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Abstract— This paper presents a reactive collision avoidance
algorithm, which avoids both static and moving obstacles by
keeping a constant avoidance angle between the vehicle velocity
vector and the obstacle. In particular, we consider marine
vehicles with underactuated sway dynamics, which cannot be
directly controlled. This gives an underactuated component in
the vehicle velocity, which the proposed algorithm is designed
to compensate for. The algorithm furthermore compensates
for the obstacle velocity. Conditions are derived under which
the sway movement is bounded and collision avoidance is
mathematically proved. The theoretical results are supported by
simulations. The proposed algorithm makes only limited sensing
requirements on the vehicle, is intuitive and suitable for a wide
range of vehicles. This includes vehicles with heavy forward
acceleration constraints, which is demonstrated by applying
the algorithm to a vehicle with constant surge speed.

I. INTRODUCTION

To operate safely in dynamic environments, unmanned ve-
hicles should be able to avoid collisions with both obstacles
and other vehicles. The collision avoidance (CA) problem
becomes particularly challenging for underactuated vehicles,
as not all degrees of freedom (DOF) can be independently
controlled. In particular, underactuation generally introduces
second-order nonholonomic constraints, which makes it nec-
essary to take the underactuated dynamics into consideration
[1]. Hence, it is not sufficient to consider a purely kinematic
model for motion planning and control of underactuated
vehicles.

In this paper we consider marine vehicles moving in
the horizontal plane, with underactuated dynamics in the
sideways (sway) direction. Marine vehicles often have a large
mass, making substantial changes in the forward (surge)
speed undesirable. A CA algorithm for marine vehicles
should thus take into account the forward acceleration limita-
tions of the vehicle, which we do in this paper by considering
a vehicle keeping a constant forward speed.

Surveys of recent results in CA algorithms can be found
in [2]–[4]. The different approaches can generally be divided
into motion planning algorithms and reactive algorithms.
Motion planning algorithms can be intractable for vehicles
with limited processing power, particularly in uncertain and
dynamic environments requiring high planning frequency.
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There is therefore a need for reactive algorithms, which
also can provide valuable redundancy to collision avoidance
systems based on motion planning.

A much used approach to reactive CA is the artificial
potential field method [5], which is simple to implement
and scales well with environment complexity. There are,
however, some stability issues with the approach [6], which
is avoided in the related vector field histogram algorithm [7].
Still, vehicle dynamics is not included in the analysis of the
vehicle behavior, and only static obstacles are considered.

The dynamic window algorithm [8] finds provably safe
control inputs for vehicles with first-order nonholonomic
constraints. It is extended to include the second-order non-
holonomic constraints resulting from the underactuation of
marine vehicles in [9]. The approach works well in complex
environments, but only considers static obstacles.

Moving obstacles are inherently considered in the velocity
obstacles (VO) approach [10], which generates a set of
safe velocities even in a crowded environment. In [11], the
approach is extended to include COLREGs, the maritime
rules of the road. The approach assumes, however, that the
vehicle is fully actuated with unbounded acceleration.

The acceleration VO approach [12] includes acceleration
constraints in a fully actuated vehicle. It can be used on a
vehicle with unicycle-type constraints as well, but becomes
restrictive if the forward acceleration capability of the vehicle
is limited. The generalized VO [13] represents the VO in
terms of control input, and can thus be used on underactuated
systems with second-order nonholonomic constraints. It can,
however, be computationally expensive.

In [14], input-output linearization is used to reduce the
kinematics and dynamics of a unicycle to a set of double
integrators, which is used by a CA algorithm to provably
avoid moving obstacles. However, like the acceleration VO,
the approach is restrictive for vehicles with a limited forward
acceleration capability.

The reactive CA algorithm proposed by [15] makes the
vehicle circumvent moving obstacles. It is mathematically
proved that a marine vehicle with underactuation in sway is
able to execute a successful CA maneuver, while adhering to
COLREGs. Set-based theory is used to switch between CA
and path following. However, no analytical bound is found
for the obstacle distance at which the switch should occur.

