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Abstract—Software Defined Networking (SDN) exposes critical
networking decisions, such as traffic routing or enforcement
of the critical security policies, to a software entity known as
the SDN controller. Controller software, as written by humans,
is intrinsically prone to bugs, which may impair the network
performance as a whole, if activated. Software reliability growth
models (SRGM) are often used to estimate and predict the
reliability of the software in the operational phase based on the
fault report data during the testing phase. These models can be
used to predict the number of residual bugs in the software, as
well as failure intensity, software reliability and optimal software
release time. In this paper we analyze ten releases of ONOS open
source controller, whose uncensored fault reports are available
online.

I. INTRODUCTION

Software Defined Networking (SDN) opened a new era in
networking by decoupling control and data plane, and out-
sourcing all control plane decisions to a logically centralized
software entity known as SDN controller. The SDN controller
acts as a network operating system providing an integrated
interface for the forwarding devices, switches and routers,
which significantly simplifies the network management and
augments its programmability [1]. The controller is responsible
for making routing decisions, gathering the network state
information and reacting to events, such as congestion on
the links or failures of forwarding devices. Fulfilling this set
of tasks requires rather complex piece of software. Today’s
production-grade controllers have grown to have more than
3 million lines of code (OpenDaylight [2]). Such a large1 and
complex software inevitably contains bugs, that if activated
may have a huge impact on the controller and network
performance. The performance reports on SDN controllers
typically include scalability and latency related metrics, such
as flow burst install throughput or flow reroute latency, while
reliability, which is still a big concern and a major obstacle
for the wide spread adoption of SDN in commercial telecom
and industrial networks [3], has been overlooked.

Software reliability growth modelling is a statistical frame-
work, which is often used to estimate the reliability of the
software components in their operational phase, based on their
fault reports from the testing phase. During the testing and

1As a reference, the latest Linux kernel has around 20 million lines of code.

early operational phase of the software lifecycle the faults are
detected and removed, which eventually leads to reliability
growth (hence the name). In the past, many SRGM models
have been proposed to estimate and predict the software
reliability growth. In this paper we focus on particular class
of models that describe fault detection and fault resolution
process as Non-Homogeneous Poisson Process (NHPP), due
to their widespread usage in the literature. We have compared
eight most used SRGMs to model the fault detection process,
and proposed four new ones for the modelling of the fault
resolution process. The best fitting model is selected based
three Goodness of Fit (GoF) measures: Mean Square Error
(MSE), coefficient of determination (R2) and Theil’s statis-
tics (TS). Once the best model to describe the fault report
data is found, it can be used to derive many useful parameters
for both software developers and the users, such as residual
bug content, failure intensity, and most importantly software
reliability.

We have applied SRGM framework to study reliability of
all ten releases of SDN controller ONOS, which is one of the
biggest production grade open source controllers. ONOS was
chosen because of its maturity, richness in features, wide adop-
tion by the network operators, its focus on high-availability,
and most importantly, because of the detailed and uncensored
fault reports are available online [4]. We have found that NHPP
models can be used to describe the fault detection and fault
resolution process. We have analysed the typical residual bug
content, fault intensity and software reliability, and noted that
there is a consistent behaviour across the releases. We leverage
this fact to predict how many severe faults are expected in the
latest ONOS release. In the remainder of the paper the terms
software fault and bug will be used interchangeably.

The rest of the paper is organized as follows. Section
II provides an overview of the related work on software
reliability growth models for open source software. Overview
of the NHPP class of SRGM models is presented in Section III.
In Section IV the gathering, processing and analysis of the
ONOS fault reports is discussed. The results of the software
reliability modelling, estimation and forecasting are presented
in Section V. We conclude the paper with a summary and an
outlook for the future work.



II. RELATED WORK

Software reliability growth models have been widely used
to estimate and predict the reliability of the software, and
in the past, many different models have been proposed, out
of which the class of Non-Homogeneous Poisson Process
(NHPP) has received the most attention. A good overview
of different classes of reliability growth models, together with
their inherent assumptions and input data requirements, can
be found in [7].

