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Abstract. Monitoring of Norovirus in drinking water supply is a complicated, rather 
expensive, process. Norovirus represent a leading cause of acute gastroenteritis in 
most developed countries. Modeling of general microbial occurrence in drinking wa-
ter is a very active field of study and provides reliable information for predicting mi-
crobial risks in drinking water. In this work, adaptive neuro-fuzzy inference system 
(ANFIS) and Gaussian Process for Machine Learning (GPML) are proposed as pre-
dicting models for the total number of Norovirus in raw surface water in terms of 
water quality parameters such as water pH, turbidity, conductivity, temperature and 
rain. The predictive models were based on data from Nødre Romrike Vannverk water 
treatment plant in Oslo, Norway. Based on the model performance indices used in this 
study, the GPML model showed comparable accuracy to the ANFIS model. However, 
the ANFIS model generally demonstrated more superior prediction ability of the 
number of Norovirus in drinking water, with lower MSE and MAE values relative to 
the GPML model. In addition, the ability of the ANFIS model to explain potential 
effects of interactions among the water quality variables on the number of Norovirus 
in the raw water makes the technique more efficient for use in water quality modeling.  

Keywords. GPML, ANFIS, Norovirus, water pH, turbidity, water conductivi-
ty, temperature, conductivity, rain  



1 Introduction 

Norovirus is increasingly recognized as a leading cause of non-bacterial gastroin-
testinal infections, and is a major cause of waterborne disease outbreaks worldwide 
[1, 2]. The virus is reported as the most common cause of diarrheal disease globally 
with an estimated economic burden of $4.2 billion in direct health system costs 
worldwide [3].  Moreover, enteric Noroviruses have very low infectious dose and like 
other viruses, their small size, low inactivation rates and the inability to culture them 
make their removal difficult and their susceptibility to disinfection largely remain 
unknown [4-6]. Further, results of some studies suggest that the viruses may be re-
sistant to wastewater treatment since effluents are not completely devoid of the them 
[7 - 9], resulting in source water contamination when effluents of wastewater treat-
ment plants are discharged to surface waterbodies [10-12].  

Although recent molecular methods have improved the detection, identification 
and characterization of Norovirus in the environment and clinical samples, wide-
spread emergence of the virus still present   a challenge to the detection technique 
[13].  These complicate the health risks associated with the use of drinking and rec-
reational water from contaminated water resources. Mitigating the morbidity and 
mortality associated with waterborne infections of Norovirus accordingly require 
proactive measures to augment rather costly monitoring exercises that assess microbi-
al quality of drinking water sources. The dynamics of Norovirus occurrence in raw 
water sources depends on a complex interaction of different variables, including envi-
ronmental factors (e.g. temperature, rainfall etc.) [15]. There is very little understand-
ing of the environmental factors that significantly trigger the occurrence of  Norovirus 
[15].  Environmental factors such as rainfall and temperature are associated with in-
creased concentrations of indicator pathogen in surface water and are noted as poten-
tial predictors of increased source water pathogen concentration [16-17]. As with 
many water treatment plants worldwide, Norwegian water treatment plants (WTPs) 
do not monitor raw water sources for specific pathogenic organisms (including No-
rovirus) due to cost considerations.  

Limitations regarding the lack of source water microbial quality data needed for 
microbial risk assessment have necessitated the use of mathematical models   to pre-
dict the occurrence of pathogenic organisms in raw water sources. Predictive models, 
based on environmental and water quality parameters have been widely applied to 
improve the accuracy of raw water quality assessments, in order to assist watershed 
managers in making informed decisions regarding the protection of public health. 
Physically based techniques such as hydrodynamic models have been used to monitor 
microorganism generation, fate and transport in surface water sources [18-19]. 

Whereas data-driven techniques such as regression analysis have widely been used, 
other artificial intelligence (AI) techniques such as artificial neural network and adap-
tive neuro-fuzzy inference system (ANFIS) are recently being applied in predicting 
the concentration of microbial organisms in water sources [15,20]. In a recent study in 
Norway, Peterson et al (2016) applied a quantitative microbial risk approach to model 
the concentration of Norovirus in surface water based on E. coli and C. perfringens 
concentrations with assumptions regarding the source of fecal contamination [14]. 