In [16], a CA algorithm for unicycles is presented. The
algorithm makes the vehicle keep a constant avoidance angle
to the obstacle, and it is proved that obstacles moving at
a constant velocity are avoided. The forward acceleration
can be significant during the maneuver, however, which



makes the algorithm less suitable for vehicles with forward
acceleration constraints. To accommodate such vehicles, the
algorithm proposed in [17] extends the approach to vehicles
with a constant forward speed. However, only vehicle kine-
matics are included in the analysis.

The main contribution of this paper is an extension of
the CA algorithm presented in [17] to marine vehicles.
The marine vehicle has sway dynamics, which can make
the vehicle glide sideways into the obstacle. Moreover, the
sway dynamics are underactuated and can therefore only be
indirectly controlled through the actuated states. Hence we
can no longer use a purely kinematic model, like we could
in [17], but have to include the sway dynamics as well.

We will show that the sway dynamics is bounded during
the CA maneuver. Furthermore, we derive conditions under
which it is mathematically proved that both static and moving
obstacles can be safely avoided. This includes a lower
bound on the minimum distance between the vehicle and
the obstacle, at which the vehicle should enter CA mode.

The proposed algorithm is applied to a vehicle with
constant forward speed, thus accommodating vehicles with
heavy forward acceleration constraints. However, it can also
be applied to vehicles without such restrictions, which gives
flexibility in the design of the desired surge trajectory. The
algorithm we present is intuitive, has a low computational
complexity and makes only limited sensing requirements on
the vehicle.

The remainder of this paper is organized as follows.
Section II describes the vehicle and obstacle models, the
sensing model and the control objective of the system.
Section III gives a description of the course controller, as
well as of the target reaching guidance law employed when
the vehicle is not in CA mode. Section IV describes the
CA algorithm. Mathematical proofs of bounded sway and a
safe CA maneuver are given in Section V, and the theory
is supported by simulations in Section VI. Finally, some
concluding remarks are given in Section VII.

II. SYSTEM DESCRIPTION

A. Vehicle model

We consider a marine vehicle moving in 3 DOF, which is
modeled as [18]:

ẋ = u cos(ψ)− v sin(ψ), (1a)
ẏ = u sin(ψ) + v cos(ψ), (1b)

ψ̇ = r, (1c)
v̇ = Xr + Y v. (1d)

The vehicle’s Cartesian coordinates are denoted x and y,
while the surge (forward) and sway (sideways) speeds are
denoted u and v, respectively. Furthermore, ψ and r denote
the yaw and yaw rate. The vehicle position is defined as
p , [x, y]T . The terms X and Y are defined as

X , SXu+ CX , (2)

Y , SY u+ CY (3)

where SX , CX , SY and CY are constant model parameters,
which may be positive or negative, derived from the mass
and damping coefficients of the vehicle [18]. The vehicle is
directly actuated in u and r, but has no actuation in v. Hence,
the sway dynamics has to be included in the model, while the
surge and yaw dynamics can be removed by Assumption 1.

Assumption 1: The surge speed u and yaw rate r are
perfectly controlled, and can thus be considered as virtual
control inputs. Furthermore, u is positive and constant.

Assumption 2: The Y term satisfies Y < 0.
Assumption 2 ensures that the system is damped and nomi-
nally stable in sway, which is the case for most vehicles.

In order to control the direction of the vehicle’s velocity
vector, we will control the vehicle course instead of its head-
ing ψ. To this end, we make the coordinate transformation
[x, y, ψ]T → [x, y, χ]T , where χ , ψ + atan2(v, u). The
model in the new coordinates is

ẋ = U cos(χ), (4a)
ẏ = U sin(χ), (4b)
χ̇ = rχ, (4c)

v̇ =
U2

Xu+ U2
(Xrχ + Y v) , (4d)

where U ,
√
u2 + v2 and

rχ ,

(
Xu+ U2

)
r + Y uv

U2
. (5)

The following assumption is required to ensure that (4d) is
well defined [19]:

Assumption 3: The X term satisfies X + u > 0.
Remark 1: Assumption 3 ensures that a change in the

heading ψ always results in a change in the course χ, and
is satisfied for most vessels.

B. Obstacle model
We consider a single obstacle. Since it can be difficult

to estimate the dynamic parameters of the obstacle, it is
modeled as a unicycle-type vehicle:

ẋo = Uo cos(χo), (6a)
ẏo = Uo sin(χo), (6b)
χ̇o = ro, (6c)
u̇o = ao, (6d)

where xo and yo are the Cartesian coordinates of the obstacle,
Uo and ao are the forward speed and acceleration, and χo
and ro are the obstacle course and course rate, respectively.
The obstacle velocity vector is denoted vo , [ẋo, ẏo]T .