The applicability of SRGMs for the modeling, analysis
and evaluation of software reliability of open source products
was demonstrated in several case studies. Zhou et al. [12]
showed that the Weibull distribution can describe well the bug
manifestation rate for eight unnamed open source projects.
Rahmani et al. [13] confirmed this result by analyzing the bug
reports for several popular big open source projects, such as
Apache HTTP server, Eclipse and Firefox. Rossi et al. [14]
studied failure occurrence pattern across several releases of
Mozilla Firefox, OpenSuse and OpenOffice.org. All studied
releases have shown the learning curve pattern, where the fault
detection rate is slow at the beginning until the community gets
familiar with the product, then it increases rapidly until only
very few faults remain whose discovery is rare. This effect can
be captured well with S-shaped models. In this work we have
compared eight most widely used software reliability growth
models in terms of its capability to describe the fault detection
process.

The most of the SRGM models in the literature assume
that once the bug is detected, it is corrected immediately.
However, Ullah et al. [15] showed that existing NHPP models
cannot describe well the fault resolution process. Gokhale
et al. [16] applied the Non-Homogeneous Continuous Time
Markov Chains (NH-CTMC) to model the impact of arbitrary
debugging policy. Wu et al. [17] described the fault resolution
as a delayed fault detection process, while Kapur et al. [18]
generalized this result and proposed unified approach to model
the fault resolution process, when both fault detection and fault
removal are Non-Homogeneous Poison Processes. We propose
new class of models, based on the framework in [18], with
their corresponding fitting procedure.

Fitting of SRGMs to fault report data was done either
with the proprietary general purpose statistical packages, such
as SPSS, or specialized tools, such as CASRE [19] and

SREPT [20]. In order to account for the newly proposed
models, we have developed our own tool based on the libraries
provided by Python scientific computing package [21].

III. SOFTWARE RELIABILITY GROWTH MODELS

During the testing and early operational phase of the soft-
ware lifecycle the faults are detected and removed, which
eventually leads to reliability growth. The class of models
that describe the fault detection process as Non-Homogeneous
Poisson Process (NHPP) have widely been used in the litera-
ture.

A. Fault detection process as NHPP

NHPP is similar to the ordinary Poisson process, except
for the fact that the arrival rate changes over time [7]. The
probability of observing n faults by the time t is described
with the equation Eq.(1).

P (N(t) = n) =
m(t)n

n!
e−m(t) (1)

Mean value function m(t) represents the expected number
of detected faults in the time interval (0, t]:

E[N(t)] = m(t) =

∫ t

0

λ(x)dx (2)

From the mean value function of the fault detection process
many reliability features of the software can be predicted.
The expected mean time between failures at a given time t
is defined as:

MTBF (t) =
1

λ(t)
(3)

Assuming that the number of initially introduced faults in
the software is finite limt→∞m(t) = a, expected number of
the undetected faults in the software can be defined as:

r(t) = E[a−N(t)] = a−m(t) (4)

Software reliability is defined as the probability that soft-
ware will not cause the failure for a specified time under
specified conditions. The conditional software reliability is
defined as the probability of detecting a new fault in the time
interval (t, t+ x]:

R(x, t) = e−
∫ t+x
t

λ(x)dx = em(t)−m(x+t) (5)

Model Abbreviation Shape Mean value function Failure intensity

Musa-Okumoto logarithmic [5] MUSA(Log) Concave mmo(t) = a ln(1 + bt) λlog(t) =
ab

1+bt

Goel-Okumoto exponential [6] GO(Exp) Concave mgo(t) = a(1− e−bt) λgo(t) = abe−bt

Generalized Goel-Okumoto [7] GGO S-shaped mggo(t) = a(1− e−btc ) λggo(t) = abctc−1e−bt
c

Ohba’s inflection S-shaped [8] ISS S-shaped miss(t) = a 1−e−bt

1+φe−bt λiss(t) = abe−bt 1+φ
(1+φe−bt)2

Yamada delayed S-shaped [9] DSS S-shaped mdss(t) = a(1− (1 + bt)e−bt) λdss(t) = ab2te−bt

Yamada exponential [10] YEX Concave myex(t) = a(1− e−r(1−e−bt)) λyex(t) = abre−bte−r(1−e
−bt)

Gompertz [7], [9], [11] GOMP S-shaped mgomp(t) = akb
t

λgomp(t) = a ln b ln kbtkb
t

Logistic [7], [9], [11] LOGIST S-shaped mlogist(t) =
a

1+ke−bt λlogist(t) =
abke−bt

(1+ke−bt)2

TABLE I: Fault detection process as Non-Homogeneous Poisson Process (NHPP)



We have compared eight most widely used NHPP mod-
els for modelling of the fault detection process: Musa-
Logarithmic, Goel-Okumoto Exponential, Generalized Goel-
Okumoto, Inflection S-shaped, Delayed S-Shaped, Yamada-
Exponential, Gompertz and Logistic, whose mean value func-
tion and failure intensity are given in the Table I.

