
Knowledge and Information Systems
DOI 10.1007/s10115-016-1020-2

An efficient algorithm for mining top-k on-shelf high utility itemsets

Thu-Lan Dam · Kenli Li · Philippe Fournier-Viger ·
Quang-Huy Duong

Received: Mar 09, 2016/Revised: Nov 24, 2016/Accepted: Dec 20, 2016
c©Springer-Verlag London 2017

Abstract High on-shelf utility itemset (HOU) mining is an emerging data mining task which consists
of discovering sets of items generating a high profit in transaction databases. The task of HOU mining is
more difficult than traditional high utility itemset (HUI) mining, because it also considers the shelf time
of items, and items having negative unit profits. HOU mining can be used to discover more useful and
interesting patterns in real-life applications than traditional HUI mining. Several algorithms have been
proposed for this task. However, a major drawback of these algorithms is that it is difficult for users to
find a suitable value for the minimum utility threshold parameter. If the threshold is set too high, not
enough patterns are found. And if the threshold is set too low, too many patterns will be found and the
algorithm may use an excessive amount of time and memory. To address this issue, we propose to address
the problem of top-k on-shelf high utility itemset mining, where the user directly specifies k, the desired
number of patterns to be output instead of specifying a minimum utility threshold value. An efficient
algorithm named KOSHU (fast top-K On-Shelf High Utility itemset miner) is proposed to mine the top-
k HOUs efficiently, while considering on-shelf time periods of items, and items having positive and/or
negative unit profits. KOSHU introduces three novel strategies, named efficient estimated co-occurrence
maximum period rate pruning, period utility pruning and concurrence existing of a pair 2-itemset
pruning to reduce the search space. KOSHU also incorporates several novel optimizations and a faster
method for constructing utility-lists. An extensive performance study on real-life and synthetic datasets
shows that the proposed algorithm is efficient both in terms of runtime and memory consumption, and
has excellent scalability.

Keywords Data mining · High utility mining · On-shelf high utility mining · Top-k on-shelf high utility
mining

T-L. Dam
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
Faculty of Information Technology, Hanoi University of Industry, Hanoi, Vietnam
E-mail: lanfict@gmail.com

K. Li (B)
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
CIC of HPC, National University of Defense Technology, Changsha 410073, China
National Supercomputing Center in Changsha, Changsha , Hunan, 410082, China
E-mail: lkl@hnu.edu.cn

P. Fournier-Viger
School of Natural Sciences and Humanities, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen,
Guangdong 518055, China
E-mail: philfv@hitsz.edu.cn

Q-H. Duong
Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and
Technology, Norway
E-mail: huydqyb@gmail.com

2 T-L. Dam et al.

1 Introduction

Frequent Itemset Mining (FIM) [1] is a fundamental research topic in data mining that is essential to a
wide range of applications. Given a transaction database, the objective of FIM is to discover itemsets
appearing frequently in transactions. An itemset is said to be frequent if its support is no less than
a given minimum support threshold. Hundreds of studies have been conducted on this topic [1,21,47,
29,19,20,10]. However, an important limitation of FIM is its assumptions that all items have the same
importance to the user (e.g. unit profit or weight) and that items may not appear more than once in each
transaction. These assumptions often do not hold in real life. For example, in transaction databases,
items may have different unit profits, and items in transactions may be associated with different purchase
quantities. Besides, in real-life applications, retailers may be more interested in finding itemsets that
yield a high profit rather than discovering frequent itemsets.

To address these limitations, the problem of FIM has been redefined as High Utility Itemset Mining
(HUIM). In HUIM, items can appear more than once in each transaction and a weight (e.g. unit profit)
is assigned to each item. The goal of HUIM is to discover high utility itemsets (HUIs), that are itemsets
generating a high profit rather than frequent itemsets. HUIM has become a popular research issue in
recent years. It is widely recognized as more difficult than FIM because the powerful downward closure
property used to prune the search space in FIM does not hold in HUIM. The downward closure property
in FIM states that the support of an itemset is antimonotonic, i.e. supersets of an infrequent itemset
are infrequent and subsets of a frequent itemset are frequent. But in HUIM, the utility of an itemset
is neither monotonic nor anti-monotonic, that is a high utility itemset may have a superset or subset
with lower, equal or higher utility. Thus, techniques to prune the search space developed in FIM cannot
be directly applied in HUIM. To address this issue, overestimation methods such as the transaction
weighted utility (TWU) [31,40] have been proposed.

Many studies have been carried out to develop efficient HUIM algorithms [40,38,15,46,14,28,27,39,
9]. However, most of them assume that the profits/weights of items are positive. While items having
negative unit profits often occur in real-life transaction databases. For example, it is common that a
retail store will sell items at a loss to increase the sale of related items, or simply to attract customers.
Thus, transactions in a retail store may contain itemsets having negative unit profits. Traditional HUIM
algorithms cannot handle databases where items have negative unit profits/weights. If they are applied
on such database, they can generate an incomplete set of HUIs [8,12]. Besides, most HUIM algorithms
assume that all items are always on sale. However, in real-life some products are only on shelf during
specific time periods (e.g. the summer, or important holidays). Since traditional HUIM algorithms do
not consider shelf time, they are biased toward finding itemsets with longer shelf time [24,23].

To address the two above limitations, the problem of HUIM has been respectively redefined as the
problem of mining HUIs with negative/positive unit profits [8,12], and the problem of mining high
on-shelf utility itemsets (HOUs) [24]. Recently, the problem of mining HOUs with negative/positive
unit profits [23,16] has been proposed, which is a more general problem definition addressing both
limitations. In this problem, an itemset is called a high on-shelf utility itemset if its relative utility is
no less than a user-defined threshold.

The TS-HOUN algorithm was first proposed for this problem [23]. It uses a three phase approach
that requires generating and maintaining a large amount of candidates in memory and performing
multiple database scans. Then, a more efficient algorithm named FOSHU [16] (Faster On-Shelf High
Utility itemset miner) was proposed. FOSHU discovers itemsets in a single phase without generating
candidates and mines all times periods at the same time, thus avoiding the costly operation of merging
patterns found in each time period. Furthermore, FOSHU has introduced novel strategies to handle
negative unit profits efficiently.

Although FOSHU outperforms TS-HOUN, on-shelf HUI mining with positive/negative profits re-
mains a time consuming task. It is more difficult than traditional high utility itemset (HUI) mining
because the shelf time of items needs to be considered, and items with negative unit profits need to be
treated differently. For this reason, techniques used in traditional HUIM and FIM cannot be directly
applied to this problem.

Furthermore, an important limitation of traditional FIM, HUI and HOU mining algorithms is that
it is difficult for users to find a suitable value for the minimum threshold parameter. If a user sets the
threshold too high, not enough patterns are found. And if a user sets the threshold too low, a huge
amount of patterns will be found, and the algorithm may use an excessive amount of time and memory.
To find an appropriate threshold value, a user generally needs to run a mining algorithm several times
using a trial and error approach, which can be very time-consuming.

An efficient algorithm for mining top-k on-shelf high utility itemsets 3

The prominent solution to the problem of adjusting the thresholds in FIM and HUIM is to redefine
these problems respectively as top-k FIM [17,6,42,36] and top-k HUIM [44,34,41,11], where users must
specify k, the desired number of itemsets to be found instead of setting a minimum threshold. Specifying
a number of patterns to be found has been shown to be much more intuitive for users than specifying
a threshold [17,6,42,36,44,34,41,11]. Although top-k pattern mining is desirable, it is generally viewed
as more difficult than discovering patterns using a threshold because top-k pattern mining algorithms
need to at any time keep potential top-k patterns in memory, and use an internal minimum threshold
initially set to 0 and gradually raise the threshold when exploring the search space to exactly find the
top k patterns [17,6,42,36,44,34,41,11]. Designing a top-k algorithm thus requires to design efficient
strategies for raising the internal minimum threshold as quickly as possible to reduce the search space
without missing any desired itemset.

In this study, we address the difficulty of setting the relative utility threshold in HOU mining, by
defining the problem of mining the top-k on-shelf high utility itemsets where both positive and negative
item unit profits are taken into account, as well as the shelf time of each item. To the best of our
knowledge, this is the first time that the problem is considered. Designing an efficient algorithm for this
problem is difficult because few effective search space pruning techniques have been proposed for HOU
mining. Moreover, it is not straightforward to adapt these pruning techniques and those used in HUIM
for top-k HOU itemset mining with positive and negative unit profits.

To overcome these challenges, this study proposes an algorithm named top-K On-Shelf High Utility
itemset miner with or without negative unit profits (KOSHU). KOSHU is a utility-list based algorithm,
incorporating three novel itemset pruning strategies named EMPRP (Estimated Maximum Period Rate
Pruning), PUP (Period Utility Pruning), and CE2P (Concurrence Existing of a pair 2-itemset Pruning).
These strategies are easy to implement and effective. Furthermore, we also introduce an efficient method
for constructing utility-lists. The proposed algorithm also employs effective strategies to raise the internal
relative utility threshold. A rigorous experimental evaluation on several real and synthetic datasets was
performed to evaluate the performance of the proposed algorithm and the effectiveness of the proposed
strategies. Empirical results show that the proposed strategies are efficient, and that the performance
of the proposed algorithm is close to the state-of-the-art on-shelf high utility itemset mining algorithm
FOSHU [16] tuned with optimal minimum relative utility thresholds. The key contributions of this work
are summarized as follows:

(1) An efficient algorithm is proposed for discovering the top-k on-shelf high utility itemsets in trans-
action databases. It relies on three efficient strategies named EMPRP, PUP and CE2P which can
eliminate a large number of join operations and thus prune a large part of the search space.

(2) The algorithm utilizes several strategies for initializing and dynamically adjusting the internal min-
imum relative utility threshold during the top-k HOU mining process, named RIRU and RIRU2.
These strategies can effectively raise the relative utility threshold, thus contributing to the effective-
ness of the EMPRP strategy which is based on a novel Estimated co-occurrence Maximum Period
Rate Structure (EMPRS).

(3) A low complexity procedure to construct utility-lists during the mining process is also introduced.
It is implemented using a fast binary search method that remembers the index of the last search po-
sition so that the next search starts from this position instead of the first position. These techniques
provide a considerable performance gain.

(4) Extensive experimental evaluations have been conducted on both real and synthetic datasets to
evaluate the proposed techniques. Results show that the proposed algorithm is efficient both in
terms of runtime and memory consumption.

The remainder of this paper is organized as follows. Section 2 reviews studies related to HUI, HOU
and top-k pattern mining. Preliminaries and a formal problem definition are presented in Section 3.
Section 4 presents the novel techniques employed in the proposed algorithm. Then, Section 5 describes
the proposed KOSHU algorithm, designed for mining the top-k on-shelf high utility itemsets. It incorpo-
rates all the techniques presented in Section 4. Section 6 presents an extensive experimental evaluation.
Finally, Section 7 draws the conclusion and discusses opportunities for future work.

2 Related Work

In this section, studies related to utility mining, on-shelf utility mining and top-k pattern mining are
briefly reviewed.

4 T-L. Dam et al.

2.1 High Utility Itemset Mining

In real life applications, customer transactions contain information about the quantities of items, and
items may have different unit profits. Moreover, items may yield a high profit even if they have low
selling frequencies. For these reasons, FIM can be viewed as inappropriate for market basket analysis.
To overcome this issue, the problem of high utility itemset mining (HUIM) was proposed [3]. It considers
both items’ unit profits and their quantities in transactions. The goal of HUIM is to discover itemsets
having utilities no less than a minimum utility threshold. These itemsets may be rare but still generate
a high profit.

