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Abstract 

Fluid diffusion in fiber reinforced composites is typically anisotropic. Diffusivity in the 

fiber direction is faster than in the transverse direction. The reason for this behavior is not 

yet fully understood. In this work, dealing with glass fiber epoxy composite immersed in 

distilled water, an experimental procedure for determination of anisotropic diffusion 

constants from a laminate is presented. The method has the advantage that it does not 

require sealing of the samples edges because 3-D anisotropic diffusion theory is 

implemented for obtaining the diffusion constants. A microscale model is presented, 

where matrix and fiber bundles are modeled separately. The matrix properties have been 

obtained experimentally and the fiber bundle properties have been deduced by the 

composite homogenized diffusivity model. The analysis indicates that the anisotropic 

diffusion of the composite is due to inherent anisotropic properties of the fiber bundles. 
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List of symbols 

B(α)  Subcell concentration matrix 

C  Fluid concentration 

D  Effective composite diffusivity 

D(f) 
 

Fiber diffusivity 

D(m) 
 

Matrix diffusivity 

D(α)  Subcell diffusivity 

D║  Parallel diffusivity 

D┴  Transverse diffusivity 

DM  Matrix diffusivity 

f  Flux through the homogenized composite 

f(α)  Flux through the subcell 

f(α)
i 

 Flux in direction i through the subcell α 

fi 
 

Homogenized flux through the composite in direction i 

h  Thickness 

I3  Identity matrix 

l  Length 

M  Moisture content 

M∞ 
 

Composite moisture equilibrium content 

MM
∞ 

 
Matrix moisture equilibrium content 

MV
∞ 

 
Void moisture equilibrium content 

Ne  Total number of finite elements used in FE simulations 

t 
 

Time 

V 
 

Unit-cell total volume 

V(α) 
 

subcell volume 

vf  Fiber volume fraction 

vm 
 

Matrix volume fraction 

vv 
 

Void volume fraction 

w  Width 

wf  Fiber weight fraction 

wm 
 

Matrix weight fraction 

wv 
 

Void weight fraction 

X(α) 
 

Subcell length in the flux direction 

α  Subcell 

ρair  Air density 

ρev 
 Empty void's density 

ρfv  Fluid-filled void's density 



 

 

ρm  Matrix density 

ρwater  Water density 

ϕ  Effective composite concentration gradient 

ϕ(α)  
Subcell concentration gradient 

ϕ(α)
i 

 Concentration gradient in direction i through the subcell α 

ϕi  Homogenized concentration gradient through the composite in direction i 

 

Introduction 

Knowing long-term properties of composites is important when the materials shall be 

used in critical applications that are exposed to various environmental conditions. This 

topic is important for marine applications(1, 2), oil & gas industry(3), aerospace industry(4, 5) 

and others. The long-term properties are typically dependent on mechanical loading and 

environmental conditions (temperature, moisture, oxidation, etc.). Particularly, the effect 

of fluid concentration on the mechanical properties of polymeric composites has been 

discussed by Weitsman and Elahi(6). This paper concentrates on the diffusion of water, as 

the environment, through the fiber reinforced polymer (FRP) composites, focusing on 

experimental, analytical, and numerical studies. 

The traditional approach to obtain long-term mechanical properties of material in water is 

to saturate the material in water and to measure the mechanical properties subsequently(6-

9). Using this approach gives dry and fully saturated properties, obtaining the extreme 

conditions. However, it takes very long time for the water to diffuse into the composite. 

For thick walled structures, such as hulls of ships or some high-pressure pipelines, the 

water may never penetrate the entire thickness of the laminate, causing a gradient of 

water concentration in the composite. In order to obtain better predictions of the long-

term properties, a more accurate knowledge of the concentration profiles of the water in 



 

 

the laminate needs to be known. It should also be noted that a gradient of water in the 

laminate can cause internal stresses altering the strength of the material, when compared 

to the ones measured in totally dry or wet conditions(10). 

The water uptake can be calculated if the diffusivity is known. Measurement methods for 

diffusivity of isotropic polymers, following the Fickian diffusion, are well established. 

The typical method is given by ASTM D5229(11). When a very thin specimen is 

considered for the immersion test, e.g., 150x150x1.5 mm, following the ASTM D5229–

92(04) without sealing the edges, the diffusion process can be approximated by 1-D 

diffusion through the thickness. Eq. (1) links the mass uptake to diffusivity from solving 

the 1-D Fickian diffusion equation, as described in(12):  

𝑀(𝑡) =  𝑀∞ [1 − (
8

𝜋2) ∑
𝑒

−(2𝑖+1)2(
𝜋
ℎ

)
2

𝐷⊥𝑡

(2𝑖+1)2
∞
𝑖=0 ]   (1) 

 

By fitting the exact solution of the diffusion equation to an exponential function, the 

ASTM standard simplifies Eq. (1) to: 

𝑀(𝑡) =  𝑀∞ [1 − exp (−7.3 (
𝐷⊥𝑡

ℎ2 )
0.75

)]   (2) 

 

where M(t) is the water content, M∞ is the water saturation content, t is time, h is the 

thickness and D⊥ the diffusivity in the thickness direction of the plate. 

When dealing with isotropic materials having complex geometries it is possible to predict 

water diffusion by numerically solving the governing differential equation either using 

finite difference or finite element method. For immersed epoxy and vinylester, Fan et 

al.(13), determined water concentration in each element with the finite difference method 

by a weighed average of the nodal concentrations surrounding the element. The water 



 

 

concentration in the specimen was determined by the accumulated concentration from all 

elements in the body. 

The diffusivity of an orthotropic composite ply is anisotropic(14). The diffusivity along the 

fibers is different from the diffusivity across the fibers. The standard method for 

obtaining diffusivity for a composite ply is the same as for polymers. A flat sample is 

made, the edges are sealed, the sample is fully immersed in fluid and the diffusivity from 

the Fickian model is calculated using Eq. (1) or Eq. (2). 

