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Abstract—Neural Networks have been successfully used in dif-
ferent fields of Information Security such that network intrusion
detection and malware analysis because of ability to provide high
level of abstraction for complex and incomplete data. Despite
its successful application as off-line learning method, the on-line
learning can be challenging when dealing with data streams. This
paper presents an ongoing research on on-line Neural Network
for Access Control. It can be used for similarity-based access to
sensitive information. Conventional training is not efficient when
dealing with data streams such that access patterns flow since
the availability of the data samples is limited. Considering this
obstacle we proposed to use Genetic Algorithm as meta-heuristic
optimization in selection of individual training rates α for
each weight. Similarity-based Access Control mechanism deals
with a data stream that includes continuous flow of attributes
characterizing user and resources, so the task is to estimate the
likelihood of legitimacy of user accessing a particular resource
in dynamic environment. This research contributes to the field
of Information Security by overcoming the limitations of data
stream mining in agile environment.

I. INTRODUCTION

Artificial Neural Network (ANN) is one of the most power-
ful methods capable of modelling complex non-linear relations
between the input data and output decision. It has been
successfully applied for a number of fields in Information
Security such that Intrusion Detection [1] and web attacks
classification [2]. Access Control (AC) is one of the most
important tasks of Information Security. Modern AC models
and policies are based on a specifically predefined set of rules
for a single user or group of users. The challenge comes when
dealing with agile environment like in grid-systems or cloud
environment according to Bedi et al. [3], making traditional
access methods less efficient. In this work we target the on-line
learning of AC mechanism based on the flow of access logs
data. Despite the wide applicability of Multilayer Pecreptron
(MLP), a type of ANN, usage in the data streams mining
brings additional limitations like availability of data in a very
short time period. However, MLP is capable of providing fast
response [4]. So, we believe that optimization of MLP learning
may facilitate similarity-based AC.

AC is intended to limit access using different policies and
models and to prevent an unauthorized access. Sahafizadeh
et al. [5] provided a comprehensive overview of modern AC
models. It studied Mandatory Access Control (MAC), Dis-
cretionary Access Control (DAC), Role-Based Access Control

(RBAC), Attribute-Based Access Control (ABAC), etc. MAC
relies on levels of authorization or class of a user when
evaluating its ability to perform operations on the object.
DAC provides a specific detail for each particular user or
user role of where she is capable of going. RBAC uses an
access matrix of objects and subjects in order to define an
access rule. ABAC [6] is one of the initiatives by NIST for
moving from Role-Based Access Control to more flexible
evaluation of the asset’s attributes. Vincent [7] in the NIST
guide defined a scenario that includes access control policy,
environment conditions, and Subject and Object with corre-
sponding sets of attributes. Similarity-Based Access Control
(SBAC) defined in the patent by Farber et al. [8] allowed to
use similarities in access attributes. Considering this, we can
say that the application of Soft Computing can facilitate AC
and is capable of learning on-line since off-line may require
significant resources when the organization size is large. There
have also been some attempts to apply Machine Learning
methods. The report [9] from NIST proposed a Risk-Adaptive
Access Control model (RAdAC) that uses historical records
to determine whether access should be granted or not. In
addition, it was noted that Machine Learning, Evolutionary
Computing (EC) in particular, can be included in RAdAC
to improve the model. Furthermore, Bedi et al. [3] explored
a way of applying ANN in the access of grid resources.
In particular, requests for resources are classified via Radial
Basis Function Neural Networks, because of non-linear ANNs
superior generalization. However, to author’s knowledge ANN
has not been widely used in the AC models.

This research presents an improvement in the MLP learning
process to be reliably used for data streams mining in AC. The
proposed approach applies EC in order to train the MLP with
help of EBP with respect to the need for fast data processing.
The Genetic Algorithm (GA) [10] was chosen to provide a
less complex solution during MLP learning rather than using
the quadratic programming for constrained optimization as
presented by Sheta et al. [11]. We also compare performance
of a conventional Back-Propagation method with fixed-α, one
optimized by Golden Section Search and a proposed method.
Unlike Kanada [12], we target optimization of each individual
α for weights update. The remainder of this paper is orga-
nized as following. Section II describes existing challenges in
data streams mining by MLP and common ways of models



learning. Section III presents proposed optimization of on-line
learning. Section V provides an overview of the setup of the
experiment, data utilized, and analysis of the results. Lastly,
Section VI gives conclusions.