Many algorithms have been proposed for high utility itemset mining. A challenge in HUIM is that
the utility measure is not monotonic or anti-monotonic (the downward closure property does not hold).
To restore the downward closure property, the TWU model [31] was introduced. According to the TWU
model, all supersets of an itemset having a TWU lower than the minimum utility threshold also have
a TWU lower than that threshold. The disadvantage of using the TWU is that it is a loose upper
bound on the utility of itemsets and thus a huge amount of candidates still need to be considered
to find the final set of HUIs. Numerous HUI mining algorithms discover high utility itemsets in two
phases using the TWU model. This approach is adopted by algorithms such as Two-Phase [31], UP-
Growth, UP-Growth+ [40], PB [25] and BAHUI [37]. These algorithms first generate a set of candidate
high utility itemsets by overestimating their utilities in Phase 1. Then, in Phase 2, these algorithms
perform a database scan to calculate the exact utility of candidates and keep only those that are high
utility itemsets. Despite having introduced new techniques to discover high utility itemsets, two-phase
algorithms still suffer from the problem of generating too many candidates due to the use of the TWU
model.

Recently, algorithms have been proposed to mine HUIs using a single phase. The HUI-Miner algo-
rithm [30] introduced a new data structure called utility-list to maintain information about the utilities
of itemsets. Once HUI-Miner has constructed the utility-list of each single item, it can create the utility-
lists of larger itemsets without scanning the database, and can derive all HUIs and their exact utilities
using utility-lists. HUI-Miner was shown to outperform previous algorithms. However, HUI-Miner still
has to perform a costly join operation to obtain the utility-list of each itemset generated by its search
procedure. To reduce the number of join operations, the FHM algorithm [15] was introduced. It inte-
grates a strategy for pruning the search space using information about itemset co-occurrences. It was
shown that this strategy can reduce the number of join operations by up to 95%, and that FHM can be
up to six times faster than HUI-Miner.

In recent years, several algorithms have also been proposed to mine HUIs in data streams. Those
algorithms are based on assumptions that are different from those of traditional HUI mining. Data stream
mining algorithms assume that data is continuously arriving at a very fast rate, that the amount of data
is unknown or unbounded, and that it is impossible to store all the data permanently. Several algorithms
for mining HUIs in data streams have been proposed such as THUI-Mine [7], MHUI-BIT [26], MHUI-
TID [26], and SHU-Grow [35]. THUI-Mine, MHUI-BIT, and MHUI-TID are Apriori-based algorithms.
They employ a level-wise generate-candidate-and-test approach to explore the search space of itemsets.
Drawbacks of the Apriori approach is that it requires to perform numerous database scans and maintain
a huge number of candidates in memory. The SHU-Grow algorithm addresses this issue by employing a
pattern growth approach. SHU-Grow [35] utilizes the RGE (Reducing Global Estimated utilities) and
RLE (Reducing Local Estimated utilities) techniques to decrease the overestimated utilities of itemsets.
Moreover, SHU-Grow employs a SHU-Tree structure to maintain information about the data stream
and high utility patterns. Experimental results have shown that SHU-Grow outperforms the existing
sliding window-based methods in terms of runtime and scalability.

2.2 High On-shelf Utility Itemset Mining

Most HUIM algorithms assume that the unit profits of items are positive. However, in real-world ap-
plications, items often have negative unit profits. For example, retail stores often sell some products
at loss (with a negative unit profit). It was demonstrated that if classical HUIM algorithms are ap-
plied on databases containing items with negative unit profits, they can produce an incomplete set of
HUIs [8,12]. To address this limitation, the problem of HUIM has been redefined as the problem of
mining HUIs with negative/positive unit profits [8,12]. The first algorithm proposed for this problem
is HUINIV-Mine [8]. It extends the Two-Phase algorithm [31] by redefining the notion of transaction
utility to avoid under-estimating the utility of items using the TWU model. However, HUIM with pos-
itive/negative unit profits remains a very expensive task in terms of runtime and memory usage. To

An efficient algorithm for mining top-k on-shelf high utility itemsets 5

address this issue, a one-phase algorithm named FHN [12] was proposed to mine HUIs while considering
both positive and negative unit profits by extending the FHM algorithm. FHN was shown to be up to
500 times faster than HUINIV-Mine and consume up to 250 times less memory.

However, these HUIM algorithms do not consider the on-shelf time periods of items. They assume
that all items are always on sale. But in real-life retail stores, some items are only sold during some
specific time periods. To address this problem, Lan et al. proposed a new issue named on-shelf utility
mining [24] and an algorithm named TP-HOUN for this problem. TP-HOUN is a two-phase algorithm,
which only considers items having positive unit profits. Recently, the authors of TP-HOUN introduced
the more general problem definition of mining HOUs with negative/positive unit profits [23], and pro-
posed the TS-HOUN algorithm for this problem. This latter uses a three phase approach that requires
generating and maintaining a large amount of candidates in memory and performing multiple database
scans. Furthermore, TS-HOUN mines patterns in each time period separately and then combines the
results found in each time period using a costly merge operation. Therefore, its performance deteriorates
when a large number of time periods are used.

Recently, the FOSHU algorithm [16] was proposed to mine HUIs while considering both positive and
negative item unit profits and on-shelf time periods. FOSHU is a one-phase algorithm, which employs
the utility-list structure. It mines all times periods at the same time and introduces novel strategies to
handle negative values efficiently. Results show that FOSHU can be more than 1000 times faster and
uses up to 10 times less memory than TS-HOUN. It also performs well on dense databases as well as
databases containing many time periods. Although these approaches are able to discover HOUs, they
still suffer from long execution times and consume a large amount of memory. They are also not designed
to discover top-k HOUs.

2.3 Top-k Pattern Mining

An important drawback of HUIM is that specifying the minimum utility threshold is usually difficult
for the user. Users do not know in advance which threshold value will result in the desired amount of
patterns. But choosing an appropriate threshold value is crucial and difficult. To address this issue, top-k
HUIM was proposed, where the user specifies a parameter k representing the number of patterns to be
found instead of setting a minimum utility threshold. Several algorithms have been proposed for this
problem. TKU [41] is the first top-k HUIM algorithm. It extends the UP-Growth algorithm [40] with
several efficient threshold raising strategies. Zihayat and An [48] proposed an highly efficient algorithm
named T-HUDS for mining top-k HUIs over data streams. Recently, an algorithm called REPT [34] was
proposed. REPT also relies on the UP-Tree structure proposed in the UP-Growth algorithm [40,41].
But REPT utilizes threshold raising strategies that are different from those used in TKU. However, a
drawback of REPT is that in addition to the parameter k, users have to set a value for a parameter
N, used by its RSD (Raising by Support Descending order) strategy. Specifying an appropriate value
for the parameter N to obtain good performance is difficult for users [41]. The strategies proposed
in TKU and REPT may raise the internal minimum utility threshold effectively during the mining
process. However, the number of candidates generated by these algorithms is still huge because they
are two-phase algorithms. They repeatedly scan the database to obtain the exact utility of candidates
and identify the actual top-k HUIs. This process is very expensive both in terms of time and memory,
especially when a huge number of candidates are found, or when datasets contain long transactions and
many items. Therefore, the authors of TKU also introduced a one-phase algorithm named TKO [41].
TKO was shown to generally outperform both TKU and REPT. The TKO algorithm employs the
utility-list structure to store information about the utilities of itemsets in a database. It integrates
novel strategies named RUC (Raising threshold by Utility of Candidates), RUZ (Reducing estimated
utility values by using Z-elements) and EPB (Exploring the most Promising Branches first) that greatly
improve its performance. Very recently, a highly efficient algorithm for mining the top-k HUIs named
kHMC [11] was proposed. The kHMC algorithm discovers the top-k high utility itemsets in a single
phase. It employs three strategies named RIU (Real Item Utilities), CUD (Co-occurrence with Utility
Descending order), and COV (COVerage) to raise its internal minimum utility threshold effectively, and
thus reduce a large part of the search space. The COV strategy introduces a novel concept of coverage.
This concept can be employed to prune the search space in high utility itemset mining, or to raise
the threshold in top-k high utility itemset mining. Furthermore, kHMC relies on a novel co-occurrence
pruning technique named EUCPT (Estimated Utility Co-occurrence Pruning Strategy with Threshold)
to avoid performing costly join operations for calculating the utilities of itemsets. Moreover, a novel
pruning strategy named TEP (Transitive Extension Pruning) is proposed for reducing the search space.
In an experimental evaluation, kHMC was shown to outperform the state-of-the-art TKO and REPT

6 T-L. Dam et al.

algorithms for top-k high utility itemset mining both in terms of memory consumption and execution
time.

In frequent itemset mining, several efficient algorithms have been proposed to mine the top-k frequent
itemsets in transaction databases [17,6,42,36]. Moreover, several algorithms have been designed to
discover the top-k frequent itemsets in data streams [18,43,45,4]. TOPSIL-Miner [45] mines the top-k
significant itemsets in data streams using a prefix-tree structure. It is an approximate algorithm, i.e.
it does not guarantee that the exact set of top-k frequent itemsets is found. Another recent algorithm
is MSWTP [4], which employs a prefix-pattern tree structure, named SWTP-tree, to efficiently store
patterns and calculate their true frequencies in a data stream. MSWTP filters out insignificant patterns
by applying the Chernoff bound. Several algorithms have also been designed to mine the top-k frequent
items in data streams [33,32,22]. However, they are approximate algorithms, designed for finding the
most popular k elements in a data stream. Hence, they only consider single items rather than itemsets.
But mining frequent itemsets or the top-k frequent itemsets is much more challenging than counting the
frequencies of single items due to the very large number of itemsets that can be obtained by combining
single items [5]. Hence, it is difficult or impossible to simply adapt these approaches to HOUs mining,
though these algorithms are efficient.

Despite recent advances, algorithms for on-shelf high utility itemset mining still generally suffer
from long execution times and large memory consumption. The reason is that it is difficult to extend
the effective pruning techniques developed in HUIM to this problem [16,24,23]. Hence, it is necessary
to design novel pruning strategies for on-shelf high utility itemset mining. Moreover, specifying an
appropriate value for the relative utility threshold used by these algorithms is also very difficult for
users, as it requires prior knowledge about the transaction database taken as input. To address these
two issues, the present study redefines the problem of HOU mining as the problem of mining the
top-k on-shelf high utility itemsets, where the user directly specifies the number of patterns k to be
found, instead of specifying a minimum relative utility threshold. Furthermore, an effective algorithm
is proposed to solve this problem. The proposed algorithm employs several novel search space pruning
strategies to efficiently discover the top-k HOUs, and can consider databases containing positive and
negative unit profits.

3 Preliminaries And Problem Definition

This section presents preliminaries related to on-shelf high utility itemset mining and defines the problem
of top-k on-shelf high utility itemset mining. Basic definitions are presented as follows.

3.1 Problem Definition

Let I = {i1, i2, . . . , im} be a set of items. Each item ij ∈ I is associated with a positive or negative
number p(ij), called its external utility or unit profit. Let D be a transaction database containing a set
of n transactions D = {T1, T2, . . . , Tn} such that Td ⊆ I(1 ≤ d ≤ n), and Td has a unique identifier d

called its Tid (Transaction id). Moreover, a positive number q(i, Td) is associated to each item i ∈ Td,
which represents the purchase quantity (internal utility) of item i in Td. Let PE be a set of positive
integers representing time periods. A time period is a period of time during which some products were
sold. For example, a time period could be a given day, week, month, or season. Each transaction Td ∈ D

is associated with a time period pt(Td) ∈ PE, representing the time period during which the transaction
occurred. As in previous work [16], it is assumed that each time period is associated to at least one
transaction, and that each item is sold at least once during each time period where it is on the shelves.
An itemset X is a set of l distinct items {i1, i2, . . . , il} where ij ∈ I; 1 ≤ l ≤ m, and l is said to be the
length of X. An l-itemset is an itemset of length l. In the rest of this paper, for the sake of simplicity,
each itemset may be denoted by the concatenation of its items. For example, {x, y, z} is denoted as xyz.
Similarly, the union of two itemsets X and Y will be denoted as XY or X ∪ Y .

