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Abstract

Over the past decade, modern search engines have made significant progress
towards better understanding searchers’ intents and providing them with more
focused answers, a paradigm that is called “semantic search.” Semantic search
is a broad area that encompasses a variety of tasks and has a core enabling data
component, called the knowledge base. In this thesis, we utilize knowledge bases
to address three tasks involved in semantic search: (i) query understanding, (ii)
entity retrieval, and (iii) entity summarization.

Query understanding is the first step in virtually every semantic search sys-
tem. We study the problem of identifying entity mentions in queries and linking
them to the corresponding entries in a knowledge base. We formulate this as
the task of entity linking in queries, propose refinements to evaluation measures,
and publish a test collection for training and evaluation purposes. We further
establish a baseline method for this task through a reproducibility study, and
introduce different methods with the aim to strike a balance between efficiency
and effectiveness.

Next, we turn to using the obtained annotations for answering the queries.
Here, our focus is on the entity retrieval task: answering search queries by re-
turning a ranked list of entities. We introduce a general feature-based model
based on Markov Random Fields, and show improvements over existing base-
line methods. We find that the largest gains are achieved for complex natural
language queries.

Having generated an answer to the query (from the entity retrieval step), we
move on to presentation aspects of the results. We introduce and address the
novel problem of dynamic entity summarization for entity cards, by breaking
it into two subtasks, fact ranking and summary generation. We perform an
extensive evaluation of our method using crowdsourcing, and show that our
supervised fact ranking method brings substantial improvements over the most
comparable baselines.

In this thesis, we take the reproducibility of our research very seriously.
Therefore, all resources developed within the course of this work are made
publicly available. We further make two major software and resource contribu-
tions: (i) the Nordlys toolkit, which implements a range of methods for semantic
search, and (ii) the extended DBpedia-Entity test collection.
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Chapter 1

Introduction

Over the past decade, web search has undergone a major change, from “ten blue
links” towards understanding searchers’ intent and providing them with more
focused responses, a paradigm that is referred to as semantic search. Google,
for instance, announced its attempt of becoming a “knowledge engine” rather
than of an “information engine” in 2012 [2]. It currently serves direct answers
to a large portion of queries that are centered around entities; an example is
shown in Figure 1.1. Apple Siri, Google Now, Microsoft Cortana, and Amazon
Alexa are other examples of semantic search systems, where search tasks are
performed through a natural language interface.

Semantic search is a broad area that encompasses a variety of tasks and
techniques. It has a core enabling data component, called the knowledge base.
A knowledge base is a structured repository of entities (such as people, or-
ganizations, and locations), containing information about their attributes and
their relationships to other entities. Specifically, in this thesis, we utilize knowl-
edge bases to address three tasks involved in semantic search: (i) query un-
derstanding, (ii) entity retrieval, and (iii) entity summarization. Overall, this
thesis presents methods, tools, and datasets for performing semantic search over
knowledge bases. In the remainder of this chapter, we provide a brief introduc-
tion to knowledge bases, followed by a research outline and thesis overview.

1
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Einstein family - Wikipedia
https://en.wikipedia.org/wiki/Einstein_family
The Einstein family is the family of the renowned physicist Albert Einstein (1879–1955). ... 5 Maria
"Maja" Einstein (Albert's sister); 6 Lieserl Einstein (Albert's daughter) ... Pauline Einstein (née Koch)
(8 February 1858 – 20 February 1920) was the .... His brother Hans Albert Einstein believed that his
memory and cognitive ...
Einstein family table ·  Pauline Koch (Albert's mother)

What Is Known About Albert Einstein's Family? - Biography
biography.yourdictionary.com › ... › What Is Known About Albert Einstein's Family?
His mother was Pauline Einstein. ... Einstein married a woman named Mileva Maric. ... They had two
more children together: Hans Albert Einstein in 1904 and ...

Albert Einstein Family - Shmoop
www.shmoop.com › Biography › Albert Einstein › Facts
Smart, fresh Albert Einstein family history by PhDs and Masters from Stanford, ... Son: Hans Albert
Einstein, 1914-1973, professor of hydraulic engineering, ... Grandson (son of Hans Albert): Bernhard
Caesar Einstein, 1930-, physicist, five children ... Granddaughter (adopted daughter of Hans Albert):
Evelyn Einstein, 1941-, ...

Einstein Was A Formidable Genius, But What About His Kids? - Forbes
www.forbes.com/sites/.../einstein-was-a-formidable-genius-but-what-about-his-kids/
Aug 16, 2016 - Why didn't Einstein's descendants inherit Einstein's IQ? This question ... The thing you
have to understand is that the Einstein family has been plagued with health problems. You see ... Then
you have Hans Albert Einstein.

Albert Einstein was a German-born theoretical physicist. He developed
the theory of relativity, one of the two pillars of modern physics. Einstein's
work is also known for its influence on the philosophy of science.
Wikipedia

Born: March 14, 1879, Ulm, Germany

Died: April 18, 1955, Princeton, New Jersey, United States

Spouse: Elsa Einstein (m. 1919–1936), Mileva Marić (m. 1903–1919)

Siblings: Maja Einstein

Children: Eduard Einstein, Lieserl Einstein, Hans Albert Einstein

More images

Theoretical physicist

Albert Einstein

All Images Videos News Shopping ToolsMore Settings

einstein family

Figure 1.1: Google search results for the query “einstein family.” Besides the
ranked list of documents, two other components (extracted from a knowledge
base) are presented: (i) direct answer (top marked area), and (ii) entity card,
(bottom marked area).

1.1 Knowledge Bases

Knowledge bases (KBs) organize information about entities in a machine-readable
form. Entities are “uniquely identifiable objects or things (such as persons, orga-
nizations, and places), characterized by their types, attributes, and relationships
to other entities” [10]. Each entity in the knowledge base is represented by a
unique identifier, and the facts and relationships of entities are stored in a stan-
dard form. This structured form of knowledge is the underlying idea behind the
Semantic Web [24]. KBs also enable answering semantically rich queries. Take,
for example, the query “female german politicians,” which searches for entities
of type politician, with gender attribute of female, and birth place of Germany.



3 1.2. Research Outline and Questions

Search systems such as Google [63], Bing,1 Facebook,2 and Linkedin3 build and
use their own knowledge bases to answer such queries.

General purpose knowledge bases (often built based on encyclopedic knowl-
edge) got their boost in the late 2000s; prominent examples include Free-
base [30], Wikidata [191], YAGO [180], and DBpedia [6]. Freebase, launched
in 2007, was the largest publicly available knowledge base, and was built based
on the data collected from Wikipedia as well as from community contributions.
With the shut down of Freebase in 2014, the content of Freebase was set to be
transferred to Wikidata, which is another collaborative knowledge base by the
Wikimedia Foundation [155]. YAGO, on the other hand, is an automatically
generated knowledge base, which combines information from Wikipedia, Word-
Net and GeoNames.4 DBpedia is the most popular and prominent knowledge
base and is considered as a central interlinking hub in the Linked Open Data
(LOD)5 cloud [6]. It is built based on a framework that extracts structured
information from Wikipedia articles and turns it into a knowledge base.

Each entity in a knowledge base is associated with a number of facts. The
entity facts are often stored as RDF triples <subject, predicate, object>,
where the object is a literal or a URI (link to another entity); see for exam-
ple Figure 1.2. This structured representation of entities has various benefits
for semantic search systems. It enables processing and answering of complex
queries, such as “founder of intel” or “physicists of the 20th century.” It can
also be used to generate succinct summaries of entities, including key facts and
related entities, as often seen in entity cards (see Figure 1.1). In the course of
this thesis, we incorporate DBpedia as our main knowledge base and use (same-
as) links to Freebase whenever needed. As a notational convenience, we shall
typeset entities in small caps, e.g., Albert Einstein.

1.2 Research Outline and Questions

The central research theme governing this thesis is addressing semantic search
tasks through knowledge bases. To this end, we first focus on understanding
users’ information needs by semantically annotating search queries. We then

1https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
2http://www.insidefacebook.com/2013/01/14/facebook-builds-knowledge-graph-

with-info-modules-on-community-pages/
3https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-

knowledge-graph
4http://www.geonames.org/
5http://linkeddata.org/
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foaf:name                       Albert Einstein 
rdfs:comment                    Albert Einstein was a German-born  
                                theoretical physicist who developed the  
                                general theory of relativity, one of the 
                                two pillars of modern physics.[…] 
dbo:birthDate                   1879-03-14 
dbo:birthPlace                dbpedia:Ulm 
                                dbpedia:German_Empire 
                                dbpedia:Kingdom_of_Württemberg 
dbo:deathDate                   1955-04-18 
dbo:deathPlace                  dbpedia:Princeton,_New_Jersey 
                                dbpedia:United_States 
dbp:shortDescription            dbpedia:Physicist 
dbp:doctoralAdvisor             dbpedia:Alfred_Kleiner 
dbp:ethnicity                   Jewish 
dbp:residence                   Germany 
                                Italy 
                                Switzerland 
                                Austria 
                                Belgium 
                                United states

ALBERT EINSTEINALBERT EINSTEIN

Figure 1.2: An excerpt from the DBpedia knowledge base for the entity Al-

bert Einstein; i.e., predicate-object pairs for triples, where the subject is
dbpedia:Albert Einstein.

incorporate these semantic annotations to improve result ranking. Finally, we
concentrate on result presentation, and specifically on summarizing entity facts
for “entity cards,” the knowledge panels that are typically presented at the
right column of search engine result pages. Below we detail each of these tasks,
together with the research questions we address.

1.2.1 Query Understanding

In many search systems, users express their information needs using free text,
i.e., keyword or natural language queries. It is then the search engine’s task to
go beyond the query terms and identify the underlying intent of the queries, the
process that is referred to as query understanding [55]. This process is the first
step in virtually every search scenario, and is of great importance in semantic
search systems. We therefore dedicated a great deal of attention to this specific
task.

The general problem of query understanding has been approached from a
number of different angles, just to mention a few: segmenting queries into mean-
ingful phrases [23, 84, 181], recognizing named entities in queries [81], identi-
fying the target type(s) of queries [11], and annotating queries with specific
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entities [43]. Among these, entity annotation of queries has received signifi-
cant attention recently [75], and has been incorporated in various information
retrieval tasks [58, 175, 197, 205].

Identifying entity mentions in text and linking them to the corresponding
entries in a reference knowledge base is referred to as the problem of entity
linking in queries (ELQ). While there is a large body of work on entity linking
in documents, entity linking in queries poses new challenges due to the limited
context the query provides, coupled with the efficiency requirements of an online
setting. A fundamental difference between these two tasks is that entity men-
tions in queries cannot always be disambiguated, and a mention can possibly
be linked to multiple entities. Consider, for example, the query “france world
cup 98,” in which the term “france,” can be linked to two entities: France and
France National Football Team. This calls for a methodological depar-
ture from the traditional entity linking task. We start by asking the following
research question:

RQ1 How can the inherent ambiguity of entity annotations in queries
be handled and evaluated?

We discuss different ways to deal with query ambiguity and establish entity
linking in queries as the task of finding entity linking interpretation(s). We
propose refinements in the evaluation measures and introduce a test collection
for this task. We then move on to establishing a baseline for this task. Our
next research question is:

RQ2 How does a state-of-the-art entity linking approach perform on
the ELQ task?

We select TAGME [69] as a state-of-the-art entity linking system and show
systematically that it can be generalized to the task of entity linking in queries.
After establishing the task, the evaluation measures, the test collection, and the
baseline, we turn to developing methods specifically for the ELQ task. We ask:
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RQ3 How should entity linking in queries be performed to achieve high
efficiency and effectiveness?

We divide the ELQ task into two main steps: (i) candidate entity ranking and
(ii) disambiguation, and explore both unsupervised and supervised alternatives
for each step. The resulting four combinations of the methods are then compared
to each other with respect to efficiency and effectiveness. Based on an extensive
analysis, we provide general recommendations for effective and efficient entity
linking in queries.

1.2.2 Entity Retrieval

Once we shed some light on how to understand queries via entity annotations,
we turn to using these annotations for answering the queries. The task that we
focus on here is entity retrieval : answering search queries by returning a ranked
list of entities. The basic premise of entity retrieval is that some information
needs are better answered by returning specific entities instead of just any type
of documents [137]. Take for example the queries “eiffel,” “vietnam war movies,”
or “Apollo astronauts who walked on the Moon,” which clearly look for specific
entities. Figure 1.1 illustrates how entity retrieval is used in a commercial search
engine to provide direct answers; see the top marked area.

There is an extensive body of work on entity retrieval, with a broad va-
riety of models and algorithms for matching query terms against entities; see
e.g., [27, 47, 111, 147, 148, 157, 210]. We postulate that entity retrieval can be
improved by incorporating semantic annotations of the queries into the retrieval
model. Some prior work performed in the context of the INEX-XER [59] evalua-
tion campaign lends credence to our assumption [15, 107, 162]; these studies use
target entity types of queries, provided by searchers as part of the definitions
of information needs. We, on the other hand, aim to leverage automatically
extracted entity annotations of queries into the retrieval model. This is a par-
ticularly challenging task due to the inherent uncertainty involved with entity
annotations, and leads us to the following research question:

RQ4 How to exploit entity annotations of queries in entity retrieval?
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The answer to this question should be a model that can handle different types of
queries, including named entity queries (e.g., “Madrid”), keyword queries (e.g.,
“Szechwan dish food cuisine”), list queries (e.g., “Formula one races in Eu-
rope”), and natural language queries (e.g., “Which organizations were founded
in 1950?”). Entity annotations may contribute differently in answering differ-
ent types of queries: while named entity queries seek a particular entity that
is mentioned in the query, other types of queries are often about some specific
relation or attribute of the mentioned entity. We develop a generative model
that can be applied on top of several term-based models and can deal with the
heterogeneity of queries.

1.2.3 Entity Summarization

As the last research topic of this thesis, we move on to presentation aspects
of search results. Specifically, we focus on generating content for entity cards,
which are being used frequently in modern web search engines (see Figure 1.1).
Entity cards are presented in response to an entity-bearing query and offer a
concise overview of an entity directly on the results page. It has been shown
that entity cards, regardless of their topic, can increase searcher engagement
with organic web search results [33]. When these cards are relevant to the
query, users can more easily find the answers they were looking for and can
accomplish their tasks faster [116].

Entity cards are composed of various elements, one of them being the entity
summary: a selection of facts describing the entity from an underlying knowl-
edge base. Our goal is to generate these summaries, the task that is referred
to as entity summarization. Summaries on entity cards play a dual role: (i)
they provide a succinct overview of entity facts from the knowledge base, and
(ii) they directly address users’ information needs. Consider for example, the
summary of Albert Einstein for two queries “einstein family” and “einstein
awards”: one should be about Albert Einstein’s awards and education, and the
other about his family. A particular challenge in generating such summaries is
selecting both important and relevant facts. A summary of only important facts
is diverse, but may not reflect users’ information need. On the other hand, a
summary containing only relevant facts to the query is biased and fails in pro-
viding a concise overview of the entity. This calls for striking a balance between
query bias and fact diversity in generating the entity summaries. Additionally,
rendering the summary on an entity card is more involved than simply display-
ing a ranked list of facts, and some presentation aspects need to addressed. Our
leading research question in this area is:
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RQ5 How to generate and evaluate factual summaries for entity cards?

Addressing this research question involves a precise formulation of the problem,
followed by developing methods for generating summaries and for evaluating
them. We formulate two subtasks of fact ranking and summary generation,
where the former ranks facts with respect to importance and/or relevance, and
the latter renders ranked facts as a summary to be displayed on the entity card.
The evaluation methodology of the fact ranking subtask includes generating
a test collection via crowdsourcing, and comparing it to ranked entity facts
generated by our proposed approach (using standard rank-based measures). For
evaluating the summary generation subtask, we perform side-by-side evaluation
of generated summaries via crowdsourcing and assess their quality by counting
user preferences.

1.3 Contributions

We now summarize the main contributions of this thesis, which fall into two
categories: (i) theoretical and empirical contributions, and (ii) software and
resource contributions.

Theoretical and Empirical Contributions

C1 Revisiting the task definition, evaluation measures, and test col-
lections for entity linking in queries.
We differentiate between the two seemingly similar tasks of semantic link-
ing, and entity linking in queries, discuss current evaluation methodol-
ogy, and propose refinements. We examine publicly available datasets for
these tasks and introduce a new manually curated dataset for entity link-
ing in queries. To further deepen the understanding of task differences,
we present a set of approaches for effectively addressing these tasks, and
report on experimental results.

C2 Establishing a baseline for entity linking in queries from a state-
of-the-art entity linking approach.
We study the TAGME [69] entity linking system through a reproducibility
study and provide insights on how it can be used as a baseline for entity
linking in queries. Within this study, we also formulate lessons learned



9 1.3. Contributions

about reproducibility, which were employed in the rest of the research in
this thesis.

C3 Presenting methods for efficient and effective entity linking in
queries.
We propose four different methods for entity linking in queries, and com-
pare them with respect to both efficiency and effectiveness. Based on an
extensive analysis, we show that the best overall performance (in terms
of efficiency and effectiveness) can be achieved by employing supervised
learning for ranking entities, and further tackling the entity disambigua-
tion by an unsupervised algorithm.

C4 Introducing a theoretical framework for incorporating entity an-
notations of queries into entity retrieval models.
We present a framework that brings entity retrieval and entity linking to-
gether and formulate a new probabilistic component that can be applied
on top of any term-based retrieval model that can be instantiated as a
Markov Random Field model. Our approach outperforms existing state-
of-the-art ad hoc entity retrieval models by over 6%, and is especially
beneficial for complex and heterogeneous queries, improving performance
by up to 16% in terms of MAP (all improvements are relative).

C5 Presenting methods to generate and evaluate dynamic factual
summaries for entity cards.
We introduce and formalize the task of dynamic entity summarization for
entity cards, and break it down to two specific subtasks: fact ranking
and summary generation. Our proposed method for fact ranking brings
over 16% relative improvement over the most comparable state-of-the-art
baseline in terms of NDCG@10. We perform an extensive user preference
evaluations and show that users prefer dynamic summaries (containing
both important and relevant facts) over static importance- or relevance-
based summaries. We further show that presentation aspects have a major
impact on the perceived quality of summaries and thus these deserve fur-
ther attention.

Software and Resource Contributions

C6 DBpedia-Entity test collection.
We create and publish the DBpedia-Entity v2 test collection. This data
set consists of around 500 heterogeneous queries, which were previously
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synthesized by Balog and Neumayer [12] from different evaluation cam-
paigns (DBpedia-Entity v1). Relevance judgments are collected for three
semantic search tasks: entity retrieval, entity summarization, and target
type identification.

C7 Nordlys toolkit.
We develop and introduce Nordlys, a toolkit that implements a range
of methods for entity-oriented and semantic search, including the ones
presented in this thesis. It is available as a Python library, as a command
line tool, as a RESTful API, and as a graphical web user interface.

1.4 Thesis Overview

This section presents the outline of the thesis, followed by reading direction. As
illustrated by Figure 1.3, the thesis starts with the introduction and background
chapters, followed by seven technical chapters (Chapters 3–9), and concluding
remarks in Chapter 10.

Chapters 1–2 provide introduction and background for the rest of the thesis.
Chapter 1 includes motivation, research questions, contributions, and origins of
the thesis. Chapter 2 reviews the fundamental concepts of information retrieval
and the state-of-the-art on semantic search.

Chapters 3–5 cover our work related to query understanding. Chapter 3
discusses the task of entity linking in queries and evaluation measures. Chapter
4 establishes a baseline for the task of entity linking in queries, and Chapter 5
describes the proposed methods for addressing this task.

Chapter 6 presents a method for incorporating entity annotations of queries
into the retrieval process.

Chapter 7 investigates generating query-dependent summaries for entity cards.

Chapters 8–9 describe the resources developed in the course of this research.
Chapter 8 presents the DBpedia-Entity v2 test collection, while Chapter 9 de-
tails Nordlys, our semantic search toolkit.
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Figure 1.3: Overview of the thesis organization.

Chapter 10 revisits the research questions addressed in this thesis and pro-
vides an outlook on future research.

Readers familiar with information retrieval and semantic search may skip
Chapter 2. The query understanding (Chapters 3-5), entity retrieval (Chapter
6), and entity summarization (Chapter 7) parts can be read independently of
others. The resources part (Chapters 8-9) considers Chapters 5-7 as prerequisite.

1.5 Origins

The content of this thesis builds upon a number of publications. Some of these
publications are directly included [76, 91–98], while some others indirectly con-
tributed to advancing the thesis [88–90]. Below we list these publications and
their relevance to the thesis.

P1 Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Entity Link-
ing in Queries: Tasks and Evaluation, In proceedings of ACM SIGIR
International Conference on the Theory of Information Retrieval (ICTIR
’15), pages 171-180, 2015.
[Related to RQ1 and contribution C1; included in Chapter 3.]
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P2 Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. On the re-
producibility of the TAGME Entity Linking System, In proceed-
ings of 38th European Conference on Information Retrieval (ECIR ’16),
pages 436-449, 2016.
[Related to RQ2 and contribution C2; included in Chapter 4.]

P3 Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. A Greedy
Algorithm for Finding Sets of Entity Linking Interpretations in
Queries, In proceedings of SIGIR 2014 workshop on Entity Recognition
and Disambiguation Challenge (ERD), pages 75-78, 2014.
[Related to RQ3 and contribution C3; included in Chapter 5.]

P4 Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Entity Link-
ing in Queries: Efficiency vs. Effectiveness, In proceedings of 39th
European Conference on Information Retrieval (ECIR ’17), pages 40-53,
2017.
[Related to RQ3 and contribution C3; included in Chapter 5.]

P5 Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Exploiting
Entity Linking in Queries for Entity Retrieval, In proceedings of
ACM SIGIR International Conference on the Theory of Information Re-
trieval (ICTIR ’16), pages 209-218, 2016.
[Related to RQ4 and contribution C4; included in Chapter 6.]

P6 Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Dynamic
Factual Summaries for Entity Cards, In proceedings of 40th ACM
SIGIR conference on Research and Development in Information Retrieval
(SIGIR ’17), pages 773-782, 2017.
[Related to RQ5 and contribution C5; included in Chapter 7.]

P7 Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisztian Balog, Svein
Erik Bratsberg, Alexander Kotov, and Jamie Callan. DBpedia-Entity
v2: A Test Collection for Entity Search, In proceedings of 40th ACM
SIGIR conference on Research and Development in Information Retrieval
(SIGIR ’17), pages 1265-1268, 2017.
[Related to contribution C6; included in Chapter 8.]

P8 Faegheh Hasibi, Krisztian Balog, Dario Garigliotti, and Shuo Zhang. Nordlys:
A Toolkit for Entity-Oriented and Semantic Search, In proceedings
of 40th ACM SIGIR conference on Research and Development in Infor-
mation Retrieval (SIGIR ’17), pages 1289-1292, 2017.
[Related to contribution C7; included in Chapter 9.]
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The following publication is related to the contribution C6 and is partly
included in Chapter 8:

P9 Dario Garigliotti, Faegheh Hasibi, and Krisztian Balog. Target Type
Identification for Entity-Bearing Queries, In proceedings of 40th
ACM SIGIR conference on Research and Development in Information Re-
trieval (SIGIR ’17), pages 845-848, 2017.

These papers are not directly related to this thesis, but brought insights in
the broader research area of semi-structured data and knowledge bases.

P10 Faegheh Hasibi. Indexing and Querying of Overlapping Structures,
In proceedings of 36th ACM SIGIR conference on Research and develop-
ment in Information Retrieval (SIGIR ’13), pages 1144, 2013.

P11 Faegheh Hasibi and Svein Erik Bratsberg. Non-hierarchical Struc-
tures: How to Model and Index Overlaps?, In Balisage-The Markup
Conference 2014.

P12 Faegheh Hasibi, Dario Garigliotti, Shuo Zhang, Krisztian Balog. Super-
vised Ranking of Triples for Type-Like Relations (The Cress
Triple Scorer at WSDM Cup 2017), In WSDM Cup 2017.





Chapter 2

Background

In this chapter we provide an overview of conventional and modern information
retrieval and set the stage for the rest of the research chapters in this thesis. We
start by describing the fundamental steps and techniques used for conventional
information retrieval in Section 2.1. We then move on to modern information
retrieval and review knowledge bases and semantic search techniques in Sec-
tion 2.2.

2.1 Conventional Information Retrieval

Information Retrieval (IR) is a vast research area that has been around since
1950, when the term was coined by Calvin Mooers [144]. A number of definitions
has been proposed for information retrieval; perhaps the most commonly used
one, that is still accurate today, was presented by Gerard Salton in 1968 [173]:
“Information retrieval is a field concerned with the structure, analysis, orga-
nization, storage, searching, and retrieval of information.” This definition, in
layman words, regards any computer-based search application as information
retrieval; examples include desktop search, multimedia search, question answer-
ing systems, or web search engines, which are the most widely used application
of information retrieval.

For a large part of the past 50 years, the primary focus of information re-
trieval has been on documents; the common scenario being that a user submits
a query through a search box and a search system returns an ordered list of doc-
uments that contain the answer to the sought information needs. Identifying

15
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Retrieval

Ranked documents

Query 
processing

Document 
processing

Figure 2.1: High-level building blocks of a conventional IR system

these documents, among all available ones, requires a mechanism that can match
the queries against documents and assign each document a relevance score. The
conventional and successful matching mechanism is based on lexical matching of
query words against documents; i.e., modeling queries and documents based on
their terms. The term “bag of words” is used when a text is represented by an
unordered set of words, without considering term relations or meaning. Some
other advanced models take phrases and term proximities into consideration.
In this chapter, we use the term “conventional information retrieval” to refer to
IR systems that consider term-based representations to model query-document
relevance.1 These systems are composed of some basic building blocks such
as document processing (Section 2.1.1), query processing (Section 2.1.2), and
retrieval modeling (Section 2.1.3); see Figure 2.1 for illustration. Another core
aspect of IR is evaluation, which we describe in Section 2.1.4.

2.1.1 Document Processing

Document processing is a major component of an IR system. It is responsible for
collecting documents and converting them to a structure that enables efficient
search and lookup. There are three steps involved in document processing: (i)
text acquisition, (ii) text transformation, and (iii) index creation [54]. Below
we describe each of them.

1Relevance is a fundamental, yet loose concept in information retrieval. According to Croft
et al. [54] “a relevant document contains the information that a person was looking for when
she submitted a query to a search engine.”
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Text acquisition. In many cases, text acquisition is only about using some
existing collection. In most real world scenarios, however, this involves discov-
ering new documents and updating existing ones; in web search, this process is
known as web crawling. Basically speaking, a web crawler starts from a set of
seed pages and recursively visits new pages following the links of visited pages.
While seemingly simple, this is a significantly challenging process and there are
certain desiderata that must be fulfilled by a crawler, such as robustness (be-
ing resilient to link traps), freshness (operating in continuous mode), politeness
(respecting visiting rate policies), and efficiency (making efficient use of system
resources) [133].

Text transformation. Once the documents are acquired, they need to be
transformed to basic indexing units (a.k.a. index terms). This process consists
of several linguistic transformations of the text, which are as follows:

Tokenization converts the input text into a sequence of tokens. A tok-
enizer is a language-specific component that deals with word separators
and special characters. In English, for example, it handles capital char-
acters, hyphens, apostrophes, and periods. Tokenization may also benefit
from some syntactic information, obtained from part-of-speech tagging.

Stopping eliminates common words that contribute very little in matching
documents against queries; examples include the, a, for, and to.

Stemming aims to derive the stem of the words; e.g., “laugh” for “laugh-
ter,” “laughing,” and “laughed.” This process may bring little improve-
ments to retrieval effectiveness. If it is done aggressively, it can even
hurt retrieval performance. Therefore, stemming may be ignored for some
search applications.

Index creation. In the final stage of text processing, terms and other infor-
mation about the documents will be stored in an index, a time and space efficient
structure that enables storing and updating documents, as well as looking up
information about terms and documents. The statistics that are stored in the
index are used in the retrieval component.

2.1.2 Query Processing

Queries are the users’ means of interacting with a search engine and express-
ing their information needs. The simplest query processing step is to perform



Chapter 2. Background 18

tokenization, stopping, and stemming. These operations, however, should be
performed in similar vein as for documents, so that the generated terms can be
compared against the ones from the documents.

Spell checking is another query processing step, and has major effect on
retrieval performance. Around 10–15% of web search queries contain spelling
errors [57]; some can be easily captured by a standard spelling dictionary (e.g.,
“mashroom picking”), but others are related to the specific content of the Web,
such as people’s names, websites, or products (e.g., “stephen roberson”) [54].
Depending on the available data sources and application, spell corrections can
be performed using query logs, document collections, and trusted dictionaries.

Queries, in many cases, are poor representations of users’ information needs.
A concept may be referred to by different terms (e.g., “car” and “automobile”),
or a single term may match different concepts (e.g., “Jaguar” can refer to a car
or an animal). Several methods have been proposed to overcome such issues, a
large body of them fall under the area of query expansion techniques.

There are two main categories of query expansion techniques: global and
local methods. Using global query expansion techniques, each term is expanded
with related words from a thesaurus. The searchers can manually select the
terms and phrases from a controlled vocabulary (e.g., in the medical domain), or
the search engine itself expands the query terms and offers them to the searchers
to receive their feedback. Since general thesauri contain words about different
aspects of a term, automatic global query expansion techniques are shown to
be less helpful [44, 189]. Local query expansion techniques, on the other hand,
focus on the content of the query and choose the words that are related to the
topic of the query. The well-known pseudo-relevance feedback method expands
the query with the words that occur in the top ranked documents, assuming
that these documents are relevant to the query [118, 130, 207]. Other techniques
use the explicit feedback of the searchers to find relevant documents and extract
the expansion terms.

2.1.3 Document Retrieval

At the core of any IR system, there is a ranking algorithm that ranks documents
with respect to a query based on a retrieval model. Many retrieval models have
been proposed over the past 50 years. In this section, we focus on the “conven-
tional” retrieval models in which the term-based representations of documents
and queries are used for ranking. Specifically, we discuss three classical retrieval
models: the Vector Space Model, BM25, and Language Models. Some of these
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models can be extended to model other features of documents and queries, which
are further described in Section 2.2.

Vector Space Model

The Vector Space Model (VSM) [174] is an intuitive model that has been pro-
posed in the early years of IR research. It is based on Luhn’s similarity crite-
rion [129], which suggests a statistical approach for searching information. VSM
represents queries and documents as n-dimensional vectors in a common vector
space. Formally, a document d and a query q are represented as:

�d = (d1, d2, ..., dn),

�q = (q1, q2, ..., qn),

where n is the number terms in the whole collection, di and qi are the weights of
ith term for the document and the query, respectively. Various term weighting
schemes have been proposed, the most common one being tf-idf. Given a term
t and document d, the tf-idf weight is computed as:

tf-idft,d = tft,d · idft. (2.1)

Here, the tft,d component represents the frequency of term t in document d,
and is usually computed as:

tft,d =
freq(t, d)

n∑
i=1

freq(ti, d)
, (2.2)

where the denominator is a document length normalization factor. The idf
component in Eq. 2.1 stands for inverse document frequency and represents the
discriminating power of a term in the whole collection. The typical definition
of idft is:

idft = log
N

dft
, (2.3)

where dft is number of documents that contain term t (also referred to as doc-
ument frequency). For a rare term, the idf value will be high, reflecting that
fact that lots of information are carried by the term.

Once the vector representations of documents and queries are built, the
similarity of each document to the query can be computed, for example, using
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the cosine similarity:

cos(�d, �q) =
�d · �q

||�d|| × ||�q||
=

n∑
i=1

di · qi√
n∑

i=1

d2i ·
n∑

i=1

q2i

. (2.4)

The vector space model makes no explicit definition of relevance, but implicitly
considers it as the similarity between document and query vectors. One of
the famous extensions of the vector space model is the Rocchio algorithm [171],
which improves retrieval effectiveness based on the concept of relevance feedback
(cf. Section 2.1.2).

BM25

Against the Vector Space Model that uses the similarity between query and
index representations, Robertson [167] made a theoretical statement about rel-
evance based on probability theory, known as Probability Ranking Principle
(PRP). The PRP criterion encourages ranking documents according to proba-
bility of relevance of a document to a query: P (R = 1|q, d). One of the early
probabilistic retrieval models that aimed to estimate this probability was the
Binary Independence Model (BIM). Despite the strong theoretical basis of BIM,
the model performs poorly in empirical settings. It, however, became the foun-
dation of BM25, which is an effective and still widely used retrieval model.

Built upon the binary independence model and the notions of term frequency
and inverse document frequency,2 the BM25 ranking formula for a query q and
document d is defined as:

score(q, d) =
∑
t∈q

tft,d

k1(1− b+ b |d|
avdl ) + tft,d

idft, b ∈ [0, 1], k1 ∈ [0,+∞) (2.5)

where |d| is the document length and avdl is the average document length in
the collection. Based on BIM, the idf component is computed as:

idft = log
N − dft + 0.5

dft + 0.5
. (2.6)

The BM25 model (Eq. 2.5) involves two free parameters, k1 and b, which control
term saturation and document length normalization components, respectively.

2The reader is referred to an IR book [8, 55, 169] for the full theory behind the BM25
model.
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Based on a large number of experiments, the value ranges 0.5 < b < 0.8 and
1.2 < k1 < 2 are shown to yield reasonably good performance across various IR
tasks [168].

Language Models

Language Models (LM) have a long-standing history in the natural language
processing community and have been successfully used for different applications,
such as speech recognition and machine translation. In information retrieval,
language models provide a sound and straightforward theoretical framework for
developing various retrieval models [206], which are shown to provide strong
empirical performance across a wide range of retrieval tasks [117]; examples
include query likelihood [156], length normalized query likelihood [113], and the
Kullback-Leibler (KL) divergence model [115].

One of the popular instances of language modeling is the query likelihood
model. The basic idea is to estimate the probability of relevance of document
d to the query q, i.e., P (d|q). But since documents are of much longer and
provide richer representation of vocabulary words than queries, we apply Bayes’
rule and rewrite the probability as:

P (d|q) = P (q|d)P (d)

P (q)

rank
= P (q|d)P (d). (2.7)

In this transformation, the probability of the query P (q) is the normalization
factor, which can be ignored in most cases. The prior probability P (d) can be
also ignored, as it is often treated as uniform over all documents. Therefore,
the final ranking model boils down to computing the query likelihood P (q|d),
which is computed using the unigram language models. Assuming that θd is
the language model inferred for the document d, the probability of generating
query q from the document model θd is:

P (q|θd) =
∏
t∈q

P (t|θd)tft,q , (2.8)

where tft,q denotes the number of times term t appears in query q. The final
bit of this model is the probability P (t|θd), which can be simply computed as
tft,d/|d|. However, this may result in zero value for probability P (t|θd), thereby
turning the whole P (q|θd) to zero. This is not a desired behavior for document
ranking, as it makes partial matches impossible. To overcome this issue, the
frequency of terms in the whole collection is also taken into account, a technique
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that is called smoothing. According to the Jelinek-Mercer smoothing method,
the probability P (t|θd) is computed as:

P (t|θe) = (1− λ)P (t|e) + λP (t|C), (2.9)

where P (t|d) and P (t|C) are the probability of term t in the document d and
the whole document collection C, respectively. The free parameter λ is in range
[0, 1] and is set empirically (often λ = 0.1).

Another smoothing technique is Dirichlet prior, which defines the probability
P (t|θd) as:

P (t|θd) =
tft,d + μP (t|C)

|d|+ μ
. (2.10)

If we rewrite this equation similar to the Jelinek-Mercer smoothing method, the
lambda coefficients of Eq. 2.9 are defined as the following in Dirichlet smoothing
method:

λ =
μ

|d|+ μ
(1− λ) =

|d|
|d|+ μ

. (2.11)

The μ parameter controls the amount of smoothing, and should be set for each
ranking task; the default values 1500 and 2000 are shown to deliver good per-
formance in various experiments.

Semi-structured Retrieval

There are huge amounts of structured and semi-structured data that need to be
handled by information retrieval systems; examples include HTML and XML
files, patents, blogs, and emails. The term semi-structured retrieval refers to the
models and techniques that are used for searching over semi-structured data.