All considered models are finite models, assuming that the
number of initially introduced faults in the software a. The
mean value function an instantaneous fault intensity λ(t) can
be written as:

m(t) = aFD(t) (6)

λ(t) = aF
′

D(t) = afD(t) (7)

where FD(t) represents per fault failure detection time distri-
bution.

B. Fault resolution process

Fault resolution process consists of two phases, fault de-
tection and fault correction. Assuming that the two processes
are independent, the resulting fault resolution process is also
NHPP process. The time to resolve a fault is the sum of the
times to detect and to correct the fault. Hence, the fault density
of the time to resolve a fault is a convolution of the fault
detection and fault correction densities [17]:

fR(t) =

∫ t

0

fD(t− x)fC(x)dx = [fD ∗ fC ](t) (8)

where fD(t) and fC(t) represent fault detection and fault
correction densities. The mean value function of the resulting
fault resolution process can be written as:

mR(t) = aFR(t) = a

∫ t

0

[fD ∗ fC ](x)dx (9)

Equation Eq. (9) can be used to generate different SRGMs
for fault resolution process. However, the proposed models
so far have been limited to combinations of NHPP models
for which this integral has a closed form solution, e.g. when
both fault detection and correction are Goel-Okumoto pro-
cesses [17], [18].

mgo−go
R (t) = a

[
1− b1e

−b2t − b2e−b1t

b1 − b2

]
(10)

By replacing the integral in Eq. (9) with its Piecewise
Constant Approximation (PCA), we can obtain a numerical
approximation for an arbitrary combination of NHPP models,
which can be used for the fitting of the fault report data.

F̃R(t) =

n=t/∆x∑
i=0

[fD ∗ fC ](i∆x)∆x (11)

FR(t) = lim
∆x→0

F̃R(t) (12)

Due to the space limitation, in this paper we compare
the four combinations of Generalized Goel-Okumoto and
Inflection S-shaped models for fault resolution process, using
combined Goel-Okumoto Eq.(12) from [18] as a reference.

C. Model fitting

Non-linear regression based on least squares Levenberg-
Marquardt method provided by Python scientific computing
package [21], was used to fit the parameters of the proposed
models to the actual data for the cumulative number of
observed number of detected and resolved bugs.

The best fitting model among all proposed ones is selected
based on Goodness of Fit (GoF) measures: Mean Square
Error (MSE), coefficient of determination (R2) and Theil’s
statistics (TS), which are defined as follows:

MSE =
1

k

k∑
i=1

(m(ti)−mest(ti))
2 (13)

R2 = 1−
∑k
i=1 (m(ti)−mest(ti))

2∑k
i=1 (m(ti)−m)

2
(14)

m =
1

k

k∑
i=1

m(ti)

TS =

√√√√∑k
i=1 (m(ti)−mest(ti))

2∑k
i=1m(ti)2

∗ 100% (15)

where m(ti) and mest(ti) represent the actual and fitted data
at time ti of the i-th sample.

IV. ONOS DATA SETS

Open Network Operating System (ONOS) [4] is one of the
two major open source SDN controllers, that offers scalability,
high availability and production-grade performance. Over 300
developers from more than 60 organizations have contributed
to its code base. The code is written mostly in Java and
contains at the moment 665,730 lines of code2.

New releases are published quarterly, and are named after
the birds in alphabetical order. Eleven releases have been pub-
lished since December 2014. The latest release, Kingsfisher,
has been published recently, on June 5, 2017, and we do not
consider it in our analysis. The release cycle starts with the
release planning during the first week, followed by the three
months of code development and integration on the master
branch. Two weeks before the official release date feature
integration is stopped and only bug fixes are allowed. Issues
related to every release are reported in JIRA tracking system,
which is available online. For the purpose of our analysis we
are interested in the issues labelled as ”Bugs” rather than new
feature requests or enhancements.

