images must be padded with our representation or either a 1 or a
-1. Future work will look into what impact this has on the accuracy of trained
networks, but early experiments suggest that there is very little difference in
accuracy, with respect to [11].

The Pooling Unit

The Pooling Unit (PU) implements max-pooling as described in Section C1.4.2.
To implement k ×k max-pooling on a DH ×DW binary image of C channels,
the PU contains C · k line buffers of DW bits each. As with the rest of our
component library, the PU operates in a streaming fashion. The input image is
gradually streamed into the line buffers. When at least k rows of the image have
arrived, each k consecutive bits of the line buffer are OR’ed together to produce
horizontal subsampling for each channel. These are then OR’ed together with
the other line buffers to produce vertical subsampling, the results are streamed
out, and the oldest line buffers are refilled with the next row of pixels.

C1.4.4. Folding

In terms of the MVTU description given in Section C1.4.3, each PE corresponds
to a hardware neuron, while each SIMD lane acts as a hardware synapse. If
we were to dimension each MVTU in a network with a number of hardware
neurons and synapses equal to the number of neurons and synapses in a BNN
layer, this would result in a fully parallel neural network that could classify
images at the clock rate. However, the amount of hardware resources on an
FPGA is limited, and it is necessary to time-multiplex (or fold) the BNN onto
fewer hardware synapses and neurons. We now describe how the folding is
performed subject to user constraints.
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Figure C1.8.: Neuron and synapse folding for MVTU.

The work by Venieris et al. [54] describes a method for folding neural networks
expressed as streaming dataflow graphs, with focus on formalizing the folding
and design space exploration. In this work, we consider a simpler variant that
only controls the folding of matrix–vector products to achieve a given FPS
requirement set by the user, and focus on how the folding is implemented
in terms of the workload mapping. As almost all computations in BNNs are
expressed as matrix–vector multiplications, implementing folding for matrix–
vector multiplication already enables a great degree of control over the system
throughput. Folding directly affects the resource and power consumption of
the final system as well, which we explore in Section C1.5.

Folding Matrix–Vector Products

Folding matrix–vector products is achieved by controlling two parameters of
the MVTU: P the number of PEs, and S the number of SIMD lanes per PE. These
determine how the matrix is partitioned between the PEs. A P-high, S-wide
tile of the matrix is processed at a time, with each row in the tile mapped to
a different PE, and each column to a different SIMD lane. For a X ×Y matrix,
we refer to F n = X /P as the neuron fold and F s = Y /S as the synapse fold. The
total fold F is then obtained as F = F n ·F s , which is also the number of cycles
required to complete one matrix–vector multiply. Note that F n and F s should
be integers to avoid padding the weight matrix. As an example, Figure C1.8
shows how a 6×4 weight matrix is partitioned between three PEs with two SIMD
lanes each. Here, each matrix-vector multiply will take F n ·F s = (6/3) · (4/2) = 4
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cycles.

The same principle applies for convolutional layers, but these always have
an inherent amount of folding due to our current matrix–matrix product as
multiple matrix–vector products implementation. For convolutional layers, the
total fold is F = F m ·F n ·F s , where F m is a network-dependent constant due to
multiple matrix-vector products, and is equal to the number of output pixels
from the convolution.

Determining F n and F s

Avoiding the “one-size-fits-all” inefficiencies requires tailoring each MVTU’s
compute resources to layer requirements. The guiding principle here is rate-
balancing the heterogeneous streaming architecture: the slowest layer (with
I Imax) will determine the overall throughput, so each layer should use a roughly
equal number of cycles to process one image. As this is a streaming system,
the classification throughput FPS will be approximately Fclk

I Imax
, where Fclk is

the clock frequency. For a fully-connected layer, the total fold F is equal to
the initiation interval (II). Therefore, balancing a fully-connected BNN can be
achieved by using F n and F s such that F n ·F s = Fclk

FPS for each layer. Depending
on the BNN and the FPS requirements, the number of memory channels or
sliding window generation may constitute bottlenecks. For such cases, we
match the throughput of all other layers to the bottleneck in order not to waste
resources.

C1.5. Evaluation

C1.5.1. Experimental Setup

To evaluate FINN, we created a number of prototypes that accelerate BNNs
inference on the MNIST [33] (28×28 handwritten digits), CIFAR-10 [30] (32×32
color images in 10 categories) and cropped SVHN [37] (32×32 images of Street
View House Numbers) datasets. Each prototype combines a BNN topology with
a different use case scenario. We consider three different BNN topologies for
classifying the datasets as follows:
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• SFC and LFC are three-layer fully connected network topologies for clas-
sifying the MNIST dataset, with different numbers of neurons to demon-
strate accuracy-computation tradeoffs (Section C1.3.2). SFC contains
256 neurons per layer and achieves 95.83% accuracy, while LFC has 1024
neurons per layer and achieves 98.4% accuracy. These networks accept
28x28 binary images and output a 10-bit one-hot vector indicating the
digit.

• CNV is a convolutional network topology inspired by BinaryNet [11] and
VGG-16 [48]. It contains a succession of (3x3 convolution, 3x3 convolu-
tion, 2x2 maxpool) layers repeated three times with 64-128-256 channels,
followed by two fully connected layers of 512 neurons each. We use
this topology for classifying both the CIFAR-10 (with 80.1% accuracy)
and SVHN (with 94.9% accuracy) datasets, with different weights and
thresholds. Note that the inputs to the first layer and the outputs from the
last layer are not binarized; CNV accepts 32x32 images with 24 bits/pixel,
and returns a 10-element vector of 16-bit values as the result.

To further demonstrate the flexibility of the framework, we consider two usage
scenarios for each BNN topology to guide the choice of parametrization:

• max is the maximum performance scenario where it is desirable to reach
the peak FPS permitted by the platform, topology and FINN’s architec-
ture.

• fix represents a scenario with a fixed FPS requirement, which is often
determined by an I/O device for real life applications. For instance, con-
sider a 640×480 video stream at 30 FPS, which is to be chopped up into
32×32 tiles for neural network inference. Handling this task with real-
time performance would require a BNN inference rate of 9000 FPS, which
we set as the requirement for this usage scenario.

We use shortened names to refer to the prototypes, e.g., CNV-fix refers to
the prototype that implements the CNV topology for the fix usage scenario.
For each prototype, the folding factors (Section C1.4.4) were determined to
meet the requirements of its usage scenario, and the FINN design flow (Sec-
tion C1.4.3) was followed to generate the hardware accelerator. Vivado HLS
and Vivado version 2016.3 were used for the bitfile synthesis. A target clock
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Table C1.2.: Summary of workloads.

Topology Params Ops Off-chip I/O Op.Int.
(Mbits) (M) (B) (Ops/B)

SFC 0.3 0.6 112 5970
LFC 2.9 5.8 112 51968
CNV 1.5 112.5 3092 36400

Prototype Per-Layer Total Fold (F )

SFC-max 13, 16, 16, 16
SFC-fix 12544, 16384, 16384, 2560
LFC-max 104, 128, 128, 128
LFC-fix 13312, 16384, 16384, 10240
CNV-max 8100, 7056, 5184, 7200, 5184, 4608, 8192, 8192, 1280
CNV-fix 16200, 14112, 10368, 14400, 10368, 9216, 16384, 16384, 1280

frequency of 200 MHz was used for both Vivado HLS and Vivado, and to run the
resulting accelerator unless otherwise stated. The salient properties of the to-
pologies and folding factors for the prototypes are summarized in Table C1.2.

All prototypes were implemented on a Xilinx Zynq-7000 All Programmable
SoC ZC706 Evaluation Kit running Ubuntu 15.04. The board contains a Zynq
Z7045 SoC with dual ARM Cortex-A9 cores and FPGA fabric with 218600 LUTs
and 545 BRAMs. The host code runs on the Cortex-A9 cores of the Zynq. It
initializes 10000 images with test data in the Zynq’s shared DRAM, launches
and times the accelerator execution to measure classification throughput, then
measures accuracy by comparing against the correct classifications. Two power
measurements Pchip and Pwall are provided for each experiment; Pchip using
the PMBus interface to monitor the FPGA power supply rails, and Pwall using a
wall power meter for the total board power consumption. The measurements
are averaged over a period of 10 seconds while the accelerator is running.
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Table C1.3.: Summary of results from FINN 200 MHz prototypes.

Name Throughput Latency LUT BRAM Pchip Pwall

(FPS) (µs) (W) (W)

SFC-max 12361 k 0.31 91131 4.5 7.3 21.2
LFC-max 1561 k 2.44 82988 396 8.8 22.6
CNV-max 21.9 k 283 46253 186 3.6 11.7
SFC-fix 12.2 k 240 5155 16 0.4 8.1
LFC-fix 12.2 k 282 5636 114.5 0.8 7.9
CNV-fix 11.6 k 550 29274 152.5 2.3 10

C1.5.2. Results

Table C1.3 provides an overview of the experimental results, in terms of classi-
fication throughput, latency to classify one image, FPGA resource usage and
power. The max scenario results are perhaps the best summary of the potential
of BNNs on FPGAs, with SFC-max achieving 12.3 million classifications per
second at 0.31 µs latency while drawing less than 22 W total power. All fix res-
ults meet and exceed the 9000 FPS requirement by 30% due to folding factors
being integers, though lower throughput and power could have been achieved
by using a slower clock. We focus on particular aspects of the results in the
following subsections.