Although poor correlations were found between the pathogen and indicator data, the 
approach provided an insight into potential level of Norovirus contamination in a 
typical surface water body in Norway [22]. In this paper, Adaptive Neuro-Fuzzy In-
ference System (ANFIS) is built to predict the concentration of Norovirus in the raw 
water source of the Nødre Romrike Water Treatment Plant in Oslo, based on meas-
ured rainfall in the catchment of the water supply system and water quality parameters 
such as water temperature, turbidity, conductivity and pH. In addition, Gaussian Pro-
cesses for Machine Learning (GPML) modeling approach is used on the same dataset 
to predict the count of Norovirus in the raw water. The performances of the two mod-
eling approaches are then compared using mean square prediction errors, mean abso-
lute errors and the coefficient of multiple  determination, R2 values. The paper is 
organized as follows: ANFIS model is presented in Section II. In Section III, the data 
and modelling approaches are presented. Results are presented in Section IV. In Sec-
tion V, concluding remarks are drawn and suggestions for future work are presented.  

2 Methodology 

2.1 Dataset 

This study built a model to accurately predict the concentration of Norovirus in re-
lation to precipitation and physico-chemical characteristics of the raw water source of 
the Nødre Romrike Vannverk (NRV) water treatment plant in Oslo, Norway. NRV is 
one of the largest water treatment plants in Norway supplying 42000 m3 of drinking 
water to six municipalities in Norway [16]. The plant depends on raw water from 
Glomma River, the largest river in Norway. Data used in the study are based on raw 
water samples at the intake of NRV from January 2011 to April 2012, covering the 
four main seasons in Norway. Sampling and analysis of raw water for Norovirus (GI 
and GII) was conducted under an EU project (VISK) [17]. For a detailed description 
of the analysis, recovery and assessment of Norovirus concentration in the raw water 
readers are referred to Grøndahl-Rosado et al. (2014) [18]. Data on precipitation was 
collected at a weather station located within the catchment of the raw-water intake 
while physical and chemical parameters data of the raw water were drawn from NRV 
database. The main physical and chemical parameters accounted for are water tem-
perature (oC), turbidity (NTU/mL), conductivity (µS/cm), rain (mm/day) and pH. 

2.2 ANFIS model 

ANFIS is a well-known artificial intelligence technique that has been used in hy-
drological processes [18]. With respect to water quality monitoring, the technique has 
been widely used to model treatment processes, estimation of concentrations of disin-
fection byproducts as well as other water quality indices of groundwater [22 - 24]. By 
analyzing mapping relationships between input and output data, ANFIS optimizes the 
distribution of membership functions by using a hybrid learning algorithm consists of a 
combination of least-squares and back-propagation gradient descent algorithm [18]. In 
this paper two membership functions are assigned for each input variable and therefore 



the ANFIS model will generate 64 rules (i.e., 26 rules). The proposed ANFIS (Figure 
1) has six inputs; pH, turbidity, conductivity, rain, temperature and seasonality and one 
output, the concentration of Norovirus. Each input is represented by two fuzzy sets, 
and the output by a first-order polynomial of the inputs. The ANFIS extracts n rules 
mapping the inputs to the output from the input/output dataset. A typical Sugeno-fuzzy 
rule can be expressed in the following form: 

 

   

Ri : IF  x1 is  A1, j

AND x2 is A1, j

!
AND xm is Am, j

THEN  yi = fi(x1,x2 ,...,xm )

 (1) 

where x1, x2, ..., xm are the input variables, A1,j, A2,j, ..., Am,j are fuzzy sets or fuzzy 
labels used to fuzzifiy each input, yi (i.e., Norovirus count of rule i) is either a constant 
or a linear function of the input variables of the model. When yi is constant, a zero-
order Sugeno fuzzy model is obtained in which the consequent of a rule is specified by 
a singleton. When yi is a first-order polynomial of the inputs, the consequent of a rule 
is a polynomial that takes the form:  

    yi = ki0 + ki1x1 + ki2x2 +…+ kimxm  (2) 

A first-order Sugeno fuzzy model is obtained where ki0, ki1, ki2,…, and kim are a set of 
parameters specified for rule i [25]. An ANFIS model is normally represented by a six-
layer feed-forward neural network representing the architecture of a first-order Sugeno 
fuzzy model. The first layer is called input layer. Neurons in this layer simply pass 
external crisp signals to the second layer. The second layer is called the fuzzification 
layer. Neurons in this layer perform fuzzification. Fuzzification neurons have a bell-
shaped activation function specified as: 

 