Assumption 4: The obstacle is modeled as a moving cir-
cular domain D of radius R with center at [xo, yo]T .

Remark 2: The proposed collision avoidance algorithm
can also be applied to non-circular obstacles, which is
demonstrated in a simulation in Section VI.

Assumption 5: The obstacle forward speed Uo lies in the
interval Uo ∈ [0, Uo,max], where

Uo,max <

{
2
√
−X2 −Xu −u < X ≤ −u2

u −u2 < X.
(7)



Remark 3: The bound Uo,max < u follows from the fact
that the vehicle circles around the obstacle when in CA
mode. The bound Uo,max < 2

√
−X2 −Xu restricts Uo,max

further if a large sway motion towards the obstacle is induced
by turning away from it. This follows from the mathematical
analysis in Section V.

Assumption 6: The obstacle forward acceleration ao and
course rate ro are bounded by

ao ∈ [−ao,max, ao,max] , (8)
ro ∈ [−ro,max, ro,max] , (9)

where ao,max ≥ 0 and ro,max ≥ 0 are constant parameters.

C. Sensing requirements

In this section we state the obstacle measurements required
of the vehicle to implement the proposed CA algorithm. First,
it is required to sense the distance d between the vehicle
position p and the obstacle. The obstacle velocity vector vo
is also required. Finally, the vehicle must be able to measure
the angles α(1) and α(2) defining the vision cone V from the
vehicle to the obstacle, as shown in Figure 1.
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y

α(1)

α(2)

Fig. 1. The vision cone V from the vehicle to the obstacle.

D. Control objective

The control system and the CA algorithm should make the
vehicle reach a target position pt = [xt, yt]

T while keeping
a minimum safety distance, dsafe, to the obstacle,

d(t) ≥ dsafe > 0 ∀t ≥ 0. (10)

Furthermore, the sway velocity of the vehicle is required to
be bounded,

|v(t)| < vsup ∀t ≥ 0, (11)

where vsup > 0 is a constant design parameter.
Assumption 7: The initial sway speed satisfies |v(0)| <

vsup.

III. CONTROL SYSTEM

The control system has two modes, guidance mode and
CA mode, which is switched between according to the rule
we give in Section IV-B. The desired course during guidance
mode is given by a pure pursuit guidance law described
in Section III-B, while in CA mode it is given by the CA
algorithm presented in Section IV.

A. Course controller

To obtain exponential course convergence, the desired
course reference χd is tracked using the controller

rχ = χ̇d − kχχ̃, (12)

where kχ is a positive control gain. The course error χ̃ ,
χ−χd is defined to lie in the interval χ̃ ∈ (−π, π], to ensure
that the vehicle always makes the shortest turn towards χd.
From (4c) it is clear that (12) provides exponential stability
of the course error dynamics. We find the corresponding yaw
rate by inserting (12) into (5):

r =
U2rχ − Y uv
Xu+ U2

, (13)

which is ensured to be well defined by Assumption 3.

B. Guidance law

When the control system is in guidance mode, the course
reference is given by a pure pursuit guidance law [20]:

χdg , atan2 (yt − y, xt − x) , (14)

where χdg ∈ [0, 2π) is the course reference. Note that under
this guidance law, χ̇dg = 0 when χ̃ = 0, which simplifies
the analysis in Section V.

IV. COLLISION AVOIDANCE ALGORITHM
This section describes the proposed CA algorithm. While

the algorithm in [17] was based on the kinematics of
unicycle-type nonholonomic vehicles, the second-order non-
holonomic constraint given by the underactuation makes it
necessary to include the sway dynamics. In particular, the
total vehicle speed contains a time-varying component from
sway, which has to be considered in the analysis in Section V.
While the algorithm in [17] provided a desired heading, we
will in this paper make the CA algorithm steer the vehicle
course instead. We will show that it is thus possible to handle
the sway dynamics and guarantee collision avoidance.