The bug reports in the issue tracker contain the fault type,
priority, affected versions, bug description and short summary,
date of the report creation, date of its resolution (if applicable).
The issue tracker contains all relevant information that needed
to conduct the software reliability analysis. The cumulative
number of detected and resolved faults reported over time
are shown in Fig 1. The official dates of ONOS releases are

2Source:https://www.openhub.net/p/onos



indicated with the vertical line in the figure. It can be observed
from the figure that there is a steady increase in the number
of bugs over the course of the past 32 months3 .

Dez 2
014

Mär 2
015

Jun 2015

Sep 2015

Dez 2
015

Mär 2
016

Jun 2016

Sep 2016

Dez 2
016

Mär 2
017

Jun 2017
0

100

200

300

400

500

600

700

800

C
u

m
u

la
ti

ve
 n

u
m

b
e
r 

o
f 

b
u

g
s

A
vo

ce
t

B
la

ck
b

ird

C
a
rd

in
a
l

D
ra

k
e

E
m

u

F
a
lco

n

G
o
ld

e
n

e
ye

H
u

m
m

in
g

b
ird

Ib
is

Ju
n

co

K
in

g
sfish

e
r

Detected bugs

Resolved bugs

Fig. 1: Number of detected and resolved faults over time. The
official dates of ONOS releases are indicted with the vertical
line in the figure.

We have filtered and separated the fault reports based on
the ”affected release version” field. The number of the bugs
reported for every release, sorted by the priority, are presented
in Fig. 2. Note that due to the time overlap between the
support periods some of the fault reports affected more than
one release. Since trivial and minor issues (e.g. loading of
the GUI too slow) do not have direct impact on the software
reliability, we have used only bug entries labelled with major,
critical and blocker priority in our reliability growth analysis.
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Fig. 2: Number of faults reported for each release, by priority.

In order to investigate if there is a consistent behaviour
across the releases, we have performed the trend analysis. Due
to the space limitations we show only the histogram of the time
between the faults.

3Data retrieved on June 12, 2017 from JIRA dashboard:
https://jira.onosproject.org/
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V. RESULTS

We have analysed the data sets of ten ONOS releases.
For the first nine releases we have compared GoF metrics
of SRGM models described in Sections III-A and III-B,
and found the best one to model fault detection and fault
resolution process. After finding the parameters of the best
fitting models, we have estimated software reliability features,
such as residual bug content, failure intensity and conditional
software reliability. Based on the parameters of the best models
obtained for the first nine releases, we propose the fitting
method to improve the fitting accuracy for the tenth release.

A. Finding the best model

1) Fault detection process: We have compared GoF met-
rics for eight SRGM models presented in the Table I. The
comparison of different models for Emu data set is illustrated
in Fig. 4.
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Fig. 6: All GoF indicators show the consistent results: the best model to describe the number of detected faults across all
releases are S-shaped models: Gompertz, Logistic, Generalized Goel-Okumoto and Inflection S-shaped, while concave models
Musa-Logaritmic, Goel-Okumoto Exponential and Yamada Exponential could not explain the data.



The best fitting models for fault detection process for all
ONOS releases are presented in Fig. 5. It can be seen that
for most of the releases the best fitting model is Gompertz (4
out of 9 releases), followed by Logistic (3) and Generalized
Goel-Okumoto (2). It has to be noted that Inflection S-shaped
model also shows very good GoF results, being the second
best fit for the most of the releases.

GoF measures for all the models are compared in the
Fig. 6. All GoF indicators show the consistent results: the
best model to describe the number of detected faults across all
releases are S-shaped models Gompertz, Logistic, Generalized
Goel-Okumoto and Inflection S-shaped, while concave models
Musa-Logaritmic, Goel-Okumoto Exponential and Yamada
Exponential could not explain the data. Delay S-shaped shows
slightly worse results, compared to the other S-shaped models.
This effect is probably due to the fact that this model has only
two parameters to tune, while the other S-shaped models have
three parameters.

