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Abstract

Norway has become the world’s largest producer of Atlantic salmon through the
use of open net structures in the sea. The aquaculture facilities have grown in both
size and number. Currently, the industry faces increased attention on environmen-
tal challenges related to fish escapes, sea lice, diseases, and pollution. A possible
solution is to use a closed flexible fish cage (CFFC) with impermeable membrane
material instead of nets used in conventional aquaculture cages. Compared to a
net-based structure the response to sea loads of the new membrane-based system
changes completely. Few ocean structures exist with large, compliant submerged
components, and even fewer with a free surface. It is therefore presently limited
existing knowledge about how CFFCs will respond to sea loads. It is therefore
a need for the development of fundamental knowledge and understandings of
the physics of the CFFC. From this understanding we will develop mathematical
models of the sealoads and the response of the CFFC.

Model experiments of scaled models of the CFFC in current for different filling
levels have been conducted in multiple rounds to build knowledge of the system.
In current, the response of the CFFC has been found to be highly dependent on the
filling-level. For underfilled CFFC, a large deformation shaped like a hemispher-
ical cup, comparable to a parachute, appear at the front facing the current. This
deformation lead to a change in the geometry resulting in an increase in the drag
force related to a full CFFC.

From the experiments it was observed that the problem of a CFFC in current can
be characterised by a complex interaction between the membrane, the fluid masses
within the CFFC and the outside fluid flow. In order to reduce the complexity of the
problem, it was decided to model the system in 2D. In addition, it was chosen to
shift the focus from current to waves allowing for the use of potential flow theory
in the load modelling.

To develop theory and understanding of the membrane structure, and the
coupling between structural response and internal water motions, the response of
a 2D rectangular sloshing tank with a fabric membrane side wall subject to forced
sway motion was analysed. It was found that the response and the eigenfrequencies
of the coupled system relied heavily on both the membrane structure through the
tension, the membrane length, and the hydrodynamic pressure.

A mathematical model of a 2D CFFC in waves was then developed. In order
to analyse the CFFC in waves, equations for the geometry and initial tension of
the membrane of the CFFC were found. Based on the found geometry and static
tension, the wave response of a 2D CFFC in sway, heave and roll was studied. It
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Abstract

was found that the rigid body wave induced motion responses of a CFFC with
membrane in sway, heave and roll are significantly different from the responses
of a rigid CFFC. Very large ratios between free-surface elevation amplitudes and
incident wave amplitude are predicted inside the tank at the first and third natural
sloshing frequencies. It implies that nonlinear free surface effects must be accounted
for inside the tank in realistic sea conditions, as well known from other marine
sloshing applications (Faltinsen and Timokha, 2009). Within linear structural theory
we require that the dynamic tension in the membrane of the CFFC is smaller than
the static tension. For the analysed case with given dimensions, for significant
wave heights larger than 0.5 meter, the most probable largest dynamic tension is
larger than the static tension. For negative total tensions the structural model is
not valid. Therefore, a higher order structural model should be used. The effect
of scaling of elasticity on the rigid body motion have also been investigated. To
scale the elasticity of the fabric is unfortunately not straight forward. The response
of the CFFC using an elasticity available in model scale have been compared to
the response of the CFFC using the elasticity for full scale. These responses where
found to deviate to a large extent. This raises severe questions of the direct use of
results from model scale experiments for the CFFC.
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Nomenclature

∙ Only the most used symbols are listed in the following

∙ Superscript (𝑖) indicates internal, and superscript (𝑒) indicates external

∙ Vectors and matrices are represented with bold symbols

Abbreviations
2D Two-dimensional

3D Three-dimensional

CFFC Closed flexible fish cage

HPC Harmonic polynomial cell method

IBM Immersed boundary method

Re Reynolds number

Greek and mathematical symbols
𝛼0𝑚 Fourier coefficient

𝛼𝑘𝑚 Fourier coefficient

𝛽𝑛 Generalized free surface coordinate

𝛾2𝑛 Hydrodynamic coefficient associated with sway motion

𝛾𝑑𝑛𝑚 Hydrodynamic coefficient associated with the wall deformations

Δℎ Water height difference between inner and outer free-surface levels

Δ𝑝 Pressure difference

Δ𝑝0 Static pressure difference

Δ𝑝 Dynamic pressure difference

Δ𝜌 Density difference

𝜁 Free surface elevation

𝜁𝑖 Internal wave elevation
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Nomenclature

𝜁𝑎 Incident regular wave amplitude

𝜂2 Sway motion

𝜂3 Heave motion

𝜂4 Roll motion

𝜏 Dynamic tension

𝜅𝑛 Wave number

𝜆 Filling level of the bag in experiments

𝜆𝑚 Dry structural natural frequency

𝜆*𝑚 Wet 2D membrane eigenfrequency

𝜇𝑘 Generalized complex structural mode amplitudes in tangential
direction

𝜈 Kinematic viscosity of the fluid

𝜈𝑚 Generalized normal complex structure mode amplitudes

𝜌𝑐 Density of membrane material

𝜌𝑤 Fluid density

𝜌𝑤𝑖 Density of the water inside the membrane

Σ0 Mean free surface

Φ Total velocity potential, composed of multiple velocity potentials

𝜑 Velocity potential

𝜑0 Velocity potential for incident waves

𝜑𝑑 Diffraction velocity potential

𝜑𝑗 Radiation velocity potentials associated with the body motions 𝑗

𝜑+𝑅 Far-field velocity potentials

𝜓 Dynamic angle

𝜓 The angle between the membrane tangent and the 𝑦− axis

𝜓0 The angle between the membrane tangent and the 𝑦− axis at rest

𝜓𝑒 The angle at the attachment point between membrane and floater

𝜔 Forcing frequency

𝜔𝑛 Natural sloshing frequencies

𝜔*
𝑛 Coupled sloshing frequency

Ω𝑑𝑚 Deformation velocity potential

∇ Displaced volume of water of the CFFC per unit length
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Nomenclature

Roman symbols
𝐴 Projected frontal area

𝐴+ Far-field complex wave amplitude

𝐴𝐿 Area of inside wetted floater surface

𝐴𝑅 Area of outside wetted floater surface

𝐴𝑤(𝑧𝑒) Waterplane area

𝑎
(𝑒)
𝑘𝑗 Added mass coefficient in 𝑘 direction, due to a motion in 𝑗 direction

in 2D

𝑎
(Ω)
𝑚𝑗 Coupled added mass coefficient associated with Ω

𝑎
(𝜑)
𝑛𝑗 Coupled added mass coefficient associated with 𝜑

𝑏𝑡 Internal distance between the floater at the free surface of the CFFC

𝑏
(𝑒)
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Chapter 1

Introduction

Closed flexible fish cages (CFFCs) are membrane structures made of fabric. They
are proposed used in the sea for salmon fish farming trying to overcome the
environmental challenges the aquaculture industry is meeting today with the
conventional gravity cage net systems. Compared to a net-based structure the
response of the new membrane-based system to sea loads changes completely. In
this thesis, sea loads on CFFCs are studied.

This chapter starts with the motivation for the development of the CFFC. There-
after, the CFFC system and the sea loads that work on the system is described. The
history of the development of the CFFC is given in the following section. Research
challenges and methods are then described, before a list of publications is given.
The thesis contributions are then presented before the outline of the thesis is given
at the end.

1.1 Motivation

Fish represent a vital contribution to the world’s food supply. However, at the same
time as the population of the world is growing, many marine capture fisheries
have become depleted, and the fish are harder to catch. The question arises: ”Is it
possible to meet the increasing demand for seafood?” One alternative is to produce
the fish in aquaculture (Tidwell and Allan, 2012).

Norway is presently the worlds biggest producer of Atlantic salmon. The
traditionally used open-net-structures are probably the most important reason for
the Norwegian success. The open net-structures is a simple, inexpensive technology
that utilises the Norwegian advantage of abundant access to fresh and clean
seawater (Rosten et al., 2013).

The very nature of aquaculture, where fish is grown at a much higher density
than appearing naturally, makes it likely to affect the existing surrounding environ-
ment (Crawford and MacLeod, 2009). While the aquaculture facilities have grown
in size and number, the attention related to the industry’s ecological sustainability
have increased. Views on shortcomings related to the traditional technology have
been stated. These weaknesses concern sustainability challenges related to escapes,
sea-lice, diseases and pollution (Gullestad et al., 2011).
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Figure 1.1: Illustration of the components of the closed flexible fish cage, including
external environmental challenges.

The attention the industry faces related to environmental challenges is despite
improvements in technology and operational procedures. The aquaculture industry
is under pressure to develop technology and procedures that reduce the influence
from the aquaculture on the environment Michael et al. (2010).The aquaculture
industry in Norway is being held back from growing by the Norwegian govern-
ment until they can solve the problems related to sea lice and fish escapes. To
stimulate to technology development the Norwegian Directorate of Fisheries has
opened for that the industry can apply for technology development licenses (Nor-
wegian Directorate of Fisheries, 2017). The industry has responded by intensifying
the work with developing technology to meet the challenges. One response to
the environmental challenges lies in developing open water closed containment
aquaculture technology, where CFFC is one of the proposed concepts.

1.2 The closed flexible fish cage

Closed containment technology is a term used to describe technologies that attempt
to restrict and control the interaction between the farmed fish and the surrounding
environment, with the goal of minimising the impact and getting better control over
the aquaculture production (Michael et al., 2010). In a closed fish production system,
the farmer has increased control of how the fish are exposed to and influence the
environment, by controlling the flow and quality of the water entering and leaving
the production system (Hægermark, 2013). The water circulation can cause a more
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Waves

Membrane

𝜂3
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Sloshing

𝜂4
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Figure 1.2: Illustration of sea loads from current, waves and internal water motions
on the closed flexible fish cage. The closed flexible fish cage will in 2D move in 3
DOF, 𝜂2, 𝜂3 and 𝜂4 are the motions in sway, heave and roll respectively.

stable environment inside the production system, which can be an advantage
related to fish welfare and growth (Rosten et al., 2011). By controlling the flow in
and out of the production system, it is also expected that the waste-pollution will
be limited. As an answer to the development licenses incentive, several closed fish
farming concepts have been proposed and are being tested: both rigid systems
made of steel, concrete or composites and flexible systems made of fabric (Aadland,
2015).

One way of making a closed fish production system is as a closed flexible
fish cage (CFFC) placed in the sea. Later we will denote the CFFC also as a bag.
The industry standard of conventional aquaculture cages today are the floating
gravity cages. The main components are: net cage, floating collar, weight system,
and grid mooring. The main idea of the CFFC is to replace the net structure
with an impermeable membrane, and potentially reuse the floater and mooring
system of conventional aquaculture gravity net cage systems. By reusing available
components, the CFFC may be easier to put directly into operation at existing sites.
The membrane is a tight barrier, and it is, therefore, crucial to secure adequate
water quality inside the cage for the fish to thrive. By hydraulics, the water is
pumped in and out to ensure a sufficient flow-through and circulation inside the
cage and removal of the waste. The hydraulics will require a continuous power
supply. See illustration of the system elements in Figure 1.1.

The CFFC is subject to waves and current loads. Additionally, due to the open
internal free surface, the cage will also experience internal water motions known
as sloshing, see Figure 1.2. The CFFC is flexible and behaves hydro-elastically. This
means that the deformation of, and hydrodynamic forces on the bag are closely
coupled, see Figure 1.3 for illustration. The deformations and forces on the CFFC
depend on both the external and internal hydrodynamic pressure as well as the
structure dynamics. In a rigid system such as ships and offshore oil platforms, the
structural response and the hydrodynamic forces are decoupled.

The flexibility of a fabric structure is governed by the elasticity of the material
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Pressure loads
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Local deformations

Global geometry

Structure

Figure 1.3: Hydro-elastic relations

and the tension in the fabric. When a flexible structure is exposed to external loads,
the reaction is a change in shape. Due to this response, it is no longer possible to
decouple the hydrodynamic and the structural analysis, and the problem must be
treated hydro-elastically (Løland and Aarsnes, 1994). Few other ocean structures
exist with large, compliant submerged components, and even fewer with a free
surface. It is therefore presently limited existing knowledge about how CFFCs will
respond to sea loads (Rosten et al., 2011).

To be able to design a robust CFFC system, knowledge of the behaviour of the
closed flexible fish cage when subjected to sea loads is vital. An industry research
project managed by SINTEF Ocean (former SINTEF Fisheries and Aquaculture)
with NTNU as one of the partners called ”External Sea Loads and Internal Hy-
draulics of Closed Flexible Cages” have been run to secure this knowledge. This
PhD project is a part of that industry research project.

1.3 The historical development of the closed flexible fish cage

Different versions of the CFFC concept have been tested out on earlier occasions.
One of the first Norwegian attempts was at a research-station at Matre, Norway
around 1988. The system was then referred to as promising (Rosten et al., 2011).

A similar system was tried out at the start of the nineties, at Støytland Fisk in
Flekkefjord also in Norway, as part of a research project run by Agder Research
Foundation. A full scale test facility was made as illustrated in Figure 1.4 (Skaar
and Bodvin, 1993). The aim of the project was to reduce/control the influence of
the environmental effects, mainly algae blooms, fish-lice and extreme temperature
variations on the fish production. A design project was also attached to this project
that considered environmental loads on the cage (Solaas et al., 1993). An upscaled
version of the Flekkefjord facility was later tried out close to Arendal in 1995. This
facility experienced a total breakdown after a short time, due to material fatigue,
and the concept was abandoned for a time (Rosten et al., 2011).

From September 2009 to September 2011 an EU research project coordinated by
Plast Sveis AS called Closed Fish Cage were run (Johannessen, 2013). They aimed
to develop a closed, escape proof, constant volume, sea-based cage for fish farming
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Floaters
Water supply

Outlet tube

Inlet tube

Figure 1.4: Technical illustration of the historical bag system used in Flekkefjord in
1990 in calm water. The bag is axisymmetric, with membrane, water supply, inlet
tube, outlet tube and floaters. Adapted from Skaar and Bodvin (1993).

based on a flexible polymer plastic net pen. A pilot facility was tested out in Toft,
Brønnøysund from September 2010 until June 2011. During this time they claimed
that the system was working without problems and showed promising results
related to sea-lice infestations.

The company Botngaard Systems AS has presently produced three full-scale
systems for commercial use, presently in the sea (personal communication with
Harald Tronstad at Botngaard Systems). One is presently used as a waiting cage
before slaughtering of contagious fish to meet food authorities regulations. The
cages can also be used for post-smolt (fish up to 400-1000 g) or full-size fish
production aimed at the consumer marked (Botngaard Systems, 2017).

The company AkvaDesign AS develops closed fish cage systems. They have
been able to run a full production cycle of farmed salmon without sea lice infesta-
tion (Akvafuture, 2017).

1.4 Research challenges

The previous experience with the CFFCs is limited. Before designing and deploying
CFFC systems in the sea, the loads on and response of such a system in waves and
current with internal water motion should be properly understood. To gain the
needed knowledge the importance of conducting fundamental research on marine
hydrodynamics to understand the behaviour and operation of the CFFC in the sea,
cannot be emphasised enough. When the cage is less than full, the static tension
in the membrane is zero and the geometry of the cage is given by the bending
stiffness of the membrane. The bending stiffness of a fabric is in general negligible.
Hence, the shape of the cage is therefore easily deformed. Since it is possible that
the response of the cage changes with reduced filling levels, it is important to
investigate how the cage behaves for filling levels less than 100%, to secure an
adequate mooring and safety system. Here, the 100% filling level of the CFFC is
defined according to the theoretical full volume of the CFFC.

Many physical phenomena can be encountered related to sea loads on the
CFFC. The main focus in this thesis will be limited to loads on the hydroelastic
membrane system from waves, current, and the internal water motions, coupled
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with the structural deformation of the membrane. Research methodology will
be to combine experimental observations with theoretical studies and numerical
analyses to create knowledge about the behaviour of CFFCs subject to current and
wave loads. With limited a priori knowledge of the physics of the CFFC, we will, :

∙ Conduct and use model experiments to acquire the basic understanding of
the physics of the system through observations and response measurements.

∙ Study the effect of varying filling level on the drag forces acting on the CFFC
in ambient current from model experiments.

∙ Develop mathematical models to describe the physics of a closed membrane
structure with a free surface and internal water motions.

In the future it will be advantageous to optimise the response of the system
by active control of the water inflow. To design proper control systems, sufficient
physical understanding is required to formulate control objectives and propose
control strategies to meet these objectives.

The following loads and effects will not be covered: Waves and current in
combination, the coupling between the closed flexible fish cage and other potential
objects (such as nets and boats), the biological aspect (the presence of the fish) and
local flow effects due to the water exchange.

The gained knowledge from this project will contribute to raising the industry’s
understanding of the physics of such closed flexible fish cages. We will develop
knowledge on modelling of response to sea loads on the CFFC. This will give
the industry a better understanding of the behaviour, operation, and reliability
of closed flexible fish cages, and second, it will give the scientific community a
starting point for further work on these systems.

1.5 List of publications

The following papers published are considered part of this thesis.

Journal papers

∙ I. M. Strand and O. M. Faltinsen. Linear wave response of a 2d closed flexible
fish cage. Submitted to: Journal of Fluids and Structures, 2018

∙ I. M. Strand and O. M. Faltinsen. Linear sloshing in a 2d rectangular tank
with a flexible sidewall. Journal of Fluids and Structures, 73:70 – 81, 2017

∙ I. M. Strand, A. J. Sørensen, Z. Volent, and P. Lader. Experimental study of
current forces and deformations on a half ellipsoidal closed flexible fish cage.
Journal of Fluids and Structures, vol. 65, 2016

Additional authored and co-authored papers are considered background for the
thesis.

Journal papers

∙ P. Lader, D. W. Fredriksson, Z. Volent, J. DeCew, T. Rosten, and I. M. Strand.
Wave response of closed flexible bags. Journal of Offshore Mechanics and Arctic
Engineering, 139(5), 2017
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∙ P. Lader, D. W. Fredriksson, Z. Volent, J. DeCew, T. Rosten, and I. M. Strand.
Drag forces on, and deformation of, closed flexible bags. Journal of Offshore
Mechanics and Arctic Engineering, 137(August):041202, 2015

Conference papers

∙ P. Lader, D. W. Fredriksson, Z. Volent, J. DeCew, T. Rosten, and I. M. Strand.
Wave Response of Closed Flexible Bags. In ASME 2016 35th International
Conference on Ocean, Offshore and Arctic Engineering, volume 6: Ocean Space
Utilization; Ocean Renewable Energy, 2016

∙ I. M. Strand, A. J. Sørensen, and Z. Volent. Closed flexible fish cages: Mod-
elling and control of deformations. In Proceedings of 33rd International Confer-
ence on Ocean, Offshore and Arctic Engineering. June 8-13, 2014, San Francisco,
USA, 2014

∙ P. Lader, D. W. Fredriksson, Z. Volent, J. DeCew, T. Rosten, and I. M. Strand.
Drag forces on, and deformation of, closed flexible bags. In Proceedings of
33rd International Conference on Ocean, Offshore and Arctic Engineering. June
8-13, 2014, San Francisco, USA, 2014

∙ I. M. Strand, A. J. Sørensen, P. Lader, and Z. Volent. Modelling of drag forces
on a closed flexible fish cage. In 9th IFAC Conference on Control Applications in
Marine Systems. Osaka, Japan, 2013

1.6 Thesis contributions

The main scientific contribution of the work is the following:
Chapter 3:
We have used model experiments to develop an understanding of the physics of
the closed flexible fish cage in ambient current through observations and response
measurements. The main findings are:

∙ For underfilled cages, a large deformation shaped like a hemispherical cup,
comparable to a parachute, appear at the front facing the current. This defor-
mation leads to a change in the geometry, resulting in an increase in the drag
force related to a full cage.

∙ The problem of an under filled CFFC in current can be characterised by a
complex interaction between the membrane, the water masses within the
CFFC and the outside water flow.

Chapter 4:
∙ A 2D rectangular sloshing tank with a fabric membrane side wall in sway

motion is studied in order to develop theory and understanding of the
membrane structure, and the coupling between structural response and
internal water motions.

∙ It was found that the eigenfrequencies of the system was found to be lower
than the rigid tank sloshing eigenfrequencies, the eigenfrequencies was de-
pendent on both the membrane tension and 2D membrane length. For low
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tensions, more than one eigenfrequency of the coupled system may exist
between the sloshing frequencies of a rigid tank.

Chapter 5:
∙ A mathematical model for the static equilibrium geometry and tension for a

2D membrane in calm water with a hydrostatic pressure difference have been
developed. Direct solutions to these equations under certain assumptions
have been found.

Chapter 6:
∙ A mathematical model of a 2D closed flexible fish cage in waves has been

developed.

∙ It is found that the response of the rigid body motions in sway, heave and
roll of a CFFC are significantly different from the response of a rigid CFFC.

∙ Very large ratios between free-surface elevation amplitudes and incident
wave amplitude are predicted inside the tank at the first and third natural
sloshing frequencies. It implies that nonlinear free surface effects must be
accounted for inside the tank in realistic sea conditions, as well known from
other marine sloshing applications (Faltinsen and Timokha, 2009).

∙ Within linear structural theory we required that the dynamic tension 𝜏 is
smaller that the static tension 𝑇0. For significant wave heights larger than
0.5 meter, the most probable largest dynamic tension is larger than the static
tension. This indicated that a higher order structural model should be used.

∙ The effect of scaling of elasticity on the rigid body motion have been investi-
gated. The results for a case using the full scale elasticity deviates to a large
extent from the results using an elasticity used in model scale. This raises
severe questions of the use of the results from model scale experiments.

1.7 Thesis outline

The thesis is organised as:
Chapter 2: presents the theoretical background for sea loads on CFFCs.

Chapter 3: gives experimental results for the effect of filling level on the drag forces
on a half ellipsoidal closed flexible fish cage is presented and discussed. The
study extends the results published in Strand et al. (2013) and Lader et al.
(2015).

Chapter 4: uses potential flow theory to investigate linear sloshing in a 2D rect-
angular tank with a flexible side wall. The case is analysed both analytically
and numerically. The deformation of the flexible wall is modelled by a modal
approach. The effect of the wall deformation on the eigenfrequencies of the
considered system is investigated.

Chapter 5: presents the analysis of a 2D static membrane under overpressure due
to a hydrostatic pressure difference. The aim is to find the static geometry
and the static tension in the membrane. Equations for the system is found
and analysed in a case study.
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Chapter 6: presents the development of the linear theory of a 2D closed flexible
fish cage in waves. The theory is used to analyse the response of the CFFC in
waves. The results from a 2D case study with relevant full scale dimensions,
considering a half circularly shaped CFFC with floaters is given.

Chapter 7: presents general conclusions and recommendations for further work.

Appendix A: gives expressions for coefficients in equations for linear sloshing in
a 2D rectangular tank with a flexible side wall.

Appendix B: presents the background formulations of the numerical potential
theory harmonic polynomial cell (HPC) method.

Appendix C: presents full scale parameters of a commercial cage from Botngaard
systems.

Appendix D: gives the membrane equation system for the membrane deforma-
tions for a semi- circular membrane.

Appendix E: gives the derivation of the relation between radiated wave amplitude
and damping for finite water depth.

Appendix F: gives the plot of structural normal mode shapes for modes from one
to ten.

Appendix G: presents error estimation of hydrodynamic coefficients.

Appendix H: presents a convergence study of number of structural modes.
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Chapter 2

Theoretical background: Sea loads on
closed flexible fish cages

Aquaculture in the sea located along the Norwegian coast is subjected to sea loads.
The same sea loads will also work on the closed flexible fish cages, but in addition,
the CFFC will also be subjected to forces from internal water motion, known as
sloshing, as illustrated in Figure 1.2. Limited scientifically published material is
available related to the effect of sea loads on closed flexible fish cages. Results
from the design project done by the SINTEF group in the 90thies, that considered
environmental forces on the bag were reported in Solaas et al. (1993). Results
published as part of the project ”External Sea Loads and Internal Hydraulics of
Closed Flexible Cages” are given in Strand et al. (2013), Strand et al. (2014) , Lader
et al. (2015) and Lader et al. (2017). Due to the limited background theory of sea
loads on CFFCs, theory for comparable structures will be used as background
knowledge and for comparison.

In this chapter the theoretical background for sea loads on CFFCs will be
presented. The chapter starts with presenting background theory for comparable
structures. The chapter ends with presenting the knowledge we have on sea loads
on closed flexible fish cages.

2.1 Sea loads on comparable structures

Background knowledge and theory of aquaculture net cages and liquid filled
membrane structures, also known as closed containment bags will be presented in
the following.

2.1.1 Sea loads on aquaculture net cages

It may be convenient to compare the CFFC with conventional net cages used by the
industry today. In NS9415 a classification of the wave and current loads according
to the degree of exposure of the aquaculture site is given, see Table 2.1. Aquaculture
net structures are also shown to behave hydroelastically with large dependencies
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Table 2.1: Norwegian aquaculture site clasification scheme for waves and current,
from NS9415.𝐻𝑠 is significant wave height, 𝑇𝑝 is peak period of the wave spectrum
and 𝑈𝑐 is the current velocity.

Wave 𝐻𝑠 (m) 𝑇𝑝 (s) Degree of Current 𝑈𝑐 (m/s) Degree of
exposure exposure

A 0.0-0.5 0.0-2.0 Small a 0.0-0.3 Small
B 0.5-1.0 1.6-3.2 Moderate b 0.3-0.5 Moderate
C 1.0-2.0 2.5-5.1 Medium c 0.5-1.0 Medium
D 2.0-3.0 4.0-6.7 High d 1.0-1.5 High
E >3.0 5.3-18.0 Extreme e >1.5 Extreme

between forces and deformations. The aquaculture net cages are not closed volume
structures, and will therefore not have sloshing challenges.

Both structural and hydrodynamic models have been developed to analyse
the loads on the structure in waves and current. Numerical simulation with ex-
perimental validation, in both waves, current and combined waves and current
with satisfactory agreement have been conducted (Kristiansen and Faltinsen, 2015;
Lader and Fredheim, 2006; Zhao et al., 2007; Kristiansen et al., 2015). Aquaculture
net cage systems are composed of multiple interacting moving components. The
total system consists of a net cage, floater, mooring lines and bottom weights. The
importance of modelling the effect of all components in interaction have been
emphasised in Kristiansen and Faltinsen (2015). For aquaculture net structures,
it has been found that the drag decrease for increasing current compared to a
rigid structure at the same current velocity due to large deformations decreasing
the exposed area, see Lader and Enerhaug (2005). Due to the large variation be-
tween dimensions of components from large scale floaters to net twines, numerical
analysis using Navier Stokes is considered too difficult and too computationally
expensive. Simplified screen models in combination with a dynamic structural
truss model (Kristiansen and Faltinsen, 2012) or simplified Morrison truss models
are therefore used (Lader and Fredheim, 2006; Moe et al., 2010).

2.1.2 Sea loads on floating liquid filled membrane structures

A similar structure resembling the CFFC is the flexible containment bag used
for transportation of fresh water or oil, first described by Hawthorne (1961). The
closed containment bags have been subjected to both numerical and experimental
studies. The research was first concerned with static shapes and tensions of the
bags, directional stability of a flexible container under tow and later, stresses,
motions and shapes of flexible containers in waves. Additionally, even though
the container does not have an internal free surface as the CFFC, it has internal
liquid motions, effecting the global response. The internal liquid motions have a
resonance behaviour due to the elasticity of the bag.

For the flexible containment bags, the elasticity of the material and the tension in
the fabric govern the shape and flexibility of a fabric structure (Løland and Aarsnes,
1994). It has been found that the shape and tension are strongly dependent on
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the filling level, as presented in Hawthorne (1961), Zhao and Triantafyllou (1994)
and Zhao (1995). The static tension decreases with decreasing filling level until it
reaches zero. Theoretically, it is possible with negative static tension in membranes.
However, membranes have negligible compression stiffness, and will buckle when
subjected to negative tension (Shaw and Roy, 2007).

The effect of towing resistance of the bag was also examined by Hawthorne
(1961). It was found that the main components of the drag were due to skin friction
on the long body. It should be noted that the nose of the bag in the towing direction
was designed rigid, not allowing any deformation of this part. Challenges with
towing stability, related to decreased towing speeds, oscillatory behaviour of the
rigid body and flexural instabilities resulting in flutter of fabric or buckling of the
shape were experienced. Paidoussis and Yu (1976) found that the stability of the
bag in tow is mainly controlled by appropriate design of the shape of the tail and
nose sections of the body.

The response of the floating liquid filled fabric structure in waves have been
examined and analysed both numerically and experimentally by Zhao and Tri-
antafyllou (1994), Løland and Aarsnes (1994), Zhao (1995) and Phadke and Cheung
(2001). Bottom mounted liquid filled membranes have also been examined, but
will not be covered her. Mathematical models of the containment bags have mostly
been formulated in 2D. The total pressure on the bag is an interaction between
the internal and external pressure forces. Hawthorne (1961) modelled the internal
water motion as a one-dimensional problem in the longitudinal direction, with
one equation of motion of the liquid inside that membrane and one equation of
continuity. The solution of these equations gave several resonances dependent
on the wave length of the incoming wave and the length of the storage container.
However, in experiments it was observed that the surrounding water introduced
significant wave radiation damping, and these resonances were highly damped
(Hawthorne, 1961). Zhao and Triantafyllou (1994) observed peaks in the numerical
results of the dynamic pressure and dynamic tension due to resonant internal water
motion. While Phadke and Cheung (2001) found that the peak in the dynamic
tension and the peak in motion response did not necessarily coincide in frequency.
All cited references have used linear theory both for the liquid and the structure
in their numerical evaluations. However, Zhao and Aarsnes (1998) stated that
linear structural theories for flexible containers are only valid for small incident
wave amplitudes. This differs from theories for ship motions and is due to the
requirement of a positive total tension in the membrane. Due to the still water body
shape at the free surface, there are also strong hydrodynamic non-linearities. This
implies that linear theory cannot be used for design wave or sea state condition
calculations (Løland and Aarsnes, 1994).

2.1.3 Sloshing in tanks

Wave-induced sloshing (interior wave motion) becomes an issue as well-known
from many engineering applications (Faltinsen and Timokha, 2009). Liquid slosh-
ing in tanks represents a challenge both in the naval, air and space, civil and in
the nuclear industry, and have therefore been thoroughly studied (Faltinsen and
Timokha, 2009; Ibrahim, 2005). Since marine applications involve relatively large
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excitation amplitudes, resonant sloshing can involve important non-linear free-
surface effects. The viscous boundary layer damping is very small. However, if
breaking waves occur, the associated hydrodynamic damping is not negligible.
Lateral tank excitations with periods near the highest natural sloshing period are
of primary concern. The highest natural sloshing period in rigid half-filled spher-
ical tank of radius 𝑅0 is 𝑇11 = 2𝜋

√︀
𝑅0/1.56016𝑔 with 𝑔 as acceleration of gravity

Faltinsen and Timokha (2009). Structural elastic membrane effects for flexible cages
will influence the natural sloshing frequencies.

Experimental and theoretical studies of sloshing in a vertical circular cylinder
with horizontal harmonic forcing show that different overlapping wave regime in-
volving planar waves, swirling waves and irregular chaotic waves occur (Faltinsen
and Timokha, 2009). Irregular chaotic waves mean that no steady-state condition
occur while the planar and swirling waves are steady state. The waves are a con-
sequence of non-linear transfer of energy between sloshing modes. Which wave
regime occurs depends on initial and transient conditions. Swirling waves have
been of particular concern in designing spherical LNG tanks. A reason is the large
horizontal forces occurring with components in-line and perpendicular to the
forcing direction. It matters for the tank support and in the buckling analysis of the
sphere.

There is important coupling between sloshing and the external flow through
the body motions (Rognebakke and Faltinsen, 2003). When considering a CFFC, we
must account for normal and tangential deformations of the membrane structure.

2.2 Sea loads on closed flexible fish cages

In this section, results from Solaas et al. (1993), Strand et al. (2013), Strand et al.
(2014), Lader et al. (2015) and Lader et al. (2017).

2.2.1 Static pressure forces and deformations

For an overfilled closed flexible fish cage, Solaas et al. (1993) stated that to maintain
the shape of the bag, a positive pressure difference inside the bag given as Δ𝑝 =
𝑝𝑖 − 𝑝𝑜, where 𝑝𝑖 is the internal pressure and 𝑝𝑜 is the external pressure, is essential.
A positive pressure difference is also essential for the water exchange.

Strand et al. (2014) looked at the load history effects on an under-filled bag
under static conditions, where under-filled implied that the bag had less filling
level related to the theoretic geometric volume than 100%. Filling levels from 100%
to 70% were examined. The bag was subjected to different load histories from
waves and current, with and without applied horizontal braces. The horizontal
braces were thin plastic tubes introducing stiffness in the circumferential direction.
Experimental data were analysed related to deformations on the bag for different
filling levels. They found that the bag had a clear tendency to deform when the bag
was less than 100% full. These deformations increase in magnitude with decreasing
filling level. Multiple deformation patterns were found dependent on filling level
and load history. The deformations were different for current and wave load
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2.2. Sea loads on closed flexible fish cages

histories. For the braced bag only one deformation pattern was found independent
of load history.

2.2.2 Wave loads

Wave loads and motions will introduce dynamic tensions in the fabric. Solaas
et al. (1993) reported from the results from model experiments that the dynamic
tension in the fabric was described as relatively small. However, concern was
expressed related to observed wave motions in the fabric propagating downwards.
The concern was related to that these wave motions could introduce critical local
peak loads in the fabric if the fabric motions were suppressed for instance by a
penetrating tube.

Lader et al. (2015) investigated the behaviour of the CFFC in regular waves
through model experiments in a small wave tank. The model was subjected to
regular waves with wave periods from 0.5s to 1.5s. The wave length of these waves
corresponded to 0.5-4.6 times the bag diameter. Three different wave steepnesses
were used; 1/60, 1/30 and 1/15. The bag was tested in 100%+ filling level, which
is close to a condition intended used in production and a 70% filling level, which
is a damage condition. The filling level is related to the theoretic volume of the
geometric shape. When the bag was under-filled, it was allowed to globally deform.
From the experimental results, it was concluded that the deflated bags (70% filling
level) had a better behaviour related to motions and water integrity inside the
bag than the inflated bags (100%+ filling level). The integrity of the bags, i.e.
whether water entered or left the bag over the floater was challenged for smaller
waves for the inflated bags. In total, the interaction and coupling between the
bag, the internal water and the floater were described as complex, with significant
non-linear characteristics. The fabric tension and motion were not measured, but
violent fluttering was observed from underwater video recording. This fluttering
was described as most violent for the inflated case, and concern for snap-loads in
the fabric was expressed.

2.2.3 Current loads

Solaas et al. (1993) modelled the effect of current forces and deformation on a full
bag pen, which is an early version of the CFFC. They found both global and local
deformation patterns. The global deformation of the bag pen was approximated
based on moment equilibrium. A symmetric deformation of both the front and the
back wall of the bag were found, comparable to deformations of a rigid beam under
pressure as in Figure 2.1. Local deformations of the bag wall were approximated
based on the varying pressure distribution around a rigid circular cylinder in a
steady flow. Due to these pressure variations, the front of the bag was pressed
inwards in an area of ±30 deg upstream of the bag, see Figure 2.1.

Strand et al. (2013) and Lader et al. (2015) studied the effect of varying filling
level on the drag force for different geometries experimentally. The experiments
were conducted in the small towing tank at the US Naval Academy in August 2012.
Strand et al. (2013) analysed the results for a cylindrical bag, and Lader et al. (2015)
compared four different geometries: a cylindrical bag with a cone at the bottom,
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Figure 2.1: Deformations of a bag pen in current, adapted from Solaas et al. (1993).
Top: Global horizontal deformation of bag pen, side view. Bottom: Local defor-
mation of bag in current, top view. The deflection is magnified for illustration
purposes.

a cubical bag with a pyramid at the bottom, a conical bag and a pyramidal bag.
Velocities in the range 0.021-0.127 m/s were studied, giving Reynolds numbers
on the range 𝑅𝑒 = 1 − 8 · 104. The Reynolds number is based on the diameter
and given as 𝑅𝑒 = 𝑈𝐷/𝜈. The Reynolds number is a non-dimensional measure
of the characteristics of the flow regime, 𝐷 is the diameter, 𝑈 is the velocity, and
𝜈 is the kinematic viscosity of the fluid, here fresh water. They found that the
drag forces on all the different geometries increased with decreasing filling levels.
However, for the cylindrical and cubical bags, the drag forces had a larger increase
than for the conical and pyramidal bags. This increase in drag was found to be
due to a local deformation in the front, apparent for filling levels less than 100%,
affecting the drag coefficient unfavourably. This deformation was most pronounced
for the cylindrical and cubical structures. The deformation resembled the local
deformation pattern given by Solaas et al. (1993), on a larger scale.