 

The approach works well for obtaining the through thickness diffusivity, because regular 

thin plies or laminates can be tested. Sealing the edges remains to be a challenge though. 

It is usually assumed that the through thickness diffusivity and in-plane diffusivity across 

the fibers are the same. This is a good assumption for transversely isotropic materials. 

The diffusivity in fiber direction is more difficult to obtain. Using a standard thin 

laminate is not well suited for measuring diffusivity in the fiber direction. The large 

surface area would have to be sealed and it would take a long time for water to get into 

the specimen. Making very thick specimens and cutting them in a way that the fiber ends 

are forming the large surface has solved the problem(15-19). This is described in detail in 

the experimental methods. In this paper, the testing for the composites was done with 

open edges and diffusivity was calculated with a 3-D approach. This method was shown 

to be the most rigorous by Arnold et al. (18). 

The glass fibers themselves are often seen as non-permeable to water, assuming to have 

zero diffusivity. Several experimental investigations of moisture diffusion in fiber-

reinforced polymer composites have suggested different diffusions along the fiber 



 

 

direction and perpendicular to the fiber direction(20, 21). The diffusivity along the fiber 

direction can be 2-4 times larger than the transverse diffusivity for glass fiber 

laminates(20, 22) and about 14 times higher for carbon fiber rods(23). Taking into 

consideration the anisotropy of the fiber-reinforced composites, Shen and Springer(14) 

formulated a relationship between the diffusivity of matrix, diffusivity of fibers, fiber 

volume fraction and fiber orientation in order to determine the diffusivity of composites 

in the lateral (across) fiber direction. The idea is based on an analogy between moisture 

diffusion and thermal conduction(24). The model has been widely applied in capturing the 

moisture diffusion in FRP composites(25, 26). Several theories were developed to predict 

anisotropic diffusivity based on the diffusivity of the matrix and the geometrical 

arrangement of the fibers(14, 22). Shen and Springer(14) proposed an expression to predict 

transverse and parallel diffusivity from matrix diffusion. A comparison of 

micromechanical analytical models has been reported by Bao and Yee (16). It is noted that 

several experimental studies have shown that typical diffusivity of the FRP composites in 

the transverse direction is around 1.5-3 times lower than the diffusivity of the 

corresponding resin, e.g. Bond(21). Experimental investigations mentioned above have 

shown that diffusivity along the fiber direction can be 2-14 times higher than the one in 

the transverse direction. In this situation, it is clear that the diffusivity in FRP composite 

cannot be adequately captured by considering only matrix and fiber constituents, with 

zero diffusivity for the fiber. Rocha et al.(22) proposed a FE model with high diffusivity 

interphase, in order to explain anisotropic diffusivity in composites. They concluded that 

the fiber barrier effect is partly responsible for the anisotropic diffusion in composites, 

but this alone does not explain the effect observed. For the system investigated here the 



 

 

existing theories could not predict the anisotropic behavior found experimentally and a 

new approach had to be developed for describing the diffusion along and across fiber 

directions. 

Humeau et al.(27), performed computed tomography scans of GF/epoxy samples and 

observed that voids are elongated in the fiber direction. However, they reported that the 

anisotropy in diffusivity of samples without voids was as great as for the samples with 

voids, and concluded that voids elongation could not explain the anisotropic diffusion 

behavior. 

In this this work, 3-D diffusion has been studied experimentally using samples with fibers 

oriented in different directions. The effect of voids on the moisture saturation content has 

been studied theoretically and experimentally. The orthotropic diffusion constants have 

been obtained from the experiments using 3-D anisotropic diffusion theory. Finally, a 

micromechanical approach has been developed where fiber bundles are modelled as 

anisotropic. 

 

Materials and methods 

 

Materials 

A typical glass fiber epoxy used for wind turbine and marine applications was selected 

for this study. The glass fibers were HiPer-TexTM unidirectional (UD) fabrics from 3B 

having average radius 9 µm and density 2.5 g/cm3. The epoxy used was HexionTM 

RIMR135TM resin and RIMH137TM hardener mixed with a mass ratio of 100:30. The 

glass transition temperature of the resin is 84.7°C, the curing temperature 80°C and its 



 

 

density is 1.2 g/cm3 (28). A thick laminate was made by vacuum assisted resin infusion of 

80 plies resulting in an average ply thickness of 0.85 mm. Samples were cut from this 

laminate using a water-cooled diamond saw in order to obtain samples with fibers 

parallel and transverse to the surface, as shown in Fig. 1. 

 

[Insert Fig.1] 

 

Fig.1. Composite samples configurations. Dimensions are 50 mm x 50 mm x 1.5 mm. 

 

For each of the configurations in Fig. 1, four samples having dimensions 50 x 50 mm 

were cut with a water cooled diamond saw, machined to a thickness of 1.5 mm and 

grinded with sandpaper having grit 800, in order to avoid erroneous weight gain 

measurements(22). 

Experimental methods 

Fiber volume fractions were obtained by burn off tests and density measurements. The 

burn off test, was performed following ASTM Standard D3171(29). The volume fraction 

obtained experimentally was 59.5%. The difference between volume fraction obtained by 

burn off test and by density measurement was only 0.2%. 

In order to obtain also the matrix diffusion constants a set of 4 neat resin samples was 

obtained by resin molding and degassing, in order to eliminate the potential voids caused 

by molding. Similar to the glass-fiber epoxy samples, four neat resin samples having 

dimensions 50 x 50 x 1.5 mm were obtained by cutting with a water-cooled diamond 

saw, machining and grinding using 800 grit sandpaper.  