  

yi
(2) = 1

1+
xi

(2) − ai

ci

⎛

⎝⎜
⎞

⎠⎟

2bi
 (3) 

where xi is the input and yi is the output of layer 2; ai, bi and ci are the parameters that 
control, respectively, the center, width and slope of the bell activation function of neu-
ron i. The third layer is called the rule layer. Each neuron in this layer corresponds to a 
single Sugeno-type fuzzy rule, as it is shown by Eq. (1). A rule neuron receives inputs 
from the respective fuzzification neurons and calculates the firing strength of the rule it 
represents. In an ANFIS, the product operator is used to evaluate the conjunction of the 
rule antecedents: 



 
   
yi

(3) =
j=1

k

∏xij
(3) = µi1 × µi2 ×!× µik  (4) 

where xij is the input from neuron j in layer 2 to neuron i in layer 3, and yi is the output 
of layer 3. 

Layer 4 is called the normalization layer. Each neuron in this layer receives inputs 
from all neurons in the rule layer, and calculates the normalized firing strength of a 
given rule. The normalized firing strength is the ratio of the firing strength of a given 
rule to the sum of the firing strengths of all rules. It represents the contribution of a 
given rule to the final result. The output of neuron i in layer 4 is obtained as: 
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(4) =
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(4)

xij
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n

∑
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where xij is the input from neuron j in layer 3 to neuron i in layer 4, and yi is the output 
of layer 4, and n is the total number of fuzzy rules. Layer 5 is called the defuzzification 
layer. Each neuron in this layer is connected to the respected normalization neuron in 
the normalization layer, and also receives initial inputs; x1, x2,…, xm. A defuzzificaiton 
neuron calculates the weighted consequent value of a given rule as: 

 

   

yi
(5) = xi

(5) ki0 + ki1x1 +…+ kimxm( )
= µi ki0 + ki1x1 +…+ kimxm( )  (6) 

where xi is the input and yi is the output of neuron i in layer 5, ki0, ki1, …, and kim is a 
set of consequent parameters of rule i, defined by Eq. (2). Layer 6 is finally represented 
by a single summation neuron. This neuron calculates the sum of outputs of all defuzz-
ification neurons and produces the overall ANFIS output y.  

It is not necessary to have any prior knowledge of rule consequent parameters for 
an ANFIS to deal with the problem. The parameters of the consequent polynomials are 
initialized to zero values. ANFIS uses a hybrid-learning algorithm that combines the 
least-squares estimator and the gradient descent method to learn parameters of the 
consequent polynomials and to tune the parameters of the membership functions. The 
only prior information required from the user is the number of membership functions 
required to fuzzify each input variable. The universe of discourse of each input varia-
ble is divided equally between its respective membership functions to find its centers. 
The widths and slopes are set to allow sufficiently overlapping between the respective 
functions. 

In the ANFIS training algorithm, each epoch is composed from a forward pass and 
a backward pass. In the forward pass, a training set of input patterns is applied to the 
ANFIS, neuron outputs are calculated on the layer-by-layer basis, and the least-
squares estimator identifies rule consequent parameters. In the backward pass, the 



error signals are propagated back and the back-propagation algorithm is used to up-
date/tune the membership functions parameters of the rule antecedents. 

 

3 GPML model 

Gaussian processes (GPs) [32] have convenient properties for many modeling tasks 
in machine learning and statistics. They can be used to specify distributions over 
functions without having to commit to a specific functional form. Applications range 
from regression over classification to reinforcement learning, spatial models, survival 
and other time series models. A GP is specified by a mean function and a covariance 
function. These functions are mostly difficult to specify fully a priori, and typically 
they are given in terms of hyperparameters, that is, parameters which have to be in-
ferred. Any functions can be used as a mean and a covariance functions. The mean 
function is usually defined to be zero. Several covariance functions have been used in 
literature. However, a squared exponential (SE) is usually used as a predominant 
choice. Another source of difficulty is the likelihood function. For Gaussian likeli-
hoods, inference is analytically tractable; however, in many tasks, Gaussian likeli-
hoods are not appropriate, and approximate inference methods such as Expectation 
Propagation (EP), Laplace’s approximation (LA) and variational bounds (VB) be-
come necessary [33].  

GPML, in this paper, is implemented using GPML toolbox [34].  The GPML 
toolbox provides a wide range of functionality for GP inference and prediction. It is 
designed to simplify the process of constructing GP models and make it easy to ex-
tend where a library of various mean, covariance and likelihood functions as well as 
inference methods is provided.   