For Reynolds numbers (𝑅𝑒 > 4 · 104) at filling levels below 90 % the local
deformations in the front described by Strand et al. (2013), Lader et al. (2015) and
Solaas et al. (1993) could resemble the shape of a regular parachute. Even though
the parachute is an open volume, and the CFFC is a closed volume and thereby also
dependent on the internal flows and motions of the bag, parallels can be drawn.
The drag coefficients found for the cylindrical and cubical bag in Strand et al. (2013)
and Lader et al. (2015) were close to the drag coefficient range found for parachutes
and hemispherical cups (Hoerner, 1958).

For Reynolds numbers below 𝑅𝑒 ≤ 4 · 104 (low velocities), the bag did not
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appear to deform but remained the shape as it appeared for only static pressure
(Strand et al., 2013). The form of the bag in still water for pure static pressure was
found to be dependent on the load history of the bag (Strand et al., 2014). This
indicates that the initial shape of the bag can affect the experimental results.

The Reynolds number in model and full scale are not equal, and the drag
coefficient is known to be dependent on both the geometry and the Reynolds
number, care should therefore be taken before these results are applied in full scale.

2.2.4 Sloshing

Sloshing inside the bag pen was observed experimentally by both Solaas et al.
(1993) and Lader et al. (2017). For resonant conditions, the bag experienced large
deformations and water was thrown out of the bag. Solaas et al. (1993) suggested
that the resonant internal water motions, would introduce peak loads in the fabric.
They also estimated the first sloshing frequency based on a given cylindrical rigid
geometry.

2.3 Following work

To develop knowledge and hypothesis of how the closed flexible fish cage behaves
under current for varying filling levels model experiments have been conducted.
The result of some of these will be presented in the following chapter.

17





Chapter 3

Experimental study of current forces
and deformations on a half
ellipsoidal closed flexible fish cage

The modelling and investigations of sea loads on CFFCs will start with locations in
less exposed waters, where current gives a larger contribution to the loads on the
structure than waves. We assume that the main operational condition of the CFFC
will be full or overfilled/inflated. However, there might arise situations where
the bag is in a condition where it is less than full. The basic understanding of the
physics of the sea loads of an under-filled CFFC is limited. Basic understanding
and hypothesis of the physics of a system can be gained through observations and
response measurements in model experiments. Model experiments of a CFFC for
varying filling levels in current have therefore been conducted, and the results
analysed.

In this chapter experimental work considering a half ellipsoidal CFFC for four
filling levels between 70 and 100% and different towing velocities are presented and
discussed. The 100% filling level of the bag is defined according to the theoretical
full volume of the bag. The model test data and observations are used to formulate
mathematical models of the CFFC in current, in particular, drag coefficients are
found. This chapter is a continuation of the works presented in Strand et al. (2013),
and Lader et al. (2015), but considering a different geometry, a larger range of
Reynolds numbers, and running longer experimental runs in the towing tank, that
is longer travelled distance. The results in this Chapter have earlier been published
in Strand et al. (2016).

3.1 Experimental set-up and instrumentation

To study the effect of current loads on a half ellipsoidal CFFC, a number of experi-
mental runs of a model scale bag at different filling levels and current velocities
were done in the Marine Cybernetics Laboratory (MC-Lab) at NTNU in Trond-
heim, Norway. All the experiments turned out to be of great importance in the
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Figure 3.1: Experimental set-up. Upper: Top view. Lower: Front view. Tank dimen-
sions of the MC-Lab are 40 m × 6.45 m × 1.5 m. The Cartesian coordinate system
is located in the centre of the floater in the free surface. The floater is stiffened in
the free surface to avoid ovalisation and is moored by four moorings; front, aft and
two side moorings.

understanding of relevant physics and future development and verification of the
mathematical models of the CFFC in a current.

The MC-Lab is a small towing tank, 40 m long, 6.45 m wide and with a depth
varying from 1.4 m to 1.5 m. Experiments were run in March and May 2013. In
March, the 70 % and 100 % filling levels were tested. In May, the aim was to repeat
the experiments from March and also run tests at 80 and 90 % filling levels. In
the following, the different experimental runs will be designated as March 2013
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3.1. Experimental set-up and instrumentation

and May 2013. The dimensions of the bag was: diameter 𝐷 = 0.75 m, and the
max draft ℎ𝐵 = 0.58 m, giving a volume 𝑉0 = 180 l. See Figure 3.1 for model and
measurement set-up for the experiment, and Table 3.1 for the test matrix describing
the various test runs.

The CFFC consists of three parts: The bag itself, the bag content, and an attach-
ment system. The bag was tailored in a half ellipsoidal shape of ripstop nylon, of
thickness 0.05 mm and weight 40 g/m2. Cotton thread was used in the sowing to
reduce the permeability at the seams. A floater placed inside the fabric at the water
surface was used as attachment system, inspired by Kristiansen and Faltinsen
(2015). The floater was made by a corrugated plastic tube in PVC with diameter 25
mm, a mass of 0.104 kg/m, and stiffened by ropes in the horizontal water plane to
avoid ovalization. The floater was connected by four nearly horizontal mooring
lines to the carriage in the centre line of the tank. The mooring lines were made of
2 mm nylon halyard.

A flow meter with an accuracy of 3 % was used to measure the amount of water
in the bag. The Nylon fabric used for the bag model is to some extent permeable
giving a net flow through the fabric when subjected to pressure differences. The
intention in the present experiments was that the volume inside the bag should
remain constant during the experiments. The amount of water in the bag was
measured after each filling level experiment. The leakage out of the bag during
the different run series for each filling level was found to be within 3-4 % of the
intended filling level.

The current was simulated by towing the model under the carriage, with towing
velocities 𝑈 in the range 𝑈 = 0.04−0.22 m/s. The towing carriage was experienced
to be steady and accurate for the given velocity range. Kristiansen and Faltinsen
(2015) have tested the accuracy of MC-Lab carriage velocity and found it to be
highly stable, and within 0.2% of the desired value, reducing the possibility that an
experimental bias introduced by the carriage.

Drag forces were measured in the towing direction by load cells in the front
and aft mooring line. The load cells were sampled at 200 Hz. The uncertainty of
the load cell was found to be 0.05 N, which is ≥ 10 % of the mean drag force for
the two lowest velocities, and ≤ 6 % and decreasing for the higher velocities. Mean
drag forces were found by taking the average over 40 seconds of the measurement
time interval with the smallest standard deviation, after the initial startup, for each
run. This time interval will be referred to as the middling time interval. Each time
series was between 90-120 seconds long.

Two underwater cameras of the type Go Pro 3 were used to measure/observe
the deformations of the bag. The cameras had a fixed 92-degree wide angle lens (Fig-
ure 3.1). One capturing the side of the bag, and the other capturing the front/side.
The cameras followed the model during the test attached to the towing carriage.
Both cameras were placed to avoid disturbing the incoming current.

Quantitative measures of the geometry of the bag were obtained from the
image material. Deformed drafts were calculated for all the current experiments
conducted in the MC-Lab. Coordinates from the pictures from camera 1 (see Figure
3.1), were translated to real world coordinates by an image analysis. In the image
analysis, coordinates of the waterline and the bottom of the bag were used to
estimating a deformed draft of the bag. The 100% filling level images together
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closed flexible fish cage

Table 3.1: Test matrix showing filling levels, and towing velocities for the model
experiments of a half ellipsoidal closed flexible fish cage. 𝜆 is the filling level of the
bag, and 𝑈 the towing velocity

𝜆 (%) 𝑈 (m/s)

March 2013 70,100 0.04, 0.05, 0.07, 0.10, 0.12, 0.15, 0.17, 0.19, 0.22May 2013 70-100

x
z

hd

D

1,1*

2

2*

2

2*

1* 1

Figure 3.2: Illustration of marker placement under estimation of deformed draft
from images. Left: Sketch of marker placement for the deformed draft (1,2) and
reference used for calibration in 100% full images (1*, 2*). Middle: Image of 100%
full bag used to calculate reference draft (1*, 2*), taken by camera 1. Right: Example
of marker placement on deformed bag, 70% full bag (1,2).

with the known full draft were used to define a calibration coefficient, to transform
the pixel information into length measures. The deformed draft ℎ𝑑 was found
according to:

ℎ𝑑 =
ℎ𝐵

𝑧2* − 𝑧1*
(𝑧2 − 𝑧1), (3.1)

where 𝑧2* , 𝑧1* are the z-coordinates of the reference picture, and 𝑧2, 𝑧1 are the z-
coordinates of the deformed draft picture. The points were placed as illustrated in
Figure 3.2. The estimated error of the placement of the coordinates is in the order
of ±0.5 cm (±1 %) . This estimated error was found based on the variance of the
draft of the 100 % filling level in the stationary condition, which is known.

3.2 Results

The results of the experiments will be analysed in the following subsections.
The drag force on a structure is known to be dependent on the shape of the

structure, and the projected area. The drag force on a structure in a uniform flow is
given by the drag equation:

𝐹𝐷 =
1

2
𝜌𝑤𝐴𝐶𝐷𝑈

2 , (3.2)

where 𝜌𝑤 is the fluid density, and𝐴 is the projected frontal area. The drag coefficient
𝐶𝐷 is dependent upon the shape of the body, the flow regime around the body and
the Reynolds number (Faltinsen, 1990).
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3.2. Results

3.2.1 Force measurements

Force measurements for four different velocities are plotted and compared in
Figure 3.3. For all but the lowest velocity at 𝑈 = 0.05 m/s the force measurements
for the lower filling levels are substantially higher than the 100 % filling level. All
the drag force measurements indicate that the drag force is dependent on the filling
level.

Some oscillations are observed in the force measurement time series. They are
small for the three smallest presented velocities. However, for the 0.22 m/s velocity,
the oscillations are large, especially for the 70 % filling level.

3.2.2 Bag deformations

A hemispherical cup was seen forming at the front when the bag was exposed to
current, for 𝑈 ≥ 0.07 m/s, as illustrated in Figure 3.4 right part. The deformation is
shown for the 80% filling level in Figure 3.4 left part, and the hemispherical cup is
indicated with the black dotted line. This deformation increase as the filling level
decreases and the current velocity increases, see Figure 3.5. In Figure 3.5, images
from the two cameras are shown for the same velocities as the force measurements.
The images are taken within the middling time interval around 𝑡 = 60 s. The image
material shows that the bag deforms for all filling levels. The deformations appear
to be dependent on both filling level and velocity. For filling levels below 100
%, a large deformation of the front can be observed for all 𝑈 ≥ 0.07 m/s. This
deformation is consistent with the local deformation pattern described by Solaas
et al. (1993) shown in Figure 2.1 left part, and what have been found for other
geometrical shapes in Strand et al. (2013) and Lader et al. (2015). For the 100 %
filling level we observe small deformations, but these deformations do not appear
to effect the drag forces.

For 𝑈 ≤ 0.05 m/s (𝑅𝑒 ≤ 4 · 104), the bag did not appear to reach a fully
deformed shape, but stayed closer to the initial zero velocity shape. This was also
an effect which was found for the same velocity range in Strand et al. (2013) for a
cylindrically shaped bag.

The back wall relative to the current was observed deforming only for the very
highest velocities. This can be seen on the images of all the filling level at the 0.22
m/s current velocity in Figure 3.5, where the back wall of the bag deforms out of
the borders of the reference. Deformation of the back wall is in accordance with
the global current deformations described by Solaas et al. (1993), and contrary to
Strand et al. (2013) which studied a circular bag. The reason why these deformations
were not found in Strand et al. (2013) can be that lower current velocities were
considered.

Measurements of the draft of the deformed bag indicate a decrease in draft for
lower filling levels. This can also be seen when the contour of the zero current 100
% filling level is compared to the deformed shape of the bag in Figure 3.5. The
deformed draft in the images was estimated using (3.1), and plotted in Figure 3.6.
The plot indicates a general significant decrease in the draft, and subsequently a
reduction in the exposed area for decreasing filling levels. The magnitude of the
draft appears close to constant within each filling level, for 𝑈 ≥ 0.07m/s. The
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Figure 3.3: Comparison plot of force measurements for four different current,
𝑈 = 0.05 m/s, 0.07 m/s, 0.12 m/s and 0.22 m/s, for all the four filling levels, from
the May 2013 experiments.
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D

T<<D

Figure 3.4: Illustration and image of front deformation for underfilled closed
flexible fish cage in current. Left: Deformation pattern of the CFC at 𝑈 =0.12 m/s
at filling level 80%. Primary deformation indicated with lines. Right: Illustration of
thin hemispherical cup. Illustration adapted from Blevins (1984)

decrease in the draft for decreasing filling levels were also found for a cylindrical
bag in Strand et al. (2013).

For the May 2013 experiments, the videos show an oscillatory behaviour with
fluttering in the front facing the current. The drag measurements from these veloci-
ties also showed the same tendencies by exhibiting a larger standard deviation and
more peaks in the force measurement, within the middling time, see Figure 3.7. If
the force measurement plot is compared to the images taken at the marked time
instances, only small variations in shape can be observed. No general clear, direct
connection between the images and the time series can be seen, as it appears to be
only small differences in the shape for image 1-3. Although, within this time period
a force variation of 3 N can be observed for the force measurements. Image 2 and
6, which are the images taken at the force peaks could appear to have a slightly
larger deformed draft and a deformation with fewer wrinkles in the centre, but
the differences compared to remaining images are as earlier mentioned small. The
presented measurement was taken at 0.15 m/s, at higher velocities both the time
series and the videos of the bag appeared more chaotic. This can be seen in the
times series at 0.22 m/s in Figure 3.3.

The increase in drag force on the bag appear to happen simultaneously as the
large deformations for lower filling levels appear. The density of the water is kept
constant, and the velocity is known. Both the drag coefficient and the projected area
in (3.2) are dependent on the deformed shape of the bag. The projected frontal area
of the bag is decreasing for decreasing filling levels. It is therefore plausible that
the increase in drag is caused by the change in shape, affecting the drag coefficient.

3.2.3 Drag Forces

Reduced data for all the filling levels at all the velocities are plotted in Figure
3.8. Error bars are included to indicate the variation in the force measurement
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Figure 3.5: Comparison images of deformed closed flexible fish cages for given
filling levels and velocities. Image material, camera 1 (Side View) and 2 (Front
View), taken during the May 2013 experiments. Deformation patterns for 100 %, 90
%, 80 and % 70 % filling levels, for selected current velocities from 0.05 m/s to 0.22
m/s. 100 % filling level 0 m/s used as reference, see white dotted line.
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Figure 3.6: Measured deformed draft for bag exposed to current at different filling
levels.

within the middling time interval. The error bars on the measurement points are
calculated based on the standard deviation of the measurement time series within
the middling time.

The solid lines in Figure 3.8 are the empirical drag given by (3.2) with constant
area 𝐴 and the drag coefficient 𝐶𝐷. The drag coefficient used here is the empirical
mean drag for a sphere which is 𝐶𝐷 = 0.47 at 𝑅𝑒 = 105 (Hoerner, 1958). A half
ellipsoid and a sphere are different, and the free surface is known to affect the drag
coefficient. However, since no other comparison drag coefficient was found more
appropriate, a sphere will be used. The dashed line interval is the drag coefficient
range for a hemispherical cup at 𝐶𝐷 = [1 − 1.42] given by Hoerner (1958). This
range is based on decreasing the depth over diameter ratio of a hemispherical cup
from a deep hemispherical cup where 𝐶𝐷 = 1.42, until the drag coefficient of a flat
plate/disk where 𝐶𝐷 = 1.

An increase in drag is observed for decreasing filling levels for all velocities, see
Figure 3.8. When the drag force measurements are compared with (3.2), the drag
force seems to be proportional to 𝑈2, independent on the filling level. The solid
line, based on the sphere drag coefficient captures the trend for the drag at the 100
% filling level. When the filling level decreases, the trend changes, such that the
measurement points appear to be within the hemispherical cup interval given by
Hoerner (1958). These results are comparable related to other geometries presented
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Figure 3.7: Force measurement and images for oscillating behaviour of membrane.
Top: Force measurement time series for 70 % filling level at U=0.15 m/s. Bottom:
Images from camera 2 (Front view) taken at the time instances 1-6, marked in the
time series. Only small changes in the geometry can be observed. From the May
2013 experiments.

in Strand et al. (2013) and Lader et al. (2015). For the lower filling levels, the bag
displayed significant deformations of the shape, simultaneously as the drag forces
on the bag increased, though to a smaller level than earlier published.

The error bars in Figure 3.8 reflect the standard deviation of the measurements
within the middling interval. The May 2013, 70% filling level deviates from the
general trend, with a larger standard deviation.

3.2.4 Drag coefficient

The undeformed projected area 𝐴 = 𝜋ℎ𝐷/4 was used in the calculation of the drag
coefficient 𝐶𝐷. 𝐶𝐷 was plotted against the Reynolds number in Figure 3.9 for all
the filling levels.
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The drag coefficient reflects the observed deformation patterns, supporting
the theory of a significant increase in drag coefficient for decreasing filling levels.
Figure 3.9 indicates a drag coefficient close to the empirical drag coefficient of a
sphere of 0.47 for the 100% filling level (Hoerner, 1958). The drag coefficient 𝐶𝐷
increases up to the interval for the hemispherical cup given by Hoerner (1958) for
the filling levels under 100%.

For 𝑅𝑒 ≤ 4 · 104, at filling levels below 100 % the drag coefficients are lower
than the drag coefficients at higher Reynolds numbers. Hence, that the bag does
not deform will affect the drag coefficients, which can also be observed in Figure
3.9. The drag coefficient at the 70 % filling level is considerably smaller than the
rest of the Reynolds numbers for the lowest filling levels at the lowest Reynolds
numbers, 𝑅𝑒 < 5 · 104. Since the large cup deformation has not appeared, and the
draft is small, it is plausible that the drag coefficient is lower.

For the 70- 90% filling level for 𝑅𝑒 > 4 · 104, the drag coefficient increases to
the drag coefficient interval for the hemispherical cup, see Figure 3.9 and Table
3.2. This is consistent with the deformation patterns observed in Section 3.2.2,
for velocities over 𝑅𝑒 ≥ 4 · 104, which is when the characteristic hemispherical
cup have appeared. The trend of the measurement points appears to approach
a constant value. 𝐶𝐷 appears close to constant also for the 70% filling level, for
𝑅𝑒 > 11 · 104, despite the observed oscillations in shape and forces. This indicates
that these oscillations do not have a significant effect on the mean force. However,
the standard deviation indicated by the error bars have grown substantially larger,
see Figure 3.8.

The presented experimental results also indicate a quick transition in drag
coefficient between 90 and 100 % filling level. This is a much more rapid change
than what was found in Lader et al. (2015) and Strand et al. (2014), where the
change in drag coefficient appeared to happen more gradually related to the filling
level. Only one run for each filling level was reported for these experiments for each
geometry. However, since only one run was reported for the presented experiments
for the 80 and 90 % filling level, no firm conclusions of the transition filling level
can be made.

Mean drag coefficients (𝐶𝐷) were calculated for each filling level 𝜆 for each ex-
perimental series, and are given in Table 3.2. Three different mean drag coefficients
have been calculated, one general mean using all the data points and two mean
drag coefficients divided by Reynolds number. One for 𝑅𝑒 ≤ 4 · 104 (𝐶𝐷≤) and
one for 𝑅𝑒 > 4 · 104 (𝐶𝐷>). This division is based on the observed deformation
patterns and also the trend of the drag coefficients in Figure 3.9.

The mean drag coefficient (𝐶𝐷) for all the filling levels below 100 % are either
within or close to the hemispherical cup interval. All the means are affected by the
first two measurement points, reducing the value. If we consider the mean drag
for 𝑅𝑒 > 4 · 104, the average drag is increased relative to the total mean (𝐶𝐷). The
average drag coefficient for the 100 % filling level for the March and May 2013
experiments are equal. For the 70 % filling level, 𝐶𝐷 is lower for the May 2013
experiments than for the March 2013 experiments. From Section 3.2.2 we observed
that the draft was smaller for the May 2013 experiments, which would influence
the drag, and thereby the drag coefficient. It should be taken into consideration
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Table 3.2: Mean drag coefficients for the experiments conducted in March and May
2013. 𝐶𝐷 is the mean drag coefficient for all the data points within a filling level.
𝐶𝐷≤ is the mean drag coefficient for 𝑅𝑒 ≤ 4 · 104 and 𝐶𝐷> is the drag coefficient
for 𝑅𝑒 > 4 · 104.

March May
𝐶𝐷≤ 𝐶𝐷> CD 𝐶𝐷≤ 𝐶𝐷> CD

70 % 0.59 1.03 0.93 0.41 0.98 0.85
80 % - - - 0.85 1.04 1.00
90 % - - - 0.70 1.00 0.93

100 % 0.54 0.45 0.47 0.54 0.45 0.47

that Figure 3.6 shows that the deformed draft is less than the undeformed draft.
This would affect the actual drag coefficient, resulting in a further increase of the
drag coefficients for the lower filling levels.

3.3 Discussions

The repeatability of the results is viewed as acceptable. The difference in mean
drag force between the March and May 2013 experiments for the 100% filling level
is within 1% and within 6% for the 70% filling level.

The CFFC is a complex system, and for the presented experiments we have
limited to no information of the fluid flow inside and around the CFFC during the
experiments. We have observed a complex interaction between the membrane, the
fluid masses within the CFFC and the outside fluid flow. To have better control of
all variables, it would have been useful to also have information about the tension
in the fabric and the fluid flow around and inside the CFFC.

3.3.1 Experimental results

It can then be questioned if the bag deformations have not had time to develop,
due to slow dynamics for 𝑈 = 0.04 m/s and 𝑈 = 0.05 m/s. However, when the
force measurement was examined directly with the emphasis of slow changes, no
changes were found within the averaging time interval. Both the 0.04 m/s and the
0.05 m/s velocity have low variance in the force measurements after the transient
period. The 0.07 m/s velocity exhibits a quick change in geometry during the
transient phase, before stabilising at a higher drag force level with the deformation
pattern seen in the higher velocities.

It appears to be a significant difference between the 70 % filling level drafts of
the May and March 2013 experiments. Both the first two velocities, but also the
mean is lower for the May 2013 experiments. These results can indicate that filling
level is smaller than intended. The differences in shape and deformed drafts (see
Figure 3.6) between the March and May 2013 for the lowest velocities in the range
𝑈 ≤ 0.05 m/s (𝑅𝑒 ≤ 4 · 104), can be explained by different initial shape. Strand
et al. (2014) reported significant variations in shape and connected draft for the 70%
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filling level at zero current, still water, and for these velocities the shape does not
appear to change much from the static shape, as also seen in Strand et al. (2013).

For velocities above 0.12 m/s for the 70 % filling level, in the May 2013 exper-
iments, the deformation in front became unsteady. This does not happen for the
March 2013 experiments. If the lower draft for the May 2013 experiments indicates
a lower than intended filling level, the oscillations can indicate that a new phe-
nomenon appears when the filling level reaches some level below 70 %. What can
be the reason for that the front of the CFFC becomes unsteady? Moreover, how can
these small oscillations be the cause of the significant variations in drag seen in
Figure 3.7? One possible explanation can be found if we look at parachutes. The
shape of parachutes is known to oscillate under some unfavourable conditions
(Hoerner, 1958). The oscillation of the form/diameter is called ”breathing”, and
is caused by the interaction between the near-wake fluid forces and the fabric
(Johari and Desabrais, 2005). This behaviour leads to a fluctuation in the drag
force and is associated with a clear vortex shedding frequency in the response.
The fluctuations in the drag have been reported to be up to 27 % of the mean, see
Johari and Desabrais (2005). The standard deviations compared to the mean drag
force for the presented results were 10-16% above the mean. For parachutes, most
of this drag fluctuations are associated with added mass fluctuations. The time
series of the performed experiments were too short to capture any dominant vortex
shedding frequency, to prove that this could be the case for the CFFC. To further
study this phenomenon more information about the flow inside and around the
CFFC, and a longer towing tank than the MC-Lab is be needed.

The increase in drag coefficient for the presented experiments is lower than
the increase found for decreasing filling levels for other geometries in Strand et al.
(2013) and Lader et al. (2015). However, in Strand et al. (2013) and Lader et al.
(2015) shorter time series were used, and the experiments were run in series with
three velocities in each run, 120 s in total. In the experiments presented here, the
time series are between 90 and 120 s long. Sarpkaya (2010) studied the effect of
travelled distance on a circular cylinder in an impulsively started flow. He defined
non-dimensional travelled distance as 𝐿/𝑟, where 𝐿 = 𝑈𝑡 and 𝑟 is the radius of the
cylinder. He found that the drag coefficient in the initial stages (𝑈𝑡/𝑟 ≤ 4) of an
impulsively started flow can exceed its steady value by as much as 30%. Sarpkaya
(2010) defined a transient interval between 𝐿/𝑟 ≈ [0, 17] for Reynolds numbers
from 104 − 105. The same phenomenon has been found for spheres, with the same
tendency to overshoot the stationary drag coefficient in the transient phase, but
with a longer transient phase (Roos and Willmarth, 1971). For the March and May
2013 experiments we get 𝐿/𝑟 ∈ [9, 64], where all the velocities except U=0.04 m/s
and U=0.05 m/s are outside the transient range. The results reported by Strand
et al. (2013) and Lader et al. (2015) are in the range 𝐿/𝑟 ∈ [4, 19]. This could indicate
that the larger drag coefficients found in Lader et al. (2015) and Strand et al. (2013)
are due to effects of transients on the drag coefficients.

3.3.2 Error Sources

Blockage effects have been shown to have an effect on the drag coefficient for large
blocking ratios, see, e.g. Maskell (1965). The blockage ratio is calculated as the
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projected area of the bag (0.34 m2) divided by the tunnel cross-section area in the
towing direction (9.03-9.68 m2). The variance in the blockage ratio is due to the
varying depth. The largest blockage ratio was 3.8% for the presented experiments.
West and Apelt (1982) have carried out a study of the effect of blockage on the drag
coefficient for a circular cylinder in the Reynolds number range [104 − 106]. They
concluded that for blockage ratios less than 6% the effect on the drag coefficient
was small.

The results presented in this work showed that the drag force is highly depen-
dent on the filling level of the bag. The bag was to some extent permeable. For
parachutes, drag has been shown to be dependent on the permeability of the fabric
(Hoerner, 1958). The permeability of the nylon used in the experiments was not
measured, but since parachute nylon was used, it will be assumed that the perme-
ability is not far from 1-2% (Johari and Desabrais, 2005). Permeability at this level
can lead to a small reduction in the drag compared to non-permeable structures.
The filling level of the bag was measured after each experiment. However, the flow
meter has an error of 3 %, and the measured filling level was also for the May
2013, 70 % filling level, 4 % lower than the intended filling level. If this error has
accumulated in the same direction, the filling level could have been 7% less than
intended, something which would influence the results.

3.3.3 Application to full scale

Typical full scale current velocities at aquaculture sites in Norway are in the range
𝑈𝑐 = 0.1 − 1.0m/s. Ideally for this results to apply to full-scale dimensions, we
should have equality in Reynolds numbers. However, due to known physical and
economic limitations of the towing tank, this is not feasible (Hoerner, 1958). To
transfer the results to full scale, Froude scaling was used. The Froude number
is given as 𝐹𝑛 = 𝑉/

√
𝑔𝑙 and is typically used in relation to free surface flows.

When geometric scale 𝑙𝑔 = 𝐷𝑀/𝐷𝐹 , were 𝐷𝑀 is the model scale diameter, and 𝐷𝐹

is the full-scale diameter, we have experimental data covering the scaling range
from 𝑙𝑔 = 1:17 to 1:50. These scales correspond to full-scale diameters used by the
aquaculture industry in Norway today from 13-38 m.

Model current velocities will not give equality in Reynolds number between
model and full scale. The Reynolds number interval for full-scale current velocities
gives 𝑅𝑒 = [106 − 107], while the Reynolds numbers in model scale are in the
interval 𝑅𝑒 = [104 − 105]. The drag coefficient is known to be dependent on both
the transition to turbulent flow, which again is dependent on the Reynolds Number,
the geometry and the material of the structure (Blevins, 1984). For the lower filling
levels, the bag was observed to deform, introducing changes in the bag geometry.
Blevins (1984) stated that when sharp corners are introduced, the drag coefficient
was independent of Re for Re > 104. This makes the drag coefficient scalable for
these conditions since the drag coefficient is pressure drag dominated and mainly
dependent on the placement of the separation point for clearly defined separation
points. However, this requires that the large front deformation has appeared. From
the results, we have seen that for 𝑅𝑒 ≤ 4 · 104 the characteristic deformation in
front does not appear. When the hemispherical cup appears in full scale in terms of
Reynolds number cannot be decided. However, the most critical condition in terms
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of drag loads must be when the large front deformation appears. The biggest drag
force should be ruling for the dimensioning of the mooring system of the CFFC;
this would then be when the large hemispherical cup has appeared.

In general, it is required for an elastic model that elastic similarity for the
material is satisfied (Løland and Aarsnes, 1994). Requiring that𝐸𝑀𝑑𝑀 = 𝐸𝐹 𝑑𝐹 /𝜏

2,
where subscript 𝑀 denotes model, and subscript 𝐹 denote full scale. The CFFC
is made of fabric with a low E-modulus (low in-plane stiffness). It has not been
possible to find a usable material in model scale that satisfies the elastic similarity
condition. With 𝐸𝑀 ≈ 𝐸𝐹 , 𝑑𝑀 = 0.05 mm and 𝑑𝐹 ≈ 1 mm, the bag fabric is
100-1000 times to stiff in model scale. No literature was found regarding the
scaling-effects of the stiffness of the fabric on drag for CFFCs. The effect of scaling
of in plane stiffness on parachutes in water has, however, been investigated. It has
been found that the overall geometry of a parachute is not much affected by the
stiffness of the fabric (Johari and Desabrais, 2005). The drag force on the bag is
highly dependent on the global shape of the bag. Since the shape is not affected
by the fabric stiffness, this will most probably not influence the application of the
results to full scale.

3.4 Conclusions and following work

To utilise membrane technology at an industrial level more knowledge is needed
about the effect of sea loads. Drag forces on a CFFC for different filling levels and
current velocities have been experimentally studied. A significant increase in the
drag force was experienced as the filling level decreased. A large deformation
shaped like a large hemispherical cup comparable to a parachute, appeaed at the
front facing the current for lower filling levels than 100%. This deformation lead to
a change in the geometry, resulting in an increase in the drag force related to a full
bag. The drag coefficient experienced a smaller increase than observed in Strand
et al. (2013) and Lader et al. (2015). This can be due to transients affecting the
results, caused by too short experimental runs in Strand et al. (2013) and Lader et al.
(2015). The largest drag force should be ruling for the dimensioning of mooring
of the CFFC. Then the drag response of underfilled cages should be considered.
The problem of an under filled CFFC in current can be characterised by a complex
interaction between the membrane, the fluid masses within the CFFC and the
outside fluid flow.

To better predict the forces and deformations on the bag, mathematical models
taking into account the dependency between force and deformation should be
developed. The deformations, motions, and forces of the bag appear from the
experiments to be highly tree dimensional. However, due to the complexity of the
coupling between the internal flow inside the bag, the external flow, and the forces
and deformations, we attempt to capture some of the main deformation patterns
and forces by a reduced 2D model. In order to develop theory and understanding
of the membrane structure, and the coupling between structural response and
internal water motions, a 2D rectangular sloshing tank with a fabric membrane
side wall is studied. Results from the analysis of this system will be given in the
next chapter.
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Chapter 4

Linear sloshing in a 2D rectangular
tank with a flexible side wall

The hydroelastic analysis of a rectangular tank with a fabric membrane side wall of
different lengths can introduce new knowledge of the effect of internal motions and
flow in a membrane structure with a free surface. Most considered hydroelastic
problems are too complex to analyse analytically, numerical and/ or experimental
methods are therefore used. For this particular system, there exists an analytical
solution. The analytical solution can give an understanding of the coupled system
and can be utilized for verification of a numerical code, intended used for the end
problem.

In this chapter an analytical solution for the coupled fluid- membrane interac-
tion problem in the time, and frequency domain in 2D have been found. Coupled
eigenfrequencies and the transfer functions of wave elevation for two different
membrane lengths from sway excitation have been found both analytically and
numerically. The results in this chapter have earlier been published in Strand and
Faltinsen (2017).

4.1 Linear sloshing in a 2D rectangular tank with an elastic wall

A two-dimensional rectangular tank with breadth 𝑙 and mean liquid depth ℎ
with a flexible left wall, where the tank is forced with prescribed horizontal tank
motion is considered. The effect of hydrostatic pressure is not considered since the
end application of the theory and knowledge is with water on both sides of the
membrane.

In the considered system one of the walls is modeled as a fabric membrane,
meaning that the tension stiffness dominates, with bending stiffness as a minor
effect. When tension dominates, the structural natural frequencies may very well
be in the range of the sloshing frequencies. Bauer (1981) and Bauer and Eidel (2004)
has analytically considered a comparable system with a sloshing tank with an
elastic bottom. They found that the coupled eigenfrequencies were slightly lower
than for a rigid tank. The hydroelastic behavior of a rectangular tank with a fabric
membrane sidewall of different lengths has earlier partly been studied by Schulkes
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(1990). Schulkes (1990) investigated the case where the lower part of one of the side
walls was modeled as a membrane. He showed by analytical means that when
part of the rigid wall was replaced with a membrane, the eigenfrequencies of the
total system decreased. The extent of this decrease in eigenfrequency depend on
the proportion of the membrane length relative to the length of the tank wall, and
the tension applied to the membrane.

A special case of what we consider is a container with a rigid moving wall,
attached to an outside spring. Lu et al. (1997) and Chai et al. (1996) have analytically
solved this coupled fluid-structure system and found the pressure contribution
on the rigid movable wall. Lu et al. (1997) used a similar method as our analytical
method, while Chai et al. (1996) solved the problem by incorporating a wave maker
solution.

We define a Cartesian coordinate system Oyz with the origin in the center and
at the mean free surface with positive 𝑧 upwards (see Figure 4.1).

A stretched 2D membrane is assumed, and bending stiffness and structural
nonlinearities are neglected. The membrane deformations are represented in terms
of structural eigenmodes with unknown time-dependent generalized structure
mode amplitudes 𝜈𝑚(𝑡) associated with each dry structural eigenmode 𝑈𝑚(𝑧). A
vertical 2D membrane of length 𝐿 at 𝑦 = −𝑙/2 is fixed at the tank bottom, free
surface piercing and fixed at the upper end, models the flexible wall. In 2D, a
flexible membrane is a cable, and the cable theory by Irvine (1981) can be used. The
differential equation for the considered membrane is

𝜌𝑐𝑑
𝜕2𝑣(𝑧, 𝑡)

𝜕𝑡2
− 𝑇

𝜕2𝑣(𝑧, 𝑡)

𝜕𝑧2
= 𝐹 (𝑧, 𝑡). (4.1)

Here 𝜌𝑐 and 𝑑 are the density and thickness of the membrane, respectively. 𝑡 is the
time variable, 𝑣 is the deformation in the 𝑦− direction, 𝑇 the tension and 𝐹 is the
force component per unit length in the 𝑦− direction. The force per unit length on
the right hand side of (4.1) is

𝐹 (𝑧, 𝑡) =

{︃
−𝑝, −ℎ ≤ 𝑧 ≤ 0

0, 0 ≤ 𝑧 ≤ 𝐿− ℎ
(4.2)

where 𝑝 is the dynamic water pressure.
We will represent the deformation in terms of dry eigenmodes. That means we

consider non-trivial solutions of (4.1) without the effect of the water pressure:

𝜌𝑐𝑑
𝜕2𝑣(𝑧, 𝑡)

𝜕𝑡2
− 𝑇

𝜕2𝑣(𝑧, 𝑡)

𝜕𝑧2
= 0, (4.3)

with harmonic oscillations together with fixed end conditions. The dry eigenmodes
of the 2D membrane, are

𝑈𝑚(𝑧) = sin(
𝑚𝜋

𝐿
(𝑧 + ℎ)), (4.4)

which are connected to the dry natural frequency 𝜆𝑚 = 𝑚𝜋
𝐿

√︁
𝑇
𝜌𝑐𝑑

, with 𝐿 as the
length of the 2D membrane. Then the deformation can be expressed as

𝑣(𝑧, 𝑡) =
∑︁
𝑚

𝜈𝑚(𝑡)𝑈𝑚(𝑧). (4.5)
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𝑙

ℎ

𝑦

𝑧

𝐿 = 2ℎ

𝜂2

Flexible wall

Sloshing tank

𝜕Φ
𝜕𝑡 + 𝑔𝜁 = 0

𝜕Φ
𝜕𝑧 = 𝜕𝜁

𝜕𝑡

𝜕2Φ
𝜕𝑦2 + 𝜕2Φ

𝜕𝑧2 = 0

𝜕Φ
𝜕𝑧 = 0

𝜕Φ
𝜕𝑦 = 𝜂̇2

𝜕Φ
𝜕𝑦 =

∑︀
𝑚 𝜈̇𝑚𝑈𝑚(𝑧) + 𝜂̇2

Figure 4.1: Boundary conditions for a two-dimensional rectangular tank with
breadth 𝑙 and mean liquid depth ℎ with a flexible left wall of length 𝐿 that is forced
with prescribed horizontal tank motions 𝜂2 in the time domain.