 

 

All samples were cured at room temperature for 24 hours and post-cured in an oven at 

80°C for 12 hours, according to the manufacturer’s recommendations. Before 

conditioning the samples were dried at 60°C for 72 h in an oven, monitoring their weight 

until no substantial weight change occurred. The curing process and the long time drying 

at 60°C ensure that complete curing occurs for both neat resin and composite samples. 

The samples are shown in Fig. 2. 

 

 

[Insert Fig.2] 

 

Fig.2. Samples used for the diffusion experiment. 

 

The void volume fraction in the laminate was measured by image analysis of optical 

microscope images, opportunely converted in black and white, Fig. 3. 

[Insert Fig.3] 

 

 

Fig.3. (a) Optical microscope image showing voids; (b) converted black and white 

threshold image used for void volume fraction evaluation. 

 

The void volume fraction was obtained by analysis of the image color histogram, and 

resulted in 0.44 % ± 0.32%. Fig. 4 shows the micrographs of the FRP composite at 

different normal directions: longitudinal fiber and transverse fiber directions.   

 

[Insert Fig.4] 

 



 

 

Fig. 4. (a) Laminate coordinate system; (b) intra-bundle void in the 2-3 plane; (c) intra-

bundle void in the 1-3 plane. 

 

A conditioning chamber was made by filling a thermally insulated bucket with distilled 

water. An electrical resistance was placed in the bucket together with a thermocouple, in 

order to have a constant temperature of 60°C ± 1°C. An aluminum sample holder was 

used for keeping the samples in a vertical position and expose all flat faces to water. 

Samples mass was measured regularly with a Mettler Toledo AG204 DeltaRange scale, 

having a sensitivity of 0.1 mg and a capacity of 61 g. They were removed from the 

conditioning chamber 4 at a time, their surfaces dried with a cloth and weighed 

immediately, in order to prevent water from diffusing out of the samples. 

All specimens had open edges. In order to enforce 1-D flow conditions in a diffusion 

experiment it is good practice to maximize the width to thickness ratio of the samples or 

to seal the edges with stainless steel. The sealant is often glued to the small surface of the 

samples’ edges. This glue may absorb water, influencing the measurement, or, even 

worst, fall off from the sample during the experiment. It was therefore decided to keep 

open the edges of all samples, as the width to thickness ratio was quite big: 33. Saturation 

was measured up to 506 hours, when the weight gain curve had flattened out. 

 

Modeling diffusion in FRP composites 

Diffusivities of water in a polymer or composite can be obtained from measuring the 

water uptake with time. One approach is to simply measure the macroscopic diffusivities 

in the principal orthotropic directions of the material. This approach will be described 

first for the simple 1-D case and the better 3-D approach. It is a relatively simple method 



 

 

sufficient for characterizing the diffusion behavior. An engineer who wants to determine 

the concentration profile of water within a component made of FRP composites would 

not need any additional information, provided the diffusion in FRP composites can be 

modeled as Fickian diffusion. The second approach explains diffusivity from the 

micromechanics point of view, which gives insights into the reasons for anisotropic 

diffusion behavior. 

 

Macroscopic model 

The 1-D water uptake from the macroscopic diffusion through the specimen thickness 

can be described by the method given in the ASTM Standard(11), as written in Eq. (1). If 

the diffusivity of a composite laminate is measured, this diffusivity obtained is typically 

in the direction perpendicular to the fibers. When knowing the specimen dimensions and 

the saturation level of the water uptake, the diffusivity 𝐷⊥ can be found by obtaining the 

best fit for the mass uptake data vs. time using Eq. (3). In the above equation, the effect 

of volumetric changes (swelling) during the diffusion process is neglected. In some 

polymers immersed in water, a relatively small volume change can cause deviation from 

the Fickian diffusion(13). 

The above method is based on the 1-D diffusion and requires the edges of the samples to 

be sealed. Sealing the edges with a diffusion-tight material can be difficult. Often metal 

foils are used, but they sometimes do not bond easily to the polymer. When the foils fall 

off during the experiment, the data can be severely disturbed. A simpler way to measure 

diffusivity of anisotropic composites is to make samples without sealing the edges. In that 



 

 

case a 3-D version of Eq. (1) is needed. The 3-D solution to mass uptake in an anisotropic 

plate, following the Fickian diffusion, was reported by Crank(12): 

𝑀(𝑡) =  𝑀∞ [1 − (
8

𝜋2)
3

∑ ∑ ∑
𝑒

−(2𝑖+1)2(
𝜋
ℎ

)
2

𝐷⊥𝑡

(2𝑖+1)2  
𝑒

−(2𝑗+1)2(
𝜋
𝑤

)
2

𝐷⊥𝑡

(2𝑗+1)2  
𝑒

−(2𝑘+1)2(
𝜋
𝑙

)
2

𝐷∥𝑡

(2𝑘+1)2
∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 ] (3) 

 

where l is the sample length, w its width, D⊥ the laminate diffusivity in the direction 

perpendicular to the fibers and D∥ the laminate diffusivity in the direction parallel to the 

fibers, as shown in Fig. 5. 

[Insert Fig.5] 

 

Fig. 5. Configuration of samples used for parallel and transverse diffusion measurement. 

 

For the composite samples with transverse configuration, Eq. (3) can be used, while for 

the samples with parallel configuration, Eq. (3) must be modified to take into account for 

the diffusion in the direction parallel to the fibers going through the thickness, as follows: 

𝑀(𝑡) =  𝑀∞ [1 − (
8
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𝑒
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𝜋
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2
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𝑒
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𝜋
𝑤

)
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𝑙

)
2

𝐷⊥𝑡

(2𝑘+1)2
∞
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∞
𝑗=0

∞
𝑖=0 ]  (4) 

 

Fig. 5 shows the diffusivities for each direction in both transverse and parallel 

configuration. For the neat resin, due to the assumption of isotropy D⊥= D∥ = DM. Eq. (3) 

becomes: 

𝑀(𝑡) =  𝑀∞ [1 − (
8

𝜋2)
3
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−(2𝑖+1)2(
𝜋
ℎ

)
2
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𝑒
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𝜋
𝑤
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(2𝑗+1)2  
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−(2𝑘+1)2(
𝜋
𝑙

)
2

𝐷𝑀𝑡

(2𝑘+1)2
∞
𝑘=0

∞
𝑗=0

∞
𝑖=0 ]   (5) 

 

where DM is the matrix diffusivity. 