II. BACKGROUND

As mentioned earlier, Similarity-Based AC is affected by
velocity and veracity of the access traces appearing in access
logs. It means that the data are available for a short time
frame and should be processed in a fast on-line way rather
than an iterative off-line [13]. Data streams mining is a
special field that defines such on-line models [14]. From the
perspective of Information Security, it be events monitoring,
traffic processing, etc. in addition to access logs analysis [15].
So, the challenge with data stream mining can be formulated
as following. At a time ti there is happening some non-
deterministic event Ti such that entering user credentials to
access the resource, which also can be influence by some
covert action or can be completely random. Each user Xi can
be described by a set of M properties (features) Xi = {A ∈
RM}, where features a = {a0, · · · , aM} can be either user- or
resource-specific. So, the goal is to predict the class Yi of this
event, which defines that actions to be undertaken (”allowed”
or ”blocked”). This has to be done using previously collected
logs and established access policies over some past time t as
it is shown in the Figure 1.

Fig. 1: A general way of how the Access Control mechanisms
interact with objects and subjects according to ABAC [7]

In real world tasks the amount of statistics is huge and there-
fore it is not an option to re-learn the model each time when
new event Ti+1 arrives. At this point of view we concentrate
on the data sample that have some predefined set of features
A, where each feature is a numerical ∀aj ∈ A : aj ∈ R.
The values of each feature aj are unknown from before.
Similarly the combination of the features in the given data
sample X1, · · · , Xn in this one from access control system
sample that have not been appeared yet. Moreover, there is a
need to determine a class Yi of the given sample Xi|i=1,··· ,N ,
where N is a size of training data.

A. Multilayer Perceptron Learning

ANN is one of the most powerful ML methods capable
of learning from erroneous, complex and incomplete data. As

mentioned above, the training can be done either off-line or on-
line. In this work we target on-line learning since the model
should be capable of adjusting the parameters of the model
from data when new sample comes.

Definition 1: MLP training is done via minimization of the
objective function of the error signals E(W ):

E(W ) =
1

2
(y − d)2 (1)

where d - desired output of the MLP and y - actual output
and W is a set of all weights in MLP. The main obstacles in
learning is that the method can stuck in a local optima unless
the learning rate is optimal one. So, the primary optimization
problem in the MLP is minimisation of the function:

min E(W ) |W∈RM (2)

where each function in the E(W ) is an objective function of
the neuron’s weights wji (j−th hidden layer and i−th hidden
unit) that should be optimized with the following condition on
the whole domain of the function dom E(W ) = R and with
respect to the learning rates α:

∀ wji ∈ R : E(wji
∗
) < E(wji ) (3)

According to Heskes et al. [16], on-line learning introduces
a new challenge in adapting to new data that arrive. Saad et
al. [17] presented an analysis describing the on-line learning
within MLP, where the authors focused on the dynamic evo-
lution of the error function. Recently, there has been research
on improvement of a supervised learning in back-propagation
MLP as well as the creation of new methods for it according
to Heskes et al [16] and Mandic et al. [18]. Researchers
have proposed different learning schemes including complex
algorithms like Widrow-Hoff LMS and Adaline as described
by Widrow et al. [19]. The MLP learning process should
be optimized as a differentiable error function, and then the
Gradient Descent (GD) optimization of the function tunes the
weight of the neurons:

wji
new

= wji
current

− α · ∇E(wji ) (4)

where E(wji ) is a multidimensional error function over a
weight wji . The principle of the learning then is to use so-
called Delta Learning rule, comparing the output of the net-
work against the labelled dataset. Delta Learning Rule makes
a robust first-order approximation as stated by McClelland et
al. [20] along the partial derivative direction only in case the
learning rate is less than or equal to the optimal one, also
described by Mandic et al. [18]. In real-world tasks however
it is hard to predict how the optimal learning rate will change
under the influence of an input concept drift.