We assume linear potential flow of an incompressible liquid. The velocity
potential and the free surface elevation are denoted as Φ and 𝜁, respectively. The
boundary value problem of the linear sloshing problem in a rectangular tank with
a flexible wall can be expressed as:

𝜕Φ2

𝜕𝑦2
+
𝜕Φ2

𝜕𝑧2
= 0 for − 1

2
𝑙 < 𝑦 <

1

2
𝑙,−ℎ < 𝑧 < 0, (4.6)

𝜕Φ

𝜕𝑧

⃒⃒⃒⃒
𝑧=−ℎ

= 0,

𝜕Φ

𝜕𝑦

⃒⃒⃒⃒
𝑦=− 1

2 𝑙

= 𝜂̇2 +
∑︁
𝑚

𝜈̇𝑑𝑚𝑈𝑚(𝑧),

𝜕Φ

𝜕𝑦

⃒⃒⃒⃒
𝑦= 1

2 𝑙

= 𝜂̇2,

𝜕Φ

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

=
𝜕𝜁

𝜕𝑡
, (4.7)

𝜕Φ

𝜕𝑡
+ 𝑔𝜁

⃒⃒⃒⃒
𝑧=0

= 0. (4.8)

A dot above the variable means time derivative, 𝜂̇2 is the prescribed horizontal
rigid body tank velocity (sway velocity), and 𝑔 is the gravitational acceleration.
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The deformation velocity of the wall is expressed as
∑︀
𝑚 𝜈̇𝑑𝑚𝑈𝑚(𝑧). The boundary

value problem for the liquid flow in the tank is illustrated in Figure 4.1.

4.1.1 Analytical time-domain solution

Our analytical hydrodynamic method can be classified as a multimodal method
(Faltinsen and Timokha, 2009, page 193), which has been successful in solving
linear and nonlinear sloshing problems within potential flow theory of an incom-
pressible liquid. The method transfers the solution of the Laplace equation for the
velocity potential with initial and boundary conditions to a system of ordinary
differential equations that, for instance, facilitates analytical hydrodynamic stabil-
ity analysis, and detection of , multiple solutions and wave regimes. Furthermore,
the method facilitates coupling with structural dynamics because acceleration
dependent internal load effects can be explicitly identified, both for linear and
non-linear sloshing problems.

The liquid flow can be described analytically by the multimodal method (Faltin-
sen and Timokha, 2009, page 198). It implies that the free surface elevation 𝜁 is
expressed as the Fourier series:

𝜁(𝑦, 𝑡) =
1

𝑙

∞∑︁
𝑚=1

𝜈𝑚(𝑡)

∫︁ 0

−ℎ
𝑈𝑚(𝑧)𝑑𝑧 +

∞∑︁
𝑛=1

𝛽𝑛(𝑡)𝑓𝑛(𝑦), (4.9)

where 𝑓𝑛(𝑦) = cos(𝜋𝑛(𝑦 + 1
2 𝑙)/𝑙), and 𝛽𝑛(𝑡) are the generalized free surface coordi-

nates. The spatially constant term in the Fourier series is a consequence of liquid
mass conservation and elastic wall deformations.

The velocity potential Φ is expressed as:

Φ(𝑦, 𝑧, 𝑡) = 𝜂̇2(𝑡)𝑦 + 𝜑(𝑦, 𝑧, 𝑡) +

∞∑︁
𝑚=1

Ω𝑑𝑚(𝑦, 𝑧)𝜈̇𝑚(𝑡) + 𝐶(𝑡), (4.10)

similarly as in Faltinsen and Timokha (2009, page 224), except for their missing
spatially constant 𝐶(𝑡), which gives an important contribution to the dynamic
pressure. The first term in the velocity potential takes care of the body boundary
condition associated with the rigid body motions. The terms associated with the
deformation velocity potential Ω𝑑𝑚 take care of the body boundary conditions
due to the membrane deformations. The 𝜑 term is a sum of sloshing eigenmodes
satisfying homogeneous Neumann body boundary conditions, i.e:

𝜑(𝑦, 𝑧, 𝑡) =

∞∑︁
𝑛=1

𝑅𝑛(𝑡) cos(𝜋𝑛(𝑦 +
1

2
𝑙)/𝑙)

cosh(𝜋𝑛(𝑧 + ℎ)/𝑙)

cosh(𝜋𝑛ℎ/𝑙)
, (4.11)

where 𝑅𝑛(𝑡) are generalized coordinates for the velocity potential.
The deformation potentials satisfy in addition to the Laplace condition and
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zero Neumann conditions on 𝑧 = −ℎ and 𝑦 = 0.5𝑙, the boundary conditions:

𝜕Ω𝑑𝑚
𝜕𝑦

⃒⃒⃒⃒
𝑦=− 𝑙

2

= 𝑈𝑚(𝑧), −ℎ < 𝑧 < 0, (4.12)

𝜕Ω𝑑𝑚
𝜕𝑧

⃒⃒⃒⃒
𝑧=0

=
1

𝑙

∫︁ 0

−ℎ
𝑈𝑚(𝑧)𝑑𝑧, − 𝑙

2
< 𝑦 <

𝑙

2
,

The latter condition is consistent with conservation of liquid mass and the first
term of the Fourier series representation of the free surface given by (4.9).

To get an analytical solution of Ω𝑑𝑚(𝑦, 𝑧), we represent the wall velocity profile
given by 𝑈𝑚(𝑧) as a Fourier series:

𝑈𝑚(𝑧) = 𝛼0𝑚 +

∞∑︁
𝑘=1

𝛼𝑘𝑚 cos(𝑘𝜋(𝑧 + ℎ)/ℎ), (4.13)

where the Fourier coefficients 𝛼0𝑚 and 𝛼𝑘𝑚 are found by:

𝛼0𝑚 =
1

ℎ

∫︁ 0

−ℎ
𝑈𝑚(𝑧)𝑑𝑧 = 2

𝐿

ℎ𝑚𝜋
sin2(

𝑚𝜋ℎ

2𝐿
),

𝛼𝑘𝑚 =
2

ℎ

∫︁ 0

−ℎ
𝑈𝑚(𝑧) cos(𝑘𝜋(𝑧 + ℎ)/ℎ)𝑑𝑧

=
2𝐿

𝜋

𝑘𝐿 sin(𝜋𝑘)𝑠𝑖𝑛(𝑚𝜋ℎ𝐿 ) + ℎ𝑚(−1)𝑘𝑐𝑜𝑠(𝑚𝜋ℎ𝐿 )− ℎ𝑚

𝐿2𝑘2 − ℎ2𝑚2
.

Faltinsen and Timokha (2009, p. 224-225) have presented the following analyti-
cal solution

Ω𝑑𝑚(𝑦, 𝑧) =− 𝛼0𝑚

2𝑙
((𝑦 − 0.5𝑙)2 − (𝑧 + ℎ)2)

−
∞∑︁
𝑘=1

𝛼𝑘𝑚ℎ

𝑘𝜋
cos(𝑘𝜋(𝑧 + ℎ)/ℎ)

cosh(𝑘𝜋(𝑦 − 0.5𝑙)/ℎ)

sinh(𝜋𝑘𝑙/ℎ)
.

(4.14)

We must in the end ensure that the total velocity potential satisfies the dynamic
and kinematic free surface conditions as given by (4.7)-(4.8). This set up a relation
between the generalized coordinates 𝛽𝑛(𝑡) and 𝑅𝑛(𝑡), determines 𝐶(𝑡) and derives
ordinary differential equations for the generalized coordinates 𝛽𝑛. To find a relation
between the generalized coordinates 𝛽𝑛(𝑡) and 𝑅𝑛(𝑡), the kinematic boundary
condition is multiplied with cos(𝜋𝑛(𝑥+0.5𝑙)/𝑙) for 𝑛 ≥ 1 and integrated from −𝑙/2
to 𝑙/2. It follows that

𝛽̇𝑛(𝑡) = 𝜅𝑛𝑅𝑛(𝑡), (4.15)

where the wave number 𝜅𝑛 is

𝜅𝑛 =
𝜔2
𝑛

𝑔
=
𝜋𝑛

𝑙
tanh(

𝑛𝜋

𝑙
ℎ), (4.16)
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4. Linear sloshing in a 2D rectangular tank with a flexible side wall

with 𝜔𝑛 as the natural sloshing frequencies for the rigid tank.
To find ˙𝐶(𝑡) we integrate the dynamic free surface condition ( (4.8)) over the

free surface. The result is:

˙𝐶(𝑡) = −
∞∑︁
𝑚=1

Ω𝑑𝑚𝜈𝑚(𝑡)− 𝑔

𝑙

∑︁
𝑚=1

𝜈𝑚(𝑡)

∫︁ 0

−ℎ
𝑈𝑚(𝑧)𝑑𝑧, (4.17)

where

Ω𝑑𝑚 =
1

𝑙

∫︁ 𝑙
2

− 𝑙
2

Ω𝑑𝑚(𝑦, 0)𝑑𝑦 = −𝛼0𝑚

2𝑙
(
𝑙2

3
− ℎ2)−

∞∑︁
𝑘=1

𝛼𝑘𝑚ℎ
2

𝑙𝑘2𝜋2
(−1𝑘).

The ordinary differential equations for 𝛽𝑛(𝑡) follows by multiplying (4.8) with
cos(𝜋𝑛(𝑥+ 0.5𝑙)/𝑙) for 𝑛 ≥ 1 and integrating from −𝑙/2 to 𝑙/2. The result is

𝛽𝑛 + 𝜔2
𝑛𝛽 = −𝛾2𝑛

𝑚𝑛
𝜂2 −

∑︁
𝑚

𝛾𝑑𝑛𝑚
𝑚𝑛

𝜈𝑚(𝑡) for 𝑛 = 1, 2.., (4.18)

where

𝑚𝑛 =
𝜌𝑙

2𝜅𝑛
,
𝛾2𝑛
𝜌𝑤

=

(︂
𝑙

𝑛𝜋

)︂2

[(−1)𝑛 − 1], (4.19)

𝛾𝑑𝑛𝑚
𝜌𝑤

= −𝛼0𝑚
𝑙2

𝜋2𝑛2
− 1

𝜋2

∞∑︁
𝑘=1

𝛼𝑘𝑚(−1)𝑘𝑙2ℎ2

𝑙2𝑘2 + ℎ2𝑛2
. (4.20)

Here𝑚𝑛, 𝛾𝑑𝑛𝑚 and 𝛾2𝑛 are the hydrodynamic coefficients associated with the water
mass, wall deformations and sway motion, respectively.

Based on the found Φ, the linear dynamic pressure 𝑝 on the 2D membrane is :

𝑝 =− 𝜌𝑤
𝜕Φ

𝜕𝑡
(− 𝑙

2
, 𝑧) (4.21)

=− 𝜌𝑤

(︂ ∞∑︁
𝑚=1

(Ω𝑑𝑚(− 𝑙

2
, 𝑧)− Ω𝑑𝑚)𝜈𝑚(𝑡)− 𝑙

2
𝜂2(𝑡)

+
∞∑︁
𝑛=1

𝛽𝑛(𝑡)

𝜅𝑛
𝜑𝑛(−

𝑙

2
, 𝑧)− 𝑔

𝑙

∞∑︁
𝑚=1

∫︁ 0

−ℎ
𝑈𝑚(𝑧)𝑑𝑧𝜈𝑚(𝑡)

)︂
where 𝜌𝑤 is the liquid density. The last part of the pressure contribution comes
from 𝐶(𝑡) and is a quasi-steady hydrostatic pressure change due to the change in
mean free surface position. This pressure part is added in Malenica et al. (2015),
but should not as long as one solves a boundary value problem with the same
free-surface condition as stated in (4.7) and (4.8). An additional confirmation is
that we show later, by a numerical solution using the same free surface conditions
and the dynamic pressure given as −𝜌𝑤𝜕Φ/𝜕𝑡, that we get the same results as with
the analytical solution.

Ordinary differential equations for the structural mode amplitudes 𝜈𝑚 can now
be found by multiplying (4.1) with the mode 𝑈𝑗(𝑧) and integrating from 𝑧 = −ℎ to
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4.1. Linear sloshing in a 2D rectangular tank with an elastic wall

𝑧 = 𝐿− ℎ. This gives

𝜈𝑗(𝑡) + 𝜆2𝑚𝜈𝑗(𝑡) =
𝜌𝑤
𝑚𝑐

∫︁ 0

−ℎ

𝜕Φ

𝜕𝑡
(− 𝑙

2
, 𝑧)𝑈𝑗(𝑧)𝑑𝑧, (4.22)

where the generalized modal mass, is 𝑚𝑐 = 𝜌𝑐𝑑𝐿/2. The term on the right hand
side of (4.22) can be rewritten in terms of generalized added mass and restoring
coefficients by the following definitions:

∫︁ 0

−ℎ

∞∑︁
𝑚=1

(Ω𝑑𝑚(− 𝑙

2
, 𝑧)− Ω𝑑𝑚)𝑈𝑗(𝑧)𝑑𝑧𝜈𝑚(𝑡) =−

∞∑︁
𝑚=1

𝑎
(Ω)
𝑚𝑗

𝜌𝑤
𝜈𝑚(𝑡), (4.23)

∫︁ 0

−ℎ

∞∑︁
𝑛=1

𝛽𝑛(𝑡)
cosh(𝜋𝑛(𝑧 + ℎ)/𝑙)

𝜅𝑛 cosh(𝜋𝑛ℎ/𝑙)
𝑈𝑗(𝑧)𝑑𝑧 =−

∞∑︁
𝑛=1

𝑎
(𝜑)
𝑛𝑗

𝜌𝑤
𝛽𝑛(𝑡), (4.24)

𝑔

𝑙

∞∑︁
𝑚=1

∫︁ 0

−ℎ
𝑈𝑚(𝑧)𝑑𝑧

∫︁ 0

−ℎ
𝑈𝑗(𝑧)𝑑𝑧𝜈𝑚(𝑡) =

∑︁
𝑚=1

𝑐𝑚𝑗
𝜌𝑤

𝜈𝑚(𝑡), (4.25)

𝑙

2

∫︁ 0

−ℎ
𝑈𝑗(𝑧)𝑑𝑧𝜂2(𝑡) =

𝛾2𝑗
𝜌𝑤

𝜂2(𝑡). (4.26)

Superscripts are used on the coupled added mass coefficients 𝑎(Ω)
𝑚𝑗 and 𝑎

(𝜑)
𝑛𝑗 to

indicate that they are associated with Ω and 𝜑, respectively. The consequences are
that 𝑎(Ω)

𝑚𝑗 is frequency independent while 𝑎(𝜑)𝑛𝑗 is frequency dependent. 𝑎(Ω)
𝑚𝑗 provide

coupling between the structural modes, while 𝑎(𝜑)𝑛𝑗 provide coupling between
the structural and sloshing modes. The restoring coefficients 𝑐𝑚𝑗 are associated
with quasi- static hydrostatic pressure change due to mean free-surface change
described by the first term in the Fourier series (4.9) for the free surface elevation.
The coefficients 𝛾2𝑗 are proportional to coupled generalized added mass between
sway and structural modes. The calculation of and expression for the different
parts of the pressure contribution is given in the Appendix ( (A.1)- (A.4)).

The total equation for the 2D membrane becomes:

𝜈𝑗(𝑡)+
∑︁
𝑚

1

𝑚𝑐
𝑎
(Ω)
𝑚𝑗 𝜈𝑚(𝑡)+𝜆2𝑚𝜈𝑗(𝑡)+

∑︁
𝑚

𝑐𝑚𝑗
𝑚𝑐

𝜈𝑚(𝑡) = −
∑︁
𝑛

𝑎
(𝜑)
𝑛𝑗

𝑚𝑐
𝛽𝑛(𝑡)−𝜂2(𝑡)

𝛾2𝑗
𝑚𝑐

.

(4.27)

From (4.27) it can be seen that the response of a given mode 𝑗 is dependent on all
the other modes, both structural modes, and free surface modes.

It follows from Greens second identity, boundary conditions on mean free
surface Σ0 and mean wetted body surface 𝑆𝐵 and 𝑛 as the normal direction to
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4. Linear sloshing in a 2D rectangular tank with a flexible side wall

these surfaces that∫︁
Σ0+𝑆𝐵

[︂
(Ω𝑑𝑚(

−𝑙
2
, 𝑧)− Ω𝑑𝑚)

𝜕Ω𝑑𝑗(
−𝑙
2 , 𝑧)

𝜕𝑛
− (Ω𝑑𝑗(

−𝑙
2
, 𝑧)− Ω𝑑𝑗)

𝜕Ω𝑑𝑚(−𝑙2 , 𝑧)

𝜕𝑛

]︂
𝑑𝑆

=

∫︁ 0

−ℎ

[︂
(Ω𝑑𝑚(

−𝑙
2
, 𝑧)− Ω𝑑𝑚)𝑈𝑗(𝑧)− (Ω𝑑𝑗(

−𝑙
2
, 𝑧)− Ω𝑑𝑗)𝑈𝑚(𝑧)

]︂
𝑑𝑧

=𝑎
(Ω)
𝑚𝑗 − 𝑎

(Ω)
𝑗𝑚 = 0.

That means find if 𝑎(Ω𝑑)
𝑚𝑗 = 𝑎

(Ω𝑑)
𝑗𝑚 . By exchanging the mode 𝑈𝑗 with the Fourier

representation in (4.24), we find that 𝑎𝜑𝑛𝑗 = 𝛾𝑑𝑛𝑗 .

4.1.2 Analytical frequency-domain solution

We solve both the tank and the 2D membrane problem in the frequency domain,
by substituting 𝜈𝑚 = 𝜈𝑚 exp(𝑖𝜔𝑡) and 𝛽𝑛 = 𝛽𝑛 exp(𝑖𝜔𝑡) with 𝜔 as the forcing
frequency in (4.18) and (4.27). The result is

(𝜔2
𝑛 − 𝜔2)𝛽𝑛 − 𝜔2

∑︁
𝑚

𝛾𝑑𝑛𝑚

𝑚𝑛
𝜈𝑚 =

𝛾2𝑛
𝑚𝑛

𝜔2𝜂2, (4.28)

−𝜔2
∑︁
𝑛

𝑎𝜑𝑛𝑗

𝑚𝑐
𝛽𝑛 + (𝜆2

𝑚 − 𝜔2)𝜈𝑗 +
∑︁
𝑚

1

𝑚𝑐
(𝑐𝑗𝑚 − 𝜔2𝑎

(Ω)
𝑚𝑗 )𝜈𝑚 = 𝜔2 𝛾2𝑗

𝑚𝑐
𝜂2. (4.29)

Estimating the eigenfrequencies of the system

If we combine (4.28) and (4.29), we get:

−
∑︁
𝑛

∑︁
𝑚

𝜔4𝑎𝜑𝑛𝑗𝛾𝑑𝑛𝑚

𝑚𝑐𝑚𝑛(𝜔2
𝑛 − 𝜔2)

𝜈𝑚 + (𝜆2𝑚 − 𝜔2)𝜈𝑗 +
∑︁
𝑚

𝑐𝑗𝑚 − 𝜔2𝑎
(Ω)
𝑚𝑗

𝑚𝑐
𝜈𝑚 =

𝜔2

𝑚𝑐
(𝛾2𝑗 −

∑︁
𝑛

𝜔2𝑎𝜑𝑛𝑗𝛾2𝑛

𝑚𝑛(𝜔2
𝑛 − 𝜔2)

)𝜂2

. (4.30)

The natural frequencies of the system is found by looking at the nontrivial solution
of (4.30) for zero excitation (𝜂2 = 0). For a given mode 𝑗 we can see that there are
coupling to other modes both in the structural modes (𝑚) and for the sloshing
(modes 𝑛). The coupling causes the natural frequencies 𝜔*

𝑛 to differ from the natural
frequencies 𝜔𝑛 of the rigid tank. Equation (4.30) will have two limits when it comes
to tension 𝑇 . When tension 𝑇 → ∞, the dry structural natural frequencies 𝜆𝑚 → ∞,
and (4.30) reduces to 𝜔*

𝑛 = 𝜔𝑛. Meaning that the eigenfrequencies of the system
become the eigenfrequencies of the sloshing problem. On the other hand when
𝑇 = 0, the system still have stiffness from the free surface stiffness term 𝑐𝑚𝑚,
meaning that 𝜔*

𝑛 > 0 also for the case of zero tension. However, this is a case
where the linear 2D membrane theory as described here is not valid, as bending is
neglected and will have an influence in reality.
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4.1. Linear sloshing in a 2D rectangular tank with an elastic wall

A first estimate of the coupled eigenfrequency of the tank with the elastic
wall is that we neglect the coupling effect between structural modes, and only
considers one structural mode, together with one free surface mode. We introduce

the following wet 2D membrane eigenfrequency as 𝜆*𝑚 =
√︁

𝑚𝑐𝜆2
𝑚+𝑐𝑚𝑚

𝑚𝑐+𝑎
(Ω)
𝑚𝑚

. Here 𝑎Ω𝑚𝑗
is used to estimate the added mass effect. This gives:(︂

− 𝜔4 𝑎
(𝜑)
𝑛𝑚𝛾𝑑𝑛𝑚

𝑚𝑛(𝑚𝑐 + 𝑎
(Ω)
𝑚𝑚)

+ (𝜔2
𝑛 − 𝜔2)(𝜆*𝑚

2 − 𝜔2)

)︂
𝜈𝑚 = 0. (4.31)

Equation (4.31) is a fourth order directly solvable equation with two possible
positive solutions for every parameter combination. An estimate of the first two
possible eigenfrequencies, based on the first structural mode (𝑗 = 1) and the first
free surface mode (𝑛 = 1) are found by:

𝜔𝑒𝑠𝑡1𝑠 , 𝜔
𝑒𝑠𝑡
2𝑠 =

⎯⎸⎸⎸⎸⎸⎷𝜔2
1 + 𝜆*1

2 ∓
√︂
(𝜔2

1 + 𝜆*1
2)2 − 4(1− 𝑎

(𝜑)
11

𝑚𝑐+𝑎
(Ω)
11

𝛾𝑑11
𝑚1

)𝜔2
1𝜆

*
1
2

2(1− 𝑎
(𝜑)
11

𝑚𝑐+𝑎
(Ω)
11

𝛾𝑑11
𝑚1

)
. (4.32)

4.1.3 Numerical solution

A numerical solution using the Harmonic Polynomial Cell (HPC) method as de-
scribed in Appendix B has been implemented. The HPC method is a field method
initially described by Shao and Faltinsen (2014a,b) to solve the Laplace equation
with boundary conditions for an unknown velocity potential. In the HPC method,
the local expression of the velocity potential within a cell uses harmonic poly-
nomials. Hence, the governing equation is satisfied naturally. The connectivity
between different cells is built by overlapping the local expressions. A key feature
of the HPC method is in using higher-order local expressions satisfying Laplace
equation, which means that we can expect a better accuracy than for many other
low order field and boundary integral formulations presently used. Moreover,
the HPC method operates with a sparse coefficient matrix, so that many existing
numerical matrix solvers can solve the associated problem efficiently.

The solution by the HPC method is based on representing the velocity potential
as

Φ =

𝑀∑︁
𝑚=0

𝜑𝑚𝑣̇𝑚, (4.33)

where 𝑣0 = 𝜂2 and 𝑈0 = 1 and 𝜑𝑚 satisfy the body boundary condition

𝜕𝜑𝑚
𝜕𝑦

⃒⃒⃒⃒
𝑦=−𝑙/2

= 𝑈𝑚(𝑧), (4.34)

together with homogenous Neumann conditions at 𝑦 = 𝑙/2 for𝑚 ≥ 1 and 𝜕𝜑0𝜕𝑦 =
1 at 𝑦 = 𝑙/2, homogenous Neumann conditions at 𝑧 = −ℎ and the combined
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4. Linear sloshing in a 2D rectangular tank with a flexible side wall

free surface condition following from (4.7) and (4.8). The 2D membrane is solved
numerically by a modal representation, as for the analytical solution, where the
deformation is given by (4.5). Equation (4.22) is used to find 𝜈𝑗 by first expressing
the right hand side in terms in terms of generalized added mass coefficients 𝑎𝑗𝑚
defined as follows

𝜌𝑤

∫︁ 0

−ℎ

𝜕Φ

𝜕𝑡
𝑈𝑗(𝑧)𝑑𝑧 = −

𝑀∑︁
𝑚=0

𝑎𝑗𝑚𝜈𝑚, 𝑗 = 1..𝑀, (4.35)

𝑎𝑗𝑚 = −
∫︁ 0

−ℎ
𝜑𝑚𝑈𝑗(𝑧)𝑑𝑧. (4.36)

Simpson’s integration method is used. The expressions are controlled by using
that 𝑎𝑗𝑚 = 𝑎𝑚𝑗 for 𝑗 between 1 and 𝑀 . The latter follows by using Green’s second
identity∫︁

𝑆𝐹+𝑆𝐵

[︂
𝜑𝑗
𝜕𝜑𝑚
𝜕𝑛

− 𝜑𝑚
𝜕𝜑𝑗
𝜕𝑛

]︂
𝑑𝑆 = 0,

together with boundary conditions on the mean the free surface 𝑆𝐹 and on the
mean wetted tank surface 𝑆𝐵 and using that 𝜕/𝜕𝑛 means derivative along surface
normal.

4.2 Case simulation results

To better get an understanding of how the system behaves, two main test cases
have been run. For both cases, a 2D sloshing tank is used. The water depth-to-
tank length ratio ℎ/𝑙 is 0.5. Furthermore, wall thickness-to-tank length ratio is
𝑑/𝑙 = 2.5 · 10−3 and water density to solid wall density is 𝜌𝑤/𝜌𝑐 = 1. The fist case
is with a rigid movable left wall with a spring attached as described by Lu et al.
(1997) and Chai et al. (1996). The second case is with a membrane left wall.

4.2.1 Case simulation results, movable wall

A special case of what we consider is that the wall moves as a rigid body, which
corresponds to𝑈0 = 1 and𝑈𝑚 = 0 for𝑚 > 0. This case have earlier been studied by
Lu et al. (1997) and Chai et al. (1996). The relations in the coupled system is given by
(4.30) with the coefficients for this particular system given as𝑚𝑐 = 𝜌𝑐𝑑ℎ, 𝜆2𝑘 = 𝑘𝑠/𝜇,
where 𝑘𝑠 is a spring stiffness and the coefficients 𝑐𝑟𝑤 = 𝜌𝑤𝑔ℎ

2

𝑙 , 𝑎𝑟𝑤,(Ω) = 𝜌𝑤ℎ
3𝑙 (𝑙2+ℎ2)

and 𝑎𝑟𝑤,(𝜑)𝛾𝑟𝑤𝑑 = 𝜌𝑤
2𝑙2

(𝑛𝜋)3 tanh(𝑘𝑛ℎ), where 𝑟𝑤 stands for rigid wall.
The eigenfrequencies for the analytical solution has been estimated as a func-

tion of the spring stiffness 𝑘𝑠 by considering when the determinant of the coupled
system becomes zero. The non-dimensional eigenfrequencies 𝜔*

𝑛

√︀
𝑙/𝑔 of the sys-

tem for different stiffness, for the case where the wall moves as a rigid body is
plotted in Figure 4.2. The analytical and the numerical solution based on the HPC
method give the same eigenfrequencies. These eigenfrequencies also agree with
the eigenfrequencies found by the method of Lu et al. (1997).The eigenfrequencies
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Figure 4.2: Non-dimensional eigenfrequencies of the coupled system eigenfrequen-
cies 𝜔*

𝑛

√︀
𝑙/𝑔 for given stiffness 𝑘𝑠ℎ/ 1

2𝜌𝑤𝑔ℎ
2 for a rectangular tank with a rigid

moving left wall. 𝜔𝑛 is the sloshing eigenfrequency for the rigid tank. Water depth
(h)-to- l tank length ratio=0.5.

𝜔*
𝑛 are dependent on the spring stiffness 𝑘𝑠. From Figure 4.2 we see that 𝜔*

𝑛 ≤ 𝜔𝑛
as analytically shown by Schulkes (1990). When 𝑘𝑠 → 0, the dry eigenfrequency
𝜆𝑘 → 0. Since the coupled fluid structure problem still have stiffness from the free
surface stiffness term 𝑐𝑟𝑤, the first eigenfrequency 𝜔*

1 is finite.

4.2.2 Case simulation results, flexible wall

A test case with a flexible membrane wall with two different membrane wall
lengths 𝐿 (𝐿 = ℎ and 𝐿 = 2ℎ), and different tensions were then investigated.

Eigenfrequencies of the coupled system

The eigenfrequencies for the analytical solution have been estimated as a function
of the tension 𝑇 by considering when the determinant of the coupled system be-
comes zero. Even though the hydrostatic pressure is not applied to the system, the
hydrostatic pressure force equal to 1

2𝜌𝑤𝑔ℎ
2 is a real physical quantity to compare

the amount of tension applied to the system too. We therefore define the reference
tension 𝑇0 = 1

2𝜌𝑤𝑔ℎ
2 and use 𝑇/𝑇0 which is a ratio between the tension forces

and the hydrostatic pressure forces. Converged results have been obtained by
increasing numbers 𝐽 of structural modes and numbers 𝑁 of generalized free-
surface coordinates. The non-dimensional eigenfrequencies 𝜔*

𝑛

√︀
𝑙/𝑔 of the system

for different tensions 𝑇/𝑇0 ∈ [5 · 10−3, 10], for 2D membrane lengths ℎ/𝐿 = 1 and
ℎ/𝐿 = 2 are plotted in Figure 4.3.

47



4. Linear sloshing in a 2D rectangular tank with a flexible side wall

1 2 3 4

ω
√
l/g

10-3

10-2

10-1

100

101

T
/1 2
ρ
w
gh

2

ω1 ω2 ω3 ω4 ω5

ω ∗
n

ω1est

1 2 3 4

ω
√
l/g

ω1 ω2 ω3 ω4 ω5

Figure 4.3: Non-dimensional eigenfrequencies of the coupled system eigenfrequen-
cies 𝜔*

𝑛

√︀
𝑙/𝑔 for given tensions 𝑇/𝑇0 where 𝑇0 = 1

2𝜌𝑤𝑔ℎ
2 for a rectangular tank

with a membrane at the left wall. 𝜔𝑛 is the sloshing eigenfrequency for the rigid
tank. Water depth (h)-to- l tank length ratio=0.5. Membrane length left: 𝐿 = ℎ.
Right: 𝐿 = 2ℎ.

The eigenfrequencies of the system are highly dependent on both the tension
and the 2D membrane length. If we consider a given value of 𝑇/𝑇0, then the
eigenfrequency 𝜔*

𝑛 of the coupled system is smaller than the sloshing frequency
𝜔𝑛 of the rigid tank for any given 𝑛. When 𝑇/𝑇0 → ∞, 𝜔*

𝑛 → 𝜔𝑛. If 𝑇/𝑇0 is small,
and we consider a given 𝜔𝑛, then there can be more than 𝑛 eigenfrequencies of the
coupled system that is lower than 𝜔𝑛.

The first mode eigenfrequency of the system, from free surface mode 𝑛 = 1,
and structural mode 𝑗 = 1 can be nicely estimated with 𝜔𝑒𝑠𝑡1𝑠 , as can be seen from
Figure 4.3. The line of 𝜔𝑒𝑠𝑡2𝑠 is not plotted in the figure, and that is because it did not
fit with the system frequencies. The higher 𝜔*

𝑛 are not direct solutions of (4.32) with
other 𝑛, 𝑗 combinations, which indicates that these frequencies depend on more
than one set of (𝑛, 𝑗) terms. This result was expected since the rigid tank sloshing
frequencies are located so closely together that it is plausible that more than one
will influence the coupled eigenfrequency 𝜔*

𝑛 for 𝜔*
𝑛 > 𝜔1. The Figure shows that

lower eigenfrequencies 𝜔*
𝑛 than 𝜔𝑒𝑠𝑡1𝑠 exist for the two lowest investigated tensions

𝑇/𝑇0.
If the eigenfrequencies of the flexible membrane in Figure 4.3 are compared to

the eigenfrequencies of the rigid moving wall case displayed in Figure 4.2, we see
that one eigenfrequency 𝜔*

𝑛 converges to 𝜔*
𝑛

√︀
𝑙/𝑔 ≈ 1, for both the rigid movable

wall and for the flexible membrane case when respectively 𝑇 and 𝑘𝑠ℎ→ 0 for the
studied case. However, it is not general that this eigenfrequency of the system is
close to

√︀
𝑔/𝑙, when 𝑇 → 0. The similarity of the eigenfrequencies can be explained

as follows: In (4.13) we represent the deformation mode as a Fourier series. If the
constant term 𝛼0𝑚 gives a much larger contribution to the pressure for the first
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4.2. Case simulation results

mode than the remaining terms, the effect would be that solution of the case with
the membrane wall will approach the solution of the rigid moving wall case, for
frequencies lower than the first sloshing frequency. Higher eigenfrequencies 𝜔*

𝑛

does not show the same trend of being comparable.
For 𝑇 > 0.1𝑇0 the eigenfrequencies appear to be converged within the fre-

quency range for number of structural modes 𝐽 ≥ 3 for both the 2D membrane
lengths. However, as the tension decreases more structural modes come into play.
For the coupled analysis it was observed that as long as 𝐽,𝑁 ≥ 6, the eigenfre-
quencies of the system did not change with increasing 𝑁, 𝐽 for the given tension
interval. This result would indicate that all the eigenfrequencies for the studied
cases are within the first six eigenmodes.

Transfer function of free surface elevation of the coupled system

The analytical and numerical ratios 𝜁𝑎/𝜂2𝑎 (transfer function) between the wave
amplitude at the right wall and the sway amplitude versus non-dimensional
forcing frequency 𝜔

√︀
𝑙/𝑔 are plotted for the membrane length 𝐿 = ℎ and 𝐿 = 2ℎ

in Figure 4.4 and 4.5, respectively. The non-dimensional tensions 𝑇/𝑇0 = 1
4 ,

1
2 , 1

and 2 are examined. The analytical and numerical solutions agree very well, which
support the correctness of both of them. Similar as for the eigenfrequencies plotted
in Figure 4.3 we see that the transfer functions are dependent on the tension in
the system. The response goes to infinity at the eigenfrequencies of the system.
If a rigid tank is considered, the system will have five eigenfrequencies in the
considered frequency range. However, 𝜔2 and 𝜔4 correspond to even modes, and
resonance oscillations at the right wall at these frequencies cannot be excited. For
the tank with a flexible wall, we note resonant response at six eigenfrequencies
for 𝑇/𝑇0 = 1

4 and 𝑇/𝑇0 = 1
2 and 𝐿 = 2ℎ. There are five eigenfrequencies for the

other considered cases. When 𝐿 = ℎ, very narrow resonant response occurs close
to 𝜔2 with 𝑇/𝑇0 = 1

2 , 1 and 2, and close to 𝜔4 with 𝑇/𝑇0 = 1 and 2. When 𝐿 = 2ℎ,
very narrow resonant response occurs close to 𝜔2 with 𝑇/𝑇0 = 1 and 2. A large
response is seen also between 𝜔3 and 𝜔4 for 𝑇/𝑇0 = 1

2 for 𝐿 = ℎ, and between 𝜔3

and 𝜔5 for 𝑇/𝑇0 = 1
2 and 1, for 𝐿 = 2ℎ. The response of the free surface rises to

infinity at the eigenfrequencies, in agreement with linear potential flow theory of
incompressible liquid.

More modes are needed in the analytical solution for the transfer function
compared to the analysis of the eigenfrequencies to find the correct amplitude. In
the calculation of the transfer function, 30 generalized free-surface coordinates 𝛽𝑛
were used.