Maximum Throughput and Bottlenecks

To assess the quality of results for the max scenarios, we compare the achieved
performance (XNOR–popcount operations per second) with the peak through-
put in TOPS indicated by the roofline model. Figure C1.9 presents a roofline
model (Section C1.3.1) for the ZC706, assuming 90% LUT utilization, 200 MHz
clock frequency and 1.6 GB/s of DRAM bandwidth. The vertical lines show the
arithmetic intensities for the topologies, and the actual operations per second
values from corresponding prototypes with max usage scenarios are indicated
as points on those lines. All max prototypes achieve performance in the TOPS
range, but are bottlenecked due to different factors. CNV-max achieves 2.5
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Figure C1.9.: ZC706 roofline with topologies and max-datapoints.

TOPS and is architecture-bound. The current SWU design does not scale as well
as the MVTU and constitutes a bottleneck, which will be addressed in future
work. Despite its higher complexity, observe that CNV-max actually requires
∼2× fewer LUTs than SFC-max since the folding parameters for CNV-max are
chosen in accordance with the maximum performance dictated by the bot-
tleneck. SFC-max achieves 8.2 TOPS and is memory-bound. Observe that the
SFC arithmetic intensity line intersects the memory-bound (sloped) part of
the roofline, thus the performance cannot be scaled up without adding more
DRAM memory bandwidth. LFC-max achieves 9.1 TOPS, which is 46% of the
roofline, and is resource-bound. As folding factors are integers, the smallest in-
crement is 2× which roughly doubles the resource cost. The FPGA has enough
LUTs but not enough BRAMs to accommodate doubled resource cost, thus
leaving ∼30% of BRAMs unused. A 3x512-neuron fully connected topology,
labeled MFC in Figure C1.9, was able to achieve 11.6 TOPS and 6238 kFPS with
95% of the device BRAMs.

Energy Efficiency

It is desirable to minimize the energy spent per image classification, which
corresponds to maximizing FPS per Watt when many images are to be classified.
To help evaluate the energy efficiency, Figure C1.10 plots the achieved FPS per
Watt for the prototypes for both the wall power and FPGA power readings. In
general, we see that the higher FPS prototypes have better energy efficiency,
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Figure C1.10.: Prototype energy efficiency.

with SFC-max offering 583066 FPS per W of total power and outperforming all
other prototypes by at least an order of magnitude. It is also worth noting that
the board’s idle power consumption is about 7 W, which forms a lower bound
on all wall power measurements, and could be improved by e.g., using LPDDR
memory.

To maximize energy efficiency with a fixed target FPS, is it better to use a
highly parallel design at low clock frequency, or a less parallel design at high
clock frequency? We ran an additional experiment to investigate this question
by slowing down the SFC-max prototype to meet the fix FPS requirement of
9000 FPS. By clocking it at 250 kHz, we obtained a classification throughput
of 15731 FPS with 0.2 W of FPGA power. The result is labeled SFC-smax in
Figure C1.10, and is over 2× more energy efficient than SFC-fix. This suggests
that a high degree of parallelism benefits energy efficiency as long as the FPGA
resources are available.

Resource Efficiency

We consider two aspects of resource efficiency for FINN: how efficiently the
compute units are used during runtime (runtime efficiency), and how efficiently
FPGA resources are turned into compute units (mapping efficiency).

To assess runtime efficiency, we divide the FPS-based (measured) operations
per cycle (FPS ·Ops/Fclk) by the (peak) number of synaptic operations per cycle
from the design (

∑
2 ·P ·S). The prototypes exhibit good runtime efficiency,

with ∼70% for CNV, ∼80% for SFC and ∼90% for LFC. The efficiency can be
increased further by fine-tuning the folding factors between different layers.
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Figure C1.11.: Mapping resource efficiency.

Evaluating the mapping efficiency directly on the prototypes loses some insight,
since CNV uses LUTs on SWU and PU, while fully-connected topologies do
not. Instead, for a single 256×256 fully-connected layer, we fix S = 64 and vary
P , and plot the LUTs per synaptic operation in Figure C1.11, which should
be minimized to maximize efficiency. The LUTs per operation decreases with
higher P since the fixed-size control logic is amortized between more PEs
and reaches a minimum of 1.83 for P = 64, but increases again for P > 64. To
understand why, we also plot the number of BRAMs used in the same figure.
Although all designs have the same number of BNN parameters, the number
of BRAMs increases with P since each PE needs its own weight and threshold
memories. This also means a significant part of the BRAM storage capacity
is unused for 1 < P ≤ 64, since the same amount of network parameters is
divided between a greater number of memories. This is also visible for SFC-fix
and SFC-max, which use the same network parameters, but have almost 10×
difference in the number of BRAMs used (15.5 vs 130.5) since SFC-max has
more compute elements working in parallel. Here, with P > 64, so little of each
BRAM is used that Vivado HLS implements the weight and threshold memories
using LUTs, which causes the LUTs per operation to increase. Thus, the depth
and number of BRAMs, and the LUT-to-BRAM ratio of the FPGA plays a key role
in determining how well the resources will be utilized by a BNN. For instance,
on another FPGA with the same amount of LUTs but twice the number of
half-depth BRAMs, LFC-max could achieve 2× throughput.
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C1.5.3. Comparison to prior work

From an application perspective, we suggest that the current best way to com-
pare different platforms is to simply compare their accuracy, FPS and power
consumption when working on the same benchmark datasets (MNIST, CIFAR-
10 and SVHN). This comparison is provided in Table C1.4, and is divided into
three sections: our results, prior work on low-precision (< 4 bits) networks, and
prior work with higher-precision (> 4 bits) networks.

When it comes to pure image throughput, our designs outperform all others.
For the MNIST dataset, we achieve an FPS which is over 48/6× over the nearest
highest throughput design [2] for our SFC-max/LFC-max designs respectively.
While our SFC-max design has lower accuracy than the networks implemented
by Alemdar et al. [2] our LFC-max design outperforms their nearest accur-
acy design by over 6/1.9× for throughput and FPS/W respectively. For other
datasets, our CNV-max design outperforms TrueNorth [14] for FPS by over
17/8× for CIFAR-10 / SVHN datasets respectively, while achieving 9.44× higher
throughput than the design by Ovtcharov et al. [41], and 2.2× over the fastest
results reported by Hegde et al. [18]. Our prototypes have classification accur-
acy within 3% of the other low-precision works, and could have been improved
by using larger BNNs.

A recent work by Nurvitadhi et al. [38] compares binary matrix-vector opera-
tion performance and efficiency on FPGA, ASIC, GPU and CPU. Their results
indicate that CPU and GPUs are severely underutilized for binary synaptic oper-
ations, and that FPGAs are only ∼8× less energy efficient than ASICs in this case.
As they do not provide results on end-to-end network implementations, we do
not include them in Table C1.4. Our 11.6 TOPS MFC prototype (Section C1.5.2)
is 20% faster than the 9.6 TOPS reported in their work.

C1.6. Conclusion

This work demonstrates the performance and energy efficiency potential of
recently proposed BNNs for image classification. They are particularly well-
suited for FPGA implementations as parameters can be fit entirely in OCM and
arithmetic is simplified, enabling high computational performance. The novel

193



C1. FINN: A Framework for Fast, Scalable BNN Inference

Tab
le

C
1.4.:C

o
m

p
ariso

n
to

p
rio

r
w

o
rk.M

etrics
n

o
t

rep
o

rted
b

y
p

rio
r

w
o

rk
are

in
d

icated
b

y
d

ash
es

(-),an
d

o
u

r
estim

ates
b

y
∼

.

N
am

e
D

ataset
P

latfo
rm

B
its

E
rr.(%

)
kF

P
S

P
ch

ip
(W

)
P

w
all

(W
)

kF
P

S/P
ch

ip
kF

P
S/P

w
all

G
O

P
S

SF
C

-m
ax

M
N

IST
Z

C
706

1
4.17

12,361
7.3

21.2
1693.29

583.07
8,265.45

LF
C

-m
ax

M
N

IST
Z

C
706

1
1.60

1,561
8.8

22.6
177.39

69.07
9,085.67

M
F

C
-m

ax
M

N
IST

Z
C

706
1

2.31
6,238

11.3
28.5

552
218.8

11,612.86
C

N
V

-m
ax

C
IFA

R
-10

Z
C

706
1

19.90
21.9

3.6
11.7

6.08
1.87

2,465.5
C

N
V

-m
ax

SV
H

N
Z

C
706

1
5.10

21.9
3.6

11.7
6.08

1.87
2,465.5

A
lem

d
ar

etal.[2]
M

N
IST

K
in

tex-7
160T

2
2.24

255.10
0.32

-
806.45

-
∼

96.68
A

lem
d

ar
etal.[2]

M
N

IST
K

in
tex-7

160T
2

1.71
255.10

1.84
-

138.50
-

∼
448.47

A
lem

d
ar

etal.[2]
M

N
IST

K
in

tex-7
160T

2
1.67

255.10
2.76

-
92.59

-
∼

864.03
Park

an
d

Su
n

g
[43]

M
N

IST
Z

C
706

3
-

70
4.98

-
14.06

-
∼

210
Tru

eN
o

rth
[14]

C
IFA

R
-10

Tru
eN

o
rth

1
16.59

1.249
0.2044

-
6.11

-
-

Tru
eN

o
rth

[14]
SV

H
N

Tru
eN

o
rth

1
3.34

2.526
0.2565

-
9.85

-
-

C
affeP

resso
[18]

M
N

IST
K

eysto
n

e-II
16

-
5

-
14

-
0.357

44.82
C

affeP
resso

[18]
C

IFA
R

-10
K

eysto
n

e-II
16

-
10

-
14

-
0.714

146.14
C

affeP
resso

[18]
M

N
IST

Parallella
32

-
0.64

-
5

-
0.129

5.78
C

affeP
resso

[18]
C

IFA
R

-10
Parallella

32
-

0.1
-

5
-

0.019
1.40

O
vtch

arov
etal.[41]

C
IFA

R
-10

Stratix
V

D
5

32
∼

11-26
2.32

-
25

-
0.093

-

194



C1.6. Conclusion

parameterizable dataflow architecture and optimizations presented enable
unprecedented classification rates, minimal power consumption and latency,
while offering the flexibility of C++ design entry and the scalability required
for accelerating larger and more complex networks. We hence believe that
this technology is eminently suitable for embedded applications requiring
real-time response, including surveillance, robotics and augmented reality.
Future work will focus on providing support for non-binary low precision, im-
plementing larger networks like AlexNet, higher performance convolutions,
and a more thorough design space exploration. Finally, FINN assumes that all
BNN parameters can fit into the available OCM of a single FPGA. Supporting ex-
ternal memory, multi-FPGAs implementations and reconfiguration [54] could
improve the utility of our approach.
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C2. Scaling Binarized Neural Networks
on Reconfigurable Logic

Abstract.