The determination of the learning rate α brings with it the
most challenge. There are several options for definition such
as constant rate or iterative adjustment [10]. However, the data
sample are available for a short period of time and data flow
has unpredictable dynamic nature, and according to Wilson et
al. [21], on-line training gives a faster convergence than batch
training. So, the commonly used constant α is not suitable.



B. Error Back Propagation

The most commonly used method for ANN training is
Error Back Propagation (EBP) that is based on the assumption
that error function E(W ) can be reduced by using gradient
measure to find optimal weights.

Definition 2: The generalized EBP learning rule for back
propagation is defined as following referring to GD method:

wji
new

= wji
current

− α · δji · g(hji ) (5)

where α - fixed learning rate, hji =
∑
w · h - sum of the

weighted signals from the previous neurons layer, g(hji ) -
sigmoid activation function of the neuron or value of the xi in
case if the layer is initial one. Moreover, depends on the layer
the value of the error signal will be calculated respectively for
the intermediates layers:

δji =
1

1 + e−h
j
i

· (1− 1

1 + e−h
j
i

) ·
∑

wji · h
j
i (6)

and corresponding output layer:

δoutput = g′(hji ) ·(d−y) =
1

1 + e−h
j
i

·(1− 1

1 + e−h
j
i

) ·(d−y)

(7)
Originally, EBP makes it difficult to train each layer of the

MLP since the exact values of the output of each hidden
layers are not known since each layer learns more of the
abstract meaning of the input data and the complexity of the
model becomes higher with each new layer. So in general, the
derivative of the error function E(wji ) is calculated on each
hidden layer.

The GD-based methods have been extensively studied re-
cently. With respect to the optimization approach, there are
several other valid ways of finding optimal weights in MLP.
The stochastic GD originally used for optimization has a low
speed of convergence and is therefore the baseline. In order
to improve learning, one may use the Conjugate Gradient
Descent and Newton-Raphson as studied by McAllester [22],
where Hessian matrices need to be evaluated. On the down-
side, this approach requires additional algorithmic step to find
an optimal direction and second-order derivatives, since the
values of the derivatives are unknown and require multiple
error functions evaluation during each epoch as result. On
the other hand, conventional MLP learning principle is not
suitable for the data streams mining since it provides an off-
line learning over a given finite sample G. The stand-alone
EBP method is high resource-consuming in the tasks related
to Big Data with respect to the speed of on-line processing.

C. Existing ways of α optimization for weights calculations

According to literature review, there can be named several
approaches to weight optimization in the Eq. 5: (i) static α
with gradient information, (ii) iterative adjustments of α using
optimization, (iii) higher dimensions factorization for faster
convergence. In this work we consider the 2nd option since it
is less computationally expensive than 3rd and more efficient
than 1st. According to Luenberger et al. [23], line search

along the gradient direction is the most promising method for
iterative rate optimization since each weight can be optimized
separately. In our view this is most promising approach in data
streams mining eliminating a need for expensive computations.
Visibly, the learning rate α must be either defined empirically
or using some one-dimensional optimization. According to
Roy [24] in most of the related studies the authors used as
some predefined values or try several empirical values. Since
α in most cases is a constant, it causes aggregation of the error
and slow convergence when the value is not optimal. Generally
speaking, the α can be optimized in different ways such as
the adaptation of a learning rate or alteration of the gradient
values. Kandil et al. [25] proposed to use time-varying learning
through the linearization of the whole network, requiring ad-
ditional expensive computation of matrices. This method uses
a binary mapping scheme for computing the optimal learning
rates for each of the layers. Yu et al. [26] described several
approaches using first- and second-order derivatives for opti-
mal α and momentum calculations, which are used to adjust
the weights. At the same time Tielman et al. [27] suggested to
use mini-batches and moving average of the squared gradient
for each weight optimization. However, it requires keeping
in memory a set of mini-batches with corresponding moving
average parameters in addition to a very slow alteration of a
learning rate. Kingma et al. [28] optimized α using similar
weighting on a momentum estimations. Authors suggested to
use decay parameters β, which requires additional empirical
estimations. Further, Plagianakos et al. [29] suggested the use
of pair-weights adjustments based on the previous epoch. On
the other hand, the one-dimensional optimization like Golden
Section Search (GSS) [23] can be considered one of the
simplest and more effective approach than the application of
Quadratic Programming. Therefore, GSS can be used in EBP
to find an optimal rate α in an optimal region rather than some
fixed starting point.