Prominent retrieval models, like BM25 and language models, are extended
to support multi-field documents. The fielded extension of the BM25 model,
BM25F [170], generates a linear combination of term frequencies across all fields
and then scores the document using the resulting pseudo term frequencies. The
Mixture of Language Models (MLM) [152] is an extension of language models
for semi-structured data. The model considers a separate language model for
each document field and then takes a linear interpolation of these field-level
models. The field weights in these models should be trained or hand-tuned.
The Probabilistic Retrieval Model for Semi-structured data (PRMS) [111] is
an extension of MLM, where the field weights for each query term are inferred
individually, based on collection statistics. The model is shown to deliver su-
perior performance compared to both MLM and BM25F, when there is a dis-
tinctive distribution of terms across all fields [93, 112]. In a follow-up study,
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Kim and Croft [110] incorporated relevance feedback to compute field weights.
The recently developed Fielded Sequential Dependence Model (FSDM) [210] is
a feature-based retrieval model, similar to the Sequential Dependence Model
(SDM) [139], where the document language model of feature functions are com-
puted using the MLM model.

Learning to Rank

Learning to Rank (LTR) refers to the application of machine learning techniques
in information retrieval. LTR models [125] represent the current state-of-the-
art for a variety of IR tasks but their performance is largely dependent on
the amount of training data available. For document retrieval, LTR models
estimate the relevance of documents directly from a set of features, using a model
that has been learned from the training data. The features can be of different
kinds [131]: textual similarities such as BM25 or Language Model scores, link
analysis features like PageRank, number of in- and out-links, and query features
such as query length. There is a wide range of machine learning algorithms
for learning to rank, grouped into three categories of pointwise, pairwise, and
listwise approaches:

Pointwise approaches consider each query-document pair as a single in-
stance, and perform ranking using regression, classification, or ordinal
regression loss functions [125]; i.e., predicting a score for each single docu-
ment, independent of the others. Random Forests (RF) [36] and Gradient
Boosted Regression Trees (GBRT) [74] are popular algorithms from this
category.

Pairwise approaches take pairs of documents and output the relative or-
der between them (thereby casting the ranking task as a binary classifi-
cation problem). Examples include GBRank [209], RankNet [39], Rank-
Boost [73], and RankSVM [104].

Listwise approaches take all documents for a query and return a ranked
list of documents, obtained by direct optimization of an IR evaluation
measure, or optimizing a loss function that is defined for all documents
related to a query. Coordinate Ascent (CA) [140], AdaRank [202], List-
Net [41], and LambdaMART [196] are well-known examples of listwise
models.

In this thesis, we take advantage of RF and GBRT algorithms for ranking tasks.
Below, we briefly describe each of them.
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Random Forests is a specific type of bagging technique that builds a number
of uncorrelated trees using the Classification And Regression Tree (CART) pro-
cedure. In each iteration, the model builds a CART from a bootstrap sample of
instances and m random features. The final prediction is the mean prediction of
the individual trees. The number of iterations and maximum number of features
are two free parameters that should be set empirically. Random forest is a very
popular algorithm, as it is resilient to overfitting, can be easily parallelized, and
most importantly delivers good performance.

Gradient Boosted Regression Trees is a boosting algorithm that sequen-
tially builds a set of low-depth trees and generates the final prediction score by
tree averaging. Unlike random forests, the creation of trees here is not random,
but each tree in every iteration is built to minimize the residual error of the
previous iterations. The model uses stochastic gradient descent to minimize a
loss function, e.g., the squared loss. The number of iterations and the depth of
the trees are free parameters of this model.

2.1.4 Evaluation

Evaluation is a fundamental aspect of information retrieval. Evaluating the
quality of IR systems is most commonly done through experiments and by com-
paring the results against a standard test collection. These collections contain
a number of queries and their corresponding relevance labels, often generated
by human annotators. The Text Retrieval Conference (TREC) is the most
well-known initiative that provides test collections for different IR tasks. Each
TREC workshop consists of a set of tracks; sample tracks of TREC over the re-
cent years include: Web track, entity track, question answering, and open search
track. Other initiatives are INEX, CLEF, and NTCIR, which released different
test collections for tasks such as XML retrieval, cross language retrieval, per-
sonal life log retrieval, mathematical information retrieval, and medical natural
language processing.

Beside test collections, there are also a number of evaluation measures that
quantify the performance of retrieval systems. Below we review two main cate-
gories of evaluation measures, which have been used in the course of this thesis.

Set-based Measures

The most basic measure for evaluating different IR tasks are precision and recall.
Precision is the fraction of retrieved items that are relevant, and recall is the
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fraction of relevant items that are retrieved. Specifically, considering Â as the
set of relevant results according to the ground truth and A as the set of retrieved
results, precision and recall are computed as:

P =
|Â ∩A|
|A|

R =
|Â ∩A|
|Â|

. (2.12)

F-measure combines precision and recall by taking the harmonic mean of the
two measures:

F1 =
1

1
2 (

1
P + 1

R )
=

2PR

P +R
. (2.13)

These measures do not take the order of the results into account and are rarely
considered for ranking problems, but they are widely used for IR-related classi-
fication tasks, such as named entity recognition and entity linking.

Rank-based Measures

In a ranked retrieval context, the quality of the results is measured at different
positions of the ranked list. A natural extension of precision and recall to the
ranking scenarios is to compute them at a given rank position K, denoted by
P@K and R@K. Average Precision (AP) is a single measure that combines
precision at different levels of recall.

AP =
1

|Â|

|Â|∑
i=1

P (Ai), (2.14)

where |Â| is the number of relevant results for the query, and Ai is the set of
retrieval results from the top result until the ith relevant document is observed.
Considering a set of queries Q, Mean Average Precision (MAP) is computed
by taking average of AP over all queries. For many applications, especially
when the relevance judgments are binary, MAP gives a complete overview of
the performance of the system.

For non-binary (or graded) relevance judgments, normalized Discounted Cu-
mulative Gain (nDCG) is used [103]. The central concept in computing nDCG
is “gain,” which represents how much information is gained when a user views
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a document. If the user stops viewing documents at rank p, the cumulative
information gain can be computed as:

CGp =

p∑
i=1

ri, (2.15)

where ri is the gain (or the relevance level) corresponding to the ith retrieved
document. This cumulative gain, however, is deficient in capturing the rank or
position of each retrieved document. To capture this position-based penalty, we
compute the discounted cumulative gain:

DCGp = r1 +

p∑
i=2

ri
log2 i

, (2.16)

where log2 i is the discounting factor that reduces the document’s gain as the
rank increases. Here, the gain of the top ranked document does not need to
be discounted, as it is assumed that the user always sees this document. To
normalize the final value into the range [0, 1], the DCG score at each rank is
divided by the DCG score of the ideal ranking, referred to as IDCG:

nDCGp =
DCGp

IDCGp
. (2.17)

For many applications, nDCG is reported for rank cut-offs 5, 10 or 20; i.e.,
nDCG@5, nDCG@10 or nDCG@20.

2.2 Semantic Search

Semantic search in a nutshell means “search with meaning” [20]. This stands in
contrast with conventional search, where lexical matching of query and docu-
ment terms is the main technique for answering search queries. Semantic search
is a broad field, with many different aspects, ranging from query understand-
ing, to answer retrieval, and result presentation, which can be applied on both
text and knowledge bases [20]. In this section, we focus on the techniques that
use knowledge bases, and briefly explain this core data component of seman-
tic search. We then draw analogy to the main components of conventional
information retrieval systems, and review the techniques related to document
processing, query processing, and retrieval. We further shed some light on the
result presentation aspect of semantic search, and explore some of the currently
trending topics in this area.
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2.2.1 Knowledge Bases

While documents and unstructured text are understandable only by humans,
knowledge bases are meant to be machine understandable form of knowledge.
Knowledge bases(KBs) are repositories of records about entities, their attributes,
and relations to other entities.3 They are the main data components for many
semantic-aware applications, such as semantic search [20], question answer-
ing [22, 203], academic, and product search [61, 200]. Over the past decade, sev-
eral general purpose knowledge bases have been built, such as DBpedia [6, 120],
YAGO [179, 180], NELL [42], OpenIE [17], Freebase [30], andWikidata [68, 191].
The importance of knowledge bases is also seen by commercial search engines;
Google’s Knowledge Vault [63], Bing’s Satori,4 Facebook’s,5 and Linkedin’s6

knowledge graph are only few examples of industrial efforts to constructing
general or domain specific knowledge bases.

The increased interest in knowledge bases may to a large extent be at-
tributed to the emergence of the Semantic Web in the early 2000s. The Semantic
Web, coined by Berners-Lee et al. [24], is the “global Web of machine-readable
data” [25], and brings structure to the content of the Web. The term “Linked
Data” refers to a means that enables reaching the goal of semantic web, and is
in fact the technological framework for building knowledge bases [25]. A large
number of knowledge bases have been created based on the Linked Data prin-
ciples and are interlinked in the Linking Open Data (LOD) cloud.7 LOD is a
community project8 that provides a platform for publishing and linking open
knowledge bases. Figure 2.2 presents the LOD cloud, which currently contains
1, 139 datasets.

Knowledge bases are often stored as RDF triples. Each RDF triple is in
the form of <subject, predicate, object>, where the subject is a URI (link
to another entity), and the object is a URI or a literal value. The predicate
specifies the relation between subject and object and is represented by a URI.
Consider for example the following RDF triples about Albert Einstein from
DBpedia:

3The term “knowledge graph” is exchangeably used to refer to the same concept, with the
explicit focus that the records are represented as a graph.

4https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
5http://www.insidefacebook.com/2013/01/14/facebook-builds-knowledge-graph-

with-info-modules-on-community-pages/
6https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-

knowledge-graph
7http://lod-cloud.net/
8http://linkeddata.org/
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Figure 2.2: The Linking Open Data (LOD) cloud diagram [3] as of June
2017. It presents all the knowledge bases that have been published in Linked
Data format, color-coded by their domain. Freebase, DBpedia, and YAGO are
marked with red circles.

<dbpedia:Albert Einstein dbo:birthDate ‘1879-03-14’>

<dbpedia:Albert Einstein dbo:field dbpedia:Physics>,

where the predicates “Birth data” and “Field” take literal and URI values,
respectively.

Knowledge bases can be constructed automatically (e.g., NELL and OpenIE)
or by the help of humans (e.g., DBpedia, Freebase, Wikidata, and YAGO). For
the first group facts are automatically extracted from text corpora using infor-
mation extraction techniques. These knowledge bases, albeit being of signifi-
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cant accuracy, are still below the quality of man-made knowledge bases [180].
Manually curated knowledge bases are of two types: some are launched as
a community project and are directly built by the help of volunteer annota-
tors (e.g., Wikidata and Freebase); others, like YAGO and DBpedia, are built
by automatically extracting facts from (semi-structured data in) Wikipedia.
These human curated knowledge bases are very popular among researchers, es-
pecially DBpedia, which has received increasing attention over the recent years;
e.g., [12, 135, 138, 145]. It has been around for several years (unlike Wikidata,
which is in its infancy), it is backed by an active community and is regularly up-
dated (unlike Freebase and YAGO), and most importantly covers a wide range
of entities, coupled with quality data.

2.2.2 Document Processing

Document processing in semantic search is mainly about extracting meaning
from documents. One of the early tasks in this area is named entity recogni-
tion (NER), which aims to identify named entities in the text and label each of
them with the most likely class; these classes often being person (PER), location
(LOC), or organization (ORG) [32, 71, 158]. Another task, named entity dis-
ambiguation (NED), assumes that named entities have already been recognized
and seeks to map entity mentions to their corresponding entries in a knowledge
base [38, 86]. The entity linking (EL) task combines these two tasks and fo-
cuses on recognizing entity mentions in the text and linking (disambiguating)
them to entities in a knowledge base. Entity linking is an important research
problem across different communities (such as natural language processing, in-
formation retrieval, and data mining), and has been addressed at different eval-
uation campaigns, including the Knowledge Base Population track (KBP) of
the Text Analysis Conference (TAC) [65, 66], and the Entity Recognition and
Disambiguation Challenge [43].

Early work on entity linking relied on the contextual similarity between the
document and the candidate referent entities [56, 141]. The Wikify! system [141]
performs concept detection by extracting all n-grams that match Wikipedia con-
cepts and then filters them. Their most effective filtering approach utilizes link
probabilities obtained from Wikipedia articles. For the entity disambiguation
step, they use a combination of knowledge-based and feature-based learning ap-
proaches. Cucerzan [56] employs contextual and category information extracted
from Wikipedia and calculates the similarity between the document and candi-
date entities’ pages. Later, Milne and Witten [143] introduced the concepts of
commonness and relatedness, which are generally regarded as two of the most
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important features for entity linking. Commonness is the probability that men-
tion m points to the entity e, and relatedness captures the semantic similarity
between two entities using their incoming and outgoing links in the knowledge
base. They employ a machine learning approach, using commonness and re-
latedness as the main features. In their work, they demonstrate substantial
improvements over prior approaches. DBpedia Spotlight [138] is another en-
tity linking system, which uses the Vector Space Model to disambiguate named
entities.

In contrast to early systems that disambiguate one entity mention at-a-
time, collective entity linking systems exploit the relatedness between entities
jointly and disambiguate all entity mentions in the text simultaneously [87, 99,
114, 176]. The system by Kulkarni et al. [114] exploits the interdependence
between entity linking decisions in a collective manner. This system influenced
TAGME [69, 70], one of the most popular entity linking systems, which has
been widely used by researchers as a black-box entity linker. It finds collective
agreement for the link targets using a voting scheme for a relatedness score.
TAGME was designed specifically for short text snippets such as tweets and
queries, but is also used for long texts such as documents. For long texts, TAG-
ME is significantly more effective than the system of Milne and Witten [143] and
more efficient than the one from Kulkarni et al. [114], while being on a par with
Kulkarni et al.’s system in terms of effectiveness. For short texts, TAGME is
compared to the Milne and Witten’s method, and has demonstrated significant
improvements. The recently developed system by Pappu et al. [153] employs
Conditional Random Fields (CRF), entity embeddings, the forward-backward
algorithm [7], and other techniques from [29] to perform fast multilingual entity
linking in documents.

Since entity linking is a complex process, several attempts have been made
to break it down into standard components and to compare systems in a single
framework [45, 46, 83, 184]. Particularly, Hachey et al. [83] reimplemented
three prominent entity linking systems [38, 56, 188] in a single framework and
found that much of the performance variation between these systems stems
from the candidate entity ranking step (called searcher in their framework).
Ceccarelli et al. [45] developed Dexter, an entity linking framework that provides
implementations of three notable systems: Wikiminer [143], TAGME [69], and
the system developed by Han et al. [87]. GERBIL [184], an extension of BAT-
framework [51], is the other benchmarking framework that has implemented
TAGME in addition to other eleven entity annotation systems. In this thesis, we
extensively study the TAGME entity linking system, and use it for annotating
queries with entities.
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2.2.3 Query Understanding

Query understanding refers to the process of “identifying the underlying intent
of the queries, based on a particular representation” [55]. One main branch of
approaches focuses on determining the “aboutness” of queries by performing a
topical classification of the query contents [40, 101, 122, 177]. Most of these
methods train a classifier to predict the category of web queries.

Query segmentation is another approach for understanding queries, where
the query is divided into phrases, such that each phrase can be considered as
an individual concept [23, 84, 102, 106, 165, 181]. An early approach in this
area is [165], which considers a segment’s frequency and mutual information
between the subsequences of a segment. Mutual information is also used in a
number of subsequent studies; e.g., [102, 106]. Bergsma and Wang [23] employ
supervised learning for query segmentation, using decision-boundary, context,
and dependency features. Later, Hagen et al. [84] proposed a naive, yet fast
method for query segmentation, based on n-gram frequencies and Wikipedia
titles, and showed that it performs comparable to the state-of-the-art.

Another effort for understanding query intents is named entity recognition
in queries (NERQ); i.e., identifying named entities in a query and classifying
them into predefined classes such as “movie” or “music.” The first study in this
area was performed by Guo et al. [81], which employed probabilistic methods
together with a weakly supervised learning algorithm (WD-LDA). Alasiry et al.
[4] proposed a processing pipeline for entity detection in queries, which involves
the following steps: query pre-processing (e.g., spell checking), grammar anno-
tation (POS and ORTH tagging), segmentation, and entity recognition (based
on a small set of manually constructed rules). Importantly, these works are
limited to detecting mentions of entities and do not perform disambiguation or
linking; that follows in the entity linking task for queries.

Entity linking for queries has only recently received attention from the re-
search community. Related work in this area includes the TAGME system [69],
which can be used for annotating short texts, such as queries and tweets. A sem-
inal work for semantic linking in short texts was presented by Meij et al. [136].
The main strategy behind their approach is to first obtain high recall and then
improve precision by employing machine learning. Their method first extracts
all candidate Wikipedia concepts for each n-gram. Then a supervised learning
algorithm with an excessive set of features is used to classify relevant concepts.
Guo et al. [82] also studied microblog texts and employed a structural SVM
algorithm in a single end-to-end task for mention detection and entity disam-
biguation. The work proposed by Blanco et al. [29] addresses semantic linking
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for queries, considering both efficiency and effectiveness, using a probabilistic
approach.

Unlike these works, which revolve around ranking entities for query spans,
the Entity Recognition and Disambiguation (ERD) Challenge [43] viewed entity
linking in queries (ELQ) as the problem of finding multiple query interpreta-
tions. ELQ advances the conventional entity linking task (as it is known for
long texts) and finds set(s) of (semantically related) linked entities, where each
set reflects a possible meaning (interpretation) of the query. Even though it was
one of the main considerations behind the ERD Challenge to capture multiple
query interpretations, only a handful of systems actually attempted to address
that [64, 77, 91, 150]. Out of these, [64] performed best and was the third
best performing system in overall. The winning system of the ERD challenge,
SMAPH [53], “piggybacks” on a web search engine to rank entities, and then
disambiguates them using a supervised collective approach. The other contri-
bution of this work is the GERDAQ dataset, which consists of 1000 queries.

In this thesis, we discuss why entity linking in queries should be addressed as
an interpretation finding task and how the other tasks studied in the literature
are different from it. We further develop a data set for the ELQ task and
investigate the efficiency and effectiveness of different ELQ methods.

2.2.4 Retrieval

Unlike conventional document retrieval, where users’ information needs are ad-
dressed by a ranked list of documents, semantic search techniques offer more
focused responses by returning entities, documents, text snippets, or direct an-
swers. Below we present two aspects of retrieval that are related to the research
in this thesis: entity-enhanced document retrieval and entity retrieval.

Entity-enhanced Document Retrieval

Exploiting entity annotations of documents for improving document retrieval
has been trending recently [34, 58, 67, 121, 126, 197, 198]. This research direc-
tion has been especially boosted by the introduction of the Freebase Annotations
of ClueWeb Corpora (FACC) [75] in 2013. The first study that employed FACC
annotations for ad hoc document retrieval was performed by Dalton et al. [58].
They leverage entity annotations of both documents and queries in a query
expansion technique for improving document retrieval. Their approach takes
annotated queries and documents as input and enriches the query with various
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features extracted from entities in a knowledge base. EsdRank [197], on the
other hand, annotates the query using TAGME and incorporates various fea-
tures in a machine learning framework to tackle document retrieval. Recently,
Raviv et al. [163] and Ensan and Bagheri [67] extended language models to rep-
resent entity annotations of document and queries. Other studies in this area
either employ query expansion techniques [34, 121, 198] or operate in a latent
entity space [126].

Schuhmacher et al. [175] addressed a variant of the ad hoc entity ranking
task for informational queries, which is “close in spirit to ad hoc document
search” [175]. They leveraged entity annotations of queries in a learning to
rank framework by incorporating a set of mention, query-mention, query-entity,
and entity features. They also generated two datasets, consisting of 25 and
22 queries for Robust and ClueWeb12 collections, respectively. In a follow-up
study, Foley et al. [72] presented an approach that employs minimal linguistic
resources and is able to deliver competitive results on the datasets in [175].

Entity Retrieval

Many information needs revolve around entities. This has been observed in
different application domains, including question answering [127], enterprise
search [14], and web search [157]. One main theme in entity retrieval research
concerns the representation of entities; once a term-based representation is cre-
ated, entities can be ranked using traditional retrieval models, much like docu-
ments [9]. Early work, especially in the context of expert search, obtains such
representations by considering mentions of the given entity across the docu-
ment collection [13, 15]. The INEX 2007-2009 Entity Retrieval track (INEX-
XER) [59, 60] studies entity retrieval in Wikipedia, while the INEX 2012 Linked
Data track goes one step further and considers Wikipedia articles together with
RDF properties from the DBpedia and YAGO2 knowledge bases [193]. Much
of the recent work represents entities as fielded documents, extracted from a
knowledge base [12, 27, 210] or from multiple information sources [78].

Entity retrieval models can be categorized into two main groups: semistruc-
tured retrieval models [12, 148, 210] and learning to rank approaches [47, 78]. In
the first category of models, the fielded representations of entities are ranked us-
ing fielded variations of standard document retrieval models, e.g., BM25F [170]
or the mixture of language models [152]. This is the predominant approach for
ad hoc entity retrieval [12, 27, 148, 210]. Neumayer et al. [147] apply MLM for
the ad hoc entity retrieval task over RDF data, where predicates are folded into
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four document fields: name, attributes, in-relations, and out-relations. They
also consider a hierarchical variant of the model that organizes predicates into
a two-level structure with the four main predicate types on the top level and
individual predicates on the bottom level. In a follow-up work, Neumayer et al.
[148] report slightly better results using a considerably simpler instantiation of
the MLM model that considers only two fields: title and content. Zhiltsov et al.
[210] introduced the Fielded Sequential Dependence Model (FSDM), which ex-
tend the Sequential Dependence Model [139] to multi-field representation of
entities. Later, they introduced a feature-based extension of the FSDM model,
coupled with an algorithm that can learn feature weights [149]. Learning to
rank approaches for entity retrieval include the study by Chen et al. [47], which
employs various term-based similarities as features and ranked them using su-
pervised ranking algorithms. Graus et al. [78] also used LTR algorithms to learn
the weights of different entity fields.

Entity retrieval has also been explored in the context of specific tasks, pre-
sented by various benchmarking campaigns. The INEX 2007-2009 Entity Re-
trieval track [59, 60] studied entity retrieval in Wikipedia. Two tasks of entity
ranking and list completion were formulated, where both sought a ranked list
of entities as the output. The tasks’ input, however, was different: the entity
ranking task provided queries with their target entity types, while the list com-
pletion task enriched queries with a small set of example entities. The Linked
Data track at INEX 2012 also considered entities from Wikipedia, but articles
were enriched with RDF properties from both DBpedia and YAGO2, and par-
ticipants were explicitly encouraged to make use of these RDF facts and employ
Semantic Web style reasoning techniques [193]. The aim of this INEX track
was to answer keyword queries by Wikipedia articles, using retrieval techniques
that combine textual and highly structured data. The TREC 2009-2011 Entity
track [14, 16] defined the related entity finding task: return home pages of en-
tities, of a specified type, that engage in a required relationship with a given
source entity. In 2010, the Semantic Search Challenge introduced a platform for
evaluating ad hoc queries, targeting a particular entity, over a diverse collection
of Linked Data [85]. The 2011 edition of the challenge presented a second task,
list search, with more complex queries [26]. In a complementary effort, Balog
and Neumayer [12] introduced the DBpedia-Entity test collection. They synthe-
sized a large number of queries from these benchmarking campaigns and maps
the relevant results to DBpedia. We use this collection in Chapters 6 and 7,
and further update it to DBpedia version 2015-10 in Chapter 8.
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2.2.5 Result presentation

Result presentation in semantic search applications often goes beyond presenting
“10-blue links” and their corresponding snippets. Many search engines nowa-
days present extra verticals in response to entity-bearing queries, such as direct
answer panels and information cards. These cards are complex information ob-
jects that are displayed on both desktop and mobile devices [33, 178]. Providing
content for these cards and studying users’ interactions with them is a relatively
new topic that is being investigated both in academia [33, 116, 146, 190] and in
industry [28, 161, 185].

Entity cards are made up of various components. An entity card typically
contains image(s), entity name, short description, entity summary, and related
entities (see Figure 1.1). Although these are the most central elements of entity
cards in contemporary web search engines, additional entity-specific components
such as maps, quotes, or tables may also be included. One of the central elements
of entity cards is entity summaries: the truncated view of entity facts from a
knowledge base. Below, we review different studies on entity cards and later
focus on approaches for generating entity summaries.

Entity Cards

Most of the research related to entity cards has been geared towards understand-
ing user behavior and interaction with entity cards. Navalpakkam et al. [146]
performed eye and mouse tracking on SERPs and showed that relevant entity
cards can affect users’ attention and, in overall, reduce the amount of time users
spend to accomplish their task. In a similar study on mobile search, Lagun et al.
[116] interleaved entity cards with organic search results and found that when
entity cards are relevant, users can quickly find the answer and complete their
task faster. With irrelevant cards, on the other hand, users spend more time on
the page looking for the answer and pay attention to the results right below the
card. In recent work on card content and structure, Bota et al. [33] showed that
entity cards, regardless of their topics, can increase searcher engagement with
organic web search results. The focus of attention in the aforementioned studies
is on the search behavior of users and not on generating the actual content of
the entity cards.

Entity Summarization

Summarizing entities over RDF data has been studied in various studies [48,
79, 80, 182, 183]. It has been also addressed by the more general problem



Chapter 2. Background 36

of attribute ranking (i.e., ranking entity predicates) [62, 185]. Notably, most of
these studies have been performed by different communities in isolation, without
knowing about each other.

Cheng et al. [48] introduced entity summarization over RDF data as the
task of selecting top-k predicate-object pairs for an entity. Their system, called
RELIN, leverages relatedness and informativeness of entity facts using the Page-
Rank algorithm. In a similar vein, SUMMARUM [182] and LinkSUM [183]
employ the PageRank algorithm to generate ranking scores for predicates in-
volving two entities (i.e., no literal values are considered). The FACES [79] and
FACES-E [80] systems approach entity summarization as a classification task;
they partition entity facts into semantically similar groups (facets), and pick the
best fact from each facet to form the summaries. In another line of work, entity
summarization is approached as a classification task. FACES [79] partitions en-
tity facts into semantically similar groups (facets), ranks the facts within each
group, and finally generates the entity summary by picking the top ranked facts
from each of the facet groups. The extension of this system, (FACES-E) [80],
computes types for object values and generates facets considering both object
and datatype properties.

Entity summarization can be remotely connected to the attribute ranking
approaches proposed in [62, 119, 185]. Lee et al. [119] proposed generative
models for ranking attributes with respect to entity classes, i.e., how typical
an attribute is to a given class. The framework presented in [62] ranks RDF
attributes for the given entity using learning to rank algorithms. The recent
patent by Vadrevu et al. [185] presents an attribute ranking approach for entity
summarization. Their proposed approach hinges on a machine-learned ranker
(classifier), with the features based on the global and type-specific importance
of entity attributes.

It is important to point out that all discussed systems generate query-
agnostic summaries. In Chapter 7 of this thesis, we present a query-aware
entity summarization method and evaluate it in the context of entity cards.
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Query Understanding via
Entity Linking

Query understanding has been a longstanding area of research in information
retrieval [55, 172]. One way of capturing what queries are about is to annotate
them with entities from a knowledge base. This general problem has been stud-
ied in many different forms and using a variety of techniques over the recent
years [29, 43, 135]. Approaches have been inspired by methods that recognize
and disambiguate entities appearing in full-text documents by mapping them
to the corresponding entries in a knowledge base, a process known as entity
linking [137] (or wikification [141]). Successful approaches to entity linking
incorporate context-based features in a machine learning framework to disam-
biguate between entities that share the same surface form [69, 138, 141, 143].
While the same techniques can be applied directly to short, noisy texts, such
as microblogs or search queries, there is experimental evidence showing that
the same methods perform substantially worse on short texts (tweets) than on
longer documents (news) [51, 166]. One problem is the lack of proper spelling
and grammar, even of the most basic sort, like capitalization and punctuation.
Therefore, approaches that incorporate richer linguistic analysis of text cannot
be applied.

There is, however, an even more fundamental difference concerning entity
annotations in documents vs. queries that has not received due attention in
the literature. When evaluating entity linking techniques for documents, it is
implicitly assumed that the text provides enough context for each entity mention

37
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France national football teamFrance national football teamFranceFrance FIFA world cupFIFA world cup

france  world cup  98

Figure 3.1: Example of an ambiguous query, where the mention “france” can
be linked to entities France and France national football team. The
interpretations of this query are: {France, FIFA world cup} and {France
national football team, FIFA world cup}.

to be resolved unambiguously. Search queries, on the other hand, typically
consist of only a few terms, providing limited context. Specifically, we focus on
a setting where there is no context, such as previous queries or clicked results
within a search session, available for queries. In this setting, it may be impossible
to select a single most appropriate entity for a given query segment. Consider,
as an illustrative example, the query “new york pizza manhattan.” It could be
annotated, among others, as “[New York City] pizza [Manhattan]” or as
“[New York-style pizza][Manhattan],” and both would be correct (linked
entities are in brackets); see Figure 3.1 for an illustration.

The main research question we seek to answer in this chapter is the following:

RQ1. How can the inherent ambiguity of entity annotations in queries be han-
dled and evaluated?

One line of prior work has dealt with this problem by adopting a retrieval-based
approach: returning a ranked list of entities that are semantically related to
the query [29, 135]. We refer to it as the task of semantic linking. The Entity
Recognition and Disambiguation (ERD) Challenge [43] represents a different
perspective by addressing the issue of ambiguity head-on: search queries can
legitimately have more than a single interpretation. An interpretation is a set of
entities, with non-overlapping mentions, that are semantically compatible with
the query text [43]. We term this task as entity linking in queries (ELQ). Both
approaches have their place, but there is an important distinction to be made
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as they are designed to accomplish different goals. Semantic linking is a tool for
aiding users with suggestions that could be beneficial for enhancing navigation
or for contextualization. Entity linking in queries, on the other hand, is a means
to machine-understanding of queries. Table 3.1 illustrates the differences with
a number of examples.

Once these differences are established and the tasks are defined, we focus
on evaluation methodology. The current practice of rank-based evaluation is
appropriate for the semantic linking task. As for entity linking in queries, inter-
pretations are considered as atomic units, i.e., an interpretation is correct only
if it contains the exact same entities as the ground truth; partial matches are
not rewarded [43]. This is a rather crude method of evaluation. We present
a relaxed alternative that considers both the correctness of interpretations, as
atomic units, as well as the set of entities recognized in the query.

As with any problem in information retrieval, the availability of public
datasets is of key importance. The recently released Yahoo! Webscope Search
Query Log to Entities (YSQLE) dataset [1] is suitable for semantic linking, but
not for entity linking in queries. The ERD challenge platform [43] is fitting for
entity linking in queries, however, only the development set (91 queries) is pub-
licly available, which is not large enough for training purposes. We, therefore,
introduce and make publicly available a new dataset based on YSQLE, called
Y-ERD. It contains interpretations for 2, 398 queries and is accompanied by a
clear set of annotation guidelines.

To further our understanding on the two tasks of semantic linking and entity
linking in queries, we propose simple, easy-to-implement methods for each of
them and illustrate the differences by experimental results. We introduce a
pipeline architecture for both tasks, identify shared components, and evaluate
them on the appropriate datasets.

In summary, the aim of this chapter is to make a methodological distinction
between two tasks within the problem area of annotating queries with entities:
semantic linking and entity linking in queries (Sections 3.1 and 3.2). We further
explain this distinction by presenting methods and experimental results for the
two tasks (Sections 3.4 and 3.5). We also develop a dataset and provide eval-
uation refinements for the task of entity linking in queries (Section 3.3). The
resources corresponding to this chapter are presented in Appendix A.1.
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3.1 Task Definitions

In this section, we first discuss the entity linking task for documents in Sec-
tion 3.1.1. Next, in Section 3.1.3, we look at the semantic linking task and show
that the task itself is easier than entity linking and resembles more of a related
entity finding problem. Finally, in Section 3.1.2, we present the task of entity
linking in queries, which deals with the inherent ambiguity of search queries.

3.1.1 Entity Linking (in Documents)

Entity linking is the task of recognizing entity mentions in text and linking (dis-
ambiguating) them each to the most appropriate entry in a reference knowledge
base. This task implicitly assumes that the input text (document) provides
enough context so that all entity occurrences can be resolved unambiguously.

Evaluation is performed against a gold-standard data set that consists of
manual annotations. These annotations comprise the specific entity mentions
(offsets in the text) and the corresponding links to the knowledge base. Effec-
tiveness is measured in terms of precision and recall, where precision is defined
as the number of correctly linked mentions divided by the total number of
links established by the system, and recall is defined as the number of correctly
linked mentions divided by the total number of links in the gold-standard an-
notations [141]. For overall system evaluation the F-measure is used. Both
micro- and macro-averaging can be employed [51]. Since mention segmentation
is often ambiguous, and the main focus is on the disambiguation of entities,
the correctness of entity mention boundaries is often relaxed [43]. On the other
hand, evaluation is rather strict in that credit is only given for a given mention if
the linked entity (unique entity identifier) perfectly matches the gold standard.
Overlapping entity mentions in the annotations are not allowed, i.e., any given
segment of the document may be linked to at most a single entity.

3.1.2 Entity Linking in Queries

Existing entity linking approaches can be used out-of-the-box to annotate queries
with entities, analogously to how it is done for documents; after all, the input is
text, which is the same as before, just shorter and less grammatical (the qual-
ity of the resulting annotations is another matter). The fundamental difference
between documents and queries is that queries offer very limited context. A
search query, therefore, “can legitimately have more than one interpretation,”
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where each interpretation consists of a set of “non-overlapping linked entity men-
tions that are semantically compatible with the query text” [43]. The inherent
presence of multiple query interpretations is addressed head-on by the setup in-
troduced at the Entity Recognition and Disambiguation (ERD) Challenge [43],
where “interpretations of non-overlapping linked entity mentions” [43] are to be
returned. Formally, let q be a query and Î be the set of interpretations for this
query (according to the ground truth), Î = {Ê1, . . . , Ên}, where n is the number
of interpretations, Êi is a query interpretation, Êi = {(m1, e1), . . . , (mk, ek)},
and (m, e) is a mention-entity pair. For simplicity, the specific offsets of entity
mentions are not considered, however, the corresponding entity mentions in Êi

must not overlap. It is important to point out that the query might not have
any entity linking interpretations (Î = ∅).

If the traditional evaluation methodology were to be adopted (as in Sec-
tion 3.1.1, with the simplification of ignoring the offsets of mentions), the ground
truth would need to consist of a single set of entities; we denote this set as Ê.
As long as the query has a single interpretation, it is straightforward; entities
in that interpretation will amount to the ground truth set. Having no valid
interpretation is also painless, we set Ê = ∅. For entities with multiple inter-
pretations, there are two natural ways of setting Ê.

Collapsing interpretations The first option is to collapse all interpretations
into a single set: Ê =

⋃
i∈[1..n] Êi. (This is similar in spirit to the approach

that is followed in the semantic linking task, cf. Section 3.1.3.) With
this solution, however, the requirements that the linked entities within an
interpretation must be semantically related and their mentions must not
overlap are violated. It also ignores the element of multiple interpretations
altogether.

Selecting a single interpretation The second option is to pick a single in-
terpretation Ê = Êj , where j ∈ [1..n]. Given that all interpretations
are of equal importance, selecting j in an arbitrary way would be un-
fair, as it would randomly favor certain systems over others. A better
alternative would be to choose j individually for each system such that
it maximizes the system’s performance on a given evaluation measure,
e.g., F1-score. Essentially, the system’s output would be scored based on
the closest matching interpretation. While the latter variant appears to
be a viable solution, it still disregards the fundamental aspects of finding
multiple interpretations for queries.
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In summary, the entity linking task cannot be performed the same way for
queries as it is done for documents, because of the element of multiple inter-
pretations. We, however, define entity linking in queries as the task of finding
a set of interpretations Î = {Ê1, . . . , Ên}, where each interpretation consists of
non-overlapping mentions. In the remainder of this thesis, when we talk about
the ELQ task, we follow this definition.