A. Desired vehicle course

Two velocity vectors, v
(1)
β and v

(2)
β , with a constant

avoidance angle αo to the vision cone V (Figure 1) are
created by extending V by αo as shown in Figure 2. The
direction of v(1)

β and v
(2)
β are denoted β(1) and β(2),

v
(j)
β , u

(j)
β

[
cos(β(j)), sin(β(j))

]
, j = {1, 2}, (15)

where u(j)β will be defined later.
To avoid a moving obstacle, the CA algorithm will make

the vehicle keep the velocity v
(j)
β in a non-rotating coordinate

frame moving with the obstacle velocity vo. This is achieved
by compensating the extended vision cone for vo, thus
creating a compensated vision cone Vc as illustrated in
Figure 3. The sides of Vc are defined by the vectors

v(j)
ca , v

(j)
β + vo, j = {1, 2}, (16)

which are the candidates for the desired vehicle velocity in
CA mode. To ensure that the directions of v(j)

ca are safe at the
current vehicle speed U , their length is set to ||v(j)

ca || , U .
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Fig. 2. The extended vision cone from the vehicle to the obstacle.
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Fig. 3. The desired velocity vector candidates v(1)
ca and v

(2)
ca , which define

the sides of the compensated vision cone Vc.

The angle γ
(j)
ca between v

(j)
β and v

(j)
ca is designed to

compensate for the obstacle velocity, and is found as

γ(j)ca = sin−1

(
Uo sin(γ

(j)
vo )

U

)
, j = {1, 2}, (17)

where γ(j)vo can be found from geometry as

γ(j)vo = π − (χo − β(j)), j = {1, 2}. (18)

The candidates for desired vehicle course in CA mode are
then defined as

χ
(j)
dca , β(j) + γ(j)ca , j = {1, 2}, (19)

Section IV-C provides a rule for choosing between these two
candidates.

B. Switching rule

We define that the vehicle enters collision avoidance mode
at a time t1 if

χdg(t1) ∈ Vc(t1), (20)
d(t1) ≤ dswitch, (21)

where dswitch > dsafe is a design parameter. Nominal guidance
towards the target will resume at a time t2 when χdg(t2)
moves outside Vc(t2):

χdg(t2) /∈ Vc(t2). (22)

C. Turning direction

The proposed CA algorithm (19) provides two candidates
for the desired course in order to avoid collision. We will
use this flexibility to make the vehicle seek to move behind
the obstacle, which often is the safest course of action. In
particular, we choose the following direction parameter j
when the vehicle enters CA mode at a time t1:

j =

{
arg maxj=1,2 |χo(t1)− χ(j)

dca(t1)|, d(t1) = dswitch,

arg minj=1,2 |χ(t1)− χ(j)
dca(t1)|, d(t1) < dswitch.

(23)
When d(t1) = dswitch this maximizes the difference between
the obstacle course and χ

(j)
dca. However, if the obstacle is

closer than dswitch when the vehicle enters CA mode, the
vehicle will make the shortest turn towards a safe direction.
This can for instance happen if a nearby obstacle turns so
that the current vehicle course becomes unsafe.

Remark 4: The algorithm avoids collisions regardless of
the method used to choose j when d(t1) = dswitch.

V. MATHEMATICAL ANALYSIS

This section presents a mathematical analysis of the ve-
hicle (4) when the CA law given in Section IV is used in
combination with the course controller and guidance law in
Section III. In particular, we derive conditions on the course
control gain kχ, the safety distance dsafe and the switching
distance dswitch which ensures that a circular obstacle moving
with a time-varying velocity can be safely avoided.

When the course rate rχ 6= 0, a sway motion v is induced
by (4d). To prevent the vehicle from being driven into the
obstacle by the sway motion, we need to bound v, which is
done in the next two lemmas.