Definition 3: Golden Section Search is used to find the most
promising value of α in the interval [αmin;αmax] by means
of following iterative process with an error threshold ε:

α1 = b− b− a
φ

, α2 = a+
b− a
φ

(8)

where initially a = αmin, b = αmax and φ = 1+
√

5
2 . The

Equation 8 defines an iterative procedure, which followed by
the evaluation of E(W − α1 · ∇E(W )) and E(W − α2 ·
∇E(W )). Each iteration ends with a = α1 or b = α2 until
criteria |a− b| > ε is satisfied.

Another approach to optimization of α using EC proposed
by Kim et al. [30]. Some authors target specifically generation
of weights using EA rather than learning. Ding et al. [15]
showed how the EC can be used for weights allocation. Jie
et al. [31] stated the importance of GA since it is able to
produce generalized model and improve learning. Further,
Islam et al. [32] specifically mentioned applicability of GA
to optimized a number of hidden neurons and layers towards
improvement of classification accuracy. Finally, Kanada [12]
emphasized the importance of GA in learning rate optimiza-



tion, where learning rate is increased or decreased with respect
to previous epoch according to geometric regression. Another
work of interest is by Sajan et al. [33] where authors optimized
number of nodes in addition to a single value of learning
rate. In this work we will target global optimization of each
individual learning rate independent from previous values.

III. A NEW METHOD OF ON-LINE MLP TRAINING USING
GENETIC ALGORITHM

Despite the successful application of EBP, there are multiple
possibilities as to why this method fails to learn properly
form the given data. (i) There may be several occurrences
of local minima. (ii) The wrong placement of pre-defined set
of initial parameters such as learning rate α will mislead the
optimization procedure. Thus, one can highlight the following
difficulties related to usage of EBP: convergence is not guaran-
teed, can be slow, and depends on the input data parameters.
(iii) The challenge of training on-line model from the data
within as low a number of iterations is apparent. From the
literature we can see that EC has been applied for stochastic
optimization in MLP before to reduce convergence time. It
is also vital that the decision is made in a short period of
time, because otherwise it can cause privacy breaches due
to unreasonable delays in re-training an AC mechanism. In
contrary to previous works [33], [12], [32], [31], [15] we
suggest to apply optimization procedure for individual α.

A. Single-step on-line learning of MLP
The aforementioned optimization problem in a single-step

online MLP learning is caused by non-linearity and a high
level of abstraction.

Lemma: The error function E(W ) in a single-step MLP
is non-monotonic with multiple extreme points due to several
layers of non-linearity introduced by nested hidden layers. As
result conventional GD-based optimization methods may fail
to find a global optimal set of weights W .

The learning rate α in weights adjustments shall not be con-
stant on every iteration, so that it will result in a decrease of the
E(W ) on each learning iteration faster. Furthermore, each of
these adjustments steps consist of an additional unconstrained
optimization procedure that is aimed to find a corresponding
optimal α by means of meta-heuristic real-valued GA. The GA
enables multiple hypothesis evaluation at the same time since
the problem is to find an appropriate value of α. This is done
towards hardening the robustness against non-deterministic
patterns in the access sequence. We consider MLP, which
based on differentiable sigmoid activation function [10]. It
can be seen that the error function E(W ) is a non-linear one
that includes recursive additive composition of the neurons
activation functions for each given labelled dataset:

E(W ) =
1

2
· (d− y)2 =

1

2
· (d− 1

1 + e−h
j
i

)2, (9)

Remark. The complexity of the function E(W ) will grow
with the number of hidden layers. So, the function will have
a corresponding recursive form for each of the given labelled
data samples in single-step approach as shown in the Eq. 10.