Example 1 Consider the transaction database shown in Table 1, which will be used as running example.
This database contains nine transactions (T1, T2, . . . , T9) and three time periods (1, 2, 3). Transaction
T3 occurred in time period 1 and contains four items a, b, f and g, while the numbers 7, 1, 2 and 1
represent the purchase quantities of these items, respectively. The external utilities of items are presented
in Table 2. Consider the items sold in T3, the external utilities of these items a, b, f and g are respectively
1, 5, -2 and 1. Thus, item f is sold at a loss.

An efficient algorithm for mining top-k on-shelf high utility itemsets 7

Table 1: A transaction database with time periods

TID Transactions Period

T1 (a, 5)(b, 1)(e, 2)(d, 1) 1
T2 (b, 3)(c, 2)(f, 1) 1
T3 (a, 7)(b, 1)(f, 2)(g, 1) 1
T4 (b, 3)(c, 2) 2
T5 (a, 1)(b, 1)(c, 1)(d, 1)(f, 1)(g, 1) 2
T6 (a, 5)(d, 2) 2
T7 (a, 6)(c, 2)(d, 2) 3
T8 (d, 7)(e, 2)(f, 4) 3
T9 (c, 1)(d, 3)(e, 3) 3

Table 2: External utility values (Unit profit)

Item a b c d e f g
Profit 1 5 -3 4 3 -2 1

Definition 1 The utility of an item i ∈ I in a transaction Td is denoted as u(i, Td) and defined as
u(i, Td) = p(i) × q(i, Td). The utility of an itemset X in a transaction Td is defined as u(X,Td) =∑

i∈X u(i, Td). It represents the profit generated by items in X in transaction Td [16].

Definition 2 The time periods (shelf time) of an itemset X ⊆ I, are the set of time periods where X

was sold, defined as pi(X) = {pt(Td)|Td ∈ D ∧X ⊆ Td} [16].

Definition 3 The utility of an itemset X ⊆ I in a time period h ∈ pi(X) is denoted as u(X,h) and
defined as u(X,h) =

∑
Td∈D∧h=pt(Td)

u(X,Td). The utility of an itemset X ⊆ I in a database D is

defined as u(X) =
∑

h∈pi(X) u(X,h) [16].

Note that, u(X) may be negative, which means that itemset X have generated a loss (a negative profit)
over a time period. For example, if X is a single item with negative unit profit, then u(X) will always
be negative.

Example 2 The utility of item b in T3 is u(b, T3) = 1 × 5 = 5. The utility of the itemset {b, g} in T3 is
u({b, g}, T3) = u(b, T3) + u(g, T3) = 1× 5 + 1× 1 = 6. The time periods of itemset {b, g} are pi({b, g}) =
{1, 2}. The utility of {b, g} in periods 1 and 2 are respectively u({b, g}, 1) = 6 and u({b, g}, 2) = 6. The
utility of {b, g} in the database is u({b, g}) = 6 + 6 = 12.

Definition 4 The transaction utility (TU) of a transaction Td in a database D is the sum of the utility
of the items from Td in Td. i.e. TU(Td) =

∑
i∈Td

u(i, Td). Given an itemset X, the total utility of the
time periods of X is defined as to(X) =

∑
h∈pi(X)∧Td∈D∧h=pt(Td)

TU(Td) [16]. It is easy to see that

to(X) can be positive, negative or equal to zero.

Definition 5 The relative utility of an itemset X ⊆ I in a database D is defined as ru(X) = u(X)/|to(X)|,
if to(X) 6= 0, and is defined as 0 otherwise. The relative utility of an itemset X represents how large the
profit/loss generated by X is compared to the total profit/loss generated during the time periods where
X was sold. The relative utility measure is useful for retailers as it is an indicator of the relative selling
performance (profit/loss) of an itemset during time periods where it was on the shelves. It can thus be
used to compare the selling performance of various itemsets in terms of their relative contribution to
the overall profit of a retail store, to determine which itemsets are the most profitable.

Example 3 The transaction utility of transactions T1, T2, . . ., T6 are TU(T1) = 20, TU(T2) = 7, TU(T3) =
9, TU(T4) = 9, TU(T5) = 6 and TU(T6) = 13. The total utility of the time periods of {b, g} is to({b, g}) =
64. The relative utility of {b, g} is ru({b, g} = u({b, g})/to({b, g}) = 12/64 = 0.19.

An itemset X is a high on-shelf utility itemset (HOU) if its relative utility ru(X) is no less than a
user-specified minimum utility threshold minutil given by the user. Otherwise, X is a low on-shelf utility

itemset. The problem of on-shelf high utility itemset mining is to discover all HOUs in a database where
external utilities are positive [24]. The problem of on-shelf high utility itemset mining with negative
values [16,23] is to discover all HOUs in a database where external utilities are positive or negative.

8 T-L. Dam et al.

Definition 6 Let there be a transaction database D with time periods, where external utilities of items
may be positive or negative. The problem of mining the top-k on-shelf high utility itemset is to discover
the k on-shelf itemsets having the highest relative utilities in the database, where k is a parameter
specified by the user.

Example 4 If k = 5 then the set of top-k high on-shelf utility itemsets in the running example is {{d, e} :
0.739, {b} : 0.703, {a, b, d, e} : 0.556, {d} : 0.552, {d, e, f} : 0.5}, where the number after the colon for each
itemset indicates its relative utility.

The problem of mining top-k HOUs is interesting for market basket analysis, as it discovers the k itemsets
that yield the highest profit relatively to the total profit/loss during the time periods when they were
sold. Thus, it can be used to discover the k itemsets that had the best relative selling performance.
This give a useful insight to retailers that may then use this information in various ways to adapt their
business strategies. For example, a retailer may decide to increase the shelf time of the top-k HOU as
they are the best performing products relative to the time periods when they are sold.

It can be demonstrated that the (relative) utility measure is not monotonic or anti-monotonic [24,
23,30,31,41]. In other words, an itemset may have a utility lower, equal or higher than the utility of its
subsets. Therefore, the powerful pruning strategies that are used in FIM to prune the search space based
on the anti-monotonicity of the support cannot be directly applied to discover HOUs. To restore this
property in high on-shelf utility mining, the TWU measure has been adapted to handle time periods [24,
23]. The TWU measure assumes that all items have positive external utility values. The TWU measure,
adapted for time periods, is defined as follows.

Definition 7 For a given time period h, the transaction-weighted utilization of an itemset X is denoted
as TWU(X,h) and defined as the sum of the utilities of transactions in time period h containing X,
that is TWU(X,h) =

∑
Td∈D∧X⊆Td∧pt(Td)=h TU(Td) [23].

The TWU measure has important properties that TS-HOUN uses to prune the search space [23,31].
However, these properties only hold if external utility values of items are positive [8]. Subsection 3.4
will explain how to handle items with negative unit profits.

Definition 8 The utility of a time period h is denoted as pto(h) and defined as the sum of the transaction
utilities of all transactions in period h, that is pto(h) =

∑
Td∈D∧h=pt(Td)

TU(Td). The relative utility of

an itemset X in a time period h is ru(X,h) = u(X)/pto(h) [23].

Property 1 The TWU of an itemset X in a time period h is an upper bound on the utility of X in period
h, that is TWU(X,h) ≥ u(X,h) [23].

Property 2 For a period h, the TWU upper bound is anti-monotonic. Let X and Y be two itemsets, if
X ⊂ Y then TWU(X,h) ≥ TWU(Y, h) [23].

Property 3 The TWU of an itemset X in a period h divided by the total utility of the time period h is
an upper bound on the relative utility of X in period h, i.e. TWU(X,h)/pto(h) ≥ ru(X,h) [23].

Property 4 Let X be an itemset, if there exists no time period h ∈ PE such that TWU(X,h)/pto(h) ≥
minutil, then X is not a high on-shelf utility itemset. Otherwise, X may or may not be a high on-shelf
utility itemset [16].

3.2 Utility-list Structure

The utility-list structure was proposed in the HUI-Miner [30] algorithm to mine high utility itemsets
directly, and avoid repeatedly scanning the database to calculate the utility of itemsets. The utility-list
structure is used to maintain information about the utility of itemsets. The utility of an itemset can
be quickly calculated by making join operations with utility-lists of smaller itemsets. The definition of
utility-lists and their properties are presented next.

Definition 9 (Utility-list [30]) Without loss of generality, let � be a total order on items from I. The
utility-list of an itemset X in a database D is denoted as ul(X). It is a set of tuples, containing a tuple
(tid, iutil, rutil) for each transaction Ttid containing X. The iutil element of a tuple is the utility of X

in Ttid. i.e., u(X,Ttid). The rutil element of a tuple is defined as
∑

i∈Ttid∧i�x∀x∈X u(i, Ttid).

An efficient algorithm for mining top-k on-shelf high utility itemsets 9

Property 5 Let there be an itemset X. The utility of X denoted as u(X) is the sum of iutil values in its
utility-list ul(X) [30].

Property 6 Let there be an itemset X. The sum of iutil and rutil values in its utility-list ul(X) is an
upper bound on u(X). Moreover, it was shown that this upper bound is tighter than TWU(X) [30].

Property 7 Let there be an itemset X. Let the extensions of X be the itemsets that can be obtained by
appending an item y to X such that y � i, ∀i ∈ X. The utilities of transitive extensions of X can only
be less than or equal to the sum of iutil and rutil values in ul(X) [30].

3.3 Handling Time Periods

This subsection describes how properties of utility-lists have been adapted to handle the case of databases
having time period information. These modified properties are given next.

Property 8 Let there be an itemset X and a time period h. Let sumIUtil(X,h) and sumRUtil(X,h)
respectively denote the sum of iutil and rutil values in the utility-list ul(X) for the time period h.
An upper bound on u(X,h) is sumIUtil(X,h) + sumRUtil(X,h). This upper bound is tighter than
TWU(X,h), i.e. sumIUtil(X,h) + sumRUtil(X,h) ≥ u(X,h) [16].

Property 9 Let X and Y be two itemsets. If X ⊂ Y then sumIUtil(X,h)+sumRUtil(X,h) ≥ sumIUtil(Y, h)+
sumRUtil(Y, h) [16].

Property 10 For an itemset X and a period h, the value sumIUtil(X,h) + sumRUtil(X,h) divided by
the total utility of time period pto(h) is an upper bound on the relative utility of X in period h, that
means (sumIUtil(X,h) + sumRUtil(X,h))/pto(h) ≥ ru(X,h) [16].

Property 11 Let X be an itemset. If there exists no time period h such that (sumIUtil(X,h) + sumRUtil(X,h))
/pto(h) ≥ minutil then X is not a high on-shelf utility itemset as well as any transitive extensions of X
according to the total order �. Recall that an extension of X is an itemset obtained by appending an
item y to X such that y � x, ∀i ∈ X [16].

3.4 Handling Negative Unit Profits

Traditional HUI mining and HOU mining [24] assume that all items have a positive unit profit. But in
real-life, this assumption often does not hold as items are often sold at a loss in retail stores to promote
the sale of other items or attract customers. It was shown that if traditional HUI mining or HOU mining
algorithms are applied on databases containing items with negative unit profits, an incomplete set of
results may be found [8,23]. Thus, an important question is how to handle items with negative unit
profits, to ensure that a complete set of results is found.