In the numerical solution, a square grid (𝑑𝑥 = 𝑑𝑧) with 𝑁𝑥 = 101 nodes in the
free surface were used. A convergence study has been run, and the results are
converged. It was observed that for low tensions (𝑇 < 1

4𝑇0) peaks in the transfer
function showed up in the solution at the eigenfrequencies of the tank. These peaks
vanished when the grid was refined. This cancellation effect can be seen by looking
at (4.30). When 𝜔 → 𝜔𝑛, the first and the last term in the (4.30) will be much larger
than the rest. Also, it can be assumed that the contributions from the given mode
n, will be far greater than the other modes, reducing (4.30) at the frequency limit
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Figure 4.4: The analytical and numerical ratio 𝜁(𝑙/2)
𝜂2𝑎

between the wave amplitude at
the right wall (𝜁(𝑙/2)) and the sway amplitude 𝜂2𝑎, versus non-dimensional forcing
frequency 𝜔

√︀
𝑙/𝑔 for forced sway oscillation of a rectangular tank with a membrane

as the left wall. Water depth (h)-to- l tank length ratio=0.5. Membrane length 𝐿 = ℎ.
Influence of non-dimensional membrane tension 𝑇/𝑇0 where 𝑇0 = 1

2𝜌𝑤𝑔ℎ
2 .
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0

2

4

6

8

10

ζ(
l/
2)
/η

2a
 [

-]

ω1 ω2 ω3 ω4 ω5

T=1
4
T0

Numeric solution

Analytic solution

ω ∗
n

0

2

4

6

8

10

ζ(
l/
2)
/η

2
a
 [

-]

T=1
2
T0

0

2

4

6

8

10

ζ(
l/
2)
/η

2a
 [

-]

T=T0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ω
√
l/g  [-]

0

2

4

6

8

10

ζ(
l/
2)
/η

2a
 [

-]

T=2T0

Figure 4.5: The analytical and numerical ratio 𝜁(𝑙/2)
𝜂2𝑎

between the wave amplitude
at the right wall (𝜁(𝑙/2)) and the sway amplitude 𝜂2𝑎, versus non-dimensional
forcing frequency 𝜔

√︀
𝑙/𝑔 for forced sway oscillation of a rectangular tank with a

membrane as the left wall. Water depth (h)-to- l tank length ratio=0.5. Membrane
length 𝐿 = 2ℎ. Influence of non-dimensional membrane tension 𝑇/𝑇0 where
𝑇0 = 1
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4. Linear sloshing in a 2D rectangular tank with a flexible side wall

𝜔 → 𝜔𝑛 to:∑︁
𝑚

𝛾𝑑𝑛𝑚𝜈𝑚 = 𝛾2𝑛𝜂2, (4.37)

which means that at the sloshing eigenfrequency of the rigid tank, the resonance
cancels and we get a frequency independent relation between the forced sway
and the deformation. The practical implications of this are that for frequencies
around the sloshing eigenfrequency of the rigid tank, a more refined grid is needed
for this canceling effect to happen. If care is not shown in the numerical solution,
numerical inaccuracies can cause unphysical resonances. It was the fact that we
had the analytical solution that pointed out this numerical problem for the direct
solution of the boundary value problem.

4.3 Conclusions and following work

A 2D rectangular sloshing tank with a flexible side wall has been studied analyti-
cally and numerically with a focus on the coupling effects between sloshing and
the flexible wall. Analytical and numerical solutions agree well. Two cases have
been analysed for a rectangular tank; one case with a rigid movable left wall with
a spring attached, and one case with a flexible membrane left wall.

The eigenfrequencies of the system with a flexible membrane left wall relied
heavily on both the tension and the 2D membrane length. For low tensions, more
than one eigenfrequency may exist between two neighbouring sloshing frequencies
for the rigid tank. For large tensions, the eigenfrequencies of the system became the
sloshing frequency of a rigid tank. For a given tension, one low eigenfrequency was
found to involve interaction only between the lowest structural mode and sloshing
mode. The other eigenfrequencies involved combinations of several structural and
sloshing modes.

The analytical solution provided important guidance for the numerical solution.
If care is not shown in the numerical solution, numerical inaccuracies can cause
non-physical resonances. By comparing the analytical solution with the numerical
solution, it was shown that it is wrong to add a quasi-steady hydrostatic pressure
change due to the time-dependent change in the mean free surface caused by the
elastic wall deformations.

The response of the coupled system was infinite at the eigenfrequencies of
the system. In reality, the amplitude must be finite. In order to find the actual
response of the system, viscous damping and non-linear free surface effects should
be included. This is left for further work. In continuation of the presented work,
we wish to use the gained knowledge and the validated numerical code to analyse
the response of a semi-circular closed flexible fish cage in waves. However, to do
that the geometry and initial tension of the structure must first be found, this will
be investigated in the following chapter.
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Chapter 5

Static structural analysis of a 2D
membrane tank in calm water

The initial shape and tension of the membrane must be known in order to analyse
a 2D membrane in waves and/or current. For the cases examined in Strand et al.
(2014), the bags were underfilled, and the shape of the bag was dependent on
the load history of the bag. To be able to use linear dynamic theory in waves, the
mean tension must be larger than zero. We secure a mean tension greater than
zero in calm water by introducing a pressure difference over the membrane from
an overfilling of the bag and a density difference between the inside volume and
the outside. The shape of the membrane will then be dependent on this pressure
difference.

In this Chapter a 2D static membrane under overpressure due to a hydrostatic
pressure difference is analysed with the aim to find the static geometry and the
tension in the membrane. Equations for the static membrane deformations are
found and analysed in a case study. Under certain assumption the equations
describing the geometry and the tension can be simplified, such that a direct
analytical solution can be found.

5.1 Analysis of static 2D membrane tank in calm water, with
overpressure

We consider a 2D membrane tank with two floaters in calm water as shown in
Figure 5.1. The horizontal distance between the centerlines of the two floaters is
2𝑅. The floaters are free to move in the vertical direction, but are restrained from
moving relative to each other in the horizontal direction, which means that we
must have a rod arrangement in practice. There is a hydrostatic pressure difference
at the membrane between the inside enclosed volume and the surrounding water
due to different free surface levels and/or water densities.

The Cartesian coordinate system 𝑂𝑦𝑧 is defined in Figure 5.1 with the 𝑦− axis
along the free surface of the outer water domain and the 𝑧− axis along the centerline
of the tank. Positive 𝑧− direction is upwards. The unknowns are membrane tension
𝑇 per unit length in the perpendicular 𝑥− direction and the geometric position
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𝑧

𝑦

2𝑅

Δℎ

(R,𝑧𝑒)

(0,𝑧0)

𝑇
𝜓

𝜌𝑤𝑖

𝜌𝑤

𝑟(𝜓)

Figure 5.1: 2D membrane tank with water height difference Δℎ between inner
and outer free-surface levels. 2𝑅 = horizontal distance between the centerlines of
the two floaters. (±𝑅, 𝑧𝑒) are coordinates of the attachment points between the
membrane and the floaters. 𝑇=membrane tension per unit length in perpendicular
𝑥− direction. (0, 𝑧0) is the lowest point of the membrane where the angle 𝜓 between
the membrane tangent and the 𝑦− axis is zero. 𝜌𝑤𝑖 and 𝜌𝑤𝑒 are the densities of the
water inside and outside the membrane, respectively.

of the wetted tank surface. We introduce a curvilinear coordinate 𝑠 along the
membrane starting from the lowest membrane point (0, 𝑧0) with positive direction
towards the right floater. Details of the membrane and the right floater are shown
in Figure 5.2 and Figure 5.3, respectively.

The analysis is inspired by the cable analysis in Chapter 8 in Faltinsen (1990).
A difference is that we must account for the additional pressure difference Δ𝑝.
This pressure difference is both due to a height difference Δℎ between the inner
and outer free-surface levels, and a density difference Δ𝜌 = 𝜌𝑤𝑖 − 𝜌𝑤, where 𝜌𝑤𝑖
is the density of the water inside the membrane, and 𝜌𝑤 is the density of the
water outside the membrane. The hydrostatic pressure on the inside point of the
membrane is −𝜌𝑤𝑖𝑔(𝑧 −Δℎ). The hydrostatic pressure on a point outside at the
membrane which is located perpendicular to the membrane from the considered
inside point is −𝜌𝑤𝑔(𝑧 − 𝑑 cos(𝜓)). Here, 𝑑 is the membrane thickness, 𝑔 is the
acceleration of gravity and the angle 𝜓 is defined in Figure 5.1. The hydrostatic
pressure difference Δ𝑝 for a given curvilinear coordinate 𝑠 is therefore

Δ𝑝0 =− 𝑔((𝜌𝑤 +Δ𝜌)(𝑧 −Δℎ) + 𝜌𝑤(𝑧 − 𝑑 cos𝜓))

=𝑔(𝜌𝑤Δℎ− 𝜌𝑤𝑑 cos𝜓 −Δ𝜌𝑧 +Δ𝜌Δℎ). (5.1)

We consider an element of the membrane as illustrated in Figure 5.2. The
segment length is denoted 𝑑𝑠. Our analysis assumes an inelastic membrane in calm
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5.1. Analysis of static 2D membrane tank in calm water, with overpressure

water. Static force equilibrium gives that:

𝑑𝑇 = 𝑚𝑀𝑔 sin𝜓𝑑𝑠, (5.2)
𝑇𝑑𝜓 = 𝑚𝑀𝑔 cos𝜓𝑑𝑠+Δ𝑝0𝑑𝑠

= 𝑔(𝑚𝑀 cos𝜓 + 𝜌𝑤Δℎ− 𝜌𝑤𝑑 cos𝜓 −Δ𝜌𝑧(𝜓) + Δ𝜌Δℎ)𝑑𝑠. (5.3)

Here 𝑚𝑀 is membrane mass per unit area in air. This equation system is for Δℎ
and Δ𝜌 = 0 equivalent to the cable representation as described in Faltinsen (1990).

The 𝑧(𝜓) term in (5.3) can be written as 𝑧(𝜓) = −𝑟(𝜓) cos(𝜓) + 𝑧𝑒, where
𝑟(𝜓) is the radial coordinate defined in Figure 5.1, and 𝑧𝑒 is the 𝑧-coordinate
of the attachment point between floater and membrane. Neither 𝑟(𝜓) nor 𝑧𝑒 in
𝑧(𝜓) is known a priori, and the resulting equation set is therefore implicit. To
be able to solve the equation set and find a solution, a first approximation of
𝑟(𝜓) = 𝑅 is used, and 𝑧𝑒 is found by a vertical force equilibrium of the right floater.
This force equilibrium is dependent on the tension and the end angle 𝜓𝑒 at the
attachment point to the floater. An iteration between the multiple equations are
then necessary to find a stable equilibrium. An alternative to approximating 𝑧(𝜓)
as 𝑧(𝜓) = −𝑅 cos(𝜓) + 𝑧𝑒 is to use the actual 𝑧(𝜓) found in numerical calculations,
and iterate the whole 𝑧-part of the pressure to find a stable equilibrium. A good
start value of 𝑧(𝜓) is then 𝑧(𝜓) = −𝑅 cos(𝜓) + 𝑧𝑒. The two approaches will be
compared in the case study presented in Section 5.5. To simplify the expressions
we define:

𝑤̃ = 𝑚𝑀 − 𝜌𝑤𝑑+Δ𝜌𝑅, (5.4)
𝑝 = 𝜌𝑤Δℎ−Δ𝜌𝑧𝑒 +Δ𝜌Δℎ. (5.5)

(5.3) can then be written as:

𝑇𝑑𝜓 = 𝑔(𝑤̃ cos𝜓 + 𝑝)𝑑𝑠 (5.6)

To get an expression for the tension 𝑇 we divide (5.2) and (5.3), and get

𝑑𝑇

𝑇
=
𝑚𝑀 sin𝜓𝑑𝜓

𝑤̃ cos𝜓 + 𝑝
.

Since the considered problem is symmetric about the 𝑧-axis, it is sufficient to start
from 𝜓 = 0. Integration up to 𝜓 gives

𝑇 = 𝑇0

(︂
𝑤̃ + 𝑝

𝑤̃ cos𝜓 + 𝑝

)︂𝑚𝑀
𝑤̃

, (5.7)

where 𝑇0 is the value of 𝑇 at (0, 𝑧0). The expression shows that 𝑇 is constant when
𝑚𝑀 = 0, which is consistent with (5.2). We now substitute (5.7) in (5.6) and get

𝑑𝑠 =
𝑇0
𝑔

(𝑤̃ + 𝑝)
𝑚𝑀
𝑤̃

(𝑤̃ cos𝜓 + 𝑝)
𝑚𝑀
𝑤̃ +1

𝑑𝜓. (5.8)
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Figure 5.2: Details of the membrane shown in Figure 5.1. 𝑑 = membrane thickness.
𝐸 = elasticity module of membrane, our analysis assumes an inelastic membrane.
𝑠 = curvilinear coordinate along the membrane. Δ𝑝 is the pressure difference at a
given angle 𝜓. 𝑚𝑀 is membrane mass per unit area in air. 𝑛, 𝑡 is the local normal
tangential coordinate-system.

This means that

𝑠 =
𝑇0
𝑔
(𝑤̃ + 𝑝)

𝑚𝑀
𝑤̃

∫︁ 𝜓

0

𝑑𝜓

(𝑤̃ cos𝜓 + 𝑝)
𝑚𝑀
𝑤̃ +1

. (5.9)

Since 𝑑𝑦 = cos𝜓𝑑𝑠 , it follows from (5.9) and integration that

𝑦 =
𝑇0
𝑔
(𝑤̃ + 𝑝)

𝑚𝑀
𝑤̃

∫︁ 𝜓

0

cos𝜓𝑑𝜓

(𝑤̃ cos𝜓 + 𝑝)
𝑚𝑀
𝑤̃ +1

. (5.10)

We now apply (5.9) and (5.10) at the right floater, i.e. for 𝜓 = 𝜓𝑒 and denote
half the length of the membrane as 𝑆𝑇 . Dividing the (5.10) by (5.9) gives

𝑅

𝑆𝑇
=

∫︀ 𝜓𝑒

0
cos𝜓𝑑𝜓

(𝑤̃ cos𝜓+𝑝)
𝑚𝑀
𝑤̃

+1∫︀ 𝜓𝑒

0
𝑑𝜓

(𝑤̃ cos𝜓+𝑝)
𝑚𝑀
𝑤̃

+1

. (5.11)

Equation (5.11) determines 𝜓𝑒, which can be done numerically. We can now use
either (5.9) or (5.10) at 𝜓 = 𝜓𝑒 to determine 𝑇0.

Our next step is to determine 𝑧0 − 𝑧𝑒 (see Figure 5.1). Since 𝑑𝑧 = sin𝜓𝑑𝑠 , it
follows from (5.8) and integration that

𝑧 − 𝑧0 =
𝑇0
𝑔
(𝑤̃ + 𝑝)

𝑚𝑀
𝑤̃

∫︁ 𝜓

0

sin𝜓𝑑𝜓

(𝑤̃ cos𝜓 + 𝑝)
𝑚𝑀
𝑤̃ +1

. (5.12)
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𝐴𝑅

𝐴𝐿

(𝑅, 𝑧𝑒)

𝑇 sin𝜓𝑒

Δℎ

𝑇

𝐷𝐹

Figure 5.3: Details of force equilibrium at the right floater shown in Figure 5.1.

By applying (5.12) at 𝜓 = 𝜓𝑒 we have an equation that determines 𝑧0 − 𝑧𝑒, i.e.

𝑧0 − 𝑧𝑒 = − 𝑇0
𝑔𝑚𝑀

(︂
(𝑝+ 𝑤̃)

(𝑝+ 𝑤̃ cos𝜓𝑒)

𝑚𝑀
𝑤̃

− 1

)︂
, (5.13)

where 𝑧𝑒 is the coordinate of the bottom of the floater. We can now determine the
coordinates (y,z) of the membrane with 𝜓 as a parameter by using (5.10) and (5.12).
The corresponding tensions are given by (5.7). The limit of all the equations when
𝑝→ 0 and 𝑤̃ → 𝑚𝑀 − 𝜌𝑤𝑑 go to the results as given in Faltinsen (1990). Since 𝑦, 𝑧
and 𝑠 are dependent on 𝑧𝑒, an iterative procedure is needed in the calculations.

Our next step is to determine the 𝑧− coordinate 𝑧𝑒 of the attachment point
between the membrane and the right floater. 𝑧𝑒 is found by setting up and solving
the vertical force equilibrium for the right floater.

5.2 Global static force equilibrium

The vertical force equilibrium for the right floater is illustrated in Figure 5.3. There
is a vertical force per unit length due to hydrostatic pressure that can be expressed
as 𝜌𝑤𝑖𝑔𝐴𝐿 + 𝜌𝑤𝑔𝐴𝑅 where the areas 𝐴𝐿 and 𝐴𝑅 are defined in Figure 5.3.

We can explain the hydrostatic pressure terms as follows by first consider the
hydrostatic loading inside the tank where the hydrostatic pressure is −𝜌𝑤𝑖𝑔(𝑧−Δℎ).
We then consider an artificial closed body so that we can apply Gauss theorem. The
artificial closed body with area 𝐴𝐿 has surfaces that consist of the inside wetted
floater surface, the horizontal dotted line in Figure 5.3, where −𝜌𝑤𝑖𝑔(𝑧 −Δℎ) = 0
and the vertical dotted line at the centerline of the floater where the 𝑧− component
𝑛3 of the outwards normal vector is zero. That means integrating 𝜌𝑤𝑖𝑔(𝑧 −Δℎ)𝑛3
along the closed surface is the same as the hydrostatic vertical force on the floater
surface inside the tank. Then we apply Gauss theorem and get the result. Similar we
do for the outer wetted surface of the floater. The results depend on the geometry
of the floater; plausible geometries are circular and rectangular. We note that
due to the density difference and overfilling we will also have a horizontal force
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5. Static structural analysis of a 2D membrane tank in calm water

equilibrium here, which will if it is considered influence the distance between
freely moving floaters. For a real world 3D closed flexible fish cage this distance is
close to fixed, we therefore choose to keep this distance fixed, and not consider this
force equilibrium. Vertical force equilibrium gives that

𝑔(𝜌𝑤𝑖𝐴𝐿 + 𝜌𝑤𝐴𝑅)−𝑚𝐹 𝑔 − 𝑇 (𝜓𝑒) sin𝜓𝑒 = 0. (5.14)

Here 𝑚𝐹 is the mass in air of the right floater per unit length in perpendicular 𝑥−
direction. We can express 𝑇 (𝜓𝑒) by (5.7) and use either (5.9) or (5.10) at 𝜓 = 𝜓𝑒 to
determine 𝑇0.

If the floater has a semi-circular shape in the lower part, we can analytically
express 𝐴𝐿 and 𝐴𝑅 as functions of floater submergence 𝑧𝑒. The expressions for 𝐴𝑅
and 𝐴𝐿 for a floater of the type given in Figure 5.3, with a half circle at the bottom
and a rectangular shape on the top is dependent on the submergence of the half
circle. If the half circle part is fully submerged, i.e. −𝑧𝑒 ≥ 𝑅𝐹 :

𝐴𝑅 =
𝑅2
𝐹𝜋

4
+𝑅𝐹 (𝑧𝑒 +𝑅𝐹 ), (5.15)

𝐴𝐿 =
𝑅2
𝐹𝜋

4
+𝑅𝐹 (𝑧𝑒 +Δℎ+𝑅𝐹 ).

If the half circle part is not fully submerged, i.e −𝑧𝑒 < 𝑅𝐹 :

𝐴𝑅 =
𝑅2

𝐹

2
arccos(

𝑅𝐹 + 𝑧𝑒
𝑅𝐹

) − (𝑅𝐹 + 𝑧𝑒)

2

√︀
𝑧𝑒(−2𝑅𝐹 − 𝑧𝑒), (5.16)

𝐴𝐿 =
𝑅2

𝐹

2
arccos(

𝑅𝐹 + 𝑧𝑒 − ∆ℎ

𝑅𝐹
) −

(𝑅𝐹 + 𝑧𝑒 − ∆ℎ)
√︀

(∆ℎ− 𝑧𝑒)(2𝑅𝐹 + 𝑧𝑒 − ∆ℎ)

2
.

Combining the results from present and previous section the geometry and
static tension of a 2D membrane can be numerically found for a given membrane
mass 𝑚𝑀 and thickness 𝑑, overfilling Δℎ and density difference Δ𝜌. An iteration
between (5.11), (5.10) or (5.9), (5.7) and (5.14) are necessary to find a stable equilib-
rium. Starting with finding 𝜓𝑒 for 𝑧𝑒 = 0 by (5.11), then finding 𝑇0 at 𝜓𝑒 by (5.10)
or (5.9). The tension at 𝜓𝑒, 𝑇 (𝜓𝑒) is then found by (5.7), and used in (5.14) where 𝑧𝑒
is found. This 𝑧𝑒 is then used in the pressure in (5.11) and the previous steps are
repeated until a stable equilibrium have been reached.

For Δ𝜌 = 0 and 𝑤̃ << 𝑝, the analysis can be simplified to a large extent.

5.3 Pure overfilling, neglecting weight

We now consider a case with non-zeroΔℎ, and zero density difference (Δ𝜌 = 0)
between the internal and external water. We assume that the membrane is massless
(𝑑 = 0). A massless membrane can be justified according to (5.7) if 𝑤̃ << 𝑝
or 𝑤̃ >> 𝑚𝑀 . For 𝑤̃ << 𝑝 the fraction in the expression goes to one, and for
𝑤̃ >> 𝑚𝑀 the power goes to zero. For the given assumptions 𝑑𝑇 = 0, and the
tension is constant along the cable, resulting in 𝑇 = 𝑇0. This assumption simplifies
the equations to a large extent. We can now find the geometry and tension of the
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5.4. Density differences and overfilling, neglecting weight

membrane by considering the limit of (5.11) which is 2
𝜋 = sin𝜓𝑒

𝜓𝑒
for a circle where

𝑆𝑇 = 𝑅𝜋/2. The only solution to this equation is 𝜓𝑒 = 𝜋/2. The resulting equations
are:

𝑇0 =
𝜌𝑤𝑔Δℎ𝑅

sin𝜓𝑒
=𝜌𝑤𝑔Δℎ𝑅, (5.17)

𝑠 = 𝜓
𝑇0

𝜌𝑤𝑔Δℎ
=𝑅𝜓, (5.18)

𝑦 = sin𝜓
𝑇0

𝜌𝑤𝑔Δℎ
=𝑅 sin𝜓, (5.19)

𝑧 = 𝑧0 − (cos𝜓 − 1)
𝑇0

𝜌𝑤𝑔Δℎ
=𝑧𝑒 −𝑅 cos𝜓. (5.20)

These results are consistent with the limit of expression (5.6), (5.9), (5.10) and (5.12)
for 𝑤̃ → 0. The results for 𝑤̃ = 0 is also consistent with that we have a circular
membrane shape with radius 𝑅 = 𝑇0

𝜌𝑤𝑔Δℎ
. Combining (5.14) and (5.17) for the case

where 𝑤̃ = 0 and 𝜓𝑒 = 𝜋/2 gives:

𝜌𝑤𝑔(𝐴𝐿(𝑧𝑒) +𝐴𝑅(𝑧𝑒))−𝑚𝐹 𝑔 − 𝜌𝑤𝑔Δℎ𝑅 = 0. (5.21)

𝑧𝑒 can be found by solving (5.21) numerically for a given Δℎ.

5.4 Density differences and overfilling, neglecting weight

We now consider a case with Δℎ, and a density difference Δ𝜌 between the internal
and external water. We assume that the membrane is massless (𝑑 = 0). As in the
previous analysis we set 𝑧(𝜓) = −𝑅 cos(𝜓) + 𝑧𝑒 (we will in the test case investigate
the appropriateness of this assumption). As before we define 𝑝 by (5.5) and now

𝑤̂ = Δ𝜌𝑅. (5.22)

The tension equation can now be written as:

𝑇0𝑑𝜓 = 𝑔(𝑤̂ cos𝜓 + 𝑝)𝑑𝑠. (5.23)

We use the same procedure as for the membrane with mass and overfilling. The
length of the right membrane part from the bottom becomes:

𝑠 =
𝑇0
𝑔

∫︁ 𝜓

0

𝑑𝜓

𝑤̂ cos𝜓 + 𝑝
(5.24)

=− 𝑇0
𝑔

2 tanh−1

(︂
(−𝑤̂+𝑝) tan(𝜓/2)√

𝑤̂2−𝑝2

)︂
√︀
𝑤̂2 − 𝑝2

.

Since 𝑑𝑦 = cos𝜓𝑑𝑠 , it follows from (5.24) and integration that

𝑦 =
𝑇0
𝑔

∫︁ 𝜓

0

cos(𝜓)𝑑𝜓

𝑤̂ cos𝜓 + 𝑝
(5.25)

=
𝑇0
𝑔

(︂
𝜓

𝑤̂
+

2𝑝 tanh−1

(︂
(−𝑤̂+𝑝) tan(𝜓/2)√

𝑤̂2−𝑝2

)︂
𝑤̂
√︀
𝑤̂2 − 𝑝2

)︂
.
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5. Static structural analysis of a 2D membrane tank in calm water

Table 5.1: Case dimensions for bag with floater. 𝑅 is the radius of the bag, 𝑑 is the
thickness of the fabric, 𝐸 is the elasticity module of the fabric, 𝜌𝑁 is the density
of the fabric (nylon used), 𝜌𝑤 is the density of salt water and 𝑚𝐹 is the mass per
meter of the floater. 𝑅𝐹 is the radius of the floater.

R d E 𝜌𝑁 𝜌𝑤 𝑚𝐹 /𝑅𝐹

1 m 5 · 10−5 m 2 · 109 Pa 1150 kg/m3 1025 kg/m3 2.38 kg/m2

We now apply (5.24) and (5.25) at the right floater, i.e. for 𝜓 = 𝜓𝑒 and denote
the length of the membrane as 𝑆𝑇 . Dividing (5.25) by (5.24) gives

𝑅

𝑆𝑇
=

∫︀ 𝜓
0

cos(𝜓)𝑑𝜓
𝑤̂ cos𝜓+𝑝∫︀ 𝜓

0
𝑑𝜓

𝑤̂ cos𝜓+𝑝

(5.26)

= −𝜓𝑒
𝑤̂

√︀
𝑤̂2 − 𝑝2

2 tanh−1

(︂
(−𝑤̂+𝑝) tan(𝜓𝑒/2)√

𝑤̂2−𝑝2

)︂ − 𝑝

𝑤̂
.

Equation (5.26) determines 𝜓𝑒, which can be done numerically. We can now use
either (5.24) or (5.25) at 𝜓 = 𝜓𝑒 to determine 𝑇0.

Our next step is to determine 𝑧0. Since 𝑑𝑧 = sin𝜓𝑑𝑠 , it follows from (5.24) and
integration that

𝑧 − 𝑧0 =
𝑇0
𝑔

∫︁ 𝜓

0

sin(𝜓)𝑑𝜓

𝑤̂ cos𝜓 + 𝑝
(5.27)

𝑧0 = 𝑧𝑒 −
𝑇0
𝑔

log

(︂
𝑝+ 𝑤̂

𝑝+ 𝑤̂𝑐𝑜𝑠(𝜓𝑒)

)︂
. (5.28)

By applying this equation at 𝜓 = 𝜓𝑒 we have an equation that determines 𝑧0 as a
function of 𝑧𝑒. We can now determine the coordinates (x,z) of the membrane with
𝜓 as a parameter.

5.5 Case studies

We here investigate the importance of different assumptions in a model scale test
study. If the weight of the cable can be neglected in the analysis of shape and
tension of a 2D membrane, the expressions can be greatly simplified, as shown
in Section 5.3. We, therefore, investigate the importance of the mass of the cable
on the tension calculations. Also, it can be observed from (5.21) that the size of
the floaters is dependent on the tension, necessary size of floaters in relation to
overfilling is therefore also investigated.

We operate with nondimensional figures, but the analysis was done for a model
scale of 1 : 12.5 relative to the full scale case from Botngaard, presented in Appendix
C. The model scale parameters are presented in Table 5.1. The values given in Table
5.1 are assembled from different sources. The mass of the floaters is from Li (2017).
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5.5. Case studies

The density and elasticity module of the membrane is of light weight nylon cloth,
like the one used in the experiment described in Chapter 3. The thickness of the
membrane is the same as for the model experiments in Chapter 3.

5.5.1 Case study of importance of weight relative to overfilling,
for Δ𝜌 = 0

The assumption of a ”massless cable” holds according to (5.7) if 𝑝 >> 𝑤̃, or if
𝑤̃ >> 𝑚𝑀 . Then the tension would be constant. The tension with and without
weight for a case with pure overfilling Δ𝜌 = 0 is displayed in Figure 5.4 top.
The calculated tension follows 𝑇0 for Δℎ/𝑅 ≥ 10−3. The bottom part of Figure
5.4 presents (𝑚𝑀 − 𝜌𝑤𝑑)/𝜌𝑤Δℎ, i.e 𝑤̃/𝑝 versus Δℎ/𝑅. It illustrates that 𝑤̃/𝑝 is
very small when Δℎ/𝑅 > 10−3. The results are consistent with that a weightless
membrane can be assumed in predicting the tension when Δℎ/𝑅 ≥ 10−3 and
Δ𝜌 = 0.

The calculation of necessary floater diameter is made assuming that 𝑧𝑒 = −𝑅𝐹 .
This would mean that the lower half circular part of the floater is exactly submerged.
Then the floater radius 𝑅𝐹 can be found by solving a second order equation of 𝑅𝐹 ,
using 𝑚𝐹 /𝑅𝐹 from Table 5.1:

𝑅𝐹 =

𝑚𝐹

𝑅𝐹 𝜌𝑤
−Δℎ+

√︁
( 𝑚𝐹

𝑅𝐹 𝜌𝑤
−Δℎ)2 + 2𝜋 𝑇 (𝜓𝑒)

𝜌𝑤𝑔
sin(𝜓𝑒)

𝜋
. (5.29)

The floater diameter 𝑅𝐹 is highly dependent on the tension in the membrane
and therefore reliant on the overfilling Δℎ. From the results plotted in Figure 5.5,
we observe that the floater radius 𝑅𝐹 is close to constant for Δℎ/𝑅 < 10−4. This
indicates that for this interval it is the combined mass of the floater and membrane
that decides the floater size. For Δℎ/𝑅 ≥ 10−3 the nondimensional radius of
the floater 𝑅𝐹 /𝑅 increases rapidly with Δℎ/𝑅. Based on the size of the floaters
used today on conventional salmon aquaculture cages (Aqualine, 2017), values of
𝑅𝐹 /𝑅 > 0.1 is unreasonable, giving a limit on Δℎ/𝑅 of 2 · 10−2.

We have operated with Δℎ as a known quantity. A more plausible known
quantity is the inside volume of water. So, we set up the relationship between Δℎ
and the inside volume of water. We start with an area 𝐴0 and apply an additional
amount of water Δ𝐴 = 2𝑅Δℎ0 as illustrated in Figure 5.6 right part. Due to the
overfilling the floaters will submerge and the membrane will deform, illustrated in
5.6 left part. The actual overpressure Δℎ will be dependent on the submergence of
the floaters. Preserving volume conservation in the bag Δℎ accounting for reduced
width of the bag related to the floater gives:

𝜋𝑅2

2
+ 2𝑅Δℎ0 = −2

∫︁ 𝑅

0

𝑧(𝑦)dy + 2Δℎ(𝑅− 𝑎(𝑧𝑒))− 2𝐴𝐿,

where 𝑧(𝑦) is the static shape of the bag when the floaters are submerged. Solving
for Δℎ gives

Δℎ =
𝑅Δℎ0 +𝐴𝐿 + 𝜋𝑅2

4 +
∫︀ 𝑅
0
𝑧(𝑦)dy

𝑅− 𝑎(𝑧𝑒)
, (5.30)

61



5. Static structural analysis of a 2D membrane tank in calm water

10−5 10−4 10−3 10−2 10−1

∆h/R

10−5

10−4

10−3

10−2

10−1

100
T
/ρ

w
g
R

2

T0 for mM = 0

T (ψe)

10−5 10−4 10−3 10−2 10−1

∆h/R

10−5

10−4

10−3

10−2

10−1

100

(m
M
−
ρ
w
d
)/
ρ
w

∆
h

Figure 5.4: Top: Nondimensional tension 𝑇/𝜌𝑤𝑔𝑅2 with effect of mass 𝑇 (𝜓𝑒) and
without effect of mass (𝑇0) versus nondimensional over filling height Δℎ/𝑅. Bot-
tom: nondimensional wet weight (𝑚𝑀 − 𝜌𝑤𝑑)/𝜌𝑤Δℎ versus nondimensional over
filling height Δℎ/𝑅.
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Figure 5.5: Nondimensional floater radius 𝑅𝐹 /𝑅 vs nondimensional filling height
Δℎ/𝑅. Results based on (5.29) for tension included the effect of the mass of the
membrane.

𝐴0 = 𝜋𝑅2

2

Δ𝐴0 = 2𝑅Δℎ0

Δ𝐴 = 2Δℎ(𝑅− 𝑎(𝑧𝑒))

𝐴 = −2
∫︀ 𝑅
0
𝑧(𝑦)𝑑𝑦 − 2𝐴𝐿

Figure 5.6: Illustration of calculation of volume conservation with overpressure,
accounting for floater area.

where Δℎ is the overpressure corrected for the reduced free surface area due to the
presence of the floaters, and 𝑎(𝑧𝑒) is the width of the floater at the free surface.

To find the overfilling Δℎ0, an initial overfilling in the form of extra volume
can be used. If an overfilling 𝑞, given relative to the theoretic volume 𝑉0 is applied,
we can find an overfilling by:

Δℎ𝑞%0 =
𝑉1 − 𝑉0
𝐴𝑠

=
𝑅𝑞

150

The overfilling is applied as Δℎ0 in 𝑞%, 𝑉1 is the overfilled volume and 𝐴𝑠 is the
free surface area. Two cases of pure overfilling (Δ𝜌 = 0) have been tested, one
with 10% overfilling of the bag with 𝑅𝐹 /𝑅 = 0.1 and a case with 5% overfilling
and 𝑅𝐹 /𝑅 = 0.05. The resulting geometries with overpressure Δℎ and floater
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Figure 5.7: Case results of equilibrium geometry of two cases where pure overfil-
lling is applied. Top: Equilibrium position of bag and floater for Δℎ/𝑅 = 3.7 · 10−3,
𝑅𝐹 /𝑅 = 0.05. Bottom: Equilibrium position of bag and floater forΔℎ/𝑅 =
15.0 · 10−3, 𝑅𝐹 /𝑅 = 0.1. The black line is the analysis by neglecting weight, while
the semi-dotted red line includes weight in the analysis. The dashed blue line is
the reference equilibrium position of a massless membrane with zero overpressure
inside the bag.
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Table 5.2: Analysis results for the three case studies. Δℎ is the over filling height,
Δ𝜌 is the density difference between the water inside the membrane and the
surrounding water. 𝑇0 is the tension at the bottom of the membrane, 𝑇 (𝜓𝑒) is the
tension at the connection point between the right floater and the membrane. 𝜓𝑒
is the top angle at the right floater, 𝑅𝐹 is the floater radius and 𝑧𝑒 is the floater
submergence.

Δℎ/𝑅 Δ𝜌/𝜌𝑤
𝑇0

𝜌𝑤𝑔𝑅2

𝑇 (𝜓𝑒)
𝜌𝑤𝑔𝑅2 𝜓𝑒 𝑅𝐹 /𝑅 𝑧𝑒/𝑅

Case 1 15.0 · 10−3 0.0 · 10−3 15.0 · 10−3 15.0 · 10−3 𝜋/2 0.10 -0.092
Case 2 3.7 · 10−3 0.0 · 10−3 3.7 · 10−3 3.8 · 10−3 𝜋/2 0.05 -0.033
Case 3 3.2 · 10−4 9.8 · 10−3 8.3 · 10−3 8.4 · 10−3 1.34 0.10 -0.066

submergence 𝑧𝑒 are plotted in Figure 5.7. Submergence of the floater 𝑧𝑒 together
with tension and some other parameters are given in Table 5.2.

For the first case with Δℎ10%0 , the results in the Table indicate that the theory for
a massless membrane can be applied, since Δℎ/𝑅 > 10−3 and 𝑇 (𝜓𝑒)

𝑇0
= 1.003. We

consider a 0.3% variation along the membrane acceptable, and will in the following
dynamic analysis consider the tension constant along the membrane. Visually from
Figure 5.7 lower part it can also be seen, that the red dotted line and the black line
overlap, indicating that the effect of the weight of the membrane does not change
the geometry significantly for this case. Also for the second case with Δℎ5%0 , the
results in the Table indicate that the theory for a massless membrane can be applied
since Δℎ/𝑅 > 10−3 and 𝑇 (𝜓𝑒)

𝑇0
= 1.027. We also consider a 2.7% tension variation

along the membrane acceptable.
In the performed analysis it is assumed that the membrane is inelastic, for this

assumption to be correct we must assume 𝑇0/𝐸𝑑 << 1. The present analysis have
been conducted for model scale, and it should be noted that this exact relation
(𝑇/𝐸𝑑) will be scale dependent. The material that the membrane is made of, have
an elasticity module 𝐸 that will not change significantly between model and full
scale. The full scale tension 𝑇𝑓𝑠 is proportional to the geometric scale defined as
𝑙𝑔, squared i.e 𝑇𝑓𝑠 = 𝑙2𝑔𝑇 . The thickness of the membrane 𝑑 scale approximately
linearly with 𝑙𝑔, For the ful scale parameters given in Appendix C with 𝐸𝑓𝑠 =
2.25GPa and 𝑑𝑓𝑠 = 0.75mm for a cage of radius 𝑅𝑓𝑠 = 12.5m and subscript fs
stands for full scale. The nondimensional tension will then for a scale of 12.5, for
Δℎ/𝑅 < 0.02 become 𝑇𝑓𝑠/𝐸𝑓𝑠𝑑𝑓𝑠 < 0.02, which can still be considered small, but
the effect of elasticity may need to be considered for Δℎ/𝑅 close to 0.02.