3.1.3 Semantic Linking

Semantic linking is primarily intended to support users in their search and
browsing activities by returning entities that can help them to acquire con-
textual information or valuable navigational suggestions [135]. For semantic
linking, all entities that can be linked to the query (i.e., entities from all interpre-
tations) are relevant. Beyond those, entities that are not explicitly mentioned,
but referred to, may also be considered relevant; see Table 3.1 for illustrative
examples. The goal, therefore, is quite different from that of finding interpreta-
tion(s) of the query for machine understanding. The requirements on the linked
entities are relaxed: (i) the mentions can be overlapping, (ii) they do not need
to form semantically compatible sets, (iii) they do not even need to be explicitly
mentioned, as long as they are semantically related to the query.

Formally, let Ê denote the set of relevant entities for the semantic linking
task. This set is formed from entities across all interpretations (

⋃
i∈[1..n] Ê

e
i ),

plus, optionally, additional entities (E∗) that are indirectly referenced from
the query: Ê =

⋃
i∈[1..n] Ê

e
i ∪ E∗. Semantic linking returns a ranked list of

entities �E = 〈e1, . . . , em〉, which can be compared against Ê using standard
rank-based measures, such as mean average precision (MAP) or mean reciprocal
rank (MRR). Importantly, if Ê = ∅ then the given query is ignored in the
evaluation, meaning, that there is no difference made between system A that
does not return anything and system B that returns meaningless or nonsense
suggestions. This is undesired behavior; it also stands in contrast to standard
entity linking, where false positives decrease system performance.

The above relaxations make semantic linking a substantially easier and dif-
ferent task from what entity linking for queries entails in its entirety. Therefore,
the terminological distinction becomes useful and important.
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3.2 Evaluation Methodology

We now discuss evaluation methodology for the ELQ task based on the literature
and make suggestions for further refinements. We write Î = {Ê1, . . . , Êm}
to denote the query interpretation according to the ground truth, and I =
{E1, . . . , En} is the interpretation returned by the system. Precision and recall,
for a given query, are defined at the ERD Challenge [43] as follows:

P =
|I ∩ Î|
|I| , R =

|I ∩ Î|
|Î|

. (3.1)

Here, a hypothesized interpretation set Êi matches the reference set Ej if their

entities match (Êe
i = Ee

j ) and mentions of Êi do not overlap with each other.
Note that according to this definition, if the query does not have any interpre-
tations in the ground truth (Î = ∅) then recall is undefined; similarly, if the
system does not return any interpretations (I = ∅), then precision is undefined.
To cover such situations, we define precision and recall for interpretation-based
evaluation as:

Pint =

⎧⎨⎩
|I ∩ Î|/|I|, I 	= ∅
1, I = ∅, Î = ∅
0, I = ∅, Î 	= ∅.

(3.2)

Rint =

⎧⎨⎩
|I ∩ Î|/|Î|, Î 	= ∅
1, Î = ∅, I = ∅
0, Î = ∅, I 	= ∅.

(3.3)

This evaluation is methodologically correct, it captures the extent to which the
interpretations of the query are identified. It does so, however, in a rather strict
manner: partial matches are not given any credit. This strictness is also pointed
out in [43]. Their alternative solution, albeit purely for analysis purposes, was to
measure micro-averaged precision, recall, and F1-score on the entity level. That
measure, on its own, is imperfect as “entities belonging to different interpreta-
tions were mixed together” [43]. Further, by micro-averaging, the query borders
are also collapsed. We propose an alternative “lenient” evaluation for interpre-
tation finding that rewards partial matches while respecting query boundaries.

Lenient evaluation Our proposal is to combine interpretation-based evalua-
tions (cf. Equations 3.2 and 3.3) with the conventional entity linking evaluation,
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referred to as entity-based evaluation, from now on. Formally, entity-based eval-
uation is defined as follows:

Pent =

⎧⎨⎩
|E ∩ Ê|/|E|, E 	= ∅
1, E = ∅, Ê = ∅
0, E = ∅, Ê 	= ∅.

(3.4)

Rent =

⎧⎨⎩
|E ∩ Ê|/|Ê|, Ê 	= ∅
1, Ê = ∅, E = ∅
0, Ê = ∅, E 	= ∅.

(3.5)

We write Ê to denote the set of all entities from all interpretations in the ground
truth, Ê =

⋃
i∈[1..m] Ê

e
i , and E is a set of all entities from all interpretations

returned by the entity linking system, E =
⋃

j∈[1..n] E
e
j . Finally, we define

precision and recall as a linear combination of interpretation-based and entity-
based precision and recall:

P =
Pint + Pent

2
, R =

Rint +Rent

2
. (3.6)

For simplicity, we consider them with equal weight, but it could easily be con-
trolled by adding a weight parameter. In all cases, the F-measure is computed
according to:

F =
2 · P · R
P+ R

. (3.7)

For computing precision, recall, and the F-measure on the whole evaluation set,
an unweighed average over all queries are taken (i.e., macro-averaging is used).
This provides an intuitive, easy-to-implement, and methodologically correct so-
lution. A reference implementation is made publicly available.

3.3 Test Collections

We present two publicly available test collections for the semantic linking and
ELQ tasks, and introduce a new dataset for ELQ.

3.3.1 YSQLE

The Yahoo Search Query Log to Entities (YSQLE) dataset [1] comprises a
selection of queries that are manually annotated with Wikipedia entities. An-
notations are performed within the context of search sessions. Each annotation
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is aligned with the specific mention (“span”) within the query. In addition,
the linked entities may be labelled as main, to specify the intent or target of
the user’s query, regardless of whether the entity is mentioned explicitly in the
query. For example, the query “france 1998 final” is annotated with three enti-
ties, France national football team, France, and 1998 FIFA World

Cup Final, of which only the last one is considered as the main annotation.
Out of 2,635 queries in the YSQLE dataset, 2,583 are annotated with Wikipedia
entities.

YSQLE is not suitable for the task of entity linking in queries, due to a
number of issues. First and foremost, the dataset does not provide query inter-
pretations, which is an essential part of entity linking in queries as we discussed
in Section 3.1. Moreover, it is not possible to automatically form interpretation
sets from the annotations. An example is the query “france world cup 1998,”
linked to the entities 1998 FIFA World Cup, France national football

team, and France. This query has two valid interpretations {1998 FIFA

World Cup, France national football team} and {1998 FIFA World

Cup, France}. One could assume that the main annotations would serve as
interpretations, but it does not hold, as there exist queries with multiple or over-
lapping main annotations. For example, the query “yahoo! finance,” has two
main annotations, linking the mention “yahoo!” to Yahoo! and the mention
“yahoo! finance” to Yahoo! Finance. Second, the linked entities are not nec-
essarily mentioned explicitly in the query, but sometimes are only being referred
to. For example , the query “obama’s mother” is linked to Barack Obama and
Ann Dunham, where the latter is specified as the main annotation. Another
example is “charlie sheen lohan,” which is linked to Anger Management (TV

series) and to the two actors Charlie Sheen and Lindsay Lohan. While
this, in a way, is just a matter of how the annotation guidelines are defined,
it is not in accordance with the requirements for entity linking in queries; i.e.,
entity linking is performed on explicit mentions and reference resolution is not
part of the task. Carmel et al. [43] brings the query “Kobe Bryant’s wife” as
an example, which should be annotated as “[Kobe Bryant]’s wife.” Accord-
ingly, the “obama’s mother” query should have a single interpretation, Barack

Obama. Further, annotations are created by considering other queries from the
session; this represents a different setting from what is discussed in Section 3.1.2.
Lastly, the annotations in YSQLE are not always complete, meaning that some
query spans that should be linked to entities are ignored. For instance the query
“louisville courier journal” is annotated with The Courier Journal, whereas
the link for the mention [louisville] (to Louisville, Kentucky) is missing.
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In summary, even though the YSQLE dataset is intended for the purpose of
entity linking in queries, in practice it is mostly suitable for the semantic linking
task. Nevertheless, it offers a great starting point; we show in Section 3.3.3
that with some manual effort, YSQLE can be adjusted to suit entity linking in
queries.

3.3.2 ERD

The Entity Recognition and Disambiguation (ERD) Challenge [43] introduced
the first query entity linking evaluation platform that properly considers query
interpretations. For each query, it contains all possible interpretations (from the
pool of all participating systems). Human annotations are created in accordance
with the following three rules [43]: (i) the longest mention is used for entities;
(ii) only proper noun entities should be linked; (iii) overlapping mentions are not
allowed within a single interpretation. A training set, consisting of 91 queries,
is publicly available.1 The ERD Challenge runs evaluation as a service; entity
linking systems are evaluated upon sending a request to the evaluation server
(hosted by the challenge organizers). Therefore, the test set, comprising 500
queries, is unavailable for traditional offline evaluation. In order to make a
distinction between the two query sets provided by the ERD Challenge, we
refer to the former one (91 queries) as ERD-dev and to the latter one (500
queries) as ERD-test.

The ERD-dev dataset includes a small number of queries, of which only
half (45 queries) are linked to entities; see Table 3.2. Therefore, the dataset
cannot be used for training purposes and the need for a large entity linking test
collection for queries still remains. In the following, we describe our new test
collection, which aims to provide just that.

3.3.3 Y-ERD

To overcome the limitations of the YSQLE and ERD datasets, we set out to
develop a test collection for interpretation finding based on YSQLE. Taking
YSQLE as our starting point, we manually (re)annotated all queries following
a set of guidelines, which are based on the ERD Challenge. The application
context is general web search. The resulting dataset, referred to as Y-ERD,
contains 2398 queries in total; see the statistics in Table 3.2.

We further note that there is a small overlap between ERD-dev /test and
Y-ERD (18 queries, to be precise). We removed those queries from Y-ERD

1http://web-ngram.research.microsoft.com/erd2014/Datasets.aspx.
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Table 3.2: Statistics of test collections for entity linking in queries.

Query types Y-ERD ERD-dev

No entity 1142 46
Single entity 1133 34
Single set; >1 entity 114 7
Multiple sets 9 4

Total 2398 91

for our experiments, so that it is possible to train systems using Y-ERD and
evaluate them using ERD-dev/test.

From YSQLE to Y-ERD

Taking the YSQLE dataset as our input, we proceeded as follows. First, we
filtered out duplicate queries. Recall that YSQLE queries are annotated within
the context of search sessions and there are queries that appear in multiple
sessions. We annotate queries on their own, regardless of search sessions, just
like it was done at the ERD Challenge. Next, we created candidate interpre-
tations using the following rules: (i) if the mentions are not overlapping, the
linked entities form a single interpretation; (ii) if the entity mentions are iden-
tical, then each entity is considered as a separate interpretation (a set with a
single element); (iii) queries that have been linked to a single entity, a single-
element interpretation is created. Then, we asked three human annotators to
judge these candidate query interpretations (including both finding interpreta-
tions and aligning the linked entities with the specific mention) following a set
of annotation guidelines.

Annotation Guidelines

These guidelines are based on those of the ERD Challenge [43], complemented
by some additional rules:

R1 The annotated entities should be proper noun entities rather than general
concepts [43]. E.g., the query “SUNY albany hospital location” is only
linked to University at Albany, SUNY and the entity Location

(geography) is ignored.
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R2 The query should be linked to an entity via its longest mention [43]. E.g.,
in the query “penticton bc weather,” the longest mention for the entity
Penticton is “penticton bc.” This implies that the term “bc” is not to
be linked to British Columbia.

R3 Terms that are meant to restrict the search to a certain site (such as
Facebook or IMDB) should not be linked. This is a case for navigational
queries, where the site is not the focus of the query. E.g., the entity
Facebook is not linked in the query “facebook obama slur,” while is it a
valid annotation for the query “how to reactivate facebook.”

R4 Linked entities must be explicitly mentioned in the query. One example
is the query “charlie sheen lohan” that we already discussed for YSQLE
in Section 3.3.1. For us, only Charlie Sheen and Lindsay Lohan are
valid annotations. Another example is “Kurosawa’s wife,” which should be
linked solely to the entity Akira Kurosawa, and not to Yōko Yaguchi.

R5 It could be argued either way whether misspelled mentions should be
linked to entities or not. In our definition, misspellings that are recorded
as name variants in DBpedia are not considered as spelling errors. We
believe that annotating misspelled mentions would introduce noise into
the training data. Therefore, we do not perform spell correction and do
not consider misspelled mentions in our ground truth in the experiments
reported in this chapter. Nevertheless, we also made a spell-corrected
version of Y-ERD publicly available.

Based on the above rules, the assessors were instructed to: (i) identify mentions,
(ii) drop invalid linked entities, (iii) change linked entities to different ones if
they are a better match, (iv) complement existing interpretations with more
entities. Note that by the last rule, we restrict annotators to not adding new
entities to those originally identified in YSQLE, except for the case of erroneous
interpretation sets. Recall that our application domain is general web search; we
trust that the annotations in YSQLE include all entities that are “meaningful”
in this context. One might argue that annotations are dominated by popular
entities; while this may be the case, it is no different from how annotations for
the ERD Challenge were performed.

Resolving Disagreements

Regarding the interpretations (i.e., the sets of linked entities) all three annota-
tors agreed on 84% of the queries, two agreed on 5%, and they all disagreed on
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Candidate Entity 
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query Disambiguation annotated query

Figure 3.2: Pipeline for semantic linking (first two steps) and entity linking
in queries (all steps).

the remaining 11%. For the entities linked by at least 2 assessors, the agreement
on the mentions was 94%.

Disagreements were resolved through discussion, where the conflicting cases
were categorized into medium and hard classes (unanimously agreed queries are
regarded as easy). The former could be resolved through little discussion, while
the latter was challenging to find agreements on. The difficulty levels are also
recorded and released with the dataset.

3.4 Approaches

This section presents basic approaches for tackling the two tasks we have intro-
duced in Section 3.1: semantic linking and entity linking in queries. Recall that
semantic linking is the task of returning a ranked list of entities that are re-
lated to the query. Entity linking in queries is about finding (possibly multiple)
interpretations, where an interpretation is a set of semantically compatible en-
tities that are each mentioned in the query. We address both tasks in a pipeline
architecture, shown in Figure 3.2. This pipeline is motivated by the canonical
entity linking approach for documents; our components (mention detection, can-
didate entity ranking, and disambiguation) roughly correspond to the extractor,
searcher, and disambiguator steps in traditional entity linking [83]. While this
is a reasonable choice, it is certainly not the only one. We leave the exploration
of alternative architectures to the future work. Notice that the first two com-
ponents of the pipeline (discussed in Sections 3.4.1 and 3.4.2) are shared by the
semantic linking and ELQ tasks. For ELQ, there is an additional disambiguation
step to be performed (Section 3.4.3).

Before we continue, let us clarify the terminology. The term span refers to
a query substring (n-gram). By entity surface forms (or aliases) we mean the
names that are used to make reference to a particular entity. When we want to
focus on a span that refers to (i.e., may be linked to) an entity, we use the term
mention. A mention, therefore, is often paired with an entity, (m, e), where m
is a span matching one of the surface forms of entity e.
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3.4.1 Mention Detection

The objective of the mention detection step is to identify query spans that can
be linked to the entities. We view this as a recall-oriented task, as we do not
want to miss any of the entities that are part of the query’s interpretation(s).
To identify entities mentioned in the query, we perform lexical matching for
all possible n-grams in the query against known entity surface forms. (Given
that web queries are typically short, this is manageable.) Surface forms are
gathered from two sources: from a manually curated knowledge base and from
machine-annotated web corpora.

Knowledge base. We consider known surface forms from DBpedia that are
recorded under the rdfs:label and foaf:name predicates. The names of redi-
rected entities are also included. We write Ae to denote the set of aliases for
entity e. Let Mkb be the set of entity mentions in the query:

Mkb = {(m, e)|∃a ∈ Ae : a = m,m ∈ q}, (3.8)

where m ∈ q is a query span (can be the entire query) that matches one of the
aliases (a) of entity e. Because DBpedia is a high-quality resource, we do not
perform any additional filtering or cleansing step on this set.

Web corpora. We make use of web-scale document collections in which en-
tity mentions have been automatically linked to the Freebase knowledge base.
Google, Inc. has recently created and made available this resource, referred to as
Freebase Annotations of the ClueWeb Corpora (FACC), for the ClueWeb09 and
ClueWeb12 datasets [75]. We create a dictionary of surface forms that contains
the linked Freebase IDs along with frequencies and link entities to DBpedia via
sameAs relations. Note that we aggregate data from both ClueWeb collections
(hence the usage of “corpora”).

Considering all entities that match a given surface form might leave us with
a huge set of candidates; for example, “new york” matches over two thousand
different entities. Therefore, we filter the set of matching candidate entities
based on commonness. Commonness measures the overall popularity of enti-
ties as link targets [134]. Essentially, commonness is the maximum-likelihood
probability that entity e is the link target of mention m:

commonness(e,m) = P (e|m) =
link(e,m)

link(m)
, (3.9)
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where link(e,m) represents the number of times mention m is linked to entity
e, and link(m) is the total number of times mention m is linked to any entity.
Mw refers to the set of mentions with a certain minimum commonness score:

Mw = {(m, e)|m ∈ q, commonness(m, e) > c}, (3.10)

where the commonness threshold c is set empirically (or set to 0 if no pruning
is to be performed). Using FACC as a source of entity surface forms and for a
more reliable estimation of commonness scores is a novel approach; as we show
later, it can warrant over 90% recall.

Combining sources The final set of mentions is created by combining the
entities identified using the knowledge base and the web annotations: M =
Mkb ∪Mw.

3.4.2 Candidate Entity Ranking

We now turn to the second component of our pipeline, which ranks the enti-
ties identified by the mention detection step. Formally, this step takes a list
of mention-entity pairs (m, e) as input and associates each with a relevance
score. For the semantic linking task, this ranking will constitute the final out-
put. We note that (i) our methods are limited to returning entities explicitly
mentioned in the query; this is not unreasonable (the same limitation is present,
e.g., in [29]); (ii) for each entity we only consider its highest scoring mention.
For ELQ, the resulting ranking provides input for the subsequent disambigua-
tion step (cf. Figure 3.2). As the entity relevance scores will be utilized in a
later component, it is essential that they are comparable across queries. (This
requirement is not unique to our approach; it would also be the case if one were
to use supervised learning, for example.)

Mixture of Language Models (MLM)

The predominant approach to ranking structured entity representations (typi-
cally described as a set of RDF triples) is to employ fielded extensions of stan-
dard document retrieval models, such as BM25F [27] or the Mixture of Language
Models (MLM) [12, 147]. The MLM approach [152] combines language mod-
els estimated for different document fields. The model can readily be applied
to ranking (document-based representations) of entities by considering different
predicates as fields [111, 147]. The probability of a term t given the language
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model of an entity e is estimated as follows:

P (t|θe) =
∑
f∈F

μfP (t|θef ), (3.11)

where F is the set of possible fields, f is a specific field, μf is the field weight
(such that μf ∈ [0..1] and

∑
f∈F μf = 1), and θef is the field language model,

which is a maximum-likelihood estimate smoothed by a field-specific background
model:

P (t|θef ) = (1− λf )
n(t, ef )

|ef |
+ λfP (t|Cf ). (3.12)

Here, n(t, ef ) denotes the number of occurrences of term t in field f of entity
e and |ef | is the length of the field. To keep things simple, we use a single
smoothing parameter for all fields: λf = 0.1, based on the recommendations
given in [208] for title queries.

The most common approach in language modeling is to rank items (here:
entities) based on query likelihood:

P (e|q) =
P (q|e)P (e)

P (q)
∝ P (e)P (q|e) (3.13)

rank
= P (e)

∏
t∈q

P (t|θe)n(t,q), (3.14)

where θe is the entity language model (defined in Eq. 3.11) and n(t, q) denotes
the number of times term t is present in query q. Here p(e) is the prior prob-
ability of an entity and is assumed to be uniform. When a single query is
considered, dropping the query probability P (q) in Eq. 3.13 can be done con-
veniently. For us, however, scores (probabilities) need to be comparable across
different queries, as they are utilized in the subsequent disambiguation step
(cf. Section 3.4.3). Therefore, the denominator, which depends on the query,
should not be dropped. We perform normalization as suggested in [113] (length
normalized query likelihood ratio), and use the following as our final ranking
formula:

P (q|e) rank
=

∏
t∈q P (t|θe)P (t|q)∏
t∈q P (t|C)P (t|q) , (3.15)

where P (t|q) = n(t, q)/|q| is the relative frequency of t in q. Therefore, the
normalized MLM score is obtained by computing P (t|θe) based on Eq. 3.11
and P (t|C) is taken to be a linear combination of collection language models∑

f∈F μfP (t|Cf ). The specific instantiation of the model (fields and weights)
is discussed in Section 3.5.1.
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Combining MLM and Commonness

Let us point out that MLM ranks entities, mentioned in the query, based on
their relevance to the query. This is done irrespective of the specific surface form
that is referenced in the query. There is useful prior information associated with
surface forms, which is captured in commonness (Eq. 3.9). It therefore makes
good sense to combine MLM and commonness. We propose two ways of doing
this.

MLMc. The first method, MLMc, simply filters the set of entities that are
considered for ranking based on commonness, by applying a threshold c in
Eq. 3.10. The setting of c is discussed in Section 3.5.1.

MLMcg. The second method, MLMcg, also performs filtering, exactly as
MLMc does. But, in addition to that, it also integrates the commonness scores
in a generative model. It ranks entities based on the highest scoring mention;
i.e., ranking is dependent not only on the query but also on the specific mention.
The model considers the prior probability P (e) in Eq. 3.13 as the probability of
a mention m being linked to the entity e and takes the maximum score among
the mentions of an entity:

P (e|q) rank
= argmax

m∈e
P (e|m)P (q|e), (3.16)

where P (q|e) is estimated using MLM (Eqs. 3.11 and 3.15) and P (m|e) is the
same as commonness (cf. Eq. 3.9). We show later experimentally that this novel
method provides solid results and is more effective than MLM and MLMc.

3.4.3 Disambiguation

The aim of this phase is to find the interpretations of a query, where an inter-
pretation is a set of non-overlapping and semantically compatible entities that
are mentioned in the query. Given a ranked list of mention-entity pairs from
the previous step, our goal (and, as we argued, this should be the ultimate goal
of entity linking in queries) is to identify all interpretations of the query.

We present an algorithm, named Greedy Interpretation Finding (GIF), that
can detect multiple interpretations of a query; see Algorithm 1. It takes as input
a list of mention-entity pairs (m, e), each associated with a relevance score. Con-
sider an example query “jacksonville fl,” for which the input for the algorithm
would be {( “jacksonville fl,” Jacksonville Florida): 0.9, (“jacksonville,”
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Algorithm 1 Greedy Interpretation Finding (GIF)

Input: Ranked list of mention-entity pairs M ; score threshold s
Output: Interpretations I = {E1, ..., Em}

1: begin
2: M ′ ← Prune(M, s)
3: M ′ ← PruneContainmentMentions(M ′)
4: I ← CreateInterpretations(M ′)
5: return I
6: end

1: function CreateInterpretations(M)
2: I ← {∅}
3: for (m, e) in M do
4: h ← 0
5: for E in I do
6: if ¬ hasOverlap(E, (m, e)) then
7: E.add((m, e))
8: h ← 1
9: end if

10: end for
11: if h == 0 then
12: I.add({(m, e)})
13: end if
14: end for
15: return I
16: end function

Jacksonville, Florida): 0.8, (“jacksonville fl,” Naval Air Station Jack-

sonville): 0.2}. In the first step (line 2), GIF prunes entities based on absolute
scores, controlled by the threshold parameter s. E.g., with a threshold of 0.3,
(“jacksonville fl,” Naval Air Station Jacksonville) would be filtered out
here. We note that s is a global parameter, therefore ranking scores must be
comparable across queries. (As mentioned in the previous section, our query
length normalized ranking scores enable this.) In the next step (line 3), contain-
ment mentions are also filtered out, based on their retrieval scores. E.g., out of
the two containment mentions “jacksonville fl” and “jacksonville,” only the pair
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(“jacksonville fl,” Jacksonville Florida) with the score of 0.9 is kept. Then
(in line 4), query interpretations are created in an iterative manner: adding an
entity-mention pair to an existing interpretation E, such that it does not over-
lap with the mentions already present in E. In case it overlaps with all existing
interpretations, the mention-entity pair constitutes a new interpretation; this
will result in multiple interpretations for a query.

3.5 Experiments

In this section, we present results for the semantic linking and ELQ tasks, using
the test collections introduced in Section 3.3 and the methods presented in
Section 3.4. These results help to deepen our understanding on the differences
between the two tasks of semantic linking and entity linking in queries.

3.5.1 Experimental Setup

Knowledge base. We consider entities present in both DBpedia and Freebase
as our reference knowledge base. This choice is made for pragmatic reasons: (i)
existing test collections provide annotations (or ground truth) either for one or
the other, (ii) Freebase-annotated ClueWeb collections (FACC) [75] are lever-
aged for mention detection and (reliable) commonness estimation, (iii) entity
descriptions in DBpedia provide a solid basis for entity ranking.

Semantic linking. The semantic linking task is evaluated on the YSQLE
test collection. We compare MLM, MLMc, and MLMcg from Section 3.4.2 and
also include results for the TAGME system from their public API [69] (follow-
ing [29]). The commonness threshold c for MLMc and MLMcg (Eq. 3.10) is set
to 0.1 by performing a sweep using cross-validation. We use the FACC collec-
tion to compute the commonness scores. For ranking entities using MLM, we
follow Neumayer et al. [148] and use an index with two fields, name and content,
with a weight of 0.2 and 0.8, respectively. The name field holds the primary
names of the entity (rdfs:label, foaf:name) and name variants extracted from
redirected entities. The content field includes the content of the top 1000 most
frequent predicates across the whole DBpedia collection. All URIs in the con-
tent fields are resolved, i.e., replaced with the name of the entity or title of the
page they point to. The index is confined to the entities having a name and a
short abstract (i.e., rdfs:label and rdfs:comment).
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Table 3.3: Recall of different sources for mention detection.

YSQLE Y-ERD ERD

KB 0.7489 0.7976 0.8556
Web 0.9127 0.9716 0.9956
KB+Web 0.9163 0.9724 1.0000

Entity linking in queries. For the ELQ task, we report our results on the Y-
ERD and ERD-dev test collections. In this case, our reference knowledge base is
confined to the entities present in the knowledge base snapshot used at the ERD
Challenge [43]. This snapshot contains 2,351,157 entities; taking its intersection
with DBpedia resulted in the removal of 39,517 entities. The GIF algorithm
(see Section 3.4.3) is applied on top of the candidate entity ranking systems.
We use cross-validation (5-fold for Y-ERD and leave-one-out for ERD-dev) for
setting the score threshold of GIF by performing a sweep for the parameter s.
In addition, we report on another method, called TopRanked. It uses the best
performing entity ranking approach (MLMcg) and forms a single interpretation
set from the top ranked entity.

3.5.2 Mention Detection

The mention detection component is shared by both the semantic linking and
ELQ tasks, therefore we evaluate it on its own account. Specifically, we com-
pare three options based on the source(s) of surface forms, as described in Sec-
tion 3.4.1: (i) DBpedia (KB), (ii) web corpora (Web), and (iii) the combination
of both (KB+Web). As this step is recall oriented, (i.e., all entity matches
should be retrieved), we only report on recall.

Table 3.3 presents the results. We find that the machine-annotated web
corpora provides a rich source of entity surface forms for this task and is a
better source than DBpedia alone. Not surprisingly, the combination of the two
sources yields the highest recall, albeit the improvement over Web is marginal.
We also note that while recall is nearly perfect on the interpretation finding
datasets (Y-ERD and ERD), it is a bit lower for YSQLE. Recall that YSQLE is
created for evaluating the semantic linking task, where implicit entity mentions
are also considered as relevant; these are not captured by our dictionary-based
mention detection approach and would need to be identified by different means.
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Table 3.4: Semantic linking results on the YSQLE dataset.

MAP P@1 MRR

MLM 0.4582 0.3601 0.4638
MLMc 0.6228 0.5413 0.6312
MLMcg 0.7078 0.6403 0.7151

TAGME† 0.6230 0.6016 0.6385
†
TAGME is an entity linking system and should

not be evaluated on the semantic linking task us-
ing rank-based measures.

3.5.3 Semantic Linking

Table 3.4 presents the results for semantic linking. Given that this is a ranking
task, we report on mean average precision (MAP), precision at position 1 (P@1),
and mean reciprocal rank (MRR). Though we include results for TAGME, we
note that this comparison, despite having been done in prior work (e.g., in [29]),
is an unfair one. TAGME is an entity linking system that should not be eval-
uated using rank-based measures. The very reason for including TAGME is
to illustrate that a simple semantic linking approach can achieve improvements
over a state-of-the-art entity linking system, but this claim would be misleading.
We find that MLMcg is the most effective method; it shows that incorporating
commonness in a generative model (MLMcg) is better than using commonness
as a filter before ranking entities (MLMc).

3.5.4 Entity Linking in Queries

Tables 3.5 and 3.6 present the results for interpretation finding on the Y-ERD
and ERD-dev datasets, respectively. Two sets of evaluation measures are used:
(i) strict (which is the same as in [43]) and (ii) lenient (Section 3.2). We notice
at first glance that the TopRanked baseline is considerably worse than the other
approaches. This shows that, even though there are many queries containing
a single entity in our data sets (cf. Table 3.2), forming sets of entities is a
crucial aspect of the ELQ task. The GIF algorithm in combination with MLMcg
delivers solid performance and is the best performing of all approaches in all
but one setting.

Comparing the two evaluation measures, lenient evaluation gives higher re-
sults for all systems. This is in line with our expectations based on the the-
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Table 3.5: Entity linking in queries on the Y-ERD dataset.

Method
Strict eval. Lenient eval.

P R F P R F

TopRanked 0.4554 0.4542 0.4545 0.4771 0.465 0.4689
MLM-GIF 0.5259 0.5254 0.5255 0.5363 0.5387 0.5361
MLMc-GIF 0.6351 0.6354 0.6348 0.6422 0.642 0.6409
MLMcg-GIF 0.7191 0.7213 0.7195 0.7305 0.7308 0.7288

Table 3.6: Entity linking in queries on the ERD-dev dataset.

Method
Strict eval. Lenient eval.

P R F P R F

TopRanked 0.3846 0.3645 0.3700 0.4231 0.3837 0.3956
MLM-GIF 0.5824 0.5608 0.5659 0.5934 0.5718 0.5760
MLMc-GIF 0.7253 0.7037 0.7088 0.7445 0.7174 0.7234
MLMcg-GIF 0.7143 0.7125 0.7114 0.7335 0.7262 0.7260

oretical definitions of the measures (Section 3.4.3); when an interpretation is
incomplete, yet contains relevant entities, the strict evaluation does not give
any credit for returning correct entities, whereas the lenient one does.

3.6 Discussion

We now answer our research question based on the results presented in Sec-
tion 3.5:

RQ1. How can the inherent ambiguity of entity annotations in queries be han-
dled and evaluated?

Entity linking in queries should ultimately be addressed as finding sets of in-
terpretations, where an interpretation is a set of non-overlapping entities that
are semantically related to each other. If the query is ambiguous, with little or
no context, there exist multiple interpretations, all of which should be found.
Otherwise, a single interpretation should be detected, which is similar to the
traditional entity linking task for documents. Determining when the query has
no interpretations (in terms of entity annotations) is also a crucial part of the
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problem that should be addressed (and considered in the evaluation). The se-
mantic linking task (Section 3.1.3), which ranks entities based on their relevance
to the query, serves a different purpose and should not be considered as an entity
linking task, even for the simplified scenario of finding a single interpretation.
This is because relevant entities can be overlapping and are not required to be
semantically related to each other. Furthermore, entity disambiguation is an
essential part of entity linking, an aspect that is completely ignored in semantic
linking. A number of earlier studies refer to entity linking, while what they
do in fact is semantic linking [29, 135, 136, 151]. Comparing semantic linking
to results generated by traditional entity linking methods is inappropriate (cf.
Section 3.5.3).

For entity linking in queries, similar to the traditional entity linking task [69,
141, 143], evaluation uses set-based measures (precision, recall and F-measure).
However, since the output is a set of interpretations (and not entities) the eval-
uation methodology is different. The method presented in [43] considers the
exact match between the retrieved sets and the ground truth, which is rather
strict. The lenient evaluation method (Section 3.4.3), on the other hand, com-
bines interpretation-based and entity-based evaluations. For semantic linking,
standard rank-based measures (MAP, MRR, P@1) can be employed.

In the course of answering the above question, a couple of subsequent ques-
tions arose, which we answer below:

What are the similarities and differences between semantic linking
and entity linking in queries in terms of approaches? The semantic
linking and ELQ tasks can be addressed by using a similar pipeline architec-
ture (see Section 3.4). Both tasks share the first component, mention detec-
tion, which can effectively be addressed by combining surface forms stored in
knowledge bases and extracted from a large machine-annotated web corpora
(cf. Section 3.5.2). The second component, which generates a ranked list of the
mentioned entities based on their relevance to the query, can also be shared.
One issue that requires special attention is the question of implicit mentions,
that is, entities that are referred to but not explicitly mentioned in the query
(e.g., “Obama’s mother”). These are not identified by the mention detection
step and consequently not considered for ranking either. One interesting re-
search challenge in semantic linking is finding these referred entities. For entity
linking in queries, the third component is responsible for forming (possibly mul-
tiple) sets of interpretations. This is a highly nontrivial subtask that makes
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entity linking in queries substantially more difficult than semantic linking.

As most queries have a single interpretation, how much effort should
be expedited to find multiple interpretations? Although having multiple
interpretations is an intrinsic feature of entity linking in queries, most of the
queries in our test collections (both ERD and Y-ERD) have a single interpreta-
tion (see Table 3.2). This implies that a system can achieve high overall score
by focusing on returning a single interpretation. This is also evidenced by the
ERD Challenge results, where the top two performing systems [49, 52] return a
single interpretation. We note that returning multiple interpretations, without
hurting queries with single a interpretation, is an open research question.

3.7 Summary

In this chapter we have addressed fundamental questions in the problem area
of query understanding through entity annotations of queries. We have differ-
entiated between two tasks, semantic linking and entity linking in queries. The
former ranks entities that are related to (but not necessarily explicitly mentioned
in) the query, while the latter aims to identify sets of semantically related en-
tities that are mentioned in the query, and is able to return more than one of
such sets if the query has multiple interpretations. We have discussed evaluation
methodology and carefully examined publicly available test collections for both
tasks, and introduced a large, manually curated test collection for entity linking
in queries.

In the next chapter, we make an effort at establishing a baseline for the
ELQ task using a state-of-the-art entity linking approach. In Chapter 5 we
investigate methods for effective and efficient entity linking in queries. We will
also employ ELQ as an integral element of other entity-oriented tasks addressed
in Chapters 6 and 7 of this thesis.





Chapter 4

Establishing a Baseline for
Entity Linking in Queries

In Chapter 3 we have introduced the task of entity linking in queries (ELQ), the
corresponding evaluation measures, and publicly available datasets for training
and evaluation purposes. In this chapter, we aim to establish a strong baseline
for this task. While ELQ has just recently received attention, the general prob-
lem of entity linking has been widely studied over the past years and various
approaches have been proposed to annotate both long and short text with enti-
ties [56, 69, 87, 114, 141, 143]. The research question we address in this chapter
is:

RQ2. How does a state-of-the-art entity linking approach perform on the ELQ
task?

Among the top-performing entity linking systems, TAGME [69] is one of the
most popular and influential ones, and is shown to be a competitive baseline in
various studies [29, 123, 136, 159, 204]. It is specifically designed for efficient
(“on-the-fly”) annotation of short texts (like tweets and search snippets), and
has great potential to be considered as a baseline for the ELQ task. Although
applying TAGME to the ELQ task restricts the output to a single interpretation,
it can still deliver solid performance.