 

 



 

 

Microscopic model 

The anisotropic diffusivity can also be predicted by using a micromechanics model based 

on mainly the diffusivities of the resin and fiber bundles in the composite. A 

micromechanics model is formulated to determine the overall (homogenized) anisotropic 

diffusivity of FRP composites, comprising of unidirectional fibers embedded in matrix. 

The micromechanics model is based on a simple unit-cell with four fiber and matrix 

subcells, as depicted in Fig. 6. 

[Insert Fig.6] 

 

 

Fig. 6. A simplified microstructure of FRP composite. 

 

This unit-cell model has been successfully used to determine the mechanical and non-

mechanical response of FRP composites, such as thermo-viscoelastic, piezoelectric, and 

heat conduction behaviors(30, 31). The first subcell is the fiber constituent and the 

remaining subcells are matrix. It is noted here that the fiber constituent in case of typical 

FRP composite is actually a fiber bundle that consists of fiber filaments, as shown in Fig. 

4. Thus, fluid can penetrate within the filaments inside the fiber bundle, which might 

explain the relatively high diffusivity along the fiber direction in FRP composites. Perfect 

bonding at the interphases between the fiber bundle and matrix is assumed, and a periodic 

boundary condition is imposed on the unit-cell. 

 

In determining the diffusivity of the composite, it is also assumed that volumetric 

expansion (swelling) is negligible, thus both fiber and matrix diffusion behaviors follow 



 

 

the Fickian diffusion. The flux of the fluid that passed through the homogenized 

composite faces, , is formulated based on the volume average of the flux in the four 

subcells: 

𝐟̅ =  
1

𝑉
∑ 𝐟(𝛼)(𝐗(𝛼))𝑑𝑉(𝛼)4

𝛼=1 ≈
1

𝑉
∑ 𝑉(𝛼)𝐟(𝛼)4

𝛼=1   (6) 

 

 

where f(α) and V(α) are the flux and volume of subcell (), respectively, and and X(α) is the 

spatial location of each point within the unit-cell. It is also assumed that field variables 

within one subcell are uniformly distributed. A total volume of the unit-cell is V = 

∑ 𝑉(𝛼)4
𝛼=1 . When the fiber volume fraction is considered, then V = ∑ 𝑉(𝛼)4

𝛼=1 =1. The flux 

in the composite is formed due to the gradient of fluid concentration and a linear relation 

is considered between the flux and concentration gradient in the homogenized composite: 

 

𝐟̅ = −𝐃̅ 𝛗̅;     𝛗̅ = 𝑔𝑟𝑎𝑑(𝐶)     (7) 

 

Here and  are the effective diffusivity and concentration gradient of the 

homogenized composite, respectively, and C is the water concentration in the 

homogenized composite which is time and spatial dependent. The concentration gradient 

of the homogenized composite is related to the concentration gradient of each subcell by 

formulating a concentration matrix for each subcell . The idea of formulating the 

concentration matrix to relate the field variables of the constituents to the field variable of 

the composite was originally proposed by Hill(32) for a linear elastic response of 

composites. The concentration gradient in each subcell is given by: 

 

𝛗(𝛼) =  𝐁(𝛼)𝛗̅    (8) 

f

 D  φ

( )
B



 

 

 

A linear relation like in Eq. (7) is adopted for the constitutive relation in each subcell: 

𝐟(𝛼) =  −𝐃(𝛼)𝛗(𝛼)    (9) 

 

where D(α) is the subcell diffusivity. Substituting Eq. (8) into Eq. (9) gives: 

𝐟(𝛼) =  −𝐃(𝛼)𝐁(𝛼)𝛗̅    (10) 

 

Substituting Eq. (10) into Eq. (6) gives the effective flux in terms of diffusivity properties 

of the constituents and volume content: 

𝐟̅ ≈ −
1

𝑉
∑ 𝑉(𝛼)𝐃(𝛼)𝐁(𝛼)𝛗̅4

𝛼=1               (11) 

 

Finally, the effective diffusivity of the composite is determined by comparing Eq. (7) and 

Eq. (11): 

𝐃̅ =
1

𝑉
∑ 𝑉(𝛼)𝐃(𝛼)𝐁(𝛼)4

𝛼=1                (12) 

 

The conservation of mass of the fluid in the composite body leads to: 

𝑑𝐶

𝑑𝑡
= −𝐷𝑖𝑣(𝐟)̅     (13) 

 

where t denotes the time variable. 