2) Fault resolution process: Arbitrary combination of
NHPP models can be used for fitting of the cumulative number
of resolved bugs applying the Eq.(9). Based on the results
from the previous section, we have selected combinations
of S-shaped models: Generalized Goel-Okumoto (GGO) and
Inflection S-shaped (ISS). The models are abbreviated as a
combination of the initials of detection and resolution NHPP
processes. For the sake of comparison we also include the
model from [18] where both fault detection and resolution are
modeled as Goel-Okumoto processes.

The best fitting model for three releases, Avocet, Blackbird
and Ibis, are illustrated in Fig. 7. The best fitting models are
GGO-ISS and ISS-GGO. Note that these two combinations
result essentially in the same fault resolution process, since
convolution is a symmetrical operation, but they assume
different fault detection process. ISS-GGO and GGO-ISS
outperformed the reference GO-GO model, for all the releases,
where fitting was possible.

It can be seen that although the proposed models for the
fault resolution process could describe the data for some of
the releases, the actual data shows higher deviation from the

fitted model, then in the previous case. The same pattern can
be observed also in the Fig. 8, where the fitting capabilities
of the five proposed models for all releases compared.
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Fig. 8: Comparison of MSE of SRGM models for the fault
resolution process: ISS-GGO and GGO-ISS outperformed the
reference GO-GO model, for all the releases, for which the
fitting was possible.

Cumulative number of resolved bugs for all ONOS releases
can be seen in Fig. 5 for reference. It can be seen from the
figure that cumulative number of resolved bugs experience
the sudden trend changes, which cannot be captured by the
simple NHPP models. The trend changes are probably due
to the changes in the debugging effort shortly before the
new upcoming release (or the release of the patches) and
can be modelled by introducing the (time) change points in
the underlying NHPP models, as in [22], or using the more
complex models accounting for the test effort, such as [23].
The available ONOS data set does not provide the precise
information about the debugging effort, that could be used for
such models.

Since the accurate modelling of the fault resolution process
requires more information and more complex models, we
focus on the software reliability metric that can be derived
from fault detection SRGMs.
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B. Evaluation of the software reliability

Once the best model to describe the fault report data is found
and the parameters of its mean value function estimated, it can
be used to estimate and predict several software reliability
parameters: residual bug content, instantaneous fault intensity
and conditional software reliability, as defined in the section
III-A by Eq.(3)-(5).

The software reliability metric for Falcon release are pre-
sented in Fig. 9 for illustration. Official release date is in-
dicated with the vertical line in the figure, and the time is
expressed as the relative time since the start of the testing. Note
that only severe bugs (bugs with major, critical and blocker
priority) are included in the study.

Residual bug content represents the number of undetected
faults remaining in the software, as defined in Eq.(4). It can
be seen that the residual bug content was relatively high, as
28 severe bugs were still remaining in the software on the day
of its official release.

Instantaneous fault intensity, or alternately expected mean
time between successive faults, can be derived from the
parameters of the mean value function, as defined in Eq.(2)
and Eq.(3). Instantaneous fault intensity on the day of Fal-
con’s release was at the level of 0.0131h−1, or equivalent
to approximately 3 days between detection of severe faults.
Fault intensity is highly relevant for the software developers,
as it can help them to tune better the software release dates.
Had this been a commercial software, a penalty for the severe
software bugs detected in the operational software would be
paid. This metric could help the developers optimize the
testing effort before and after official release date.

Conditional software reliability represents the probability of
encountering the severe failure in the time interval (t, t+ x),
as defined in Eq.(5). We observe the interval starting with the
software adoption time t for a duration x, specified by the
user. We have shown that in order to achieve reliability of
R(x, t) = 0.90, during maintenance interval of x = 3 months,
the user should defer the software adoption up to ∆t ≥ 12
months after its official release.

C. Predictive ability

Estimating the parameters of the SRGM models when only
few data samples are available may lead to inaccurate model.
From the previous analysis we have seen that Gompertz model
had the best performance across all releases, being the best fit
for 4 out of nine releases, and showing very good results for
the other five. Moreover, we have noted that the parameters
across different releases of ONOS tend to be very similar, as it
can be seen in Table II for Gompertz model. We leverage this
fact to guide the fitting procedure and improve the accuracy
of the model parameters for Junco release, for which still not
enough data samples are available.