5.5.2 Case study for Δ𝜌 > 0

The previous cases have assumed that the density difference Δ𝜌 have been zero.
We will now turn to cases where density difference matters. We start by examining
the effect on tension from Δ𝜌 when Δℎ = 0. This is plotted in Figure 5.8. For
this case, the results are dependent on the floater size, and a constant floater size
of 𝑅𝐹 /𝑅 = 0.1 have been used. The black line in Figure 5.8 gives the tension
relative to Δ𝜌 if the mass is included in the analysis. We observe that 𝑇 appears
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5. Static structural analysis of a 2D membrane tank in calm water
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Figure 5.8: Plot of nondimensional tension 𝑇/𝜌𝑤𝑔𝑅2 relative to Δ𝜌/𝜌𝑤, for nondi-
mensional overfilling Δℎ/𝑅 = 0 and nondimensional floater radius 𝑅𝐹 /𝑅 = 0.1.
Density differences Δ𝜌 in the interval Δ𝜌/𝜌𝑤 ∈ [10−4, 2 ·10−2] have been examined.
Within the given interval, 𝑧𝑒 > −𝑅𝐹 meaning that the floater does not sink.

to increase linearly with Δ𝜌 in the given interval if the membrane is assumed
massless (𝑇 = 𝑇0). Based on the results in Figure 5.8, for the given analysis, we
will assume the membrane massless for Δ𝜌/𝜌𝑤 ≥ 10−2.

Also here a particular test case has been examined, a given overfilling Δℎ and
density difference Δ𝜌 is applied. We use Δ𝜌 = 10kg/m3 and Δℎ = 3.2 · 10−4m,
which is a model scaled case with a scale ratio of 1:12.5 of the the Botngaard case
described in Appendix C.

For the analysis given in sec 5.4 a profile on 𝑧(𝜓) was assumed. An alternative
to approximating 𝑧(𝜓) as 𝑧(𝜓) = −𝑅 cos(𝜓) + 𝑧𝑒 is to use the actual 𝑧(𝜓) found in
the numerical calculations and iterate to find a stable equilibrium. A total solution
using the actual 𝑧(𝜓) is developed on the basis of (5.2) and (5.3). The start value
of 𝑧(𝜓) is 𝑧(𝜓) = −𝑅 cos(𝜓) + 𝑧𝑒. The geometry calculated based on the ”real”
𝑧(𝜓) and including the mass is given by the red dotted line in Figure 5.9. From
this Figure, we observe that the difference between the red dotted line and the
whole black line is marginal for the analysed case. It can also be observed that the
geometry is no longer completely half circular (which was the case for case 1 and 2,
see Figure 5.7), we have achieved a narrower geometry with a top angle 𝜓𝑒 that
deviates from 𝜋/2. This is to be expected since 𝑝 cos(𝜓) decreases as 𝜓 increases
from zero up to 𝜓𝑒. From a geometrical perspective, our conclusion is then that
analysis with a massless membrane and an assumed profile on 𝑧(𝜓) is safe to use
for the given case.

Since a given overfilling height Δℎ and a given density difference Δ𝜌 have
been used the total volume inside the membrane was not known. The area was
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Figure 5.9: Equilibrium position of bag and floater for Δ𝜌 = 10 kg/m3 and Δℎ/𝑅 =
3.2·10−4,𝑅𝐹 /𝑅 = 0.1. Scaled case of the Botngaard case for a half circular geometry.
The black line is the analysis neglecting weight, while the semi dotted red line
includes weight and uses the real 𝑧(𝜓) in the analysis. The dashed blue line is the
reference equilibrium position of a massless membrane with zero overpressure
inside the bag.

calculated by integrating the profile, and an overfilling degree of 𝑞 = 7% was
found.

Based on the tension variations and the relative density difference the theory for
a massless membrane can be applied. For this case Δ𝜌/𝜌𝑤 = 0.98·10−2 with a small
over filling Δℎ in addition. For an assumed shape 𝑧(𝜓), we get a 𝑇 (𝜓𝑒)/𝜌𝑤𝑔𝑅2 =

8.4 · 10−3 with a 𝑇0/𝜌𝑤𝑔𝑅
2 = 8.3 · 10−3, giving 𝑇 (𝜓𝑒)

𝑇0
= 1.007. A variation of

0.7% between 𝑇 (𝜓) and 𝑇0 indicates that the tension is not varying much along
the membrane. We consider this difference small enough to assumed a constant
tension along the membrane.

5.6 Conclusions and following work

The geometry and initial tension of the membrane must be found in order to
be able to analyse the membrane in waves. Equations for the static equilibrium
geometry and tension for a membrane in calm water with a hydrostatic pressure
difference have been developed. The hydrostatic pressure difference at the mem-
brane between the inside enclosed volume and the surrounding water is due to
different free surface levels and/or water densities. The static geometry and ten-
sion is dependent on the load on the membrane. If the mass of the membrane can
be assumed small compared to the static pressure loads, simplifications with direct
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5. Static structural analysis of a 2D membrane tank in calm water

solutions to the equations can be found. When the mass can be assumed small
compared to the pressure loads, the tension along the membrane became constant.
The assumption of zero mass membrane was investigated, and a boundary of
when this assumption can be made was found. A maximum overfilling Δℎ based
on the largest plausible floater radius was also found.

Three special cases related to pressure forces and floater size have been in-
vestigated. For all these three cases the tension for the given non-dimensional
parameters could be assumed constant. For the first two cases with no density
differences Δ𝜌 = 0, the shape of the membrane was half circular. For the third case
with density differences, the shape deviated from a half circular shape, and the top
angle 𝜓𝑒 < 𝜋/2, giving a deeper and narrower shape.

Using the found equations for a given hydrostatic overpressure, the geometry
and tension can be found. This geometry and tension will then be used in the anal-
ysis of the response of a semi-circular closed flexible fish cage in waves, presented
in the following Chapter.
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Chapter 6

Linear wave response of a 2D closed
flexible fish cage

To predict the response of a 2D CFFC in waves three coupled sub problems must
be solved: The membrane dynamics, the external problem with incident waves and
the effect of the structure on the flow, and the internal problem, which is an internal
sloshing problem. All these three problems are coupled. The analysis considers
only a case with overfilling, i.e. no density differences will be considered, but the
equations are developed to allow for more general cases. The floaters are assumed
horizontally rigidly connected. Internal structures such as pumps and pipes are
neglected. The initial stationary geometry and static tension for a given filling
level and floater size is known from the previous chapter. When pure overfilling
is considered, certain simplifications can be made in the structural equations. For
large volume offshore structures second order slowly varying and mean wave
forces have great importance in the design of the mooring system. These effects
will not be considered in the present analysis.

In this chapter the linear theory of a 2D CFFC in waves is developed and
analysed with the aim to find the response of the CFFC in waves. First a general
overview of the problem and the equation of motions of the rigid body motions
are presented. Then, the theory for dynamic deformation of a 2D membrane is
developed and presented. It is followed by a presentation of the total equations for
the coupled system. Then, theory for the pressure loads on the CFFC are presented
starting with the external pressure forces, continuing with internal pressure forces
and hydrostatic pressure forces. The numerical implementation is explained, and a
verification case of the hydrodynamic loads on a 2D hemicircle is presented. The
results from a 2D case study with relevant full scale dimensions considering a
half circularly shaped CFFC with floaters is then presented. At last conclusions
are given. Parts of the results in this chapter is published in Strand and Faltinsen
(2018).
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6. Linear wave response of a 2D closed flexible fish cage
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Figure 6.1: Illustration of the subproblems that needs to be solved to predict the
response of a 2D CFFC in waves. The dotted line is the equilibrium position of the
membrane in calm water.

6.1 System overview

The 2D CFFC consists of two floaters and a membrane, where the membrane is
connected to the floaters at (±𝑅, 𝑧𝑒). The initial geometry of the membrane, the
static tension 𝑇0 and the vertical submergence of the floaters 𝑧𝑒 are known from a
static pressure analysis. We consider a 2D membrane in static equilibrium that is
attached in the points (−𝑅, 𝑧𝑒) and (𝑅, 𝑧𝑒) to two horizontally rigidly connected
floaters. The static geometry and static tension 𝑇0 was found in Chapter 5. The
whole geometry including the floaters move with the rigid body motions 𝜂2, 𝜂3
and 𝜂4 in sway, heave and roll, respectively. Sway and heave are for a point that
coincides with the origin of the coordinate system 𝑂𝑦𝑧 defined in Figure 6.1 when
the body is at rest. In addition, we must consider the membrane deformations
which is zero at the attachment points to the floaters. We assume small rigid
motions of the CFFC and small membrane deformations, then the superposition
principle can be used. The water surrounding and inside the CFFC introduces
pressure forces on the combined structure. The system is illustrated in Figure 6.1.

When considering the inertia, hydrodynamic and hydrostatic restoring loads
associated with the rigid body motions, velocities and accelerations, we assume a
rigid body. It implies that we can add the rigid body loads on the membrane to the
rigid body loads on the floater. It means that the rigid-body equations of motions
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6.2. Dynamic structural modelling, 2D membrane

𝑛𝐷
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Figure 6.2: Illustration of dynamic displacement and rotation of membrane element,
compared with static representation. Dynamic position of membrane element
with tangential direction 𝑡𝐷 and normal direction 𝑛𝐷, drawn with whole line.
Compared to a static membrane element with tangential direction 𝑡 and normal
direction 𝑛, drawn in a dotted line. The two elements are rotated according to each
other with a dynamic angel 𝜓 between them.

of the CFFC becomes:

(𝑚+ 𝑎22)𝜂2 + 𝑏22𝜂̇2 + (𝑎24 − 𝑧𝐺𝑚)𝜂4 + 𝑏24𝜂̇4 = 𝑓𝑒𝑥𝑐2 + 𝑓𝑀𝑒𝑚
2 , (6.1)

(𝑚+ 𝑎33)𝜂3 + 𝑏33𝜂̇3 + 𝑐33𝜂3 = 𝑓𝑒𝑥𝑐3 + 𝑓𝑀𝑒𝑚
3 , (6.2)

(𝐼44 + 𝑎44)𝜂4 + 𝑏44𝜂̇4 + 𝑐44𝜂4 + (𝑎42 − 𝑧𝐺𝑚)𝜂2 + 𝑏42𝜂̇2 = 𝑓𝑒𝑥𝑐4 + 𝑓𝑀𝑒𝑚
4 . (6.3)

Here, 𝑚 is the total mass of the floater and membrane, and 𝐼44 is the combined
moment of inertia of the membrane and floaters in roll defined as 𝐼44 =

∫︀
(𝑦2 +

𝑧2)𝑑(𝑚𝑀 +𝑚𝐹𝑙). 𝑎𝑗𝑘 is the added mass coefficient associated with the internal and
external flow, 𝑏𝑘𝑗 are wave radiation coefficients, and 𝑐𝑗𝑗 are restoring coefficients
associated with change in interior and exterior hydrostatic loads. 𝑐44 includes
also roll moment change due to the body weight. 𝑧𝐺 is the total vertical center of
gravity for the floater and the membrane. Furthermore, 𝑓𝑒𝑥𝑐𝑗 and 𝑓𝑀𝑒𝑚

𝑗 are wave
excitation loads and loads caused by the elastic deformations of the membrane.
How to evaluate 𝑎𝑗𝑘, 𝑏𝑗𝑘, 𝑐𝑗𝑗 and 𝑓𝑒𝑥𝑐𝑗 are described in Section 6.4. We will start with
analysing the elastic membrane deformations. Which will as part of the analysis
give 𝑓𝑀𝑒𝑚

𝑗 .

6.2 Dynamic structural modelling, 2D membrane

We will solve the dynamic displacement of a 2D membrane with a free surface.
Bliek (1984) has considered non-linearly a 3D cable in an accelerated coordinate
system, which is partly relevant for a 2D membrane. Our formulations are based
on a perturbation about the static mean position of the membrane, and allows for
the general case for a static tension variation along the membrane.
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6. Linear wave response of a 2D closed flexible fish cage

The tension in the membrane works along the actual dynamic geometry, and
needs to be transferred to the static representation, if linear perturbation theory
is to be used to solve the deformation problem. The dynamic tangential (𝑡𝐷) and
normal (𝑛𝐷) direction of the element (see Figure 6.2) can for small dynamic angles
𝜓 be expressed as:

𝑡𝐷 = cos𝜓𝑡+ sin𝜓𝑛 ≈ 𝑡+ 𝜓𝑛, (6.4)

𝑛𝐷 = − sin𝜓𝑡+ cos𝜓𝑛 ≈ −𝜓𝑡+ 𝑛, (6.5)

where 𝑛, 𝑡 are the normal and tangential direction respectively, at the mean static
position of the membrane, with directions given according to Figure 5.2 and Figure
6.2. The tension force on a 2D membrane element of infinitesimal length 𝑑𝑠 is
𝜕(𝑇 𝑡𝐷)
𝜕𝑠 𝑑𝑠. It follows that

𝜕(𝑇 𝑡𝐷)

𝜕𝑠
=
𝜕𝑇

𝜕𝑠
𝑡𝐷 + 𝑇

𝜕𝑡𝐷
𝜕𝑠

. (6.6)

The Frenet formulas (Kreyszig et al., 2006) give the relation between the normal
and tangential directions:

𝜕𝑡𝐷
𝜕𝑠

= 𝑛𝐷
𝜕𝜓

𝜕𝑠
, (6.7)

𝜕𝑛𝐷
𝜕𝑠

= −𝑡𝐷
𝜕𝜓

𝜕𝑠
, (6.8)

where 𝜓 is the total angle as illustrated in Figure 6.2.
To find an expression for the tension in the normal tangential frame we use the

given relation in (6.6):

𝜕𝑇

𝜕𝑠
𝑡𝐷 + 𝑇

𝜕𝜓

𝜕𝑠
𝑛𝐷 = (

𝜕𝑇

𝜕𝑠
− 𝑇

𝜕𝜓

𝜕𝑠
𝜓)𝑡+ (𝑇

𝜕𝜓

𝜕𝑠
+
𝜕𝑇

𝜕𝑠
𝜓)𝑛. (6.9)

By considering the dynamic motions of an infinitesimal element of the 2D
membrane as illustrated in Figure 5.2 evaluated on the static equilibrium geometry
according to (6.9), we get by disregarding structural damping the equations:

𝑚𝑀𝑣 = 𝑇
𝜕𝜓

𝜕𝑠
+
𝜕𝑇

𝜕𝑠
𝜓 −𝑚𝑀𝑔 cos𝜓 −Δ𝑝, (6.10)

𝑚𝑀 𝑢̈ =
𝜕𝑇

𝜕𝑠
− 𝑇

𝜕𝜓

𝜕𝑠
𝜓 −𝑚𝑀𝑔 sin𝜓, (6.11)

𝑣 is the normal deformation of the membrane along 𝑛, 𝑢 is the tangential defor-
mation of the membrane along 𝑡 and Δ𝑝 is the total pressure difference between
the internal and external pressure over the membrane. A dot above a variable
represents time differentiation. It is referred to Figure 5.2 for definition of normal
and tangential directions. We make a perturbation of the equations about the static
solution such that

𝜓(𝑠, 𝑡) = 𝜓0(𝑠) + 𝜓(𝑠, 𝑡),

𝑇 (𝑠, 𝑡) = 𝑇0(𝑠) + 𝜏(𝑠, 𝑡) = 𝑇0(𝑠) + 𝐸𝑑𝑒(𝑠, 𝑡), (6.12)
Δ𝑝(𝑠, 𝑡) = Δ𝑝0 +Δ𝑝(𝑠, 𝑡),
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Figure 6.3: Illustration of the stretching of an element from one time instant to
another, and rotation of the coordinate system from one time instant to another. 𝑈
is the velocity vector and 𝑡 is the tangential unit vector.

𝜏 is the dynamic tension, and 𝜏 = 𝐸𝑑𝑒, where 𝑒 is the dynamic strain follows from
the linear relation between strain and tension according to Hook’s law. Δ𝑝0 is the
static pressure difference and Δ𝑝 the dynamic pressure difference. To be able to
apply linear theory for the structure, the total tension 𝑇 of the membrane most be
positive.

After subtracting the static equilibrium and keeping linear terms we get:

𝑚𝑀𝑣 = 𝑇0
𝜕𝜓

𝜕𝑠
+ 𝜏

𝜕𝜓0

𝜕𝑠
+
𝜕𝑇0
𝜕𝑠

𝜓 −𝑚𝑀𝑔 sin𝜓0𝜓 −Δ𝑝, (6.13)

𝑚𝑀 𝑢̈ =
𝜕𝜏

𝜕𝑠
− 𝑇0

𝜕𝜓0

𝜕𝑠
𝜓 −𝑚𝑀𝑔 cos𝜓0𝜓. (6.14)

Different equations were used by Ulstein (1995) who analysed the dynamic de-
formation of an aft flexible bag of a surface effect ship (SES) by dividing the bag
into two parts, each with constant tension and radius of curvature. He has also ne-
glected the mass forces on the bag. Therefore, 𝜕𝑇0

𝜕𝑠 𝜓,𝑚𝑀𝑔 sin𝜓0𝜓 and𝑚𝑀𝑔 cos𝜓0𝜓

are assumed zero within his calculations. However, 𝑇0 𝜕𝜓0

𝜕𝑠 𝜓 are missing in his ex-
pressions.

Compatibility relations that give the relation between the deformations (𝑢, 𝑣),
the dynamic tension 𝜏 and the dynamic angle 𝜓 is needed to solve the equation
system. Inspired by Ulstein (1995) and Bliek (1984) we study a small element 𝑑𝑠 of
the 2D membrane at a given time instant 𝑡 and investigate the change occurring at
a small time increment 𝑑𝑡. It is referred to Figure 6.3 for illustration and definition
of the corner points 𝑎𝑏𝑎′𝑏′, where 𝑎 and 𝑏 are associated with a small membrane
element of length 𝑑𝑠 at time 𝑡 and 𝑎′ and 𝑏′ are associated with the membrane
element at time 𝑡+ 𝑑𝑡. The velocity vector 𝑈 of one end point at time 𝑡 is

𝑈 = ˙̃𝑢𝑡𝐷 + ˙̃𝑣𝑛𝐷 = (𝑢̇+ 𝜓𝑣̇)𝑡𝐷 + (𝑣̇ − 𝜓𝑢̇)𝑛𝐷 ≈ 𝑢̇𝑡𝐷 + 𝑣̇𝑛𝐷, (6.15)

where 𝑢̃, 𝑣 is the local normal and tangential velocity in the dynamic coordinate
system, which for small deformations and dynamic angles become the normal and
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6. Linear wave response of a 2D closed flexible fish cage

tangential velocities in the static coordinate system. At the other end point the
velocity at time 𝑡 is

𝑈 +
𝜕𝑈

𝜕𝑠
𝑑𝑠. (6.16)

The element 𝑎′𝑏′ has length

𝑑𝑠(1 +
𝜕𝑒

𝜕𝑡
𝑑𝑡). (6.17)

By vector addition we can write that

𝑈𝑑𝑡+ (𝑡𝐷 +
𝜕𝑡𝐷
𝜕𝑡

𝑑𝑡)𝑑𝑠(1 +
𝜕𝑒

𝜕𝑡
𝑑𝑡) = 𝑡𝐷𝑑𝑠+ (𝑈 +

𝜕𝑈

𝜕𝑠
𝑑𝑠)𝑑𝑡. (6.18)

This can be simplified by neglecting higher order terms to:

𝜕𝑈

𝜕𝑠
= 𝑡𝐷

𝜕𝑒

𝜕𝑡
+
𝜕𝑡𝐷
𝜕𝑡

. (6.19)

By using partial differentiation on 𝑈 we get:

𝜕𝑈

𝜕𝑠
=
𝜕𝑢̇

𝜕𝑠
𝑡𝐷 + 𝑢̇

𝜕𝑡𝐷
𝜕𝑠

+
𝜕𝑣̇

𝜕𝑠
𝑛𝐷 + 𝑣̇

𝜕𝑛𝐷
𝜕𝑠

. (6.20)

From Figure 6.3 we derive:

𝜕𝑡𝐷
𝜕𝑡

= 𝑛𝐷
𝜕𝜓

𝜕𝑡
(6.21)

By using the Frenet formulas given by (6.7) and (6.8) in (6.20) we find:

𝜕𝑈

𝜕𝑠
= (

𝜕𝑢̇

𝜕𝑠
− 𝑣̇

𝜕𝜓

𝜕𝑠
)𝑡𝐷 + (𝑢̇

𝜕𝜓

𝜕𝑠
+
𝜕𝑣̇

𝜕𝑠
)𝑛𝐷. (6.22)

By combining (6.19), (6.21) and (6.22), and neglecting products of perturbation
terms and higher order terms and assuming steady state oscillations in time with
the frequency 𝜔, the following relations are obtained:[︂

𝜕𝑢
𝜕𝑠 − 𝑣 𝜕𝜓0

𝜕𝑠
𝜕𝑣
𝜕𝑠 + 𝑢𝜕𝜓0

𝜕𝑠

]︂
=

[︂
𝑒

𝜓

]︂
. (6.23)

These relations are consistent with Ulstein (1995).
The assumption of steady state oscillations are done to be able to integrate the

resulting equation in time. By assuming steady state oscillations we assume that
𝑢(𝜓, 𝑡) = 𝑢(𝜓)𝑒i𝜔𝑡 and 𝑣(𝜓, 𝑡) = 𝑣(𝜓)𝑒i𝜔𝑡, where i is defined according to i2 = −1.
Equation (6.23) is used in (6.13) and (6.14), with the resulting equation system for
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6.2. Dynamic structural modelling, 2D membrane

the normal and tangential deformations:

−𝜔2𝑚𝑀𝑣 =𝑇0

(︂
𝜕2𝑣

𝜕𝑠2
+
𝜕𝑢

𝜕𝑠

𝜕𝜓0

𝜕𝑠
+ 𝑢

𝜕2𝜓0

𝜕𝑠2

)︂
+ 𝐸𝑑

(︂
𝜕𝑢

𝜕𝑠
− 𝑣

𝜕𝜓0

𝜕𝑠

)︂
𝜕𝜓0

𝜕𝑠

+
𝜕𝑇0
𝜕𝑠

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝜕𝜓0

𝜕𝑠

)︂
−𝑚𝑀𝑔 sin𝜓0

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝜕𝜓0

𝜕𝑠

)︂
−Δ𝑝,

(6.24)

−𝜔2𝑚𝑀𝑢 =𝐸𝑑

(︂
𝜕2𝑢

𝜕𝑠2
− 𝜕𝑣

𝜕𝑠

𝜕𝜓0

𝜕𝑠
− 𝑣

𝜕2𝜓0

𝜕𝑠2

)︂
− 𝑇0

𝜕𝜓0

𝜕𝑠

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝜕𝜓0

𝜕𝑠

)︂
−𝑚𝑀𝑔 cos𝜓0

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝜕𝜓0

𝜕𝑠

)︂
. (6.25)

6.2.1 Numerical modelling of the structure

The hydrodynamic load part of (6.24), is in itself dependent on the deformations
i.e:

Δ𝑝 = 𝑓(𝑣, 𝜔). (6.26)

This results in that (6.24) and (6.25) can not be solved analytically for the consid-
ered membrane. A numerical model is therefore needed. However, even with a
numerical model it is not trivial to solve the problem. To solve this problem, we
choose to use a modal method as was done in Chapter 4. Then the deformation,
velocity and acceleration dependent terms can be found directly.

A modal representation is given according to:

𝑣 = ℜ(
∞∑︁
𝑚=1

𝜈𝑚𝑈𝑚(𝜓0)𝑒
i𝜔𝑡), (6.27)

𝑢 = ℜ(
∞∑︁
𝑛=1

𝜇𝑛𝑈𝑛(𝜓0)𝑒
i𝜔𝑡), (6.28)

where ℜ means the real part and 𝜈𝑚, 𝜇𝑛 are the generalized complex structural
mode amplitudes in normal and tangential direction, respectively. In the following
text we will omit the symbol ℜ and imply implicitly that we mean the real part of a
complex expression involving the complex time dependence. The 2D membrane is
rigidly attached to the floater in two points (±𝑅, 𝑧𝑒),then 𝑢(−𝜋), 𝑢(0), 𝑣(−𝜋), 𝑣(0) =
0. A Fourier series (modal) representation that satisfies the condition of rigid
attachment at the floater implies that:

𝑈𝑗(𝜓0) = sin

(︂
𝜋𝑗(𝜓0 − 𝜓𝑒)

2𝜓𝑒

)︂
. (6.29)

Ordinary differential equations for a general geometry for the structural mode
amplitudes 𝜈𝑚, 𝜇𝑘 can now be found by multiplying (6.24) and (6.25) with the
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6. Linear wave response of a 2D closed flexible fish cage

(𝑅, 𝑧𝑒)

𝑇 sin(𝜓𝑒 − 𝜓)

𝑇 𝜓𝑒𝜓

𝑇 cos(𝜓𝑒 − 𝜓)

Figure 6.4: Details at the right floater shown in Figure 5.1 for the dynamic case.
With dynamic angle 𝜓 and tension 𝑇 = 𝑇0 + 𝜏 .

mode 𝑈𝑗(𝜓0), and integrating along the membrane length 𝑆𝑀 :∫︁
𝑆𝑀

[︂
− 𝜔2𝑚𝑀𝑣 − 𝐸𝑑

(︂
𝜕𝑢

𝜕𝑠
− 𝑣

𝑑𝜓0

𝑑𝑠

)︂
𝑑𝜓0

𝑑𝑠
− 𝑇0

(︂
𝜕2𝑣

𝜕𝑠2
+
𝜕𝑢

𝜕𝑠

𝑑𝜓0

𝑑𝑠
+ 𝑢

𝑑2𝜓0

𝑑𝑠2

)︂
− 𝑑𝑇0

𝑑𝑠

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝑑𝜓0

𝑑𝑠

)︂
−𝑚𝑀𝑔 sin𝜓0

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝑑𝜓0

𝑑𝑠

)︂]︂
𝑈𝑗(𝜓0)ds = −

∫︁
𝑆𝑀

∆𝑝𝑈𝑗(𝜓0)ds,

(6.30)∫︁
𝑆𝑀

[︂
− 𝜔2𝑚𝑀𝑢− 𝐸𝑑

(︂
𝜕2𝑢

𝜕𝑠2
− 𝜕𝑣

𝜕𝑠

𝑑𝜓0

𝑑𝑠
− 𝑣

𝑑2𝜓0

𝑑𝑠2

)︂
+ 𝑇0

𝑑𝜓0

𝑑𝑠

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝑑𝜓0

𝑑𝑠

)︂
−𝑚𝑀𝑔 cos𝜓0

(︂
𝜕𝑣

𝜕𝑠
+ 𝑢

𝑑𝜓0

𝑑𝑠

)︂]︂
𝑈𝑗(𝜓0)ds = 0. (6.31)

The generalised pressure load in (6.30) have terms related to the external and
internal generalised added mass, external generalised wave radiation damping,
generalised hydrostatic restoring and generalised wave excitation loads, the evalu-
ation of these will be described in Section 6.4.

If the geometry of the membrane is half circular, (6.30) and (6.31) can be sim-
plified to a large extent. The equations for a half-circular membrane are given in
Appendix D.

The membrane is connected to the floaters, and this connection transfers dy-
namic tension loads to the rigid body motions. In the next section expressions for
these forces will be developed and presented.

6.2.2 Membrane-floater connection loads

When setting up the equations of motions of the CFFC we must account for
the dynamic membrane forces at the connections ±𝑅, 𝑧𝑒 of the membrane to the
floaters. There are dynamic force contributions on the floater through the dynamic
angle 𝜓 and the dynamic tension 𝜏 . The tension forces on the floaters from the
membrane are illustrated in Figure 6.4. The total tension is given by (6.12), and
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6.2. Dynamic structural modelling, 2D membrane

is 𝑇 = 𝑇0 + 𝜏 . The dynamic force contribution on the floaters and thereby on the
rigid body motions is the total tension force, subtracted the static tension force are

𝐹𝑦 =− 𝑇 cos(𝜓𝑒 − 𝜓) + 𝑇0 cos𝜓𝑒, (6.32)

𝐹𝑧 =− 𝑇 sin(𝜓𝑒 − 𝜓) + 𝑇0 sin𝜓𝑒. (6.33)

The first order net tension forces from the membrane on the right floater in hori-
zontal and vertical directions are:

𝐹𝑦 =− 𝜏 cos𝜓𝑒 − 𝑇0 sin𝜓𝑒𝜓, (6.34)

𝐹𝑧 =− 𝑇 − 𝜏 sin𝜓𝑒 + 𝑇0 cos𝜓𝑒𝜓. (6.35)

for small dynamic angles 𝜓.

The dynamic strain 𝑒 and the dynamic angle 𝜓 are given by(6.23). Using the
modal representation for the normal and tangential deformations, the dynamic
tension 𝜏 and dynamic angle 𝜓 at a given angle 𝜓0 are given as

𝜏(𝜓0) =
𝐸𝑑

𝑅

(︂
𝜕𝑢

𝜕𝜓
− 𝑣

)︂
=
𝐸𝑑

𝑅

(︂ ∞∑︁
𝑛=1

𝑛𝑈𝑐𝑛(𝜓0)𝜇𝑛 −
∞∑︁
𝑚=1

𝑈𝑚(𝜓0)𝜈𝑚

)︂
, (6.36)

𝜓(𝜓0) =
1

𝑅

(︂
𝜕𝑣

𝜕𝜓
+ 𝑢

)︂
=

1

𝑅

(︂ ∞∑︁
𝑚=1

𝑚𝑈𝑐𝑚(𝜓0)𝜈𝑚 +

∞∑︁
𝑛=1

𝑈𝑛(𝜓0)𝜇𝑛

)︂
. (6.37)

Notice that it is the generalised coordinates for the normal structural motions 𝜇𝑚
that have been used, then the counter 𝑚 is used and starts at one. If the generalised
motion variable 𝜉𝑗 is used the counter is 𝑗 and starts at four. 𝑛𝑈𝑐𝑛(𝜓0) is the
derivative of 𝑈𝑛(𝜓0).

The CFFC has two floaters, and the total contribution from the dynamic tension
forces in horizontal and vertical direction become

𝑓𝑇1 =− 𝑇0(𝜓(−𝜓𝑒) + 𝜓(𝜓𝑒)) sin𝜓𝑒 − (𝜏(𝜓𝑒)− 𝜏(−𝜓𝑒)) cos𝜓𝑒 (6.38)

=− 𝑇0
𝑅

∞∑︁
𝑚=1

𝑚𝜈𝑚(1 + (−1)𝑚) sin𝜓𝑒 −
𝐸𝑑

𝑅

∞∑︁
𝑛=1

𝑛(1− (−1)𝑛)𝜇𝑛 cos𝜓𝑒,

𝑓𝑇2 =− (𝜏(−𝜓𝑒) + 𝜏(𝜓𝑒)) sin𝜓𝑒 + 𝑇0(𝜓(𝜓𝑒)− 𝜓(−𝜓𝑒)) cos𝜓𝑒 (6.39)

=− 𝐸𝑑

𝑅

∞∑︁
𝑛=1

𝑛(1 + (−1)𝑛)𝜇𝑛 sin𝜓𝑒 +
𝑇0
𝑅

∞∑︁
𝑚=1

𝑚(1− (−1)𝑚)𝜈𝑚 cos𝜓𝑒.

The roll moment about the center of gravity of the CFFC due to the tension loads
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6. Linear wave response of a 2D closed flexible fish cage

on the floaters become

𝑓𝑇3 =

(︂
𝑅2(𝜏(𝜓𝑒)− 𝜏(−𝜓𝑒)) + 𝑧2𝑒𝑇0(𝜓(−𝜓𝑒) + 𝜓(𝜓𝑒))

)︂
sin𝜓𝑒 (6.40)

−
(︂
𝑅2𝑇0(𝜓(𝜓𝑒) + 𝜓(−𝜓𝑒)) + 𝑧2𝑒(𝜏(𝜓𝑒)− 𝜏(−𝜓𝑒))

)︂
cos𝜓𝑒

=

(︂
𝐸𝑑𝑅

∞∑︁
𝑛=1

𝑛(1− (−1)𝑛)𝜇𝑛 +
𝑧2𝑒𝑇0
𝑅

∞∑︁
𝑚=1

𝑚(1 + (−1)𝑚)𝜈𝑚

)︂
sin𝜓𝑒

−
(︂
𝑇0𝑅

∞∑︁
𝑚=1

𝑚(1− (−1)𝑚)𝜈𝑚 +
𝐸𝑑𝑧2𝑒
𝑅

∞∑︁
𝑛=1

𝑛(1− (−1)𝑛)𝜇𝑛

)︂
cos𝜓𝑒.

The equation of motion of the rigid body motions and the equations for the
structural deformations are interconnected, therefore a common framework is
necessary. This framework will be presented in the following section.

6.3 Coupled system equations for the CFFC

The rigid body equation of motion given by (6.1)-(6.3) and the equations for the
structural deformations of the membrane by (6.30) and (6.31) combined with (6.27)
and (6.28), together give a representation of the dynamics of the CFFC. The mem-
brane influences the rigid body motion through the hydrodynamic coupling terms
between rigid body motions and the structural normal deformation modes, and
through the connection forces on the floater from dynamic tension and dynamic
angle. The coupled equation system can be given as:

[︂
−𝜔2(𝑚𝑆 + 𝑚𝑀𝜉 + 𝑎𝑓 ) + i𝜔𝑏𝑓 + 𝑐𝑓 + 𝑐𝑀𝜉 + 𝑐𝑇𝜉 𝑐𝑀𝜉𝜇 + 𝑐𝑇𝜉𝜇

𝑐𝑀𝜇𝜉 −𝜔2𝑚𝑀𝜇 + 𝑐𝑀𝜇

]︂ [︂
𝜉
𝜇

]︂
=

[︂
𝑓𝑒𝑥𝑐

0

]︂
,

(6.41)

where 𝜉 is the motion variable vector defined as 𝜉 = [𝜂2, 𝜂3, 𝜂4, 𝜈1...𝜈𝑀 ]𝑇 and 𝜇
is the tangential deformation vector defined as 𝜇 = [𝜇1...𝜇𝑁 ]𝑇 . 𝑚𝑆 is the total
mass matrix of the membrane and floaters in air for the rigid body motions. 𝑚𝑠 is
defined according to

𝑚𝑠 =

⎡⎣ 𝑚𝑀 + 2𝑚𝐹𝑙 −𝑧𝐺(𝜋𝑅𝑚𝑀 + 2𝑚𝐹𝑙))
𝑚𝑀 + 2𝑚𝐹𝑙

−𝑧𝐺(𝜋𝑅𝑚𝑀 + 2𝑚𝐹𝑙) 𝐼𝑀33 + 𝐼𝐹𝑙33

⎤⎦ ,
where 𝑚𝑠 = 0 for 𝑗 > 4. 𝑎𝑓 is the total generalised added mass matrix with
contributions from the internal and external added mass defined as 𝑎𝑓 = 𝑎(𝑒)(𝜔)+
𝑎(𝑖)(𝜔). Here 𝑎(𝑒)(𝜔) is the generalised external added mass matrix for all motions
containing the elements 𝑎(𝑒)𝑗𝑘 and 𝑎(𝑖)(𝜔) is the generalised internal added mass

matrix for all motions containing the elements 𝑎(𝑖)𝑗𝑘 . 𝑏𝑓 is the generalised wave

radiation damping matrix from the external problem, containing the elements 𝑏(𝑒)𝑗𝑘 .
𝑐𝑓 is the generalised hydrostatic restoring matrix. 𝑚𝑀𝜉,𝑚𝑀𝜇 are the membrane
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6.4. Pressure loads

mass matrices of 𝜉 and 𝜇, respectively. They are defined according to

𝑚𝑀𝜉𝜉 =𝑚𝑀

∫︁
𝑆𝑀

∞∑︁
𝑗=4

∞∑︁
𝑚=1

𝜉𝑗𝑈𝑚(𝜓0)𝑈𝑗(𝜓0)ds,

𝑚𝑀𝜇𝜇 =𝑚𝑀

∫︁
𝑆𝑀

∞∑︁
𝑛=1

∞∑︁
𝑘=1

𝜇𝑛𝑈𝑘(𝜓0)𝑈𝑛(𝜓0)ds.

The structural stiffness matrices of 𝜉; 𝑐𝑀𝜉𝜉 and the structural stiffness matrix of 𝜇;
𝑐𝑀𝜇𝜇 are defined according to:

𝑐𝑀𝜉𝜉 =

∫︁
𝑆𝑀

∞∑︁
𝑗=4

∞∑︁
𝑚=1

𝜉𝑗

(︂
𝐸𝑑𝑈𝑚(𝜓0)

𝑑𝜓0

𝑑𝑠
− 𝑇0

𝑑2𝑈𝑚(𝜓0)

𝑑𝑠2
− 𝑑𝑇0

𝑑𝑠

𝑑𝑈𝑚(𝜓0)

𝑑𝑠

−𝑚𝑀𝑔 sin𝜓0

(︂
𝑑𝑈𝑚(𝜓0)

𝑑𝑠

)︂
𝑈(𝑗−3)(𝜓0)ds,

𝑐𝑀𝜇𝜇 =

∫︁
𝑆𝑀

∞∑︁
𝑛=1

∞∑︁
𝑘=1

𝜇𝑛

(︂
− 𝐸𝑑

𝑑2𝑈𝑘(𝜓0)

𝑑𝑠2
+ 𝑇0

𝑑𝜓0

𝑑𝑠

𝑑𝜓0

𝑑𝑠
𝑈𝑘(𝜓0)

−𝑚𝑀𝑔 cos𝜓0𝑈𝑘(𝜓0)
𝑑𝜓0

𝑑𝑠

)︂
𝑈𝑛(𝜓0)ds.