E(W ) =
1

2
· [d− 1

1 + e−h
j
i

]2 =

1

2
· [d− g(

M−1∑
i=0

wj
i ·

1

1 + e−h
j
i

)]2 = · · · =

=
1

2
· [d− g(

M−1∑
i=0

wj
i · g(. . . w

j0
i · g(

M−1∑
i=0

w0
i · xi) . . . ))]2

(10)

The function in Eq. 10 represents an error surface E(W )
that has a non-linear dependency with respect to a set of
neuron weights W . From this perspective, influence of the
weights in the initial layer will have a bigger degree of non-
linearity than the next higher layers. Rojas [13][Chapter 7]
studied a similar example of the error function and depicted a
possible local minima that affects the optimization. Therefore,
there are multiple challenges for conventional GD optimization
possibly resulting in local optima solutions [15]. Multiple
plateaus and local minima make it unlikely to achieve the
global minima, so GD will be stuck in a sub-optimal during
weights update process. In fact, for an arbitrary weight wji of
the layer j the next function’s E(W ) limit will have a place as
shown in the Eq. 11 considering MLP error function described
in the E. 10. It is based on the limit’s property of the composite
continuous functions lim f [g(x)] = f [lim g(x)] according to
Stein [34] since the sigmoid function g(hji ) is a continuous
and differentiable function. Moreover, the neighbourhood of
the global minima of the derived limit is inside the tolerance
interval L±ε for the given neighbourhood of the optimal value
of the weight wji

optimal
± δ as studied by Exner [35] while

continuously changing the input data sample X . Also, we can
see that the nested combination of multiple monotonically
increasing sigmoid functions will result in number of local
optima, rather than one global one. Such combinations of the
sigmoid function will give a complex non-linear high level
abstraction for the same input data pattern and different weight
values. So, it is nearly impossible to define the exact value of
the limit for the global extreme point neighbourhood since
the resulting limit is a complex one and vector of the weights
needs to be closer to global optima. However, the limit is not a
constant value since there is a constant concept drift and each
iteration in data stream mining. As result, the neighbourhood
of the global optima wji

optimal
is changing stochastically with

a new data sample coming, which means that the error function
E(W ) has an inconsistent global optima region making usage
of the fixed-α method less efficient.

lim
wj

i−>woptimal

E(W )|X=constant =

lim
wj

i−>w
j
i optimal

1

2
· [d− g(

M−1∑
j=0

wji · g(. . . w0
i ·

g(

M−1∑
i=0

w0
i · xi) . . . ))]2 ≈

≈ 1

2
· [g(. . . lim

wj
i−>w

j
i optimal

g(

M−1∑
i=0

w0
i · xi) . . . ) . . . ]2

∈ [L± ε]

(11)



So, there is a need to apply more advanced techniques
for the weights optimization rather than conventional one
like constant or increasing learning rate α. E(W ) is located
within some ε of the L meaning that for different input
X the global optima will be different. For our purpose we
use sigmoid activation function for each neuron since it is
differentiable [36] and most suitable for learning in case of
two-class problems (”denied” or ”allowed”). The main point
of the optimization is to find an optimal set of weights W that
gives the lowest possible value of the error function E(W )
during single-step learning. Therefore, it is unacceptable to
apply purely unimodal optimization and line search because
they are exposed to premature convergence according to Sa-
lomon [37]. Unimodal heuristic optimization has monotonicity
as its necessary criteria according to Doerr et al. [38], yet this
is not achieved. As result, found solution will be a local one.

B. An optimal individual learning rate α prediction using
Genetic Algorithm

Our method targets usage of individual optimal α for each of
the weights on each layer that makes MLP to converge faster
than conventional unified fixed-α or deterministic decreas-
ing/increasing α approaches. Additionally, the single-step on-
line learning is applied since the availability of data samples
for training is limited. For the on-line incremental learning the
α has to be optimal on each step for eliminating accumulation
of the errors residuals. So, meta-heuristic EC tends to solve the
problem more reliably and quickly when classical unimodal
search methods are slow.