TAGME comes with a web-based interface and a RESTful API,1 which of-
fers a convenient way of using the system, without implementing the actual

1http://tagme.di.unipi.it/
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approach. For employing TAGME as a baseline for the ELQ task, however, we
opt to re-implement the approach for two main reasons: (i) to avoid relying on
an external service, and dealing with the network overhead that comes with an
online service; (ii) to use a different knowledge base from what is used in the
TAGME API. In the course of implementing the TAGME approach, we encoun-
tered some technical challenges that have not always been dealt with properly
in the original paper and accordingly in its re-implementations [46, 132]. In ad-
dition, the effectiveness of our TAGME implementation was way different from
what we could get from the public API. To address these issues, we decided to
step back and first compare our implementation of TAGME with the numbers
reported in the original paper, using the same the dataset and Wikipedia ver-
sion. Thus, we set out the task of examining the repeatability, reproducibility,
and generalizability of the TAGME system in a principled way. The SIGIR
2015 workshop on Reproducibility, Inexplicability, and Generalizability of Re-
sults (RIGOR) [5] defined these properties as follows:2

• Repeatability : “Repeating a previous result under the original conditions
(e.g., same dataset and system configuration).”

• Reproducibility : “Reproducing a previous result under different, but com-
parable conditions (e.g., different, but comparable dataset).”

• Generalizability : “Applying an existing, empirically validated technique
to a different IR task/domain than the original.”

We address each of these aspects in this chapter, as explained below.
Repeatability. Although TAGME facilitates comparison by providing a pub-

licly available API, it is not sufficient for the purpose of repeatability. The main
reason is that the API works much like a black-box; it is impossible to check
whether it corresponds to the system described in [69]. Actually, it is acknowl-
edged that the API deviates from the original publication,3 but the differences
are not documented anywhere. Another limiting factor is that the API cannot
be used for efficiency comparisons due to the network overhead. We report on
the challenges around repeating the experiments in [69] and discuss why the
results are not repeatable.

Reproducibility. TAGME has been re-implemented in several research pa-
pers, see, e.g., [45, 46], these, however, do not report on the reproducibility of
results. In addition, there are some technical challenges involved in the TAGME

2https://sites.google.com/site/sigirrigor/
3http://tagme.di.unipi.it/tagme help.html and is also mentioned in [51, 184]
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approach that have not always been dealt with properly in the original paper
and accordingly in these re-implementations (as confirmed by some of the re-
spective authors).4 We examine the reproducibility of TAGME, as introduced
in [69], and show that some of the results are not reproducible, while others are
reproducible only through the TAGME API.

Generalizability. We test generalizability by applying TAGME on the task
of entity linking in queries. The main difference between conventional entity
linking and ELQ is that the latter accepts that a query might have multiple in-
terpretations, i.e., the output in not a single annotation, but (possibly multiple)
sets of entities that are semantically related to each other. Even though TAGME
has been developed for a different problem (where only a single interpretation
is returned), we show that it is generalizable to the ELQ task.

This study enables us to understand how TAGME should be used as a base-
line for the ELQ task. It further provides us with invaluable insights about
reproducibility, which is an important desiderata for reliable and extensible re-
search. We wish to make a disclaimer that in the course of this study, we made
a best effort to reproduce the results presented in [69] based on the information
available to us: the TAGME papers [69, 70] and the source code kindly provided
by the authors. Our main goal is to establish a baseline for the ELQ task and
to learn about reproducibility, and by no means is intended to be a criticism
of TAGME. The resources corresponding to this chapter as well as detailed re-
sponses from the TAGME authors (and any possible future updates) are made
publicly available; see Appendix A.2.

In the remainder of this chapter, we continue with an overview of the TAG-
ME approach in Section 4.1. We examine the repeatability, reproducibility,
and generalizability aspects in Section 4.2–4.4, and end with discussion and
summary sections.

4.1 Overview of TAGME

In this section, we provide an overview of the TAGME approach, as well as the
test collections and evaluation measures used in the TAGME papers [69, 70].

4.1.1 Approach

TAGME performs entity linking in a pipeline of three steps: (i) parsing, (ii)
disambiguation, and (iii) pruning (see Figure 4.1). We note that while Ferragina

4Personal communication with authors of [46, 69, 92]
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Figure 4.1: Annotation pipeline in the TAGME system.

and Scaiella [69] describe multiple approaches for the last two steps, we limit
ourselves to their final suggestions; these are also the choices implemented in
the TAGME API.

Before describing the TAGME pipeline, let us define the notation used
throughout this chapter. Entity linking is the task of annotating an input text
T with entities E from a reference knowledge base, which is Wikipedia here. T
contains a set of entity mentions M , where each mention m ∈ M can refer to a
set of candidate entities E(m). These need to be disambiguated such that each
mention points to a single entity e(m).

Parsing

In the first step, TAGME parses the input text and performs mention detection
using a dictionary of entity surface forms. For each entry (surface form), the
set of entities recognized by that name is recorded. This dictionary is built by
extracting entity surface forms from four sources: anchor texts of Wikipedia
articles, redirect pages, Wikipedia page titles, and variants of titles (removing
parts after the comma or in parentheses). Surface forms consisting of numbers
only or of a single character, or below a certain number of occurrences (2) are
discarded. Further filtering is performed on the surface forms with low link
probability (i.e., < 0.001). Link probability is defined as:

lp(m) = P (link|m) =
link(m)

freq(m)
, (4.1)

where freq(m) denotes the total number of times mentionm occurs in Wikipedia
(as a link or not), and link(m) is the number of times mention m appears as a
link.
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To detect entity mentions, TAGME matches all n-grams of the input text,
up to n = 6, against the surface form dictionary. For an n-gram contained by
another one, TAGME drops the shorter n-gram, if it has lower link probability
than the longer one. The output of this step is a set of mentions with their
corresponding candidate entities.

Disambiguation

Entity disambiguation in TAGME is performed using a voting schema, that is,
the score of each mention-entity pair is computed as the sum of votes given by
candidate entities of all other mentions in the text. Formally, given the set of
mentions M , the relevance score of the entity e to the mention m is defined as:

rel(m, e) =
∑

m′∈M−{m}
vote(m′, e), (4.2)

where vote(m′, e) denotes the agreement between entities of mention m′ and the
entity e, computed as follows:

vote(m′, e) =

∑
e′∈E(m′) relatedness(e, e

′) · commonness(e′,m′)

|E(m′)| . (4.3)

Commonness is the probability of an entity being the link target of a given
mention [134]:

commonness(e′,m′) = P (e′|m′) =
link(e′,m′)
link(m′)

, (4.4)

where link(e′,m′) is the number of times entity e′ is used as a link destination for
m′ and link(m′) is the total number of times m′ appears as a link. Relatedness
measures the semantic association between two entities [195]:

relatedness(e, e′) =
log(max(|in(e)|, |in(e′)|))− log(|in(e) ∩ in(e′)|)

log(|E|)− log(min(|in(e)|, |in(e′)|)) , (4.5)

where in(e) is the set of entities linking to entity e (i.e., in-links) and |E| is the
total number of entities.

Once all candidate entities are scored using Eq. 4.2, TAGME selects the
best entity for each mention. Two approaches are suggested for this purpose:
(i) disambiguation by classifier (DC) and (ii) disambiguation by threshold (DT),
of which the latter is selected as the final choice. Due to efficiency concerns,
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entities with commonness below a given threshold τ are discarded from the DT
computations. The set of commonness-filtered candidate entities for mention m
is Eτ (m) = {e ∈ M(e)|commonness(m, e) ≥ τ}. Then, DT considers the top-ε
entities for each mention and then selects the one with the highest commonness
score:

m(e) = argmax
e

{commonness(m, e) : e ∈ Eτ (m) ∧ e ∈ topε[rel(m, e)]}. (4.6)

At the end of this stage, each mention in the input text is assigned a single
entity, which is the most pertinent one to the input text.

Pruning

The aim of the pruning step is to filter out non-meaningful annotations, i.e.,
assign NIL to the mentions that should not be linked to any entity. TAG-
ME hinges on two features to perform pruning: link probability (Eq. 4.1) and
coherence. The coherence of an entity is computed with respect to the candidate
annotations of all the other mentions in the text:

coherence(e, T ) =

∑
e′∈E(T )−{e} relatedness(e, e

′)

|E(T )| − 1
, (4.7)

where E(T ) is the set of distinct entities assigned to the mentions in the input
text. TAGME takes the average of the link probability and the coherence score
to generate a ρ score for each entity, which is then compared to the pruning
threshold ρNA . Entities with ρ < ρNA are discarded, while the rest of them are
served as the final result.

4.1.2 Test Collections

Two test collections are used in [69]: Wiki-Disamb30 and Wiki-Annot30.
Both comprise snippets of around 30 words, extracted from a Wikipedia snap-
shot of November 2009, and are made publicly available.5 In Wiki-Disamb30,
each snippet is linked to a single entity; in Wiki-Annot30 all entity mentions
are annotated. We note that the sizes of these test collections (number of snip-
pets) deviate from what is reported in the TAGME paper: Wiki-Disamb30

and Wiki-Annot30 contain around 2M and 185K snippets, while the reported
numbers are 1.4M and 180K, respectively. This suggests that the published test
collections might be different from the ones used in [69].

5http://acube.di.unipi.it/tagme-dataset/



69 4.1. Overview of TAGME

4.1.3 Evaluation Measures

TAGME is evaluated using three variations of precision and recall. The so-called
standard precision and recall (P and R), are employed for evaluating the dis-
ambiguation phase, using the Wiki-Disamb30 test collection. The two other
measures, annotation and topics precision and recall are employed for mea-
suring the end-to-end performance on the Wiki-annot30 test collection. The
annotation measures (Pann and Rann) compare both the mention and the entity
against the ground truth, while the topics measures (Ptopics and Rtopics) only
consider entity matches. The TAGME papers [69, 70] provide little information
about the evaluation measures. In particular, the computation of the standard
precision and recall is rather unclear; we discuss it later in Section 4.3.2. Details
are missing regarding the two other measures too: (i) How are overall precision,
recall and F-measure computed for the annotation measures? Are they micro-
or macro-averaged? (ii) What are the matching criteria for the annotation mea-
sures? Are partially matching mentions accepted or only exact matches? In
what follows, we formally define the annotation and topics measures, based on
the most likely interpretation we established from the TAGME paper and from
our experiments.

We write G(T ) = {(m̂1, ê1), . . . , (m̂m, êm)} for ground truth annotations
of the input text T , and S(T ) = {(m1, e1), . . . , (mn, en)} for the annotations
identified by the system. Neither G(T ) nor S(T ) contains NULL annotations.
The TAGME paper follows [114], which uses macro-averaging in computing
annotation precision and recall:6

Pann =
|G(T ) ∩ S(T )|

|S(T )| , Rann =
|G(T ) ∩ S(T )|

|G(T )| . (4.8)

The annotation (m̂, ê) matches (m, e) if two conditions are fulfilled: (i) entities
match (ê = e), and (ii) mentions match or contain each other (m̂ = m or
m̂ ∈ m or m ∈ m̂). We note that the TAGME paper refers to “perfect match”
of the mentions, while we use a more relaxed version of matching (by considering
containment matches). This relaxation results in the highest possible Pann and
Rann, but even those are below the numbers reported in [69] (cf. Section 4.3.2).

6As explained later by the TAGME authors, they in fact used micro-averaging. This
contradicts the referred paper [114], which explicitly defines Pann and Rann as being macro-
averaged.
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The topics precision and recall (Ptopics and Rtopics) [143] only consider entity
matches (ê = e) and are micro-averaged over the set of all texts F :

Ptopics =

∑
T∈F |G(T ) ∩ S(T )|∑

T∈F |S(T )| , Rtopics =

∑
T∈F |G(T ) ∩ S(T )|∑

T∈F |G(T )| . (4.9)

For all measures the overall F-measure is computed from the overall precision
and recall.

4.2 Repeatability

By definition, repeatability means that a system should be implemented under
the same conditions as the reference system. In our case, the repeatability of the
TAGME experiments in [69] is dependent on the availability of (i) the knowledge
base and (ii) the test collections (text snippets and gold standard annotations).

The reference knowledge base is Wikipedia, specifically, the TAGME paper
uses a dump from November 2009, while the API employs a dump from July
2012. Unfortunately, neither of these dumps is available on the Web nor could
be provided by the TAGME authors upon request. We encountered problems
with the test collections too. As we already explained in Section 4.1.2, there
are discrepancies between the number of snippets the test collections (Wiki-

Disamb30 and Wiki-Annot30) actually contain and what is reported in the
paper. The latter number is higher, suggesting that the results in [69] are
based only on subsets of the collections.7 Further, Wiki-Disamb30 is split into
training and test sets in the TAGME paper, but those splits are not available.

Due to these reasons, which could all be classified under the general heading
of unavailability of data, we conclude that the TAGME experiments in [69] are
not repeatable. In the next section, we make a best effort at establishing the
most similar conditions, that is, we attempt to reproduce their results.

4.3 Reproducibility

This section reports on our attempts to reproduce the results presented in the
TAGME paper [69]. The closest publicly available Wikipedia dump is from April

7It was later explained by the TAGME authors that they actually used only 1.4M out of
2M snippets from Wiki-Disamb30, as Weka could not load more than that into memory. From
Wiki-Annot30 they used all snippets, the difference is merely a matter of approximation.
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2010,8 which is about five months newer than the one used in [69]. On a side note
we should mention that we were (negatively) surprised by how difficult it proved
to find Wikipedia snapshots from the past, esp. from this period. We have
(re)implemented TAGME based on the description in the TAGME papers [69,
70] and, when in doubt, we checked the source code. For a reference comparison,
we also include the results from (i) the TAGME API and (ii) the Dexter entity
linking framework [46]. Even though the implementation in Dexter (specifically,
the parser) slightly deviates from the original TAGME system, it is still useful
for validation, as that implementation is done by a third (independent) group
of researchers. We do not include results from running the source code provided
to us because it requires the Wikipedia dump in a format that is no longer
available for the 2010 dump we have access to; running it on a newer Wikipedia
version would give results identical to the API. In what follows, we present the
challenges we encountered during the implementation in Section 4.3.1 and then
report on the results in Section 4.3.2.

4.3.1 Implementation

During the (re)implementation of TAGME, we encountered several technical
challenges, which we describe here. These could be traced back to differences
between the approach described in the paper and the source code provided by
the authors. Without addressing these differences, the results generated by our
implementation are far from what is expected and are significantly worse than
those by the original system.

Link probability computation. Link probability is one of the main statisti-
cal features used in TAGME. We noticed that the computation of link probabil-
ity in TAGME deviates from what is defined in Eq. 4.1: instead of computing the
denominator freq(m) as the number of occurrences of mention m in Wikipedia,
TAGME computes the number of documents that mention m appears in. Es-
sentially, document frequency is used instead of term (phrase) frequency. This
is most likely due to efficiency considerations, as the former is much cheaper
to compute. However, a lower denominator in Eq. 4.1 means that the resulting
link probability is a higher value than it is supposed to be. In fact, this change
in the implementation means that it is actually not link probability, but more

8https://archive.org/details/enwiki 20100408
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like keyphraseness that is being computed. Keyphraseness [141] is defined as:

kp(m) = P (keyword|m) =
key(m)

df(m)
, (4.10)

where key(m) denotes number of Wikipedia articles where mentionm is selected
as a keyword, i.e., linked to an entity (any entity), and df(m) is the number of
articles containing the mention m. Since in Wikipedia a link is typically created
only for the first occurrence of an entity (link(m) ≈ key(m)), we can assume
that the numerator of link probability and keyphraseness are identical. This
would mean that TAGME as a matter of fact uses keyphraseness. Nevertheless,
as our goal in this chapter is to reproduce the TAGME results, we followed their
implementation of this feature, i.e., link(m)/df(m).9

Relatedness computation. We observed that the relatedness score, defined
in Eq. 4.5, is computed as 1 − relatedness(e, e′), furthermore, for the entities
with zero inlinks or no common inlinks, the score is set to zero. These details
are not explicitly mentioned in the paper, while they have significant impact on
the overall effectiveness of TAGME.

Pruning based on commonness. In addition to the filtering methods men-
tioned in the parsing step (cf. Section 4.1.1), TAGME filters entities with com-
monness score below 0.001, but it is not documented in the TAGME papers.
We followed this filtering approach, as it makes the system considerably faster.

4.3.2 Results

We report results for the intermediate disambiguation phase and for the end-
to-end entity linking task. For all reproducibility experiments, we set the ρNA

threshold to 0.2, as it delivers the best results and is also the recommended
value in the TAGME paper.

Disambiguation phase. For evaluating the disambiguation phase, we sub-
mitted the snippets from the Wiki-Disamb30 test collection to the TAGME
API, with the pruning threshold set to 0. This setting ensures that no pruning is
performed and the output we get back is what is supposed to be the outcome of

9The proper implementation of link probability would result in lower values (as the de-
nominator would be higher) and would likely require a different threshold value than what is
suggested in [69]. This goes beyond the scope of this chapter.
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Table 4.1: Results of TAGME reproducibility on the Wiki-Disamb30 test
collection.

Method P R F

Original paper [69] 0.915 0.909 0.912
TAGME API 0.775 0.775 0.775

Table 4.2: Results of TAGME reproducibility on the Wiki-Annot30 test
collection.

Method Pann Rann Fann Ptopics Rtopics Ftopics

Original paper [69] 0.7627 0.7608 0.7617 0.7841 0.7748 0.7794
TAGME API 0.6945 0.7136 0.7039 0.7017 0.7406 0.7206
TAGME-wp10 (our) 0.6143 0.4987 0.5505 0.6499 0.5248 0.5807
Dexter 0.5722 0.5959 0.5838 0.6141 0.6494 0.6313

the disambiguation phase. We tried different methods for computing precision
and recall, but we were unable to get the results that are reported in the original
TAGME paper (see Table 4.1). We therefore relaxed the evaluation conditions
in the following way: if any of the entities returned by the disambiguation phase
matches the ground truth entity for the given snippet, then we set both preci-
sion and recall to 1; otherwise they are set to 0. This gives us an upper bound
for the performance that can be achieved on the Wiki-disamb30 test collection;
any other interpretation of precision or recall would result in a lower number.
What we found is that even with these relaxed conditions the F-score is far
below the reported value (0.775 vs. 0.912). One reason for the differences could
be the discrepancy between the number of snippets in the test collection and
the ones used in [69]. Given the magnitude of the differences, even against their
own API, we decided not to go further to get the results for our implementation
of TAGME. We conclude that this set of results is not reproducible, due to
insufficient experimental details (test collection and measures).

End-to-end performance. Table 4.2 shows end-to-end system performance
according to the following implementations: the TAGME API, our implemen-
tation using a Wikipedia snapshot from April 2010, and the Dexter implemen-
tation using a Wikipedia snapshot from March 2013. For all experiments, we
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compute the evaluation measures described in Section 4.1.3. We observe that
the API results are lower than in the original paper, but the difference is below
10%. We attribute this to the fact that the ground truth is generated from a
2009 version of Wikipedia, while the API is based on the version from 2012.

Concerning our implementation and Dexter (bottom two rows in Table 4.2)
we find that they are relatively close to each other, but both of them are lower
than the TAGME API results; the relative difference to the API results is −19%
for our implementation and −12% for Dexter in Ftopics score. Ceccarelli et al.
[46] also report on deviations, but they attribute these to the processing of
Wikipedia: “we observed that our implementation [...] behaves only slightly
worse then TAGME after the top 5 results, probably due to a different processing
of Wikipedia.” The difference between Dexter and our implementation stems
from the parsing step. Dexter relies on its own parsing method and removes
overlapping mentions at the end of the annotation process. We, on the other
hand, follow TAGME and delete overlapping mentions in the parsing step (cf.
Section 4.1.1). By analyzing our results, we observed that this parsing policy
resulted in early pruning of some correct entities and led accordingly to lower
results.

Our experiments show that the end-to-end results reported in [69] are re-
producible through the TAGME API, but not by (re)implementation of the
approach by a third partner. This is due to undocumented deviations from the
published description.

4.4 Generalizability

We now test the generalizability of TAGME on the ELQ task. As discussed in
Chapter 3, the aim of ELQ is to detect all possible entity linking interpretations
of the query. This is different from conventional entity linking, where a single
annotation is created. In other words, the output of conventional entity linking
systems is a set of mention-entity pairs, while entity linking in queries returns
set(s) of entity sets. Applying a conventional entity linker to the ELQ task
restricts the output to a single interpretation, but can deliver solid performance
nonetheless [43]. We detail our experimental setup in Section 4.4.1 and report
on the results in Section 4.4.2.
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Table 4.3: TAGME results for the entity linking in queries task.

Method
ERD-dev Y-ERD

Pstrict Rstrict Fstrict Pstrict Rstrict Fstrict

TAGME API 0.8352 0.8062 0.8204 0.7173 0.7163 0.7168
TAGME-wp10 (our) 0.7143 0.7088 0.7115 0.6518 0.6515 0.6517
TAGME-wp12 (our) 0.7363 0.7234 0.7298 0.6535 0.6532 0.6533
Dexter 0.7363 0.7073 0.7215 0.6989 0.6979 0.6984

4.4.1 Experimental Setup

Implementations. We compare four different implementations to assess the
generalizability of TAGME to the ELQ task: the TAGME API, our implemen-
tation of TAGME with two different Wikipedia versions, one from April 2010
and another from May 2012 (which is part of the ClueWeb12 collection), and
Dexter’s implementation of TAGME. Including results using the 2012 version of
Wikipedia facilitates a better comparison between the TAGME API and our im-
plementation, as they both use similar Wikipedia dumps. It also demonstrates
how the version of Wikipedia might affect the results.

Datasets and evaluation measures. We use two publicly available test
collections developed for the ELQ task: ERD-dev [43] and Y-ERD [92]. ERD-
dev includes 99 queries, while Y-ERD offers a larger selection, containing 2398
queries (cf. Section 3.3). The annotations in these test collections are confined
to proper noun entities from the Freebase snapshot provided by the ERD chal-
lenge [43]. We therefore remove entities that are not present in this snapshot
in a post-filtering step. In all the experiments, ρNA

is set to 0.1, as it delivers
the highest results both for the API and for our implementations, and is also
the recommendation of the TAGME API. Evaluation is performed in terms of
precision, recall, and F-measure, using the strict evaluation measures described
in Section 3.2.

4.4.2 Results

Table 4.3 presents the TAGME generalizability results. Similar to the repro-
ducibility experiments, we find that the TAGME API provides substantially
better results than any of the other implementations. The most fair comparison
between Dexter and our implementations is the one against TAGME-wp12, as
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that has the Wikipedia dump closest in date. For ERD-dev they deliver similar
results, while for Y-ERD Dexter has a higher F-score (but the relative difference
is below 10%). Concerning different Wikipedia versions, the more recent one
performs better on the ERD-dev test collection, while the difference is negli-
gible for Y-ERD. If we take the larger test collection, Y-ERD, to be the more
representative one, then we find that TAGME API > Dexter > TAGME-wp10,
which is consistent with the reproducibility results in Table 4.2. However, the
relative differences between the approaches are smaller here. We thus conclude
that the TAGME approach can be generalized to the ELQ task.

4.5 Discussion

Based on our findings in Sections 4.2–4.4, we answer our main research question:

RQ2. How does a state-of-the-art entity linking approach perform on the ELQ
task?

TAGME can be used as a baseline approach for the ELQ task. For a reliable
and meaningful comparison between TAGME and a newly proposed entity link-
ing method, the TAGME approach should be (re)implemented, like it has been
done in some prior work [45]. We recommend to use the TAGME API, much
like a black-box, when entity linking is performed as part of a larger task.

4.5.1 Further Investigations

TAGME is an outstanding entity linking system. The authors offer invaluable
resources for the reproducibility of their approach: the test collections, source
code, and a RESTful API. However, one important question that is raised by our
experimental results is: Where do the result differences (between the TAGME
API and third party implementation) stem from? Upon the acceptance of our
TAGME reproducibility paper [94], the TAGME authors clarified some of the
issues that surfaced in this study. This information came only after the paper
was accepted, even though we have raised our questions during the writing of
the paper (at that time, however, the reply we got only included the source code
and the fact that they no longer have the Wikipedia dumps used in the paper).
We integrated their responses throughout our study as much as it was possible;
we include the rest of them here.
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First, it turns out that the public API as well as the provided source code cor-
respond to a newer, updated version (“version 2”) of TAGME. The source code
for the original version (“version 1”) described in the TAGME papers [69, 70] is
no longer available. This means that even if we managed to find the Wikipedia
dump used in the TAGME papers and ran their source code, we would have not
been able to reproduce their results. Furthermore, TAGME performs additional
non-documented optimizations when parsing the spots, filtering inappropriate
spots, and computing relatedness, as explained by the authors.

Another reason for the differences in performance might have to do with
how links are extracted from Wikipedia. TAGME uses wiki page-to-page link
records, while our implementation (as well as Dexter’s) extracts links from the
body of the pages. This affects the computation of relatedness, as the former
source contains 20% more links than the latter. (It should be noted that this
file was not available for the 2010 and 2012 Wikipedia dumps.) The authors
also clarified that all the evaluation measures are micro-averaged and explained
how the disambiguation phase was evaluated. We refer the interested reader to
the online appendix10 of this chapter for further details.

4.5.2 Lessons Learned

This study has led to invaluable insights about reproducibility requirements,
which we list here:

1. All technical details that affect effectiveness or efficiency should be ex-
plained (or at least mentioned) in the paper; sharing the source code
helps, but finding answers in a large codebase can be highly non-trivial.

2. If there are differences between the published approach and publicly made
available source code or API (typically, the latter being an updated ver-
sion), those should be made explicit.

3. It is encouraged that authors keep all data sources used in a published
paper (in particular, historical Wikipedia dumps, esp. in some specific
format, are more difficult to find than one might think), so that these can
be shared upon requests from other researchers.

4. Evaluation measures should be explained in detail.

10http://bit.ly/tagme-rep
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Maintaining an “online appendix” to a publication is a practical way of providing
some of these extra details that would not fit in the paper due to space limits,
and would have the additional advantage of being easily editable and extensible.

4.6 Summary

In this chapter we have aimed at establishing a baseline for the task of entity
linking in queries using a state-of-the-art entity linking approach. We have
introduced TAGME as a tentative baseline; it is an outstanding entity link-
ing system, has the ability of coping with very short texts like queries, and
comes with invaluable resources for the reproducibility of their approach We
have attempted to (re)implement the system described in [69], studying the
repeatability, reproducibility and generalizability of TAGME to the ELQ task.
Our experiments have shown that some of the results are not reproducible, even
with the API provided by the authors. For the rest of the results, we have
found that (i) the results reported in the chapter are higher than what can be
reproduced using their API, and (ii) the TAGME API gives higher numbers
than what is achievable by a third-party implementation (both our and that of
Dexter [45]) (iii) the TAGME approach can be generalized to the ELQ task.
Based on our findings, we will use TAGME as a baseline for the ELQ task in
the next chapter.



Chapter 5

Methods for Entity Linking
in Queries

In Chapter 3, we introduced a pipeline architecture for addressing the task of
entity linking in queries (ELQ), and presented basic methods for each element
of the pipeline. In this chapter, we focus on the most challenging elements of the
pipeline: candidate entity ranking and disambiguation. We propose a number
of methods for each of them, with the overall goal of finding an ELQ approach
that can strike a balance between effectiveness and efficiency.

Entity linking has been extensively studied for long texts [56, 83, 87, 114,
141, 143, 153]. Despite the large variety of approaches, there are two main
components that are present in all entity linking systems: (i) candidate entity
ranking, i.e., identifying entities that can be possibly linked to a mention, and
(ii) disambiguation, i.e., selecting the best entity (or none) for each detected
mention. There is also a general consensus on the two main categories of features
that are needed for effective entity linking: (i) contextual similarity between
a candidate entity and the surrounding text of the entity mention, and (ii)
interdependence between all entity linking decisions in the text (extracted from
the underlying KB). Previous studies [46, 83] have investigated these aspects in
a unified framework and derived general recommendations for entity linking in
documents. Entity linking in queries, however, has only recently started to draw
attention [43, 53, 92] and such systematic evaluation of the different components
has not been conducted until now.

79
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What is special about entity linking in queries? First, queries are short,
noisy text fragments where the ambiguity of a mention may not be resolved
because of the limited context. That is, a mention can possibly be linked to
more than one entity (see Table 5.1 for examples). This is unlike entity linking in
documents, where it is assumed that there is enough context for disambiguation.
Second, ELQ is an online process that happens during query-time, meaning
that it should be performed under serious time constraints (in contrast with
traditional entity linking, which is offline). The ideal solution is not necessarily
the most effective one, but the one that represents the best trade-off between
effectiveness and efficiency. Therefore, the same techniques that have been used
for entity linking in documents may not be suitable for queries. The overall
research question driving our investigations is:

RQ3. How should entity linking in queries be performed to achieve high effi-
ciency and effectiveness?

This general research question gives rise to two subquestions:

RQ3a. Given the response time requirements of an online setting, what is the
relative importance of candidate entity ranking vs. disambiguation? In
other words, if we are to allocate the available processing time between
the two, which one would yield the highest gain?

RQ3b. Given the limited context provided by queries, which group of fea-
tures is needed the most for effective entity disambiguation: contextual
similarity, interdependence between entities, or both?

To answer the above research questions, we set up a framework where dif-
ferent candidate entity ranking and disambiguation methods can be plugged in.
For each of these components, we experiment with both unsupervised and super-
vised alternatives, resulting in a total of four different ELQ systems. Supervised
methods are expected to yield high effectiveness coupled with lower efficiency,
while for unsupervised approaches it is the other way around. Our results reveal
that it is more beneficial to use supervised learning for the candidate entity rank-
ing step. If this step provides high-quality results, then disambiguation can be
successfully tackled with a simple and elegant greedy algorithm. Moreover, our
analysis shows that entity interdependencies provide little help for disambigua-
tion. This is an interesting finding as it stands in contrast to the established
postulation for entity linking in documents. Consequently, we identify a clearly
preferred approach that uses supervised learning for candidate entity ranking
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Table 5.1: Example queries with their linked entities. Each set represents
an interpretation of the query; ambiguous queries have multiple interpretations
(i.e., multiple table rows).

Query Entity linking interpretation(s)
nashville thrift stores {Nashville Tennessee, Charity shop}
obama’s wife {Barack Obama}
cambridge population {Cambridge}

{Cambridge (Massachusetts)}
new york pizza manhattan {New York-style pizza, Manhattan}

{New York, Manhattan}

and an unsupervised algorithm for disambiguation. Using the evaluation plat-
form of the Entity Recognition and Disambiguation (ERD) challenge [43], we
show that our preferred approach performs on a par with the current state of
the art.

The main contribution of this chapter is to present the first systematic inves-
tigation of the ELQ task by bringing together the latest entity linking techniques
and practices in a unified framework (Section 5.1). In addition, we develop
a novel supervised approach for entity disambiguation in ELQ, which encom-
passes various textual and KB-based relatedness features. Finally, we make a
best practice recommendation for ELQ and demonstrate that our recommended
approach achieves state-of-the-art performance (Section 5.3). The resources de-
veloped with this paper are presented in Appendix A.3.

5.1 Entity Linking in Queries

As discussed in Chapter 3, the task of entity linking in queries (ELQ) is to
identify, given an input query q, a set of entity linking interpretations I =
{E1, . . . , Em}, where each interpretation Ei = {(m1, e1), ..., (mk, ek)} consists of
a set of mention-entity pairs. Mentions within Ei are non-overlapping and each
mention mj is linked to an entity ej in a reference knowledge base. By way of
illustration, the output of ELQ for the query “new york pizza manhattan” would
be I = {E1, E2}, where E1 = {(new york pizza, New York-style pizza),
(manhattan, Manhattan)} and E2 = {(new york, New York), (manhattan,
Manhattan)}. Following [43, 92], we restrict ourselves to detecting proper
noun entities and do not link general concepts (e.g., “Pizza”).
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NEW YORK CITY                      0.64
NEW YORK                         0.58
NEW YORK-STYLE PIZZA       0.45
MANHATTAN                              0.40  

PROVINCE OF NEW YORK     0.04
MANHATTAN (FILM)               0.02
YORK                                            0.01
  …

NEW YORK CITY                                             
New York                                                 
NEW YORK-STYLE PIZZA                            
MANHATTAN                                                  
PROVINCE OF NEW YORK                                    

MANHATTAN (FILM)                                  
…

{NEW YORK CITY}                                  
{NEW YORK-STYLE PIZZA}                       
{MANHATTAN}                                        
{NEW YORK CITY, MANHATTAN}             
{NEW YORK, MANHATTAN}                     
{NEW YORK-STYLE PIZZA, MANHATTAN} 
…

{NEW YORK CITY, MANHATTAN}
{NEW YORK-STYLE PIZZA, 

MANHATTAN}

Unsupervised Disambiguation

Supervised Disambiguation

{NEW YORK CITY, MANHATTAN}
{NEW YORK-STYLE PIZZA, 

MANHATTAN}

1

2

Candidate entity ranking

Mention Detection
Candidate Entity 

Rankingquery Disambiguation annotated query

Figure 5.1: Pipeline for entity linking in queries with two alternatives for the
disambiguation phase.

We frame the ELQ problem as a sequence of the following three subtasks
(cf. Section 3.4): mention detection, candidate entity ranking (CER) and dis-
ambiguation. The first subtask takes the query q and identifies all mentions
and their corresponding entities. In Chapter 3, we showed that using lexical
matching of query n-grams against a rich dictionary of entity name variants
allows for the identification of candidate entities with close to perfect recall (cf.
Section 3.5). We, therefore, follow the this approach in this chapter and fo-
cus only on the two other subtasks. The CER subtask takes all mention-entity
pairs (from the mention detection step) and outputs a ranked list of mention-
entity pairs, along with the corresponding scores. The last subtask takes this
list as input and forms the set of entity linking interpretations I. For each of
the latter two subtasks, we present two alternatives: unsupervised and super-
vised (see Figure 5.1). The resulting four possible combinations are compared
experimentally in Section 5.3.1.
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Table 5.2: Feature set used for ranking entities, categorized to mention (M),
entity (E), mention-entity (ME), and query (Q) features.

Feature Description Type

Len(m) Number of terms in the entity mention M
NTEM(m)‡ Number of entities whose title equals the mention M
SMIL(m)‡ Number of entities whose title equals part of the mention M
Matches(m) Number of entities whose surface form matches the mention M
Redirects(e) Number of redirect pages linking to the entity E
Links(e) Number of entity out-links in DBpedia E
Commonness(e,m) Likelihood of entity e being the target link of mention m ME
MCT (e,m)‡ True if the mention contains the title of the entity ME
TCM(e,m)‡ True if title of the entity contains the mention ME
TEM(e,m)‡ True if title of the entity equals the mention ME
Pos1(e,m) Position of the 1st occurrence of the mention in entity abstract ME
SimMf (e,m)† Similarity between mention and field f of entity; Eq. 3.15 ME

LenRatio(m, q) Mention to query length ratio: |m|
|q| Q

QCT (e, q) True if the query contains the title of the entity Q
TCQ(e, q) True if the title of entity contains the query Q
TEQ(e, q) True if the title of entity is equal query Q
Sim(e, q) Similarity between query and entity; Eq. 3.15 Q
SimQf (e, q)

† LM similarity between query and field f of entity; Eq. 3.15 Q
‡
Entity title refers to the rdfs:label predicate of the entity in DBpedia

†
Computed for all individual DBpedia fields f ∈ F and also for field content (cf. Section 5.2.1) .

5.1.1 Candidate Entity Ranking

This subtask is responsible for ranking mention-entity pairs based on how likely
the entities are link targets (in any interpretation of the query). The objective is
to achieve both high recall and high precision at early ranks, as the top-ranked
mention-entity pairs obtained here will be used directly in the subsequent disam-
biguation step. Formally, our focus of attention below is on ranking candidate
(m, e) pairs with respect to the query, i.e., estimating score(m, e, q).

Unsupervised

For the unsupervised ranking approach, we take the top performing genera-
tive model from Chapter 3: MLMcg. This model considers both the likeli-
hood of the given mention and the similarity between the query and the entity:
score(m, e, q) = P (e|m)P (q|e), where P (e|m) is the probability of a mention
being linked to an entity (a.k.a. commonness [134]), computed from the FACC
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collection [75]. The query likelihood P (q|e) is estimated using the query length
normalized language model similarity [113] (Eq. 3.15), where the entity and col-
lection language models, P (t|θe) and P (t|C), are computed using the Mixture
of Language Models (MLM) approach [152] (Eq. 3.11).