The coupling stiffness matrix between 𝜉 and 𝜇; 𝑐𝑀𝜉𝜇, and the coupling stiffness
matrix between 𝜇 and 𝜉; 𝑐𝑀𝜇𝜉, are defined according to:

𝑐𝑀𝜉𝜇𝜇 =

∫︁
𝑆𝑀

∞∑︁
𝑗=4

∞∑︁
𝑛=1

𝜇𝑛

(︂
− 𝐸𝑑

𝑑𝑈𝑛(𝜓0)

𝑑𝑠
− 𝑇0(

𝑑𝑈𝑛(𝜓0)

𝑑𝑠

𝑑𝜓0

𝑑𝑠
+ 𝑈𝑛(𝜓0)

𝑑2𝜓0

𝑑𝑠2
)

− 𝑑𝑇0

𝑑𝑠
𝑈𝑛(𝜓0)

𝑑𝜓0

𝑑𝑠
−𝑚𝑀𝑔 sin𝜓0𝑈𝑛(𝜓0)

𝑑𝜓0

𝑑𝑠

)︂
𝑈(𝑗−3)(𝜓0)ds,

𝑐𝑀𝜇𝜉𝜉 =

∫︁
𝑆𝑀

∞∑︁
𝑛=1

∞∑︁
𝑗=4

𝜉𝑗

(︂
𝐸𝑑(

𝑑𝑈(𝑗−3)(𝜓0)

𝑑𝑠

𝑑𝜓0

𝑑𝑠
+ 𝑈(𝑗−3)(𝜓0)

𝑑2𝜓0

𝑑𝑠2
)

+ 𝑇0
𝑑𝜓0

𝑑𝑠

𝑑𝑈(𝑗−3)

𝑑𝑠
−𝑚𝑀𝑔 cos𝜓0

𝑑𝑈(𝑗−3)

𝑑𝑠

)︂
𝑈𝑛(𝜓0)ds.

𝑐𝑇𝜉 and 𝑐𝑇𝜉𝜇 represent the membrane floater connection loads on the rigid body
motions, and are defined according to:

𝑓𝑇 = −𝑐𝑇𝜉𝜉 − 𝑐𝑇𝜉𝜇𝜇, (6.42)

where 𝑓𝑇1 is given by (6.38), 𝑓𝑇2 is given by (6.39), 𝑓𝑇3 is given by (6.40) and 𝑓𝑇𝑗 = 0
for 𝑗 > 3.

To solve (6.41) the generalized water pressure loads must be found.

6.4 Pressure loads

The pressure loads are divided in external and internal pressure loads. We will
start by looking at the external pressure loads.

79



6. Linear wave response of a 2D closed flexible fish cage

6.4.1 Generalised external pressure loads

To find the total dynamic pressure difference on the membrane we start by finding
the external flow and resulting generalised pressure loads. We consider a 2D
initially half circularly shaped CFFC with floaters in equilibrium in incident regular
waves of amplitude 𝜁𝑎, with wave number 𝑘 and frequency 𝜔 at constant depth ℎ.
The wave steepness is small, and linear theory is assumed. We assume a steady
state condition. No transient effects are present due to initial conditions. This
makes it possible to do the analysis in the frequency domain. For linear waves
propagating in the 𝑦- direction, Faltinsen (1990) gives the velocity potential for
incident waves at finite constant depth ℎ as:

𝜑0 =
𝑔𝜁𝑎
𝜔

cosh 𝑘(𝑧 + ℎ)

cosh 𝑘ℎ
𝑒(i𝜔𝑡−i𝑘𝑦), (6.43)

with the dispersion relation

𝜔2

𝑔
= 𝑘 tanh 𝑘ℎ. (6.44)

The presence of the body modifies the flow field in terms of a diffraction velocity
potential 𝜑𝑑 and radiation velocity potentials 𝜑(𝑒)𝑗 associated with the body motions.
The total external velocity potential Φ𝑒 is given as:

Φ𝑒 = 𝜑0 + 𝜑𝑑 +

∞∑︁
𝑗=1

𝜑
(𝑒)
𝑗 𝜉𝑗 . (6.45)

The general boundary value problem satisfies:

𝜕2Φ𝑒
𝜕𝑦2

+
𝜕2Φ𝑒
𝜕𝑧2

= 0 in 𝑄(𝑒)
0 , (6.46)

𝜕Φ𝑒
𝜕𝑧

= 0 at 𝑧 = −ℎ, (6.47)

−𝜔2Φ𝑒 + 𝑔
𝜕Φ𝑒
𝜕𝑧

= 0 on Σ0𝑒, (6.48)

in addition to body boundary conditions and a radiation condition ensuring out-
going far-field waves caused by the body. Here 𝑄(𝑒)

0 is the mean external liquid
domain and Σ

(𝑒)
0 is the external mean free surface. The body boundary condition on

the total exterior mean wetted structural surface including membrane and floaters
for the diffraction potential is:

𝜕𝜑𝑑
𝜕𝑛

= −𝜕𝜑0
𝜕𝑛

on 𝑆(𝑒)
𝑀 + 𝑆

(𝑒)
𝐹𝑙 , (6.49)

where 𝑆(𝑒)
𝑀 and 𝑆

(𝑒)
𝐹𝑙 denote mean wetted external membrane surface and floater

surface, respectively. 𝜕
𝜕𝑛 denotes the normal derivative to the mean wetted external

body surface. The corresponding normal vector 𝑛⃗ has positive direction into the
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6.4. Pressure loads

external water. Its components along the 𝑦− and 𝑧− axes are denoted 𝑛𝑦 and 𝑛𝑧 ,
respectively. The body boundary conditions for the radiation problems are:

𝜕𝜑
(𝑒)
𝑗

𝜕𝑛
= i𝜔𝑛𝑗 on 𝑆(𝑒)

𝑀 + 𝑆
(𝑒)
𝐹𝑙 . (6.50)

Here 𝑗 = 1..3 represent the rigid body motions; 𝜉1 = 𝜂2 (sway),𝜉2 = 𝜂3 (heave) and
𝜉3 = 𝜂4 (roll). It follows that

𝑛𝑗 =

⎧⎪⎨⎪⎩
𝑛𝑦 for 𝑗 = 1

𝑛𝑧 for 𝑗 = 2

𝑦𝑛𝑧 − 𝑧𝑛𝑦 for 𝑗 = 3.

(6.51)

𝑗 = 4..∞ are the prescribed normal deformation motions; 𝜉4 = 𝜈1, 𝜉5 = 𝜈2....𝜉∞ =
𝜈∞. It implies for 𝑗 ≥ 4 that

𝑛𝑗 =

{︃
𝑈𝑗−3(𝜓0) on 𝑆(𝑒)

𝑀

0 on 𝑆(𝑒)
𝐹𝑙 .

(6.52)

The tangential membrane motions do not cause any potential flow.
To ensure that the waves caused by the body are outgoing two far-field velocity

potentials are included, given as:

𝜑+𝑅 =
𝑔

𝜔
𝐴(+) cosh 𝑘(𝑧 + ℎ)

cosh 𝑘ℎ
𝑒(i𝜔𝑡−i𝑘𝑦) for 𝑦 → ∞, (6.53)

𝜑−𝑅 =
𝑔

𝜔
𝐴(−) cosh 𝑘(𝑧 + ℎ)

cosh 𝑘ℎ
𝑒(i𝜔𝑡+i𝑘𝑦) for 𝑦 → −∞. (6.54)

Here 𝐴(+) and 𝐴(−) represent far-field complex wave amplitudes and are un-
knowns in solving the problem.

Generalised added mass and damping terms for the external flow problem
follows from properly integrating the time derivative of 𝜑(𝑒)𝑗 , originating from the
dynamic pressure part in Bernoulli’s equation. The expressions are given by

i𝜔𝜌𝑤
∫︁
𝑆

(𝑒)
𝐹𝑙 +𝑆

(𝑒)
𝑀

𝜑
(𝑒)
𝑗 𝑛𝑘𝜉𝑗ds =

(︂
𝜔2𝑎

(𝑒)
𝑗𝑘 (𝜔)− i𝜔𝑏(𝑒)𝑗𝑘 (𝜔)

)︂
𝜉𝑗 for 𝑘 = 1..3, 𝑗,

i𝜔𝜌𝑤
∫︁
𝑆

(𝑒)
𝑀

𝜑
(𝑒)
𝑗 𝑛𝑘𝜉𝑗ds =

(︂
𝜔2𝑎

(𝑒)
𝑗𝑘 (𝜔)− i𝜔𝑏(𝑒)𝑗𝑘 (𝜔)

)︂
𝜉𝑗 for 𝑘 ≥ 4, 𝑗, (6.55)

where 𝑎(𝑒)𝑘𝑗 and 𝑏(𝑒)𝑘𝑗 are the external 2D added mass and damping contribution in
𝑘 direction, due to a motion in 𝑗 direction. Small letters are used as notation for
added mass and damping for the two-dimensional condition.

The generalised excitation load 𝑓𝑒𝑥𝑐,𝑗 as a combination of Froude Kriloff and
diffraction forces, can be found according to

i𝜔𝜌𝑤
∫︁
𝑆

(𝑒)
𝐹𝑙 +𝑆

(𝑒)
𝑀

(𝜑0 + 𝜑𝑑)𝑛𝑘ds =𝑓𝑒𝑥𝑐,𝑘(𝜔) for 𝑘 = 1..3,

i𝜔𝜌𝑤
∫︁
𝑆

(𝑒)
𝑀

(𝜑0 + 𝜑𝑑)𝑛𝑘ds =𝑓𝑒𝑥𝑐,𝑘(𝜔) for 𝑘 ≥ 4. (6.56)
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6. Linear wave response of a 2D closed flexible fish cage

Analytical relations

Two known relations between the damping and the far-field wave amplitude, and
between excitation force and damping, together with a symmetry relation based
on Green’s second identity were used to verify the correctness of the numerical
code. It is stated in Faltinsen (1990) that (6.57) and (6.59) holds for 𝑗 = 1− 3 (sway,
heave and roll). However, in the development of these relation, the normal velocity
i𝜔𝑛𝑗 is used, and therefore the relations will hold for all 𝑗, including the normal
deformation modes.

The estimated diagonal damping coefficient 𝑏𝑒𝑠𝑡𝑗𝑗 has the following relation to
the far-field wave amplitude |𝐴+| for constant finite water depth (Faltinsen and
Timokha, 2009):

𝑏𝑒𝑠𝑡𝑗𝑗 =
𝜌𝑤𝑔

2

𝜔3

(︂ |𝐴+|
|𝜉𝑗 |

)︂2

2𝑘𝐼1. (6.57)

where

𝐼1 =

∫︁ 0

−ℎ

cosh2 𝑘(𝑧 + ℎ)

cosh2 𝑘ℎ
dz =

sinh(𝑘ℎ) cosh(𝑘ℎ) + 𝑘ℎ

2𝑘 cosh2 𝑘ℎ
. (6.58)

For an infinitely long cylinder in beam sea, at infinite depth the estimated
excitation force amplitude |𝑓𝑗 |𝑒𝑠𝑡 has a known relation to the two-dimensional
diagonal damping coefficient 𝑏𝑗𝑗 (Newman, 1962). For finite water depth this
relation were found to be:

|𝑓𝑗 |𝑒𝑠𝑡 = 𝜁𝑎

√︂
𝜌𝑤𝑔2

𝜔
𝑏𝑗𝑗2𝑘𝐼1. (6.59)

The derivation of (6.59) is given in Appendix E.
Green’s second identity tells that∫︁

Σ0𝑒+𝑆
(𝑒)
𝐹𝑙 +𝑆

(𝑒)
𝑀 +𝑆∞

[︂
𝜑
(𝑒)
𝑗

𝜕𝜑
(𝑒)
𝑘

𝜕𝑛
− 𝜑

(𝑒)
𝑘

𝜕𝜑
(𝑒)
𝑗

𝜕𝑛

]︂
𝑑𝑠 = 0. (6.60)

Here 𝑆∞ are vertical control surfaces between 𝑧 = 0 and 𝑧 = −ℎ at 𝑦 = ±∞. If
we use (6.60) together with boundary conditions on the mean the free surface Σ0𝑒,
𝑆∞ and on the mean wetted tank surface 𝑆(𝑒)

𝐹𝑙 + 𝑆
(𝑒)
𝑀 we can derive symmetry

properties of the added mass and damping coefficients. For 𝑆(𝑒)
𝐹𝑙 = 0, 𝑎(𝑒)𝑗𝑘 = 𝑎

(𝑒)
𝑘𝑗

and 𝑏(𝑒)𝑗𝑘 = 𝑏
(𝑒)
𝑘𝑗 for all 𝑗, 𝑘. However, when 𝑆(𝑒)

𝐹𝑙 is non-zero the relations will only
hold for 𝑗, 𝑘 < 4 and 𝑗, 𝑘 ≥ 4.

6.4.2 Internal water pressure loads

Linear potential flow theory of an incompressible liquid is assumed for the internal
domain. For the internal flow it is most convenient to operate in a tank fixed
coordinate system. At rest, the origin of the tank fixed coordinate system is placed
at the origin of the global inertial coordinate system. Since we assume small
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6.4. Pressure loads

motions and deformations, the collocation of the origins of the inertial and tank-
fixed coordinate system at rest, implies that the representation of the rigid body
motions and membrane deformations are the same when considering the inertial
and external problems. In the tank fixed coordinate system, Bernoulli’s equation in
its original form must be modified to an accelerated coordinate system (Faltinsen
and Timokha, 2009, page 48). The linearised version of the pressure, or more
precisely excess pressure to atmospheric pressure is

𝑝 = −𝜌𝑤𝑖
𝜕Φ𝑖
𝜕𝑡

− 𝜌𝑤𝑖𝑔𝜂4𝑦 − 𝜌𝑤𝑖𝑔(𝑧 −Δℎ), (6.61)

with Φ𝑖 as the internal velocity potential. The equation is consistent with that the
excess pressure to atmospheric pressure is zero at 𝑧 = Δℎ when the tank is at rest.

The internal velocity potential Φ𝑖 can be expressed as

Φ𝑖 =

∞∑︁
𝑗=1

𝜑
(𝑖)
𝑗 𝜉𝑗 . (6.62)

The velocity potential 𝜑(𝑖)𝑗 satisfies

𝜕2𝜑
(𝑖)
𝑗

𝜕𝑦2
+
𝜕2𝜑

(𝑖)
𝑗

𝜕𝑧2
= 0 in 𝑄(𝑖)

0 , (6.63)

𝜕𝜑
(𝑖)
𝑗

𝜕𝑛
= i𝜔𝑛(𝑖)𝑗 on 𝑆(𝑖)

𝑀 + 𝑆
(𝑖)
𝐹𝑙 . (6.64)

Here 𝑄(𝑖)
0 is the mean internal liquid domain, 𝑆(𝑖)

𝐹𝑙 is the mean internal wetted
floater surface and 𝑆(𝑖)

𝑀 is the internal wetted surface of the membrane.
The internal normal vector 𝑛⃗(𝑖) has positive direction into the internal water.

As for the external problem is

𝑛
(𝑖)
𝑗 =

⎧⎪⎨⎪⎩
𝑛𝑦 for 𝑗 = 1

𝑛𝑧 for 𝑗 = 2

𝑦𝑛𝑧 − 𝑧𝑛𝑦 for 𝑗 = 3.

(6.65)

For the prescribed normal deformation modes for 𝑗 = 4.. are

𝑛
(𝑖)
𝑗 =

{︃
−𝑈𝑗−3(𝜓0) on 𝑆(𝑖)

𝑀

0 on 𝑆(𝑖)
𝐹𝑙 .

(6.66)

At the free surface, we linearise (6.61) at the internal free surface 𝑧−Δℎ−𝜁𝑖 = 0,
where 𝜁𝑖 describes the internal wave elevation relative to the movable, tank fixed
coordinate system. We then arrive at the linearised dynamic free surface conditions
in the body fixed coordinate system:

𝜕Φ𝑖
𝜕𝑡

|
Σ

(𝑖)
0

+ 𝑦𝑔𝜂4 + 𝑔𝜁𝑖 = 0. (6.67)
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Internal problem /
Sloshing tank
𝜕2Φ𝑖

𝜕𝑦2 + 𝜕2Φ𝑖

𝜕𝑧2 = 0

𝑧

𝑦

−𝜔2Φ𝑖 + 𝑔 𝜕Φ𝑖

𝜕𝑧 − i𝜔𝑔𝜉2 = 0

𝜕Φ𝑖

𝜕𝑛 =
∑︀∞
𝑗=1 i𝜔𝑛(𝑖)𝑗 𝜉𝑗

Δℎ

∇ ∇

Figure 6.5: Boundary conditions for a two-dimensional half circular closed flexible
fish cage with floaters in the frequency domain.

Where Σ
(𝑖)
0 is the mean free surface inside the tank. The kinematic linearised free

surface conditions is (Faltinsen and Timokha, 2009, page 198):

𝜕Φ𝑖
𝜕𝑧

− 𝜉2 − 𝑦𝜉3 −
𝜕𝜁𝑖

𝜕𝑡
= 0 (6.68)

In addition, conservation of liquid mass

∫︁
Σ

(𝑖)
0

𝜁𝑖𝑑𝑦 =

∫︁
𝑆

(𝑖)
𝑀

∑︁
𝑗≥4

𝑛𝑗𝜉𝑗ds, (6.69)

must be satisfied. Equation (6.68) is not the same as in an Earth fixed coordinate
system. Changes had to be made to include the rigid body motions and due to the
effect of the gravitational acceleration in the body fixed coordinate system, since
the body rotates relative to the Earth. Equation (6.69) expresses that the free surface
elevation must be consistent with conservation of liquid volume. If

∫︀
𝑆

(𝑖)
𝑀

𝑛𝑗𝜉𝑗ds ̸= 0

for 𝑗 ≥ 4 for a given non-zero 𝜉𝑗 , a time dependent constant change in the free
surface exist. By combining (6.68) with the time derivative of (6.67) in the frequency
domain, we get the linearised free surface condition

−𝜔2Φ𝑖 + 𝑔
𝜕Φ𝑖
𝜕𝑧

− i𝜔𝑔𝜉2 = 0. (6.70)

The boundary value problem for the liquid flow in the internal domain is illustrated
in Figure 6.5.
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The free surface condition of 𝜑(𝑖)𝑗 will be dependent on 𝑗:

−𝜔2𝜑
(𝑖)
𝑗 + 𝑔

𝜕𝜑
(𝑖)
𝑗

𝜕𝑧
= i𝜔𝑔 on Σ

(𝑖)
0 for 𝑗 = 2,

−𝜔2𝜑
(𝑖)
𝑗 + 𝑔

𝜕𝜑
(𝑖)
𝑗

𝜕𝑧
= 0 on Σ

(𝑖)
0 for 𝑗 ̸= 2. (6.71)

As a consequence of properly integrating the time derivative part of the pressure
as given by Bernoulli’s equation related to the tank fixed coordinate system, we
obtain the following added mass coefficients 𝑎(𝑖)𝑗𝑘

i𝜌𝑤𝑖𝜔
∫︁
𝑆

(𝑖)
𝐹𝑙+𝑆

(𝑖)
𝑀

𝜑
(𝑖)
𝑗 𝑛𝑘𝜉𝑗ds =𝜔2𝑎

(𝑖)
𝑗𝑘 (𝜔)𝜉𝑗 for 𝑘 = 1..3, 𝑗,

i𝜌𝑤𝑖𝜔
∫︁
𝑆

(𝑖)
𝑀

𝜑
(𝑖)
𝑗 𝑛𝑘𝜉𝑗ds =𝜔2𝑎

(𝑖)
𝑗𝑘 (𝜔)𝜉𝑗 for 𝑘 ≥ 4, 𝑗, (6.72)

where 𝜌𝑤𝑖 is the density of the water inside the CFFC and 𝑎
(𝑖)
𝑗𝑘 is the internal 2D

added mass contribution in 𝑗 direction, due to a motion in 𝑘 direction. There are
no damping coefficients according to potential flow theory for the interior problem.
The hydrodynamic damping coefficients associated with viscous boundary layer
at the wetted body surface will be neglected. However, this damping is in reality
small (Faltinsen and Timokha, 2009, page 377).

Symmetry of coefficients can also be used to verify the internal added mass
coefficients. Again we use Green’s second identity:∫︁

Σ
(𝑖)
0 +𝑆

(𝑖)
𝐹𝑙+𝑆

(𝑖)
𝑀

[︂
𝜑
(𝑖)
𝑗

𝜕𝜑
(𝑖)
𝑘

𝜕𝑛
− 𝜑

(𝑖)
𝑘

𝜕𝜑
(𝑖)
𝑗

𝜕𝑛

]︂
𝑑𝑠 = 0, (6.73)

together with boundary conditions on the mean the free surface Σ
(𝑖)
0 and on the

mean wetted tank surface 𝑆(𝑖)
𝐹𝑙 + 𝑆

(𝑖)
𝑀 . For 𝑆(𝑖)

𝐹𝑙 = 0, 𝑎(𝑖)𝑗𝑘 = 𝑎
(𝑖)
𝑘𝑗 for all 𝑗 ̸= 2. Due to

the free surface condition for heave, we will not have this property for coupling
terms between heave and the normal deformation modes. When 𝑆

(𝑖)
𝐹𝑙 > 0, the

relation will only hold for 𝑗, 𝑘 < 4 and 𝑗, 𝑘 > 3.
The internal relative wave elevation 𝜁𝑖 follows from the dynamic free-surface

condition (6.67):

𝜁𝑖 = − 𝑖𝜔
𝑔

∞∑︁
𝑗=1

𝜑
(𝑖)
𝑗 𝜉𝑗 |Σ(𝑖)

0
− 𝑦𝜂4. (6.74)

6.4.3 Restoring coefficients

The considered restoring coefficients in the equation of motions of the floater and
the membrane are due to quasi-steady change in the hydrostatic pressure and
weight considerations. The effect of a mooring system is not considered. If the
hydrostatic pressure i.e −𝜌𝑤𝑔𝑧, is integrated over the instantaneous position of
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6. Linear wave response of a 2D closed flexible fish cage

the structure, it will contribute to restoring forces and moments. The change of
hydrostatic pressure do not contribute to any restoring in sway (𝜂2 = 𝜉1). The
only potential restoring in sway must come from a mooring system. We have not
considered the effect a mooring system, so there will be no restoring in sway. Since
the whole internal water moves when considering heave (𝜂3 = 𝜉2), there is no
relative change in hydrostatic pressure internally. When we consider roll, there are
contributions as described in Faltinsen and Timokha (2009, page 79). The restoring
coefficients in heave (𝑐22) and roll (𝑐33) by considering both internal and external
contributions are given according to:

𝑐22 = 𝜌𝑤𝑔𝐴𝑤(𝑧𝑒), (6.75)

𝑐33 = −𝑚𝑔𝑧𝐺 + 𝜌𝑤𝑔

(︂
∇𝑧𝐵 +

∫︁
𝐴𝑤

𝑦2𝑑𝑦 −

Tank correction terms⏞  ⏟  
𝜌𝑤𝑖
𝜌𝑤

(︂
1

12
𝑏3𝑡 +

∫︁
𝑄

(𝑖)
0

(Δℎ+ 𝑧)𝑑𝑄

)︂)︂
.

(6.76)

When defining variables in (6.75) and (6.76), we refer to a fictitious body including
the floaters, the membrane and the water inside. Then, 𝐴𝑤(𝑧𝑒) is the waterplane
area of the fictitious body, defined in 2D as𝐴𝑤(𝑧𝑒) = 2(𝑅+𝑎(𝑧𝑒)). ∇ is the displaced
volume of water of the fictitious body per unit length; 𝑚 is the combined mass of
the floater and membrane and 𝑧𝐺 is the combined center of gravity of the floaters
and membrane of the CFFC. 𝑧𝐵 is the 𝑧− coordinate of the center of buoyancy
of the fictitious body and 𝑏𝑡 = 2(𝑅 − 𝑎(𝑧𝑒)) is the internal distance between the
floaters at the free surface. For the center of buoyancy the equation for 𝑐33 must be
corrected for the internal hydrostatic pressure, or the ”frozen” liquid effect as it is
called in Faltinsen and Timokha (2009, page 79-82).

The generalised pressure loads due to the change in hydrostatic pressure inte-
grated over the instantaneous body surface will give a hydrostatic restoring force
also for the normal structural deformation modes. When considering change in the
hydrostatic pressure due to the elastic deformation, we introduce first the change
𝑈𝑗−3(𝜓0)𝜉𝑗𝑛2 that the normal deformation 𝑈𝑗−3(𝜓0)𝜉𝑗 causes in vertical motion.
Here 𝑛2 is the external normal vector in heave. Then we must account for a possible
density difference Δ𝜌 = 𝜌𝑤𝑖−𝜌𝑤 between the internal and external water. It means
that the change in hydrostatic pressure loading on the membrane is

−Δ𝜌𝑤𝑔𝑈𝑗−3(𝜓0)𝜉𝑗𝑛2. (6.77)

The unit normal vector of the internal and external domain points in the oppo-
site direction. We assume that 𝑆(𝑖)

𝑀 ≈ 𝑆
(𝑒)
𝑀 , this is plausible as long as the thickness

of the membrane 𝑑 is small. The restoring coefficients for a given mode 𝑘, can be
calculated as:

∞∑︁
𝑗=4

𝑐𝑗𝑘𝜉𝑗 = −Δ𝜌𝑤𝑔

∫︁
𝑆

(𝑒)
𝑀

∞∑︁
𝑗=4

𝑈(𝑗−3)(𝜓0)𝑛2𝑈(𝑘−3)(𝜓0)𝜉𝑗ds for 𝑗, 𝑘 > 4. (6.78)

This means that we will only have an additional restoring due to the normal
structural deformation modes if the density of the internal and external liquid
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differ (Δ𝜌 ̸= 0). For limited density differences, the restoring coefficients of the
structural deformation modes are small compared to the restoring coefficients of
heave and roll.

Several papers have studied the effect of hydrostatic restoring for elastic bodies;
Malenica et al. (2015, 2009); Senjanovic et al. (2008); Newman (1994). The given
calculations deviate from these studies. Common for all of the cited papers are
that they define the structural modes in a Cartesian 𝑥𝑦𝑧 coordinate system. This
complicates the calculations and leads to other terms. Senjanovic et al. (2008) and
Newman (1994) only considered the restoring from the hydrostatic pressure on the
external body, and did not account for hydrostatic pressure from any internal liquid.
Malenica et al. (2015, 2009) considers hydrostatic pressure on both an internal and
an external domain, but have a different free surface condition for the internal
domain, leading to a restoring term from the rise of the free surface which is
included in my internal added mass.

6.5 Numerical implementation and verification

To find the pressure loads on the CFFC, the potential theory formulations have
to be solved in a numerical framework. The HPC method presented in Appendix
B was used. For the rectangular tank with a flexible wall analysed in Chapter 4
the computational domain was rectangular, and easily discretized with quadratic
cells. Since the geometry of the CFFC is not quadratic, a method to account for
the non-rectangular boundary must be used. The main alternatives are either to
use a boundary fitted grid, or to use an immersed boundary method. Ma et al.
(2017) have found that the HPC method have best accuracy for quadratic grid cells,
and that severe stretching or distortion of the cells should be avoided. Inspired
by Hanssen et al. (2015), who successfully implemented an immersed boundary
method (IBM) for a moving body we use a fixed Cartesian quadratic grid, with
an immersed boundary method to capture the boundary. Then, the cells remain
quadratic.

Ghost nodes inside (for the external problem) and outside (for the internal
problem) the body are applied to reconstruct the velocity at the immersed boundary
(Hanssen et al., 2015). The body- boundary condition on immersed boundaries are
projected onto the surrounding ghost nodes. The applied code uses one layer of
ghost nodes and uses the harmonic polynomials of the HPC method to interpolate
the coordinate of the boundary to the ghost cell. The ghost nodes are connected to
cells inside the liquid domain.

The numerical HPC framework was implemented in Python. To find the im-
mersed boundary, the Python package ”shapely” was used. Based on predefined
structure input points defining the geometry, the function approximated a point on
the boundary inside the cell based on linear approximation between the predefined
structural input points.

6.5.1 Numerical theory for the external domain

The boundary value problem for the external sea keeping problem of the CFFC is
illustrated in Figure 6.6. The far-field velocity potential assumes that the domain is
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6. Linear wave response of a 2D closed flexible fish cage

”infinite”. However, according to Billingham and King (2009), the far-field velocity
potential is sufficient as long as 𝑙 ≥ 4ℎ, where 𝑙 is the total length of the domain.

The velocity potentials caused by the body have symmetric and antisymmetric
properties with respect to a symmetry line containing the 𝑧-axis. The later fact
follows from symmetry and antisymmetry properties of 𝑛𝑗 . 𝑛1 and 𝑛3 are antisym-
metric while 𝑛2 is symmetric. When 𝑗 > 3, the odd sine modes ((𝑗 − 3) = 1, 3, 5...)
are symmetric while the even ((𝑗 − 3) = 2, 4, 6...) sine-modes are antisymmetric.
Furthermore, the body boundary condition for the diffraction potential can be
divided into symmetric and antisymmetric parts. The symmetric and antisym-
metric properties allow us to only consider half the water domain. When the
body boundary condition is antisymmetric, the far-field complex wave amplitude
𝐴(+) = −𝐴(−) and 𝜑 = 0 at the symmetry line. While for symmetric potentials
𝐴(+) = 𝐴(−), and 𝜕𝜑/𝜕𝑦 = 0 at the symmetry line. These conditions are used as a
boundary conditions at the symmetry line.

Due to the symmetry and antisymmetry properties of the system it is sufficient
to only consider the right part of the tank. The boundary condition on the right
wall of the tank then become:

𝜕Φ𝑒
𝜕𝑦

= −i𝜔𝐴(+) cosh 𝑘(𝑧 + ℎ)

sinh 𝑘ℎ
𝑒(i𝜔𝑡−i𝑘 𝑙

2 ) on 𝑦 =
𝑙

2
. (6.79)

6.5.2 Verification case with a water-filled hemicircle in waves

The non-dimensional squared frequency range 0.2 ≤ 𝜔2𝑅/𝑔 ≤ 5.6 is considered,
this is compareable to wave peak periods in the weather range from moderate to
extreme in Table 2.1 for a CFFC with full scale radius 𝑅 = 12.5m.

For a hemicircle (CFFC withouth floaters) reference values for the pressure
loads can be found both related to the external added mass and damping for sway
and heave, and for the sloshing eigenfrequencies for the given frequency range.

External added mass and damping coefficients

An external domain with ℎ/𝑅 = 4 and 𝑙/ℎ = 4, where only the right half of the tank
(on the right side of the symmetry line) as illustrated in Figure 6.6 were used. The
claim by Billingham and King (2009) that 𝑙/ℎ = 4 was sufficient, was confirmed by
a convergence study of domain size.

Calculated two-dimensional added mass and damping coefficient in sway and
heave for a hemicircle in infinite water depth and infinite horizontal extent for a
given range of non-dimensional frequencies are given in Faltinsen and Timokha
(2009). Finite depths results can be found in Bai and Yeung (1974). The frequency
dependent added mass and damping in sway, heave and roll for a hemicircle are
plotted in Figure 6.7 with superscript (𝑒) to indicate that they are relevant for our
exteriour fluid problem. These results compare well to the results for infinite water
given in Faltinsen and Timokha (2009) for non-dimensional squared frequencies
𝜔2𝑅/𝑔 > 1. For lower frequencies the simulated results deviate. However, this
is expected and are due to the influence of finite depth. In Bai and Yeung (1974)
results for water depth-to-cylinder radius ℎ/𝑅 = 2 are given, while ℎ/𝑅 = 4 have
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Figure 6.7: Non-dimensional added mass coefficients (left) and damping coeffi-
cients (right) for sway, heave and roll for a hemicircle versus non-dimensional
squared frequency 𝜔2𝑅/𝑔. ∇ = 𝜋𝑅2

2 is the displaced volume per meter. The water
depth- to- radius ratio ℎ/𝑅 = 4.0.

been used in our case. However, ℎ/𝑅 = 2 has also been tested with good results.
The results are not given here. For a hemicircle the normal vector component
𝑛3 = 𝑦𝑛𝑧 − 𝑧𝑛𝑦 = 0, resulting in that the pressure loads cannot cause any roll
moment. The result is that the added mass, damping and excitation in roll is zero.

The non-dimensional generalised added mass and damping for the hemicircle
for the normal structural modes from one to ten is plotted in Figure 6.8. Plot of the
shape of the first ten structural normal modes are given in Figure F.1 in Appendix
F. The non-dimensional added mass and damping coefficients of the first two
structural modes are comparable in magnitude to the non-dimensional coefficients
in sway and heave, and the added mass and damping coefficients of the first mode
is actually equal to the added mass and damping coefficients in heave. The latter
fact follows from the body boundary condition and the definition of the generalised
added mass and damping. However, this will not be the case for our considered
membrane with floaters. We can observe from the Figure that the magnitude of
the added mass and damping coefficients decreases with increasing mode number.
This can also be seen analytically by considering the high frequency asymptotic
behaviour of symmetric modes and is related to both the oscillatory behaviour
of the pressure and the multiplying mode. For the four highest modes plotted, it
appears that the added mass becomes frequency independent.
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Figure 6.8: Non-dimensional added mass and damping coefficients for normal
deformation modes from 1-10 for a hemicircle versus non-dimensional squared
frequency 𝜔2𝑅/𝑔. ∇ = 𝜋𝑅2

2 is the displaced volume per meter. The water depth-
to- radius ratio ℎ/𝑅 = 4.0.
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6. Linear wave response of a 2D closed flexible fish cage

Internal added mass coefficients

The internal added mass coefficients in sway, heave and roll can be found in Figure
6.9. Theoretical values for the internal sloshing eigenfrequencies of a hemicircle
can be found in (Faltinsen and Timokha, 2009, page 173). The theoretical values
of the sloshing eigenfrequencies (𝑘*1𝑅, 𝑘*2𝑅 and 𝑘*3𝑅) within the considered non-
dimensional squared frequency range are illustrated with vertical dotted lines. We
can see that there is good agreement between the theoretically and numerically
found sloshing eigenfrequencies, by the fact that the absolute value of the sway
added mass becomes infinite at the sloshing frequencies 𝑘*1𝑅 and 𝑘*3𝑅. We note
both negative and positive sway added mass with a large frequency dependence
at 𝑘*1𝑅 and 𝑘*3𝑅. The added mass in heave is constant and equal to the mass of the
enclosed water. For a hemicircle the added mass in roll is zero.

Non-dimensional generalised internal added mass for the structural normal
modes of the hemicircle are plotted in Figure 6.10. We can observe due to the
infinite absolute values of added mass that the even modes (except the first one)
will have a sloshing resonance at the second sloshing eigefrequency, while the
odd modes have sloshing resonances at the first and third sloshing frequency. The
reason why the first mode does not, is that it is the same as considering forced
heave. However, the difference in free surface condition for the first mode and
heave make them unequal. For the hemicircle the velocity potential of the first
mode can be written as 𝜑(𝑖)4 𝜉4 = i𝜔𝜉4(𝑧 + 𝑔

𝜔2 ). This gives an internal generalised
added mass of 𝑎𝑖44 = 𝜋𝑅2

2 − 2𝑔
𝜔2 . This added mass is consistent with the added

mass of the first mode as plotted in Figure 6.10. When 𝜔 goes to zero, the internal
generalised added mass goes to minus infinity, while when 𝜔 goes to infinity the
generalised added mass for this mode approaches the fluid mass of the hemicircle.
The generalised internal added mass of the first mode have no resonances. The
internal added mass coefficients of the even modes does not approach a constant
value when 𝜔 goes to zero, this is because the internal added mass coefficient for
these modes include as described in Chapter 4, a restoring coefficient associated
with the quasi- static hydrostatic pressure change due to the change in mean free
surface. The internal added mass coefficient can then be described according to

𝑎
(𝑖)
𝑗𝑘 (𝜔) =

𝑐
(𝑖)
𝑗𝑘

𝜔2 + 𝑎
(𝑖*)
𝑗𝑘 (𝜔). From this equation we see that when 𝑐(𝑖)𝑗𝑘 is negative the

response of 𝑎(𝑖)𝑗𝑘 (𝜔) is that it goes to minus infinite when 𝜔 goes to zero.