BNNs are gaining interest in the deep learning community due to
their significantly lower computational and memory cost. They
are particularly well suited to reconfigurable logic devices, which
contain an abundance of fine-grained compute resources and can
result in smaller, lower power implementations, or conversely in
higher classification rates. Towards this end, the FINN framework
was recently proposed for building fast and flexible FPGA accel-
erators for BNNs. FINN utilized a novel set of optimizations that
enable efficient mapping of BNNs to hardware and implemented
fully connected, non-padded convolutional and pooling layers,
with per-layer compute resources being tailored to user-provided
throughput requirements. However, FINN was not evaluated on
larger topologies due to the size of the chosen FPGA, and exhib-
ited decreased accuracy due to lack of padding. In this paper, we
improve upon FINN to show how padding can be employed on
BNNs while still maintaining a 1-bit datapath and high accuracy.
Based on this technique, we demonstrate numerous experiments
to illustrate flexibility and scalability of the approach. In particu-
lar, we show that a large BNN requiring 1.2 billion operations per
frame running on an ADM-PCIE-8K5 platform can classify images
at 12 kFPS with 671 µs latency while drawing less than 41 W board
power and classifying CIFAR-10 images at 88.7% accuracy. Our im-
plementation of this network achieves 14.8 trillion operations per
second. We believe this is the fastest classification rate reported to
date on this benchmark at this level of accuracy.
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C2. Scaling BNNs on Reconfigurable Logic

C2.1. Introduction

CNNs provide impressive classification accuracy in a number of application
domains, but at the expense of large compute and memory requirements [33]. A
significant body of research is investigating compression techniques combining
numerous approaches such as: weight and synapse pruning; data compression
techniques such as quantization, weight sharing and Huffman coding; and
reduced precision with fixed point arithmetic [16, 22, 23]. Recently, an extreme
form of reduced precision networks, known as BNNs [11], have gained signi-
ficant interest as they can be implemented for inference at a much reduced
hardware cost. This is due to the fact that multipliers and accumulators become
XNORs and popcounts respectively, and both are significantly lighter in regards
to resource and power footprint. For example, a KU115 offers 483 billion opera-
tions per second (GOPS) compared to 46 TOPS for binary synaptic operations.
This is visualized in the roofline models in Figure C2.4 which illustrates theoret-
ical peak performance for numerous reduced precision compute operations.1

Furthermore, the model size is greatly reduced and typically small enough to fit
in OCM, again reducing power, simplifying the implementation and providing
much greater bandwidth.

FINN [4] describes a framework for mapping BNNs to reconfigurable logic.
However, it focuses on BNNs for embedded applications and as such, the res-
ults reported are for smaller network sizes running on an embedded platform.
In this work, we briefly summarise FINN and analyse it from the perspective of
scaling to larger networks and devices, such as those targeted for data centers.
Firstly, we focus on several technical issues that arise when scaling networks
on FINN including: BRAM usage, throughput limitations and resource over-
heads. We also identify several properties of CNN layers which make them
map to FINN more efficiently. Our results, measured on an ADM-PCIE-8K5
platform [1], show that indeed very high image classification rates, minimal
latency with very high power efficiency can be achieved by mapping BNNs to
FPGAs, even though improvements may be made. Secondly, we highlight an
issue of padding, a common feature of large CNNs, which may cause significant
hardware overheads. We propose an alternative form of padding, which maps

1Assuming 70% device utilization, 250 MHz clock frequency and 178 LUTs and 2 DSPs per
average floating point operation, and 2.5 LUTs per binary XNOR-popcount operation.
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C2.2. Background

more efficiently to reconfigurable logic. Specifically, the contributions of this
work are: 1) measured performance results for large-scale networks on an ADM-
PCIE-8K5 board; 2) an analysis of FINN for large-scale problems, highlighting
some bottlenecks as well as proposing solutions; and 3) a form of padding,
which achieves high accuracy while also maintaining a binary datapath.

C2.2. Background

A great deal of prior work on mapping neural networks to hardware exist for
FPGAs, GPUs and ASICs to help increase inference rate or improve energy
efficiency. We refer the reader to the work by Misra and Saha [35] for a compre-
hensive survey of prior works. In general we distinguish four basic architectures:
1) a single processing engine, usually in the form of a systolic array, which pro-
cesses each layer sequentially [3, 10, 41, 60]; 2) a streaming architecture [2,
54], consisting of one processing engine per network layer; 3) a vector pro-
cessor [15] with instructions specific to accelerating the primitives operations
of convolutions; and 4) a neurosynaptic processor [14], which implements many
digital neurons and their interconnecting weights. Significant research investig-
ates binarization of neural networks whereby either input activations, synapse
weights or output activations or a combination thereof are binarized. If all three
components are binary, we refer to this as full binarization [29]. If not all three
components are binary, we refer to this as partial binarization. The seminal
XNOR-Net work by Rastegari et al. [45] applies convolutional BNNs on the
ImageNet dataset with topologies inspired by AlexNet, ResNet and GoogLeNet,
reporting top-1 accuracies of up to 51.2% for full binarization and 65.5% for
partial binarization. DoReFa-Net by Zhou et al. [61] explores reduced precision
with partial and full binarization on the SVHN and ImageNet datasets, includ-
ing best-case ImageNet top-1 accuracies of 43% for full and 53% for partial
binarization. Finally, the work by Courbariaux et al. [11] describes how to train
fully-connected and convolutional networks with full binarization and batch
normalization layers, reporting competitive accuracy on the MNIST, SVHN and
CIFAR-10 datasets. All BNNs used in this work are trained by a methodology
based on the one described by Courbariaux et al. [11], and unset bits represent
a numerical -1 value while set bits represent a +1. The downside to the high per-
formance characteristics of BNNs is a small drop in accuracy, in comparison to

201



C2. Scaling BNNs on Reconfigurable Logic

floating point networks. Improving the accuracy for reduced precision CNNs is
an active research area in the machine learning community and first evidence
shows that accuracy can be improved by increasing network sizes [50].

C2.3. BNNs on Reconfigurable Logic

This work builds on top of FINN [4], a framework for building scalable and
fast BNN inference accelerators on FPGAs. FINN is motivated by observations
on how FPGAs can achieve performance in the TOPS range using XNOR–
popcount–threshold datapaths to implement the BNNs described by Courbar-
iaux et al. [11]. Given a trained BNN and target frame rates, FINN follows
the workflow in Figure C2.1a to compose a BNN accelerator from hardware
building blocks. In more detail, a given network topology and model retrieved
through Theano [53], together with design targets in form of resource availab-
ility and classifcation rate, is processed by the synthesizer which determines
the scaling settings and produces a synthesizable C++ description of a het-
erogeneous streaming architecture.2 The top-level architecture is exemplified
in Figure C2.1b and has two key differentiators compared to prior work on
FPGA CNN accelerators. First, all BNN parameters are kept in OCM, which
greatly increases arithmetic intensity, reduces power and simplifies the design.
Furthermore, one streaming compute engine is instantiated per layer, with re-
sources tailored to fit each layer’s compute requirements and the user-defined
frame rate. Compute engines communicate via on-chip data streams and each
produces and consumes data in the same order with the aim of minimizing
buffer requirements in between layers. Thereby each engine starts to compute
as soon as the previous engine starts to produce output. In essence, we build a
custom architecture for a given topology rather than scheduling operations on
top of a fixed architecture, as would be the case for typical systolic array based
architectures, and avoid the “one-size-fits-all” inefficiencies and reap more of
the benefits of reconfigurable computing.

2To achieve portability, we chose a commercial high level synthesis tool, Vivado HLS [59],
for the implementation. The tool enables faster development cycles via high-level abstractions,
and provides automated pipelining to meet the clock frequency target.
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Figure C2.1.: FINN workflow and architecture, reproduced from [4].