Supervised

Our supervised approach employs learning to rank (LTR), where each (query,
mention, entity) triple is described using a set of features. The ranking function
is trained on a set of mention-entity pairs with binary labels, with positive labels
denoting the correctly annotated entities for the given query. We use a total of
28 features (developed by ourselves or taken from the literature [136]), which
are summarized in Table 5.2.

5.1.2 Disambiguation

The disambiguation step is concerned with the formation of entity linking in-
terpretations {E1, ..., Em}. Similar to the previous step, we examine both un-
supervised and supervised alternatives.

Unsupervised

We employ the greedy algorithm introduced in Chapter 3, which forms interpre-
tations in three consecutive steps (cf. Section 3.4.3): (i) pruning, (ii) contain-
ment mention filtering, and (iii) set generation. In the first step, the algorithm
takes the ranked list of mention-entity pairs and discards the ones with ranking
score below the threshold τs. This threshold is a free parameter that controls
the balance between precision and recall. The second step removes contain-
ment mentions (e.g., “kansas city mo” vs. “kansas city”) by keeping only the
highest scoring one. Finally, interpretations are built iteratively by processing
mention-entity pairs in decreasing order of score and adding them to an exist-
ing interpretation Ei, where the mention does not overlap with other mentions
already in Ei and i is minimal; if no such interpretation exists then a new
interpretation E|E|+1 is created.

Supervised

The overall idea is to generate all possible interpretations from a ranked list of
mention-entity pairs, then employ a binary classifier to collectively select the
most pertinent interpretations. Our approach takes the top-K mention-entity
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Table 5.3: Feature set used in the supervised disambiguation approach. Type
is either query dependent (QD) or query independent (QI).

Set-based Features Type
CommonLinks(E) Number of common links in DBpedia:

⋂
e∈E out(e). QI

TotalLinks(E) Number of distinct links in DBpedia:
⋃

e∈E out(e) QI

JKB(E) Jaccard similarity based on DBpedia: CommonLinks(E)
TotalLink(E) QI

Jcorpora(E)‡ Jaccard similarity based on FACC:
|⋂e∈E doc(e)|
|⋃e∈E doc(e)| QI

RelMW (E)‡ Relatedness similarity [143] according to FACC QI

P (E) Co-occurrence probability based on FACC:
|⋂e∈E doc(e)|
TotalDocs QI

H(E) Entropy of E: −P (E)log(P (E))−(1−P (E))log(1−P (E)) QI

Completeness(E)† Completeness of set E as a graph: |edges(GE)|
|edges(K|E|)| QI

LenRatioSet(E, q)§ Ratio of mentions length to the query length:
∑

e∈E |me|
|q| QD

SetSim(E, q) Similarity between query and the entities in the set; Eq 5.1 QD
Entity-based Features
Links(e) Number of entity out-links in DBpedia QI
Commonness(e,m) Likelihood of entity e being the target link of mention m QD
Score(e, q) Entity ranking score, obtained from the CER step QD
iRank(e, q) Inverse of rank, obtained from the CER step: 1

rank(e,q) QD

Sim(e, q) Similarity between query and the entity; Eq. 3.15 QD
ContextSim(e, q) Contextual similarity between query and entity; Eq 5.3 QD
‡
doc(e) represents all documents that have a link to entity e

†
GE is a DBpedia subgraph containing only entities from E; and K|E| is a complete graph of |E| vertices

§
me denotes the mention that corresponds to entity e

pairs (obtained from the CER step) and generates all possible interpretations
out of those. We further require that mentions within the same interpretation
do not overlap with each other. The value of K is set empirically, and it largely
depends on the effectiveness of the CER step. If CER has high precision then K
can be low, while less effective approaches can be compensated for with higher
K values.

Once the candidate sets are generated, each is represented by a feature
vector. We devise two main families of features: (i) set-based features are
computed for the entire interpretation set, and (ii) entity-based features are
calculated for individual entities. Features in the first group are computed
collectively on all entities of the set and measured as a single value, while the
members of the second group need to be aggregated (we use min, max, avg as
aggregators). It is worth noting that each interpretation typically consists of
few entities. Therefore, considering all entities for computing set-based features
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is feasible; it also captures more information than one could get from aggregated
pair-wise similarity features. Table 5.3 summarizes our feature set.

We highlight two novel and important features. SetSim(E, q) measures the
similarity between all entities in the interpretation E and the query q:

SetSim(E, q) =

∏
t∈q P (t|θE)P (t|q)∏
t∈q P (t|C)P (t|q) . (5.1)

It is calculated similar to Eq. 3.15, the main difference being that the probability
of each term is estimated based on the interpretation’s language model:

P (t|θE) =
∑
e∈E

∑
f∈F

μfP (t|θef ). (5.2)

In similar vein, ContextSim(e, q) measures the similarity between the entity
and the query context, where query context is the “rest” of the query, i.e.,
without the mention me that corresponds to entity e. Formally:

ContextSim(e, q) = P (q −me|e), (5.3)

where P (q −me|e) is computed using Eq. 3.15.

5.2 Experimental Setup

In this section, we describe our data sources, settings of methods, and evaluation
measures.

5.2.1 Data

Knowledge base. We employ DBpedia 3.9 as our reference knowledge base
and build an index of all entities that have both rdfs:label and dbo:comment

predicates. The index includes the following set of fields: F ={title, content,
rdfs:label, dbo:wikiPageWikiLink, rdfs:comment, dbo:abstract}, where
title is the concatenation of rdfs:label, foaf:name and dbo:wikiPageRedi-

rects predicates, and content holds the content of all predicates of the entity;
the remaining fields correspond to individual predicates.
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Surface form dictionary. To recognize candidate entities in queries, we fol-
low Chapter 3 and employ a rich surface form dictionary, which maps surface
forms to entities. We utilize the FACC entity-annotated web corpora [75] and
include surface forms above a commonness threshold of 0.1 [92]. Addition-
ally, we add DBpedia name variants as surface forms; i.e., entity names from
rdfs:label, foaf:name, and dbo:wikiPageRedirects predicates [56, 69, 92].
We confine our dictionary to entities present in the Freebase snapshot of proper
named entities, provided by the ERD challenge [43].

Test collections. We evaluate our methods on two publicly available test
collections: Y-ERD [92] and ERD-dev [43]. The former is based on the Yahoo
Search Query Log to Entities (YSQLE) dataset1 and consists of 2, 398 queries.
All results on this collection are obtained by performing 5-fold cross validation.2

The ERD-dev collection contains 91 queries and is released as part of the ERD
challenge [43]. We apply the trained models (on the whole Y-ERD collection)
to ERD-dev queries and report on the results. In addition, ERD also provides
an online evaluation platform which is based on a set of 500 queries (referred
to as ERD-test); the corresponding annotations are not released. We evaluate
the effectiveness3 of our recommended system using ERD-test to evaluate how
it performs against the current state of the art.

5.2.2 Methods

Candidate entity ranking. For the unsupervised method (MLMcg), we
follow [148] and use title and content fields, with weights 0.2 and 0.8, re-
spectively. For the supervised method (LTR), we employ the Random Forest
(RF) [36] ranking algorithm and set the number of trees to 1000 and the max-
imum features to 10% of size of the feature set [136]. We further include two
baseline methods for reference comparison: (i) MLM is similar to MLMcg, but
without considering the commonness score; i.e., computed based on Eq. 3.11;
(ii) CMNS ranks entities based on the commonness score, while prioritizing
longer mentions, and is shown to be a strong baseline [29, 92, 136].

1http://webscope.sandbox.yahoo.com/
2It is important to note that Y-ERD contains queries that have been reformulated (often

only slightly so) during the course of a search session; we ensure that queries from the same
session are assigned to the same fold when using cross-validation.

3Carmel et al. [43] do not report on the efficiency of the approaches and the online leader-
board is no longer available, hence we present only effectiveness results from Cornolti et al.
[53].
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Disambiguation. The unsupervised disambiguation method (GIF algorithm)
involves a score threshold parameter, which is set (using a parameter sweep) de-
pending on the CER method used: 20 for MLMcg and 0.3 in case of LTR. For
the supervised disambiguation method (LTR), we set the number of top ranked
entities K to 5 (based on a parameter sweep) and use a RF classifier with sim-
ilar setting to supervised CER. For baseline comparison, we consider the top-3
performing systems from the ERD challenge: SMAPH [53], NTUNLP [49], and
Seznam [64]. We also compare our best performing approach with our imple-
mentation of TAGME [69], using the Wikipedia dump from June 16, 2015.

5.2.3 Evaluation

As both precision and recall matter for the candidate entity ranking step, we
evaluate our methods using Mean Average Precision (MAP), recall at rank 5
(R@5), and precision at position 1 (P@1). When evaluating CER, we are only
concerned about the ranking of entities; therefore, we consider each entity only
once with its highest scoring mention: score(e, q) = argmaxm∈q score(m, e, q).
For the disambiguation step, we measure the end-to-end performance using
set-based measures (precision, recall, and F-measure), according to the strict
evaluation measures in Chapter 3, which is comparable to the official ERD
results. We further report on the lenient evaluation measures from Section 3.2
for reference comparison. As for efficiency, we report on the average processing
time for each query, measured in seconds. The experiments were conducted on
a machine with an Intel Xeon E5 2.3GHz 12-core processor, running Ubuntu
Linux v14.04. Statistical significance is tested using a two-tailed paired t-test.
We mark improvements with �(p < 0.05) or �(p < 0.01), deteriorations with
�(p < 0.05) or �(p < 0.01), and no significance by ◦.

5.3 Results and Analysis

Next, we report on our experimental results and answer our research questions.

5.3.1 Results

We start by evaluating the candidate entity ranking and disambiguation steps
and then answer our first research subquestion (RQ3a): “Given the response
time requirements of an online setting, what is the relative importance of can-
didate entity ranking vs. disambiguation?”
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Table 5.4: Candidate entity ranking results on the Y-ERD and ERD-dev
datasets. Best scores for each measure are in boldface. Significance for line
i > 1 is tested against lines 1..i− 1.

Method
Y-ERD

MAP R@5 P@1

MLM 0.7507 0.8556 0.6839
CMNS 0.7831� 0.8230� 0.7779�

MLMcg 0.8536�� 0.8997�� 0.8280��

LTR 0.8667��� 0.9022��◦ 0.8479���

Method
ERD-dev

MAP R@5 P@1

MLM 0.7675 0.8622 0.7333
CMNS 0.7037◦ 0.7222� 0.7556◦

MLMcg 0.8543�� 0.9015◦� 0.8444◦◦

LTR 0.8606��◦ 0.9289��◦ 0.8222◦◦◦

Candidate Entity Ranking

Table 5.4 presents the results for CER on the Y-ERD and ERD-dev datasets.
We find that commonness is a strong performer (this is in line with the findings
of Blanco et al. [29]). Combining commonness with MLM in a generative model
(MLMcg) delivers excellent performance, with MAP above 0.85 and R@5 around
0.9. The LTR approach can bring in further slight, but for Y-ERD significant,
improvements. This means that both of our CER methods (MLMcg and LTR)
are able to find the vast majority of the relevant entities and return them at the
top ranks.

Disambiguation

Table 5.5 reports on the disambiguation results. We use the naming convention
X-Y, where X refers to the CER method (MLMcg or LTR) and Y refers to
the disambiguation method (GIF or LTR) that is applied on top. Our observa-
tions are as follows. The MLM-GIF approach is clearly the most efficient but
also the least effective one. Learning is more expensive for disambiguation than
for CER, see LTR-GIF vs. MLMcg-LTR; yet, it is also clear from this com-
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Table 5.5: End-to-end performance of ELQ systems on the Y-ERD and ERD-
dev query sets. Significance for line i > 1 is tested against lines 1..i− 1.

Method
Y-ERD

Pstrict Rstrict Fstrict Time (s)

MLMcg-GIF 0.709 0.709 0.709 0.058
MLMcg-LTR 0.725◦ 0.724◦ 0.724◦ 0.893
LTR-LTR 0.731�◦ 0.732�◦ 0.731�◦ 0.881
LTR-GIF 0.786��� 0.787��� 0.787��� 0.382

Method
ERD-dev

Pstrict Rstrict Fstrict Time (s)

MLMcg-GIF 0.724 0.712 0.713 0.085
MLMcg-LTR 0.725◦ 0.731◦ 0.728◦ 1.185
LTR-LTR 0.758◦◦ 0.748◦◦ 0.753◦◦ 1.185
LTR-GIF 0.852��� 0.828��◦ 0.840��� 0.423

parison that more performance can be gained when learning is done for CER
than when it is done for disambiguation. The most effective method is LTR-
GIF, outperforming other approaches significantly on both test sets. It is also
the second most efficient one. Interestingly, even though the MLMcg and LTR
entity ranking methods perform equally well according to CER evaluation (cf.
Table 5.4), we observe a large difference in their performance when the unsuper-
vised disambiguation approach is applied on top of them. The reason is that the
absolute scores produced by LTR are more meaningful than those of MLMcg
(despite the query length normalization efforts for the latter; cf. Eq. 3.15). This
plays a direct role in the GIF algorithm, where score thresholding is used. We
note that the reported efficiency results are meant for comparison across differ-
ent approaches. For practical applications, further optimizations to our basic
implementation would be needed (cf. [29]).

Based on the results, LTR-GIF is our overall recommendation. We compare
this method to the TAGME entity linking system in Table 5.6. The results
show that this method significantly outperforms TAGME with respect to both
strict and lenient evaluation measures. We also compare LTR-GIF to the top
performers of the ERD challenge (using the official challenge platform); see Ta-
ble 5.7. For this comparison, we additionally applied spell checking, as this
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Table 5.6: ELQ results with respect to strict and lenient evaluation measures.

Method Pstrict Rstrict Fstrict Plenient Rlenient Flenient

Y-ERD
TAGME 0.665 0.664 0.664 0.682 0.685 0.681
LTR-GIF 0.786 0.787 0.787 0.799 0.798 0.798

ERD-dev
TAGME 0.714 0.701 0.705 0.742 0.737 0.733
LTR-GIF 0.852 0.828 0.840 0.852 0.828 0.840

Table 5.7: ELQ results on the official ERD test platform.

Method F1

LTR-GIF 0.699

SMAPH-2 [53] 0.708
NTUNLP [49] 0.680
Seznam [64] 0.669

has also been handled in the top performing system (SMAPH-2) [53]. The
results show that our LTR-GIF approach performs on a par with the state-of-
the-art systems. This is remarkable taking into account the simplicity of the
GIF algorithm vs. the considerably more complex solutions employed by others.

Here we turn into answering our first subquestion:

RQ3a. Given the response time requirements of an online setting, what is the
relative importance of candidate entity ranking vs. disambiguation?

Our results reveal that candidate entity ranking is of higher importance than
disambiguation for ELQ. Hence, it is more beneficial to perform the (expensive)
supervised learning early on in the pipeline for the seemingly easier CER step;
disambiguation can then be tackled successfully with a simple unsupervised
algorithm (GIF). We note that selecting the top ranked entity does not yield an
immediate solution; as shown in Chapter 3, disambiguation is an indispensable
step in ELQ.
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Figure 5.2: Most important features used in the supervised approaches, sorted
by Gini score: (Left) Candidate entity ranking, (Right) Disambiguation.

5.3.2 Feature Analysis

To answer our second research subquestion (RQ3b), we analyze the features
used in our supervised methods and report feature importance for both the
CER and disambiguation steps. Figure 5.2(a) shows the top features used in the
LTR entity ranking approach in terms of Gini score. We observe that Matches,
Commonness, and the various query similarity features play the main role in the
entity ranking function. As for the supervised disambiguation step, we selected
the top 15 features independently for the MLMcg-LTR and LTR-LTR methods;
interestingly, we ended up with the exact same set of features. Figure 5.2(b)
demonstrates that nearly all influential features are query dependent; the only
query independent features are P and H, capturing the co-occurrence of entities
in a web corpus.

Based on the above results and analysis, we answer our second subquestion:

RQ3b. Given the limited context provided by queries, which group of features
is needed the most for effective entity disambiguation?

Contextual similarity features are the most effective for entity disambiguation.
This is based on two observations: (i) the unsupervised (GIF) method takes only
the entity ranking scores as input, which are computed based on the contextual
similarity between entity and query; (ii) the supervised (LTR) method relies
the most on query-dependent features. This is an interesting finding, as it
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stands in contrast to the common postulation in entity linking in documents that
interdependence between entities help to better disambiguate entities. Entity
interdependence features (and, in general, collective disambiguation methods)
are more helpful when sufficiently many entities are mentioned in the text; this
is not the case for queries.

5.4 Summary

In this chapter, we have performed the first systematic investigation of entity
linking in queries (ELQ). We have presented a framework where different meth-
ods can be plugged in for two core components: candidate entity ranking and
disambiguation. For each of these components, we have explored both unsuper-
vised and supervised alternatives by employing and further extending state-of-
the-art approaches. Our experiments have led to two important findings: (i) it
is more rewarding to employ supervised learning for candidate entity ranking
than for disambiguation, and (ii) entity interdependence features, which are the
essence of collective disambiguation methods, have little benefit for ELQ. We
further demonstrate that our recommended method achieves state-of-the-art
performance. Overall, our findings have not only revealed important insights,
but also provide guidance as to where future research and development in ELQ
should be focused.





Chapter 6

Exploiting Entity Linking in
Queries for Entity Retrieval

In the previous three chapters (Chapters 3–5) we have focused on understand-
ing queries by annotating them with entities. In this chapter, we use these
annotations to help answer the queries. The task of answering queries with
entities, referred to as entity retrieval, has been extensively addressed over the
past years [27, 111, 147, 148, 157, 210]. A common approach is to match queries
against the term-based representation of entities. Here, we focus on improving
entity retrieval performance by employing entity linking in queries.

Both entity linking and entity retrieval tasks represent key building blocks
for semantic search [137] and are typically backed by a large-scale knowledge
base. Despite this common ground, the two tasks have so far been studied mostly
on their own, as standalone problems. We say mostly, as entity ranking, to a
limited extent, has already been exploited in entity linking: most entity linking
approaches involve an entity retrieval component for collecting candidate entities
for a given text segment, see, e.g., [29, 69, 92]. The other direction, utilizing
entity linking for entity retrieval, to the best of our knowledge, has not been
explored yet. This chapter presents the first attempt at bridging this gap by
performing entity linking on search queries and using the resulting annotations
to improve entity retrieval.

It has been shown in prior work that entity retrieval can be improved by
leveraging semantic annotations of the query, such as target entity types or
related entities, see, e.g., [15, 37, 108, 162]. These studies, using the TREC

95



Chapter 6. Exploiting Entity Linking in Queries for Entity Retrieval 96

barack  obama  parents

<Barack_Obama>

<rdfs:label>: 
    Ann Dunham

<dbo:abstract>: 
    Stanley Ann Dunham, the mother of 
         Barack Obama, was an American 
         anthropologist who …

<dbo:birthPlace>: 
     [ <Honolulu>, <Hawaii> ]

<dbo:child>: 
    <Barack_Obama>

<dbo:wikiPageWikiLink>:
    [ <United_States>, 
           <Family_of_Barack_Obama>, …]

Annotations:

Knowledge base entry 
for ANN DUNHAM

term-based
matching

entity-based
matching

entity linking

Query terms:     
<rdfs:label>:         Ann Dunham
<dbo:abstract>:     Stanley Ann Dunham the mother 
                                     Barack Obama, was an American 
                                     anthropologist who …
<dbo:birthPlace>: Honolulu Hawaii …
<dbo:child>:            Barack Obama
<dbo:wikiPageWikiLink>:
                 United States Family Barack Obama

<dbo:birthPlace>:  [<Honolulu>,
                                        <Hawaii> ]
<dbo:child>:       <Barack_Obama>
<dbo:wikiPageWikiLink>:
                  [ <United_States>,
                                         <Family_of_Barack_Obama>, …]

Entity-based representation D̂̂D

Term-based representation DD

Figure 6.1: Demonstration of term- and entity-based representation of entities.
The query terms match against the term-based representation of entity Ann

Dunham, while the entity annotations of the query match against the entity-
based representation. The dashed parts indicate the novel elements of our work.

Entity [14] and INEX-XER [59] benchmarking platforms, assume that semantic
annotations (e.g., input entity, target type, or entity relations) are provided
as part of the definition of the information need, i.e., complement the keyword
query. In this chapter, we obtain entity annotations automatically, and consider
both term-and entity-based representations of entities for general-purpose entity
retrieval; see Figure 6.1.

It is worth relating our efforts to the large body of prior work that has
shown that leveraging information about entity annotations of queries can im-
prove document retrieval performance [34, 58, 121, 126, 197, 198]. Importantly,
this task is very different from ours: we search for entities in a (manually cu-
rated) knowledge base where entities are first-class citizens. This stands in
contrast with document retrieval, where the entity annotations are a result of
some automated process, which always involves a degree of uncertainty. Not
only the task, but the techniques used for utilizing entity annotations are also
different; in document retrieval, entities are typically used for query expansion
or as simple features in a learning to rank framework (see Section 2.2). We, on
the other hand, represent and match entities directly as a separate component
in the retrieval model. Against this background, the main research question
driving this chapter is:

RQ4. How to exploit entity annotations of queries in entity retrieval?
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To address this question, we introduce a general framework for leveraging entity
annotations of queries into term-based models. Our framework is based on
the Markov Random Field (MRF) model [139]. Within this framework, we
introduce a new component for matching the linked entities from the query.
This component, termed ELR (for “Entity Linking incorporated Retrieval”),
may be seen as an extension that can be applied on top of any text-based
retrieval model that can be instantiated as a MRF model. Entity matches are
facilitated by an additional entity-based representation that preserves entity
relationships as recorded in the knowledge base; see the block denoted with D̂
in Figure 6.1. We address a number of technical and modeling issues that stem
from the differences between terms and entities, including: (i) the sparseness
of entity-based representations compared to term-based ones, (ii) the varying
number of entity annotations per query, (iii) dealing with uncertainties involved
with entity linking, and (iv) the mapping of entities to fields. Specifically, we
seek to answer the following subquestions:

RQ4a: Can entity retrieval performance be improved by incorporating entity
annotations of the query? (Section 6.4.1)

RQ4b: How are the different types of queries impacted by ELR? (Section 6.4.2)

RQ4c: How robust is our method with respect to parameter settings? (Sec-
tion 6.4.3)

RQ4d: What is the impact of the entity linking component on end-to-end
performance? (Section 6.4.4)

We conduct experiments on a test collection consisting of close to 500 hetero-
geneous queries, ranging from short keyword queries to natural language ques-
tions, and show that our model can consistently and significantly improve upon
standard language models [206], semi-structured [111], and term-dependence
models [139, 210], and outperforms the current state-of-the-art on ad hoc entity
retrieval by over 6% in terms of MAP. In addition, we demonstrate its robust-
ness against parameter setting and entity linking configuration. The resources
developed within this paper are presented in Appendix A.4.

The remainder of this chapter is structured as follows. In Section 6.1, we
present the MRF model as the basis of our retrieval framework. We then in-
troduce our new entity linking integrated retrieval framework in Section 6.2.
Sections 6.3 and 6.4 present our experimental setup and results obtained by
applying our model on standard test collections. We end with a summary in
Section 6.5.
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6.1 Background

In this section, we describe the Markov Random Field (MRF) model [139], which
is the basis of our proposed approach (following in Section 6.2). We further
discuss two specific variations of the MRF model: the Sequential Dependence
Model [139] in Section 6.1.2 and the Fielded Sequential Dependence Model [210]
in Section 6.1.3.

6.1.1 The Markov Random Field Model

Markov Random Field models for information retrieval were first introduced
by Metzler and Croft [139] to capture the dependencies between query terms.
Given a document D and a query Q, the goal of these models is to compute the
joint probability P (Q,D):

P (D|Q) =
P (Q,D)

P (Q)

rank
= P (Q,D). (6.1)

This probability is estimated based on a Markov Random Field, which is a com-
mon modeling choice for computing the joint probabilities of random variables.
For document retrieval, a MRF is defined by a graph G with nodes consisting
of query terms qi and the document D, and edges representing the dependence
between the nodes. The joint probability over variables of the graph G is com-
puted as:

PΛ(Q,D) =
1

ZΛ

∏
c∈C(G)

ψ(c; Λ), (6.2)

where C(G) is the set of cliques in G and ψ(c; Λ) = exp[λcf(c)] is a non-negative
potential function, parameterized by the weight λc and the feature function f(c).
The parameter ZΛ serves as a normalization factor, which is generally ignored
due to computational infeasibility. Substituting all these elements into Eq. 6.1,
the final ranking function becomes:

P (D|Q)
rank
=

∑
c∈C(G)

λcf(c). (6.3)

This ranking function provides a solid theoretical basis for a wide spectrum of
retrieval models: from traditional unigram-based models to more sophisticated
ones involving n-grams as well as additional task- or domain-specific features [21,
162]. To build a ranking function, all one needs to do is to define the graph
structure and the potential functions over the graph cliques.
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6.1.2 Sequential Dependence Model

The Sequential Dependence Model (SDM) is a popular MRF-based retrieval
model, which provides a good balance between retrieval effectiveness and effi-
ciency [139]. In the underlying graph of this model, only adjacent query terms
are connected to each other, meaning that query terms are sequentially depen-
dent on each other; i.e., the white nodes in Figure 6.2. Under this assumption,
the potential functions are defined for two types of cliques: (i) 2-cliques involv-
ing a query term and the document, (ii) cliques containing two contiguous terms
and the document. The potential function for the first type of cliques is:

ψ(qi, D; Λ) = exp[λT fT (qi, D)], (6.4)

where fT (qi, D) is the feature function for the query term qi and the document
D. There are two possibilities for the second type of cliques (two terms): either
the terms occur contiguously in the query or they do not. These two cases make
up the potential functions for ordered and unordered matches, and are denoted
by the O and U subscripts, respectively:

ψ(qi, qi+1, D; Λ) = exp[λOfO(qi, qi+1, D)+

λUfU (qi, qi+1, D)]. (6.5)

When substituting the two potential functions ψ(qi, D; Λ) in Eq. 6.4 and ψ(qi,
qi+1, D; Λ) in Eq. 6.5 into Eq. 6.3, and factoring out the λ parameters, the SDM
ranking function becomes:

P (D|Q)
rank
= λT

∑
qi∈Q

fT (qi, D)+

λO

∑
qi,qi+1∈Q

fO(qi, qi+1, D)+

λU

∑
qi,qi+1∈Q

fU (qi, qi+1, D), (6.6)
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q1q1 q2q2 q3q3

DD

e1e1

barack obama parents BARACK OBAMA

Figure 6.2: Graphical representation of the ELR model for the query “barack
obama parents.” Here, all query terms are sequentially dependent and the
phrase “barack obama” is linked to the entity Barack Obama.

where the parameters should meet the constraint of λT + λO + λU = 1. The
specific feature functions are set as follows:

fT (qi, D) = log[
tfqi,D + μ

cfqi
|C|

|D|+ μ
] (6.7)

fO(qi, qi+1, D) = log[
tf#1(qi,qi+1),D + μ

cf#1(qi,qi+1)

|C|
|D|+ μ

] (6.8)

fU (qi, qi+1, D) = log[
tf#uwN(qi,qi+1),D + μ

cf#uwN(qi,qi+1)

|C|
|D|+ μ

], (6.9)

where tfD is the frequency of the term(s) in the document D and cf denotes
the total number of occurrences of the term(s) in the entire collection. The
function #1(qi, qi+1) searches for the exact match of the phrase qi, qi+1, while
#uwN(qi, qi+1) counts the co-occurrence of terms within a window of N words
(where N is set to 8 based on [139]). The parameter μ is the Dirichlet prior,
which is taken to be the average document length in the collection.

Putting all these together, SDM is basically the weighted sum of language
model scores obtained from three sources: (i) query terms, (ii) exact match
of query bigrams, and (iii) unordered match of query bigrams. Our approach
in Section 6.2 employs the same sequential dependence assumption that SDM
does.
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6.1.3 Fielded Sequential Dependence Model

The Fielded Sequential Dependence Model (FSDM) [210] extends the SDM
model to support structured document retrieval. In essence, FSDM replaces the
document language model of feature functions (Eqs. 6.7, 6.8, and 6.9) with those
of the Mixture of Language Models (MLM) [152]. Given a fielded representation
of a document (e.g., title, body, anchors, metadata, etc. in the context of web
document retrieval), MLM computes a language model probability for each field
and then takes a linear combination of these field-level models. Hence, FSDM
assumes that a separate language model is built for each document field and
then computes the feature functions based on fields f ∈ F , with F being the
universe of fields. For individual terms, the feature function becomes:

fT (qi, D) = log
∑
f

wT
f

tfqi,Df
+ μf

cfqi,f
|Cf |

|Df |+ μf
, (6.10)

while ordered and unordered bigrams are estimated as:

fO(qi, qi+1, D) = log
∑
f

wO
f

tf#1(qi,qi+1),Df
+ μf

cf#1(qi,qi+1),f

|Cf |
|Df |+ μf

, (6.11)

fU (qi, qi+1, D) = log
∑
f

wU
f

tf#uwN(qi,qi+1),Df
+ μf

cf#uwN(qi,qi+1),f

|Cf |
|Df |+ μf

. (6.12)

The parameters wf are the weights for each field, which are set to be non-
negative with the constraint

∑
f wf = 1. Zhiltsov et al. [210] trained both the

field weights (wf ) and the feature function weights (λT , λO, λU in Eq. 6.6) in
two stages using the Coordinate Ascent algorithm [140].

6.2 The ELR Approach

This section presents our approach for incorporating entity linking into entity
retrieval. We start by introducing our general MRF-based framework in Sec-
tion 6.2.1, and continue with describing the feature functions in Section 6.2.2
and fielded representation of entities in Section 6.2.3.
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6.2.1 Model

Our Entity Linking incorporated Retrieval (ELR) approach is an extension of the
MRF framework for incorporating entity annotations into the retrieval model.
We note, without detailed elaboration, that ELR is applicable to a wide range
of retrieval problems where documents, or document-based representations of
objects, are to be ranked, and entity annotations are available to be leveraged in
the matching of documents and queries. Our main focus in this paper, however,
is limited to entity retrieval; entity annotations are an integral part of the rep-
resentation here, cf. Figure 6.1. (This is unlike traditional document retrieval,
where documents would need to be annotated by an automated process that is
prone to errors.) To show the generic nature of our approach, and also for the
sake of notational consistency with the previous section, we shall refer to docu-
ments throughout this section. We detail how these documents are constructed
for our particular task, entity retrieval, in Section 6.2.3.

Our interest in this work lies in incorporating entity annotations and not
in creating them. Therefore, entity annotations of the query are assumed to
have been generated by an external entity linking process, which we treat much
like a black box. Formally, given an input query Q = q1...qn, the set of linked
entities is denoted by E(Q) = {e1, ..., em}. We do not impose any restrictions
on these annotations, i.e., they may be overlapping and a given query span
might be linked to multiple entities. It might also be that E(Q) is an empty
set. Further, we assume that annotations have confidence scores associated with
them. For each entity e ∈ E(Q), let s(e) denote the confidence score of e, with
the constraint of

∑
e∈E(Q)

s(e) = 1.

The graph underlying our model consists of document, term, and entity
nodes. As shown in Figure 6.2, we assume that the query terms are sequentially
dependent on each other, while the annotated entities are independent of each
other and of the query terms. Based on this assumption, the potential functions
are computed for three types of cliques: (i) 2-cliques consisting of edges between
the document and a term node, (ii) 3-cliques consisting of the document and
two term nodes, and (iii) 2-cliques consisting of edges between the document
and an entity node. The potential functions for the first two types are identical
to the SDM model (Eqs. 6.4 and 6.5). We define the potential function for the
third clique type as:

ψE(e,D; Λ) = exp[λEfE(e,D)], (6.13)
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where λE is a free parameter and fE(e,D) is the feature function for the entity
e and document D (to be defined in Section 6.2.2). By substituting all feature
functions into Eq. 6.3, the MRF ranking function becomes:

P (D|Q)
rank
=

∑
qi∈Q

λT fT (qi, D)+

∑
qi,qi+1∈Q

λOfO(qi, qi+1, D)+

∑
qi,qi+1∈Q

λUfU (qi, qi+1, D)+

∑
e∈E(Q)

λEfE(e,D). (6.14)

This model introduces an additional parameter for weighing the importance
of entity annotations, λE , on top of the three parameters (λ{T,O,U}) from the
SDM model (cf. Section 6.1.2). There is a crucial difference between entity-
based and term-based matches with regards to the λ parameters. The number
of cliques for term-based matches is proportional to the length of the query (|Q|
for unigrams and |Q|−1 for ordered and unordered bigrams), which makes them
compatible (directly comparable) with each other, irrespective of the length
of the query. Therefore, in SDM, λ{T,O,U} are taken out of the summations
(cf. Eq. 6.6) and can be trained without having to worry about query length
normalization. The parameter λE , however, cannot be treated the same manner
for two reasons. Firstly, the number of annotated entities for each query varies
and it is independent of the length of the query. For example, a long natural
language query might be annotated with a single entity, while shorter queries
are often linked to several entities, due to their ambiguity. Secondly, we need to
deal with varying levels of uncertainty that are involved with entity annotations
of the query. The confidence scores associated with the annotations, which are
generated by the entity linking process, should be integrated into the retrieval
model.
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To address the above issues, we rewrite the λ parameters as a parameterized
function over each clique and define them as:

λT (qi) = λT
1

|Q| , (6.15)

λO(qi, qi+1) = λO
1

|Q| − 1
, (6.16)

λU (qi, qi+1) = λU
1

|Q| − 1
, (6.17)

λE(e) = λEs(e), (6.18)

where |Q| is the query length and s(e) is the confidence score of entity e ob-
tained from the entity linking step. Considering this parametric form of the λ
parameters, our final ranking function takes the following form:

P (D|Q)
rank
= λT

∑
qi∈Q

1

|Q|fT (qi, D)+

λO

∑
qi,qi+1∈Q

1

|Q| − 1
fO(qi, qi+1, D)+

λU

∑
qi,qi+1∈Q

1

|Q| − 1
fU (qi, qi+1, D)+

λE

∑
e∈E(Q)

s(e)fE(e,D), (6.19)

where the free parameters λ are placed under the constraint of λT + λO + λU +
λE = 1. This model ensures that the scores for the different type of matches
(i.e., term, ordered window, unordered window, and entities) are normalized
and the λ parameters, which are to be trained, are not influenced by the length
of the query or by the number of linked entities. In addition, it provides us
with a general ranking framework that can encompass various retrieval models.
If the λO and λU parameters are set to zero, the model is an extension of
unigram based models, such as LM and MLM. Otherwise, it extends SDM and
FSDM. We also note that due to the normalizations applied to the different
set of matches, the full dependence variant of MRF model [139] could also be
instantiated in our framework; this, however, is outside the scope of this study.
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6.2.2 Feature Functions

Feature functions form an essential part of MRF-based models. We now discuss
the estimation of these for the ELR model. For all feature functions, we use a
fielded document representation of entities, as it is a common and effective ap-
proach for entity retrieval, see, e.g., [12, 27, 78, 147, 210]. The first three feature
functions in Eq. 6.19, fT , fO, and fU , are computed as defined in Eqs. 6.10, 6.11,
and 6.12, respectively.