Proposal: Evolutionary Computing, Genetic Algorithm in
particular, is applied as one-dimension optimization in a
single-step MLP learning to facilitate a proper individual α-
determination for each particular weight wji optimal update.

Non-monotonic function such as E(W ) has lower chances
to be optimized due to multiple extreme points, and we
therefore consider EC methods as the most promising for
such tasks. MLP provides nested optimization problem. The
primary problem includes seeking for optimal weights as
shown in the Figure 12, which gives a value of the error
function referring to the Equation 2.

minW∈RM E[W − α · ∇E(W )] (12)

The secondary optimization problem is to find a set of
optimal steps α as shown in the Figure 13, which will result
in a global optimal solution for single-step algorithms to
avoid long iterative learning. However, at this point, we need
to consider each individual αij that employs mutation and
crossover operations to be optimized by GA, which increases
the chance to cover as much search space as possible while
keeping the weights constant.

minᾱ∈RM E[W −D(ᾱ) · ∇E(W )] |W=const (13)

where D - is a diagonal matrix.
Remarks. The surface of the error function has a non-

linear dependency on the weights values, which means that the

weights update process has to be performed by meta-heuristic
optimization methods in order to avoid premature convergence.
Conventionally, GSS or similar line search methods are applied
as a unimodal optimization. But it does not work well without
reliable information about the borders of the optimal learning
rate and is usually very slow. Naturally, GA will make it
converge faster.

C. Proposed methodology

Under the aforementioned constraints in on-line incremental
learning we proposed to use single-step MLP solving the
nested optimization problem to find an optimal set of indi-
vidual α for weights update. As result, the weights are only
corrected based on the optimal learning rate. Additionally,
it is important that toward privacy protection its application
maintains the trade-off between speed and reliability of the
answer. The algorithm of the proposed method is defined
in the Listing 1. The conventional Error Back Propagation
method was modified accordingly. For this algorithm we make
the assumption that each hidden layer has the same dimen-
sionality as input data vector. The computational complexity
will be as following. For each neuron’s weight there will be
pop size(·pcrossover+pmutation)·Nepochs recalculation of the
fitness function in a worth-case scenario. However, this can be
decreased by introducing the memory of the fitness function
values. Additionally, there is a chance of getting to the sub-
optimal or optimal αoptimal within fewer amount of epochs
in comparison to the Brent’s Method (Golden Section Search)
or Fibonacci method since they have rather linear convergence
according to Press [39].

The real-valued does not requiring additional binary map-
ping schemes, and therefore the α values are used as chro-
mosomes and the error function E(W ) is defined as a fitness
one. The corresponding Arithmetic Crossover was performed
for the crossover operation as discussed in the paper by Kksoy
et al. [40]. Additionally, the mutation was done as a real-valued
random uniform mutation of a chosen chromosome as shown
by Adewuya [41]. Here we concentrated on deriving as closest
to optimal learning rate α as possible in a short time frame.
Information Security tasks often put speed and response time
constraints on hard computational tasks rather than constraints
on answer precision.

IV. EXPERIMENTAL DESIGN

We performed experiments having a data stream with lim-
ited availability of the data samples for training.

Dataset. The Kaggle Amazon Employee Access
Challenge [42] was used as an access log to test the
proposed method. It consists of train 32,769 data records
characterized by 9 integer-valued feature as access requests:
ACTION, RESOURCE, MGR ID, ROLE ROLLUP 1,
ROLE ROLLUP 2, ROLE DEPTNAME, ROLE TITLE,
ROLE FAMILY DESC, ROLE FAMILY, ROLE CODE.
ACTION is a binary class label: 0 - action against resource
is denied (1,897), 1 - action is approved (30,871). Since
the original labelled testing dataset of the challenge is not



Algorithm 1 Optimization of α-rate in single-step MLP
training using real-valued GA