203



C2. Scaling BNNs on Reconfigurable Logic

C2.3.1. The Matrix–Vector–Threshold Unit

In more detail, the key processing engine in FINN is the MVTU as illustrated
in Figure C2.1c, which computes binarized matrix-vector products and com-
pares against a threshold to generate a binarized activation. Convolutions are
lowered [8] to matrix–matrix multiplications, using SWUs (described further
in Section C2.4.2) to generate the image matrix and the MVTU to carry out
the actual arithmetic. The SWU generates the same vectors as those in [8] but
with the elements of the vector interleaved to reduce and simplify memory
accesses and to avoid the need for data transposition between layers. Intern-
ally, the MVTU consists of an input and output buffer, and an array of P PEs,
shown in Figure C2.1d, each with a number of SIMD lanes, S. The synapse
weight matrix to be used is kept in OCM distributed between PEs, and the
input images stream through the MVTU as each one is multiplied with the
matrix. Each PE receives exactly the same control signals and input vector data,
but multiply-accumulates the input with a different part of the matrix. A PE
can be thought of as a hardware neuron capable of processing S synapses per
clock cycle. Finally, the MVTU architectural template can also support partial
binarization for non-binarized outputs and inputs. Removing the thresholding
stage provides non-binarized outputs, while using regular multiply-add instead
of XNOR-popcount can handle non-binarized inputs. These features are used
in the first and last layers of networks that process non-binary input images or
do not output a one-hot classification vector.

C2.3.2. Folding

Depending on the use case, a neural network inference accelerator may have
different throughput requirements in terms of the images classified per second
(FPS). In FINN, FPS is controlled by the per-layer parameters P (number of
PEs in an MVTU) and S (number of SIMD lanes in each PE). If the number of
synapses, Y , connected to a neuron is greater than S, then the computation
is folded across the PE, with the resulting PE producing an activation every
F s = Y /S clock cycles. Similarly, if the number of neurons, X , in a layer exceeds
P , then each PE is responsible for calculating activations for F n = X /P neurons.
In total, it would take the MVTU F s ·F n clock cycles to compute all its neuron
activations. The MVTUs are then rate balanced by adjusting their P and S values

204



C2.4. Padding for BNN Convolutions

to match the number of clock cycles it takes to calculate all required activa-
tions for each layer. As this is a balanced streaming system, the classification
throughput FPS will be approximately Fclk/II , where Fclk is the clock frequency,
and the II (Initiation Interval) is equal to the total folding factor F tot = F s ·F n

cycles for a fully-connected layer. Note that convolutional layers have an ex-
tra folding factor, F m , which is the number of matrix–vector products which
need to be computed, i.e., the number of pixels in a single OFM. Therefore, for
convolutional layers the total folding factor is: F tot = F s ·F n ·F m .

C2.3.3. BNN-specific Operator Optimizations

The methodology described in [11] forms the basis for training all BNNs in
this paper. Firstly, in regards to arithmetic, we are using 1-bit values for all
input activations, weights and output activations (full binarization), where
an unset bit represents -1 and a set bit represents +1. Binary dot products
result in XNORs with popcounts (which count the number of set bits instead
of accumulation with signed arithmetic). Secondly, all BNN layers use batch
normalization [24] on convolutional or fully connected layer outputs, then
apply the sign function to determine the output activation. In [4] it is shown
how the same output can be computed via thresholding, which combines the
bias term, batch normalization and activation into a single function. Finally,
the networks described in [11] perform pooling prior to activations, i.e., pooling
is performed on non-binarized numbers, which are then batch normalized
and fed into the activation function. However, as shown in [4], pooling can
be equally performed after activation, once binarized, in which case it can be
effectively implemented with the Boolean OR-operator.

C2.4. Padding for BNN Convolutions

This section describes the improvements made to FINN in this work.
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Figure C2.2.: Convolution without (top) and with (bottom) padding.

C2.4.1. Padding using nonzero values

Zero-padding is commonly applied for convolutional layers in deep neural
networks, in order to prevent the pixel information on the image borders from
being "washed away" too quickly [28]. Figure C2.2 illustrates the sliding window
outputs on the same image with and without padding. Observe that the pixels
on the border (such as A and F) occur more frequently in the sliding window
outputs when padding is used, thus preventing them from being "washed
away" too quickly in the next layer.

A challenge arises for zero-padding in the context of BNNs with only {−1,+1}
arithmetic: there is no zero value defined. In fact, the original BinaryNet [11]
paper uses ternary values {−1,0,+1} for the forward pass, with zeros used
for padding. However, ternary values require two bits of storage, essentially
doubling the OCM required to store values and the bitwidth of the datapath.
Since FINN focuses on BNNs that fit entirely into on-chip memory of a single
FPGA, minimizing the resource footprint is essential. Thus, a padding solution
that avoids ternary values is preferable. A straightforward solution would be
to use e.g., -1 as the padding value, and expect that the BNN learns weights
which compensate for these values. Surprisingly, -1-padding works just as well
as 0-padding according to our results, which are presented in Section C2.5.2.
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C2.4.2. Streaming padding for FINN

FINN lowers [8] convolutions to matrix-matrix multiplication of the filter weight
matrix with the image matrix. The image matrix is generated on-the-fly by
the SWU. Figure C2.3 illustrates how the FINN SWU is enhanced to support
streaming padding for convolution layers. The key operational principle is the
same as in FINN. Namely, a single, wide IFM memory is used to store the feature
maps into OCM in the order they arrive, and the addresses that correspond to
the sliding window pixels are read out. Padding is achieved by a multiplexer
that chooses the data source for writing into the IFM memory. If the current
write address falls into the padding region, the padding value (e.g., -1) is written
into the memory; otherwise, an element from the output stream of the previous
layer is written instead.

C2.5. Evaluation

C2.5.1. Experimental Setup

BNN Topologies

The network topologies used for our experiments are all based on the CNN
topology described in [11], which we denote as cnn. This topology is inspired
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by the VGG16 network [48], which consists of three groups of (3x3 convolution
– 3x3 convolution – 2x2 maxpooling) layers, and two fully-connected layers
at the end. To explore how FINN performs on a range of network sizes, we
introduce a scaling factor, σ, to scale the width of each layer, and denote the
resulting topology as cnn(σ). Note that σ does not influence the number of
layers in a network, it merely affects: 1) the number of neurons in each fully
connected layer; and 2) the number of filters in each convolutional layer. Spe-
cifically, cnn(0.5) has half as many filters in each convolutional layer and half as
many neurons in each fully connected layer, compared to the CNN described
in [11]. In terms of convolutional networks, [4] only evaluated a single non-
padded BNN topology (cnnNoPad(1/2)). In this work, we consider cnn(1/2) as
well as smaller (cnn(1/4)) and bigger (cnn(1)) padded convolutional topologies
to investigate how FINN scales.

In order to simulate a realistic use case, we consider an application with a fixed
FPS requirement, i.e., real-time object recognition of a video stream. If one
considers an 800 × 600 video stream at 25 FPS, which partitioned into tiles of 32
× 32 for classification. In order to classify the tiles in real-time, a classification
rate of approximately 12 kFPS would be required. We use this image rate as our
target for all experiments and adjust the number of PEs and SIMD accordingly
in each layer of each design.

The Platform

The target board is an Alpha Data ADM-PCIE-8K5 which features a Xilinx
Kintex UltraScale XCKU115-2-FLVA1517E FPGA (KU115). The KU115 offers
663k LUTs, 2160 BRAMs (36k) and 5520 DSPs and is running at 125 MHz for
our experiments. The host machine is a IBM Power8 8247-21L with 80 cores at
3.69 GHz and 64 GB of RAM and it is running Ubuntu 15.04. In all experiments,
all parameters are stored in OCM while the test images and the predicted
labels are read from and written to the host memory directly. The provided
resource counts include the PCI Express infrastructure used for moving data
streams as well as the BNN accelerator. Although we are not able to provide per-
experiment power measurements, the maximum power consumption observed
for this board was 41 W on a board power dissipation benchmark test, and
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Table C2.1.: Accuracy with different padding modes for CIFAR-10.

Padding Mode
no-padding 0-padding -1-padding

Sc
al

e σ= 1/4 75.6% 78.2% 79.1%
σ= 1/2 80.1% 85.2% 85.2%
σ= 1 84.2% 88.6% 88.3%

Table C2.2.: Operations per image with different padding modes for CIFAR-10.

Padding Mode
no-padding 0-padding -1-padding

Sc
al

e σ= 1/4 30.4 M 78.5 M 78.5 M
σ= 1/2 118.9 M 310.3 M 310.3 M
σ= 1 530.1 M 1234.1 M 1234.1 M

we expect that the real power dissipation values for BNN accelerators will be
significantly lower than this.

C2.5.2. Effects of Padding

To investigate how different padding modes affect accuracy, we trained a set
of convolutional BNNs on the CIFAR-10 dataset with different scaling factors
(σ). The convolutions used are 3×3, so one pixel of padding is added on each
border. The results are summarized in Table C2.1. As expected, using 0-padding
improves accuracy by 4-5% compared to no-padding, indicating that the con-
ventional wisdom on padding increasing accuracy also applies to BNNs. Fur-
thermore, we can see that the accuracy of -1-padded networks are on par with
the 0-padded ones of same scale. This suggests that BNNs are able to learn to
compensate for the -1 values used for padding by adjusting the weight values
and thresholds, and the accuracy benefits can be still obtained with a binary
(as opposed to ternary) datapath.

It should also be noted that no-padding results in a significant reduction in
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Figure C2.4.: KU115 roofline with different datatypes.

the amount of operations per frame and the number of parameters. Thus, it
is worthwhile to examine the computation versus accuracy tradeoffs in the
context of padding. Table C2.2 lists the total number of XNOR-popcount op-
erations necessary to classify one image using different padding modes and
scaling factors. We can observe that the no-padding topology variant for the
same scale factor requires 2−3× less computation. However, this comes at a
cost of higher error rate, and a smaller-but-padded network may be advant-
ageous over a larger-but-not-padded network. For instance, cnn(1/4) classifies
at 79% accuracy using 78.5 M operations, whereas the cnnNoPad(1/2) classifies
at 80.1% accuracy using 118.9 M operations. Thus, cnn(1/4) may be preferable
due to its lower computational cost if a 1% drop in accuracy is acceptable for
the use case at hand.