In order to determine the diffusion behaviour and diffusivity of the homogenized 

composite, micromechanical relations between the subcells need to be obtained. Consider 

a unit-cell model in Fig. 6 placed in the Cartesian coordinate, with fibers are aligned in 1 

direction, and 2 and 3 are the directions lateral and transverse to the fiber composite. The 

flux and water concentration along the fiber direction are expressed as: 

 

𝑉(1)𝑓1
(1)

+ 𝑉(2)𝑓1
(2)

+ 𝑉(3)𝑓1
(3)

+ 𝑉(4)𝑓1
(4)

= 𝑓1̅  (14) 

𝜑1
(1)

= 𝜑1
(2)

= 𝜑1
(3)

= 𝜑1
(4)

= 𝜑̅1    (15) 

 

The flux and water concentration across the fiber direction are expressed as: 



 

 

𝑓2
(1)

= 𝑓2
(2)

     (16) 

𝑓2
(3)

= 𝑓2
(2)

     (17) 
𝑉(1)

𝑉(1)+𝑉(2)
𝜑2

(1)
+

𝑉(2)

𝑉(1)+𝑉(2)
𝜑2

(2)
= 𝜑̅2             (18) 

𝑉(3)

𝑉(3)+𝑉(4) 𝜑2
(3)

+
𝑉(4)

𝑉(3)+𝑉(4) 𝜑2
(4)

= 𝜑̅2             (19) 

𝑓3
(1)

= 𝑓3
(3)

               (20) 

𝑓3
(2)

= 𝑓3
(4)

               (21) 
𝑉(1)

𝑉(1)+𝑉(3) 𝜑3
(1)

+
𝑉(3)

𝑉(1)+𝑉(3) 𝜑3
(2)

= 𝜑̅3             (22) 

𝑉(2)

𝑉(2)+𝑉(4) 𝜑3
(3)

+
𝑉(4)

𝑉(2)+𝑉(4) 𝜑3
(4)

= 𝜑̅3             (23) 

 

Using the micromechanical relations, Eqs. (14)-(23) and constitutive relations for the 

constituents in Eq. (9), the concentration matrix for each subcell can be obtained. Finally, 

the effective diffusivity is determined from Eq. (12). In this study, the fiber bundle is 

assumed transversely isotropic and the polymeric matrix is considered isotropic with 

regards to their diffusion behaviors. The fiber diffusivity is D(f) =diag(D11
(f), D22

(f), D22
(f)), 

while the diffusivity of matrix is D(m) = D(m) I3, where I3 is the identity matrix. The 

diffusivity of the composite is given as: 

𝑫̅ = 𝑑𝑖𝑎𝑔(𝐷̅11, 𝐷̅22, 𝐷̅33);   𝐷̅33 = 𝐷̅22  (24) 

𝐷̅11 =
1

𝑉
(𝑉(1)𝐷11

(𝑓)
+ 𝑉(2)𝐷(𝑚) + 𝑉(3)𝐷(𝑚) + 𝑉(4)𝐷(𝑚)) (25) 

𝐷̅22 =
1

𝑉
(𝑉(1) 𝐷(𝑚)𝐷22

(𝑓)
(𝑉(1)+𝑉(2))

𝑉(1)𝐷(𝑚)+𝑉(2)𝐷22
(𝑓) + 𝑉(2) 𝐷(𝑚)𝐷22

(𝑓)
(𝑉(1)+𝑉(2))

𝑉(1)𝐷(𝑚)+𝑉(2)𝐷22
(𝑓) + 𝑉(3)𝐷(𝑚) + 𝑉(3)𝐷(𝑚))     (26) 

 

In order to solve for the governing equation in Eq. (13), the finite element (FE) method is 

used and the constitutive relation in Eq. (11) is implemented at each Gaussian point 

within continuum 3-D elements. Each continuum element has eight nodes. The 

concentration of the fluid is evaluated at the nodes. The total amount of fluid 

concentration in the composite during the diffusion process is determined as follows; 

 



 

 

𝐶(𝑡) =
1

𝑉
∑ 𝐶(𝑚)∆𝑉(𝑚)𝑁𝑒

𝑚=1 ;    𝐶(𝑚) =
1

8
∑ 𝐶𝑖

(𝑚)8
𝑖=1        (27) 

 

where Ne is total number of finite elements used in solving the diffusion equation in the 

composite body. The amount of fluid concentration at each instant of time in Eq. (27) is 

correlated to the fluid concentration obtained from experiment. The total fluid 

concentration is related to the fluid uptake as follow: 

 

     𝐶(𝑡) =
𝑀(𝑡)

𝑀∞
                   (28) 

 

The micromechanics model is implemented in a continuum three-dimensional finite 

element. At each Gaussian integration point within the element, the constitutive model 

for the diffusion behavior is determined from the micromechanics model. In this study 

the user material subroutine within ABAQUS commercial FE, written in Fortran, is used 

to integrate the micromechanics model to FE analyses. For the post-processing, the total 

amount of fluid in the composites is determined by integrating the field variables at the 

nodes obtained from the FE analyses. For this purpose a Matlab code was generated for 

reading the nodal field variables and numerically integrating them to obtain the overall 

fluid concentration. 

 

In order to simulate the fluid sorption mimicking the FRP and resin specimens, finite 

element meshes with 8 node hexahedral elements were generated for the plate with 

dimension 50x50x1.5mm. A convergence study was first conducted in order to determine 

sufficient numbers of elements by comparing the overall fluid concentration to the 



 

 

analytical solution of isotropic diffusion in resin. In this study, a total of 4000 elements 

was sufficient in capturing the fluid sorption response. Fig. 7 shows the FE meshes. 

[Insert Fig.7] 

 

 

Fig. 7. Mesh used for the FE analysis. 

 

Results 

Diffusivity of the matrix 

The weight increase at saturation is about 3.18 %. Saturation has been defined as the 

moment when the difference in two consecutive measurements is lower than 0.5%. The 

diffusivity of the matrix can be easily obtained for an isotropic polymer, by fitting the 

experimental results to the 1-D diffusion solution in Eq. (1), for the hypothesis of an 

infinitely wide plate (a very thin plate). Alternatively, it is possible to use 3-D diffusion 

solution in Eq. (5), where all diffusion constants are set equal to DM. The use of Eq. (5) 

instead of the 1-D flow equation, Eq. (1), yields more accurate prediction of the diffusion 

constant because it accounts for both the finite width of the laminate and the diffusion 

flow through its edges. The experimental results are compared with both Eq. (1) and Eq. 