Lemma 1: Consider a vehicle modeled by (4). Suppose
that the course rate rχ is dependent on the sway motion v
in such a way that for v = vsup,

|rχ(±vsup)| < |Y |
|X|

vsup. (24)

Then, if |v(0)| < vsup, the solutions of v are bounded by

|v(t)| < vsup ∀t ≥ 0. (25)
Proof: Consider the Lyapunov function

V = 1
2v

2. (26)

The time derivative of V along the solutions of (4d) is

V̇ =
U2

U2 +Xu

(
Xvrχ + Y v2

)
. (27)

When Assumption 2 holds, (27) is bounded by

V̇ ≤ U2

U2 +Xu

(
|X||v||rχ(v)| − |Y |v2

)
. (28)

Let the set Ωv be defined as

Ωv , {v ∈ R | V ≤ 1
2v

2
sup}, (29)

which is a level set of V with v = vsup on the boundary.
Equation (24) ensures that V̇ ≤ 0 on the boundary of Ωv . It
follows that any solution of v starting in the set Ωv cannot



leave it. Hence, if |v(0)| ≤ vsup, then |v(t)| ≤ vsup ∀t ≥ 0.

Before stating the next lemma, we define the following
term for conciseness:

Fkd ,|Y |vsup

(
1

|X|
− 2

vsupUo,max

Ud,sup
(
Xu+ U2

sup

))
− ro,max

Uo,max

Usup
− ao,max

Ud,sup
,

(30)

where Usup ,
√
u2 + v2sup and Ud,sup ,

√
U2
sup − U2

o,max.
Remark 5: Since Usup increases with increasing vsup, it

is always possible to choose a vsup large enough to ensure
a positive value of Fkd.

We also introduce the design parameter σ ∈ (0, 1), which
is used to prioritize between the control gain kχ and the
safety distance dsafe. A high value of σ will give priority to
a high kχ, while a low value of σ prioritizes a low dsafe.

Lemma 2: Consider a vehicle modeled by (4), controlled
by the course controller (12) - (13), with a desired course
given by the CA law (19). Let σ ∈ (0, 1), and assume that
the distance between the vehicle and the obstacle satisfies
d(t) > dsafe ∀t ≥ 0. If Assumptions 1-6 hold, the course
control gain kχ satisfies

kχ ≤
σ

π
Fkd, (31)

the safety distance dsafe satisfies

dsafe ≥
(Usup + Uo,max)

2

Usup

1

(1− σ)Fkd
, (32)

and the initial sway speed satisfies |v(0)| ≤ vsup, then

|v(t)| ≤ vsup ∀t ≥ 0 (33)
Proof: We prove Lemma 2 by finding an upper bound

on rχ for a given vsup. Lemma 1 is then applied by inserting
the upper bound into (24), and solving for kχ and dsafe to
obtain (31) and (32).

It can be shown that the time derivative of χ(j)
dca is

χ̇
(j)
dca = β̇(j) +

1√
U2 − U2

o sin2(γ
(j)
vo )

·
[
sin(γ(j)vo )

(
u̇o − Uo

U U̇
)

+ cos(γ(j)vo )
(
β̇(j) − χ̇o

)]
,

(34)

where

β̇(j) =
U sin(γo − χ)− Uo sin(γo − χo)

R+ d

∓RU cos(γo − χ)− Uo cos(γo − χ)

(R+ d)
√
d (2R+ d)

,
(35)

U̇ = Uv
Xrχ + Y v

Xu+ U2
, (36)

and γo is the angle between the x-axis and the vehicle-
obstacle line, as shown in Figure 4. Note that χ̇(j)

dca depends
on rχ. Inserting (34) into the course control law (12) gives

rχ =
Fnum

Fden
, (37)

x

y
γo

αo

β(2)i

γt

Fig. 4. Decomposition of β(2).

where

Fnum , β̇(j) +
1√

U2 − U2
o sin2(γ

(j)
vo )

·
[
sin(γ(j)vo )

(
u̇o − UoY v

2

U2+Xu

)
+

cos(γ(j)vo )
(
β̇(j) − χ̇o

)
− kχχ̃

]
,

(38)

and

Fden , 1 +
Uo sin(γ

(j)
vo )vX

(U2 +Xu)

√
U2 − U2

o sin2(γ
(j)
vo )

. (39)

Assumptions 3 and 5 ensure that (39) is well defined. In
order for rχ to be well defined, it is required that Fden 6= 0.
Since Fden(Uo = 0) = 1, this can be ensured by requiring
that Fden is lower bounded by a positive value. Minimizing
with respect to γ(j)vo gives a lower bound of (39) as

Fden > 1− Uo,max|v||X|

(U2 +Xu)
√
U2 − U2

o,max

:= Fden,inf . (40)