There is no trivial solution to this problem. It is tempting to think that this problem could be
simply solved by just shifting all unit profit values of items by a constant so that they would all become
positive, and that a normal high utility itemset mining algorithm could then be applied to discover
the itemsets. However, this approach would result in an incomplete algorithm. We show this with an
example. Consider that the retail store sells an item f 1000 times with a negative unit profit of -2$, and
that an item g is sold 10 times with a positive unit profit of 1$. If we shift the unit profit of these items
using a constant x > 2 so that the unit profits become positive, then the itemset {f} will be viewed
as generating a higher profit than {g}, which is incorrect. Thus, we cannot use a simple approach of
shifting unit profits to solve this problem, and it is thus necessary to design a specific way of addressing
negative unit profit values.

To handle items having negative unit profits, the TWU was redefined as follows [23] based on previous
work [8].

Definition 10 The redefined transaction utility (RTU) of a transaction Td is the sum of the utilities of
items in Td having positive external utilities, that is RTU(Td) =

∑
x∈Td∧p(x)>0 u(x, Td). The redefined

transaction-weighted utilization (RTWU) of an itemset X in a time period h is defined as RTWU(X,h) =∑
Td∈D∧X⊆Td∧pt(Td)=h RTU(Td) [23].

10 T-L. Dam et al.

Using the RTWU instead of the TWU restores Property 4 for on-shelf high utility mining. This
allows TS-HOUN[23] to prune the search space, and still find the complete set of HOUs.

Furthermore, to handle both time periods and items with negative unit profits, properties have
been further adapted as follows [16]. Let the terms “positive items” and “negative items” denote items
respectively having positive and negative unit profits. The total order � is defined such that negative
items always succeed all positive items. By using this order, positive items are always used to extend
an itemset first before appending negative items. This total order is used to define some new pruning
properties. Let up(X) and un(X) respectively refer to the set of all positive items and the set of all
negative items in X.

Property 12 Let there be an itemset X. It can be found that u(X,h) ≤ u(up(X), h) holds [16].

Property 13 Let X be an itemset and z be a negative item such that z /∈ X. It follows that u(up(X ∪
{z}), h) ≤ u(up(X), h) [16].

Property 14 Let X be an itemset. For any itemset Y resulting from transitive extensions of X with
negative items, we have u(up(Y), h) ≤ u(up(X), h) [16].

Property 15 Let X be an itemset. If only negative items can be appended to X according to the total
order � and there exists no time period h such that u(up(X), h)/pto(h) ≥ minutil, then X and any
transitive extension Y of X are not high on-shelf utility itemsets [16].

Then, to calculate u(up(X), h) easily, FOSHU [16] separates the iutil value in utility-lists as two
values iputil and inutil, respectively representing the sum of positive utilities and the sum of negative
utilities of X in all transactions containing X. For a given transaction Td, the iputil and inutil values are
respectively defined as u(up(X), Td) and u(un(X), Td). Additionally, let the notation sumIPUtil(X,h)
denotes the sum of the iputil values of X in period h.

To prune the search space without missing any HOU, only utilities of positive items are used to
calculate upper bounds on the utility of itemsets and their extensions. The pruning property 11 of
utility-lists is thus rewritten as follows.

Property 16 Let X be an itemset. If there exists no time period h such that (sumIPUtil(X,h) +
sumRUtil(X,h))/pto(h) ≥ minutil, then X is not a high on-shelf utility itemset as well as any tran-
sitive extensions of X according to the total order � [16].

4 Proposed Techniques For Mining The Top-k High On-shelf Utility Itemsets

One of the most important challenge in HOU mining is to design effective search space pruning tech-
niques to avoid considering a large amount of candidates. In particular, top-k pattern mining algorithms
all rely on an internal minimum threshold value initially set to 0, which is raised gradually during the
search for itemsets, to prune the search space. It is thus a challenge to develop strategies for raising the
threshold as quickly as possible while avoiding pruning HOUs.

This section address this challenge by proposing three novel pruning strategies to reduce the search
space, and two strategies to raise the internal minimum threshold. Moreover, it introduces a procedure
for quickly constructing utility-lists.

4.1 Search Space Pruning Strategies

This subsection describes novel pruning strategies and key structures for the problem of mining HOUs.

4.1.1 Estimated Maximum Period Rate Pruning Strategy

The first pruning strategy is named Estimated Maximum Period Rate Pruning Strategy (EMPRP). It
is based on a novel structure called the Estimated Maximum Period Rate Structure (EMPRS), which
is defined as follows.

Definition 11 The Estimated Maximum Period Rate Structure of a dataset D is denoted as EMPRSD

and defined as EMPRSD = {((a; b;m),m = max(RTWU({ab}, h)/pto(h)),∀h ∈ pi(ab)) ∈ I∗ × I∗ × R+},
where I∗ is the set of all items having a relative utility no less than minutil in D.

An efficient algorithm for mining top-k on-shelf high utility itemsets 11

In the problem of top-k HOU mining, the minutil threshold is not set by the user. Instead, an
internal minutil threshold is initialized to zero and increased during the search process by threshold
raising strategies, which will be presented in section 4.2. Similarly to other one-phase algorithms for
HOU mining, the proposed algorithm only scans the database twice to compute the utilities of each
single item and of all 2-itemsets to construct the EMPRS structure. The first database scan is done to
calculate the RTWU and the utility of each item. The RTWU values of items are then used to establish
a total order on items from the transaction database, defined as the ascending order of RTWU values
such that all negative items succeed positive items. The second database scan is performed to construct
the EMPRS. During this database scan, items in transactions are reordered using the total order. For
instance, consider the database D shown in Table 1. Items are reordered by ascending order of RTWU

values such that all negative items succeed positive items. The EMPRS is implemented as a triangular
matrix, as shown in Fig. 1.

Item Name g a b e d f c
RTWU 24 71 74 75 113 73 76

Period Total utility
1 36
2 28
3 52

Item g a b e d f
a 0.39
b 0.39 0.92
e 0 0.56 0.56
d 0.39 0.86 0.56 1.06
f 0.39 0.39 0.78 0.65 0.65
c 0.39 0.39 0.93 0.4 0.67 0.42

Fig. 1: Items are reordered by ascending order of RTWU values such that negative items succeed positive
items (top). The total utility of each time period (bottom-left). The EMPRS matrix (bottom-right).

Property 17 (pruning) Let X be an itemset, if ru(X,h) < minutil then ∀Y, ru(XY, h) < minutil.

Proof By Property 2 we have that TWU(XY, h) ≤ TWU(X,h). Therefore TWU(XY, h)/pto(h) ≤ TWU(X,h)/pto(h).
Furthermore, by Property 1, u(XY, h) ≤ TWU(XY, h). Thus, ru(XY, h) < minutil.

The EMPRP strategy employs Property 17 to immediately discard extensions of an itemset as
follows. Let there be two items a and b. If there exists a tuple {(a; b;m)} in the EMPRS where m =
max(RTWU({ab}, h)/pto(h)),∀h ∈ pi(ab)) such that m < minutil, then any superset {abX} of {ab},
has a period relative utility ru({abX}, h) lower than minutil. Therefore, the algorithm does not need to
continue the search process with this pair of items according to Property 4. The purpose of this pruning
strategy is to reduce the number of costly utility-list join operations.

Example 5 Consider the transaction database in Table 1 and k = 5. Assume that the search-space of all
itemsets can be represented as a tree, as depicted in Fig. 21. Each node X in this search tree is annotated
with its relative utility ru(X). Consider that the process of top-k HOU mining explores the search space
using a depth-first search, that it is currently considering extensions of node b (its descendant nodes
in the tree), and that minutil is equal to 0.44. The proposed algorithm can generate itemset bfc by
combining nodes bf and bc. But by applying the EMPRP strategy, it is found that the maximum period
rate of fc as in Fig. 1 is 0.42 < 0.44 = minutil. Thus, the node bfc (and its subtree) is pruned.

4.1.2 Concurrence Existing Of A Pair 2-itemset Pruning Strategy

The second proposed search space pruning strategy is named Concurrence Existing of pair 2-itemset
Pruning (CE2P). It is based on the following observation. In Table 1 and the EMPRS in Fig. 1, it
can be observed that some pairs of items do not appear together in any transactions (e.g. {e, g}). To
store information about which 2-itemsets appear together, the CE2P strategy utilizes a bit matrix. If
two items appear concurrently at least once (in at least one transaction) then the corresponding bit for
this 2-itemset is set to 1. Otherwise, it is set to 0. Then, the utility-list of any 2-itemsets will only be
constructed if this bit value is 1. This pruning strategy is used to avoid performing numerous utility-list
join operations. This strategy is especially effective when the number of items in a dataset is very large
or the dataset is sparse.

1 It should be noted that this tree representation is used for illustration purpose in this article. The proposed
algorithm does not create an explicit tree structure in memory to explore the search space.

12 T-L. Dam et al.

g
0.03

ge† ga
0.16

gae*
∅

gb
0.19

a
0.21

…

abf
0.19

abcǂ
 ∅

ac
-0.03

ab
0.44

b
0.7

e
0.24

f
-0.14

c
-0.21

† CE2P ǂ PUP ҂ EMPRP * Candidates not generated by KOSHU

be
0.31

bd
0.28

bf
0.27

bed
0.42

bfc҂
∅

abfc*
∅

…

…

gab
0.31

ae
0.31

abe
0.44

abd
0.38

aed
0.42

aecǂ
 ∅

aedc*
∅

bc
0.31

...

bedc*
∅

d
0.55

becǂ
∅

Fig. 2: A sample tree illustrating the different pruning strategies.

Example 6 Consider node ge in Fig. 2. It can be seen that these items do not concurrently exist in any
transaction of the example database. Therefore, this node as well as its extensions are pruned.

4.1.3 Period Utility Pruning Strategy

The third proposed search space pruning strategy is named Period Utility Pruning (PUP). It is based
on the following property.

Property 18 Let P be an itemset. Moreover, let Px and Py be extensions of P with some items x

and y respectively such that x � y. If there exists no time period h such that (sumIPUtil(x, h) +
sumRUtil(x, h))/pto(h) ≥ minutil, where h ∈ pi(Pxy), then all extensions of Px that contain y are not
on-shelf high utility itemsets.

This property can be easily derived from Property 9 and Property 11. Let there be two itemsets
X ′ and Y ′ such that x ∈ X ′ and y ∈ Y ′. If the condition of Property 18 holds, then three facts can be
inferred: (i) Pxy /∈ top-k HOUs, (ii) PxY ′ /∈ top-k HOUs and (iii) PX ′Y ′ /∈ top-k HOUs. Therefore,
this pruning strategy can effectively reduce the number of utility-list join operations performed, and the
search space.

Example 7 Consider node abc, which can be obtained by combining nodes ab and ac. Assume that at this
time, minutil = 0.44. By applying the PUP strategy, it is found that pi(abc) = 2, and (sumIPUtil(abc, 2)+
sumRUtil(abc, 2))/pto(2) = 10/28 = 0.36 < 0.44 = minutil. Therefore, the node abc and its descendants
are pruned without constructing their utility-lists. For example, the node abfc will not be generated
because the node abc has been pruned.

4.2 Effective Threshold Raising Strategies

The proposed algorithm is designed to mine top-k on-shelf high utility itemsets. Therefore the optimal
minutil value for obtaining k patterns is not known in advance. The proposed algorithm initializes an
internal minutil threshold to zero. Then, it employs two effective threshold raising strategies to raise the
minutil threshold. These two strategies are described next.

An efficient algorithm for mining top-k on-shelf high utility itemsets 13

4.2.1 The Real 1-itemset Relative Utilities Threshold Raising Strategy

The first threshold raising strategy is named the Real 1-Itemset Relative Utilities threshold raising
strategy (RIRU). It is inspired by the RIU strategy used in top-k HUI mining [34]. The RIRU strategy
is performed after the first database scan. During the first database scan, the relative utilities of all
1-itemsets are calculated. The relative utility of a 1-itemset i in a transaction database D is denoted
as ru(i), and is calculated by the formula in Definition 5. The RIRU strategy utilizes the real relative
utilities of 1-items to raise the value of minutil as follows. Let I={i1, i2, . . . , im} be a set of items in a
database D, and R = {ru1, ru2, . . . , rum} be the list of relative utilities of items in I in total order. Let
ruk denote the k-th highest value in R. Then the RIRU strategy increases the minutil threshold to the
value ruk(1 ≤ k ≤ m). This new value is then used for the rest of the mining process until the threshold
is increased to a greater value by another threshold raising strategy.