Let us then turn to defining the function fE(e,D) in Eq. 6.19, which is a novel
feature introduced by our ELR model. This function measures the goodness of
the match between an entity e linked in the query and a document D. These
matches are facilitated by an entity-based representation of documents. For
each document D, an entity-based representation D̂ is obtained by ignoring
document terms and considering only entities. In the context of our work, the
entity represented by document D stands in typed relationships with a number
of other entities, as specified in the knowledge base. The various relationships
are modeled as fields in the document. Consider the example in Figure 6.1,
where the document represents the entity Ann Dunham, who is being linked
to the entity Barack Obama (via the relationship <dbo:child>). This entity-
based representation differs from the traditional term-based representation in
at least two important ways. Firstly, each entity appears at most once in each
document field. Secondly, if an entity appears in a field, then it should be
considered a match, irrespective of what other entities may appear in that field.
Consider again the example in Figure 6.1, where the field <dbo:birthplace>

has multiple values, Honolulu and Hawaii. Then, if either of these entities
is linked in the query, that should account for a perfect match against this
particular field, irrespective of how many other locations are present in that
field. Motivated by these observations, we define the feature function fE as:

fE(e,D) = log
∑
f∈F

wE
f

[
(1− α)tf{0,1}(e,D̂f )

+ α
dfe,f
dff

]
, (6.20)

where the linear interpolation implements the Jelinek-Mercer smoothing method,
with α set to 0.1, and tf{0,1}(e,D̂f )

indicates whether the entity e is present in

the document field D̂f or not. For the background model, we employ the notion

of document frequency as follows: dfe,f = |{D̂|e ∈ D̂f}| is the total number of

documents that contain the entity e in field f and df(f) = |{D̂|D̂f 	= ∅}| is the
number of documents with a non-empty field f .
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Table 6.1: Selected fields with the corresponding mapping probabilities for the
term “finland” and the entity Finland.

“finland” Finland
Field name Prob. Field name Prob.

<dcterms:subject> 0.210 <dbo:country> 0.223
<dbo:wikiPageWikiLink> 0.178 <dbo:wikiPageWikiLink> 0.201
types 0.168 contents 0.189
contents 0.113 <dbo:birthPlace> 0.170
<rdfs:comment> 0.089 <dbo:hometown> 0.053
<dbo:abstract> 0.070 <dbo:location> 0.047
<rdfs:label> 0.069 <dbo:nationality> 0.041
names 0.059 <dbo:deathPlace> 0.034
<foaf:isPrimaryTopicOf> 0.040 <dbo:locationCountry> 0.028
yago:<rdf:type> 0.001 <dbo:ground> 0.013

All feature functions (fT , fO, fU , and fE) involve free parameters wf , which
control the field weights. Zhiltsov et al. [210] set these type of parameters using
a learning algorithm, which leads to a large number of parameters to be trained
(the number of feature functions times the number of fields). Instead, we em-
ploy a parameter-free estimation of field weights, using field mapping probabil-
ities introduced in the Probabilistic Retrieval Model for Semistructured Data
(PRMS) [111]. This probability infers the importance of each field, with respect
to a given query term, based on collection statistics of that term. Specifically,
the probability of a field f , from the universe of fields F , is computed with
respect to a given term t as follows:

P (f |t) = P (t|f)P (f)∑
f ′∈F P (t|f ′)P (f ′)

. (6.21)

Here, P (f) is the prior probability of field f , which is set proportional to the
frequency of the field (across all documents in the collection), and P (t|f) is
estimated by dividing the number of occurrences of term t in field f by the sum
of term counts in f across the whole collection. We compute the probability
P (f |t) for all query terms, ordered and unordered bigrams, and use the resulting
values for the weights wT

f , w
O
f , and wU

f (used in Eqs. 6.10-6.12), respectively.

The weights wE
f (used in Eq. 6.20) are also estimated using Eq. 6.21, but this
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time we compute this probability for entities instead of terms (i.e., t is replaced
with e).

Employing the mapping probability P (f |.) instead of free parameters wf [210]
has three advantages. First, the field mapping probability specifies field impor-
tance for each query term (or bigram) individually, while the wf parameters are
the same for all query terms (or bigrams). Second, the number of free param-
eters in the feature functions fT , fO, fU , and fE reduces from 4 ∗ |F| to zero.
Hence, the final model is more robust and can be employed in various settings,
without risking overfitting. Lastly and most importantly, estimating the field
weights this way allows us to have a query-specific selection of fields, depending
on the linked entity, as opposed to having pre-trained (fixed) field weights.

6.2.3 Fielded Representation of Entities

We now detail how the term-based and entity-based representation are obtained
for entities, from the knowledge base entry (i.e., subject-predicate-object triples)
describing the entity. One of the challenges of working with a fielded document-
based representation of entities is the appropriate selection of fields. While
grouping SPO triples by predicates and mapping each predicate to a separate
document field is straightforward, retrieval can become highly inefficient because
of the large number of fields [147]. Previous work has suggested a number of
solutions to alleviate this problem by reducing the number of fields, which can
be summarized under two main categories: (i) selecting a subset of fields that
are considered and (ii) grouping fields together into a handful of predefined
categories. When using the first approach, predicates are commonly ordered
by frequency and a rank-based cutoff is applied, e.g., top 1000 in [12]. There
are two choices for assigning the field weights in this setting: to simply use
uniform values for all fields or to employ some estimation technique (such as
the field mapping probabilities in the PRMS model) as training is generally
infeasible due to the large number of fields. Examples of the second technique,
referred to as “predicate folding” in [147], include grouping fields into a handful
of predetermined categories based on type [147, 210] or manually determined
importance [27]. It has been shown in [148] that it is possible to achieve solid
performance even with as few as two fields, “title” and “content.” One main
advantage of predicate folding is that the estimation of field weights becomes
tractable. The disadvantage is that a large part of the semantics associated
with the individual predicates is discarded.

In this work, we combine these two strategies to get the best of both ap-
proaches. We employ predicate folding for three designated fields: names, types,
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and content (see Section 6.3.1). In addition, we consider all fields, which are
not included in names or types, on their own. From this combined set, we then
select the top-N most frequent fields across the whole knowledge base and use
them for the term-based entity representation.

The entity-based representation requires a different field selection procedure
from the above, as entities (SPO triples with an URI value as object) occur
less often and follow an entirely different pattern than terms. For instance, the
entity Finland mostly occurs in the <dbo:country> and <dbo: birthPlace>

fields, while the entity Ancient Roman architecture often appears in the
<dbo:architecturalStyle> field. This illustrates that it is not desirable to
have the same (and fixed) set of fields for all entities, but field selection should
be performed on an entity-specific manner. Therefore, for each entity, we select
the top-N fields, from the entity-based representations, that the entity occurs
in. As this computation can be performed offline, it does not impact negatively
the efficiency of retrieval. Table 6.1 shows an excerpt of the mapping probability
distribution for a given term and entity.

6.3 Experimental Setup

This section presents our experimental setup, including the data set (Section 6.3.1),
field selection (Section 6.3.2), parameter settings (Section 6.3.4), and how entity
linking is performed (Section 6.3.5).

6.3.1 Data

We use DBpedia version 3.9 as our knowledge base along with the DBpedia-
Entity test collection [12].

Indices. For our experiments, we created two fielded indices from subject-
predicate-object triples: a term-based index, where all entities (URI objects)
are resolved to terms, and an entity-based index, where only URI objects are
kept. The former index is used to compute the unigram and bigram term prob-
abilities (Eqs. 6.10-6.12), while the latter is employed for the entity probability
computations (Eq. 6.20). We built the indices using Lucene and made use of
SpanNearQuery to get the statistics for ordered and unordered phrases. Our
indices are confined to entities having a name and a short abstract (i.e. fields
<rdfs:label> and <rdfs:comment>), resulting in a total of 3,984,580 entities.
They contain the top-1000 most frequent DBpedia predicates as fields, together
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Table 6.2: Query subsets of the DBpedia-Entity test collection.

Query subset #queries avg(|q|) #rel

SemSearch ES 130 2.7 1115
ListSearch 115 5.6 2390
INEX LD 100 4.8 3680
QALD-2 140 7.9 5773

Total 485 5.3 12958

with three other fields: (i) the names field, which is the constitution of entity
predicates <rdfs:label>, <foaf:name>, and redirected entities; (ii) the types

field, which contains <rdf:type> and attribute names ending in “subject”; (iii)
the contents field, which holds the contents of all entity fields except entity
links in other languages (<owl:sameAs>). In the term-based index, terms are
lowercased and stopped using the default Lucene stopwords list, and all URIs
are replaced with the name of the corresponding entity. In the entity-based in-
dex, only URIs are indexed and all literal objects are ignored. In addition, the
URI of each entity itself is also added to the contents field in the entity-based
index.

Queries. We evaluate the effectiveness of our models using the DBpedia-
Entity collection [12], which comprises 485 queries from a number of entity
retrieval benchmarking campaigns. Following [21], queries are stopped using a
handful of stop patterns (“which,” “who,” “what,” “where,” “give me,” “show
me”) to improve entity linking and initial retrieval performance. We perform
stopwords removal after the entity linking step. We break down retrieval results
according to the four categories suggested by Zhiltsov et al. [210]:

• SemSearch ES: Keyword queries targeting specific entities, which are
often ambiguous (e.g., “madrid,” “hugh downs”).

• ListSearch: Combination of INEX-XER, SemSearch LS, and TREC En-
tity queries, targeting a list of entities that match a certain criteria (e.g.,
“Airports in Germany,” “the first 13 american states”).

• INEX LD: General keyword queries, involving a mixture of names, types,
relations, and attributes (e.g., “Eiffel,” “vietnam war movie,” “gallo roman
architecture in paris”).
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• QALD-2: Natural language queries (e.g., “which country does the creator
of miffy come from,” “give me all female russian astronauts”).

Table 6.2 provides descriptive statistics on these query subsets.

6.3.2 Field Selection

The number of fields used in the term-based representation is a parameter shared
by all but two of the evaluated models (single-field LM and SDM). We examined
retrieval performance against a varying number of fields (n = 10i, i = 0, 1, 2, 3),
see Figure 6.3. Note that fields are ordered by frequency. It is clear from the
figure that the best results are obtained when the top 10 most frequent fields are
used. We used this setting in all our experiments, unless stated otherwise. For
consistency, we also used the same setting, i.e., top 10 fields, for the entity-based
representation.

6.3.3 Baseline Models

We compare our model with a number of baseline models. The first four (LM,
MLM-tc, MLM-all, and PRMS) are language modeling-based methods that were
introduced as standard baselines for the DBpedia-Entity test collection [12]. The
other two (SDM and FSDM) are taken from [210], the work that reported the
best results on this collection so far. Specifically, the baseline models considered
are:

• LM: The standard language modeling approach [206], against the contents
field.

• MLM-tc: The Mixture of Language Models [152] with two fields, names
and contents, with weights 0.2 and 0.8, respectively, as suggested in [148].

• MLM-all: The Mixture of Language Models using the top 10 fields with
equal weights.

• PRMS: The Probabilistic Retrieval Model for Semistructured Data [111],
using the top 10 fields.

• SDM: The Sequential Dependence Model [139], against the contents

field.

• FSDM*: The Fielded Sequential Dependence Model [210] on the top 10
fields, with field weights estimated using PRMS.
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Figure 6.3: Effect of varying number of fields on MAP.

6.3.4 Parameter Setting

This section describes the parameter settings used in our experiments. The
Dirichlet prior μ in language models is set to the average document/field length
across the collection. The unordered window size N in Eqs. 6.9 and 6.12 is
chosen to be 8, as suggested in [139, 210]. To estimate the λ parameters in-
volved in SDM, FSDM, and our approach, we employ the Coordinate Ascent
(CA) algorithm [140] and directly optimize Mean Average Precision (MAP).
CA is a commonly used optimization technique, which iteratively optimizes a
single parameter while holding all other parameters fixed. We make use of the
CA implementation provided in the RankLib framework and set the number of
random restarts to 3. Following [210], we estimate the λ parameters of SDM,
FSDM, and ELR-based approaches using 5-fold cross validation for each of the 4
query subsets separately. We note that Zhiltsov et al. [210] train both the λ and
w parameters (Eq. 6.6-6.12) for the FSDM model. As we use different entity
representation from [210] (with 10 as opposed to 5 fields), training parameters in
this manner would result in cross-validation of 33 parameters for each query sub-
set, which would be prone to overfitting. We avoid this issue by employing the
PRMS field mapping probability for field weights w (i.e., Eq. 6.21). Therefore,
our implementation of FSDM slightly deviates from the original paper [210];
in acknowledgement of this distinction, we will refer to our implementation as
FSDM*.

For all experiments, we employ a two stage retrieval method: first an initial
set of top 1000 results is retrieved using Lucene’s default search settings, then
this set is re-ranked with the specific retrieval model (using an in-house imple-
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mentation). Evaluation scores are reported on the top 100 results. To perform
cross-validation, we randomly create train and test folds from the initial result
set, and use the same folds throughout all the experiments. To measure statis-
tical significance we employ a two-tailed paired t-test and denote differences at
the 0.01 and 0.05 levels using the � and � symbols, respectively.

6.3.5 Entity Linking

Entity linking is a key component of the ELR approach. For the purpose of
reproducibility, all the entity annotations in this work are obtained using an
open source entity linker, TAGME [69], accessed through its RESTful API.1

TAGME is one of the best performing entity linkers for short queries [43, 51].
As suggested in the API documentation, we use the default threshold 0.1 in our
experiments; we analyze the effect of the threshold parameter in Section 6.4.4.

6.4 Results and Analysis

In this section, we present a series of experiments conducted to answer our
research questions.

6.4.1 Overall Performance

To find out whether entity linking in queries can improve entity retrieval perfor-
mance (RQ4a), we compare a number of entity retrieval approaches proposed
in the literature. The top section of Table 6.3 displays the results for the base-
line models, all of which were implemented from scratch.2 The bottom part of
Table 6.3 shows the results we get by applying ELR on top of these baselines.
We observe consistent improvements over all baselines; the relative ranking of
models remains the same (LM < SDM < MLM-tc < MLM-all < PRMS <
FSDM*), but their performance is improved by 4.4–7.3% in terms of MAP, and

1http://tagme.di.unipi.it/
2We note the slight differences compared to the numbers reported in [12] and [210]. One

major source of the differences is that we use a different DBpedia version, v3.9 with the
updated DBpedia-Entity test collection, as opposed to v3.7 (used both in [12] and [210]). Our
MLM-all and PRMS results are better than [12] because we use the top 10 fields, while top
1000 fields are used in [12] (cf. Figure 6.3). Compared to [210], we got higher scores for
PRMS and lower ones for FSDM. The main reason behind this is the different choice of fields.
Furthermore, as explained in Section 6.3.4, field weights are trained for each query subset
in [210], while we employ a parameter-free estimation of field weights based on PRMS.
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Table 6.3: Retrieval results for baseline models (Top) and with ELR applied on
top of them (Bottom). Significance is tested against the corresponding baseline
model. Best scores are in boldface.

Model MAP P@10

LM 0.1588 0.1664
MLM-tc 0.1821 0.1786
MLM-all 0.1940 0.1965
PRMS 0.1936 0.1977
SDM 0.1719 0.1707
FSDM* 0.2030 0.1973

LM + ELR 0.1693� (+6.6%) 0.1757� (+5.6%)

MLM-tc + ELR 0.1937� (+6.4%) 0.1895� (+6.1%)

MLM-all + ELR 0.2082� (+7.3%) 0.2054� (+4.5%)

PRMS + ELR 0.2078� (+7.3%) 0.2085� (+5.5%)

SDM + ELR 0.1794� (+4.4%) 0.1812� (+6.1%)

FSDM* + ELR 0.2159� (+6.3%) 0.2078� (+5.3%)

by 4.5–6.1% in terms of P@10. All improvements are statistically significant.
Based on these results, we answer our first research question positively: entity
annotations of the query can indeed improve entity retrieval performance.

For the analysis that follows later in this section we retain four of these
models: LM, PRMS, SDM, and FSDM*. This selection enables us to make a
meaningful and consistent comparison across two dimensions: (i) single vs. mul-
tiple fields (LM and SDM vs. PRMS and FSDM*), and (ii) term independence
vs. dependence (LM and PRMS vs. SDM and FSDM*).

6.4.2 Breakdown by Query Subsets

How are the different query subsets impacted by ELR (RQ4b)? Intuitively,
we expect ELR to improve the effectiveness of queries that mention entities
plus contain some additional terms (e.g., specifying an attribute or relation).
Queries that mention a single entity, without any modifiers, are less likely to
benefit from our approach.

Table 6.4 provides a breakdown of results by query type. We find that
the biggest improvements are obtained for the ListSearch and QALD-2 queries
(+7.5–16% in terms of MAP and +6.5–19.1% in terms of P@10). The queries
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Table 6.4: Results of our ELR approach on different query types. Significance
is tested against the line above; the numbers in parentheses show the relative
improvements, in terms of MAP.

Model
SemSearch ES ListSearch

MAP P@10 MAP P@10

LM 0.2485 0.2008 0.1529 0.1939
LM+ELR 0.2531�(+1.8%) 0.2008 0.1688�(+10.4%) 0.2096

PRMS 0.3517 0.2685 0.1722 0.2270
PRMS+ELR 0.3573 (+1.6%) 0.2700 0.1956�(+14.1%) 0.2417

SDM 0.2669 0.2108 0.1553 0.1948
SDM+ELR 0.2641 (-1%) 0.2115 0.1689�(+8.8%) 0.2174�

FSDM* 0.3563 0.2692 0.1777 0.2165
FSDM*+ELR 0.3581 (+.5%) 0.2677 0.1973�(+11%) 0.2391�

Model
INEX-LD QALD-2

MAP P@10 MAP P@10

LM 0.1129 0.2210 0.1132 0.0729
LM+ELR 0.1244�(+10.2%) 0.2330 0.1241�(+9.6%) 0.0836�

PRMS 0.1184 0.2240 0.1180 0.0893
PRMS+ELR 0.1303�(+10%) 0.2330 0.1343�(+13.8%) 0.1064�

SDM 0.1167 0.2250 0.1369 0.0750
SDM+ELR 0.1264�(+8.3%) 0.2340 0.1472�(+7.5%) 0.0857

FSDM* 0.1261 0.2290 0.1364 0.0921
FSDM*+ELR 0.1332 (+5.6%) 0.2330 0.1583�(+16%) 0.1086�
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in these subsets often seek entities related to other entities; a lot can be gained
here from entity linking. The INEX-LD queries are also significantly improved
by ELR (with the exception for FSDM*), but the relative improvements are
smaller than for ListSearch and QALD-2 (here, it is +5.6–10.2% for MAP and
+1.7–5.4% for P@10), but still significant in all but one case. This set is more
diverse than the other two and comprises a mixture of short entity queries, type
queries, and long natural language style queries. Finally, on the SemSearch ES
subset, ELR could make a significant difference only for the weakest baseline,
LM. These are short keyword queries, which are already handled effectively by
a fielded representation (cf. PRMS and FSDM; also note that incorporating
term dependence does not improve performance).

To understand how much importance is attributed to entity-based matches,
we plot the values of the λ{T,O,U,E} parameters for each query subset in Fig-
ure 6.4. The values are obtained by averaging the trained parameter values
across all folds of the cross-validation process. We can observe a similar trend
across all retrieval methods: ListSearch and QALD-2 queries are assigned the
highest λE values, INEX-LD gets a somewhat lower but still sizable portion of
the distribution, while for SemSearch ES it bears little importance.

Based on Table 6.4 and Figure 6.4, we conclude that different query types are
impacted differently by the ELR method. The results confirm our hypothesis
that ELR can improve complex (ListSearch and QALD-2) as well as hetero-
geneous (INEX-LD) queries, which involve entity relationships. On the other
hand, short keyword queries, referring to a single, albeit often ambiguous, entity
(SemSearch ES) are mostly unaffected.

6.4.3 Parameter Settings

How sensitive is ELR to the choice of λ parameters (RQ4c)? To answer this
question, we compare two configurations: (i) default parameter settings, and
(ii) parameters trained using the CA algorithm. The default parameters are
set as follows. For SDM and FSDM, we follow [139, 140] and set λT = 0.8,
λO = 0.1, and λU = 0.1. For the other models with ELR applied, we set λE

to the single best performing value across the entire query set; that is, we do
not train it separately for the different query subsets, like before. The resulting
configurations are: (i) λT = 0.9 and λE = 0.1 for LM + ELR and PRMS +
ELR, and (ii) λT = 0.8, λO = 0.05, λU = 0.05, and λE = 0.1 for SDM + ELR
and FSDM* + ELR.

Table 6.5 compares retrieval results using default and trained parameters.
Note that LM and PRMS do not involve any parameters, hence the empty cells.
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(a) LM+ELR (b) PRMS+ELR

(c) SDM+ELR (d) FSDM*+ELR

Figure 6.4: Values of the λ parameters (λT : unigrams, λO: ordered bigrams,
λU : unordered bigrams, λE : entities) in our experiments, by the different query
subsets (trained using Coordinate Ascent).

We find that the results are robust, i.e., ELR can improve the performance of
term-based models, even with default parameter values. MAP differences are
significant for all methods, except SDM + ELR. (For that model, the default
λE value is higher than it would be optimal for SemSearch ES queries, thereby
reducing overall retrieval effectiveness.) This experiment also confirms that our
improvements are not a result of overfitting.
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Table 6.5: Comparison of default vs. trained λ parameters over all queries.
Significance is tested against the line above.

Model
Default params. Trained params.
MAP P@10 MAP P@10

LM 0.1588 0.1664
LM + ELR 0.1668� 0.1724 0.1693� 0.1757�

PRMS 0.1936 0.1977
PRMS + ELR 0.2028� 0.2035 0.2078� 0.2085�

SDM 0.1672 0.1685 0.1719 0.1707
SDM + ELR 0.1721 0.1722 0.1794� 0.1812�

FSDM 0.1969 0.1973 0.2030 0.1973
FSDM + ELR 0.2043� 0.1996 0.2159� 0.2078�

6.4.4 Impact of Entity Linking

What is the impact of the entity linking component on end-to-end entity re-
trieval performance (RQ4d)? Entity linking systems typically involve a thresh-
old parameter that defines the required degree of certainty for linking entities.
This threshold for TAGME ranges between 0 and 1, where 0 returns the maxi-
mum number of entities and 1 returns no entity. To answer the above research
question, we measure retrieval performance while varying the entity linking
threshold value. Figure 6.5 reports the results for the best performing model,
FSDM* + ELR, for both trained and default λ parameters. Apart from the
small fluctuations in the 0.4–0.6 range, retrieval performance is shown to im-
prove as the entity linking threshold is lowered. This observation implies that
ELR is robust with respect to entity linking; considering more entity anno-
tations, even those with low confidence, improves retrieval performance. The
entity linker currently used allows for the annotation of overlapping entity men-
tions, but it returns a single entity for each mention. In future work it might
be worth experimenting with multiple entities per mention, especially in highly
ambiguous situations, as our framework seems to be able to benefit from having
more annotations.
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Figure 6.5: Effect of changing entity linking threshold (TAGME) on the per-
formance of FSDM* + ELR model.

6.5 Summary

In this chapter, we have presented a novel retrieval approach (ELR) that com-
plements term-based retrieval models with entity-based matches, using auto-
matic means to annotate queries with entities. Our model is based on Random
Markov Fields and is presented as a general framework, in which the entity-
based matching component can be applied to a wide range of entity retrieval
models, including standard language models, term dependence models, and their
fielded variations. We have applied our approach as an extension to various
state-of-the-art entity retrieval models and have shown significant and consis-
tent improvements over all of them. The results have also shown that our model
especially benefits complex and heterogeneous queries (natural language, type
and relation queries), which are considered difficult queries in the context of
entity retrieval. We have further demonstrated the robustness of our approach
against parameter setting and entity linker configuration.



Chapter 7

Dynamic Factual
Summaries for Entity Cards

In this chapter of the thesis, we turn to the presentation aspects of semantic
search, and focus on the content of entity cards. Over the recent years, entity
cards have become an integral element of search engine result pages (SERPs)
on both desktop and mobile devices [33, 116]. Triggered by an entity-bearing
search query, a card offers a summary of the entity directly on the results page,
helping users to find the information they need without having to click on several
documents [161]; see Figure 7.1 for examples. Studies have shown that entity
cards can enhance the search experience by assisting users to accomplish their
tasks [116, 146] and increase their engagement with organic search results [33].

Entity cards are complex information objects, consisting of several compo-
nents such as images, entity name, short description, summary of facts, related
entities, etc. The factual summary (or summary, for short), which is the focus
of this chapter, is a truncated view of the top-ranked facts (i.e., predicate-value
pairs) about the entity, coming from an underlying knowledge base. Summaries
serve a dual purpose on the SERP: they offer a synopsis of the entity and,
at the same time, can directly address users’ information needs. Consider the
examples in Figure 7.1, from a commercial search engine, and notice how the
summary changes, depending on the query. Even though entity cards are now a
commodity in contemporary search engines, to the best of our knowledge, there
is no published work on how these (dynamic) summaries are generated and eval-

119
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(a) “einstein education” (b) “einstein family”

Figure 7.1: Examples of entity cards displayed on the Google SERP for dif-
ferent queries. The content of the factual entity summary (marked area) varies
depending on the query.

uated. In this chapter, we make the first effort towards filling this important
gap. In other words, the question that we address in this chapter is this:

RQ5 How to generate and evaluate factual summaries for entity cards?

Looking at the literature, the closest work related to this problem area is the
task of ranking or selecting the most important facts about an entity, which has
been addressed by different research communities over the recent years [48, 79,
80, 182, 183, 201]. All these works focus on the notion of fact importance, as
the basis of ranking; a common approach is to compute PageRank-like graph
centrality measures on the knowledge graph [48, 182, 183]. When considering
factual summaries for entity cards, there are three important aspects that need
to be addressed:
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(i) Importance vs. Relevance. What is deemed important in general about
an entity may be irrelevant in a given query context and vice versa. Take for
example the predicate nationality, which is generally deemed important for a
person; it, however, bears little relevance for the query “einstein awards.” This
calls for query-aware entity summarization, where summaries are created by
considering not only fact importance, but also fact relevance with respect to the
query.

(ii) Summary generation. Generating an entity summary that will be shown
on an entity card entails more than simply listing the top-k ranked facts. It needs
to deal with, among others, issues such as semantically identical predicates (e.g.,
homepage and website), multivalued predicates (e.g., children), and presentation
constraints (e.g., max height and width, which depend on the device).

(iii) Evaluation. Given the size of entity cards, it can reasonably be assumed
that users consume all facts displayed in the summary. Therefore, in addition
to evaluating the ranking of facts, the quality of the summary, as a whole,
should also be assessed, with respect to the query. A fair comparison requires
side-by-side evaluation of factual summaries by human judges.

In this chapter, we aim to address the above challenges head-on. It is impor-
tant to note that this problem area is not limited to web search, where entity
cards are typically displayed on the right hand side of the SERP; it also applies
to any information access system that involves entities. Consider, for example,
serving entity-annotated documents in response to a search query; when hov-
ering over an entity, a context-dependent entity card is displayed to the user.
Deciding when an entity card should be presented is a pivotal question, which
should be addressed on its own account. This, however, is beyond the scope of
this chapter. We shall assume that this decision has already been made by a
separate component. Our sole focus is the generation of factual summaries for
entity cards.

To address (i), we present a method for fact ranking that takes both im-
portance and relevance into consideration. We design several novel features
for capturing and distinguishing between importance and relevance, and com-
bine these features in a supervised learning framework. For (ii), we introduce
summary generation as a task on its own account, and develop an algorithm
for producing a summary that meets the presentation requirements of an entity
card. Concerning (iii), we build a benchmark for the fact ranking task, obtaining
a large number of crowdsourced judgments with respect to both fact importance
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and relevance. In addition, we evaluate the generated summaries, with regard
to search queries, by performing user preference experiments via crowdsourcing.
The results show that our proposed fact ranking approach significantly outper-
forms existing baseline systems. We also find that the summaries uniting both
fact importance and relevance are preferred over those that are based on a single
aspect. Overall, our results confirm the hypothesis that dynamic (query-aware)
summaries are preferred over static (query-agnostic) ones; this is especially true
for complex relational queries.

In summary, this chapter makes the following novel contributions:

• We present the first study on generating and evaluating dynamic factual
summaries for entity cards. We formalize two specific subtasks: fact rank-
ing and summary generation (Section 7.1).

• We introduce DynES, an approach for generating dynamic entity sum-
maries, composed of fact ranking and summary generation steps. We
introduce a set of novel features for the fact ranking task and present an
algorithm for summary generation (Section 7.2).

• We design and make available a benchmark for the fact ranking task,
with judgments for around 4K entity facts obtained via crowdsourcing.
This test collection may be used in both query-aware and query-agnostic
settings, which renders it useful not only in the context of web search,
but also for entity summarization in general, which has been addressed in
previous work [48, 79, 80, 182, 183] (Section 7.3).

• We perform an extensive evaluation of the proposed methods by (i) mea-
suring fact ranking using the benchmark we developed (Section 7.4), and
(ii) measuring the overall quality of summaries via a user preference study
(Section 7.5).

The resources developed in the course of this chapter are presented in Ap-
pendix A.5.

7.1 Problem Statement

In this section, we describe and formally define the problem of dynamic entity
summarization for entity cards.

We assume that entities are represented in a knowledge base (KB) as a set
of subject-predicate-object (〈s, p, o〉) triples.
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Definition 1 (Entity fact): An entity fact (or fact, for short) f is a state-
ment about the entity where the entity stands as subject, i.e., f = 〈p, o〉 is a
predicate-object pair. We write Fe to denote the set of facts about the entity e:
Fe = {〈p, o〉 | 〈s, p, o〉, s = e}.

This definition implies that multi-valued predicates (i.e., predicates with mul-
tiple objects) constitute multiple facts. For example, in Figure 7.1(b), there
are two facts (predicate-object pairs) for the Spouse predicate: 〈Spouse, Elsa
Einstein〉 and 〈Spouse, Mileva Marić〉. Formulating our problem based on the
concept of fact (instead of predicate [62, 185]) allows us to handle multi-valued
predicates properly. We note that the object of a fact can either be a literal or
a URI. A literal object is often presented in the entity cards as it is stored in
the KB (e.g., March 14, 1879 ), i.e., as a string. A URI object, on the other
hand, links to another entity in the knowledge base and should be converted to
a hyperlink with a human readable anchor, when shown in the card (see, e.g.,
Elsa Einstein in Figure 7.1(b)).

We now define the “goodness” of a fact for an entity summary from various
aspects:

Definition 2 (Importance): The importance of fact f for an entity is de-
noted by if and reflects the general importance of that fact in describing the
entity, irrespective of any particular information need.

Definition 3 (Relevance): The relevance of fact f to query q, indicated
by rf,q, reflects how well the fact supports the information need underlying the
query. E.g., a fact may hold the answer to the query or help explain why the
entity is a good result for that query.

Definition 4 (Utility): The utility of a fact, uf,q, combines the general
importance and the relevance of a fact into a single number, using a weighted
combination of the two (where it is assumed that the two are on the same scale):

uf,q = αif + βrf,q. (7.1)

For the sake of simplicity, we consider both importance and relevance with equal
weights in our experiments, i.e., α = β = 1. We note that this choice may be
suboptimal, and different query types may require different parameter values.
This exploration, however, is left for future work. The central point that we will
demonstrate in our experiments is that incorporating fact relevance (as opposed
to considering merely importance) leads to better entity summaries.



Chapter 7. Dynamic Factual Summaries for Entity Cards 124

Definition 5 (Fact ranking): Fact ranking is the task of taking a set of
entity facts (and a search query) as input, and returning facts ordered with
respect to some criterion (importance, relevance, or utility). We write φ(Fe, q)
to denote the ranking function (φ : F ×Q → F) which returns a ranked list of
entity facts, Fe.

Once facts are ranked, they should be rendered in the from of an entity sum-
mary and presented on the entity card. Entity cards have a strong effect on
users’ search experience [33, 116, 146], and the quality of entity summaries can
directly impact users’ satisfaction. Therefore, simply presenting users with the
top-k ranked facts is insufficient for generating an adequate summary. Addi-
tional processing steps are required, which may include, but not limited to:
(i) resolving semantically identical predicates (e.g., homepage and website), (ii)
grouping related predicates (e.g., birth place and birth date as single predicate
born), (iii) dealing with multi-valued predicates (e.g., children), (iv) meeting the
presentation constraints imposed by the SERP (e.g., max. height and width),
and (v) following certain templates or editorial guidelines (e.g., always display-
ing birth information in the first summary line). Considering these challenges,
we formulate summary generation as a separate task.

Definition 6 (Summary generation): Given a ranked list of entity facts
Fe as input, summary generation is the task of constructing an entity summary
with a given maximum size (height and width), such that it maximizes user
satisfaction.

Thus, in this study, we formulate and address two tasks, as defined above: fact
ranking and summary generation. Both of these tasks are novel and challenging
on their own; combining the two, the overall goal of this chapter, is dynamic
entity summarization, where “dynamic” refers to the query-dependent nature
of the generated summaries (as opposed to static ones).

7.2 Approach

In this section we present our proposed approach, referred to as DynES (for
Dynamic Entity Summarization). It consists of two steps that are performed
sequentially. First, we take a set of entity facts and a query as input, and rank
these facts based on utility (i.e., a combination of importance and relevance).
Second, using a ranked list of facts as input, we generate an entity summary of
a given size (ready to be included in the entity card).
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Table 7.1: Glossary of the notations.

Name Notation Definition

Fact f 〈p, o〉 : fp = p, fo = o
Entity facts Fe {〈p, o〉 | 〈s, p, o〉 ∈ KB, s = e}
Ranked entity facts Fe (f1, f2, ..., fn); n = |Fe|
Fact frequency FF (f) |{〈s, p, o〉 | 〈s, p, o〉 ∈ KB, p = fp, o = fo}|
Fact frequency of predicate FFp(p) |{〈s′, p′, o′〉|〈s′, p′, o′〉 ∈ KB, p = fp}|
Fact frequency of object FFo(o) |{〈s′, p′, o′〉|〈s′, p′, o′〉 ∈ KB, o = fo}|
Entity Frequency of fact EF (f) |{e |e ∈ E , f ∈ Fe}|
Entity frequency of predicate EFp(p) |{e |e ∈ E , ∃f ∈ Fe : fp = p}|
Entity frequency of object EFo(o) |{e |e ∈ E , ∃f ∈ Fe : fo = o}|
Entity frequency of predicate for a given type EFp(p, t) |{e |e ∈ E , t ∈ type(e), ∃f ∈ Fe : fp = p}|
Type frequency of predicate TFp(p) |{t |〈s′, p′, o′〉 ∈ KB : p′ = p, t ∈ type(s′)}|

7.2.1 Fact Ranking

We approach the entity fact ranking task as a learning to rank problem, where
we optimize the ranking of facts w.r.t. a target label. Formally, we define
each fact-query pair (f, q) as a learning instance and represent it with a feature
vector xi. Then, a pointwise ranking function h(xi) generates a score yi. We
choose fact utility to be our target label, where importance and relevance are
taken into account with equal weights. We note that the learning framework
allows us to optimize for any other target (e.g., more bias towards importance
or relevance). The features we introduce here are designed to be able to handle
different types of queries, ranging from named entity queries to verbose natural
language queries. We acknowledge that fact ranking could benefit a lot from a
query log; however, since we do not have access to that, our feature design is lim-
ited to publicly available data sources. Also note that for long tail (unpopular)
entities the search log would not be of much help.

Before we proceed, a word on notation and terminology; see Table 7.1 for
a summary. The underlying knowledge base (KB) consists of 〈s, p, o〉 triples,
where the subject s is an entity identifier. To help explain the intuition be-
hind the concepts we introduce, we draw an analogy to document retrieval.
The concepts fact frequency (FF (f)) and entity frequency (EF (f)) are loosely
analogous to collection frequency and document frequency. The former counts
the total number of triples matching a fact, while the latter considers the number
of entities that have that fact. Entities have types assigned to them in the KB
(typically several, but at least one per entity). Each entity type may be viewed
as a document, with predicates of the entities with that type being terms of the
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document. Using this analogy, the two type-related concepts, entity frequency
of predicate for a type (EFp(p, t)) and type frequency of predicate (TFp(p)),
are similar to term frequency and document frequency. The former counts the
number of times a given predicate appears in the virtual document of the type
(i.e., number of entities with that predicate and type), the latter counts the
number of documents (types) which contain that predicate.

Next, we describe the features we designed for capturing fact importance
and fact relevance. Unless indicated by a reference, the feature is introduced in
this chapter, and, to the best of our knowledge, represents a novel contribution.

Importance Features

The first set of features reflects the general importance of a fact for a given
entity and are computed based on various statistics from the knowledge base.