Validation and convergence

For validation of the code several given relations have been used. The relation
between the far-field wave amplitude |𝐴+| and the estimated external diagonal
damping coefficient given by (6.57), together with the relation between the calcu-
lated two-dimensional diagonal damping coefficient 𝑏𝑗𝑗 and the excitation force
for finite depth given by (6.59) have been used for verification of the code. In
addition, the error between the calculated and estimated damping, and between
the calculated and estimated excitation force have been used as a measure of con-
vergence. For increased grid refinement it has been found that this error decreases.
Error plots related to the difference between the estimated and calculated damping
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Figure 6.9: Nondimentional internal added mass coefficients for a hemicircle, for
sway, heave and roll versus non-dimensional squared frequency 𝜔2𝑅/𝑔. 𝑘*1𝑅, 𝑘*2𝑅
and 𝑘*3𝑅 are the theoretical values of the sloshing eigenfrequencies.

and excitation force can be found in Appendix G, for a quadratic grid with node
resolution 𝑁𝑦/𝑅 = 100, where 𝑁𝑦 is the total number of nodes in the 𝑦 direction in
the domain.

Green’s second identity for the external problem (6.60) has been used to derive
symmetry properties of the added mass and damping coefficients, requiring that
𝑎
(𝑒)
𝑗𝑘 = 𝑎

(𝑒)
𝑘𝑗 and 𝑏

(𝑒)
𝑗𝑘 = 𝑏

(𝑒)
𝑘𝑗 . Since the external wet surface of the floater 𝑆(𝑒)

𝐹𝑙 = 0,
this will hold for all 𝑗, 𝑘, including the coupling coefficients between the structural
deformation modes and the rigid body motions. Numerically a difference will exist
between 𝑎(𝑒)𝑗𝑘 and 𝑎(𝑒)𝑘𝑗 which can be expressed as an error: 𝑎(𝑒)𝑗𝑘 −𝑎(𝑒)𝑘𝑗 = 𝑒𝑎,𝑘𝑗 ̸= 0 and

𝑏
(𝑒)
𝑗𝑘 −𝑏(𝑒)𝑘𝑗 = 𝑒𝑏,𝑘𝑗 ̸= 0. For increased grid refinement it has been found that this error

decreases. The coefficients of the highest used structural deformation mode have
the slowest convergence. This is to be expected since the spatial variation of the
velocity along the boundary are largest for the structural modes with the highest
mode number, requiring a finer grid to resolve the deformations. In simulations
a resolution of 20 nodes per modal wave length along the boundary have been
found sufficient to reach an acceptable convergence.
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Figure 6.10: Non-dimensional internal added mass coefficients for a hemicircle, for
symmetric(top) and asymmetric (bottom) modes versus non-dimensional squared
frequency 𝜔2𝑅/𝑔. 𝑘*1𝑅, 𝑘*2𝑅 and 𝑘*3𝑅 are the theoretical values of the sloshing
eigenfrequencies.
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Table 6.1: Case dimensions for CFFC with floaters. 𝑅 is the radius of the bag, 𝑑 is
the thickness of the fabric, 𝐸 is the elasticity module of the fabric, 𝜌𝑁 is the density
of the fabric, 𝜌𝑤 is the density of salt water and 𝑅𝐹 is the radius of the floater.

R d E 𝜌𝑁 𝜌𝑤 𝑅𝐹 /𝑅

12.5 m 7.5 · 10−4 m 2.25 · 109 Pa 1150 kg/m3 1025 kg/m3 0.1

Also for the internal problem Green’s second identity given by (6.73) is used
to derive symmetry properties for the added mass coefficients, requiring that
𝑎
(𝑖)
𝑗𝑘 = 𝑎

(𝑖)
𝑘𝑗 . Since the internal wet surface of the floater 𝑆(𝑖)

𝐹𝑙 = 0, this relation holds
for all 𝑗, 𝑘 not equal to 2. Due to the free-surface condition the relation will not
hold for any coefficients involving heave. As for the external problem the error
difference between 𝑎(𝑖)𝑗𝑘 and 𝑎(𝑖)𝑘𝑗 decreases for increasing grid refinement.

6.6 Case study of a CFFC in waves

The wave-induced response of a CFFC with a static equilibrium geometry based
on case one from Chapter 5, with overfilling and no density differences has been
analysed in the frequency domain, at finite water depth for depth-to-radius ratio
ℎ/𝑅 = 4.0. For this case the geometry of the 2D membrane can be assumed half
circular, and the top angle 𝜓𝑒 = 𝜋/2, which simplifies the expressions for the
structural deformations found in Section 6.2 to a large extent. The expression for a
half circular membrane are given in Appendix D. Relevant used full scale values
are given in Table 6.1. Compared to the floaters used today, the floaters used here
are large floaters.

6.6.1 External added mass and damping

An external computational domain with water depth to bag radius ratio ℎ/𝑅 = 4
and horisontal extent-to-water depth ratio 𝑙/ℎ = 4, where only the right half of
the tank (on the right side of the symmetry line) as illustrated in Figure 6.6 were
used. The non-dimensional external added mass and damping coefficients in sway,
heave and roll for a CFFC in waves are plotted in Figure 6.11. The coefficients in
sway and heave are comparable in size and behaviour to the coefficient for the
hemicircle. However, opposite to the hemicircle, the structure now have a small
non-zero added mass, damping and excitation in roll due to the presence of the
floaters.

The external non-dimensional added mass and damping coefficients for the
CFFC for the normal structural modes from one to ten are plotted in Figure 6.12.
The behaviour of the non-dimensional added mass and damping coefficients are
in general comparable to the hemicircle. The magnitude of the added mass and
damping decreases with increasing mode number. For the plotted four highest
modes it appears that the added mass becomes frequency independent.
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Figure 6.11: Non-dimensional added mass (left) and damping coefficients (right)
for sway, heave and roll for a CFFC with large floaters versus non-dimensional
squared frequency 𝜔2𝑅/𝑔. ∇ is the displaced volume per meter of a fictitious body
containing the submerged floaters, the membrane and the internal water.

6.6.2 Internal added mass

The internal added mass coefficients in sway, heave and roll can be found in Figure
6.13. When floaters are added to the geometry and the equilibrium geometry is
used for the analysis the results will deviate from the reference values for the
sloshing frequencies for the hemicircle given by Faltinsen and Timokha (2009). All
the new non-dimensional eigenfrequencies 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅, are larger than the
reference values 𝑘*1𝑅, 𝑘*2𝑅 and 𝑘*3𝑅.

To find a bound on the non-dimensional eigenfrequencies 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅
for the CFFC we can use the comparison theorem given in (Faltinsen and Timokha,
2009, page 150). If the liquid domain of tank can be completely contained within
the domain of a bigger tank, given that the two tanks have equal mean free surface,
then the smallest tank have smaller natural frequency. We construct two domains to
obtain a bound on the natural frequency of the CFFC, one circular domain 𝑄𝑐 that
contain the fluid domain of the CFFC, and one rectangular domain 𝑄𝑅 that is con-
tained within the domain of the CFFC. The two constructed domains are illustrated
in Figure 6.14. The constructed circular tank intersects the boundary of the CFFC
at the intersection between the free surface and the floaters (± 𝑏𝑡

2 , 0) and at the
connection points between the floaters and the membrane of the CFFC (𝑅, 𝑧𝑒). The

radius of the calculated constructed circle 𝑅𝑐 is 𝑅𝑐 =
√︁

𝑏2𝑡
2 + 𝑏𝑡𝑅𝐹 +𝑅2

𝐹 and the
filling level is ℎ𝑓 = 𝑅𝑐+

𝑏𝑡
2 +𝑅𝐹 . Values for the non-dimensional eigenfrequencies

96



6.6. Case study of a CFFC in waves

0.0

0.5

1.0

a
(e)
44 /ρw∇
b
(e)
44 /ωρw∇

a
(e)
55 /ρw∇
b
(e)
55 /ωρw∇

0.0

0.5

1.0
a

(e)
66 /ρw∇
b
(e)
66 /ωρw∇

a
(e)
77 /ρw∇
b
(e)
77 /ωρw∇

0.0

0.5

1.0
a

(e)
88 /ρw∇
b
(e)
88 /ωρw∇

a
(e)
99 /ρw∇
b
(e)
99 /ωρw∇

0.0

0.5

1.0
a

(e)
10,10/ρw∇

b
(e)
10,10/ωρw∇

a
(e)
11,11/ρw∇

b
(e)
11,11/ωρw∇

0 1 2 3 4 5

ω2R/g

0.0

0.5

1.0
a

(e)
12,12/ρw∇

b
(e)
12,12/ωρw∇

0 1 2 3 4 5

ω2R/g

a
(e)
13,13/ρw∇

b
(e)
13,13/ωρw∇

Figure 6.12: External non-dimensional added mass and damping coefficients for
normal deformation modes from 1-10 for a CFFC versus non-dimensional squared
frequency 𝜔2𝑅/𝑔. ∇ is the displaced volume per meter.
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Figure 6.13: Non-dimensional internal added mass for a CFFC for sway, heave
and roll versus non-dimensional squared frequency 𝜔2𝑅/𝑔. 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅 are
non-dimensional sloshing frequencies for the CFFC.

for a circular tank for given filling ratios are given in (Faltinsen and Timokha, 2009,
page 172-173). The calculated filling depth to radius of the constructed circle is
ℎ𝑓/𝑅𝑐 = 1.74. For this filling depth to radius the non-dimensional eigenfrequen-
cies of the constructed circular domain is 𝑘𝑐1𝑅 = 2.7, 𝑘𝑐2𝑅 = 4.9 and 𝑘𝑐3𝑅 = 7.3.
The smaller domain is constructed as a rectangle where the whole rectangle is
within the domain of the CFFC. The rectangle has width 𝑏𝑡 and calculated draft
ℎ𝑅 = 0.64𝑅. The non-dimensional eigenfrequencies of the constructed rectangular
domain 𝑄𝑅 is calculated as

𝑘𝑅𝑛𝑅 =
𝜋𝑛𝑅

𝑏𝑡
tanh(

𝜋𝑛ℎ𝑅
𝑏𝑡

).

The calculation gives 𝑘𝑅1 𝑅 = 1.36, 𝑘𝑅2 𝑅 = 3.38 and 𝑘𝑅3 𝑅 = 5.22. The non-dimensional
eigenfrequencies of the CFFC have been found to be 𝑘1𝑅 = 1.68, 𝑘2𝑅 = 3.56 and
𝑘3𝑅 = 5.35, these eigenfrequencies are within the calculated bounds. The upper
bounds of the on the non-dimensional eigenfrequencies are large, this is because
the domain of the constructed circle 𝑄𝑐 is much larger than the domain of the
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Qr

Qc

Q0
(i)

Figure 6.14: Geometrical domains used in the comparison theorem for estimating
bounds on the nondimensional eigenfrequency of the CFFC. 𝑄𝑐 is the circular
domain, 𝑄(𝑖)

0 is the domain of the CFFC and 𝑄𝑅 is the domain of the rectangle.

CFFC 𝑄
(𝑖)
0 . An alternative to using a circle as a domain for the upper bound is to

use an ellipse, this have not been further pursued.
Non-dimensional internal added mass for the structural normal modes of the

CFFC are plotted in Figure 6.15. We can observe that the even modes will have a
sloshing resonance at the second sloshing eigenfrequency, while the odd modes
have sloshing resonances at the first and third sloshing frequency. For the CFFC we
also observe a resonance at the second sloshing frequency for the first structural
mode, which was not present for the hemicircle. For the hemicircle it was possible
to derive a simplified expression for the added mass of this mode, showing that it
did not have any resonances. However, for the CFFC with floaters the solution is
more complex and the vertical velocity can vary along the free surface allowing for
resonances.

6.6.3 Rigid body motion response of the CFFC

The linear steady-state motion can be expressed as

𝜉𝑗 = 𝜉𝑗𝑎𝑒
i𝜖𝑗𝑒i𝜔𝑡, (6.80)

where 𝜉𝑗𝑎 is the amplitude of the motion and 𝜖𝑗 is the phase of the motion relative
to the incoming wave, defined as 𝜖𝑗 = arctan 2(ℑ(𝜉𝑗𝑎𝑒i𝜖𝑗 ),ℜ(𝜉𝑗𝑎𝑒i𝜖𝑗 )). Here, ℜ is
the real part of 𝜉𝑗 and ℑ signifies the imaginary part of 𝜉𝑗𝑎𝑒i𝜖𝑗 . Positive 𝜖𝑗 means a
phase lead relative to the wave elevation at 𝑦 = 0. The ratio 𝜉𝑗𝑎/𝜁𝑎 is here called a
transfer function for motion 𝑗 as in Faltinsen (2005), it is also known as a response
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Figure 6.15: Non-dimensional internal added mass for a CFFC, for even(top) and
odd (bottom) modes versus non-dimensional squared frequency 𝜔2𝑅/𝑔. 𝑘1𝑅, 𝑘2𝑅
and 𝑘3𝑅 are non-dimensional sloshing frequencies for the CFFC.
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Figure 6.16: Transfer functions of motion of CFFC for sway (top), heave(middle)
and roll (bottom), uncoupled and coupled response between the rigid body motions
with asymptotes versus non-dimensional squared frequency 𝜔2𝑅/𝑔. 𝑘1𝑅, 𝑘2𝑅 and
𝑘3𝑅 are non-dimensional sloshing frequencies for the CFFC.
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amplitude operator, RAO. The transfer function for the coupled and uncoupled
rigid body motions in sway, heave and roll of a rigid CFFC are plotted in Figure
6.16. The phases in sway, heave and roll of the coupled rigid body motions of a
rigid CFFC are plotted in Figure 6.18.

The asymptote of the uncoupled sway motion when 𝜔 goes to zero can be
found from

−𝜔2𝑎11𝜉1 = 𝑎11𝑎𝑦 = −𝜔2𝑎11𝜁𝑎
1

tanh 𝑘ℎ
,

where 𝑎𝑦 is the wave particle acceleration in 𝑦- direction at the free surface at the
center of the CFFC, 𝑎11 = 𝑎

(𝑖)
11 + 𝑎

(𝑒)
11 at 𝜔 = 0 and the mass of the membrane and

floaters are neglected compared to the added mass in sway. Then the asymptote
of the transfer function should approach 𝜉1𝑎

𝜁𝑎
→ 1

tanh 𝑘ℎ . Physically this means that
the horizontal CFFC motion approaches the horizontal wave particle motion. The
rigid body motion of sway is coupled to the rigid body motion of roll. When 𝜔
goes to zero the equation of motion for coupled sway and roll can be given as
−𝜔2𝑎11𝜉1 − 𝜔2𝑎13𝜉3 = 𝑎11𝑎𝑦. However, the roll response is so small that 𝑎13(𝜔 =
0)𝜉3 can be neglected compared to 𝑎11(𝜔 = 0)𝜉1, and the response at the asymptote
approaches the response of uncoupled sway. From Figure 6.16 we see that the
asymptote of the sway motion appear to approach 1

tanh 𝑘ℎ for both the coupled and
uncoupled sway motion.

The asymptote of the heave motion when 𝜔 goes to zero, can be found by con-
sidering the equation of motion of heave when 𝜔 goes to zero, which is 𝑐22𝜉2 = 𝑓2.
The excitation force in heave 𝑓2 can be approximated as 𝑓2 = 𝜌𝑤𝑔𝐴𝑤𝜁𝑎. Resulting
in that the asymptote of the transfer function for heave 𝜉2𝑎

𝜁𝑎
= 𝑓2

𝑐22
→ 1 when 𝜔

goes to zero. Physically this means that the vertical motion of the CFFC follows
the vertical particle motion in heave. This can be compared to that the structure
behaves like a cork floating in water.

The asymptote of the uncoupled roll motion when 𝜔 goes to zero can be found
from 𝑐33𝜉3 = 𝑓3. The pressure for long wave length at one time instance can for
asymmetric boundary conditions be approximated as 𝑝 = 𝜌𝑤𝑔𝑘𝑦, by integrating
this pressure the Froude Kriloff force for roll 𝑓𝐹𝐾3 at 𝜔 = 0 becomes

𝑓𝐹𝐾3 = 𝜌𝑤𝑔𝑘𝜁𝑎

∫︁
𝑆

(𝑒)
𝑀 +𝑆

(𝑒)
𝑓𝑙

𝑦(𝑧𝑛𝑦 − 𝑦𝑛𝑧)𝑑𝑠.

The asymptote of the wave slope is then for the given geometry and restoring
𝜉3𝑎
𝜁𝑎𝑘

=
𝑓𝐹𝐾
3

𝑐33𝑘
= 0.35. For roll we could expect that 𝜉3𝑎

𝜁𝑎𝑘
= 𝜂4𝑎

𝜁𝑎𝑘
→ 1, meaning that the

body follows the wave slope. However, for the hemicircle the excitation force and
restoring coefficient are zero. For the given case it can therefore not automatically
be expected that the structure should follow the wave slope. From Figure 6.16 we
see that the uncoupled roll response appear to approach 𝜉3𝑎

𝜁𝑎𝑘
= 0.35 when 𝜔 goes

to zero. The coupled rigid body response for roll and sway have a significantly
different response than uncoupled roll, this is because even for small frequencies
sway will have an effect since 𝜉1𝑎

𝜁𝑎
→ 1

tanh 𝑘ℎ , and roll is coupled to sway trough
added mass terms.
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6.6. Case study of a CFFC in waves

Uncoupled sway and roll have cancellations at the first and third sloshing
frequency. This is consistent with previous results as published by Newman (2005)
and discussed in Faltinsen and Timokha (2009). Newman (2005) analysed coupled
vessel motion and sloshing of a hemispheriod vessel with three internal rectangular
tanks containing liquid at zero forward speed. Beam sea, regular waves at deep
water were considered. Due to the geometry of this vessel, it did not have any
external added mass, damping and excitation moment in roll. For the CFFC in
coupled sway and roll, no cancellation of the response appear at the first and third
sloshing frequency, instead a cancellation appear at a frequency significantly lower
than the sloshing frequencies. Compared to the hemispheriod vessel analysed
by Newman (2005), the CFFC have both excitation, added mass and damping in
roll. An explanation for this phenomenon can be found by examining the coupled
equation of motion for sway and roll (Faltinsen and Timokha, 2009, page 102). The
coupled equations of sway and roll can be expressed as:

(−𝜔2𝑎11 + i𝜔𝑏11)𝜉1 + (−𝜔2𝑎13 + i𝜔𝑏13)𝜉3 = 𝑓1, (6.81)

(−𝜔2𝑎31 + i𝜔𝑏31)𝜉1 + (−𝜔2𝑎33 + i𝜔𝑏33 + 𝑐33)𝜉3 = 𝑓3, (6.82)

where 𝑎𝑗𝑘 = 𝑎
(𝑒)
𝑗𝑘 (𝜔) + 𝑎

(𝑖)
𝑗𝑘 (𝜔) and the mass of the membrane and the floaters have

been neglected compared to the added mass. The solution of 𝜉1 and 𝜉3 can be found
by solving (6.81) combined with (6.82). The solution is:

𝜉1 =
𝑓1(−𝜔2𝑎33 + i𝜔𝑏33 + 𝑐33)− 𝑓3(−𝜔2𝑎13 + i𝜔𝑏13)

(−𝜔2𝑎11 + i𝜔𝑏11)(−𝜔2𝑎33 + i𝜔𝑏33 + 𝑐33)− (−𝜔2𝑎13 + i𝜔𝑏13)2
, (6.83)

𝜉3 =
𝑓3(−𝜔2𝑎11 + i𝜔𝑏11)− 𝑓1(−𝜔2𝑎13 + i𝜔𝑏13)

(−𝜔2𝑎11 + i𝜔𝑏11)(−𝜔2𝑎33 + i𝜔𝑏33 + 𝑐33)− (−𝜔2𝑎13 + i𝜔𝑏13)2
. (6.84)

(Faltinsen and Timokha, 2009, page 211) have shown that when the frequency is
equal to the eigenfrequency i.e at 𝜔 = 𝜔𝑛, 𝑎33𝑎11 − 𝑎213 = 0, meaning that these
terms will cancel out. If (6.83) and (6.84) is divided by 𝜔2𝑎11 we can find the
response at 𝜔 = 𝜔𝑛. In addition, we use that 𝑐33

𝑎11
<< 1, and 𝑏𝑘𝑗

𝑎11
<< 1 at 𝜔 = 𝜔𝑛.

Equation (6.83) and (6.84) can then be approximated as:

𝜉1 =
𝑓1

𝑎33
𝑎11

− 𝑓3
𝑎13
𝑎11

𝑖𝜔(𝑏33 + 𝑏11
𝑎33
𝑎11

− 2𝑏13
𝑎13
𝑎11

) + 𝑐33
, (6.85)

𝜉3 =
𝑓3 − 𝑓1

𝑎13
𝑎11

𝑖𝜔(𝑏33 + 𝑏11
𝑎33
𝑎11

− 2𝑏13
𝑎13
𝑎11

) + 𝑐33
, (6.86)

which gives a non-zero real value at the sloshing frequency for sway (𝜉1) as long
as 𝑐33 is not equal to zero. If on the other hand 𝑐33 is equal to zero, only a small,
marginally larger than zero real response at the sloshing frequency will occur,
which was the case for Newman (2005). Related to the cancellations observed
for coupled sway and roll at frequencies lower than the sloshing frequency, a
cancellation in the response will appear if the numerator is zero, or the denumerator
is infinite. For frequencies significantly different from 𝜔𝑛, the denumerator is finite.
The numerator of (6.83) was plotted related to non-dimensional squared frequency
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6. Linear wave response of a 2D closed flexible fish cage

we observed that it was zero at 𝜔2𝑅
𝑔 = 1.53 and 𝜔2𝑅

𝑔 = 5.26. Which is consistent
with the coupled sway-roll response for sway as plotted in Figure 6.16.

Since the internal heave added mass is constant, the rigid body motion in
heave is unaffected by sloshing. Heave has a damped eigenfrequency at the non-
dimensional eigenfrequency 𝜔2𝑅

𝑔 = 0.73. The undamped eigenfrequency can be
estimated as:

𝜔2
𝑛2𝑅

𝑔
=
𝑐22𝑅

𝑔𝑎22
= 0.79. (6.87)

Since both sides of (6.87) are dependent on the frequency, the eigenfrequency have
been found by finding the minimum of |𝜔

2
𝑛2𝑅
𝑔 − 𝑐22𝑅

𝑔𝑎22
| for the applied frequency res-

olution, and then visually verifying that this is a resonance frequency. The damped
non-dimensional eigenfrequency is lower than the undamped non-dimensional
eigenfrequency. This is to be expected since damping is known to reduce the
eigenfrequency.

From Figure 6.16, we see that roll have an uncoupled eigenfrequency at the
non-dimensional squared frequency 𝜔2𝑅

𝑔 = 1.42. The uncoupled and undamped
non-dimensional eigenfrequency can be estimated as:

𝜔2
𝑛3𝑅

𝑔
=
𝑐33𝑅

𝑔𝑎33
= 1.42. (6.88)

Since both sides of (6.88) are dependent on the frequency, the eigenfrequency have
been found by finding the first minimum of |𝜔

2
𝑛3𝑅
𝑔 − 𝑐33𝑅

𝑔𝑎33
| for the applied frequency

resolution, and then visually verifying that this is a resonance frequency. The
estimated uncoupled frequency with and without damping is approximately equal.
This signifies that the damping level is low, which is the reason that the response
appear to approach infinity at this frequency. The coupled rigid body roll-sway
response do not have any resonance. The undamped eigenfrequency can be found
by considering the denominator of (6.84) for zero damping, which is

𝜔2
𝑛3*𝑅

𝑔
=

𝑐33𝑎11𝑅

𝑔(𝑎33𝑎11 − 𝑎13𝑎31)
.

No eigenfrequencies can be found within the considered non-dimensional fre-
quency squared range. Therefore, no resonances will be observed.

6.6.4 Wave induced response of the CFFC including the effect of
membrane deformations

The transfer functions for the rigid body motions in sway, heave and roll of the
CFFC with the flexible membrane are plotted in Figure 6.17 and the phase of the
motion relative to the incoming wave in Figure 6.18. From these figures we observe
a large change in both transfer functions of the rigid body motions in sway, heave
and roll and in the phase of the coupled response of the CFFC compared to the
response of the rigid CFFC.
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Figure 6.17: Transfer functions of motion of CFFC for sway (top), heave(middle) and
roll (bottom), with and without the effect of the membrane versus non-dimensional
squared frequency 𝜔2𝑅/𝑔. 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅 are non-dimensional sloshing fre-
quencies for the CFFC.
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Figure 6.18: Phase of motion of CFFC for sway (top), heave(middle) and roll (bot-
tom), with and without the effect of the membrane versus non-dimensional squared
frequency 𝜔2𝑅/𝑔. 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅 are non-dimensional sloshing frequencies for
the CFFC.
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The transfer functions for the first ten normal and tangential structural modes
are plotted in Figure 6.19 together with the phase of the motion relative to the
incoming wave in Figure 6.20. From (D.3) and (D.4) we observe that there is
a coupling between symmetrical normal structural modes and antisymmetrical
tangential structural modes, and between antisymmetrical normal structural modes
and symmetrical tangential structural modes. This can also be seen in Figure 6.19.
From (6.38), (6.39) and (6.40) we see that the symmetrical normal structural modes
are coupled with heave and the antisymmetrical normal structural modes are
coupled with sway and roll.

A structural damping on both the normal and tangential structural modes
have been added to the structural model of the membrane. The material that
most resembles the membrane used in CFFCs, that have available figures on the
structural damping is nylon. The damping level of nylon is known to be both
humidity, frequency and temperature dependent (Quistwater and Dunell, 1958).
Based on the frequency range and the humidity (wet) a structural damping of
2% of the critical damping was chosen for each mode. Coupling effects were
neglected. Instead of using a damping related to the critical damping, a Reighley
damping model with mass and structural stiffness terms is possible. Both these
damping models were tried and the critical damping model appeared to have
the best convergence related to the number of tangential structural modes. The
critical damping of motion 𝑗 for 𝑗 > 3 for the normal structural modes have been

calculated as 𝑏𝑠𝑡𝑟,𝜉𝑗 = (𝑚𝑀 + 𝑎𝑓,𝑗𝑗)𝑑𝑐

√︁
𝑐𝑀𝜉,𝑗𝑗+𝑐𝑇𝜉,𝑗𝑗

𝑚𝑀+𝑎𝑓,𝑗𝑗
where 𝑑𝑐 is the damping ratio.

For the tangential structural modes the critical damping of motion 𝑛 have been

calculated as 𝑏𝑠𝑡𝑟,𝜇𝑗 = 𝑚𝑀𝑑𝑐

√︁
𝑐𝑀𝜇,𝑗𝑗+𝑐𝑇𝜇,𝑗𝑗

𝑚𝑀
. For the future the structural damping

of the actual used fabric, for a wet condition for the relevant temperatures and
frequency range should be found.

From Figure 6.17 we see that for a coupled system the resonance in heave has
disappeared and that the asymptote when 𝜔 goes to zero of the heave response
have significantly decreased. The change in asymptote can be explained if we
consider (6.41) when 𝜔 goes to zero. Recall that for symmetric structural normal
modes additional stiffness exist from the internal added mass, since 𝜔2𝑎

(𝑖)
𝑘𝑗 = 𝑐

(𝑖)
𝑘𝑗

is constant. To find the asymptote we must find the generalised excitation force
when 𝜔 goes to zero. For the symmetric structural modes the wave excitation
pressure amplitude can be approximated as constant 𝜌𝑤𝑔𝜁𝑎 and the generalized
wave excitation force as

𝑓𝑗 = 𝜌𝑤𝑔𝜁𝑎

∫︁
𝑆𝑀

𝑈𝑗−3(𝜓0)ds = −2𝜌𝑤𝑔𝜁𝑎𝑅
sin2(𝜋(𝑗 − 3)/2)

𝑗 − 3
for 𝑗 > 3. (6.89)

If we look at the heave part of (6.41) for 𝜔 = 0

𝑐22𝜉2 +
𝐸𝑑

𝑅

∑︁
𝑘

𝑘(1 + (−1)𝑘)𝜇𝑘 = 𝑓2, (6.90)

the decrease in response at 𝜔 = 0 can be connected to a reduction in the applied
force, for positive 𝜇𝑘. From Figure 6.19 it appears that 𝜇𝑗 converge to a constant
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6. Linear wave response of a 2D closed flexible fish cage

value for the antisymmetrical tangential structural modes when 𝜔 goes to zero.
If (6.89) is applied to (6.41) at 𝜔 = 0, the asymptote of heave for the coupled case
is found to be 𝜉2/𝜁𝑎 = 0.21. From Figure 6.17 we see that the asymptote of heave
appear to converge to this value. An small amplification of the response of heave
can be seen around 𝜔2𝑅/𝑔 = 3.71, close to the second sloshing eigenfrequency,
this coincides with the top in the internal sloshing plot at this frequency visible
in Figure 6.21. An increase can also be seen at this frequency for the symmetrical
normal structural modes in Figure 6.19.

From Figure 6.17 we see that the asymptote of roll deviates from the rigid body
case. Again, this can be explained if we consider (6.41) when 𝜔 goes to zero. For
the antisymmetric structural modes the largest wave excitation amplitude for a
given time instance when 𝜔 goes to zero can be approximated as constant 𝜌𝑤𝑔𝜁𝑎𝑘𝑦.
For a half circular geometry, 𝑦 = 𝑅 sin𝜓0. The generalized wave excitation force
amplitude at 𝜔 = 0 can then be approximated as

𝑓𝑗 = 𝜌𝑤𝑔𝜁𝑎𝑘

∫︁
𝑆𝑀

𝑅 sin𝜓0𝑈𝑗−3(𝜓0)ds = −𝜌𝑤𝑔𝜁𝑎𝑘𝑅2 1 + (−1)𝑗−3

(𝑗 − 3)2 − 1
for 𝑗 > 3. (6.91)

If we consider the roll part of (6.41) for 𝜔 = 0

𝑐33𝜉3−𝐸𝑑𝑅
∑︁
𝑘

𝑘(1− (−1)𝑘)𝜇𝑘−
𝑧2𝑒𝑇0
𝑅

∑︁
𝑗>3

(𝑗−3)(1+(−1)(𝑗−3))𝜉𝑗 = 𝑓3. (6.92)

The increase in roll asymptote can be explained by an increase in the applied
force, for positive 𝜇𝑘 and 𝜉𝑗 for 𝑗 > 3. From Figure 6.19 it appears that both 𝜇𝑘
for symmetric tangential modes and 𝜉𝑗 for 𝑗 > 3 for asymmetric normal modes
converge to a constant value for 𝜔 = 0. If (6.91) is applied to (6.41) at 𝜔 = 0,
the asymptote of roll for the coupled case is found to be 𝜉3𝑎/𝜁𝑎 = 6.33. This is
significantly larger than the rigid response.

A narrow cancellation of the motion for the coupled motion at the first and
third sloshing frequency can be seen from Figure 6.17 for both the sway and roll
response. This is different from the coupled response of the rigid CFFC where it
was found that this cancellation did not happen. It appears that when the structure
deforms the effect of infinite added mass at the sloshing eigenfrequency becomes
too large, and a cancellation appears. A clear shift in phase at the first and third
sloshing eigenfrequency response for sway and roll can also be observed from
Figure 6.18.

All the phases of the normal structural modes have a response at the sloshing
frequencies. The phases of the symmetric modes at the second sloshing eigenfre-
quency and the phases of the antisymmetric modes at the first and third sloshing
eigenfrequency. From Figure 6.19 we see that the asymmetric normal structural
modes have a smaller response at the first and third sloshing eigenfrequency, while
the symmetric normal structural modes have a smaller response at the second
sloshing eigenfrequency. At the sloshing frequencies the generalised internal added
mass approaches infinity, and a small response is therefore plausible.

Considering (D.1) and (D.2) it should be expected that the deformation of the
membrane goes to zero when 𝑇0 goes to infinity, and thereby that the response
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Figure 6.19: Transfer functions of normal (top) and tangential (bottom) structural
modes for a CFFC versus non-dimensional squared frequency 𝜔2𝑅/𝑔, for the first
10 normal and tangential structural modes. Structural damping 2% of critical
damping. 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅 are non-dimensional sloshing frequencies for the
CFFC.
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Figure 6.20: Phase of normal structural modes for a CFFC versus non-dimensional
squared frequency 𝜔2𝑅/𝑔. For the first 10 normal modes. Structural damping 2%
of critical damping.𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅 are non-dimensional sloshing frequencies
for the CFFC.
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of the coupled system goes to the response of the rigid body system. For heave
the system will approach the rigid body solution when the tension approaches
infinity. For roll and sway, this is not the case. The reason why the response for roll
and sway does not approach the rigid response is that the response is dependent
on the static tension multiplied with the dynamic angle. When the static tension
approaches infinity, bending will not be negligible at the attachment point between
the membrane and the floater. This have not been accounted for in the structural
response described by (6.41). If bending is accounted for, the dynamic angle will
go to zero and the response of the coupled system will also for roll and sway be
the response of rigid body. That 𝑇0 goes to infinity is not a physical case since
the tension is dependent on the overfilling Δℎ, and Δℎ cannot physically go to
infinity. However, it is a good check on the asymptotic behaviour of the structural
equations.

The structural convergence related to the number of structural modes in normal
and tangential direction have been investigated, by looking at the convergence of
the tranferfunction of the coupled rigid body motions. It have been found that 30
normal and 250 tangential modes are sufficient. The results are given in Figure H.1
in Appendix G. The number of tangential modes converges slowly, this can mainly
be explained by the low level of structural damping. Compared to the normal
structural modes that have both wave radiation damping and higher structural
damping due to the influence of the added mass on the structure, the damping
level of the tangential modes are small. The wave radiation damping decreases
for increasing frequency and both the wave radiation damping and added mass
decreases with increasing mode number, but even for the highest modes the normal
modes have a higher damping. The number of normal structural modes converges
faster, this is probably due to the higher level of damping. The maximum number
of normal modes that have been run is 30. The normal structural modes give a
hydrodynamic pressure load contribution which must be found from the HPC
potential flow solver. It is computationally expensive to add a large number of
normal structural modes, because the highest structural mode must be sufficiently
resolved in the grid, and that requires a finer grid.

6.6.5 Internal wave amplitude

The internal wave amplitude at the right floater and at the center of the CFFC are
plotted in Figure 6.21. The internal wave amplitude of the coupled system response
at the right floater is comparable to the internal wave amplitude of the rigid
CFFC response. For the internal wave amplitude at the right floater the response
goes to infinity at the first and third sloshing frequency for the rigid structure.
A hypothesis during the work was that the membrane causing wave radiation
damping would have less sloshing than a rigid tank, because the membrane
deformations would work as a damper on the sloshing. That did not appear to
happen. Instead an additional resonance/ amplification by the second sloshing
frequency were observed, where there were no pronounced response for the rigid
case. The shape of the internal wave at 𝜔2𝑅/𝑔 = 3.71 is plotted in Figure 6.22. Here
it can be seen that the shape of the free surface have a top both by the right floater
and at the center of the CFFC.
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Figure 6.21: Total non-dimensional internal wave amplitude at the right floater (left
figure) and at the center (right figure) of the CFFC versus non-dimensional squared
frequency 𝜔2𝑅/𝑔. 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅 are non-dimensional sloshing frequencies for
the CFFC.

Since no damping is included for the internal potential flow theory analysis,
the response will in theory be infinite at the sloshing frequencies. External wave
radiation damping does not appear to affect the results at the first and third
sloshing eigenfrequency. However, the exact sloshing eigenfrequency to the finest
precision have not been found, so it is not possible to determine if the response
is infinite or just very large. To predict the correct internal wave amplitude close
to the first and third sloshing eigenfrequencies a non-linear analysis for a realistic
wave environment for the internal flow will be needed.

The spatially averaged internal wave amplitude is also plotted in Figure 6.21,
this is consistent with volume conservation by (6.69), and is the accumulated effect
of the structural deformation on the internal free surface. We observe that the
spatially averaged internal wave amplitude is significant at several frequencies
compared to the incident wave amplitude 𝜁𝑎.

6.6.6 Dynamic tension

Within linear structural theory we require that the dynamic tension 𝜏 is smaller
than the static tension 𝑇0, because we must require that the total tension in the
membrane at all times is larger than zero. The dynamic tension is dependent on
both the wave height and the wave frequency. To find out if the requirement is
fulfilled the static tension must be compared to the stochastic amplitude found
from a relevant wave spectrum.
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Figure 6.22: Non-dimensional internal wave amplitude along the free surface of
the CFFC at non-dimensional squared frequency 𝜔2𝑅/𝑔 = 3.71.

The results here are based on the full scale values given in Table 6.1 and for
a given overfilling and thereby given static tension 𝑇0. For the calculations of
the transfer functions of the dynamic tension 𝜏𝑎/𝜁𝑎, the tension at the connection
point between the membrane and the right floater have been used. The dynamic
tension varies along the membrane and the tension at the right floater is not the
highest tension for all non-dimensional frequencies. However, for a large part of
the frequency range it is the largest dynamic tension or close to largest dynamic
tension. It was decided to use the tension at a fixed position on the membrane and
the tension at the connection point between the membrane and the right floater
was then considered the best choice.