Table 3: Real item relative utility table

Item Name g a b e d f c
Real relative utility 0.03 0.21 0.7 0.24 0.55 -0.14 -0.21

Example 8 Consider the database in Table 1. The real relative utilities of 1-itemsets are presented in
Table 3. If k = 5, the fifth highest real relative utility is ru({g}) = 0.03. Therefore, minutil is set to
0.03.

4.2.2 The Real 2-itemset Relative Utilities Threshold Raising Strategy

The second threshold raising strategy is named the Real 2-Itemset Relative Utilities threshold raising
strategy (RIRU2). This strategy is applied after the RIRU strategy and the second database scan. The
relative utility of a 2-itemset xy is calculated by the equation ru(xy) = u(xy)/|to(xy)| as in Definition 5.
The values to(xy) and u(xy) are respectively calculated during the first and second database scans. The
RIRU2 strategy raises the internal minimum threshold to the k-th largest value by considering 1-items
obtained after applying the RIRU strategy, in addition to the relative utilities of 2-itemsets. The RIRU2
strategy is performed in the same way as RIRU, presented in the previous subsection.

Example 9 Consider the database in Table 1, assume that k = 5, and that minutil = 0.03 after applying
RIRU as in Example 8. The real relative utilities of 1-items and 2-itemsets are: {b}:0.7, {d}:0.55, {e}:0.24,
{a}:0.21, {g}:0.03, {ga}:0.16, {gb}:0.19, {gd}:0.18, {ab}:0.44, {ae}:0.31, {ad}:0.35, {be}:0.31, {bd}:0.28,
{bf}:0.27, {bc}:0.31, {ed}:0.74, {ec}: 0.12, {df}:0.28, {dc}:0.15. The fifth highest relative utility among
these values is ru({ad}) = 0.35. Thus, minutil is set to 0.35 by the RIRU2 strategy.

An important consideration is whether to build the EMPRS structure before of after applying
RIRU2. If the EMPRS is built after RIRU but before RIRU2, this latter could use the EMPRP strategy
to eliminate some 2-itemsets. However, it is better to apply RIRU2 before building the EMPRS because
the EMPRS is built only once and then it is employed during the whole mining process. Thus, it is
preferable to raise the minutil threshold as high as possible before constructing this structure. Hence,
building the EMPRS structure is done after applying the RIRU and RIRU2 strategies, in the proposed
algorithm.

4.3 An Efficient Utility-list Construction Method

In utility-list based algorithms such as HUI-Miner [30], FHM [15], TKO [41] and the proposed algorithm,
a key operation is the construction of utility-lists. In this subsection, we propose an improved utility-list
construction procedure that has a lower complexity than the ones used in previous algorithms. This
optimization greatly reduces the runtime of the proposed algorithm. The utility-list structure is used to
maintain information about the utility of itemsets. The utility of an itemset can be quickly constructed
by making join operations with utility-lists of smaller itemsets. Definition and properties of this structure
have been given in subsection 3.2. As proposed in the HUI-Miner algorithm [30], the utility-lists of larger

14 T-L. Dam et al.

Algorithm 1 The standard utility-list construction procedure
Input:

P.UL : the utility-list of itemset P ;
Px.UL: the utility-list of itemset Px ;
Py.UL: the utility-list of itemset Py;

Output:
Pxy.UL: the utility-list of itemset Pxy;

1: Pxy.UL = NULL;
2: for each (tuple ex ∈ Px.UL) do
3: if (∃ey ∈ Py.UL and ex.tid==ey.tid) then
4: if (P.UL is not empty) then
5: Search element e ∈ P.UL such that e.tid = ex.tid ;
6: exy ←− (ex.tid; ex.iutil + ey.iutil - e.iutil; ey.rutil);
7: else
8: exy ←− (ex.tid; ex.iutil + ey.iutil; ey.rutil);
9: end if

10: Pxy.UL ←− Pxy.UL ∪ exy;
11: end if
12: end for
13: return Pxy.UL;

itemsets can be obtained by intersecting utility-lists of smaller itemsets. For example, let P, Px and Py

be itemsets, such that Px and Py are extensions of P with items x and y, respectively. The utility-list
of itemset Pxy is obtained by applying Algorithm 1. For each element in ul(x), the algorithm checks
whether the element exists in ul(y) or not, if yes then a binary search is performed in the utility-list of
P . Therefore, the complexity of the procedure is O(mlogn), where m and n are respectively the number
of entries in ul(x) and ul(y).

Because Tids in utility-lists are ordered by increasing Tid values, a better way for identifying
transactions that are common to two utility-lists ul(x) and ul(y) is to read the two utility-lists at
the same time by reading Tids sequentially in each utility-list. The complexity of this searching method
is O(m + n) < O(mlogn). Note that if ul(P) is not empty, the Tid list in ul(Pxy) is a subset of the Tid
list in ul(P). Furthermore, to speed up the binary search in the utility-list of P , ul(P), the proposed
construction procedure remembers the last index considered by the binary search. Then, the next bi-
nary search in ul(P) is started from that index position instead of from the first element at index 0.
Thus, an intersection procedure for constructing utility-lists, having a complexity of O(m+n), has been
introduced in this subsection. The pseudo-code is presented in Algorithm 2.

Algorithm 2 The proposed iConstruct utility-list construction procedure
Input:

P.UL : the utility-list of itemset P ;
Px.UL: the utility-list of itemset Px ;
Py.UL: the utility-list of itemset Py;

Output:
Pxy.UL: the utility-list of itemset Pxy;

1: Pxy.UL = NULL; Let i, j = 0;
2: while (i < Px.UL.size and j < Py.UL.size) do
3: if (Px.UL[i].tid < Py.UL[j].tid) then
4: i++;
5: else if (Px.UL[i].tid > Py.UL[j].tid) then
6: j++;
7: else
8: if (P.UL is not empty) then
9: Search element e ∈ P.UL such that e.tid = ex.tid using the improved binary search method;

10: exy ←− (ex.tid; ex.iutil + ey.iutil - e.iutil; ey.rutil);
11: else
12: exy ←− (ex.tid; ex.iutil + ey.iutil; ey.rutil);
13: end if
14: Pxy.UL ←− Pxy.UL ∪ exy;
15: i++;
16: j++;
17: end if
18: end while
19: return Pxy.UL;

An efficient algorithm for mining top-k on-shelf high utility itemsets 15

4.4 Exploring The Most Promising Branches First Strategy

Lastly, another strategy named Exploring the most Promising Branches first (EPB) is adopted in the
proposed algorithm. EPB was first proposed [41] for top-k HUI mining. The idea of EPB is to always
try to extend itemsets having the largest estimated utility value first, based on the hypothesis that it is
more likely to generate itemsets having higher utilities. Thus, the threshold can be raised more quickly
for pruning the search space. For the problem of top-k on-shelf high utility itemset mining, this strategy
is adapted to always explore the candidate itemset having the highest relative utility first. The reason is
that if itemsets with high relative utilities are found earlier, the proposed KOSHU algorithm can raise
its minutil threshold more quickly, to prune the search space.

5 The Proposed Algorithm

This section presents the proposed KOSHU algorithm for mining the top-k on-shelf high utility itemsets.
KOSHU employs the novel EMPRS structure to prune the search space using the EMPRP strategy.
This strategy is used to avoid performing numerous join operations and the construction of several
utility-lists. Besides the EMPRP strategy, two other search space pruning strategies are used, namely
the CE2P and PUP strategies. Furthermore, two threshold raising strategies are applied to raise the
minutil threshold, which are the RIRU and RIRU2 strategies. This threshold is also dynamically raised
by the KOSHU algorithm when the exact relative utilities of potential candidates are calculated. To
raise the minutil threshold higher and earlier, KOSHU also employs the EPB strategy. In addition, a
novel procedure that constructs utility-lists with a complexity of O(m+n) is integrated in the proposed
algorithm. These techniques are described in the previous section. The main procedure of KOSHU is
shown in Algorithm 3.

Algorithm 3 The KOSHU algorithm
Input:

D : a transaction database;
k : the desired number of patterns;

Output:
The top-k on-shelf high utility itemsets;

1: Initialize global variables: minutil ←− 0; Rtopk ←− ∅ ;
2: Scan D to:
3: 1. Calculate RTWU({i}) and pi({i}) of each item i;
4: 3. Calculate the list of all time periods PE;
5: 2. Calculate the utility pto(h) of each period h ∈ PE;
6: 4. Calculate the real relative utility of each item i (required by the RIRU strategy);
7: Let I be the list of single items sorted by ascending order of RTWU and negative items succeed positive items;
8: minutil ←− the k -th highest relative utility value in RIRU ; //RIRU strategy
9: Scan D to build the utility-list of each item i ∈ I;

10: minutil ←− the k -th highest relative utility value in RIRU2 ; //RIRU2 strategy
11: Let I∗ = {i|∃h ∈ PE ∧RTWU({i, h})/pto(h) ≥ minutil};
12: Build the EMPRS structure;
13: Search (∅, I∗, ∅, EMPRS);
14: Output the k itemsets having the highest relative utilities in Rtopk;

The main procedure of KOSHU is performed as follows. The value of minutil threshold is set to
0 and the set of top-k candidates Rtopk is initialized to empty set (line 1). Then KOSHU scans the
database the first time to obtain the RTWU({i}) and pi({i}) of each item i, where RTWU({i}) =∑

h∈pi({i}) RTWU({i}, h). The set of all time periods PE and the utility pto(h) of each period h ∈ PE

are computed. Moreover, the real relative utilities (RIRU) of single items are calculated during this
database scan (lines 2-6). The algorithm then sorts the list of single items in I by ascending order
of RTWU such that negative items succeed all positive items (line 7), and raises the value of minutil

threshold using the RIRU strategy (line 8). KOSHU then scans the database again to build the utility-
list of each single item (line 9). The threshold raising strategy RIRU2 is then applied (line 10). Each item
that does not satisfy Property 4 is discarded (line 11) before building the EMPRS structure (line 12).
Then, the Search procedure is called to search high on-shelf utility candidates, which are then inserted
in the set of top-k candidates Rtopk (line 13). At the end, the real top-k on-shelf high utility itemsets
in Rtopk are output (line 14).