• Normalized fact frequency. The feature counts the overall frequency of the
fact in the knowledge base, normalized by the total number of 〈s, p, o〉 pred-
icates in the knowledge base (|F|):

NFF (f) =
FF (f)

|F| . (7.2)

We compute two other variants of this feature, NFFp(p) and NFFo(o),
where the numerator is replaced with fact frequency of predicate FFo(o)
and entity frequency of object FFo(o), respectively.

• Normalized entity frequency. This feature captures the entity-wise frequency
of a fact, normalized by the cardinality of entities in the knowledge base (|E|):

NEF (f) =
EF (f)

|E| . (7.3)

Similarly to the previous feature, we compute predicate and object variations
of the feature (NEFp(f) and NEFo(f)) by substituting EFp(p) and EFo(o)
in the numerator.

• Type-based importance. The importance of a fact for an entity may not al-
ways be captured by the overall knowledge base statistics; the specific entity
types should be taken into considerations. This is of particular importance
for predicates, as their frequencies are biased towards the most frequent
types: predicates of less frequent types have low frequency, although they
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might be important for that specific type. As introduced in [185], the type-
based importance is computed as:

TypeImp(p, e) =
∑

t∈type(e)

EFp(p, t) · log |T |
TFp(f)

, (7.4)

where |T | is the total number of types in the knowledge base.

• Predicate specificity. This feature identifies predicate-specific facts; i.e., facts
with a common object, but rare predicate. Take for example the fact 〈capital,
Ottawa〉 for the entity Canada, where the predicate is relatively rare (only
for capital cities) and the object is frequent. Predicate specificity, hence,
combines the fact frequency of the object with the inverse entity frequency
of the predicate:

PredSpec(f) = FFo(o) · log
|E|

EFp(p)
. (7.5)

• Object specificity. In contrast to the previous feature, object specificity cap-
tures facts with rare objects, but popular predicates; e.g., the object of value
of 〈Birth date, 1953-10-01 〉 is relatively unique, while the predicate is fre-
quent. Formally:

ObjSpec(f) = EFp(p) · log
|F|

FFo(o)
. (7.6)

It is worth noting that both PredSpec and ObjSpec represent specificity
of a fact and highlight important features from the opposite ends of the
spectrum; that is, a fact should have either high PredSpec or high ObjSpec
to be considered important.

• Other features. Two other binary features are employed: IsNum identifies
whether the object is a number or not, and IsEntity returns true if the
object is an entity URI.

Relevance Features

The idea behind the second group of features is to determine the relevance of
a fact with respect to the information need, specified by the search query (q).
Various sources of information are used to extract these features: the query
itself, linked entities in the query, retrieved entities in response to the query,
and an external corpus to identify the semantic similarity between terms.
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• Context length. This feature identifies the number of terms in the query that
are not linked to any entity. Formally, it is defined as:

ConLen(q) = |{t|t ∈ q, t /∈ Link(q)}|, (7.7)

where t denotes a term and Link(q) is the set of query terms that are linked
to an entity. To obtain entity annotations for queries, we utilize the TAGME
entity linking system [69] through its API. This feature helps to distinguish
keyword queries from other complex queries, such as list or natural language
queries. The underlying motivation is that in case of keyword queries tar-
geting a specific entity (e.g., “eiffel tower”), users are more concerned about
the most important facts of that entity, while for longer and more complex
queries (e.g. “points of interest in paris”), entity facts that address the un-
derlying information need (i.e., are relevant to the query) would be deemed
more useful from the user’s perspective.

• Semantic similarity. In order to address the vocabulary mismatch between
queries and facts, we compute their semantic similarity based on word em-
beddings, following recent common practice [35, 164]. Specifically, we use
Word2Vec [142] with the 300 dimension vectors trained on the Google news
dataset, and employ two methods to compute string similarity: aggregated
and centroid similarity. The former aggregates the word-wise cosine similar-
ity between each pair of words of in the two strings:

SemSimAgg(s, s′) = agg func
w∈s,w′∈s′

cos(�w, �w′), (7.8)

where the w represents a word of string s, and average and maximum are used
as the aggregation functions. The second approach performs the aggregation
at the vector level and computes the similarity of centroid vectors �C, �C ′:
SemSimCent(s, s′) = cos( �C, �C ′).

In our settings, we substitute s with the query and s′ with a predicate or
object, thereby computing the semantic similarity for query-predicate and
query-object pairs.

• Lexical similarity. In addition to semantic similarity, we also compute lexical
similarity to capture spelling mismatches. Following [164], we employ the
Jaro edit distance and apply it to query-predicate and query-object pairs
(i.e., LexSimp, LexSimo).

• Inverse rank. This feature promotes facts with an object value that is con-
sidered highly relevant to the query [96]. We rank entities from the KB w.r.t.
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the query and return the inverse rank of the entity that matches the object
value (of the fact). Formally:

iRank(q, f) =
1

rank(fo, Ret(q))
, (7.9)

where Ret(q) is the list of retrieved entities for the query q. In our exper-
iments, we take a state-of-the-art entity retrieval approach [93] to compute
this feature.

• Other features. Two additional features we use are (i) the IsLinked function
that looks up the fact object among the linked entities of the query, and
(ii) the Jaccard similarity (JaccSim) between the terms of the query and
predicate and object of the fact (separately).

7.2.2 Summary Generation

We now turn to the task of generating a summary from the ranked list of entity
facts. Our proposed approach, presented in Algorithm 2, has three main fea-
tures that are believed to result in high quality summaries for entity cards: (i)
it creates a summary of a given size, (ii) identifies identical facts and filters out
unnecessary ones, and (iii) handles multi-valued predicates. We note that sum-
mary generation may involve additional processing steps (cf. Section 7.1). Our
focus of attention here is to emphasize the essence of entity summary generation
as a separate task and to address the minimum requirements for summaries that
will be used on entity cards.

The algorithm takes as input a ranked list of entity facts Fe, and maximum
height and width thresholds τh, τw. The output is maximum τh summary lines,
each with a heading and one or multiple corresponding values with a maximum
width of τw characters. Figure 7.2 illustrates these concepts.

The first step in generating the summary is to map knowledge base predi-
cates to human readable lables. This is of particular importance as the same
fact may be described with different predicates; e.g., both dbo:BirthDate and
dbp:DateOfBirth have the same meaning. Recognizing these semantically iden-
tical predicates and mapping them to a canonical name is encapsulated in the
function Predicate-Name Mapping (line 1 of Algorithm 2). Depending on the
underlying knowledge base, this task can be highly non-trivial. In our experi-
ments using DBpedia, we take two predicates as semantically identical if one of
the followings holds: (i) one predicate name (irrespective the prefix) is a plural
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Algorithm 2 Summary generation algorithm

Input: Ranked facts Fe, max height τh, max width τw
Output: Entity summary lines

1: M ← Predicate-Name Mapping(Fe)
2: headings ← [] //Determine line headings

3: for f in Fe do
4: pname ← M[fp]
5: if (pname 	∈ headings) AND (size(headings) ≤ τh) then
6: headings.add((fp, pname))
7: end if
8: end for

9: values ← [] //Determine line values

10: for f in Fe do
11: if fp ∈ headings then
12: values[fp].add(fo)
13: end if
14: end for
15: lines ← [] //Construct lines

16: for (fp, pname) in headings do
17: line ← pname + ‘:’
18: for v in values[fp] do
19: if len(line) + len(v) ≤ τw then
20: line ← line+ v //Add comma if needed

21: end if
22: end for
23: lines.add(line)
24: end for

form of the other, (ii) all object values of two predicates are identical, while the
predicate names partially match each other.

The summary is built in three stages. First (from line 2 of Algorithm 2),
the headings for each summary line are selected; the algorithm keeps the unique
predicates corresponding to facts, such that the number of predicates does not
exceed the threshold τh. Next (from line 9 of Algorithm 2), the values for each
line are selected; this is the part where values for the multi-valued predicates are
collected. Finally (from line 16 of Algorithm 2), the heading (human-readable



131 7.3. Establishing a Benchmark

… …
headingiheadingi valueivaluei height(τh)height(τh)

width(τw)width(τw)

lineilinei

Figure 7.2: Structure of an entity summary in entity cards.

predicate) and object values are concatenated together such that they meet the
width constraint τw.

7.3 Establishing a Benchmark

There is no existing test set for fact ranking that considers queries. Therefore,
we develop and make publicly available a fact ranking benchmark via crowd-
sourcing, as we shall explain in this section.

7.3.1 Data sources

To build the collection, we need a set of entity-bearing queries with their cor-
responding entities that should be summarized. Below, we describe the data
sources used for this purpose.

Knowledge base We use DBpedia (version 2015-10) as our knowledge base,
and restrict entities to those with a title and short abstract (rdfs:label and
rdfs:comment); entities without these attributes may not be of sufficient impor-
tance to be presented as a card. Since we are concerned with generating entity
summaries, we blacklisted predicates that are related to the other parts of the
entity card, such as image, entity name and type, abstracts, and related entities.
Furthermore, we filtered out noisy predicates that consist of numbers or a single
character. To ensure that entity summarization is a meaningful exercise (i.e.,
entities have enough number of facts to select from), our collection is restricted
to entities with at least 5 “valid” predicates after filtering.

Queries The queries are taken from the DBpedia-entity dataset [12], which is
a standard test collection for entity retrieval [12, 47, 128, 149, 210]. It contains
485 queries from 4 different categories: SemSearch ES consisting of named
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entity queries (e.g., “ashley wagner,” “carolina”), List Search made up of
different entity list queries (e.g., “ratt albums”), QALD-2 containing natural
language queries (e.g., “Who founded Intel?”), and INEX-LD consisting of
general keyword queries, including type, relation, and attribute queries (e.g.
“vietnam war facts,” “England football player highest paid”).

7.3.2 Selecting Entity-Query Pairs

Given a set of queries, the next step is to form query-entity pairs that will con-
stitute the input for query-dependent entity summarization. For each query in
the DBpedia-entity collection, we select a single entity that is (i) known to be
relevant and (ii) generally the most easily “retrievable.” We measure retriev-
ability by considering several entity retrieval approaches from the literature and
establishing a voting schema among them. Bear in mind that we do not de-
cide whether the entity card should be displayed or not; we assume that our
information access system generates a card for a retrievable and presumably
relevant entity. We also note that our focus of attention in this chapter is on
generating a summary for a given (assumed to be relevant) entity and not on
the entity retrieval task itself. We therefore treat entity retrieval as a black box
and combine several approaches to ensure that the findings are not specific to
any particular entity retrieval method.

Formally, for a query q, we define Êq as the set of relevant entities according
to the ground truth, and Eq,m as the ranked list of entities retrieved by method
m ∈ M , where M denotes the collection of retrieval methods. A single entity e
is selected for q such that:

e = argmax
eq∈Eq

σ(eq),

σ(eq) =
1

|M |
∑
m∈M

1

rank(eq, Eq,m)
,

Eq = {e|e ∈ Êq, ∃m ∈ M : e ∈ Eq,m}.

Basically, we select the entity that is retrieved at the highest rank by all methods,
on average. (If the entity is not retrieved by method m, then the reciprocal
rank is set to 0 by definition.) For our experiments, we consider 6 different
entity retrieval approaches: BM25 and BM25F-all from [12], SDM and FSDM
from [210], and SDM+ELR and FSDM+ELR from [93].

Using our voting mechanism, we were able to extract relevant entities for
421 queries. The average σ score for the selected entities is 0.32, meaning that
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Figure 7.3: Distribution of entity facts for different levels of importance and
relevance.

these entities are retrieved among the top-3 rank positions, on average, by all
retrieval methods. For the remaining 64 queries, none of the above methods
could retrieve relevant results in the top-100 (Eq = ∅). These were mostly
complex natural language queries. To avoid introducing any bias against these in
our collection, we still included them and randomly selected one entity per query
from the ground truth entities (Êq). Due to pragmatic reasons (i.e., keeping the
evaluation costs sensible), we randomly chose 100 entity-query pairs, evenly
spread across the 4 different query categories. For each entity in this selection,
we extracted the facts from the underlying knowledge base, resulting in a total
of approximately 4K facts.

7.3.3 Fact Ranking Test Set

We build our fact ranking test set by collecting human judgments using the
CrowdFlower (CF) platform. We designed two independent tasks to assess the
importance and relevance of entity facts. In one task, workers were presented
with a single fact for an entity, and were asked to rate the importance of the
fact w.r.t. the entity on a 3-point Likert scale: unimportant, important, or very
important. In the other task, the search query was also presented in addition,
and workers were asked to assess the relevance of the entity fact w.r.t. the query
using a 3-point scale: irrelevant, relevant, or very relevant. For both tasks,
workers were educated on the concepts of entity cards and entity summaries via
examples. They were also supplied with a short description about the entity
and a link to the entity’s Wikipedia page, to learn more about the entity, if
needed.
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Several policies were adopted to obtain high quality results form the crowd-
sourcing experiments. Only the most trusted workers (level 3 on CF) were
allowed to perform the tasks, and they had to retain 80% accuracy throughout
the job. The workers who did not meet this threshold or spent very little time
on each record, were banned from the rest of task and their judgments were
considered untrusted. We also paid a reasonably high price (¢1 per record) to
keep the high quality workers satisfied. Each record was judged by 5 different
workers and the Fleiss’ Kappa inter-annotator agreement was moderate: 0.52
and 0.41 for importance and relevance, respectively.

Figure 7.3 shows the distribution of the collected judgments. Considering
importance judgments on their own, nearly half of the facts are rated as unim-
portant, while the rest are (almost evenly) distributed among the two other
categories. As for relevance, around 81% of the facts are considered irrelevant,
14% are relevant, and only 5% are judged as very relevant. Taking the combi-
nation of these two aspects, the highest correlation is between unimportant and
irrelevant facts (53%), while the lowest one is among unimportant facts that
are highly relevant to the query (only 1% of all facts). Following our definition
of utility (cf. Section 7.1), we combine importance and relevance with equal
weights. In the end, we have three sets of ground truth for fact ranking, based
on importance (3-point scale), relevance (3-point scale), and utility (5-point
scale).

7.4 Fact Ranking Results

In this section we present our experimental results for the fact ranking task,
and address the following research questions:

RQ5a: How does our fact ranking approach compare against the state-of-the-
art?

RQ5b: How does fact ranking performance compare with respect to impor-
tance vs. relevance vs. utility?

7.4.1 Settings

We chose Gradient Boosted Regression Trees [74] as our learning model be-
cause it is shown as one of the best performing learning algorithms on a range
of tasks [28, 136, 194]. We set the number of trees to 100 and the maximum
depth of the trees to approximately 10% of our feature set; that is d = 3 when
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all features are used and d = 2 when trained either on importance or relevance
features. All the experiments are performed using 5-fold cross validation, en-
suring that facts of the same entities are kept together. We report on NDCG
at ranks 5 and 10.

We use a two-tailed paired t-test to measure statistical significance. Signifi-
cant improvements are marked with �(α = 0.05) or �(α = 0.01), and we write
�and �for a drop in performance (for α = 0.05 and α = 0.01, respectively);
◦stands for no significance.

7.4.2 Experiments

We report on various instantiations of our fact ranking approach in order to be
able to tell apart the effect of considering fact relevance in addition/as opposed
to fact importance: (i) DynES uses all features and is trained on utility judg-
ments; (ii) DynES/imp considers importance features only and is trained on
importance judgments; and (iii) DynES/rel employs relevance features only
and is trained on relevance judgments.

We identified three approaches from the literature that can be considered as
fact ranking baselines (cf. Section 2.2.5):

• RELIN [48] employs a variation of the PageRank algorithm to rank RDF
triples for each entity. The scores indicate the importance of a fact for an
entity and are computed based on the relatedness (or similarity) between
two facts as well as their informativeness.

• SUMMARUM [182] computes the PageRank score for all entities in
the knowledge graph and then takes the sum of the subject and the object
scores as the final score for each entity fact.

• LinkSUM [183] combines PageRank scores with the Backlink algorithm [192]
(a set-based heuristic for discovering related entities).

RELIN and our DynES-based approaches generate the scores for both URI and
literal facts, while SUMMARUM and LinkSUM can only score URI entity facts
and do not consider literal facts (cf. Section 7.1 for URI vs. literal facts). There-
fore, when comparing SUMMARUM and LinkSUM with other approaches, we
report on the results in a tailored setting, where literal facts are filtered out
from the results of other approaches. We implemented RELIN based on the
source code kindly provided by the authors and set the parameter λ = 1, as it
delivers robust results across various rank positions [48]. We obtained results
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Table 7.2: Comparison of fact ranking against state-of-the-art approaches with
URI-only objects. Significance for lines i > 3 is tested against lines 1, 2, 3, and
for lines 2, 3 is tested against lines 1, 2.

Model
Importance Utility

NDCG@5 NDCG@10 NDCG@5 NDCG@10

RELIN 0.6368 0.7130 0.6300 0.7066
LinkSum 0.7018� 0.7031◦ 0.6504◦ 0.6648◦

SUMMARUM 0.7181�◦ 0.7412◦� 0.6719◦◦ 0.7111◦◦

DynES/imp 0.8354��� 0.8604��� 0.7645��� 0.8117���

DynES 0.8291��� 0.8652��� 0.8164��� 0.8569���

for SUMMARUM and LinkSUM from their publicly available API,1 offered for
DBpedia ver. 2015-10.

7.4.3 Results

To answer our first research question, we compare the baseline systems with
DynES and DynES/imp with respect to importance and utility. (As these base-
line systems only address the importance aspect, we do not report on relevance.)
As shown in Table 7.2, our fact ranking approaches perform significantly bet-
ter than all baselines (16% relative improvement of DynES over SUMMARUM
w.r.t. NDCG@10). Interestingly, none of the differences between the baseline
systems are significant with respect to utility, even though many of the differ-
ences are significant for importance. We select RELIN as our baseline for the
rest of the experiments, because it performs in par with other systems in terms
of utility. More importantly, it is the only system that can rank both URI and
literal facts; SUMMARUM and LinkSUM discard all literal facts (even impor-
tant ones such as birth and death date), which is not desired for our entity card
generation use-case.

For the second research question, we compare RELIN against the three vari-
ants of our approach. Table 7.3 presents the results with respect to importance,
relevance, and utility. Our first observation is that all DynES variants signifi-
cantly outperform RELIN in all aspects; the relative improvements of DynES
for NDCG@10 are 48%, 50%, and 47% with regards to importance, relevance,

1http://km.aifb.kit.edu/services/link/



137 7.4. Fact Ranking Results

Table 7.3: Fact ranking results w.r.t importance, relevance, and utility. Sig-
nificance for line i > 1 is tested against lines 1 .. (i− 1).

Model
Importance Relevance

NDCG@5 NDCG@10 NDCG@5 NDCG@10

RELIN 0.4733 0.5261 0.3514 0.4255
DynES/imp 0.7851� 0.7959� 0.4671� 0.5305�

DynES/rel 0.5756�� 0.6151�� 0.5269�◦ 0.5775�◦

DynES 0.7672�◦� 0.7792�◦� 0.5771��� 0.6423���

Model
Utility

NDCG@5 NDCG@10

RELIN 0.4680 0.5322
DynES/imp 0.7146� 0.7506�

DynES/rel 0.6138�� 0.6536��

DynES 0.7547��� 0.7873���

and utility, respectively. We also find that all systems perform better in abso-
lute terms, when they are compared against importance or utility as opposed
to relevance. Systems that are designed to capture only the importance of facts
(i.e., RELIN and DynES/imp) achieve lower NDCG scores for relevance and
utility than for importance. DynES/rel and DynES, on the other hand, deliver
better results for utility than for importance. These results, while reflecting
the expected behavior of the compared approaches, provide evidence that: (i)
capturing the relevance of facts needs special treatment and different features
from fact importance, and (ii) capturing the relevance aspect is considerably
more challenging than importance.

7.4.4 Feature Analysis

In Table 7.4 we report on a feature ablation study, where we remove a single
feature based on the relative difference it makes in terms of ranking performance
(w.r.t. utility). The table shows the top–13 features individually. Interestingly,
importance and relevance features are evenly distributed among the most influ-
ential features. The top-2 features (NEFp, TypeImp) are computed based on
fact predicates, while the rest of importance features involve fact objects. As for
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Table 7.4: Fact ranking performance by removing features one-by-one from
the full feature set (first line); features are sorted by the relative difference they
make in terms of NDCG@10.

Group Removed feature NDCG@10 Δ% p

DynES - all features 0.7873 - -
Imp. - NEFp 0.7757 -1.16 0.08
Imp. - TypeImp 0.7760 -1.13 0.14
Rel. - LexSimo/Max. 0.7793 -0.8 0.20
Rel. - iRank 0.7793 -0.8 0.22
Rel. - SemSimAggo/Avg. 0.7801 -0.72 0.25
Imp. - IsURI 0.7802 -0.71 0.22
Imp. - PredSep 0.7812 -0.61 0.25
Rel. - ConLen 0.7819 -0.54 0.35
Imp. - ObjSep 0.7826 -0.47 0.38
Imp. - NEF 0.7828 -0.45 0.41
Rel. - SemSimCentp 0.7834 -0.39 0.49
Imp. - IsNumber 0.7851 -0.22 0.72
Rel. - JaccSimo 0.7851 -0.22 0.70

relevance features, we see four different versions of similarity features, three of
them computed based on the object values: LexSimo, SemSimAggo, JaccSimo.
The feature ablation study reveals that some variant of each of the proposed
features (except NFF ) are among the top features, indicating that each of the
designed features captures utility from a specific angle. To further analyze the
performance of each individual feature, we compared the features based on their
performance as single feature rankers. The results show a large degree of overlap
with the top–13 features identified in Table 7.4.

7.5 Summary Generation Results

In this section we present on our experimental results for the summary genera-
tion task and address the following research questions:

RQ5c: How satisfied are users with the different types of summaries?

RQ5d: How does our summary generation algorithm affect user preferences?



139 7.5. Summary Generation Results

7.5.1 Settings

To evaluate the generated summaries, we performed side-by-side evaluation via
crowdsourcing. Workers were presented with two summaries of the same entity
along with the corresponding query, and were asked to select the preferred sum-
mary w.r.t this query, or the tie option when the two summaries are equally
good. Providing users with a tie option enables us to clearly discern user pref-
erences and to avoid randomness in the collected judgments. To avoid any bias,
the summaries were randomly placed on the left or right side. We collected
10 judgments from level-3 workers for each pair of summaries. The width and
height threshold of Algorithm 1 are set to τw = 70, τh = 5 in all experiments,
inspired by entity cards used in present-day web search engines. The final re-
sults are presented as the total number of user agreements on win, loss, and tie

options. We also compute the robustness index (RI) [50], defined as N+−N−
|Q|

with N+ and N− being the number of wins and losses, and |Q| denoting the
total number of queries.

7.5.2 Experiments

We performed the following side-by-side evaluation of summaries to answer
RQ5c. In all cases, we apply the same Algorithm 2, but feed it with a ranked
list of facts from different sources. (i) DynES vs. DynES/imp uses DynES
vs. DynES/Imp for fact ranking; (ii) DynES vs. DynES/imp uses DynES vs.
DynES/rel for fact ranking; (iii) DynES vs. RELIN compares DynES vs. the
top-5 ranked facts from RELIN; and (iv) Utility vs. Importance is an oracle
comparison, by taking perfect fact ranking results from crowdsourcing.

For RQ5d, we compare our summary generation algorithm with three varia-
tions of the algorithm, all applied to the utility-based fact ranking. We compare
DynES with: (i) DynES(-GF)(-RF), which is Algorithm 2, without group-
ing of facts with the same predicate (GF), and removing identical facts (RF);
(ii) DynES(-GF), which is Algorithm 2, without the GF feature; and (iii)
DynES(-RF), which is Algorithm 2, without the RF feature.

7.5.3 Results

Table 7.5 shows the results of summary comparison for different fact ranking
methods. According to the first row, query-dependent summaries (DynES) are
preferred over query-agnostic ones (DynES/imp) for about half of the queries;
the opposite is observed for 31% of queries. We performed the same comparison
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Table 7.5: Side-by-Side evaluation of summaries for different fact ranking
methods.

Model Win Loss Tie RI

DynES vs. DynES/imp 46 23 31 0.23
DynES vs. DynES/rel 75 12 13 0.63
DynES vs. RELIN 95 5 0 0.90

Utility vs. Importance 47 16 37 0.31

with the oracle setting (last row of Table 7.5) and witnessed a similar num-
ber of wins, but less losses, which is expected due to imperfect fact ranking.
This verifies that the preference of dynamic over static summaries is true for
both automatic and human generated summaries. When comparing DynES vs.
DynES/rel, we observe that DynES wins in 75% of the cases, signifying that a
combination of both importance and relevance is required for a profound entity
summary. Finally, we measured the accumulated effect of the improved fact
ranking and summary generation method by comparing DynES against RE-
LIN. The results show the superiority of DynES, with a robustness index of
0.9. Based on these experiments, the answer to RQ5c is that dynamic utility-
based summaries are indeed preferred over static importance- or relevance-based
summaries.

Table 7.6 presents the comparison between different summary generation
algorithms. The results clearly show that DynES summaries are preferred over
the ones that do not address the individual presentation aspects. It also reveals
that the grouping of multivalued predicates (GF features) is perceived as more
important by the users than the resolution of identical facts (RF feature). Based
on these results, our answer to RQ5d is that the summary generation algorithm
has a major effect on user preferences and thus it should be paid attention
within the entity summarization task.

7.5.4 Analysis

We analyze the differences in users preferences on the query level for the first two
set of summarization experiments in Figure 7.4; i.e., we compare DynES with
DynES/imp and DynES/rel. Each value in our query preference distribution
indicates the number of users who preferred DynES summaries over DynES/imp
(or DynES/rel) summaries; ties are ignored. Considering all queries (the black
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Figure 7.4: Boxplot for distribution of user preferences for each query subset.
Positive values show that DynES is preferred over DynES/imp or DynES/rel.

boxes), we observe that the utility-based summaries (DynES) are generally pre-
ferred over the other two, and especially over the relevance-based summaries
(DynES/rel). These summaries are highly biased towards the query and cannot
offer a concise summary; the utility-based summaries, on the other hand, can
strike a balance between diversity and bias. Considering the query type break-
downs in Figure 7.4(a), we observe that the ListSearch and QALD queries,
which are identified as complex entity-oriented queries, benefit the most from
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Table 7.6: Side-by-side evaluation of summaries for different summary gener-
ation algorithms.

Model Win Loss Tie RI

DynES vs. DynES(-GF)(-RF) 84 1 15 0.83
DynES vs. DynES(-GF) 74 0 26 0.74
DynES vs. DynES(-RF) 46 2 52 0.44

utility-based summaries. Interestingly, however, we do not observe any clear
preferences for SemSearch and INEX-LD queries. This attests that our ap-
proach can generate dynamic summaries without hurting named entity and
keyword queries.

7.6 Summary

In this chapter, we have introduced the novel problem of dynamic entity sum-
marization: generating query-dependent entity summaries for entity cards. We
have formulated two specific subtasks: fact ranking and summary generation.
The first task entails the ranking of facts (predicate-object pairs) with respect to
importance and/or relevance. We have addressed it in a learning to rank frame-
work, and have demonstrated significant improvements over the most compara-
ble state-of-the-art baselines using a purpose-build test collection. The second
task concerns the rendering of ranked facts as a summary to be displayed on
the entity card. We have presented a summary generation algorithm and have
shown via a series of user preference comparisons that users favor dynamic
(query-dependent) summaries over static (query-agnostic) ones.



Chapter 8

The DBpedia-Entity v2
Test Collection

In the previous chapters, we addressed several research questions related to
semantic search. We now present a standard test collection that is designed to
further research and development in this area, referred to as the DBpedia-Entity
v2 collection.

The DBpedia-Entity collection was first introduced by Balog and Neumayer
[12], generated by assembling search queries from a number of entity-oriented
benchmarking campaigns and mapping relevant results to DBpedia. Over the
past years, this has become a standard test collection for the entity retrieval
task, see [47, 93, 128, 149, 210]. The main objective of this chapter is to present
a new, extended version of this test collection. We shall refer to the original
collection in [12] as DBpedia-Entity v1 and to our updated version as DBpedia-
Entity v2. The DBpedia-Entity v2 is available for evaluating three semantic
search tasks: (i) entity retrieval [98], (ii) target type identification [76], and (iii)
entity summarization [95]. For each of these tasks, we take the queries from
the DBpedia-Entity v1 collection and collect the crowdsourced judgments using
DBpedia version 2015-10.1 as the underlying knowledge base All resources,
including queries, relevance assessments (qrels), baseline runs, their evaluation
results, and further details on indexing and preprocessing are made publicly
available at http://tiny.cc/dbpedia-entity.

1http://wiki.dbpedia.org/Downloads2015-10.
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In this chapter, we first provide an overview of the DBpedia-Entity v2 col-
lection in Section 8.1. We then describe the entity retrieval and target type
identification subcollections of DBpedia-Entity v2 in Sections 8.2 and 8.3. For
the entity summarization collection, we the reader to Section 7.3. We end with
a summary in Section 8.4.

8.1 The Test Collection

This section describes the test queries and the reference knowledge base.

8.1.1 Test Queries

The queries in DBpedia-Entity v2 are the same as in v1. We distinguish between
four categories of queries:

• SemSearch ES queries are from the ad hoc entity search task of the
Semantic Search Challenge series [26, 85]. These are short and ambiguous
queries, searching for one particular entity, like “brooklyn bridge” or “08
toyota tundra.”

• INEX-LD queries are from the ad hoc search task at the INEX 2012
Linked Data track [193]. They are IR-style keyword queries, e.g., “elec-
tronic music genres.”

• List Search comprises queries from the list search task of the 2011 Se-
mantic Search Challenge (SemSearch LS) [26], from the INEX 2009 Entity
Ranking track (INEX-XER) [60], and from the Related Entity Finding
task at the TREC 2009 Entity track [14]. These queries seek a particular
list of entities, e.g., “Professional sports teams in Philadelphia.”

• QALD-2 queries are from the Question Answering over Linked Data chal-
lenge [127]. These are natural language questions that can be answered
by DBpedia entities, for example, “Who is the mayor of Berlin?”

Originally, the SemSearch queries were evaluated using crowdsourcing on a 3-
point relevance scale. All other benchmarks employed expert evaluators (trained
assessors or benchmark organizers/participants) and have binary judgments.
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8.1.2 Knowledge Base

We use DBpedia as our knowledge base; it is often referred to as “the database
version of Wikipedia.” DBpedia is a community effort, where a set of rules
(“mappings”) are collaboratively created to extract structured information from
Wikipedia. Since its inception in 2007, there have been regular data releases;
it also has a live extraction component that processes Wikipedia updates real-
time. DBpedia is a central hub in the Linking Open Data cloud, and has been
widely used in various semantic search tasks [11, 95, 96, 135].2

We use the English part of the 2015-10 version of DBpedia. It contains 6.2
million entities, 1.1 billion facts, and an ontology of 739 types. In comparison,
version 3.7, that has been used in DBpedia-Entity v1, contains 3.64 million
entities, over 400 million facts, and an ontology of 358 types. DBpedia 2015-10
is also believed to be much cleaner due to better extraction techniques developed
by the DBpedia community.

Preprocessing. We require entities to have both a title and abstract (i.e.,
rdfs:label and rdfs:comment predicates)—this effectively filters out category,
redirect, and disambiguation pages. Note that list pages, on the other hand,
are retained. In the end, we are left with a total of 4.6 million entities. Each
entity is uniquely identified by its URI.

8.2 The Entity Retrieval Subcollection

The original DBpedia-Entity collection (v1) was developed for evaluating the
entity retrieval task; it provided relevant entities in response to entity-bearing
queries. In DBpedia-Entity v2, we updated the entity retrieval collection. The
new version’s improvements are many-fold.

1. The original collection contains only relevant results and relevance is bi-
nary for most of the queries; we use graded relevance judgments for all
queries and also include all judged items, relevant or not.

2. The DBpedia knowledge base has grown significantly over the past years.
Many new relevant entities were not judged in the old version; we use a
recent DBpedia version and judge the relevance of new entities.

2DBpedia is not the only general-purpose knowledge base available, but arguably the most
suitable one. Alternatives include YAGO [179] (not updated regularly), Freebase (discontin-
ued), and WikiData (still in its infancy).
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3. Judgments in the original collection have been assembled from multiple
campaigns, each with its own setup; we obtain relevance labels under the
same conditions for all queries in the collection.

We also present details about how the DBpedia dump is processed and indexed,
reducing the inconsistency in preprocessing. We provide rankings using both
traditional and recently-developed entity search methods, making future com-
parison with prior work much easier.

8.2.1 Constructing the Collection

In DBpedia-Entity v1, the relevance judgments (“qrels”) are assembled from sev-
eral different benchmarks. These assessments were created using different anno-
tation guidelines, judges (trained assessors vs. crowdsourcing), pooling methods,
and even different corpora (various versions of DBpedia or Wikipedia). For the
updated collection, we generate new relevance judgments for all queries using
the same setup. We pool candidate results from the same set of systems, and
use the same annotation procedure and guidelines.

Pooling

Following standard practice of IR test collection building, we employ a pooling
approach, and combine retrieval results from four main sources:

• Original qrels. All relevant entities from DBpedia-Entity v1 are in-
cluded, to ensure that results that have previously been identified as rel-
evant get re-assessed.

• Previous runs. We consider 37 different retrieval methods (“runs”) that
have been evaluated on DBpedia-Entity v1 in prior work [93, 149, 200, 210].
All entity URIs returned by these runs are mapped to DBpedia version
2015-10; entities not present in DBpedia 2015-10 are discarded. The pool
depth is 20, i.e., we take the top 20 ranked entities from each run.

• New runs. We obtained retrieval results for DBpedia 2015-10 from 13
different systems, by three independent research groups; see Section 8.2.2
for the description of these methods. Results are pooled from these runs
up to depth 20.

• SPARQL results. For QALD-2 queries, the ground truth is obtained
by executing a SPARQL query (manually constructed by the campaign
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organizers [127]) over the knowledge base. We re-ran these queries against
the DBpedia API endpoint to obtain up-to-date results, as the answers
to some questions might have changed since (e.g., “Who is the mayor of
Berlin?”).

The final assessment pool contains 50,516 query-entity pairs (104 entities per
query on average).

Collecting Judgments

We collected relevance judgments using the CrowdFlower crowdsourcing plat-
form. For each record (i.e., query-entity pair) in our pool, we provided the
workers with the query, the name and short description (DBpedia abstract) of
the entity, as well as the link to the entity’s Wikipedia page; see Figure 8.1.
Since narratives are only available for a small number of queries in our query
set (those from TREC and INEX), we decided to keep the setup uniform across
all queries, and present assessors only with the query text. To avoid positional
bias, records were presented in a random order. Workers were then asked to
judge relevance on a 3-point Likert scale: highly relevant, relevant, or irrele-
vant. We educated workers about the notion of entities and provided them with
the following working definitions for each scale (each further illustrated with
examples):

• Highly relevant (2): The entity is a direct answer to the query (i.e., the
entity should be among the top answers).

• Relevant (1): The entity helps one to find the answer to the query (i.e.,
the entity can be shown as an answer to the query, but not among the top
results).

• Irrelevant (0): The entity has no relation to the intent of the query (i.e.,
the entity should not be shown as an answer).

We have taken quality control very seriously, which was a non-trivial task for
a pool size of over 50K. During the course of the assessment, the accuracy of
workers was regularly examined with hidden test questions. 400 query-entity
pairs were randomly selected as test cases and judged by three authors of the
paper; 373 of these were then used as test questions (where at least two of the
experts agreed on the relevance label). Only workers with qualification level 2
(medium) or 3 (high) on CrowdFlower were allowed to participate. They were
then required to maintain at least 70% accuracy throughout the job; those falling
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Figure 8.1: Crowdsourcing task design.

below this threshold were not allowed to continue the job and their previous
assessments were excluded. We collected 5 judgments for each record and paid
workers a reasonable price of ¢1 per judgment. The final cost was over 3,500
USD, which makes this a very valuable test collection, also in the literal sense
of the word. The Fleiss’ Kappa inter-annotator agreement was 0.32, which is
considered fair agreement. To determine the relevance level for a query-entity
pair, we took the majority vote among the assessors. In case of a tie, the rounded
average of relevance scores is taken as the final judgment.