 

4 Modelling Approach  

4.1 ANFIS Model 

In this paper, various ANFIS models with various settings are used to predicted 
count of Norovirus in raw water in terms of a set of input variables:  water pH, water 
turbidity, water conductivity, rain, water temperature, and finally seasonal effect (i.e., 
winter time).The model building process for ANFIS consists of the following five 
steps: 1). Selection of the input and the output data for training ANFIS model (data 
set).  2). Normalization of the input and the output data attributes. 3). Training of the 
normalized data using a hybrid-learning algorithm; 4).Testing the goodness of fit of the 
model; and 5.  Comparing the predicted output with the desired/target output.  Each 
of these steps are presented as follows:  



4.2 Selection of the input and output data for tarning ANFIS model 

In this paper, an ANFIS model is developed to accurately predict the concentration 
of Norovirus in terms of precipitation and physico-chemical characteristics of the raw 
water source of the Nødre Romrike Vannverk (NRV) water treatment plant in Oslo, 
Norway. NRV is one of the largest water treatment plants in Norway supplying 42000 
m3 of drinking water to six municipalities [19]. The plant depends on the raw water 
from Glomma River, the largest river in Norway. Data used in the study are based on 
raw water samples at the intake of NRV in the period from January 2011 to April 
2012, covering the four main seasons in Norway. Sampling and analysis of raw water 
for Norovirus (GI and GII) was conducted under an EU project (VISK) [27]. For a 
detailed description of the analysis, recovery and assessment of Norovirus concentra-
tion in the raw water interested readers are advised to refer to Grøndahl- Rosado et al. 
(2014) [28]. Data on precipitation was collected at a weather station located within the 
catchment of the raw- water intake (e-Klima) while physical and chemical parameters 
data of the raw water were drawn from NRV database. The main physical and chemi-
cal parameters accounted for were water temperature (oC), water turbidity (NTU/mL), 
water conductivity (µS/cm), rainfall (mm/day), and water pH. A total of 156 data sam-
ples are used in this study.  

4.3 Data normalization 

The input and the output data obtained are measured on different scales and there-
fore have to be normalized using mean and standard deviation to a notionally common 
scale. First the mean, x, and standard deviation, σx , of all the data variables individual-
ly were calculated. The values for each parameter were then normalized using the 
equation:  

   xn = (x − x ) /σ x  (7) 

4.4 Training of input data 

After obtaining the normalized data, the next step is to train the input data using 
proposed ANFIS  . ANFIS model uses a hybrid-learning algorithm that combines the 
least- squares estimator and the gradient descent method to learn parameters of the 
consequent polynomials and to tune the parameters of the membership functions. The 
algorithm, by default, takes only 70 percent of the input data for training. So out of 156 
samples only 109 are taken for training and these are selected randomly from the set of 
data. The rest 47 samples are kept for validation and testing.  

4.5 Testing and validation 

Testing is done after the training of the data is complete and the error is below the 
tolerance levels. 30 % of the input data are used for testing and validation in both cases 
(i.e., 47 samples).  



5 GPLM Model 

The proposed GPML model has six inputs; water pH, turbidity, conductivity, rain, 
temperature and seasonality.  The GPML toolbox in MATLAB is used [24] for 
constructing a GP predictive model for Norovirus using the aforementioned six 
descriptive features. GPs are used to formalize and update knowledge about 
distribution over functions. To set up a GP model, a mean function with an initial value 
of mean=0 is chosen. A squared exponential covariance function with a hyper-
parameters ψ ={1, 2} is used. A Gaussian likelihood function with hyperparameter 
(i.e., Gaussian noise with variance ρ) where ρ = {1} is used. An expectation 
propagation (EP) approximate inference algorithm used.  

5.1 Comparisons of actual data and predicted data 

After the testing is done, the ANFIS and the GPML  models are saved.  The mean 
absolute error (MAE) and mean- squared error (MSE) between actual and predicted 
outputs and the coefficient of determination, R2 are used as performance indices of the 
models' accuracy. A graph is plotted between the actual output and the predicted output 
so that a comparison can be easily made.  

 
Fig. 1. Raw data from NRV in the period from middle of January 2011 until end of April 2012. 