(5), in Fig. 8 and Fig. 9 respectively. In Fig. 8 the results are fitted using Eq. (1), valid for 

1-D diffusion in an infinitely wide plate. The matrix diffusivity obtained is 0.0068 mm2/h 

(1.89 10-6 mm2/s). 

[Insert Fig.8] 

 

Fig. 8. Water uptake measured as % weight increase vs. time in hours. 1-D model. 



 

 

 

In Fig. 9 is reported the fit between experimental measurements and Eq. (5), valid for 3-D 

diffusion in plates of finite width. 

[Insert Fig.9] 

 

Fig. 9. Water uptake measured as % weight increase vs. time in hours. 3-D model. 

 

The diffusivity obtained by the 3D method described above is 0.0063 mm2/h (1.75 10-6 

mm2/s). The 1-D diffusion equation, yields a higher diffusivity prediction than the 3-D 

diffusion equation, as it does not consider the edge effects as a cause for steeper weight 

gain curve. The difference is quite small, 7.4 % 

 

Saturation level of the composite 

The saturation level of the neat resin obtained experimentally is 3.18%. The saturation 

level of the composite, assuming that no voids are present in the material can be obtained 

by (7): 

𝑀∞
𝐶 = 𝑀∞

𝑀 (1 − 𝑤𝑓) = 𝑀∞
𝑀  

(1−𝑣𝑓)𝜌𝑚

𝑣𝑓𝜌𝑓+ (1−𝑣𝑓)𝜌𝑚
= 0.774 %  (29) 

 

where wf is the fiber weight fraction, vf the fiber volume fraction, ρm the matrix density, ρf 

the fiber density, and 𝑀∞
𝑀= 3.18 % the matrix saturation moisture content. The predicted 

moisture saturation content, 0.774% is far from the result observed experimentally: 

0.96%. This difference could be due to the presence of voids in the laminate. 

It is possible to extend Eq. (29) in order to take into account for the presence of voids: 

𝑀∞ = 𝑀∞
𝑀 𝑤𝑚 + 𝑀∞

𝑉  𝑤𝑣 = 
𝑀∞

𝑀 𝑣𝑚 𝜌𝑚+𝑀∞
𝑉  𝑣𝑣 𝜌𝑣

𝑓

𝑣𝑓𝜌𝑓+ 𝑣𝑚𝜌𝑚+ 𝑣𝑣 𝜌𝑣
𝑒   (30) 



 

 

 

where wm is the matrix weight fraction, wv is the void weight fraction, 𝑀∞
𝑀= 3.18 % the 

matrix saturation moisture content, 𝑀∞
𝑉 = 100 % the void saturation moisture content, vf 

the fiber volume fraction, vm the matrix volume fraction, vv the void volume fraction, ρf 

the fiber density, ρm the matrix density, 𝜌𝑣
𝑓
 the filled void’s density and 𝜌𝑣

𝑒 the empty 

void’s density. 

We impose volume and mass conservation, Eq. (31). We also define void density as 

equal to water density when filled and as equal to air density when empty, Eq. (32). 

𝑣𝑓 + 𝑣𝑚 + 𝑣𝑣 = 1   ;    𝑤𝑓 + 𝑤𝑚 + 𝑤𝑣 = 1              (31) 

𝜌𝑣
𝑓

= 𝜌𝑤𝑎𝑡𝑒𝑟   ;    𝜌𝑣
𝑒 = 𝜌𝑎𝑖𝑟 ≅ 0    (32) 

 

where ρwater is water density and ρair is air density. We simplify ρair ≈ 0. 

Eq. (30) becomes therefore: 

𝑀∞ = 
𝑀∞

𝑀 𝑣𝑚 𝜌𝑚+𝑀∞
𝑉  𝑣𝑣 𝜌𝑤𝑎𝑡𝑒𝑟

𝑣𝑓𝜌𝑓+ 𝑣𝑚𝜌𝑚
     (33) 

 

The void volume fraction of the laminate was 0.44 %, the composite predicted saturation 

content is therefore 0.99 %, very close to the value obtained experimentally: 0.96 % (only 

3% deviation). 

Diffusivity of the composite along and across the fiber direction 

The diffusivities of the composite in the transverse and parallel directions were computed 

using both 1-D and 3-D diffusion models. The saturation level used was 0.96% for both 

sample configurations. 



 

 

In Fig. 10 (a) and (b) the experimental results are fitted using 1-D diffusion equation, Eq. 

(1). The diffusivity constants obtained are 0.0051 mm2/h (1.42 10-6 mm2/s) for transverse 

diffusion and 0.021 mm2/h (5.83 10-6 mm2/s) for parallel diffusion. 

 

[Insert Fig.10] 

 

 

Fig. 10. Water uptake measured as % weight increase vs. time in hours, fitted with the 1-

D equation. 

 

In Fig. 11 (a) and (b), diffusivity was obtained by simultaneous fitting of transverse 

samples and parallel samples weight gain curves with Eqs. (4) and (5) respectively. 

 

[Insert Fig.11] 

 

 

Fig. 11. Water uptake measured as % weight increase vs. time in hours, fitted with the 3-

D equation. 

 

The regression was done using non-linear least squares method. The fit is easily 

performed as the weight gain curve of the transverse samples is dominated by the ply 

transverse diffusivity 𝐷⊥ and the weight gain curve of the parallel samples is dominated 

by the ply parallel diffusivity, 𝐷∥. The transverse diffusivity obtained is 0.0045 mm2/h 

(1.25 10-6 mm2/s) and the parallel diffusivity obtained is 0.02 mm2/h (5.56 10-6 mm2/s). 

Hence the parallel diffusivity obtained is 4.44 times higher than the transverse diffusivity. 