Further inspection of the obtained results revealed that crowd workers are
less likely to find answers to complex information needs. They are less patient
and make judgments primarily based on the provided snippets and Wikipedia
pages. When it would be required to read the Wikipedia article more carefully,
or to consult additional sources, users are less likely to label them as attentively
as expert annotators would. To further the quality of the test collections, we
collected expert annotations for cases with “extreme disagreements,” i.e., cases
without majority vote, or cases that are found irrelevant by crowd workers,
but are highly relevant according to the original qrels.3 This resulted in the
annotation of 8K query-entity pairs, each by two experts, with a Fleiss’ Kappa

3This includes SPARQL query results for QALD queries, highly relevant judgments for
SemSearch queries, and all TREC and INEX judgments.
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Table 8.1: Query categories in the entity retrieval subcollection of DBpedia-
Entity v2. R1 and R2 refer to the average number of relevant and highly relevant
entities per query, respectively.

Category #queries Type R1 R2

SemSearch ES 113 named entities 12.5 3.0
INEX-LD 99 keyword queries 23.5 9.2
ListSearch 115 list of entities 18.1 12.7
QALD-2 140 NL questions 28.4 29.8

Total 467 21.0 14.7

agreement of 0.48, which is considered moderate. The final label for the extreme
disagreement cases was taken to be the expert-agreed label. If such a label did
not exist, we took the rounded average between the two expert labels and the
crowdsourcing decision (as a third label). Finally, queries that no longer have
relevant results were removed (18 in total). Table 8.1 shows the statistics for
the final v2 collection.

8.2.2 Baseline Methods

In this section, we present a wide range of baseline entity retrieval methods.
These methods were also used to obtain results for pooling.

Indexing and Query Processing

Retrieval results were obtained using two indices (Index A and Index B), built
from the DBpedia 2015-10 dump, following the general approach outlined in [210].
In particular, we used the same entity representation scheme with five fields
(names, categories, similar entity names, attributes, and related entity names)
as in [210]. Index A was constructed using Galago, while Index B was created
using Elasticsearch. They use slightly different methods for converting entity
URIs to texts. Index B also contains an extra catchall field, concatenating
the contents of all other fields. An extra URI-only index was built according
to [93], which is used for the ELR-based methods; we write ‘+’ to denote when
this index is used. All the runs were generated using preprocessed queries; i.e.,
removing the stop patterns provided in [93] and punctuation marks. Further
details are provided in the collection’s GitHub repository.
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Table 8.2: Comparison of methods for DBpedia-entity v1 vs. v2 qrels. The
supervised methods (bottom block) are trained on v1.

Method Index
v1 v2

MAP P@10 MAP nDCG@10

BM25 A 0.0884 0.0971 0.1893 0.3582
PRMS B 0.1571 0.1682 0.2895 0.3905
MLM-all B 0.1618 0.1705 0.3031 0.4021
LM B 0.1709 0.1837 0.3144 0.4182
SDM A 0.1860 0.1880 0.3259 0.4185

LTR A 0.1723 0.1831 0.2446 0.3464
LM+ELR B+ 0.1772 0.1895 0.3103 0.4123
SDM+ELR A+ 0.1901 0.1986 0.3284 0.4200
MLM-CA A 0.1905 0.2008 0.3061 0.4117
BM25-CA A 0.2067 0.2056 0.3265 0.4231
FSDM A 0.2069 0.2039 0.3279 0.4267
BM25F-CA A 0.2088 0.2126 0.3361 0.4378
FSDM+ELR A+ 0.2210 0.2089 0.3295 0.4335

Retrieval Methods

We consider various entity retrieval methods that have been published over the
recent years [12, 47, 93, 149, 210]. Unless stated otherwise, the parameters of
methods are trained for each of the four query subsets, using cross-validation
(with the same folds across all methods). Table 8.2 shows the particular index
version that was used for each method.

Unstructured retrieval models. This group of methods uses a flattened
entity representation. Specifically, we report on LM (Language Modeling) [156],
SDM (Sequential Dependence Model) [139], and BM25 [168]. All LM-based
methods use Dirichlet prior smoothing with μ = 1500 for index A, and μ = 2000
for index B. The BM25 parameters are k1 = 1.2 and b = 0.8. We also report
on BM25-CA with parameters trained using Coordinate Ascent.

Fielded retrieval models. This category of methods employs a fielded entity
representation. We report on MLM-CA (Mixture of Language Models) [152],
FSDM (Fielded Sequential Dependence Model) [210], and BM25F-CA [168]
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(the -CA suffixes refer to training using Coordinate Ascent). We also report
on MLM-all, with equal field weights, and on PRMS (Probabilistic Model for
Semistructured Data) [112], which has no free parameters.

Other models. The LTR (Learning to Rank) approach [47] employs 25 fea-
tures from various retrieval models and is trained using the RankSVM algorithm.
The ELR methods [93] employ TAGME [69] for annotating queries with enti-
ties, and use the URI-only index (with a single catchall field) for computing the
ELR component.

8.2.3 Results and Analysis

In Table 8.2 we report on the performance of the different retrieval methods
using both the original (v1 ) and new (v2 ) relevance judgments. (In case of
the v1 qrels, we removed entities that are not present in DBpedia 2015-10.)
Methods in the top block of the table do not involve any training and use default
parameter settings, while systems in the bottom block are trained for each query
category using cross-validation. Training is done using the v1 qrels. Since we
have graded relevance judgments for v2, the “official” evaluation measure for
the new collection is NDCG@10. However, to facilitate comparison with the v1
results, we also report on MAP (at rank 100, accepting both levels 1 and 2 as
relevant).

At first glance, we observe that the absolute MAP values for v2 are higher
than for v1 ; this is expected, as there are more relevant entities according to
the new judgments. We also find that the relative ranking of methods in the
top block remains the same when moving from v1 to v2. On the other hand,
methods that involve training (bottom block) show much smaller relative im-
provements over the models without training (top block) in v2 as for v1. This
is explained by the fact that training was done on v1. We note that we are
not elaborating on the performance of individual methods as that is not the
focus of this paper. One issue we wish to point out, nevertheless, is that default
parameter settings may be a poor fit for entity retrieval; in particular, observe
the large difference between BM25 with default parameters vs. BM25-CA with
trained parameters (which are b ≈ 0.05 and k1 in the range 2..6, depending on
the query subtype). In Table 8.3, we further report on the supervised models
trained on the new (v2 ) qrels, and break evaluation results down into different
query subsets. New retrieval systems, evaluated using DBpedia-Entity v2, are
supposed to be compared against these results.
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8.3 The Target Type Identification Subcollec-
tion

A characteristic property of entities is that they are typed, where types are typ-
ically organized in a hierarchical structure, i.e., a type taxonomy. The objective
of Target Type Identification (TTI) task is to assign target types to queries from
a type taxonomy [11, 76]. Formally:

Definition 8.1. TTI is the task of finding the main target types of a query, from
a type taxonomy, such that (i) these correspond to the most specific category of
entities that are relevant to the query, and (ii) main types cannot be on the same
path in the taxonomy. If no matching type can be found in the taxonomy then
the query is assigned a special NIL-type.

This definition allows for assigning multiple, one, or even no type to a query.
Consider for example, the query “finland car industry manufacturer saab sisu,”
where both Company and Automobile are valid types, and the query “Vietnam
war facts,” which cannot be mapped to any type in the given taxonomy.

In DBpedia-Entity v2, we follow the above definition and develop a new
subcollection for the TTI task. This extension to the DBpedia-Entity collection
can be further used to improve the performance of entity retrieval methods, see,
e.g., [15, 107, 154]. Below, we provide a detailed description of constructing this
subcollection.

8.3.1 Constructing the Collection

We use the DBpedia Ontology (version 2015-10) as our type taxonomy, which
is a manually curated and proper “is-a” hierarchy (unlike, e.g., Wikipedia cat-
egories).

Pooling

A pool of target entity types is constructed from four baseline methods, taking
the top 10 types from each: entity-centric [11, 108, 186] and type-centric [11],
using both BM25 and LM as retrieval methods. Additionally, we included all
types returned by an oracle method, which has knowledge of the set of relevant
entities for each query (from the ground truth). Specifically, the oracle score is
computed as:

scoreO(t, q) =
∑

e∈Rel(q)

1(e, t) (8.1)
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Query: ratt albums

Candidate types:
1.  Agent
1.1. Person
1.1.1. Artist
1.1.1.1. Musical artist
2. Work
2.1. Musical work
2.1.1. Album
2.1.2. Single
- None of these types

Correct type:  2.1.1. Album

Query: ratt albums

Candidate types:
1.  Agent
1.1. Person
1.1.1. Artist
1.1.1.1. Musical artist
2. Work
2.1. Musical work
2.1.1. Album
2.1.2. Single
- None of these types

Correct type: 2.1.1. Album

Figure 8.2: Example query from the crowdsourcing task description.

where Rel(q) indicates the set of relevant entities for the query q. We employ
this oracle to ensure that all reasonable types are considered when collecting
human annotations.

Collecting Judgments

We obtained target type annotations via the CrowdFlower crowdsourcing plat-
form. Specifically, crowd workers were presented with a search query (along
with the narrative from the original topic definition, where available), and a
list of candidate types, organized hierarchically according to the taxonomy. We
asked them to “select the single most specific type, that can cover all results the
query asks for” (in line with [11]). If none of the presented types are correct,
they were instructed to select the “None of these types” (i.e., NIL-type) option.
Figure 8.2 shows one of the example queries (alongside its candidate and correct
types) that was given in the annotation instructions to crowd workers.

The annotation exercise was carried out in two phases. In the first phase,
we sought to narrow down our pool to the most promising types for each query.
Since the number of candidate types for certain queries was fairly large, they
were broken down to multiple micro-tasks, such that for every top-level type,
all its descendants were put in the same micro-task. Each query-type batch
was annotated by 6 workers. In the second phase, all candidate types for a
query were presented in a single micro-task; candidates include all types that
were selected by at least one assessor in phase one, along with their ancestors
up to the top level of the hierarchy. Each query was annotated by 7 workers.
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Figure 8.3: Distribution of the number of main target types.

The Fleiss’ Kappa inter-annotator agreement for this phase was 0.71, which is
considered substantial.

Note that according to our task definition, the main target types of a query
cannot lie on the same path in the taxonomy. To satisfy this condition, if two
types were on the same path, we merged the more specific type into the more
generic one (i.e., the more generic type received all the “votes” of the more
specific one). This affected 120 queries. Figure 8.3 shows the distribution of
queries according to the number of main types. 280 of all queries (57.73%) have
a single target type, while the remainder of them have multiple target types.
Notice that as the number of main types increases, so does the proportion of
NIL-type annotations.

8.3.2 Baseline Methods

This section presents our baseline methods for the target type identification
subcollection.

Entity-centric model. The entity-centric model [11, 76, 108, 186] can be
regarded as the most common approach for determining the target types for
a query. The idea is simple: first, rank entities based on their relevance to
the query, then look at what types the top-K ranked entities have. The final
score for a given type t is the aggregation of the relevance scores of entities
with that type. We consider both Language Modeling (LM) and BM25 as the
underlying entity retrieval model. For LM, we use Dirichlet prior smoothing
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Table 8.4: Target type detection performance.

Method NDCG@1 NDCG@5

EC, BM25 (K = 20) 0.1490 0.3223
EC, LM (K = 20) 0.1417 0.3161

TC, BM25 0.2015 0.3109
TC, LM 0.2341 0.3780

LTR 0.4842 0.6355

with the smoothing parameter set to 2000. For BM25, we use k1 = 1.2 and
b = 0.75. The rank-cutoff threshold K is set empirically.

Type-centric model. The type-centric model [11, 76] considers for each type
a direct term-based representation (pseudo type description document), by ag-
gregating descriptions of entities of that type. Then, those type representations
can be ranked much like documents. Specifically, the relevance score of a type for
a given query is calculated as the sum of the individual query term scores, where
the score is the underlying term-based retrieval model (e.g., LM or BM25).

LTR. The learning to rank approach, proposed in [76], combines entity- and
type-centric scores. In addition, it leverages other signals that one could lever-
age, including taxonomy-driven features and type label similarities. Garigliotti
et al. [76] employ the Random Forest algorithm, and set number of trees (iter-
ations) to 1000, and the maximum number of features in each tree, m, to (the
ceil of the) 10% of the size of the feature set.

8.3.3 Results and Analysis

Following [11], we report on NDCG at rank positions 1 and 5. The relevance
level (“gain”) of a type is set to the number of assessors that selected that type.
Detecting NIL-type queries is a separate problem on its own, which we are not
addressing here. Therefore, the NIL-type labels are ignored in our experimental
evaluation (affecting 104 queries). Queries that got only the NIL-type assigned
to them are removed (6 queries in total). No re-normalization of the relevance
levels for NIL-typed queries is performed (similar to the setting in [19]). For the
LTR results, we used 5-fold cross-validation.
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Figure 8.4: Performance across different query categories.

Table 8.4 presents the evaluation results. We find that the supervised learn-
ing approach significantly and substantially outperforms all baseline methods
(relative improvement over 43% according to any measure, with p < 0.001 us-
ing a two-tailed paired T-test). In Figure 8.4, we break performance down into
different query categories and observe that the LTR method outperforms other
baselines, with the biggest improvements for QALD-2 queries.

8.4 Summary

In this chapter, we have presented two test collections based on the DBpedia-
Entity test collection: (i) entity retrieval, (ii) target type identification collec-
tion. The entity retrieval subcollection uses a more recent DBpedia dump, a
more consistent candidate document pool, and a unified relevance assessment
procedure. The target type identification subcollection is a novel addition to
the original DBpedia-Entity collection, and is based on DBpedia ontology as
the type taxonomy. We have also provided details about processing and index-
ing, together with baseline results for both traditional and more recent entity
retrieval and target type identification models. It is our hope that these new
test collections will serve as the de facto testbed for these tasks, and will foster
future research.





Chapter 9

Nordlys: A Semantic
Search Toolkit

In the last technical chapter of this thesis, we introduce Nordlys, a toolkit for
entity-oriented and semantic search. It provides functionality for entity cata-
loging, entity retrieval, entity linking in queries, and target type identification.
There are two main reasons that motivated us to develop this toolkit. First,
there exist a range of tools and demonstrators that address one specific task.
Examples include GERBIL [184], TAGME [69], STICS [100], and Broccoli [18].
Second, repeatability and reproducibility of results is a fundamental require-
ment of scientific progress [5, 94, 124]. Having an open source and verifiable
implementation of methods can foster research and development. In the area of
entity-oriented search, despite recent advances, there is a lack of publicly avail-
able implementations of standard methods and techniques. With this work, we
aim to fill that gap.

One of its distinguishing features of Nordlys is that it implements a number
of traditional and state-of-the-art methods for a range of tasks: entity retrieval,
entity linking in queries, identifying target types of queries, and entity cata-
loging. Another important characteristic is that it accommodates various usage
needs on different levels:

• It is made available as an open source Python library that can be inte-
grated into larger applications or can be used as a command line tool
for research and experimentation. The code is organized in a three-tier
architecture, cleanly separating the various layers of functionality.

159
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Figure 9.1: Nordlys architecture.

• It provides a RESTful API, through which Nordlys can be used as a
service, much like a black box.

• The functionality is also available through a graphical web user interface.
This interface can be used, e.g., to perform user studies on result presen-
tation (similar to [33]).

In summary, Nordlys represents a major step towards reproducible and ex-
tensible semantic search research. It is meant to be a continuous effort, with
additional methods included over time, as opposed to a one-time release of code.
The toolkit is available at http://nordlys.cc.

9.1 Functionality

In this section we detail the functionality that is implemented in the Nordlys
toolkit.

9.1.1 Entity Catalog

The main enabling component of semantic search, from a data perspective, is
a knowledge base, which contains a collection of entities, their attributes, and



161 9.1. Functionality

relations to other entities. It also contains information about entity types,
which are often organized in a hierarchical structure (called type taxonomy).
The entity catalog serves as a data access layer to the knowledge base. It is
used to obtain information about entities, such as their IDs, names, attributes,
and relationships. Additionally, it provides basic statistics about entities and
properties; these statistics may be utilized, among others, for result presentation
(e.g., identifying prominent properties when generating entity cards) [98].

The entity catalog may be seen as a data abstraction layer that makes
the higher-level functionality largely independent of the particular data source.
Nordlys is shipped with code and support for the DBpedia knowledge base,
but data may be loaded into the entity catalog from any other knowledge base.
Specifically, the entity catalog offers the following functionality:

• Entity lookup. Presents all entity properties from the knowledge base
in a key-value format.

• ID mapping. Provides a one-to-one mapping of entity IDs across various
knowledge bases via same-as links (DBpedia and Freebase).

• Surface form lookup. Presents all entities that match an entity sur-
face form, obtained from the FACC collection for the ClueWeb09 and
ClueWeb12 datasets [75].

• Basic statistics. A set of statistics are computed over contents of the
knowledge base, including RDF types, predicates, and properties.

9.1.2 Entity Retrieval

Entity retrieval is a core building block of semantic search, where a ranked list
of entities are presented in response to an entity-bearing query. Formally, it is
defined as follows.

Definition 7 (Entity retrieval): Given a query q, entity retrieval is the task
of returning a ranked list of entities (e1, ..., ek) from an underlying knowledge
base KB, ordered according to their relevance to the query q.

The toolkit implements both standard baselines and more recent approaches:

• BM25. The BM25 model, as implemented in Elasticsearch, which is the
most efficient retrieval model of our toolkit.
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Figure 9.2: The Nordlys web user interface.

• LM. Language Modeling [156] approach (with Dirichlet prior and Jelinek-
Mercer smoothing), which employs a single field representation of entities.

• MLM. The Mixture of Language Models [152], which represents entities
as structured (fielded) documents, using a linear combination of language
models built for each field. For DBpedia, we use a five-field representation
(cf. Section 8.2.2).

• PRMS. The Probabilistic Model for Semistructured Data [111], which
uses collection statistics to compute field weights in for MLMmodel (thereby
making it parameter-free).

• ELR. The Entity Linking incorporated Retrieval model is a state-of-the-
art approach, which extends text-based retrieval models by considering
entities mentioned in the query (cf. Chapter 6).

The online repository includes retrieval performance measurements on the DBpedia-
entity test collection [12, 98], which is a standard benchmark for entity retrieval.

9.1.3 Entity Linking in Queries

Identifying named entities in queries and linking them to the corresponding
entry in the knowledge base is known as the task of entity linking in queries
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(ELQ) [92]. Various demonstrations have been released for general purpose en-
tity linking [45, 69, 138, 138, 184]. The most popular among them is TAGME [69],
which has been designed for short texts such as tweets, search snippets. TAGME,
however, does not handle the ambiguity of search queries and an entity mention
is only linked to a single entity. The entity linking functionality in Nordlys
aims to bridge this gap, by implementing both baselines and state-of-the-art
approaches for entity linking in queries. The task is formally defined as follows.

Definition 8 (Entity linking in queries): Given a query q, entity linking
in queries returns one or multiple interpretations of the query, A1, ..., An. Each
interpretation consists of a set of entity linking decisions, i.e., mention-entity
pairs: Ai = {(m1, e1), ..., (mk, ek)}, where mention mj is a query substring that
refers to entity ej in the knowledge base.

The following methods are implemented in Nordlys:

• CMNS. The baseline method that performs entity linking based on the
overall popularity of entities as link targets, i.e., the commonness fea-
ture [134]. This method has been introduced in [136], and has been widely
used in later research, e.g., [29, 92, 199].

• MLM-greedy. An efficient generative retrieval model presented (cf.
Chapter 3), that combines the commonness score with the textual simi-
larity between the query and the entity.

• LTR-greedy. The recommended method (with respect to both efficiency
and effectiveness) in Chapter 5, which employs a learning to rank model
with various textual and semantic similarity features.

9.1.4 Target Type Identification

Target type detection is one specific form of query understanding, where the aim
is to assign target types (or categories) to queries from some type taxonomy [11,
76]. Formally:

Definition 9 (Target Type Identification): Given a query q, the aim of
target type identification task is to return a ranked list of entity types (t1, ..., tk),
ordered with respect to their likelihood of being the target type of query q.

We implement three different approaches from the literature [11, 76]:
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• Entity-centric. This method first ranks entities based on their relevance
to the query, then looks at what types the top-k ranked entities have. The
final score for a given type t is the aggregation of the relevance scores of
entities with that type [11].

• Type-centric. This approach builds, for each type, a direct term-based
representation (pseudo type description document), by aggregating de-
scriptions of entities of that type. Then, those type representations can
be ranked much like documents [11].

• Learning to rank. A supervised learning approach, which considers a
rich set of features such as distributional similarity, type label similarities,
and taxonomy-driven features [76].

These methods has been evaluated using a publicly available test collection; the
test collection and results are presented in [76].

9.2 The Nordlys Toolkit

In this section, we present the overall architecture and the various ways in
which our toolkit may be used. We ship our code with a small sample taken
from DBpedia, and include scripts for processing and indexing DBpedia and
Freebase. We also make data-dumps available for download (entity catalog and
search indices).

9.2.1 Architecture

Nordlys is based on a multitier architecture with three layers: core (data tier),
logic, and services (presentation tier); see Figure 9.1.

Core. The core layer provides basic functionality, including retrieval (Elas-
ticsearch), storage (MongoDB key-value store), machine learning (scikit-learn),
and evaluation (trec eval). In parentheses are the third-party tools we currently
use. It is possible to connect additional external tools (or replace our default
choices) by implementing standard interfaces of the respective core modules.
Additionally, a separate data module is provided with functionality for loading
and preprocessing standard data sets (DBpedia, Freebase, ClueWeb, etc.). The
core layer represents a versatile general-purpose modern IR library, which may
also be accessed using command line tools.
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Logic. This layer contains the main business logic, which is organized around
five main modules: (1) entity provides access to the entity catalog (including
knowledge bases and entity surface form dictionaries); (2) query provides the
representation of search queries along with various preprocessing methods; (3)
features is a collection of entity-related features, which may be used across
different search tasks; (4) entity retrieval (ER) contains various entity ranking
methods, cf. Section 9.1.2; (5) entity linking (EL) implements entity linking
functionality, cf. Section 9.1.3. The logic layer may not be accessed directly.

Services. The services layer provides end-user access to the toolkit’s function-
ality, through the command line, RESTful API, and web interface. Four main
services are available: entity retrieval (ER), entity linking (EL), target type
identification (TTI), and entity catalog (EC); these we have already explained
in Section 9.1.

9.2.2 Usage Modes

Nordlys may be used as a Python library, RESTful API, command line tool, or
a web interface.

Python Library. We base our toolkit on Python 3.5+, specifically, on the
Anaconda distribution. The code is complemented with an automatically gen-
erated documentation as well as an extensive how-to. Upon downloading our
toolkit, installing the prerequisites, and loading the necessary data, it should be
possible to run Nordlys on any machine.

Command line. The main functionality may be accessed through a set of
command line tools. This can be useful, e.g., for processing larger amounts of
data and eliminating the network overhead.

RESTful API. We provide a public API endpoint (subject to registering for
an API key). Figure 9.3 shows an excerpt from the response received from
the API for an entity retrieval request. For convenience, the parameters of
the methods are set to reasonable defaults; these values may be changed when
calling the services.

Web Interface. Figure 9.2 shows an excerpt from our web user interface.
The implementation is based on Flask and Bootstrap. The default settings of
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  {"query": "total recall",
    "total_hits": 1000",
    "results": {
      "0": {
        "entity": "<dbpedia:Total_Recall_(1990_film)>",
        "score": -10.042525028471253
      },
      "1": {
        "entity": "<dbpedia:Total_Recall_(2012_film)>",
        "score": -10.295316626850521
      },
      ...

http://api.nordlys.cc/er?key=xx&q=total+recall&model=lm

Figure 9.3: Example call to the Nordlys API entity retrieval service.

the web interface are similar to that of the API endpoint, any may be changed
on the interface.

9.3 Summary

We have introduced Nordlys, a toolkit that implements a range of methods for
entity-oriented and semantic search. It is available as a Python library, as a com-
mand line tool, a RESTful API, and as a graphical web user interface. Nordlys
is meant to be a continuous effort; we plan to include additional methods, e.g.,
entity summarization. We are also working on optimizations, to improve the
efficiency of our methods.
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Conclusions

In this chapter, we will first summarize our main findings and draw conclusions
by answering our research questions. We then give an outlook on future work
related to query understanding, entity retrieval, entity summarization, and se-
mantic search in general.

10.1 Main Findings

Here, we summarize the methods and our findings. We do so by answering the
research questions raised in Chapter 1.

Query Understanding

In the first part of this thesis (Chapters 3-5), we focused on understanding
queries by identifying entity mentions in queries and linking them to the corre-
sponding entries in a reference knowledge base, referred to as the task of entity
linking in queries. In Chapter 3 we asked our first research question:

RQ1 How can the inherent ambiguity of entity annotations in queries be han-
dled and evaluated?

To answer this question, we discussed different ways to deal with query am-
biguities and established entity linking in queries as the task of finding entity
linking interpretation(s), where an interpretation is a set of non-overlapping
entities that are semantically related to each other. If the query is ambiguous,

167



Chapter 10. Conclusions 168

with little or no context, there exist multiple interpretations, all of which should
be found. Otherwise, a single interpretation should be detected, which is simi-
lar to the traditional entity linking task for documents. Determining when the
query has no interpretations (in terms of entity annotations) is also a crucial
part of the problem that should be addressed (and considered in the evalua-
tion). The semantic linking task, which ranks entities based on their relevance
to the query, serves a different purpose and should not be considered as an entity
linking task, even for the simplified scenario of finding a single interpretation.
This is because relevant entities can be overlapping and are not required to be
semantically related to each other. Furthermore, entity disambiguation is an
essential part of entity linking, an aspect that is completely ignored in semantic
linking. A number of earlier studies refer to entity linking, while what they do
in fact is semantic linking. Comparing semantic linking to results generated by
traditional entity linking methods is inappropriate.

For entity linking in queries, similar to the traditional entity linking task [69,
141, 143], evaluation uses set-based measures (precision, recall and F-measure).
However, since the output is a set of interpretations (and not entities) the eval-
uation methodology is different. The method presented in [43] considers the
exact match between the retrieved sets and the ground truth, which is rather
strict. The lenient evaluation method (Section 3.4.3), on the other hand, com-
bines interpretation-based and entity-based evaluations. For semantic linking,
standard rank-based measures (MAP, MRR, P@1) can be employed.

We then moved on to identifying a baseline for entity linking in queries:

RQ2 How does a state-of-the-art entity linking approach perform on the ELQ
task?

We selected TAGME [69] as a state-of-the-art entity linking system and system-
atically examined its repeatability, reproducibility, and generalizability. Our ex-
periments showed that some of the TAGME results are not reproducible, even
with the API provided by the authors. For the rest of the results, we found that
(i) the results reported in their paper are higher than what can be reproduced
using their API, and (ii) the TAGME API gives higher numbers than what is
achievable by a third-party implementation (both ours and that of Dexter’s [45])
(iii) the TAGME approach can be generalized to the ELQ task. Based on our
findings, we conclude that the TAGME approach can be used as a baseline for
the task of entity linking in queries.

After establishing the task, evaluation measures, test collection, and base-
line, we focused on the solving of the task. We asked:
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RQ3 How should entity linking in queries be performed to achieve high effi-
ciency and effectiveness?

To answer the above research question, we set up a framework where different
candidate entity ranking and disambiguation methods can be plugged in. For
each of these components, we experimented with both unsupervised and super-
vised alternatives, resulting in a total of four different ELQ systems. Supervised
methods are expected to yield high effectiveness coupled with lower efficiency,
while for unsupervised approaches it is the other way around.

Our results revealed that candidate entity ranking is of higher importance
than disambiguation for ELQ. Hence, it is more beneficial to perform the (ex-
pensive) supervised learning early on in the pipeline for the seemingly easier
CER step; disambiguation can then be tackled successfully with an unsuper-
vised (GIF) algorithm. We note that selecting the top ranked entity does not
yield an immediate solution; as shown in Chapter 3, disambiguation is an indis-
pensable step in ELQ.

We also found that contextual similarity features are the most effective for
entity disambiguation. This is based on two observations: (i) the unsupervised
(GIF) method takes only the entity ranking scores as input, which are computed
based on the contextual similarity between entity and query; (ii) the supervised
(LTR) method relies the most on query-dependent features. This is an inter-
esting finding, as it stands in contrast to the common postulation in entity
linking in documents that interdependence between entities help to better dis-
ambiguate entities. Entity interdependence features (and, in general, collective
disambiguation methods) are more helpful when sufficiently many entities are
mentioned in the text; this is not the case for queries.

Entity Retrieval

In the second part of the thesis, we focused on entity retrieval: answering search
queries by returning a ranked list of entities. We asked:

RQ4 How to exploit entity annotations of queries in entity retrieval?

To address this question, we introduced a general framework for leveraging en-
tity annotations of queries into the term-based models. Our framework is based
on the Markov Random Field (MRF) model [139]. Within this framework, we
introduced a new component for matching the linked entities from the query.
This component, termed ELR (for Entity Linking incorporated Retrieval), may
be seen as an extension that can be applied on top of any text-based retrieval
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model that can be instantiated in the MRF framework. We applied our approach
as an extension to various state-of-the-art entity retrieval models and showed
significant and consistent improvements over all of them. We also showed that
different query types are impacted differently by the ELR method. The re-
sults confirm our hypothesis that ELR can improve complex (ListSearch and
QALD-2) as well as heterogeneous (INEX-LD) query sets, which involve entity
relationships. On the other hand, short keyword queries, referring to a single,
albeit often ambiguous, entity (SemSearch ES) are mostly unaffected.

We compared retrieval results using default and trained parameters. We
found that the results are robust, i.e., ELR can improve the performance of term-
based models, even with default parameter values. We also observed that ELR
is robust with respect to entity linking; considering more entity annotations,
even those with low confidence, improves retrieval performance.

Entity Summarization

In the third part of this thesis, we moved towards presentation aspects of the
results. Specifically, we focused on generating content for entity cards, which
are being used frequently in modern web search engines. We asked:

RQ5 How to generate and evaluate factual summaries for entity cards?

To address this question, we presented a method for fact ranking that takes
both importance and relevance into consideration. We designed several novel
features for capturing and distinguishing between importance and relevance,
and combine these features in a supervised learning framework. We further in-
troduced summary generation as a task on its own account, and developed an
algorithm for producing a summary that meets the presentation requirements
of an entity card. Concerning evaluation, we built a benchmark for the fact
ranking task, obtaining a large number of crowdsourced judgments with respect
to both fact importance and relevance. In addition, we evaluated the generated
summaries, with regard to search queries, by performing user preference exper-
iments via crowdsourcing. The results showed that our proposed fact ranking
approach significantly outperforms existing baseline systems. We also found
that the summaries uniting both fact importance and relevance are preferred
over those that are based on a single aspect. Overall, our results confirmed
the hypothesis that dynamic (query-aware) summaries are preferred over static
(query-agnostic) ones; this is especially true for complex relational queries.
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10.2 Future Directions

We believe that utilizing knowledge bases for semantic search systems will con-
tinue to remain an important research area. With the recent success of commer-
cial conversational systems such as Apple Siri, Google Now, and Amazon Alexa,
there is an increasing demand for understanding natural language requests and
responding to those with direct answers [105, 160]. In addition, the presentation
of the results in search engine result pages is evolving, with increasingly more
interactive result panels taking the place of the ranked list of documents. In
the followings, we present the most prominent future directions related to our
research: query understanding, answer retrieval, and result presentation.

Query understanding. A large body of our research has been focused on
annotating queries with entities, i.e., the task of entity linking in queries. One
obvious follow-up direction is to improve ELQ systems, specifically developing
more effective and efficient approaches for entity ranking. Another direction is
to further the understanding of queries by annotating them not only with enti-
ties, but also with entity attributes; e.g., annotating “nationality” in the query
“einstein nationality” with the dbo:citizenship predicate from the knowl-
edge base. Understanding the whole query intent and identifying target entity
types [11, 76] is another direction in this area. Finally, generating clarification
questions for ambiguous queries is another aspect of query understanding in
both textual and conversational search systems.

Answer retrieval. In this thesis, we have found that leveraging entity an-
notations of the queries into the retrieval model can improve entity retrieval
performance, especially for complex natural language queries. Our ELR model
falls in the family of explicit semantic representation approaches. Another pos-
sibility would be to employ neural networks and learn latent representations
of words, entities, and their relations in the knowledge base [187, 200]. These
latent representations can be learnt in an end-to-end ranking model or in an
unsupervised manner to be subsequently leveraged in a ranking model. So far,
we have focused on answering queries with a ranked list of entities. Answers,
however, can be made even more focused, for instance, returning a single entity,
a specific attribute of an entity, or a set of entities along with their attributes,
organized in a table. Developing retrieval models that can return such answers is
an open research direction, which involves both query understanding and result
ranking.
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https://www.socialmediatoday.com/marketing/how-much-time-do-people-spend-social-media-infographic
source:

Figure 10.1: A mock-up illustration on how a future search engine can make
use of plots and interactive panels to provide direct answers.

Result presentation. In Chapter 7, we have discussed the importance of
entity cards in current search engine interfaces and focused on generating entity
summaries. Our study has assumed summaries of fixed size, while in practice
the size of these summaries may vary depending on the device, entity, and
query; generating summaries of different size is a potential extension in this
area. Other elements of entity cards include images, entity type, and related
entities. Providing content for each of these elements is a research question on
its own: (i) How to create thumbnail images for entity cards (following Kennedy
et al. [109] and Bota et al. [33])?, (ii) How to identify the most important type
of the entity (i.e., ranking type-like relations [20, 90])?, and (iii) How to make
related entity recommendation serendipitous (see, e.g., Bordino et al. [31]).

Apart from entity cards, there are other means of providing concise answers
to entity-bearing queries. Consider for example the query “time spent on social
media in a lifetime,” where the answers can be presented by a plot or a table
rather than textual descriptions; see Figure 10.1 for an illustration. Determining
how a query is best answered, and generating interactive information panels as
such tables, plots or maps are challenging tasks that lie ahead of search engines.
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Resources

In the course of this thesis, we considered the reproducibility of our research
seriously, and made publicly available a collection of resources developed within
our studies. This includes source code, test collections, and run files related to
Chapters 3–7.

A.1 Query Understanding via Entity Linking

The resources related to Chapter 3 of this thesis are available on http://bit.ly/
ictir2015-elq. These include test collections (YSQLE, ERD-dev, and Y-
ERD), all run files, evaluation scripts, and the source of Greedy Interpretation
Finding (GIF) algorithm presented in the chapter.

A.2 Establishing a Baseline for Entity Linking
in Queries

We released the resources related to the TAGME reproducibility study (Chap-
ter 4) at http://bit.ly/tagme-rep. It includes our implementation of the
TAGME system, together with run files, and scripts for computing evaluation
measures. We also provide a set of data files, including the TAGME test collec-
tions (complemented with numerical IDs) and files related to evaluating TAGME
on the ELQ task. The Wikipedia indices and surface form dictionary are also
available for download at http://iai.group/downloads/tagme-rep/.
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A.3 Methods for Entity Linking in Queries

The resources developed for the experiments of Chapter 5 are provided at http:
//bit.ly/ecir2017-elq. The repository contains the implementation of the
“candidate entity ranking” and “disambiguation” methods. It also contains the
evaluation scripts, run files, and test collections.

A.4 Exploiting Entity Linking in Queries for En-
tity Retrieval

The repository http://bit.ly/ictir2016-elr contains the resources related
to Chapter 6 of this thesis. We provide the source code required for running
the entity retrieval methods, together with the query set and qrels files for the
DBpedia-Entity test collection (version 3.9). The indices required for running
the code are also available at http://iai.group/downloads/elr/.

A.5 Dynamic Factual Summaries for Entity Cards

The resources related to Chapter 7 of the thesis are made available at http:

//tiny.cc/sigir2017-dynes. The repository contains the crowdsourcing ex-
periment designs, query-entity pairs selected from the DBpedia-Entity collec-
tion, the fact ranking collection, and the run files.
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