C2.5.3. Scaling to Larger Networks

A results summary is shown in Table C2.3 which also shows the accuracy
achieved by the implemented networks on a number of benchmark datasets.
The new padded CNN results are provided in the top portion of Table C2.3,
while key results from [4] are shown in the lower portion. Note that for com-
parison, scaled versions of the multilayer perceptrons (MLPs) consisting only
of fully-connected layers described in [11] are also shown and denoted as
mlp(σ).

We can see that larger networks scale well to larger FPGAs, with our best designs
achieving 14.8 TOPS and 671 µs image classification latency. Furthermore, even

210



C2.5. Evaluation

Table C2.3.: Key performance and resource utilization results achieved by this
work (top) and FINN (bottom) on a number of BNN topologies.

Network Device LUT BRAM kFPS GOps/s

Pa
d

d
ed cnn(1/4) KU115 35818 144 12.0 938

cnn(1/2) KU115 93755 386 12.0 3,711
cnn(1) KU115 392947 1814 12.0 14,814

F
IN

N
[4

] cnnNoPad(1/2) Z7045 54538 192 21.9 2,466
mlp(1/16) Z7045 86110 130.5 12,361 8,265
mlp(1/8) Z7045 104807 516.5 6,238 11,613
mlp(1/4) Z7045 79097 398 1,561 9,086

with the largest network tested, all model parameters fit within OCM of the
KU115 and thus avoids potential bottlenecks on external memory access. How-
ever, if we were to attempt a larger network (such as cnn(2)) the design would
no longer fit in OCM without also reducing the frame rate. This is discussed
further in Section C2.5.3.

While the results described in Table C2.3 represent state-of-the-art in terms
of image classification rates and energy efficiency, it is still work in progress.
Our best raw performance number (14.8 TOPS) outperforms that of the smaller
FPGA device used in FINN [4] (11.6 TOPS), which is no surprise. However, the
MLPs shown in [4] do achieve performance figures closer to the theoretical
peak of the device. This is mostly due to the simplicity of MLPs versus CNNs.
Figure C2.4 shows the estimated peak performance of the KU115 with vertical
lines indicating the arithmetic intensity of the 3 CNN networks and coloured
markers indicating actual performance of FINN. We can see that our imple-
mentations still fall below the KU115’s theoretical peak. We expect that with
planned improvements, including those in Section C2.5.3, significant perform-
ance gains can still be achieved. However it should be noted, that the largest
design cnn(1) shown in Table C2.3 requires 1.2 GOPS per frame, which is similar
in computational requirements to the popular AlexNet [31] which requires 1.45
GOPS per frame. In comparison the GPUs, the NVidia Titan X can achieve 3.2
kFPS at 227 W for AlexNet inference, compared to 12 kFPS at less than 41 W on
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Figure C2.5.: Utilization of allocated BRAM storage space.

the KU115 FPGA [40]. It should be noted that these figures are in terms of 32-bit
floating point operations, as opposed to the binarized ones discussed in this
work. However, high accuracy has been achieved by fully binarized [21] and
partially binarized [61] versions of AlexNet and we expect to be able to achieve
high performance on such networks.

BRAM Efficiency

Since FINN currently focuses on BNNs that fit entirely onto the on-chip memory
of a single FPGA, making the most out of the available on-chip memory is es-
sential. Figure C2.5 illustrates how much of the allocated BRAM space (as
reported by Vivado) is actually utilized by the accelerator. The two largest con-
tributors to BRAM usage in FINN are the network parameters (BNN weights
and thresholds), and stream buffers (such as FIFOs and input-output buffers),
which are shown with different colors in the bar chart. As can be expected,
the majority of the utilized storage is for weights, although the streaming buf-
fers occupy roughly equal storage for cnn(1/4) since there are not as many
parameters.

A bigger concern is that on average only ∼22% of the storage space in the
allocated BRAMs is actually used. For scaling to even larger networks, this
under–utilization could constitute a problem as synthesis will fail trying to
allocate more BRAMs than is available in the FPGA. Further analysis into this
issue revealed that this is a consequence of how convolutions are currently
handled in FINN. Recall that the total folding factor is F tot = F s ·F n ·F m for
a convolution layer. The F m folding factor here arises due to implementing
matrix–matrix products as a sequence of matrix–vector products Unlike F s and
F n , F m is currently not controllable, since only one matrix–vector product is
computed at a time in each MVTU. When high FPS is desired, the initiation
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interval must be minimized, which can only be achieved by small values F n and
F s since F m is constant. This requires creating many PEs and SIMD lanes oper-
ating in parallel, each of which have their own weight and threshold memories
operating independently. However, this causes the weight matrix to be split
and distributed into many small pieces, thus causing the observed storage
under–utilization.

One way of addressing this problem would be enabling control over the F m

parameter by enhancing the MVTU to enable multiplying the same matrix by
multiple vectors in parallel. In this manner, fewer PEs and SIMD lanes could
be instantiated, each working on a larger portion of the weight matrix and
utilizing BRAM storage better. Figure C2.6 shows how the MVTU datapath
could be enhanced to support multiple vectors, broadcasting the same data
from the weight memory to multiple XNOR-popcount-accumulate datapaths.
Note that only the datapath is duplicated; the weight and threshold memories
have a single copy. We leave further investigation of the matrix–multiple vectors
for future work.

C2.6. Conclusion

In this work, we explored the scaling of BNNs on large FPGAs using the FINN

framework. We highlight an issue with padding in convolutional layers in BNNs
described in [11] which would cause them to require a 2-bit datapath. We
show that a small modification to padding (padding with -1 values) improves
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accuracy over no-padding and is comparable to 0-padding, while still allowing
networks to maintain a binary datapath. We found that high performance for
large networks can be attained, with our highest demonstrated performance
achieving 12 kFPS at less than 41 W of board power and 14.8 TOPS of raw
computational performance. When scaling to large networks, we also show
that the efficiency of BRAM usage in FINN is low, and propose an architectural
modification which would allow for better BRAM utilization. Alternatively, if a
higher number of smaller BRAMs were available on FPGAs devices, this would
allow FINN to better exploit the available resources.

For future work, we will further enhance the FINN framework to support partial
binarization, and different kinds of convolutional layers, such as inception
layers [52] and fire-modules [23]. The architectural improvements, described
in Section C2.5.3 will be implemented to further improve the BRAM usage effi-
ciency of architectures produced by FINN. Further networks which have been
trained on larger datasets, i.e., ImageNet, will also be implemented. Finally,
better power measurements will be attained rather than using “worst-case”
power dissipation values.
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C3. Streamlined Deployment for
Quantized Neural Networks

Abstract. Running Deep Neural Network (DNN) models on devi-
ces with limited computational capability is a challenge due to
large compute and memory requirements. Quantized Neural Net-
works (QNNs) have emerged as a potential solution to this problem,
promising to offer most of the DNN accuracy benefits with much
lower computational cost. However, harvesting these benefits on
existing mobile CPUs is a challenge since operations on highly
quantized datatypes are not natively supported in most instruction
set architectures (ISAs). In this work, we first describe a streamlin-
ing flow to convert all QNN inference operations to integer ones.
Afterwards, we provide techniques based on processing one bit
position at a time (bit-serial) to show how QNNs can be efficiently
deployed using common bitwise operations. We demonstrate the
potential of QNNs on mobile CPUs with microbenchmarks and on
a quantized AlexNet, which is 3.5× faster than an optimized 8-bit
baseline.

C3.1. Introduction

From voice recognition to object detection, Deep Neural Networks (DNNs)
are steadily getting better at extracting information from complex raw data.
Combined with the popularity of mobile computing and the rise of the Internet-
of-Things (IoT), there is enormous potential for widespread deployment of
intelligent devices, but a computational challenge remains. A modern DNN can
require billions of floating point operations to classify a single image, which
is far too costly for energy-constrained mobile devices. Offloading DNNs to
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powerful servers in the cloud is only a limited solution, as it requires significant
energy for data transfer and cannot address applications with real-time or low-
latency requirements, such as augmented reality or navigation for autonomous
drones.

Quantized Neural Networks (QNNs) have recently emerged as a potential solu-
tion to this problem. They contain convolutional, fully-connected, pooling
and normalization layers similar to the floating point variants, but use a con-
strained set of values to represent each weight and activation in the network.
We will use the notation WwAa to refer to a QNN with w-bit weights and a-bit
activations, and focus on cases where they represent few-bit integers (w, a ≤ 4).
The computational advantages of such QNNs are two-fold:

1. Each parameter and activation can be represented with a few bits. A
greater portion of the working set can thus be kept in on-chip memory,
enabling greater performance, reducing off-chip memory accesses and
the energy cost of data movement.

2. Most QNN operations are on few-bit integers, which are faster and more
energy-efficient than floating-point.

While a quantized network will generally have reduced accuracy compared
to an equivalent DNN using floating point, recent research has demonstrated
significant progress in closing this accuracy gap. Courbariaux and Hubara et
al. [11] first demonstrated that Binarized Neural Networks (BNNs), a QNN
variant with W1A1, could achieve competitive accuracy on smaller image re-
cognition benchmarks like CIFAR-10 and SVHN. XNOR-Net [45] improved
upon this technique by adding scaling factors to better approximate the full-
precision operations. Noting that more challenging classification tasks such
as ImageNet could benefit from higher-precision activations, DoReFa-Net [62]
used multi-bit activations and weights to further improve accuracy. Recently,
Cai et al. [7] proposed Half-wave Gaussian Quantization (HWGQ) to take ad-
vantage of the Gaussian-like distribution of batch-normalized activations,
demonstrating W1A2 networks with less than 5% top-5 accuracy drop com-
pared to floating point DNNs on the challenging ImageNet dataset, as summar-
ized in Table C3.1.