16 T-L. Dam et al.

Algorithm 4 The Search Procedure
Input:

ul(P): the utility-list of an itemset P ;
Class[P]: a set of itemsets that are single item extensions of P ;
ULS [P]: a set of utility-lists with respect to the itemset P ;
EMPRS : the EMPRS structure;

Output:
The set of top-k on-shelf high utility itemset candidates;

1: for each itemset Px ∈ Class[P] do
2: if (sumIUtil(Px)/|to(Px)| ≥ minutil) then
3: Rtopk ←− Rtopk ∪ Px;
4: if (Rtopk.size >= k) then
5: minutil← the k -highest utility in Rtopk ;
6: Keep only the k itemsets having the highest utilities in Rtopk;
7: end if
8: end if
9: if ∃h ∈ pi(Px) such that (sumIPUtil(Px, h) + sumRUtil(Px, h))/pto(h) ≥ minutil then

10: Class[Px]← ∅;
11: ULS[Px]← ∅;
12: for each itemset Py ∈ Class[P] and y � x do
13: if concurrent bit(x, y) = 0 then
14: continue;// CE2P strategy
15: end if
16: if (EMPRS(x, y) < minutil) then
17: continue; // EMPRP strategy
18: end if
19: if (@h such that (sumIPUtil(Px, h) + sumRUtil(Px, h))/pto(h) ≥ minutil, h ∈ pi(Pxy)) then
20: continue; // PUP strategy
21: end if
22: Pxy ←− Px ∪ Py;
23: ul(Pxy)←− iConstruct(P, Px, Py);
24: if (∃h ⊂ PE such that RTWU (Pxy, h)/pto(h) ≥ minutil) then
25: Class[Px]← Class[Px] ∪ Pxy;
26: ULS [Px]← ULS [Px] ∪ ul(Pxy);
27: end if
28: end for
29: Search (Px, Class[Px], ULS[Px], EMPRS);
30: end if
31: end for

The Search procedure (Algorithm 4) is applied as follows. For each itemset Px in the set of extensions
of P, the Search procedure first scans the utility-list of Px to calculate ru(Px) = sumIUtil(Px)/|to(Px)|.
If ru(Px) is no less than minutil, then Px is an on-shelf high utility itemset and it is added to the
set of top-k candidates Rtopk. Then, minutil is raised to the k-highest value in Rtopk if there are k

entries in Rtopk (lines 2-8). Then, if there exists a time period h ∈ pi(Px) such that (sumIUtil(Px, h) +
sumRUtil(Px, h))/pto(h) is no less than minutil, by Property 11, it means that extensions of Px should
be explored (line 9). Before merging Px with all extensions Py of P such that y � x to form larger
extensions of the form Pxy, pruning conditions are checked: (i) if x and y concurrently exist (lines
13-15); (ii) if there is a tuple in the EMPRS for x and y such that this tuple value is greater than
minutil (lines 16-18); (iii) if the PUP condition is respected (lines 19-21). If these three conditions are
passed, the utility-list of Pxy is constructed by calling the iConstruct procedure (cf. Algorithm 2) (line
26). Then, a check is performed to determine if Pxy and its extensions may be on-shelf high utility
itemsets by using the RTWU measure based on Property 4 (line 27). If Pxy is a promising itemset, it
will be added to a priority queue for further exploration (lines 28-29). Note that entries in this queue
are sorted by descending order of their estimated relative utility value. Then, the Search procedure is
recursively called with the top entry Px in that queue. The procedure stops when the queue is empty.

The Search procedure starts from single items, and recursively explores the search space of itemsets
by appending single items. By the proposed properties, it can be easily seen that the algorithm is correct
and complete to discover top-k on-shelf high utility itemsets.

6 Performance Study

To evaluate the performance of the proposed algorithm, a series of experiments have been conducted.
Extensive experiments have also been performed to evaluate the proposed strategies and methods. All
algorithms were implemented by extending the SPMF open-source java library [13] using the J2SDK

An efficient algorithm for mining top-k on-shelf high utility itemsets 17

1.7.0. The experiments were executed on a computer equipped with an Intel core i3 processor 2.4 GHz
and 4 GB of RAM, running Windows 7 as operating system.

6.1 Experimental Design

Both real and synthetic datasets having varied characteristics were used in the experiments. They are
standard datasets used in the HUIM literature for evaluating HUIM algorithms. The characteristics of
these datasets are described in Table 4, where #Transactions, #Distinct items and Avg. trans. length
indicate the number of transactions, the number of distinct items and the average transaction length,
respectively.

Table 4: Characteristics of the datasets.

Dataset #Transactions #Distinct items Avg. trans. length

BMS-POS 515,597 1657 6.5
Chainstore 1,112,949 46,086 7.2
Chess 3196 75 37
Foodmart 4141 1559 4.4
Mushroom 8124 119 23.0
Retail 88,162 16,470 10.3
T10I4D500K 500,000 870 10

For these experiments, we prepared a synthetic dataset named T10I4D500K, which was generated
using the IBM Quest synthetic data generator2, where the numbers after T, I, and D represent the
average transaction size, average size of maximal potentially frequent patterns, and the number of
transactions, respectively. We also used two real-world customer transaction datasets named Chainstore3

and Foodmart4. Chainstore is a very large dataset consisting of transaction data from a Californian
retail store, while Foodmart is a small dataset of customer transactions obtained from the Microsoft
Food-Mart 2000 database. These two datasets already contain real unit profits and purchase quantities.

The remaining four datasets are also real datasets. The BMS-POS5 dataset is a large dataset,
which was used in the KDD CUP 2000. It contains several years worth of point-of-sale data from a
large electronics retailer. Retail6 is a sparse dataset containing customer transactions from a Belgian
retail store. Lastly, two dense datasets were used named Chess7 and Mushroom8. Although these two
datasets are not retail data, they are often used in the pattern mining literature as benchmark datasets
to evaluate the performance on dense data. Chess is especially a quite challenging dataset for most
mining algorithms because it contains many long itemsets.

For all datasets, external utilities for items were generated randomly in the range of -1000 to 1000,
and quantities of items were generated randomly in the [1, 5] interval, similar to the settings of [24,
23,16,30], except for the Foodmart and Chainstore datasets because these datasets already contain
information about purchase quantities and unit profits of items. The number of time periods was set to
5 as in [23,16].

The datasets used in the experiments have been selected because they contain real customer trans-
action data (Chainstore, Foodmart and Retail) or because they are typical itemset benchmark datasets
representing different types of data in terms of density, number of items and transaction length (BMS-
POS, Chess, Mushroom and T10I4D500K). Using different types of data allows to see the performance
of the algorithm in various situations.

2 http://www.almaden.ibm.com/cs/quest/syndata.html
3 http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html
4 https://www.microsoft.com/en-us/download/details.aspx?id=51958
5 http://www.kdd.org/kdd-cup/view/kdd-cup-2000
6 http://fimi.cs.helsinki.fi/data/
7 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
8 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

http://www.almaden.ibm.com/cs/quest/syndata.html
http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html
https://www.microsoft.com/en-us/download/details.aspx?id=51958
http://www.kdd.org/kdd-cup/view/kdd-cup-2000
http://fimi.cs.helsinki.fi/data/
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

18 T-L. Dam et al.

6.2 The Efficiency Evaluation Of KOSHU

In this subsection, the performance of the KOSHU algorithm is evaluated. Because KOSHU is the
first algorithm for mining the top-k HOUs, it is not possible to compare its performance with another
algorithm for the same problem. In general, the standard way of evaluating a top-k algorithm for a new
problem is to compare its performance with the corresponding non top-k algorithms, set with optimal
threshold values [17,6,42,36,44,34,41]. In the case of KOSHU, the corresponding non top-k algorithms
are TS-HOUN [23] and FOSHU [16], for on-shelf high utility itemset mining with negative values. It
has already been established in [15] that FOSHU can be more than 1000 times faster than TS-HOUN.

Because TS-HOUN and FOSHU were not designed for mining top-k HOUs, they cannot be directly
compared with the proposed KOSHU algorithm. As it is typically done for evaluating top-k algorithms
for new problems, we have thus considered the scenario where users would choose the optimal minimum
utility threshold for FOSHU and TS-HOUN (denoted as FOSHU Opt and TS-HOUN Opt) to produce
the same amount of patterns as KOSHU.

However, it is important to note that performing this type of comparison between top-k and non
top-k algorithms is not fair for the designed top-k algorithm because a top-k problem is always more
difficult than the corresponding non top-k problem [17,6,42,36,44,34,41,11]. The reason is that the
top-k algorithm has to start from minutil = 0, and then to gradually increase its internal threshold
until it finds the optimal threshold value to find k patterns, while the non top-k algorithms are directly
set with the optimal value, and can thus ignore a large part of the search space. Thus, it is important
to understand that in general one should not expect a top-k algorithm to perform better than a non
top-k algorithm when this latter is set with an optimal threshold [17,6,42,36,44,34,41]. It should be
clear that the goal of comparing a top-k algorithm with a standard algorithm is rather to see how close
the top-k algorithm’s performance can be to that of a non top-k algorithm [17,6,42,36,44,34,41]. In
fact, a user of a non top-k algorithm typically has to run the algorithm many times using a trial and
error process to find k patterns, which can be very time-consuming [17,6,42,36,44,34,41,11]. In this
experiment, we do not consider the cost of running these non top-k algorithms several times to obtain
the optimal threshold. We assume that they are directly set with the optimal threshold, which gives an
advantage to the non top-k algorithms.

Thus, we ran KOSHU on each dataset using various values of k. We then ran TS-HOUN and
FOSHU on each dataset with minutil equal to the smallest relative utility among the k itemsets found
by KOSHU. The runtime results are presented in Figs. 3 - 9 where FOSHU Opt and TS-HOUN Opt
mean that FOSHU and TS-HOUN were applied with the optimal minimum threshold, respectively.
Runtimes include the time for reading the input file, discovering the patterns, and writing results to an
output file. It should be noted that we also compared the performance of KOSHU with the TS-HOUN
algorithm when it is set with the optimal minimum utility threshold. However, TS-HOUN failed to
terminate within 3 hours on most datasets. Thus, some results are missing for the TS-HOUN algorithm.

1

10

100

1000

10000

R
u

n
ti

m
e

 (
s)

k

BMS-POS

TS-HOUN_Opt FOSHU_Opt KOSHU

Fig. 3: The runtime on BMS-POS.

1

10

100

1000

10000

100 200 300 400 500 600 800 1000

R
u

n
ti

m
e

 (
s)

k

Chainstore

TS-HOUN_Opt FOSHU_Opt KOSHU

Fig. 4: The runtime on Chainstore.

Fig. 3 compares the runtimes of the compared algorithms on the BMS-POS dataset. It can be
observed that when k is set to values less than 400, KOSHU is faster than FOSHU Opt. When k is
set to larger values, KOSHU is slightly slower than FOSHU Opt. However, there is not a big difference

An efficient algorithm for mining top-k on-shelf high utility itemsets 19

0

1

2

3

4

5

6

100 200 300 400 500 600 800 1000

R
u

n
ti

m
e

 (
s)

k

Foodmart

TS-HOUN_Opt FOSHU_Opt KOSHU

Fig. 5: The runtime on Foodmart.

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 1000

R
u

n
ti

m
e

 (
s)

k

Mushroom

TS-HOUN_Opt FOSHU_Opt KOSHU

Fig. 6: The runtime on Mushroom.

0

20

40

60

80

100

120

10 50 100 200 300 400 500

R
u

n
ti

m
e

 (
s)

k

Chess

TS-HOUN_Opt FOSHU_Opt KOSHU

Fig. 7: The runtime on Chess.

1

10

100

1000

10000

100 200 300 400 500 600 700 800 1000

R
u

n
ti

m
e

 (
s)

k

Retail

TS-HOUN_Opt FOSHU_Opt KOSHU

Fig. 8: The runtime on Retail.

1

10

100

1000

10000

100 200 300 400 500 600 800 1000

R
u

n
ti

m
e

 (
s)

k

T10I4D500K

TS-HOUN_Opt FOSHU_Opt KOSHU

Fig. 9: The runtime on T10I4D500K.

between their runtimes. This is considered as an excellent result, since as previously mentionned, a
top-k algorithm should not be expected to be faster than a non top-k algorithm. On BMS-POS, TS-
HOUN Opt failed to terminate within three hours when k was set to values larger than 200 and it
took an enormous amount of time for the other values of k. Fig. 4 shows the execution times for the
Chainstore dataset. TS-HOUN Opt only terminated in less than three hours for k = 100. KOSHU is the
fastest for all values of k. KOSHU and FOSHU Opt have almost the same performance on the Foodmart
dataset (Fig. 5). For the Mushroom and Retail datasets (Figs. 6 and 8), with small values of k, KOSHU
is slower than FOSHU Opt. However, for the remaining values of k, KOSHU has better performance.