6 Results 

Fig. 1 shows the distribution of the water quality parameters and their influence on 
Norovirus concentration. The measured Norovirus concentrations had large variations. 
While variations in the water pH and electrical conductivity remain low, the range of 
variations in measured values of water temperature, rainfall and turbidity remained 
high. For the months in which rainfall over the study area was high (mostly between 
July and December), the water temperature was continuously high. However, the tur-
bidity level in the raw water reached its peak of 13 NTU in in the middle of June, just 
prior to the onset of elevated rainfall in mid-July. High Norovirus concentrations over 
the sixteen-month study period, the observed Norovirus concentrations were very high 
between January and April of 2011 (500 particles per liter), with intense variations. 
Subsequently however, few Norovirus particles are observed intermittently. 

 
Fig. 2. Boxplot of the raw data 

Fig. 2 shows the box plot of the raw water quality parameters showing the medians, 
minimum, and maximum values of each individual variable. The correlation coeffi-
cient between the dependent (i.e., count of Norovirus) variable and independent varia-
bles (i.e., model inputs) are shown in Table 1. From the table, it can be concluded that 
the observed number of Norovirus is not significantly correlated with raw water pH, 
rainfall and season type (i.e., winter season).  



Table 1. Correlation and dependance between dependant and independent variables 

Parameter Correlation P-value 
pH 
Turbidity 
Conductivity 
Rain 
Temperature 
Winter season 

0.0383 
-0.2084 
0.3908 
-0.0426 
-0.3048 
0.1057 

0.6346 
0.0090 
0.0000 
0.5975 
0.0001 
0.1889 

 

Table 2. ANFIS6,2 generalized fuzzy rules after 250 epochs of training 

Rule Rule’s description 
1 
 
 
 

IF pH is low AND turbidity is low AND conductivity is low 
AND rain is low AND temperature is low AND winter is low 
THEN y=0.43+0.16pH-0.23turbidity+0.06conductivity-
0.39rain+0.40temperature-0.56winter 

2 

IF pH is low AND turbidity is low AND conductivity is low 
AND rain is low AND temperature is low AND winter is high 
THEN y=0.54pH-
0.25turbidity+0.36conductivity+0.60rain+0.09temperature+0.07
winter 

… … 

64 

IF pH is high AND turbidity is high AND conductivity is high 
AND rain is high AND temperature is high AND winter is high 
THEN y=0.92+0.91pH-0.06turbidity+0.51conductivity-
0.13rain+0.96temperature-0.69winter 

6.1 Prediction of NoV using GPML 

The response of the GPML model is plotted against the normalized measured No-
rovirus concentration in the raw water, as it is shown in Fig. 3 (upper) while prediction 
error is shown in Fig. 3 (bottom). The mean absolute and mean squared prediction 
errors are 0.3614 and 0.4179, respectively.  



 
Fig. 3. Response of GPML model in red plotted against the normalized measured 

Norovirus concentration in raw water source while the marginal likelihood is shown in 
gray color (upper) and prediction error (bottom). 

6.2 Prediction of NoV using ANFIS 

Various settings of ANFIS model are used for predicting NoV count as follows: 

6.2.1 6 inputs 2 MFs ANFIS model (ANFIS6,2).  
ANFIS6,2 has six inputs and 2 MFs namely low and high to fuzzy each crisp input; 

pH, turbidity, conductivity, rainfall, temperature, and time accounting for seasonality 
and one output, the concentration of Norovirus.  



 
Fig. 4. ANFIS6,2 for predicting Norovirus count, y, in terms of pH, turbidity, etc. as the model 
inputs. 

In this model, each input is represented by two fuzzy sets, and the output is repre-
sented as a first-order polynomial of the inputs. The ANFIS extracts r=26=64 rules 
mapping the inputs to the output from the input/output observations. The proposed 
ANFIS6,2 is shown in Fig. 4. Initial and final MFs for the input variables are shown in 
Fig. 5 and 6, respectively, where the best result was obtained after 250 epochs with a 
MSE=0.3567 for the normalized output. A sample of the generated rules is shown in 
Table II. 

 



Fig. 5. Initial MFs of the proposed ANFIS6,2 model (2 MFs are used for fuzzifying each in-
put). 

 

 

Fig. 6. Final MFs of the proposed ANFIS6,2 model after 250 epochs of training. 