Minimizing (40) with respect to v and solving for Uo,max

gives the following bound on Uo,max to ensure that Fden > 0
for all Uo ∈ [0, Uo,max]:

Uo,max <

{
2
√
−X2 −Xu −u < X ≤ −u2

u −u2 < X.
(41)

Assumption 5 ensures that (41) is satisfied.
When d ≥ dsafe, a bound on |Fnum| can be found by using

Assumptions 2 and 4-6:

|Fnum| <
v2sup|Y |Uo,max

Ud,sup
(
X + U2

sup

) + ro,max
Uo,max

Usup

+
ao,max

Ud,sup
+

(Usup + Uo,max)
2

dsafeUsup
+ kχπ := Fnum,sup.

(42)

Equations (40) and (42) are symmetric in vsup, hence

|rχ(±vsup)| < Fnum,sup

Fden,inf
. (43)

Inserting (43) into (24) bounds dsafe and kχ to:

(Usup + Uo,max)
2

dsafeUsup
+ kχπ ≤ Fkd, (44)

where Fkd is given in (30). The design parameter σ can be
used to rewrite (44) as

(Usup + Uo,max)
2

dsafeUsup
+ kχπ ≤ σFkd + (1− σ)Fkd. (45)



Hence, conditions (31) and (32) ensure that (44), and thus
(24), is satisfied. Lemma 1 then applies, and it follows that
if |v(0)| < vsup, then |v(t)| < vsup ∀t > 0.

In the next Lemma, we derive a bound on the minimum
required switching distance dswitch.

Lemma 3: Consider a vehicle modeled by (4), controlled
by (12) - (13). Let the vehicle enter CA mode at time t1, with
d(t1) = dswitch. Let Assumptions 1 and 5 hold, the vehicle
speed satisfy U < Usup, and the switching distance satisfy

dswitch ≥ Uo,maxtε + dsafe + dturn, (46)
where

tε , −
ln(ε/π)

kχ
, ε ∈ (0, π/2] (47)

and
dturn ,

Usup

kχ
Si(

π

2
). (48)

The function Si is the sine integral function, defined as

Si(τ) =

∫ τ

0

sin(τ̂)

τ̂
dτ̂ . (49)

Then, the vehicle is able to converge to within ε rad of χ(j)
dca

before the obstacle can be within dsafe of the vehicle.
Proof: Without loss of generality, let xo(t1) > x(t1).

Consider a worst case scenario where R → ∞, so that the
obstacle tangents are α(j) = ±π/2, j = 1, 2, and let the
vehicle and obstacle move at maximum speed towards each
other: U → Usup, χ(t1) = 0, Uo = Uo,max and χo(t1) = π.
The worst case behavior of the obstacle is then to continue
moving at maximum speed and course χo = π.

As the vehicle enters CA mode, it starts to turn towards
χ
(j)
dca. Since |χ̃(0)| ≤ π from the definition of χ̃, and the

course error dynamics is globally exponentially stable, the
convergence time to |χ̃| ≤ ε is tε, given in (47). Hence, the
distance covered by the obstacle towards the vehicle is upper
bounded by Uo,maxtε.

The distance traveled by the vehicle in the x direction
before it has turned ±π/2 rad is upper bounded by the
distance traveled when making a π/2 turn. This can be found
by solving (4a) when inserting χ̃(t) = −π2 e

−kχt:∫ ∞
0

Usup cos(χ̃+ π
2 )dt

=

∫ ∞
0

Usup cos(π2 −
π
2 e
−kχt)dt =

Usup

kχ
Si(

π

2
).

(50)

It follows that if (46) holds, then the distance from the
obstacle to the vehicle trajectory will not be less than dsafe
before the vehicle course has converged to within ε rad of
χ
(j)
dca, and this also holds for the distance d from the obstacle

to the vehicle.
The following assumption ensures that the target position

is outside the circle of convergence around the obstacle:
Assumption 8: The distance do,t(t) from the obstacle to

the target position pt satisfies

do,t(t) >
R

cos(αo)
−R ∀t ≥ 0. (51)

In addition, the must be able vehicle to start safely:
Assumption 9:

d(0) > dswitch. (52)
We are now ready to state the main theorem:

Theorem 1: Let Assumptions 1-9 hold, the avoidance an-
gle satisfy

α0 ∈
[
cos−1

(
R

R+dsafe

)
+ ε, π2

)
(53)

and the switching distance satisfy

dswitch ≥ Uo,maxtε + dsafe + dturn. (54)

Furthermore, let the course control gain kχ and safety
distance dsafe satisfy the conditions of Lemma 2:

kχ ≤
σ

π
Fkd, (55)

dsafe ≥
(Usup + Uo,max)

2

Usup

1

(1− σ)Fkd
. (56)

Then a vehicle described by (1), controlled by (12) - (13),
the guidance law (14) and the CA law (19) will maneuver to
the target position pt in the presence of an obstacle described
by (6), while ensuring that

d(t) ≥ dsafe > 0 ∀t ∈ [0, tf ], (57)

where tf is the time of arrival at pt
Proof:

It follows from Lemma 2 that v is bounded by

|v(t)| < vsup ∀t ∈ [0, tf ]. (58)

Hence, the vehicle speed is bounded by U < Usup. Let
the distance to the obstacle be reduced to dswitch at a time
t0, making the vehicle enter CA mode as described in
Section IV-B. Lemma 3 then ensures that there is a time
t1 > t0 when d(t1) >= dsafe and χ(t1) − χdca(t1) ≤ ε.
Since χ̃ = 0 is an exponentially stable equilibrium, it is then
assured that

χ(t)− χdca(t) ≤ ε, ∀t ∈ [t1, t2], (59)

where t2 is the time when the vehicle will exit CA mode.
In a coordinate frame O moving with the obstacle velocity

vo the vehicle velocity is v
(j)
β (t), defined in (15). Assump-

tion 5 ensures that u(j)β > 0. Hence, the vehicle velocity in O
maintains a constant angle α0 to one of the tangents from the
vehicle to the obstacle, as shown in Figure 2. The distance
between the vehicle and the obstacle thus evolves as

ḋ = −u(j)β cos(γt + α0), (60)

where γt > 0 is the angle from the line connecting the vehicle
and the center of the obstacle to the tangent line, as seen in
Figure 4. It follows that ḋ < 0 when γt(t) + α0 <

π
2 , which

occurs when d > dmin. Furthermore, ḋ > 0 when d < dmin

and ḋ = 0 when d = dmin. Hence, the vehicle will converge
to a circle C with center at the obstacle center and radius

R
cos(α0)

, and (53) then gives

d(t) ≥ dsafe ∀t ∈ [t1, t2], (61)



which satisfies control objective (10).
Since the vehicle circles around the obstacle, there will

be a time t2 when the line of sight to the target pt will be
outside of Vc, and hence have a larger avoidance angle than
αo to V . The vehicle will then exit CA mode and proceed
towards the target.

A nearby obstacle may turn so that χdg comes within Vc
at a time when d < dswitch, making the vehicle enter collision
avoidance mode when (54) is not satisfied. However, since
v
(1)
ca and v

(2)
ca are first order differentiable, and χdca is then

chosen to be the closest of v(1)
ca and v

(2)
ca by (23), the vehicle

is immediately able to follow χdca to avoid the obstacle again.
Finally, since umax > Uo,max, the vehicle will eventually

escape the obstacle, and thus reach the target. The control
objectives in Section II-D are thus met, which concludes the
proof.

VI. SIMULATIONS

In this section we present numerical simulations of an
underactuated marine vehicle using the proposed collision
avoidance algorithm. The simulated vehicle is a HUGIN au-
tonomous underwater vehicle [21] operating in a horizontal
plane. The vehicle surge speed is set to u = 2 m/s, and the
maximum allowable sway speed is set to vsup = 4 m/s. It can
be verified that Assumption 2 is satisfied with Y = −1.10,
and that Assumption 3 is satisfied with X = −1.59.

The first scenario contains a circular obstacle with
radius R = 10 m. The maximum obstacle speed is
Uo,max = 1.35 m/s, which satisfies Assumption 1. The ob-
stacle keeps the maximum speed, and hence does not acceler-
ate. The maximum turning rate is set to ro,max = 0.25 rad/s.
The course control gain kχ is set to 0.4, and the safety
distance is set to dsafe = 10 m, which satisfies the conditions
of Lemma 2 with σ = 0.62. The convergence parameter ε is
set to ε = 0.1 rad. A lower bound on the avoidance angle is
then given by (53) as αo,min = 1.15 rad, while a minimum
switching distance is given by (54) as dswitch,min = 37.0 m.
Both αo,min and dswitch,min are used in the simulation.