20 T-L. Dam et al.

The runtimes of the algorithms on the Chess dataset are shown in Fig. 7. Chess is a dataset containing
long patterns and highly similar transactions. Therefore, the number of candidates for top-k mining
on this dataset is huge. For this reason, there is a large gap between the compared algorithms. On
this dataset, TS-HOUN Opt failed to terminate within three hours even for the smallest values of k.
Fig. 9 shows the runtimes of all algorithms on the T10I4D500K dataset. In this figure, KOSHU has the
best performance for all values of k, and there is a big gap between KOSHU and FOSHU Opt. The
TS-HOUN Opt algorithm failed to terminate within three hours for k > 200 and it took a considerable
amount of time for k ≤ 200. It is clear that the proposed approach has excellent performance as it
always outperforms the TS-HOUN algorithm. Moreover, it is very close to or faster than the FOSHU
algorithm on six out of seven datasets, when those algorithms are set with an optimal threshold.

On overall, these results are excellent because the minimal relative utility of FOSHU Opt was chosen
optimally. But in real-life, users rarely choose an optimal value for this threshold as it requires extensive
background knowledge about the dataset. Generally, users find an appropriate value for the minimum
utility threshold by trial and error, which is very time-consuming. If the minimal relative utility threshold
of FOSHU is not chosen optimally, it can be much slower than KOSHU. In these experiments, the time
that would be required for running the TS-HOUN and FOSHU algorithms several times by trial and
error to obtain the same number of patterns as KOSHU has not been considered in the runtimes.

Table 5: Comparison of maximum memory usage (MB).

Dataset TS-HOUN Opt FOSHU Opt KOSHU

BMS-POS - 689 1410
Chainstore - 1443.5 2553.3
Chess - 812 1788
Foodmart 33.8 33 19
Mushroom 541.2 492 389
Retail - 481 575
T10I4D500K - 791 916

Table 5 shows the peak memory consumptions of the compared algorithms on six datasets for the
largest value of k. All memory measurements were done using the standard Java API. Note that the
memory usage of TS-HOUN Opt is only shown for the Foodmart and Mushroom datasets because
for the other datasets, TS-HOUN Opt failed to terminate whithin three hours for all values of k. By
consulting this table, it can be found that KOSHU consumes more memory than FOSHU Opt on the
BMS-POS, Chainstore, Chess and T10I4D500K datasets while their memory usage is similar for the
Retail and Mushroom datasets when k is large. For the Foodmart dataset, KOSHU consumes almost the
same amount of memory for all values of k and it uses less memory than FOSHU Opt when k is set to
values larger than 400. FOSHU and KOSHU are single phase algorithms that do not need to maintain
candidate high on-shelf utility itemsets in memory. However, KOSHU needs to store other structures for
top-k HOU mining such as the EMPRS structure, and the current top-k patterns found until now. In
general, it is normal that a top-k algorithm uses more memory than a non top-k algorithm because a non
top-k algorithm does not need to keep track of the current top-k patterns found until now, and does not
need to keep additional structures in memory related to dynamically adjusting the threshold [17,6,42,
36,44,34,41,11]. Hence, considering this, it can be concluded that KOSHU has reasonable performance
in terms of memory usage.

6.3 Pruning Effectiveness Analysis

The influence of the two main pruning strategies EMPRP and PUP was also evaluated. For each dataset
and various k values, the pruning strategies were individually applied. In utility-list based algorithms,
it is well-known that the join operation to construct utility-lists is the costliest operation. Therefore,
we evaluate the proposed pruning strategies in terms of percentage of join operations that are avoided.
Results on the studied datasets are presented in Table 6. In general, the PUP strategy provides a greater
reduction than EMPRP. These results show that candidate pruning can be very effective. Up to 93% of
candidates are pruned by PUP and up to 89% by EMPRP.

Figs. 10 - 13 illustrate the effect of individual pruning strategies on the overall execution performance
of KOSHU. The relative performance of EMPRP and PUP was found to vary from one dataset to

An efficient algorithm for mining top-k on-shelf high utility itemsets 21

Table 6: Reduction of join operations by the EMPRS and PUP strategies as percentages

Dataset Pruning Strategy
k

100 200 300 400 500 600 800 1000

BMS-POS
EMPRP 2 4 6 7 8 8 10 11
PUP 93 92 91 91 91 90 90 89

Foodmart
EMPRP 88 87 86 85 85 85 87 89
PUP 88 85 83 82 81 82 84 72

Mushroom
EMPRP 26 30 32 32 34 34 33 32
PUP 63 64 63 60 60 58 55 51

Retail
EMPRP 8 16 22 29 34 37 43 49
PUP 71 77 79 83 85 86 89 91

another. However, the overall best performance was observed when combining pruning strategies on all
the datasets. The above analysis confirms the effectiveness of the two proposed pruning strategies.

0

20

40

60

80

100

120

140

100 200 400 600 800 1000

R
u

n
ti

m
e

(s
)

k

BMS-POS

EMPRP PUP

EMPRP+PUP FOSHU_Opt

Fig. 10: Effect of pruning strategies on BMS-POS.

0

200

400

600

800

1000

1200

100 200 400 600 800 1000

R
u

n
ti

m
e

(m
s)

k

Foodmart

EMPRP PUP

EMPRP+PUP FOSHU_Opt

Fig. 11: Effect of pruning strategies on Foodmart.

0

1

2

3

4

5

6

7

8

100 200 400 600 800 1000

R
u

n
ti

m
e

(s
)

k

Mushroom

EMPRP PUP

EMPRP+PUP FOSHU_Opt

Fig. 12: Effect of pruning strategies on Mushroom.

0

10

20

30

40

50

60

100 200 400 600 800 1000

R
u

n
ti

m
e

(s
)

k

Retail

EMPRP PUP

EMPRP+PUP FOSHU_Opt

Fig. 13: Effect of pruning strategies on Retail.

22 T-L. Dam et al.

6.4 Efficiency Of The Proposed Utility-list Construction Method

The effectiveness of the proposed method for constructing utility-lists was also assessed. As mentioned,
the utility-list of an l-itemset such that l > 1 can be obtained by intersecting utility-lists of small-
er itemsets. This process is the most expensive operation performed by utility-list based algorithms.
Hence, an experiment was carried out to compare the efficiency of the improved utility-list construction
procedure with the traditional construction procedure. The comparison of execution times is shown in
Fig. 14 for the studied datasets. In this figure, KOSHU iConstruct denotes KOSHU using the proposed
utility-list construction method while KOSHU construct represents KOSHU employing the traditional
construction method. As we can see in this figure, the improved method is very efficient. It is faster
than the traditional method, specifically it can reduce execution time by up to 41%.

0

10

20

30

40

50

60

70

80

90

100 200 400 600 800 1000

R
u

n
ti

m
e

(s
)

k

BMS-POS

KOSHU_iConstruct KOSHU_construct

0

1

2

3

4

5

6

7

8

100 200 400 600 800 1000

R
u

n
ti

m
e

(s
)

k

Mushroom

KOSHU_iConstruct KOSHU_construct

Fig. 14: Effect of using the iConstruct utility-list construction procedure.

6.5 Influence Of The Number Of Time Periods

In the previous experiments, the number of time periods was fixed. In this experiment, the number of
time periods was varied to assess the influence of the number of time periods on the execution time of
KOSHU. Transactions were randomly grouped into 5, 25 and 50 time periods. Figs. 15 and 16 show
the results of this experiment on the studied datasets. In this experiment, TS-HOUN Opt failed to
terminate within 3 hours on the Mushroom dataset for k >200 when the number of time periods is 50.
It can be observed that KOSHU has excellent scalability with respect to the number of time periods.
For all datasets, the runtime remains almost the same when the number of time periods is set to 5, 25
and 50 time periods. In general, KOSHU is only a little slower when a dataset has more time periods.
The reason why KOSHU has excellent scalability with respect to the number of time periods is that it
mines all time periods at the same time.

6.6 Scalability Of KOSHU Under Different Parameter Settings

We also performed experiments to assess the scalability of the proposed algorithm with respect to the
number of transactions and the number of items. Synthetic datasets have been generated using the
IBM Quest dataset generator [2]. For this experiment, k was set to 5000, the number of distinct items
was varied from 2K to 10K items and the database size was varied from 100K to 500K transactions.
Fig. 17 shows the runtimes of the compared algorithms on the T10I4NXKD100K and T10I4N4KDXK
datasets, and Fig. 18 compares the memory usage of the algorithms on these same datasets. Note that
TS-HOUN failed to terminate whithin three hours or run out of memory in these scalability tests. By
consulting Fig. 17, it can be concluded that the proposed algorithm has linear scalability with respect

An efficient algorithm for mining top-k on-shelf high utility itemsets 23

0

10

20

30

40

50

60

70

80

90

100 200 400 600 800 1000

R
u

n
ti

m
e

 (
s)

k

Mushroom

TS-HOUN_Opt-5 TS-HOUN_Opt-25

TS-HOUN_Opt-50 FOSHU_Opt-5

FOSHU_Opt-25 FOSHU_Opt-50

KOSHU-5 KOSHU-25

KOSHU-50

Fig. 15: Execution time w.r.t. time period count on Mushroom.

0

1

2

3

4

5

6

100 200 400 600 800 1000

R
u

n
ti

m
e

 (
s)

k

Foodmart

TS-HOUN_Opt-5 TS-HOUN_Opt-25

TS-HOUN_Opt-50 FOSHU_Opt-5

FOSHU_Opt-25 FOSHU_Opt-50

KOSHU-5 KOSHU-25

KOSHU-50

Fig. 16: Execution time w.r.t. time period count on Foodmart.

to the number of items and good scalability with respect to the number of transactions. On Fig. 18, we
observe that the memory consumption of KOSHU increases almost linearly when the number of items
increases and that it increases slowly when the number of transactions increases. These results indicate
that KOSHU scales well under different parameter settings.

From the above performance studies, the experimental results suggest that the proposed techniques
are effective, and the proposed algorithm is highly efficient in terms of execution time and memory
usage as well as has excellent scalability.

24 T-L. Dam et al.

0

20

40

60

80

100

120

2K 4K 6K 8K 10K

R
u

n
ti

m
e

 (
s)

Number of distinct items

T10I4NXKD100K

TS-HOUN_Opt FOSHU_Opt KOSHU

(a) Varied number of items

0

50

100

150

100K 200K 300K 400K 500K

R
u

n
ti

m
e

 (
s)

Dataset sizes

T10I4N4KDXK

TS-HOUN_Opt FOSHU_Opt KOSHU

(b) Varied dataset sizes

Fig. 17: Execution times of KOSHU under different parameter settings

0

100

200

300

400

500

600

2K 4K 6K 8K 10K

M
e

m
o

ry
 u

sa
ge

 (
M

B
)

Number of distinct items

T10I4NXKD100K

TS-HOUN_Opt FOSHU_Opt KOSHU

(a) Varied number of items

0

500

1000

1500

100K 200K 300K 400K 500K

M
e

m
o

ry
 u

sa
ge

 (
M

B
)

Dataset sizes

T10I4N4KDXK

TS-HOUN_Opt FOSHU_Opt KOSHU

(b) Varied dataset sizes

Fig. 18: Memory usage of KOSHU under different parameter settings

7 Conclusion

This work has studied the new research issue of top-k on-shelf high utility itemset mining where negative
profit values are allowed, shelf time of items are considered, and where the user can specify the number
of patterns to be found k instead of the minimum utility threshold.

To discover the top-k high on-shelf utility itemset efficiently, a novel single phase algorithm named
KOSHU was proposed. By using utility-lists, KOSHU does not maintain candidates in memory and
mines HOUs in all time periods at the same time. KOSHU also incorporates three novel strategies to
reduce the number of join operations when mining on-shelf high utility itemsets using the utility-list data
structure, namely EMPRP, CE2P and PUP. A novel intersection procedure for intersecting utility-lists
with complexity O(m + n) was also introduced.