1: x← xnew
2: w ← wprevious
3: δoutput = g(h) · (d− y) · (1− g(h))
4: for all hidden layer do
5: for all neurons in a current hidden layer do
6: δji ← g(h) · (1− g(h)) · wji · δoutput
7: initialization(αrandom,pop size);
8: while Nepochs < NepochsMax or |Fitk −
Fitk−1| < ε or |Fit′ | < ε do

9: MUTATION(pmutation,α)
10: CROSSOVER(pcrossover,α1,α2)
11: SELECTION(α);
12: αoptimal ← αselected
13: end while
14: wij ← wji + αoptimal · δji · g(hji )
15: end for
16: end for
17: return w
18: function MUTATION(probmutation,α)
19: d← random(0, 1) (generation of a real number)
20: αmutated ← αmutate ± d
21: return αmutated
22: end function
23: function CROSSOVER(probcrossover,α1,α2)
24: d← random(0, 1) (generation of a real number)
25: offspring1← d · yi + (1− d) · xi
26: offspring2← d · xi + (1− d) · yi
27: return αoff1, αoff2

28: end function
29: function SELECTION(α)
30: Fit← E(W )|α
31: return αoptimal
32: end function

published, we decided to use the model by Duan et al. [43]
with the performance of AUC = 0.92360 as a reference
testing dataset that consists of 58,921 test data sample.

Performance Evaluation. For the comparison of the im-
plemented model on the testing data, several metrics were
used such as Mean Absolute Error (MAE), Root Relative
Squared Error (RRSE) and Root Mean Square Error (RMSE)
considering that data streams mining model is regressional
according to Bifet [44].

MAE =
1

N
·
N−1∑
i=0

|yi − di|

RRSE =

√√√√∑N−1
i=0 (yi − di)2∑N−1
i=0 (yi − d̄)2

RMSE =

√√√√ 1

N
·
N−1∑
i=0

(yi − di)2

(14)

MLP Configuration. For proof of concept demonstration

we used only 3 layers out of 6 layers according to ”Rule of
thumb” the optimal Nhidden = 2

3 ·(NIn+Nout) and a generally
accepted fixed learning rate α = 0.3 was defined. Also the
amount of epochs for the off-line learning was defined as 10
and 1 for the optimized single-step model. The Figure 2 shows
the experimental design using the proposed method.

Fig. 2: Proposed method for single-step on-line learning

V. RESULTS AND DISCUSSIONS

Our assumption was that there exist a set of pre-defined
access policies and known access patterns by selecting a
specific fraction of the data as training before data stream is
fed to a model. The following experiments were conducted.
(i) 100 samples are used for training followed by data stream
of test data. (ii) 1,000 samples are used as training data and
then testing is done for the new samples from the data stream.
Also we performed standard batch learning and cross-validated
the accuracy of implented method in C++ in comparison
to community-accepted implementations in Weka [45] and
RapidMiner [46] as shown in the Table I. Optimized model
used 10 iterations of GA with 10 chromosomes in each
population and 4 mutation and 7 crossover operations. Other
MLPs used 100 epochs. The result look consistent. Generally,
RRSE is a description of mean prediction. In this case we
can see that the mean is biased towards approved action ”1”
since logically the majority of the access patterns in a system
are legit. Therefore, all implementations show similarly high
value of RRSE.

Method MAE RMSE RRSE, %

MLP impl. 0.061 0.140 100.849
MLP impl. + GA 0.054 0.142 102.665
Weka MLP 0.061 0.149 107.554
RapidMiner MLP 0.059 0.151 108.700

TABLE I: Performance of implementations on static dataset

A. Similarity-based Access Control performance

We perform single-step on-line learning of the MLP as well
as cross-validation of incoming data in the data stream S.



The experiment was built as following: the boundaries of α
for GSS and GA were chosen to be [0, 1]. The MLP started
from randomly initialized weights and trained with l% sample
from the training dataset. The stream of k% samples from the
classified test dataset is then fed to the model. Moreover, the
train dataset constantly trains the model while new test data
samples arrive. Finally, earlier-defined performance metrics are
computed over the classified samples from the test dataset.
The Table II represents the results for the on-line scenario.
GSS method used the same number of iterations as number
epochs in the GA. Original MLP without optimization trained
10 epochs, and MLP with optimization only one.