Similar to the neat resin diffusivity, we observe that also in this case, the 1-D diffusion 

equation predicts higher diffusivity compared to the 3-D diffusion equation, both for 



 

 

transverse diffusivity (11.8 %) and parallel diffusivity (4.8 %). One of the reasons for this 

difference is the finite width of the sample that is taken into account by Eqs. (3) and (4). 

It is interesting to observe that for the transverse diffusion the deviation between 1-D 

diffusion results and 3-D diffusion results is higher than for parallel diffusion. This is 

because the 1-D diffusion results neglect the flow through the edges, which runs in the 

direction parallel to the fibers, and has therefore 4.44 times higher diffusivity. For the 

parallel diffusion, the difference between results obtained by 1-D and 3-D diffusion 

equations is smaller, because the diffusion through the edges occurs in the direction 

transverse to the fibers, and is therefore slower than the diffusion in the thickness 

direction, that runs parallel to the fibers. The results of the diffusivities characterized 

using macroscopic analytical model are summarized in Table 1. 

 

[Insert Table 1] 

 

 

Table 1. Diffusivities obtained for neat resin and composite using 1-D and 3-D diffusion 

equation. 

 

 

Diffusion analyses using the micromechanical model 

As discussed in Section 3, a micromechanical model, which is implemented in FE 

analysis, is presented for determining the homogenized diffusion behavior in FRP 

composites. The main advantages of using the homogenization approach are that it can be 

used to easily determine anisotropic diffusivities of FRP with different fiber volume 



 

 

contents while incorporating different diffusivities of fiber bundle and matrix, making it 

easy for material selections with desired diffusion performance, it permits predictions of 

the diffusion behavior in laminated composites with different fiber orientations, and it 

allows performing diffusion of FRP structures with more complex geometries and 

boundary conditions. 

In order to test the micromechanics and numerical methods, the diffusion constant of the 

resin was first determined, both from the 1-D and 3-D analyses. In the 3-D analysis, the 

micromechanics model was considered by setting the fiber volume content to zero. The 

diffusivity of resin from the 1-D analysis is 0.0067 mm2/h (1.86 10-6 mm2/s), and the one 

from the 3-D analysis is 0.0062 mm2/h (1.71 10-7 mm2/s). These values are very close to 

the analytical solutions discussed above. The concentration of water during the diffusion 

process is shown in Fig. 12. 

 

[Insert Fig.12] 

 

Fig. 12. Concentration of water in the resin from the micromechanics and numerical 

analyses. 

 

The micromechanics model is now used to determine the anisotropic diffusivity of fiber 

bundles in the FRP composites. Prior to determining the diffusivities of fiber bundles in 

the longitudinal and lateral directions using the micromechanics model, parametric 

studies were considered, see Appendix. From the analyses, the diffusivity of the fiber 

bundle in the lateral direction is 𝐷22
(𝑓)

= 0.0031 mm2/h (0.86 10-6 mm2/s), while the one in 

the longitudinal direction is 𝐷11
(𝑓)

= 0.0308 mm2/h (8.55 10-6 mm2/s). The diffusivity of the 



 

 

fiber bundle along the longitudinal direction is much higher than the diffusivity of fiber 

bundle in the lateral direction, and also higher than the diffusivity of matrix. Fig. 13 (a) 

and (b) shows the diffusion behavior in FRP composites, tested transverse and parallel to 

the longitudinal fiber direction. From the micromechanics analyses, the effective 

diffusivities can be easily determined from Eq. (26) and Eq. (27). The overall diffusivities 

of the FRP with 59.5 % fiber volume content are: 𝐷̅11= 0.021 mm2/h (5.80 10-6 mm2/s) 

and 𝐷̅22= 0.0042 mm2/h (1.16 10-6 mm2/s), which are summarized in Table 1. 

 

[Insert Fig.13] 

 

 

Fig. 13. Micromechanics analyses of the diffusion in FRP composites (a) transverse 

direction, (b) parallel direction. 

 

Discussion 

Measuring the diffusivity of a solid immersed in a fluid is typically done by exposing 

specimens with sealed edges to a fluid and measuring the weight gain. A simple 1-D 

formula stated in ASTM D5229(11) is often used to calculate the diffusivity. Testing with 

sealed edges is experimentally difficult; as the sealant may not bond properly giving 

distorted results. Performing tests with open edges and using 3-D diffusivity equations 

makes the testing much easier. The diffusivity is found by obtaining the best fit of the 3-

D equation against the experimental data. The process is not as easy as just looking at the 

slope of the curve in the ASTM approach, but the best fit can be easily found using an 

optimization tool.  



 

 

For the water uptake of neat resin and using thin plates the effect of the edges was small 

and using the 1-D or 3-D equation gave roughly the same results. It is recommended 

though to use the 3-D equation as it is more accurate and can also be used for thicker 

specimen geometries with more pronounced edge effects. The same can be said for 

measuring the water uptake of composite laminates. 

Measuring diffusivity of composites in fiber direction is inherently difficult. Typical 

composite laminates are thin plates and the fibers are only exposed on one thin surface. 

Transverse diffusion dominates such samples. Making thick laminates can compensate 

the problem of a small exposed surface, but then the diffusion takes a long time. Making 

thick laminates and cutting thin slices creating thin specimens with a large exposed 

surface for fiber ends solved the problem and good measurements could be taken.  

The small amount of voids causes an increase of the saturation level of the composite by 

24 % (from 0.774% to 0.96%), and needs to be accounted for, since the saturation level is 

directly related to the diffusivity. Even a small void content has a large influence on the 

saturation level. However, voids are often distributed nonuniformly, making it 

complicated in determining the overall (average) response of composites by examining a 

representative microstructure of composites. The nonuniform distribution of voids also 

yields to localized fluid concentration within the composites. 

For the glass fiber epoxy system investigated here, the diffusivity in the fiber 

direction was found to be about four times the diffusivity transverse to the fibers, see 

Table 1. This is a significant difference and anisotropic diffusion should be considered 

when calculating the fluid concentration profiles of structures and components. It is also 

noted that the diffusivity in the fiber direction is higher than the diffusivity of pure resin. 