An extensive experimental evaluation was conducted to evaluate the proposed algorithm KOSHU
and the proposed strategies. Results have shown that KOSHU is highly efficient, as its performance
is always very close to or better than FOSHU, when FOSHU is applied using an optimal minimum
threshold value. Moreover, it was shown that the PUP and EMPRP strategies can reduce the number
of join operations by up to 93% and 89%, respectively, and that the proposed utility-list construction
procedure can reduce run time by up to 41%. These proposed strategies are interesting as they could
be used for other problem related to high on-shelf utility pattern mining, where the number of effective
strategies is limited.

Although the proposed algorithm was shown to be efficient in terms of runtime and memory con-
sumption, it remains the first algorithm for top-k HOU mining. Hence there is still room for further
research and improvements. More specifically, there are several interesting research directions that can
be considered. One of them is to design an approximate version of the algorithm that would return an
approximate list of top-k HOUs. This would provide a trade-off to reduce the memory usage and execu-
tion time by sacrificing completeness. This idea would be innovative since to the best of our knowledge,

An efficient algorithm for mining top-k on-shelf high utility itemsets 25

there does not exist an approximate algorithm for mining HUIs in static transaction databases. Another
interesting research direction is to develop a parallel and distributed version of the proposed algorithm
to address the case of big data so that it could be run on massive datasets. Another interesting possi-
bility for future work is to extend this algorithm to other on-shelf high utility pattern mining problems
such as closed and maximal on-shelf high utility itemset mining, and also to consider other extensions
such as handling non static unit profit values.

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos. 61133005,
61432005, 61370095, 61472124, 61202109, and 61472126), and the International Science & Technology
Cooperation Program of China (Grant Nos. 2015DFA11240 and 2014DFBS0010). T-L. Dam was also
partially supported by science research fund of Hanoi University of Industry, Hanoi, Vietnam.

Compliance with Ethical Standards

Funding: This study was funded by the National Natural Science Foundation of China (Grant Nos.
61133005, 61432005, 61370095, 61472124, 61202109, and 61472126) and the International Science &
Technology Cooperation Program of China (Grant Nos. 2015DFA11240 and 2014DFBS0010). T-L. Dam
was also partially supported by science research fund of Hanoi University of Industry, Hanoi, Vietnam.

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or animals per-
formed by any of the authors.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. VLDB pp. 487–499 (1994)
2. Agrawal, R., Srikant, R.: Quest Synthetic Data Generator. Available at. (<http://www.almaden.ibm.com/cs/

quest/syndata.html>) (1994)
3. Chan, R., Yang, Q., Shen, Y.D.: Mining high utility itemsets. In: Third IEEE International Conference on Data

Mining (ICDM 2003), pp. 19–26 (2003)
4. Chen, H.: Mining top-k frequent patterns over data streams sliding window. Journal of Intelligent Information

Systems 42(1), 111–131 (2014)
5. Cheng, J., Ke, Y., Ng, W.: A survey on algorithms for mining frequent itemsets over data streams. Knowledge and

Information Systems 16(1), 1–27 (2008)
6. Cheung, Y.L., Fu, A.C.: Mining frequent itemsets without support threshold: with and without item constraints.

IEEE Transactions on Knowledge and Data Engineering 16(9), 1052–1069 (2004)
7. Chu, C.J., Tseng, V.S., Liang, T.: An efficient algorithm for mining temporal high utility itemsets from data

streams. Journal of Systems and Software 81(7), 1105 – 1117 (2008)
8. Chu, C.J., Tseng, V.S., Liang, T.: An efficient algorithm for mining high utility itemsets with negative item values

in large databases. Applied Mathematics and Computation 215(2), 767 – 778 (2009)
9. Dam, T.L., Li, K., Fournier-Viger, P., Duong, Q.H.: CLS-Miner: efficient and effective closed high utility itemset

mining. Frontiers of Computer Science pp. 1–27 (2016). DOI 10.1007/s11704-016-6245-4
10. Dam, T.L., Li, K., Fournier-Viger, P., Duong, Q.H.: An efficient algorithm for mining top-rank-k frequent patterns.

Applied Intelligence 45(1), 96–111 (2016)
11. Duong, Q.H., Liao, B., Fournier-Viger, P., Dam, T.L.: An efficient algorithm for mining the top-k high utility

itemsets, using novel threshold raising and pruning strategies. Knowledge-Based Systems 104, 106–122 (2016)
12. Fournier-Viger, P.: FHN: Efficient Mining of High-Utility Itemsets with Negative Unit Profits. In: Advanced

Data Mining and Applications, Lecture Notes in Computer Science, vol. 8933, pp. 16–29. Springer International
Publishing (2014)

13. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF: A java open-source
pattern mining library. Journal of Machine Learning Research 15, 3569–3573 (2014)

14. Fournier-Viger, P., Lin, J.C.W., Gueniche, T., Barhate, P.: Efficient incremental high utility itemset mining. In:
Proceedings of the ASE BigData & Social Informatics 2015, ASE BD & SI ’15, pp. 53:1–53:6. ACM, New York,
NY, USA (2015)

15. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.: FHM: Faster High-Utility Itemset Mining Using Estimated
Utility Co-occurrence Pruning. In: Foundations of Intelligent Systems, Lecture Notes in Computer Science, vol.
8502, pp. 83–92. Springer International Publishing (2014)

16. Fournier-Viger, P., Zida, S.: FOSHU: Faster On-shelf High Utility Itemset Mining – with or Without Negative Unit
Profit. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, SAC ’15, pp. 857–864. ACM,
New York, NY, USA (2015)

(<http://www.almaden.ibm.com/cs/quest/syndata.html>)
(<http://www.almaden.ibm.com/cs/quest/syndata.html>)

26 T-L. Dam et al.

17. Fu, A.W.C., Kwong, R.W.w., Tang, J.: Mining N-most Interesting Itemsets. In: Proceedings of the 12th Inter-
national Symposium on Foundations of Intelligent Systems, ISMIS ’00, pp. 59–67. Springer-Verlag, London, UK
(2000)

18. Golab, L., DeHaan, D., Demaine, E.D., Lopez-Ortiz, A., Munro, J.I.: Identifying frequent items in sliding windows
over on-line packet streams. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement,
IMC ’03, pp. 173–178. ACM, New York, NY, USA (2003)

19. Grahne, G., Zhu, J.F.: Fast algorithms for frequent itemset mining using FP-trees. IEEE Transactions on Knowledge
and Data Engineering 17(10), 1347–1362 (2005)

20. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Mining
and Knowledge Discovery 15(1), 55–86 (2007)

21. Han, J.W., Pei, J., Yin, Y.W.: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree
Approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004)

22. Homem, N., Carvalho, J.P.: Finding top-k elements in data streams. Information Sciences 180(24), 4958 – 4974
(2010)

23. Lan, G.C., Hong, T.P., Huang, J.P., Tseng, V.S.: On-shelf utility mining with negative item values. Expert Systems
with Applications 41(7), 3450 – 3459 (2014)

24. Lan, G.C., Hong, T.P., Tseng, V.S.: Discovery of high utility itemsets from on-shelf time periods of products.
Expert Systems with Applications 38(5), 5851 – 5857 (2011)

25. Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing approach for mining high utility itemsets.
Knowledge and Information Systems 38(1), 85–107 (2014)

26. Li, H.F., Huang, H.Y., Lee, S.Y.: Fast and memory efficient mining of high-utility itemsets from data streams: with
and without negative item profits. Knowledge and Information Systems 28(3), 495–522 (2011)

27. Lin, J.C.W., Gan, W., Fournier-Viger, P., Hong, T.P.: RWFIM: Recent weighted-frequent itemsets mining. Engi-
neering Applications of Artificial Intelligence 45, 18 – 32 (2015)

28. Lin, J.W., Gan, W., Hong, T.P.: Maintaining the discovered high-utility itemsets with transaction modification.
Applied Intelligence pp. 1–13 (2015)

29. Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.: Efficient mining of frequent patterns using ascending frequency ordered
prefix-tree. Data Mining and Knowledge Discovery 9(2), 249–274 (2004)

30. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM
International Conference on Information and Knowledge Management, CIKM ’12, pp. 55–64. ACM, New York,
NY, USA (2012)

31. Liu, Y., Liao, W.k., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: Advances
in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 3518, pp. 689–695. Springer
Berlin Heidelberg (2005)

32. Manerikar, N., Palpanas, T.: Frequent items in streaming data: An experimental evaluation of the state-of-the-art.
Data & Knowledge Engineering 68(4), 415 – 430 (2009)

33. Metwally, A., Agrawal, D., Abbadi, A.E.: An integrated efficient solution for computing frequent and top-k elements
in data streams. ACM Transactions on Database Systems 31(3), 1095–1133 (2006)

34. Ryang, H., Yun, U.: Top-k high utility pattern mining with effective threshold raising strategies. Knowledge-Based
Systems 76(0), 109 – 126 (2015)

35. Ryang, H., Yun, U.: High utility pattern mining over data streams with sliding window technique. Expert Systems
with Applications 57, 214 – 231 (2016)

36. Salam, A., Khayal, M.: Mining top-k frequent patterns without minimum support threshold. Knowledge and
Information Systems 30(1), 57–86 (2012)

37. Song, W., Liu, Y., Li, J.: BAHUI: Fast and Memory Efficient Mining of High Utility Itemsets Based on Bitmap.
International Journal of Data Warehousing and Mining 10(1), 1–15 (2014)

38. Song, W., Liu, Y., Li, J.: Mining high utility itemsets by dynamically pruning the tree structure. Applied Intelligence
40(1), 29–43 (2014)

39. Song, W., Zhang, Z., Li, J.: A high utility itemset mining algorithm based on subsume index. Knowledge and
Information Systems pp. 1–26 (2015)

40. Tseng, V., Shie, B.E., Wu, C.W., Yu, P.: Efficient algorithms for mining high utility itemsets from transactional
databases. IEEE Transactions on Knowledge and Data Engineering 25(8), 1772–1786 (2013)

41. Tseng, V., Wu, C.W., Fournier-Viger, P., Yu, P.: Efficient algorithms for mining top-k high utility itemsets. IEEE
Transactions on Knowledge and Data Engineering 28(1), 54–67 (2016)

42. Wang, J.Y., Han, J.W., Lu, Y., Tzvetkov, P.: TFP: An efficient algorithm for mining top-k frequent closed itemsets.
IEEE Transactions on Knowledge and Data Engineering 17(5), 652–664 (2005)

43. Wong, R.C.W., Fu, A.W.C.: Mining top-k frequent itemsets from data streams. Data Mining and Knowledge
Discovery 13(2), 193–217 (2006)

44. Wu, C.W., Shie, B.E., Tseng, V.S., Yu, P.S.: Mining top-k high utility itemsets. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, pp. 78–86. ACM, New
York, NY, USA (2012)

45. Yang, B., Huang, H.: TOPSIL-Miner: an efficient algorithm for mining top-K significant itemsets over data streams.
Knowledge and Information Systems 23(2), 225–242 (2010)

46. Yun, U., Ryang, H., Ryu, K.H.: High utility itemset mining with techniques for reducing overestimated utilities
and pruning candidates. Expert Systems with Applications 41(8), 3861 – 3878 (2014)

47. Zaki, M.J., Gouda, K.: Fast vertical mining using Diffsets. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 326–335. ACM (2003)

48. Zihayat, M., An, A.: Mining top-k high utility patterns over data streams. Information Sciences 285, 138–161
(2014)

	Introduction
	Related Work
	Preliminaries And Problem Definition
	Proposed Techniques For Mining The Top-k High On-shelf Utility Itemsets
	The Proposed Algorithm
	Performance Study
	Conclusion