 



 
To assess the predictability of the proposed model, the response of the ANFIS6,2 

model is plotted against the normalized measured Norovirus concentration in the raw 
water, as it is shown in Fig. 7 (upper) while prediction error is shown in Fig. 7 (bot-
tom). The model was capable of adequately predicting periods in which counts of No-
rovirus were observed in the raw water as well as periods of no counts. More im-
portantly, the model efficiently predicted periods of intense variations in the counts of 
the virus in raw water (the first three months of the study period). This is a necessary 
information for the optimization of water treatment processes in order to prevent po-
tential waterborne illnesses. In addition, to examine how interactions among the water 
quality variables affect the level of Norovirus in the raw water, surface view of the 
input-output mapping were generated as shown in Fig. 8. It is evident from these plots 
that the influence of each water quality parameter on the virus differs when it interacts 
with a different variable. For instance, while high pH  at high temperature  are associ-
ated with increased counts of the virus in the raw water, elevated water turbidity occur-
ring at high pH results in lower counts. Similarly, high turbidity result in increasing the 
level of the virus when conductivity is also high. However, for the same turbidity level, 
increasing temperature results in lower counts of the virus in the raw water. Finally, 
interactions among certain pairs of  variables (such as between turbidity and pH, tur-
bidity and conductivity) appear to have higher impact on the number of Norovirus than 
interactions among other pairs (eg, conductivity and pH). 

 
Fig. 7. Response of ANFIS6,2 model and its mean squared prediction error. 

 



 
Fig. 8. Surface view of the generated ANFIS6,2 fuzzy relations showing the effect of each input 
variable to the count of the predicted NoV. 

6.2.2 3 inputs 2 MFs ANFIS model (ANFIS3,2,COR) 
A reduced set of the input features; turbidity, conductivity, and temperature are 

used to train this model as they are more relevant to the concentration of Norovirus, as 
it was shown in the correlation coefficients in Table I and 2 MFs namely low and high 
to fuzzy each crisp input is developed. The proposed ANFIS3,2,COR model is shown in 
Fig. 8. After 250 epochs, the model was able to extract 23=8 rules with prediction error 
MSE =0.3735. The structure of the developed ANFIS3,2,COR model using two MFs and 
8 rules is shown in Fig. 9. 



 
Fig. 9. ANFIS3,2,COR for predicting Norovirus count, Nov, in terms of turbidity, conductivity 
and temperature. 

 
Fig. 10. ANFIS model structure for three inputs and 2 MFs each. 

The model predictions versus target values are shown in Fig. 11 (upper) while pre-
diction error is shown in Fig. 11 (bottom). Surface view of the input-output mapping of 
this model is shown in Fig. 12. Here, the effects of the interactions among the water 
quality parameters found to be more significantly correlated with the count of No-
rovirus (turbidity, conductivity, temperature) are more distinct. For instance, a sharp 



drop in the count of the virus resulting from a combined increases in water turbidity (> 
2 NTU) and conductivity (> 1 µS/cm) can be seen in Fig. 12. 

 
Fig. 11. Response of ANFIS3,2,COR model and the mean squared error. 

 

 

Fig. 12. Surface view of the generated ANFIS3,2,COR fuzzy relations showing the effect of each 
input variable to the count of the predicted NoV. 

 

6.2.3 3 inputs 2MFs ANFIS model (ANFIS3,2,PCA) 
A reduced model using three input features obtained using principal component 

analysis (PCA) and 2 MFs namely low and high to fuzzy each crisp input is developed. 
After 250 epochs, the model was able to extract 23=8 rules with prediction error MSE 



=0.3623. The model predictions versus target values are shown in Fig. 13 (upper) 
while prediction error is shown in Fig. 13 (bottom). Surface view of the input-output 
mapping of this model is shown in Fig. 14.  

 
Fig. 13. Response of ANFIS3,2,PCA model and the mean squared error. 

 

 

Fig. 14. Surface view of the generated ANFIS3,2,PCA fuzzy relations showing the effect of each 
input variable to the count of the predicted NoV. 

6.2.4 6 inputs 3 MFs ANFIS model (ANFIS6,3) 
An ANFIS model with 6 inputs and 3 MFs, namely, low, medium, and high for 

fuzziying each input variable is developed. After 250 epochs, the model generated 
36=729 rules and a prediction error MSE=0.3567.  