Despite the attractive accuracy and computational properties, there is a chal-
lenge in reaping the benefits on QNNs on mobile devices with commodity
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Table C3.1.: Accuracy of a state-of-the-art QNN [7].

Dataset Network Floating Point W1A2 HWGQ [7]
top-1 (top-5) top-1 (top-5)

ImageNet AlexNet 58.5% (81.5%) 52.7% (76.3%)
ImageNet GoogLeNet 71.4% (90.5%) 63.0% (84.9%)
ImageNet VGG-like 69.8% (89.3%) 64.1% (85.6%)
CIFAR-10 VGG-like 93.2% 92.5%

processors. Three outstanding issues limit the benefits of QNN deployment on
existing mobile CPUs: floating point parameters inside and between quantized
layers, lack of native support for efficient few-bit integer matrix multiplications,
and overhead of bit-masking operations for convolution lowering on few-bit
activations. In this work, we show how these problems can be addressed by
absorbing floating point operations into thresholds (streamlining), using a
bit-serial formulation for handling few-bit integer matrix multiplications and
channel-interleaved lowering.

C3.2. Streamlined QNNs

Even for layers with uniform-quantized input activations and weights, state-
of-the-art QNN methods use some floating point computation in the forward
pass to improve the accuracy. Although these layers do not typically contain a
large amount of computation, they may still incur slowdowns on devices where
floating point operations are expensive and increase the memory footprint
of the QNN by adding floating point parameters. Three such examples from
state-of-the-art QNN methods are:

1. Batch normalization. Almost all state-of-the-art QNN techniques, in-
cluding BinaryNet [11], XNOR-Net [45] and HWGQ [7], use batch nor-
malization to obtain zero mean and unit variance prior to quantizing
activations. The normalization parameters µ and i are floating point
values obtained during network training.
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Figure C3.1.: Streamlining an HWGQ network. Blue and green color indicate
floating point and integer data, respectively.

2. α-scaling. To better approximate the full-precision results using quant-
ized operations, both XNOR-Net [45] and HWGQ [7] use α-scaling. This
involves multiplying the quantized matrix multiplication result with α,
which is a floating point vector containing the average L1-norm of each
row of the weight matrix prior to quantization.

3. Non-integer quantization levels. The chosen quantization levels in a
QNN may be floating point values to best approximate the underlying
value distribution. For instance, the state-of-the-art QNNs produced by
HWGQ [7] use the following function for 2-bit uniform quantization:

HWGQ(x) =


0, for x ≤ t0

0.538, for 0 < x ≤ 0.807
1.076, for 0.807 < x ≤ 1.345
1.614, for 1.345 < x


C3.2.1. The Streamlining Algorithm

Through a process we call streamlining, we show how the forward pass through
any QNN layer with uniform-quantized activations and weights can be com-
puted using only integer operations. This consists of the following three steps:

Quantization as successive thresholding

Given a set of threshold values t = {t0, t1 . . . tn}, the successive thresholding
function T (x, t) maps any real number x to an integer in the interval [0,n],
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where the returned integer is the number of thresholds that x is greater than or
equal to:

T (x, t ) =



0, for x ≤ t0

1, for t0 < x ≤ t1

. . . . . .
n −1, for tn−2 < x ≤ tn−1

n, for tn−1 < x


Any uniform quantizer Q(x) can be expressed as successive thresholding fol-
lowed by a linear transformation such that Q(x) = a·T (x)+b. As an example, the
2-bit uniform HWGQ quantizer can be expressed as HWGQ(x) = 0.538 ·T (x, t )
with t0 = 0, t1 = 0.807, t2 = 1.345. It should be noted that this technique is only
economical for few-bit activations, since the number of thresholds grows expo-
nentially with the activation bitwidth.

Moving and collapsing linear transformations

Any sequence of linear transformations can be collapsed into a single linear
transformation. We can first move all floating point linear operations to be
positioned between the quantized matrix operation and the activation quantiz-
ation, then collapse them into a single linear transformation. For the example
in Figure C3.1, the linear transformation ax +b for the previous layer’s activa-
tion quantization can be moved past the bipolar matrix multiplication, since
W ·(ax+b) = a ·(W x)+W b, forming a sequence together with the α-scaling and
batch normalization. Afterwards, this sequence of three linear transformations
can be reduced to a single linear transformation.

Absorbing linear operations into thresholds

The final step in the streamlining process is to update the threshold values as
ti ← (ti −b)/a using the parameters a,b of the linear transformation. Observe
that in the inequality t0 < x ≤ t1 we can substitute ax +b as the variable, and
rewrite it as (t0 −b)/a < x ≤ (t1 −b)/a. By updating each threshold in this man-
ner, we can remove the floating point linear transformations completely and
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feed the result of the quantized matrix operation directly into the successive
thresholding layer. Furthermore, if the input to the quantized matrix operation
is known to be integer (i.e., the previous layer’s activations were also quant-
ized), each threshold can be simply rounded up to the nearest integer without
changing the produced results.

C3.3. Inference with Few-Bit Weights and Activations on
Mobile CPUs

The dominating computation in QNN inference is convolutions between fea-
ture maps and kernels expressed as few-bit integers, which can be lowered [9] to
matrix-matrix multiplication between few-bit integer matrices. Both the lower-
ing and the matrix multiplications can be carried out by casting all operands to
8-bit integers, which are natively supported by most ISAs today. Libraries such
as Google’s gemmlowp [5], which has been used to deploy DNNs on mobile
devices, offer high-performance 8-bit matrix multiplications. However, using
8-bit operands to carry out few-bit integer operations can be wasteful. For in-
stance, using 8-bit operations to compute a W2A2 matrix product would insert
six zero bits into each operand, thus unnecessarily increasing the memory
footprint by 4×. Here, we provide alternatives that take advantage of few-bit
integers for both the lowering and matrix multiplication operations.

C3.3.1. Few-Bit Integer Matrix Multiplication

To perform efficient few-bit integer matrix multiplication, we propose to use
commonly supported bitwise operations in bit-serial fashion. We will first
describe how this is done for the W1A1 case, then generalize the method to
WwAa.

The W1A1 case. Binary matrix multiplication, referred to here as BINARYGEMM,
can be used for the case where each weight and activations can be represented
using a single bit. Previous work [11, 39, 45] discussed how binary dot products
can be implemented using bitwise XNOR followed by popcount (counting the
number of set bits) operations. Most modern processors provide an instruction
for popcount, which enables fast BINARYGEMM implementations even on

222



C3.3. Inference with Few-Bit Weights and Activations on Mobile CPUs

function BINARYGEMM(W, A, res,α)
for r ← 0. . .r ow s −1 do

for c ← 0. . .col s −1 do
for d ← 0. . .

⌈
depth/wor d si ze

⌉−1 do
r es[r ][c] +=α ·POPCOUNT(W (r,d) & A(c,d))

end for
end for

end for
end function

Algorithm C3.1: W1A1 GEMM using AND-popcount.

mobile CPUs. Note that very high performance (in the trillion-operations per
second range) on these operations can also be achieved with FPGAs [4, 39]
and GPGPUs [11]. Although XNOR-popcount is only applicable for matrices
with {−1,+1} binary elements, it is possible to extend this idea to {0,1} binary
elements by using bitwise AND instead of XNOR as shown in Algorithm C3.1.

The WwAa case. We now leverage BINARYGEMM as a building block for im-
plementing few-bit integer matrix multiplication. We can rewrite the w-bit
matrix W as a weighted sum

∑w−1
i=0 2i ·W [i ], where W [i ] is the binary mat-

rix formed by taking bit i of each element of W , also referred to as a bit
plane. In this manner, the product of two few-bit integer matrices can be
written as a weighted sum of the pairwise products of their bit planes, i.e.,
W · A =∑w−1

i=0

∑a−1
j=0 2i+ j ·W [i ]·A[ j ].

Algorithm C3.2 uses this observation to formulate few-bit integer matrix multi-
plication between the w-bit weight matrix W and the a-bit activation matrix A.
This is a vectorized bit-serial operation, since the contributions to each result
element are computed between two bit positions at a time, but the bitwise
operations inside BINARYGEMM operate on vectors of bits. In this manner, we
are able to take advantage of the full width of the processor datapath without
introducing a large number of zero bits inside operations regardless of the
values of w and a. The time taken by BITSERIALGEMM will be proportional to
w ·a, with W1A1 executing fastest.
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function BITSERIALGEMM(W, A, res)
for i ← 0. . . w −1 do

for j ← 0. . . a −1 do
sgnW ← (i == w −1 ? −1 : 1)
sgnA ← ( j == a −1 ? −1 : 1)
BINARYGEMM(W [i ], A[ j ], res, sgnW · sgnA ·2i+ j )

end for
end for

end function

Algorithm C3.2: Signed WwAa GEMM using BINARYGEMM.

C3.3.2. Lowering with Few-Bit Activations

Lowering convolutions [9] allows taking advantage of optimized matrix-matrix
multiplications, which is the approach we take in this work. Memory usage is
typically a concern for lowering due to duplicated pixels. In theory, QNNs do not
suffer as much from this problem since quantized activations use much fewer
bits per pixel, but taking advantage of this on a CPU can be tricky. Namely, the
lowering process itself (often called im2col) requires accessing the feature map
data in a "sliding window" fashion, which may require bit masking and shifting
operations that decrease performance. Representing each few-bit activation as
an 8-bit value avoids this problem, but introduces many unused zero padding
bits.

