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ABSTRACT

Change blindness is a striking phenomenon which basically
means that we can look without seeing. It originates from
a faulty communication between early vision (the eye) and
visual working memory (the brain). In this paper, we present
evidence that this faulty communication needs to be ac-
counted for in image fidelity assessment (also known as
full-reference image quality assessment). We designed a user
study to analyse participants opinions based on how much
they have to rely on their visual working memory in order
to give fidelity score. Results demonstrate that significantly
more severe judgments were made when reliance on visual
short-term memory was minimal, suggesting limitations in
the observers’ ability to notice image differences in the typi-
cal pairwise comparison setup. Furthermore, a comparison of
the efficiency of six state-of-the-art image fidelity assessment
models (so-called metrics) reveals that five of them perform
significantly better at predicting results obtained when re-
liance on memory is minimal.

Index Terms— Image Quality Assessment, Perception,
Visual Memory, Change Blindness.

1. INTRODUCTION

With the rapid development of digital imaging technologies,
understanding how people perceive the quality of images and
videos has never been so important. Be it for capture, display
or reproduction, an efficient model of visual quality is essen-
tial to ensure users satisfaction. There are different ways to
approach this problem depending on the application, the con-
text, the availability of reference data, etc. In this paper, we
consider the case referred to as full-reference image quality
assessment, or image fidelity assessment (IFA), which con-
cerns principally the reproduction of images (e.g. for com-
pression, gamut mapping, etc). Given two versions of the
same image (an original and a reproduction), IFA consists of
producing a score that represents the difference of quality be-
tween them or, in other words, the loss of quality engendered
by the reproduction process. A typical way to obtain refer-
ence data for IFA is to perform user studies in which partici-
pants have to compare images on a calibrated monitor. These

stimuli can be displayed two or three at a time [1] on a moni-
tor and user ratings are typically collected either via pairwise
comparison or category judgment methodologies. This type
of setup has the advantage of representing a plausible sce-
nario of ”real life” IFA, e.g. the comparison of several prints
put side-by-side to decide which one is the best. However,
one of its main drawbacks is that it compels participants to
rely significantly on their visual working memory, which is
known to have a limited capacity and bandwidth [2]. The best
illustration of this perceptual shortcoming is this striking phe-
nomenon known as change blindness [3], which the famous
game ”Spot the difference” relies on. While the exact origins
of this and other associated phenomena such as inattentional
blindness [3] or visual crowding [4] are still a source of de-
bate, they are known to come from a faulty communication
between early vision (the eye) and visual working memory
(the brain). Although two images are displayed at the same
time on the monitor, one can only really see sharply a portion
of one at a time, roughly corresponding to the size of a thumb-
nail at arm’s length [5]. The way the images are encoded in
our brain therefore depends on how our attention is guided
throughout the screen [6] but not only, as attention does not
imply conscious perception [7, 2]. In other words, the fact
that we can see does not necessarily mean that we can notice,
which is something that most existing image quality/fidelity
assessment models fail to account for.

These models, also referred to as image quality metrics
[8] typically involve allegedly human vision-inspired feature
extraction and pooling. Yet, despite the fact that popular mod-
els such as the multi-scale SSIM index [9] or the recent Vi-
sual Saliency Index [10] yield quality scores that correlate to a
large extent to subjective opinions, little is truly known about
the perceptual mechanisms underlying subjective image qual-
ity/fidelity assessment. We argue here that this is partly due
to the fact that existing models are essentially meant to sim-
ulate early vision, while there are quite a few more things
happening further down the visual pathway. Even though vi-
sual attention predictors have successfully been used for spa-
tial pooling [10, 11], they cannot fully predict conscious per-
ception. Furthermore, the way image difference features are
pooled across frequency bands, orientations and modalities
(e.g. lightness-difference, -contrast and -structure in the case
of the SSIM index, but also chroma, hue, etc) often lacks bi-



Fig. 1. Selected scenes from TID2013 [1].

ological plausibility. In that regard, findings from fields such
as scene understanding [12], and visual semantics [13] should
be given more consideration given the importance of image
content in the quality assessment task [14].

In order to demonstrate the importance of accounting for
visual working memory in state-of-the-art IFA models, we
previously carried out a user study in which the need for ob-
servers to rely on their visual short-term memory was max-
imised [15]. Results indicated a significant influence of the
latter in the IFA task. Here, we designed a new user study in-
volving image pairs meant to provoke change blindness. The
experiment was carried out in two locations, in Norway and
in New Zealand and consisted of two sessions: first, images
were displayed next to another in pairs, whereas in the sec-
ond session, the same pairs were displayed one ”under” the
other, so that observers could see only one at a time, with the
possibility to switch from one to the other as many time as
desired. The particularity of this second session lies in the
fact that reliance on visual working memory was minimal as
there was no blank screen when switching between images
so that differences were more readily available to conscious
perception.