The standard deviation of the dynamic tension 𝜎𝜏 for a given sea state spectrum
𝑆(𝜔) can be calculated as:

𝜎2
𝜏 =

∫︁ ∞

0

𝑆(𝜔)

(︂
𝜏𝑎
𝜁𝑎

)︂2

d𝜔. (6.93)

The Norwegian standard for design of aquaculture fish farm in the sea NS9415
requires for calculation of response from irregular sea that the JONSWAP spectrum
shall be used with 𝛾 = 2.5 for wind-generated seas, where 𝛾 is the spectral peaked-
ness parameter. The JONSWAP spectrum is for limited fetch, and in the standard it
is required that a fully developed sea state is assumed. A 𝛾 value of 2.5 is lower
than for ships and offshore structures where 𝛾 = 3.3.
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Figure 6.23: Non-dimensional dynamic tension variance 𝜎𝜏/𝑇0 for given exposure
versus wave peak period 𝑇𝑝. The small, moderate, medium and high refers the
classification related to exposure as given in Table 2.1. The dotted black line is the
limit of linear structural theory, related to dynamic tension.

The JONSWAP spectrum can be given as:

𝑆(𝜔) =
𝛼𝑝𝑔

2

𝜔5
exp

(︂−20𝜋4

𝑇 4
𝑝𝜔

4

)︂
𝛾𝑌𝑝 , (6.94)

where 𝛼𝑝 is the Philips constant given as:

𝛼𝑝 =
5.061𝐻2

𝑠

𝑇 4
𝑝

(1− 0.287 ln 𝛾),

and 𝑌𝑝 is given as:

𝑌𝑝 = exp

(︂
− 1

2

(︂ 𝜔𝑇𝑝

2𝜋 − 1

𝜎𝑝

)︂2)︂
,

where 𝜎𝑝 is the spectral width parameter given as

𝜎𝑝 =

{︃
0.07 for 𝜔 ≤ 2𝜋

𝑇𝑝

0.09 for 𝜔 > 2𝜋
𝑇𝑝
.

The non-dimensional dynamic tension variance 𝜎𝜏/𝑇0 versus wave peak period
𝑇𝑝 for given significant wave heights are plotted in Figure 6.23. The peak periods
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𝑇𝑝 and significant wave heights are related to the classification of exposure as given
in Table 2.1. From Figure 6.23 we see that 𝜎𝜏 exceeds 𝑇0 for 𝐻𝑠 = 3m for high
exposure. If we assume a Rayleigh distribution, the most probable largest value
for 𝜏 is approximately 4𝜎𝜏 in a sea state of limited duration. 4𝜎𝜏 exceeds 𝑇0 for all
𝐻𝑠 except 𝐻𝑠 = 0.5m. That the most probable largest value of 𝜏 is exceeded for 𝐻𝑠

larger than 0.5 m at small exposure is critical, and indicates that other structural
models should be used. For floating liquid filled storage bags, the linear theory
is only valid for small incident wave amplitudes (Zhao and Aarsnes, 1998), due
to the requirement of positive total tension. The analysed CFFC is a small cage if
the radius 𝑅 of the cage is compared to industry sizes of aquaculture net cages
used by the industry today. If the dynamic tension is within the limit of linear
structural theory should be investigated for other relevant dimensions and static
tension levels, for relevant exposures and sea state conditions. For dynamic tension
in the same order as the static tension, zero tension could be expected. This would
introduce snap loads in the material and would contribute to fatigue loads. Fatigue
loads are repeated loads that limits the life expectancy of a material. Fatigue loads
will however not be covered within this thesis.

6.6.7 Model scale challenges

Model scale experiments are often used to validate numerical models and to gain
knowledge of the physics of a new system. For the model to represent the full
scale structure in waves we require that the frequency dependent Froude number

𝐹𝑛 = 𝜔
√︁

𝑅
𝑔 is equal in model and full scale. From (D.1) and (D.2) we find the

non-dimensional structural equation for the membrane as:

−𝜔2𝑚𝑀

𝜌𝑤𝑔𝑅
𝑣 − 𝑇0

𝜌𝑤𝑔𝑅3

(︂
𝜕2𝑣

𝜕𝜓2
+
𝜕𝑢

𝜕𝜓

)︂
− 𝐸𝑑

𝜌𝑤𝑔𝑅3

(︂
𝜕𝑢

𝜕𝜓
− 𝑣

)︂
= − Δ𝑝

𝜌𝑤𝑔𝑅
, (6.95)

−𝜔2𝑚𝑀

𝜌𝑤𝑔𝑅
𝑢− 𝐸𝑑

𝜌𝑤𝑔𝑅3

(︂
𝜕2𝑢

𝜕𝜓2
− 𝜕𝑣

𝜕𝜓

)︂
+

𝑇0
𝜌𝑤𝑔𝑅3

(︂
𝜕𝑣

𝜕𝜓
+ 𝑢

)︂
= 0. (6.96)

From the given equations we observe that for the elasticity, the Froude scale leads
to a pure geometric scale. This means that the elasticity modulus 𝐸 should scale as
𝐸

𝜌𝑤𝑔𝑅
and the thickness of the membrane as 𝑑

𝑅 , combined this becomes 𝐸𝑑
𝜌𝑤𝑔𝑅2 . Since

the gravity 𝑔 is constant and the water density 𝜌𝑤 is close to constant, the scaling
ratio puts combined requirements on the elasticity modulus and the thickness of
the material used in model scale. In the real world this material does not exist for
normal model scales. If we use a model scale of 1 : 12.5 and use the model scale
values as given in Table 5.1 we end up using a material that is approximately ten
times too stiff for the scale. And, if a larger scale is used the deviation between the
sought material stiffness and the used material stiffness becomes even larger.

The coupled rigid body response of the CFFC both for a stiffness used in full
scale and the stiffness used in model scale are plotted in Figure 6.24. The response
of the rigid CFFC in model and full scale is equal, but the coupled system response
included the flexible modes deviate to a great extent. This raises severe questions
of the use of the results from model experiments. The model scale results should
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not be scaled and used directly as the ”truth” for full scale cases. However, this
does not mean that model scale experiments are useless for validation. The results
should be used to validate a numerical model using the model scale stiffness and
then the numerical model with the full scale stiffness can be used to predict the
full scale values.

6.7 Conclusions

In this chapter the linear theory of a 2D closed flexible fish cage in waves was
developed and analysed with the aim to find the response of the CFFC in waves.
The numerical code related to the pressure loads have been validated with results
for a hemicircle for both the external and internal pressure loads. The results from
a 2D case study with relevant full scale dimensions, considering a half circularly
shaped CFFC with floaters were presented. Investigations only consider the 2D
case. However, the findings can be considered a starting point for analysing 3D
structures.

We observe a large change in response of the rigid body motions in sway, heave
and roll of the coupled response of the CFFC compared to the response of the
rigid CFFC. The resonance in heave for the rigid CFFC has disappeared and the
asymptote when the forcing frequency 𝜔 goes to zero of the heave response have
significantly decreased. For the sway and roll response a narrow cancellation of
the motion for the coupled motion at the first and third sloshing frequency can
be observed. This is different from the coupled response of the rigid CFFC where
it was found that this cancellation did not happen. For a rigid CFFC, uncoupled
sway and roll have cancellation at the first and third sloshing frequency. For the
CFFC in coupled sway and roll, no cancellation of the response appears at the first
and third sloshing frequency.

A structural damping of both the normal and tangential structural modes have
been added to the structural model of the membrane. The damping for nylon have
been used, but this is uncertain. For the future the structural damping of the actual
used fabric, for a wet condition for the relevant temperatures and frequency range
should be found.

The sloshing wave amplitudes of the coupled system are comparable to the
sloshing wave amplitudes of the rigid system, for most non-dimensional frequen-
cies and the maximum values occurs typically by the floater. However, a non-
negligible sloshing wave amplitude response can also be seen at the center of the
CFFC for the coupled analysis at frequencies slightly higher than the second slosh-
ing frequency, which is not present for the rigid body motion. To predict the correct
sloshing wave amplitude close to the first and third sloshing eigenfrequencies a
non-linear analysis for the internal flow is needed.

Within linear structural theory we require that the dynamic tension 𝜏 is smaller
that the static tension 𝑇0. To find out if the requirement was fulfilled the static ten-
sion was compared to the stochastic amplitude found from a JONSWAP spectrum
for relevant exposure levels. The non-dimensional dynamic tension variance 𝜎𝜏/𝑇0
were calculated. The most probable largest value of 𝜏 is exceeded for 𝐻𝑠 larger
than 0.5 m at small exposure. This is critical and indicates trouble and that other
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Figure 6.24: Transfer functions of motion of CFFC for sway (top), heave(middle) and
roll (bottom), with and without the effect of the membrane versus nondimensional
frequency 𝜔2𝑅/𝑔. For an elasticity modulus used in model experiments and for
an elasticity modulus used in full scale. 𝑘1𝑅, 𝑘2𝑅 and 𝑘3𝑅 are non-dimensional
sloshing frequencies for the CFFC.
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structural models should be used. The presented results are for a given structural
dimension and a given static tension. Other relevant dimensions and static tension
levels, for relevant exposures and sea state conditions should also be investigated.
For dynamic tension in the same order as the static tension zero tension could be
expected, this would introduce snap loads in the material and would contribute to
fatigue loads.

The coupled rigid body response of the CFFC both for a stiffness used in full
scale and the stiffness used in model scale were compared. The response of the
rigid CFFC in model and full scale is equal, but the coupled system response
including the flexible modes deviate to a great extent. This raises severe questions
of the use of the results from model experiments.
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Chapter 7

Conclusions and further work

In this thesis, detailed conclusions are given after the chapters where the research
results are presented. Here, broader conclusions and suggestions for further work
are presented.

7.1 Conclusions

The research methodology in this work combined experimental, theoretical and
numerical studies. As an answer to the research challenges we have acquired basic
understanding of the physics of the closed flexible fish cages (CFFCs), also denoted
as bags, through observations and response measurements in model experiments
and by studying the effect of varying filling level on the drag forces acting on
the CFFC in ambient current. We have develop mathematical models in order
to describe the physics of a closed membrane structure with a free surface and
internal water motions under hydrostatic pressure and in waves.

Model experiments of scaled models of the closed flexible fish cage (CFFC) in
current for different filling levels have been conducted in multiple rounds to build
knowledge of the system. Model experiments are often used in model validation,
where a mathematical model of the physics of the system already exists, and it
needs to be asserted that this model represents the ”real world.” We have used
model experiments to develop a qualitative and quantitative understanding of the
physics of the system through observations and response measurements.

In current, the response of the CFFC was found to be highly filling-level depen-
dent. The initial hypothesis in the project was that by reducing the filling level in
the bag, the response of the CFFC would be similar to a conventional net based
fish cage. We initially assumed that the bag would in a favourable manner adjust
its shape to the current, and thereby reducing the total drag forces on the bag. We
therefore aimed at controlling the response of the cage by regulating the filling
level. However, early experiments made it clear that this hypothesis was partly
wrong. Contrary to our hypothesis we found the drag forces on the bag increased
when the filling level was reduced (Strand et al., 2013; Lader et al., 2014). This result
lead to a shift in focus to an increased need for the development of fundamental
knowledge and understandings of the physics in terms of mathematical models. To
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better predict the forces and deformations on the bag, mathematical models taking
into account the dependency between force and deformation should be developed.

From the experiments it was observed that the problem of a CFFC in current
can be characterised by a complex interaction between the membrane, the water
masses within the CFFC and the outside water flow. To reduce the complexity of
the problem, it was decided to continue the work by modelling the system in 2D
and to capture some of the main deformation patterns and loads by the reduced 2D
model. Due to considerations related to linearity of models, it was decided to focus
on conditions where the bag was full, or overfilled. In addition, it was chosen to
shift the focus in modelling to waves, allowing for the use of potential flow theory.

To develop theory and understanding of the membrane structure, and the
coupling between structural response and internal water motions, a 2D rectangular
sloshing tank with a fabric membrane side wall subject to forced sway motion
was studied. Both an analytical and a numerical solution, to the problem were
developed. The eigenfrequencies of the system with a flexible membrane left wall
relied heavily on both the tension and the 2D membrane length. For low tensions,
more than one eigenfrequency may exist between two neighbouring sloshing
frequencies for the rigid tank. The gained knowledge of the studied problem and
a validated numerical code were then further developed in order to analyse the
response of a semi-circular CFFC in waves.

A linear mathematical model of a 2D CFFC in waves was developed. A math-
ematical model for the static equilibrium geometry and tension for a membrane
in calm water, with a hydrostatic pressure difference, was developed, and then
used in the analysis of the response of a semi-circular CFFC in waves. The wave
response of the rigid body motions in sway, heave and roll of a CFFC were found
to be significantly different from the response of a rigid CFFC. Very large ratios
between free-surface elevation amplitudes and incident wave amplitude are pre-
dicted inside the tank at the first and third natural sloshing frequencies. It implies
that nonlinear free surface effects must be accounted for inside the tank in realistic
sea conditions, as well known from other marine sloshing applications (Faltinsen
and Timokha, 2009). Within linear structural theory we required that the dynamic
tension was smaller than the static tension. For the analysed geometry, for signifi-
cant wave heights larger than 0.5 meter, the most probable largest dynamic tension
was larger than the static tension. For negative total tensions the structural model
is not valid. Therefore, a higher order structural model should be used. The effect
of scaling of elasticity on the rigid body motion was also investigated. To scale
the results correctly it requires that the modulus of elasticity of the membrane
material should scale as the diameter, this is unfortunately not straight forward.
The response of the CFFC using an elasticity available in model scale have been
compared to the response of the CFFC using the elasticity for full scale. These
responses where found to deviate to a large extent. This raises severe questions of
the direct use of results from model scale experiments for the CFFC.
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7.2 Further work

The presented work can be considered as a starting point in the modelling of sea
loads on CFFCs. However, significant work in several scientific areas are left for
further work.

∙ 2D structures do not exist in the real world. To develop knowledge that can
be directly used on the existing full scale systems, the 2D models must be
expanded to 3D. The 3D model should be verified against full scale tests, or
model experiments considering the results related to scaling of elasticity.

∙ A requirement to use linear structural theory is that the dynamic tension is
smaller than the static tension. From Section 6.6.6 we observed that this was
not the case for significant wave heights larger than 0.5 m for the analysed
case. Here, a non-linear dynamic structural analysis should be conducted
to find the response in design sea states. To conduct a non-linear analysis is
not trivial. Then, the structural deformations and the internal and external
pressure must be solved simultaneously in the time domain. Furthermore,
it must be stressed that non-linear sloshing must be considered to find the
correct sloshing amplitude close to the sloshing eigenfrequencies.

∙ ”Large volume structures” cause far field waves, which again result in second
order mean and slowly varying lateral forces and yaw moments, that matters
in the design of mooring systems for floating offshore structures. Since a
CFFC also causes non-negligible far-field waves, mean and slowly varying
wave loads should also be investigated in the design of their mooring system.
Furthermore, current-wave interaction matters in this context. The mean
drift forces with current effects must therefore be considered and is very
different from a net cage. A second order external fluid pressure analysis
should therefore be conducted to investigate if the mooring systems used for
conventional aquaculture net cages are sufficient.

∙ Negative total tension are connected to snap loads in the fabric and to fatigue
damage. The fatigue damage limits the life time of a material and should be
investigated to assert that the life time of the membrane is not exceeded.

∙ The CFFC have an internal circulation and flow to assert adequate water
quality for the fish with internal circulation velocities in the range 0.07-0.28
m/s (Klebert et al., 2018). This water circulation will also introduce pressure
loads on the fabric structure and will most probably alter the internal pressure
forces found from the potential flow theory. However, the circulation pressure
cannot be found within potential flow theory. Therefore, the full Navier
Stokes equations must be solved. This is not trivial when the cage boundary
in the simulations is a deformable membrane.

∙ We still believe that with sufficient system understanding, control strategies
should be applied to optimise the behaviour of the CFFC in the sea, as
illustrated in Figure 7.1. Then, it will be vital to formulate control objectives,
and propose control strategies to meet the objectives.
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Figure 7.1: Future work including control of the system.
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Appendix A

Coefficient calculation of linear
sloshing in a 2D rectangular tank
with a flexible side wall

The different parts of the pressure contribution on the membrane with modes are
calculated as:∫︁ 0

−ℎ

(Ω𝑑𝑚(− 𝑙

2
, 𝑧) − Ω𝑑𝑚)𝑈𝑗(𝑧)𝑑𝑧 =

𝑎
(Ω)
𝑚𝑗

𝜌𝑤
(A.1)

=𝛼0𝑚
𝐿

𝜋𝑗𝑙

(︂
(
2𝑙2

3
+ 2

𝐿2

𝜋2𝑗2
) sin2(

𝜋ℎ𝑗

2𝐿
)

− 𝐿

𝜋𝑗
ℎ sin(

𝜋ℎ𝑗

𝐿
) +

ℎ2

2

)︂
+

∞∑︁
𝑘=1

𝛼𝑘𝑚𝐿

(︂
ℎ

𝑘𝜋

)︂2(︂ 𝑘𝑗ℎ((−1)𝑘 cos( 𝑗𝜋ℎ
𝐿

) − 1)

tanh(𝜋𝑘𝑙/ℎ)(𝐿2𝑘2 − ℎ2𝑗2)

−
2(−1)𝑘 sin2( 𝑗𝜋ℎ

2𝐿
)

𝑙𝑗𝜋

)︂
𝑙

2

∫︁ 0

−ℎ

𝑈𝑗(𝑧)𝑑𝑧 =
𝛾2𝑗
𝜌𝑤

=
𝑙𝐿

𝑗𝜋
sin2(

𝑗𝜋ℎ

2𝐿
) (A.2)

∫︁ 0

−ℎ

cosh(𝜋𝑛(𝑧 + ℎ)/𝑙)

𝜅𝑛 cosh(𝜋𝑛ℎ/𝑙)
𝑈𝑗(𝑧)𝑑𝑧 =

𝑎
(𝜑)
𝑛𝑗

𝜌𝑤
(A.3)

=
𝑙2𝐿(𝑗𝑙 cosh(𝜋𝑛ℎ

𝑙
) cos( 𝑗𝜋ℎ

𝐿
) − 𝐿𝑛 sinh(𝜋𝑛ℎ

𝑙
) sin( 𝑗𝜋ℎ

𝐿
) − 𝑗𝑙)

𝜋2𝑛 sinh(𝜋𝑛ℎ
𝑙

)(𝐿2𝑛2 + 𝑗2𝑙2)

𝑔

𝑙

∫︁ 0

−ℎ

𝑈𝑚(𝑧)𝑑𝑧

∫︁ 0

−ℎ

𝑈𝑗(𝑧)𝑑𝑧 =
𝑐𝑚𝑗

𝜌𝑤
=
𝑔

𝑙

4𝐿2

𝑚𝑗𝜋2
sin2(

𝑗𝜋ℎ

2𝐿
) sin2(

𝑚𝜋ℎ

2𝐿
) (A.4)

129





Appendix B

Formulations of the numerical
potential theory harmonic
polynomial cell (HPC) method

The internal sloshing problem and the external wave induced motion problem
can be solved within potential flow theory. To solve these problems a numerical
method is needed. We have chosen to apply the harmonic polynomial cell method
(HPC method).

The basic formulation of the HPC method is based on Shao and Faltinsen
(2014a). A local Cartesian 𝑥, 𝑦 coordinates system is used and the domain is divided
into cells with nine nodes, as illustrated in Figure B.1. The velocity potential in
each cell is described by an interpolation function

𝜑(𝑥, 𝑦) =

8∑︁
𝑗=1

𝑏𝑗𝑓𝑗(𝑥, 𝑦) (B.1)
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Figure B.1: Dimension and node numbering of a regular cell
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B. Formulations of the numerical potential theory harmonic polynomial cell
(HPC) method

where 𝑏𝑗 and 𝑓𝑗(𝑥, 𝑦) are coefficients and harmonic polynomials respectively. The
harmonic polynomial automatically satisfies the Laplace equation (∇2𝜑 = 0) ev-
erywhere in space.

The Harmonic Polynomials are chosen as follows:

𝐹 (𝑥, 𝑦) = [𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦), 𝑓3(𝑥, 𝑦), 𝑓4(𝑥, 𝑦), 𝑓5(𝑥, 𝑦), 𝑓6(𝑥, 𝑦), 𝑓7(𝑥, 𝑦), 𝑓8(𝑥, 𝑦)]

= [1, 𝑥, 𝑦, 𝑥2 − 𝑦2, 2𝑥𝑦, 𝑥3 − 3𝑥𝑦2, 3𝑥2𝑦 − 𝑦3, 𝑥4 − 6𝑥2𝑦2 + 𝑦4 ]
(B.2)

By calculating the velocity potential for nodes 1-8 we get an equation system
on the form of⎡⎢⎣𝜑1...

𝜑8

⎤⎥⎦ =

⎡⎢⎣𝑓1(𝑥1, 𝑦1) . . . 𝑓8(𝑥1, 𝑦1)...
. . .

...
𝑓1(𝑥8, 𝑦8) . . . 𝑓8(𝑥8, 𝑦8)

⎤⎥⎦
⎡⎢⎣𝑏1...
𝑏8

⎤⎥⎦ (B.3)

Where 𝑥, and 𝑦 is given in local coordinates calculated with center in node 9.
If (B.3) is solved for 𝑏𝑗 we get an expression for the unknown coefficients, given

according to⎡⎢⎣𝑏1...
𝑏8

⎤⎥⎦ =

⎡⎢⎣𝑓1(𝑥1, 𝑦1) . . . 𝑓8(𝑥1, 𝑦1)...
. . .

...
𝑓1(𝑥8, 𝑦8) . . . 𝑓8(𝑥8, 𝑦8)

⎤⎥⎦
−1

⏟  ⏞  
𝐶

⎡⎢⎣𝜑1...
𝜑8

⎤⎥⎦ =

⎡⎢⎣𝑐1,1 . . . 𝑐1,8...
. . .

...
𝑐8,1 . . . 𝑐8,8

⎤⎥⎦
⎡⎢⎣𝜑1...
𝜑8

⎤⎥⎦ (B.4)

The resulting velocity potential in the cell can be found from the previous equations
according to:

𝜑(𝑥, 𝑦) =

8∑︁
𝑗=1

𝑏𝑗𝑓𝑗(𝑥, 𝑦) =

8∑︁
𝑖=1

[︂ 8∑︁
𝑗=1

𝑐𝑗,𝑖𝑓𝑗(𝑥, 𝑦)

]︂
𝜑𝑖 (B.5)

Equations (B.2)-(B.5) are given for the local coordinate system (x,y). We choose this
coordinate system such that node 9 is located at the origin. This gives a governing
relation for the internal nodes in the internal domain, according to

𝜑(𝑥9, 𝑦9) = 𝜑9 =

8∑︁
𝑖=1

𝑐1,𝑖𝜑𝑖 (B.6)

For nodes at the boundary of the domain the Neumann and Dirichlet boundary
conditions are given according to:

𝜕𝜑

𝜕𝑛
=

8∑︁
𝑖=1

[︂ 8∑︁
𝑗=1

𝑐𝑗,𝑖∇𝑓𝑗(𝑥, 𝑦) · 𝑛⃗(𝑥, 𝑦)
]︂
𝜑𝑖 (B.7)

𝜑* = 𝜑(𝑥, 𝑦) (B.8)

where 𝜑* is a known solution and 𝑛⃗(𝑥, 𝑦) is the normal vector at 𝑥, 𝑦.
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A global matrix system is established by inserting the local matrix equations
and boundary conditions into the global coefficient matrix, given as:

A𝐺𝜑𝐺 = B𝐺 (B.9)

where A𝐺 is the global coefficient matrix, 𝜑𝐺 is the global velocity potential vector
and B𝐺 is the boundary condition vector.
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Appendix C

Full scale parameters of a CFFC by
Botngaard

Botngaard systems have designed and made full scale systems deployed in the
sea. One of these systems is designed as a rectangular bag in a steel cage. From
personal conversation with them, the following parameters were obtained: The
bag is made of cloth (produced by Dyneema) of thickness 𝑑𝐹 = 0.75mm, with an
elasticity module of 𝐸 = 2.25 · 109Pa. The bag is ℎ = 12 m depth, 𝐿 = 𝐵 = 25m
wide and have a total volume of ∇ = 4000m3, the geometry is illustrated in figure
C.1. The bag is overfilled, the overfilling Δℎ = 4mm (can reach Δℎ = 6mm), and
the density difference Δ𝜌 = 10kg/m3, for a given site. The cage uses cylindrical
tube floaters, with diameter 𝐷𝐹 = 0.836m.

Figure C.1: Sketch of full scale dimensions of a Botngaard closed flexible fish cage
in a square steel frame.
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Appendix D

Membrane equation system for the
membrane deformations for a semi-
circular membrane

For a case with static tension 𝑇0 from pure overfilling as described in Section
5.3, the membrane will have an half circular shape. For the shape to be fully half
circular the static tension must be much larger than the mass forces on the 2D
membrane, i.e 𝑇0 >> 𝑚𝑀𝑔, then the static tension variations along the membrane
𝜕𝑇0/𝜕𝑠 = 0, and the mass terms can be neglected. For a half circular membrane,
the static curvature is constant, then 𝜕𝜓0

𝜕𝑠 = 1
𝑅 .

For the given problem the equations simplifies to:

−𝜔2𝑚𝑀𝑣 =
𝑇0
𝑅2

(︂
𝜕2𝑣

𝜕𝜓2
+
𝜕𝑢

𝜕𝜓

)︂
+
𝐸𝑑

𝑅2

(︂
𝜕𝑢

𝜕𝜓
− 𝑣

)︂
−Δ𝑝 (D.1)

−𝜔2𝑚𝑀𝑢 =
𝐸𝑑

𝑅2

(︂
𝜕2𝑢

𝜕𝜓2
− 𝜕𝑣

𝜕𝜓

)︂
− 𝑇0
𝑅2

(︂
𝜕𝑣

𝜕𝜓
+ 𝑢

)︂
(D.2)

Numerical expression for a half circular membrane

If the membrane has a half circular shape, the ordinary differential equations for
the structural mode amplitudes 𝜈𝑚, 𝜇𝑘 can be found by multiplying (D.1) and
(D.2) with the mode 𝑈𝑗(𝜓0) and integrating along the membrane length. For a half
circular shape 𝜓𝑒 = 𝜋/2. 𝑈𝑗(𝜓0) = sin(𝑗(𝜓0 − 𝜋

2 )). By using orthogonal properties,
the resulting membrane equation system become:

− 𝜔2𝑚𝑀𝑅
𝜋

2
𝜈𝑗 +

𝜋(𝐸𝑑+ 𝑗2𝑇0)

2𝑅
𝜈𝑗 −

(𝐸𝑑+ 𝑇0)

𝑅

∞∑︁
𝑛=1

𝑛𝛼𝑗𝑛𝜇𝑛 = 𝑓𝑗(𝜔) (D.3)

− 𝜔2𝑚𝑀𝑅
𝜋

2
𝜇𝑗 +

𝜋(𝐸𝑑𝑗2 + 𝑇0)

2𝑅
𝜇𝑗 +

𝐸𝑑+ 𝑇0
𝑅

∞∑︁
𝑚=1

𝑚𝛼𝑗𝑚𝜈𝑚 = 0 (D.4)
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D. Membrane equation system for the membrane deformations for a semi-
circular membrane

where 𝛼𝑗𝑚 is defined according to:∫︁ 0

−𝜋
𝑈𝑐𝑚(𝜓0)𝑈𝑗(𝜓0)𝑑𝜓 = 𝛼𝑗𝑚 =

{︃
0 for 𝑚 = 𝑗
𝑗((−1)𝑗(−1)𝑚−1)

𝑗2−𝑚2 for 𝑚 ̸= 𝑗
(D.5)

where 𝑈𝑐𝑗(𝜓0) comes from the first derivative of 𝑈𝑗(𝜓0) and is defined as 𝑈𝑐𝑗(𝜓0) =
cos(𝑗(𝜓0− 𝜋

2 )). Symmetry properties can be oberved from the 𝛼𝑗𝑚 value defined in
(D.5), symmetric normal modes are structurally coupled to asymmetric tangential
modes and asymmetric normal modes are coupled to symmetric tangential modes.

The membrane is connected to the floaters, and this connection transfers dy-
namic tension loads to the rigid body motions. The total contribution from the
dynamic tension forces in horizontal and vertical direction for the half circular
membrane become

𝑓𝑇1 =− 𝑇0
𝑅

∞∑︁
𝑚=1

𝑚𝜈𝑚(1 + (−1)𝑚) (D.6)

𝑓𝑇2 =− 𝐸𝑑

𝑅

∞∑︁
𝑛=1

𝑛(1 + (−1)𝑛)𝜇𝑛 (D.7)

Th roll moment about the center of gravity of the CFFC due to the tension loads on
the floaters for the half circular membrane become

𝑓𝑇3 =𝐸𝑑𝑅

∞∑︁
𝑛=1

𝑛(1− (−1)𝑛)𝜇𝑛 +
𝑧2𝑒𝑇0
𝑅

∞∑︁
𝑚=1

𝑚(1 + (−1)𝑚)𝜈𝑚 (D.8)

For the halfcircular membrane described by (D.3) and (D.4) the expressions
for the mass and stiffness matrices in (6.41) can be simplified to a great extent.
𝑚𝑀𝜉,𝑚𝑀𝜇 is now defined according to 𝑚𝑀𝜉 = 𝑚𝑀𝜇 = 𝐼𝑚𝑀

𝜋𝑅
2 , where 𝐼 is

the identity matrix. For 𝑗 < 4, 𝑚𝑀𝜉,𝑚𝑀𝜇 = 0. The structural stiffness matrices
of 𝜉 is defined according to 𝑐𝑀𝜉𝜉 =

∑︀∞
𝑗=4

𝜋
2𝑅 (𝐸𝑑+ (𝑗 − 3)2𝑇0)𝜉𝑗 where 𝑐𝑀𝜉 = 0

for 𝑗 < 4. The structural stiffness matrix of 𝜇 is defined according to 𝑐𝑀𝜇𝜇 =∑︀∞
𝑛=1

𝜋
2𝑅 (𝑛

2𝐸𝑑 + 𝑇0)𝜇𝑛 where 𝑐𝑀𝜇 = 0 for 𝑗 < 4. The coupling stiffness matrix
between 𝜉 and 𝜇 is defined according to 𝑐𝑀𝜉𝜇𝜇 =

∑︀∞
𝑗=4

∑︀∞
𝑛=1 𝑛𝛼(𝑗−3)𝑛𝜇𝑛, while

the coupling stiffness matrix between 𝜇 and 𝜉 is defined according to 𝑐𝑀𝜇𝜉𝜉 =∑︀∞
𝑗=4

∑︀∞
𝑛=1(𝑗 − 3)𝛼𝑛(𝑗−3)𝜉𝑗 . The membrane floater connection loads 𝑐𝑇𝜉 and 𝑐𝑇𝜉𝜇

are given by (6.42) where 𝑓𝑇𝑗 for 𝑗 > 4 are given by (D.6)- (D.8).
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Appendix E

Damping and excitation, radiated
waves at finite water depth

Newman (1962) first gave the relation between the damping coefficient and the
excitation force for infinite water depth based on the Haskind-relation. In the
present analysis this is extended to finite water depths.

The two dimensional incident wave potential 𝜑0 for a wave propagating in
the 𝑦− direction is given by (6.43). While the asymptotic incident-wave system
propagating in the positive 𝑦-direction are given according to:

𝜑𝑗(𝑦, 𝑧, 𝑡) =
𝐴+𝑔

𝜔2

cosh 𝑘(𝑧 + ℎ)

cosh 𝑘ℎ
𝑒(i𝜔𝑡−i𝑘𝑦) (E.1)

The far-field wave amplitude |𝐴+| and far-field wave amplitude |𝐴−| are related
for bodies symmetric about the 𝑦 − 𝑎𝑥𝑖𝑠, the magnitude are the same and for
symmetric and antisymmetric motions they are related as described in Chapter
6.5.1.

The exciting forces on a body in waves can be found from (Newman, 1962):

𝑓𝑗 = i𝜔𝜌𝑤𝑒i𝜔𝑡
∫︁ 0

−ℎ
𝜑0
𝜕𝜑𝑗
𝜕𝑦

− 𝜑𝑗
𝜕𝜑0
𝜕𝑦

]︂𝑦=∞

𝑦=−∞
dz (E.2)

where the partial partial derivative of 𝜑0 and 𝜑𝑗 in 𝑦− direction are

𝜕𝜑0
𝜕𝑦

= − i𝑘𝜁𝑎𝑔
𝜔

cosh 𝑘(𝑧 + ℎ)

cosh 𝑘ℎ
𝑒(i𝜔𝑡−i𝑘𝑦) (E.3)

𝜕𝜑𝑗
𝜕𝑦

= − i𝑘𝐴+𝑔

𝜔2

cosh 𝑘(𝑧 + ℎ)

cosh 𝑘ℎ
𝑒(i𝜔𝑡−i𝑘𝑦) (E.4)

The estimated excitation force can then be calculates as:

𝑓𝑒𝑠𝑡𝑗 = 𝜌𝑤𝑔
2𝜁𝑎2𝐴

+𝑘𝑒i𝜔𝑡 1

𝜔2

∫︁ 0

−ℎ

cosh2 𝑘(𝑧 + ℎ)

cosh2 𝑘ℎ
dz

= 2𝜌𝑤𝑔
2𝜁𝑎𝐴

+𝑘𝑒i𝜔𝑡 𝐼1
𝜔2

(E.5)
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E. Damping and excitation, radiated waves at finite water depth

where 𝐼1 is given by (6.58) as 𝐼1 =
∫︀ 0

−ℎ
cosh2 𝑘(𝑧+ℎ)

cosh2 𝑘ℎ
dz = sinh(𝑘ℎ) cosh(𝑘ℎ)+𝑘ℎ

2𝑘 cosh2 𝑘ℎ
.

From (Faltinsen and Timokha, 2009, page 118) we know that the relation be-
tween the far-field wave amplitude |𝐴+| and the damping is given by (6.57) as
𝑏𝑗𝑗 = 2𝜌𝑔2𝑘

𝜔3 𝐼1𝐴
+2. We can now find the relation between the amplitude of the

excitation force |𝑓𝑗 | and the damping coeffcient for a given motion 𝑗 by combining
eq. 6.57 and eq. E.5

|𝑓𝑗 |𝑒𝑠𝑡 = 𝜁𝑎

√︂
𝜌𝑤𝑔2

𝜔
𝑏𝑗𝑗2𝑘𝐼1. (E.6)
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Appendix F

Mode shape plots
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Figure F.1: Normal deformation modes 𝑈𝑚(𝜓0) from 1-10.
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Appendix G

Error estimation of hydrodynamic
coefficients

The accumulated 𝐿2 error over all frequencies for the damping based on the
damping part of (6.55) related to the estimated damping calculated by (6.57) is
calculated according to:

𝑒𝑏𝑗𝑗 =

∑︀
(𝑏𝑒𝑠𝑡𝑗𝑗 (𝜔)− 𝑏𝑗𝑗)

2(𝜔)∑︀
𝑏2𝑗𝑗(𝜔)

(G.1)

The accumulated 𝐿2 error over all frequencies for the excitation force based on
(6.56) related to the estimated excitation force based on the damping by (6.59) is
calculated according to:

𝑒𝑓𝑗 =

∑︀
(𝑓𝑒𝑠𝑡𝑒𝑥𝑐,𝑗 − 𝑓𝑒𝑥𝑐,𝑗)

2∑︀
𝑓2𝑒𝑥𝑐,𝑗

(G.2)

The damping error for a given motion 𝑗; 𝑒𝑏𝑗𝑗 and the wave excitation error for
a given motion 𝑗; 𝑒𝑓𝑗 for 𝑗 from 1 to 13 for the hemicircle are plotted in Figure G.1.
𝑗 = 1 is sway, 𝑗 = 2 is heave, 𝑗 = 3 is roll and 𝑗 = 4..13 are the first ten normal
structural modes. The results are for 𝑁𝑦 = 𝑁𝑧=100 nodes/m.
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G. Error estimation of hydrodynamic coefficients
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Figure G.1: 𝐿2 error of damping (𝑒𝑏𝑗𝑗 ) and 𝐿2 error of excitation force 𝑒𝑓𝑗 for a
given motion 𝑗.
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Appendix H

Convergence study of number of
structural modes

The accumulated 𝐿2 error over all frequencies for the sway, heave and roll response
have been been calculated for different numbers of normal and tangential structural
modes. Structural normal modes from 𝑗 = 1 to 𝑗 = 30 have been run, and tangential
modes up to 350 have been run. The error is calculated according to:

𝑒𝐽,𝑁𝑗 =

∑︀
(𝜉𝑗(𝜔)− 𝜉𝑟𝑒𝑓𝑗 (𝜔))2∑︀

𝜉𝑟𝑒𝑓𝑗 (𝜔)2
(H.1)

The reference motion 𝜉𝑟𝑒𝑓𝑗 (𝜔) have been calculated with 𝐽 = 30 normal modes
and 𝑁 = 350 tangential modes. The convergence is shown in Figure H.1. Large
difference in the convergence rate for sway, heave and roll can be observed from
Figure H.1, where sway converges first. N=250 modes in the tangential direction
and J=30 modes in the normal direction were used in the results.
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H. Convergence study of number of structural modes
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Figure H.1: Convergence plot of numbers of necessary modes in normal and
tangential direction, in sway, heave and roll.
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