We propose an alternative, which we refer to as interleaved lowering, that uses
a bit-serial, channel-interleaved data layout as illustrated in Figure C3.2. Each
pixel, which may span one or more CPU words, contains the bits from one
bit position across activations from all channels, padded to the nearest word
boundary. Afterwards, the lowering can be performed on the granularity of
entire CPU words, with one im2col per activation bit.

C3.4. Evaluation

We implemented BITSERIALGEMM using ARM NEON intrinsics in C++, with
register blocking and L1 cache blocking to achieve higher performance. We
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Figure C3.2.: Interleaved lowering.
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compare against the gemmlowp library [5], which utilizes hand-optimized in-
line assembly for 8-bit matrix multiplications. All reported results are measured
on a single ARM Cortex-A57 core running at 1.9 GHz on the Nvidia Jetson TX1
board. We use 8-bit native matrix multiplications provided by gemmlowp [5] as
the baseline alternative to BITSERIALGEMM.

C3.4.1. Matrix Multiplication Microbenchmarks

As matrix multiplication accounts for the majority of time in neural network
inference, we start by evaluating BITSERIALGEMM on matrix multiplication mi-
crobenchmarks. For a (rows, depth, cols) operation that takes T nanoseconds,
we report the performance in integer giga-operations per second (GOPS) meas-
urement as (2 · rows ·depth ·cols) / T by averaging over a runtime of 10 s.

Compute-Bound Performance

To measure the maximum achievable performance with our implementation,
we use the largest matrices that still fit into the L1 cache. For gemmlowp, we
observed a peak performance of 22 GOPS. For BITSERIALGEMM on W1A1

(binary matrices), we observed a peak performance of 150 GOPS, which is
6.8× faster than using 8-bit operands. As expected, the performance linearly
decreases with more bits of precision: 77 GOPS for W1A2, 50 GOPS for W1A3,
34 GOPS for W2A2 and 23 GOPS for W2A3. Thus, for this particular platform,
BITSERIALGEMM is faster than using 8-bit operations for WwAa with w ·a ≤ 6.8
when working with in-cache matrices.

Performance vs Matrix Size

To investigate how performance is influenced by the dimensions of a M ×N ×K
matrix multiplication, we performed a sweep of different sizes between 26 and
212 in each dimension using both gemmlowp and BITSERIALGEMM with W1A1.
Figure C3.3 presents a scatter plot of the performance with increasing depth (K ).
We observe that BITSERIALGEMM performance is sensitive to the depth (K )
dimension. For small matrix sizes, there is little or no performance advantage
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Figure C3.3.: Log-linear plot of performance versus depth (K ).

over gemmlowp, which should be taken into consideration when choosing the
execution method for each layer. BITSERIALGEMM quickly becomes faster
with increasing depth and becomes advantageous over gemmlowp, up to 6.6×
faster than gemmlowp for a 64×1024×4096 multiplication. With K ≥ 2048, we
observe decreased performance for larger M and N values in BITSERIALGEMM
due to increased cache misses, which can be addressed by adding more levels
of blocking to the implementation.

C3.4.2. Quantized AlexNet

To assess the benefits of the techniques discussed for QNN deployment, we
developed a version of Caffe with support for quantized layers. Each quant-
ized layer can be configured individually to use either gemmlowp or BITSERI-
ALGEMM as the execution engine. We use a quantized AlexNet from [7] with
batch size 1 as a benchmark, with W8A8 for the first layer, W8A2 for the last
layer, and W1A2 for all other matrix layers. The first and last layer are computed
using gemmlowp in 8-bit precision to preserve accuracy. For non-matrix lay-
ers such as thresholding and max pooling which constitute a tiny portion of
the total compute, we use regular floating point operations. We evaluated the
performance for the following combinations of techniques:

• baseline: No streamlining, all layers using gemmlowp.

• bsgemm: Streamlining, all but the first and last layer using BITSERI-
ALGEMM, first and last layer in gemmlowp.
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• bsgemm-intl: Streamlining and interleaving, all but the first and last
layer using BITSERIALGEMM .

Overall performance

Figure C3.4 compares the time per frame with each of the three techniques
and presents a basic breakdown of time cost. Overall, bsgemm achieves a 3×
speedup over the baseline, and bsgemm-intl further improves this to 3.5×.
Speedups from bsgemm are limited by the presence of 8-bit first/last layers,
which account for 33% of the execution time in bsgemm-intl. Also quantizing
those layers further would bring further performance benefits. The current
throughput is 2.2, 6.7 and 7.7 frames per second respectively for baseline,
bsgemm and bsgemm-intl, and the performance can be further improved by
multi-core parallelism and code optimization.

Detailed comparison.

Table C3.2 presents a detailed breakdown of time spent in lowering and matrix
multiplication operations across AlexNet convolutional and fully-connected
layers with different optimizations. All matrix multiplications are indicated in
parantheses as (rows, columns, depth), with the midline separating convolu-
tional and fully-connected layers. The advantage of using quantized operations
for fully-connected layers is especially prominent, with speedups of up to 50×
owing to increased arithmetic intensity in matrix-vector multiplications. For
matrix-matrix multiplications in convolutional layers, the advantage of using
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Table C3.2.: Time cost breakdown for W1A2 AlexNet with batch size 1. Best
numbers for each row are highlighted.

Operation Time (ms) Speedup

baseline bsgemm bsgemm-intl

co
n

vo
lu

ti
o

n
al

lowering 6.7 6.7 6.7 1×
(96, 363, 3025) 20.7 20.7 20.7 1×

lowering 8.7 15 0.9 10×
(256, 2400, 729) 90.3 23.7 23.7 3×

lowering 2.4 3.7 0.2 12×
(384, 2304, 169) 32.2 8.3 8.3 4×

lowering 3.5 5.7 0.3 10×
(384, 3456, 169) 48 10.7 10.7 5×

lowering 3.5 5.7 0.3 10×
(256, 3456, 169) 35.8 7.3 7.3 5×

F
C

(4096, 9216, 1) 114.7 2.3 2.3 50×
(4096, 4096, 1) 52.9 1.1 1.1 50×
(1000, 4096, 1) 13 13 13 1×

W1A2 BITSERIALGEMM is around 4×. When the matrix multiplies become
faster, the overhead of lowering and bit packing costs become substantial, al-
most as much as the matrix-matrix multiplication time for earlier layers with
large filters. Fortunately, this can be remedied by interleaving, as indicated
by the results in the bsgemm-intl column. By taking advantage of packing
bits prior to lowering, interleaved lowering can offer a 10× speedup over the
baseline.

C3.5. Conclusion and Future Work

We have presented methods for efficient processing of QNNs on mobile CPUs
via absorbing scaling factors into thresholds, channel-interleaved lowering,
and bit-serial matrix multiplication. Our results indicate that these methods
can take better advantage of few-bit operations in QNNs, offering significant
speedups over native 8-bit operations on mobile CPUs. As future work, we note
that this approach can enable approximate computing by only considering
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the contributions from higher-order bits and taking advantage of bit-level
sparsity. Another use for this technique would be on-device training DNNs
using low-precision gradients [12], which also requires low-precision matrix
operations.
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1. Conclusion

In this thesis, in order to gain insight into how the energy efficiency of computer
systems can be improved via specialization, we have studied how sparse linear
algebra and deep neural network inference can benefit from FPGA acceleration.
This chapter will provide a summary of the contributions from the scientific
articles presented in Parts B and C, organized around the research questions
that were posed in Part A Section 1.3.

1.1. Research Question 1

How can sparse linear algebra benefit from FPGA acceleration?

By utilizing more off-chip memory bandwidth. Utilizing the available off-
chip memory bandwidth is key to achieving high performance for sparse prob-
lems. This applies to both the sequential access patterns generated by multiple
backends, which can be made up to 20% more bandwidth-efficient with the
interleaved data layout described in Paper B1, and the random access patterns,
which are explored in Paper B3. Modern DRAM controllers support multiple
outstanding requests, and it is essential to keep the memory system busy
with requests to achieve higher utilization with random access patterns. Paper
B3 adopts non-blocking caches, a technique commonly used in out-of-order
CPUs, to increase the MLP and achieve higher bandwidth utilization, yielding
speedups of up to 3× compared to blocking caches.

By preprocessing and hardware-software caching. The random memory ac-
cess component is frequently the bottleneck in sparse problems, and although
random accesses can be handled rapidly by OCM this is a limited and valuable
resource for all chips including FPGAs. In Papers B2 and B3, we showed how
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lightweight preprocessing of the sparsity structure can yield a minimalistic up-
per bound on the range of random accesses. When combined with a specialized
hardware cache that makes use of this information, in addition to decreasing
the amount of OCM needed to service the random access component by 70%
on average, this also enables avoiding cold miss penalties which can be quite
significant for some sparse matrices.

By shrinking the random access volume. Sparse computation can experience
a large speed-up if the random memory access component fits into on-chip
memory. Thus, algorithmic reformulations that lead to a more compact random
access component can be beneficial for performance. Paper B4 provides an
example of this for BFS, decoupling the traversal phase from the distance-to-
root-node generation phase. This reduces the random-access component to a
binary vector that is more likely to fit into OCM, which enables very efficient
traversal of large graphs, offering up to twice as many traversals per unit of
memory bandwidth compared to prior work. This is similar to the benefits of
quantization for deep neural networks studied in Part C, which alludes to the
more general conclusion that reducing the memory footprint via algorithmic
reformulations or approximate computing approaches can be hugely beneficial
for performance and efficiency.