Release a b k
Avocet 56.81 0.99903 0.09119

Blackbird 55.59 0.99877 3.12e-8
Cardinal 73.90 0.99884 0.00025

Drake 84.31 0.99879 0.00106
Emu 54.92 0.99896 0.00091

Falcon 57.80 0.99917 0.04774
Goldeneye 72.07 0.99908 0.00425

Hummingbird 58.61 0.99908 0.01841
Ibis 57.42 0.99889 0.00420

TABLE II: Fitted parameters of Gompertz model

It can be seen from the table that the parameters of the
Gompertz model do not vary much, especially between the
consecutive releases. The parameter a varied between 54
and 85; parameter b was in the range 0.99879 and 0.99917,
showing the least variance, while parameter k was in the range
3.12e-8 to 0.04774. We have used these values to bound the
parameters during the fitting procedure, as plow = pmin−10%,
and phigh = pmax+10%, where p stands for the parameters of
the Gompertz model a, b and k. We leave it for the future work
to improve the prediction, based on the observed variance and
trend analysis of each of the parameters.

Prediction of the number of software defects for the period
of one year after its release is presented in Fig. 10.
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Fig. 9: SRGM can be used to estimate the quality of the controller software, in terms of residual bug content, failure intensity
and software reliability. These software quality indicators can be used by the software developers, to estimate the optimal
release time, and by the network operators, to estimate the optimal controller software adoption time.
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Fig. 10: Prediction of the number of software defects for Junco
release for the period of one year after its release.

D. Limitations of the proposed approach

There are few limitations of the proposed approach. The
first limitation comes from the fault reports, as the results
are only as good as the accuracy of the data sets. While
doing the data mining we noticed that some of the entries
were not complete (e.g. affected version field was empty)
and that couple of entries had a creation date in the future.
SRGM models require the uncensored fault reports, meaning
that if some faults were not reported the estimated parameters
will not be as accurate. Since we cannot fully guarantee
the accuracy nor the completeness of the reported data in
the ONOS issue tracker, we do not emphasize the numerical
results, but rather focus on the general approach to quantify
the software reliability.

The second limitation comes from SRGM models. The
models assume independent times between the consecutive
fault reports, which is not entirely true since occasionally
several related bug were reported at the same time. The models
also assume that every undetected fault contributes the same to
the fault manifestation rate. The time in our study represents
the calendar time. It would be more accurate to consider the
CPU time and the actual test effort (men-hours), but this
information is not available in such a large open source project.

VI. CONCLUSION

In this paper, we have studied the reliability of ONOS,
production-grade SDN controller, whose detailed fault reports
from the test and operational phase are available online. From
these fault reports we have found fairily consistent behaviour
across the releases, in terms of number of bugs, fault detection
and resolution time.

We have shown that the fault detection process can be
described with Non-Homogeneous Poisson Process (NHPP)
class of Software Reliability Growth Models (SRGM). We
have found that the best fitting model across all releases
were S-shaped models, Gompertz, Logistic, Generalized Goel-

Okumoto and ISS, while concave models Musa-Logaritmic,
Goel-Okumoto Exponential and Yamada Exponential could
not explain the data.

New class of models to describe the number of resolved
bugs over time, as well as their corresponding fitting technique,
is proposed. We have shown that although the proposed models
for the fault resolution process could describe the data in
some cases, data shows higher deviation and sudden trend
changes that cannot be captured by simple NHPP models. In
general more complex models accounting for debugging effort
are needed. For the releases where fitting was reasonable, the
proposed models GGO-ISS and ISS-GGO outperformed the
reference GO-GO model.

Once the best model is selected and parametrized to fit the
fault report data, it can be used to estimate many reliability-
related parameters, such as residual bug content, failure inten-
sity and software reliability. We have illustrated in the example
how these metrics can help the developers to tune better the
software release cycles, and optimize the test effort during
different phases of software lifecycle, as well as to assist the
users to take the calculated risk and chose the best software
adoption time, based on the reliability requirements of their
network applications.

We have observed that the parameters across different
releases of ONOS tend to be similar, and leverage this fact
to guide the fitting procedure and improve the accuracy of the
model parameters for last release, for which still not enough
data samples are available. We leave it for the future work to
study the trend of the parameters and improve the accuracy of
our forecasting algorithm.
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