6.3 Model comparison 

In this study, both the GPML and ANFIS models of carious structures were trained 
on the entire dataset and tested for predicting the concentration of Norovirous in raw 
water source using climate and water quality parameters that are measured at water 
treatment plants in real time. The performances of both  models were compared by the 
mean absolute error (MAE), the mean squared error (MSE), and R2 criteria are shown 
in Tables 3 and 4. The MAE indicates how close the predictions are to the 
measured values which is given by:  

  
MAE = 1

n
fi − yi

i=1

n

∑ = 1
n

ei
i=1

n

∑  (8) 

As seen in Equation (8), the mean absolute error can be defined as the average 
of absolute errors; the absolute error given by |ei| = |fi − yi|, where fi is the 
prediction and yi the true value. It should be noted that in MAE, all the individual 
errors have equal weight in the average, making it a linear score. In order to have a 
reliable statistical comparison between the mathematical models, both the MAE 
and MSE can be used together to ascertain the variation in errors in a given set of 
predictions. Calculation of MSE involves squaring the difference between the 
predicted and corrsponding observed values, and averaging it over the sample size. 
This can be written as: 

  
MSE = 1

n
ei

2

i=1

n

∑  (9) 

MSE has a quadratic error rule, where the errors are squared before being 
averaged. As a result, a relatively high weight is given to large errors. This could 
be useful when large errors are undesirable in a statistical model. From table 3 it 
can be deduced that for the Gaussian model the MSE is slighly higher as compaed 
to ANFIS. Another measure of goodness-of-fit of the model is the R2 criteria. R2 is 
a proportion of variance 'explained' by the model. Higher values are indicative that 
the predictive model fits the data in a better way. By definition, R2 is the 
proportional measure of variance of one variable that can be predicted from the 
other variable. Thus ideally the values of R2 to approach one is always desirable. 
However, a high R2 tells you that the curve came very close to the points but in 
reality it does not always indicate the model quality. From Table 4, both Gaussian 
and ANFIS models have similar R2 values which  indicate that in both  modeling 
techniques, the prediction capability is similar. However, using the R2 criteria in 
conjunction with the MAE and MSE, it can be fairly deduced that the Gaussian 
and ANFIS models can be accurately used for the prediction of norvirous 
concentration in raw water source.  



Table 3. Performance comparison of GPML and ANFIS models for the test data set. 

Model Inputs MFs Rules MAE MSE 

GPML 
ANFIS6,3 
ANFIS6,2 

ANFIS3,2,PCA 
ANFIS3,2,COR 

- 
6 
6 
6 
3 
3 

- 
3 
2 
2 
2 

- 
729 
64 
8 
8 

0.3614 
0.2704 
0.2704 
0.2917 
0.2990 

0.4179 
0.3567 
0.3567 
0.3623 
0.3735 

 

Table 4. R2 criteria comparison of GPML and ANFIS models. 

Modelling 
technique R2 

GPML 
ANFIS6,3 
ANFIS6,2 
ANFIS3,2,PCA 
ANFIS3,2,COR 

0.7802 
0.8006 
0.8006 
0.7971 
0.7900 

7 Conclusions 

ANFIS and GPML models for prediction of the counts of Norovirus in raw water 
have been developed and the predictive abilities of the two models compared. Both 
modeling approaches have demonstrated adequate performances in their predictions 
during the model testing stage. In terms of the mean square error and mean absolute 
error values of the model predictions, the ANFIS models showed considerable accura-
cy relative to the GPML model. However, the computed R2 values of the models indi-
cate that no distinct disparity exists between the model performances. However, certain 
features of the ANFIS modelling approach make it more efficient for application. For 
instance, the advantages of ANFIS compared to other black box models include: (1) it 
combines in a transparent manner the linguistic representations of fuzzy logic and the 
learning capabilities of artificial neural networks, (2) it provides an automated ap-
proach for rule generation and parameter optimization procedure that simplifies the 
complex process of model development, and finally (3) it creates a transparent solution 
that is expected to offer useful insights into the physical processes involved in the 
modeling process and therefore help its end user the understand why certain values are 
obtained.  

PCA in this paper is used to provide a reduced set of input features where the most 
influential three variables to NoV count are chosen. Although the ANFIS model 
trained using this reduced set of variables is able to provide better predictions, it  lacks 
the ability to provide a meaning to the input-output mapping compared to the ANFIS 
model trained using the reduced set obtained from correlation coefficients table. It is 
also noted that using more than 2 MFs does not have any significant effect on the pre-
dictability of the produced ANFIS model. For future work, new models and new data 
sets will be used for providing more accurate predictions of NoV count in terms of 
climate and water quality parameters.  
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