2. USER STUDY

2.1. Methodology

As previously mentioned, the experiment consisted of two
sessions, carried out one after the other with a very brief pause
in between.

In the first session, for each image pair, both images were
displayed at the same time on the monitor, as shown in Fig-
ure 2 on the left hand side. Observers had to do a so-called
category judgment in that they had to select one of five la-
bels to described how they perceived the difference of quality
between the two images:

• ”Not perceptible”,

• ”Perceptible, but not annoying”,

• ”Slightly annoying”,

• ”Annoying”,

• ”Very annoying”.

Observers had to confirm that they clearly understood what
each of these labels refer to prior to beginning the experiment.

In the second session, stimuli were presented in a differ-
ent manner. Instead of side-by-side, images were shown one
”under” the other, at the exact same position on the screen,
as shown in Figure 2 on the right hand side. A button la-
beled ”Toggle” allowed participants to alternate between the
two images as many times as they needed to reach a verdict.
Note that the switch was direct in that there was no transition
screen between stimuli, thus making the visual differences be-
tween them more readily available to conscious perception.
Observers then had to perform the same task as in session 1,
with the exact same five categories.

The order in which pairs were shown as well as the re-
spective positions of original and reproduced images were
randomised for each observer and session. Finally, time
was monitored during both sessions, without the participants
knowing.

2.2. Stimuli

We selected 120 image pairs from the TID2013 database [1]:
5 scenes (see Figure 1), 6 distortions types and 4 distortion
levels. These particular scenes were chosen based on their
likelihood to provoke change blindness, which was estimated
subjectively according to their ”complexity” (significant high
frequency content, lack of regularities, etc). Change blindness
is indeed known to occur when global or local scene statistics
are disrupted so that this disruption becomes part of the gist
of the altered image (see Figure 2 in [2]). Disruptions of local
statistics in complex textures are however difficult to perceive
and therefore yield change blindness [16]. The selected dis-
tortion types were:

• Additive noise in color components,

• Masked noise,

• Non eccentricity pattern noise,

• Mean shift (intensity shift),

• Contrast change,

• Change of color saturation.



Fig. 2. Screenshots from sessions 1 (left) and 2 (right). Note that these were cropped for better readability.

These were chosen based on similar precepts, but also due
to the fact that they tend to be more difficult to predict for
current IFA models than other distortions in the database (see
Table 2 in [17]).

Finally, distortion levels 1 to 4 (out of 5) were selected,
therefore omitting the worst cases of degradations. The rea-
son for this choice is that the higher the distortion level, the
less likely the occurrence of change blindness.

2.3. Participants

A total of 25 observers participated to the experiment (15 in
NZ, 10 in Norway). They all had to pass a Ishihara test prior
to the experiment in order to ensure that they had colour-
normal vision. Those who needed glasses or contact lenses
were asked to wear them during the experiment. Ages ranged
between 24 and 54, about 80% of participants were male and
various cultural backgrounds were represented. None of them
was given any indications as to the actual goals of the exper-
iment prior to it. A screening based on the method described
in [18] revealed that all observers were valid.

2.4. Viewing conditions

We used Eizo ColorEdge displays (CG2420 in New Zealand
and CG246W in Norway), both 61cm/24.1” and calibrated
with an X-Rite Eye One spectrophotometer for a colour tem-
perature of 6500K, a gamma of 2.2 and a luminous inten-
sity of 80cd/m2. Both experiments were carried out in a dark
room, and participants were given about 20 seconds to adapt
to the obscurity after they had been given instructions and the
lights had been switched off. The distance to the screen was
set to approximately 50cm.

3. RESULTS

Intuitively, we can assume that the second session would lead
to more severe ratings (i.e. corresponding to lower image fi-

delity) as it is meant to emphasise image differences more
than in the first one. Additionally, one can expect a smaller
intraobserver variability in session two, assuming that change
blindness (which occurs only in session 1) can affect a person
differently whether it is the first time they observe a partic-
ular image pair or not. Finally, as mentioned previously, we
have reasons to believe that current IFA models would per-
form better on the data gathered from session 2 than that from
session 1, due to the fact that they fail to account for change
blindness. We will now verify whether these assumptions are
valid or not.

3.1. Did the second session yield more severe ratings?

In order to compare ratings from both sessions, we used the
sign test for the following null hypothesis (NH): ”The differ-
ence between ratings from session 1 and session 2 has zero
median”. Overall, for all observers and stimuli, a one-sided
test rejects the null hypothesis at the 98% confidence level.
A Wilcoxon signed rank test also rejects (at 99% confidence
level) the NH that the difference between ratings from the two
sessions comes from a distribution with zero median. Note
that, unlike the sign test, the Wilcoxon signed rank test as-
sumes that the difference between ratings follows a symmet-
rical distribution and is therefore more restrictive. For this
reason, we chose to report only results from the sign test (at
the 95% confidence level) in the remainder of this section.