 

 

These results show that when considering only fiber bundle and matrix as constituents, 

the diffusivities of the fiber bundle cannot be assumed as zero, especially for the 

longitudinal fiber direction. However, assuming that individual glass fibers have 0 or 

very low diffusivity is often considered to predict diffusivity of the composite by 

knowing the diffusivity of the resin and geometric arrangement of the fibers. Using the 

assumption that fibers have zero or nearly zero diffusivity, e.g. the model developed by 

Shen and Springer (14) or the finite element based modes developed in (22), could not 

model the observed anisotropy. Several possible explanations to the above issue are as 

follows. This discrepancy is most likely because within fiber filaments in a single fiber 

bundle, resin and air pockets are present, which allow water to seep into fiber bundles. As 

a result, the net diffusivity of fiber bundle cannot be taken as zero. The glass fiber 

filaments themselves can be considered as zero or nearly zero permeability. However, 

considering that the fibers are arranged in bundles and the fibers are surrounded by a 

sizing (interface layer), diffusion channels may open up between fiber filaments and in 

the sizing. It is convenient to model this as diffusion within the fibers, but on a physical 

level another phase must be present that allows different diffusion than observed in the 

resin.  

The presented micromechanics model could predict the observed global anisotropy by 

giving the fiber constituent (fiber bundle) an anisotropic diffusivity. The diffusivity 

across the fibers was less than that of the matrix and the diffusivity along the fibers was 

higher than the homogenized diffusivity of the materials. While the presented 

micromechanics approach seems to capture the anisotropy diffusivity in FRP composites 

with some rationale behind it, the detail mechanisms of the diffusion in FRP composites 



 

 

are very complex and still not fully understood. From an engineering point of view, it is 

sufficient to accurately measure the anisotropic diffusion characteristics. From a 

materials point of view another phase allowing higher diffusivity must be present in the 

composite. 

Conclusions 

 

This study presents an experimental investigation and modeling of diffusion behavior in 

FRP composites. The experimental part considered thin specimens of pure resin and FRP 

composites with fibers arranged parallel and transverse to the thickness of the specimens. 

These specimens were immersed in distilled water, and moisture uptakes were monitored 

until saturation was reached. Specimens with unsealed edges were used, which is 

experimentally much easier than the standard approach of testing with sealed edges. The 

experimental results show that Fickian diffusion can be used to capture the diffusion 

process in these specimens. The experimental tests also showed that the existence of voids, 

although very small (around 0.44% volume content) can have a significant effect in the 

amount of water uptakes. 

 

Two modeling approaches were considered in characterizing the diffusion behaviors of 

FRP composites, with the Fickian diffusion model. The first approach considers a 

phenomenological diffusion model and both 1-D and 3-D diffusion behaviors were 

considered. It was found that although the differences in the diffusivities characterized 

using 1-D and 3-D approaches are rather small, it is recommended to consider 3-D 

approach as it represents a more realistic condition. 1-D models are appropriate for samples 



 

 

with sealed edges. It is noted that diffusivity of FRP composite along the fiber direction is 

4.44 times the diffusivity in the transverse directions, indicating the anisotropic diffusion 

behaviors. The second approach is using a micromechanics model to capture the 

anisotropic diffusivity in FRP composites. Fiber bundle and matrix are taken as two 

constituents within the micromechanics model. The anisotropic diffusion behavior is 

captured by considering nonzero anisotropic diffusion coefficients for the fiber bundle and 

isotropic diffusion for the matrix. The rationale behind choosing nonzero diffusivity for the 

fiber bundle is due to occurrence of water seeping within fiber filament in the bundles 

during diffusion process. 
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Appendix 

This Appendix discusses parametric studies in examining the effect of anisotropic diffusion in the 

fiber bundles on the overall diffusion behaviors in FRP composites. The micromechanics model 

is used. The purpose of this parametric study is to guide the material parameter characterization, 

i.e., D11
(f), D22

(f) of the fiber bundles. The diffusivity of the isotropic matrix was obtained from 

the experimental test on neat resin. Fig. A1 illustrates the water uptake response in FRP parallel 

to the fiber axis. It is seen that the transverse diffusivity of the fiber bundle (D22
(f)) has 

insignificant influence on the diffusion response in the parallel fiber direction. The diffusion in 

the parallel direction is governed by the axial diffusivity of the fiber, diffusion of the matrix, and 

fiber volume content. Fig. A2 shows the diffusion response along the transverse fiber direction. In 

this case, the transverse fiber diffusivity (D22
(f)) has a significant effect while the axial fiber 

diffusivity (D11
(f)) has insignificant effect, which is expected. This information can guide the 

determination of the anisotropic fiber diffusivity from the experimental data. 

 

[Insert Fig.A1] 

 

 

Fig. A1. Diffusion response of FRP in the parallel fiber direction: the effect of fiber 

anisotropy. 

 

[Insert Fig.A2] 

 

 

Fig. A2. Diffusion response of FRP in the transverse fiber direction: the effect of fiber 

anisotropy. 

 



 

 

Highlights 

• Micromechanical model for anisotropic diffusion in composites 

• Testing procedure for the determination of anisotropic diffusion constants 

• Prediction of moisture equilibrium content in the presence of voids 
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Tables 

 

Table 1 Diffusivities obtained for neat resin and composite using 1-D and 3-D diffusion 

equation 

 Neat resin Composite 

 D (mm2/h) D⊥ (mm2/h) D∥ (mm2/h) 

1-D Equation 0.0068 0.0051 0.021 

3-D Equation 0.0063 0.0045 0.020 

Micromechanical FE model 0.0062 0.0042 0.020 

 