TABLE II: Performance comparison of MLP on test dataset
in on-line incremental learning using optimized and non-
optimized techniques in data stream scenario

Method MAE RMSE RRSE, %

start with 100 pre-training samples

MLP (1 epoch) 0.065 0.180 36.117
MLP (10 epochs) 0.070 0.179 35.933
MLP + GSS (1 epoch) 0.060 0.173 34.682
Proposed 0.054 0.167 33.567

start with 1000 pre-training samples
MLP (1 epoch) 0.056 0.155 32.184
MLP (10 epochs) 0.057 0.155 32.183
MLP + GSS (1 epoch) 0.052 0.150 31.210
Proposed 0.038 0.140 29.078

The results show that proposed method gives better accuracy
on all performance metrics for 100 and 1,000 access log
samples that were available for the initial pre-training. How-
ever, such application of GA for on-line MLP optimization
has a cost of higher computational complexity than simple
utilization of constant α. Therefore, we believe that parallel
optimization can help to achieve fast processing speed since
sequential execution will be much slower than standard MLP.
This can be done using modern CPU and GPU.

B. Error surface influence on MLP training

The fitness function used in GA is basically the same as
error function in the MLP E(W ). The derivative on each
step is estimated in the neighbourhood of the corresponding
neuron weight w with precision h = ±10−6 in error cost
function E(W ) while keeping constant all other weights and
the input data sample. To study dependency between the
weights change and error function it was chose two arbitrary
weights on the lower layers (w1

3 and w1
9) in the 3-layers

perceptron. Figure 3 shows the surface of the error function
for two arbitrary selected weights. Unless some sophisticated
learning rate updating methods and stopping criteria are used,
the EBP will converge to a sub-optimal solution.

The Figure 4, (a) represents an example of path of both
weights along 1,000 iterations until it gets converged. The
learning rate was constant, so it can be seen that the path is
gradually following one direction. On the other hand, Figure 4,
(b) shows that proposed method has a broader coverage of the

Fig. 3: Surface of the error function showing dependency of
E(W ) on w1

3 and w1
9 as covariates in 3-layers MLP that was

trained from the given dataset

search space bringing a higher chance of getting an optimal
solution for the non-linear error function.

(a) Conventional MLP training
with a constant learning rate α

(b) Proposed method for individual
learning rate α optimization

Fig. 4: Path traverse of the weights w1
3 and w1

9 in MLP

Considering smooth transition between minima and neigh-
bourhood of the error function in the Figure 3 we can see that
proposed method will likely result in a better solution rather
than training ML with a constant step. Therefore MLP with
the higher number of layers can be trained using adoptive rate
α approach faster rather than fixed-rate iterative line search.

VI. CONCLUSIONS

Conventional off-line learning of Multilayer Perceptron is
no more reliable for data streams mining since it requires
more iterations to learn and does not converge quickly. As
result, it cannot be successfully applied for on-line training of
Similarity-Based Access Control models, where the attributes
of resource and user can be utilized to evaluate whether
similar users may access similar resources. To overcome this
limitation, a single-step learning of Multilayer Perceptron can
adjust the model once new access request come and does not
require the constant access to that pattern. In this work Evo-
lutionary Computing method was utilized, Genetic Algorithm
in particular. This method is considered to be more robust
in environment with a consistent drift of the data statistics
and non-deterministic events. The influence of the layers
weights on the error function was studied also and we can
state that due to non-linearity it requires better optimization.



Therefore, we proposed how the appropriate learning rate α
calculation can be done using Genetic Algorithm for each
neuron in accordance to an optimal solution on each layer.
This illuminates a need for constant iterative batch learning of
the Multilayer Perceptron, allowing model to be a single step.
One of the main benefits of the proposed method is that it
scales and can be used for larger non-linear Neural Networks.
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