Out of the six distortions types considered, results from
only three of them (Non eccentricity pattern noise, Mean shift
and Contrast change) led to reject the NH. Looking at each
observer individually, results from a majority of 16 of them
also led to a rejection of the NH. Two of them actually gave
significantly less severe ratings in session 2, which could be
explained by the fact that the way change blindness affected
them in session 1 led them to hallucinate image differences,
as reported in a recent study [16].



Additionally, we computed the Spearman’s Rank-Order
Correlation Coefficients (SROCC) between ratings from the
two sessions. The average (over all observers) SROCC is as
low as 0.364, with a standard deviation σ of 0.136 and a max-
imal value of 0.672. On the other hand, if we look at the aver-
age rating over all observers for each image pair, the resulting
mean opinion scores yielded an SROCC of 0.562. These re-
sults confirm that the correlation between the results from the
two sessions is low.

In conclusion, the second session yielded significantly
more severe ratings.

3.2. Intraobserver variability

In order to measure the importance of intraobserver variabil-
ity during the experiment, we ensured that each observer had
to rate 10 randomly selected pairs twice in each session. If,
for a given image pair, an observer gave a score of 4 the first
time and 3 the second time (in the same session), we esti-
mated a variability of 20% (1 out of 5) for this particular pair.
The maximal average variability (over the 10 duplicated im-
age pairs) obtained by an observer was 10% in the first session
and 8% in the second. On average over all observers, we ob-
tained 3.52% for both sessions, with standard deviations of
3.23% and 2.33% for sessions 1 and 2 respectively.

These results indicate that there was no significant dif-
ference of intraobserver variability between the two sessions.
They also suggest that change blindness can affect people
similarly whether it is the first time they observe a particu-
lar image pair or not, in the context of IFA.

3.3. Comparison with objective scores

We measured the relationship between between objective
scores from six state-of-the-art IFA models (metrics) and the
subjective ratings obtained in sessions 1 and 2. The models
are the Multi-Scale Colour Image Difference (MS-iCID) [17],
the Visual Saliency Index (VSI) [10], the Feature Similarity
Index with colour component (FSIMc) [19], the PSNR-HA
[20], Multi-Scale Structural SIMilarity index [9] and the
Visual Information Fidelity index (VIF) [21]. This relation-
ship was measured by means of the SROCC after applying a
non-linear regression model to the objective score [21]:

f(x) = θ1

(
1

2
− 1

1 + eθ2(x−θ3)

)
+ θ4X + θ5, (1)

where θi, i = 1, 2, 3, 4, and 5 are the parameters to be be
fitted. Initial parameters are max(subj. scores), min(subj.
scores), median(obj. scores), 0.1, and 0.1. We found how-
ever that results obtained with and without non-linear map-
ping were identical in the case of VSI, FSIMc, MS-iCID and
MS-SSIM.

From the results in Table 1 We observe that the predic-
tion accuracy on subjective ratings from session 2 are higher

for all the metrics. Note that the last three metrics (PSNR-
HA, MS-SSIM and VIF) discard colour information, which
explains that they perform worse than the others. In order to
assess whether this difference is significant or not, we used a
z-test. Note that comparing Spearman correlation coefficients
can be done by treating them as Pearson coefficients and us-
ing Fisher’s z-transform and subsequent z-test [22].

The significance analysis reveals that all metrics except
one (VIF) perform better at predicting the subjective data
from session 2. It is noteworthy to remember that that all
these metrics were calibrated from subjective data obtained
from user studies employing a pairwise comparison setup
such as the one from session 1. Consequently, these results
are even more compelling.

Table 1. Spearman rank order correlation coefficients be-
tween objective and subjective scores for each metric and ses-
sion. (*) indicates that the results from both sessions are sig-
nificantly different according to a z-test at the 95% confidence
level.

Session 1 Session 2
MS-iCID* 0.567 0.753

VSI* 0.559 0.740
FSIMc* 0.358 0.673

PSNR-HA* 0.460 0.637
MS-SSIM* 0.172 0.495

VIF 0.199 0.306
MOS from TID 0.697 0.432

4. CONCLUSIONS AND FUTURE WORK

We provided evidence that the faulty communication between
early vision and visual working memory, which gives rise
for instance to change blindness, has a significant influence
on observers opinion of image quality in a pairwise compar-
ison task. While several existing computational models of
image quality assessment have demonstrated excellent pre-
diction abilities, we argue that one of the reasons why they
can only provide a partial understanding of the way people
perceive image quality is that they fail to account for what
happens beyond early vision. We designed and carried out a
user study, the results of which demonstrated that observers
made significantly more severe judgments when reliance on
working memory was minimal, suggesting indeed an effect
of change blindness in the typical pairwise comparison setup.
Furthermore, a comparison of the efficiency of six state-of-
the-art IFA models revealed that five of them perform signifi-
cantly better at predicting results obtained also when reliance
on working memory was minimal. In conclusion, we recom-
mend that visual short-term memory be accounted for in the
design of novel image quality metrics.
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