By balancing memory and computation resources. Sparse computation has
typically very low arithmetic intensity and a problematic indirect access pattern.
For instance, in Paper B4, the computation involved for sparse matrices over
the Boolean semiring is no more than AND-OR operations. In terms of the
decoupled design strategy in Paper B1, FPGA designs can better cater to this
imbalance by allocating more resources to the memory system part and less
to the compute part. In contrast, typical CPU and GPGPU architectures are
designed with applications with much higher arithmetic intensity, resulting in
severe underutilization of the allocated compute resources.

1.2. Research Question 2

How can deep neural network inference benefit from FPGA acceleration?
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By using quantization. The key technique for reaping benefits of FPGA ac-
celeration in DNN inference is quantization. As revealed by both the roofline
analysis and the results in Papers C1 and C2, quantization has a two-fold effect
on performance and energy efficiency. First and foremost, the memory foot-
print of a QNN is up to 32× smaller, potentially allowing the entire network
to reside in OCM for even large, complex networks. This avoids most off-chip
memory accesses, offering tremendous performance and energy efficiency be-
nefits. The second benefit is a much better fit to the FPGA computing resources,
since quantized operations offer much higher compute density. The combined
effect is demonstrated by the FINN-generated accelerators in Paper C1, which
can perform ten-thousands to millions of image classifications per second
while using less than 12 W of FPGA power. Without using highly quantized
arithmetic, FPGAs are at a clear disadvantage compared to GPGPUs, since most
existing FPGAs (with the exception of the recent Arria and Stratix-10 models
from Intel) do not contain hard blocks for floating point operations, and must
implement floating point using LUTs.

By tailoring compute resources and parallelism to requirements. The fine-
grained compute resources and vast parallelism of the FPGA can be specifically
tailored to the particular topology of the network and user throughput require-
ments, as demonstrated by the FINN framework in Paper C1. This avoids the
"one-size-fits-all" penalties associated with fixed-size compute arrays, achiev-
ing up to 90% utilization of instantiated resources at runtime.

By utilizing OCM efficiently. Modern FPGAs contain many blocks of SRAM
memory tightly coupled with the compute fabric. Each of these memories
can independently read and write data every cycle. This yields high on-chip
memory bandwidth, which can take advantage of the arithmetic intensity of
the QNN inference computation. Papers C1 and C2 take advantage of the OCM
for both storing the QNN parameters and for carrying the activations between
layers via on-chip FIFOs. Keeping the computation on-chip and parallelizing
across layers also offers significant latency benefits. FINN-generated acceler-
ators are able to classify smaller datasets such as MNIST and CIFAR-10 with
sub-millisecond latency.

By taking advantage of static analysis. In terms of being able to analyze the
computation statically, accelerating inference with a trained DNN is relatively
straightforward, unlike the sparse linear algebra computations studied in Part
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B which exhibit dynamic runtime behavior. By using the mathematical simpli-
fications described in Papers C1 and C3, most or all floating point parameters
and operations can be removed from the computation, freeing up valuable
FPGA logic resources and DSP blocks. Static analysis is also what makes the
tailoring of compute resources to requirements possible in Paper C1.
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2. Future Work

A PhD thesis often raises more questions than it answers, and this one is no
exception. This chapter presents several possible directions for future work
in the context of sparse linear algebra and deep learning on FPGAs, either to
address the shortcomings of particular techniques proposed in this thesis, or
to explore new directions that emerged throughout the research process.

2.1. Sparse Linear Algebra

Sparse matrix partitioning for parallel nonblocking caches. The nonblock-
ing cache scheme proposed in Paper B3 is only studied for a single SpMV
processing element with a single non-blocking cache. As more bandwidth
and resources become available, instantiating several processing elements
with each their own cache will become essential. This creates different access
patterns depending on how the sparse matrix is partitioned for parallel exe-
cution. Additionally, allowing more random access streams to the same DDR
memory is likely to degrade the bandwidth, further complicating the tradeoffs
and warranting further study in this direction.

Exploring further preprocessing. Lightweight analysis of the sparsity struc-
tures as exemplified in Papers B2 and B3 contributed significantly to perform-
ance when this information was exposed to hardware. Analysis of the sparsity
structure can potentially be used to tackle many of the inherent problems
caused by lack of locality and should be explored further, especially in the con-
text of tailoring a reconfigurable accelerator to individual sparsity patterns.

Impact of in-package memory. Despite the techniques proposed in this thesis
for increased efficiency in utilizing off-chip memory bandwidth, GPGPUs are
still much faster at processing sparse matrix computations due to the sheer
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amount of bandwidth they have available. However, next-generation FPGAs
will include in-package DRAM stacks delivering up to a terabyte per second of
bandwidth, which may change the competitive landscape. How this amount
of bandwidth will influence design choices for next-generation FPGA sparse
linear algebra accelerators is an interesting direction for further research. It
is likely that the proposed data layout techniques in Paper C1 will become
more important to be able to parallelize the execution further while keeping
the bandwidth utilization high.

Sparse matrices-over-semirings on FPGAs. As effective as FPGAs might be for
sparse graphs (Paper B4), the "programmability wall" still remains for non-
experts wanting to take advantage of FPGA accelerators. The standardization
of interfaces such as BLAS (Basic Linear Algebra Subprograms) enabled de-
coupling the productivity-oriented (e.g., physicists or meteorologists that need
high-performance BLAS implementations) and performance-oriented (e.g.,
computer scientists maintaining high-performance BLAS implementations)
users of dense linear algebra, leading to a cycle of virtuous growth for both
sides. GraphBLAS [2] is a similar effort for high-productivity, high-performance
graph algorithms, using sparse linear algebra as building blocks based on the
matrices-over-semirings concept. An FPGA sparse linear algebra backend for
GraphBLAS could go a long way towards making the computational capabilities
available for the masses.

Distributed sparse linear algebra with FPGAs. As computational models of
nature are often sparse, there is no limit to the maximum size of the sparse
models that scientists would like to study. Increasingly large, sparse models will
not fit into even the off-chip storage of a single node, thus requiring distributed
processing over multiple FPGA nodes. Although we expect that the challenges
will be similar to those faced by distributed sparse linear algebra implementa-
tions on CPU clusters [3] at a high level, the possibility of tight integration with
network interfaces and custom interconnects can bring significant additional
benefits for FPGAs.
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2.2. Deep Neural Networks

Bit-serial for mixed precision inference. There is recent work [4] presenting
evidence that the best way to preserve accuracy in QNNs may be to use dif-
ferent quantization on different layers. The bit-serial approach proposed and
evaluated on CPUs in Paper C3 can be adopted on FPGAs towards this end. As
bit-serial performance is directly proportional to binary matrix multiplication
performance, which Papers C1 and C2 quantified for FPGAs, this approach has
the potential to yield an accelerator that is both high performance and flexible
enough to use with a wide range of QNNs.

Multi-FPGA streaming acceleration. The FINN framework proposed in Paper
C1 imposes the restriction that all parameters of the QNN will fit into the OCM
of a single FPGA. To cater for larger QNN deployments in the datacenter, it
could be interesting to explore multi-FPGA acceleration scenarios where the
layers are distributed between multiple FPGAs, using either regular Ethernet or
dedicated low-latency interconnect to carry activations across partitions.

Codesign for compact QNNs. Papers C1 and C2 indicate that adding more
neurons can compensate for the accuracy drop due to quantization, which
hints at the presence a hardware-software codesign space. Given the logic
resource and OCM capacity of a certain FPGA, what is the best performance,
energy efficiency and accuracy attainable by an appropriately-sized QNN?
Exploring this vast design space will almost certainly require simple models for
cost-benefit analysis, but would be beneficial from the perspective of deploying
neural networks on limited-capacity devices.

Quantized training for QNNs. The inference problems studied in this thesis
aside, training QNNs still takes tremendous floating point computing power
and energy. However, there is evidence [1, 5] that the training may be possible to
carry out in reduced precision as well. Given their computational capabilities in
reduced precision, FPGAs could be an excellent match for quantized training.

247





Bibliography

[1] C. De Sa, M. Feldman, C. Ré and K. Olukotun. ‘Understanding and Op-
timizing Asynchronous Low-Precision Stochastic Gradient Descent’. In:
Proceedings of the 44th Annual International Symposium on Computer
Architecture. ACM. 2017, pp. 561–574.

[2] J. Kepner, D. Bader, A. Buluç, J. Gilbert, T. Mattson and H. Meyerhenke.
‘Graphs, matrices, and the GraphBLAS: Seven good reasons’. In: Procedia
Computer Science 51 (2015), pp. 2453–2462.

[3] S. Lee and R. Eigenmann. ‘Adaptive runtime tuning of parallel sparse
matrix-vector multiplication on distributed memory systems’. In: Pro-
ceedings of the 22nd annual international conference on Supercomputing.
ACM. 2008, pp. 195–204.

[4] E. Park, J. Ahn and S. Yoo. ‘Weighted-Entropy-Based Quantization for
Deep Neural Networks’. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2017, pp. 5456–5464.

[5] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen and H. Li. ‘TernGrad: Tern-
ary Gradients to Reduce Communication in Distributed Deep Learning’.
In: arXiv preprint arXiv:1705.07878 (2017).

249


	94182_PhDCover_Yaman_Umuroglu
	94182_PhD_Yaman_Umuroglu_83