The vehicle and obstacle behavior in the first scenario
is illustrated in Figure 5. The obstacle starts in front of
the vehicle on a head on collision course, and is set to
turn with the maximum turning rate towards the vehicle
in order to pursue it. At time 8.39 s the vehicle reaches
the switching distance dswitch from the obstacle, and enters
collision avoidance mode in accordance with the switching
rule in Section IV-B. Since the obstacle and vehicle is on
a head on collision course, the choice of turning direction
given in Section IV-C becomes random. In this case, the
vehicle makes a starboard turn.

Figure 6 shows that d > dsafe, even though the obstacle
is in pursuit of the vehicle. Furthermore, the vehicle sway v
is well within the designated vsup. Hence, the simulation
supports the theoretical results given by Theorem 1. At
time 70.12 s, the direction from the vehicle to the target
comes outside the extended vision cone Vc, and following
(22) the vehicle exits collision avoidance mode and enters
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Fig. 5. The first scenario, with a circular obstacle in pursuit of the vehicle.
The vehicle is shown in orange, while the obstacle is a solid red circle. The
vehicle and obstacle trajectories are a dashed blue and a dashed red line,
respectively. A dotted red circle shows dsafe, while dswitch is shown as a
dotted black circle. The target position is marked by an ’X’.
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Fig. 6. Obstacle distance and vehicle sway in the second scenario.

guidance mode. It will then proceed towards the target using
the pure pursuit guidance law (14).

The mathematical analysis in Section V only applies to
circular obstacles. However, the proposed CA algorithm may
also be applied to obstacles of a more general shape. This is
demonstrated in the second scenario, where the obstacle has
the shape of a ship that is 70 m long and 10 m wide. The
simulation parameters are the same as in the first simulation.
Figure 7 shows the behavior of system during the simulation,
where the obstacle moves along a straight line from left to
right, crossing in front of the vehicle.

Figure 8 shows that d > dsafe and v < vsup during the
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Fig. 7. The third scenario, where the obstacle has the shape of a ship.
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Fig. 8. Obstacle distance and vehicle sway in the third scenario.

maneuver. Note, however, that the analysis in Section V only
applies for circular obstacles, or for obstacles modeled as a
circular domain covering it. In this case, the covering domain
would be quite large compared to the obstacle. Hence, the
simulation demonstrates that a circular obstacle shape is a
conservative requirement, and that the algorithm may also
be applied to a non-circular obstacle.

VII. CONCLUSIONS

In this paper we have presented a reactive collision avoid-
ance algorithm which avoids moving obstacles by keeping a
constant avoidance angle between the vehicle velocity vector
and the vision cone from the vehicle to the obstacle. In
particular, we have considered marine vehicles with under-
actuated sway dynamics, where there is a component in the
total vehicle speed that cannot be directly controlled. The
proposed algorithm compensates for both the time-varying
obstacle velocity and the underactuated sway motion. We
have applied the algorithm to a vehicle with constant surge
speed, and have thus shown its applicability to vehicles
with high forward acceleration constraints. The proposed
algorithm is intuitive, requires only limited obstacle mea-
surements and has a low computational complexity.

The underactuated sway dynamics induce a sideways
speed during turning, which can make the CA problem
particularly challenging by driving the vehicle towards the
obstacle. The proposed algorithm compensates for sway by
steering the vehicle course, and we have shown that the sway
motion is bounded during the maneuver. Furthermore, we
have stated the conditions under which it is mathematically
proved that the vehicle keeps at least a minimum safety dis-
tance to the obstacle. The theoretical results are supported by
simulations, which also show that even though the analysis
is concerned with circular obstacles only, the algorithm can
also be applied to obstacles of a more general shape.

While we in this paper have assumed a single, circular
obstacle in the analysis, the algorithm can also be used
in scenarios with multiple obstacles of different shapes.
Clustered obstacles will then be treated as one, making the
vehicle move towards the outermost safe direction. However,
a thorough analysis of scenarios with multiple obstacles
remains the topic of future work.
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